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Introduccion

Cuando un profesor entra por primera vez a un salén de clase de los primeros
semestres de las carreras de ciencias, se tiene la incertidumbre sobre como seréa el
curso para esos alumnos, si tendran la fuerza de voluntad suficiente para aguan-
tar la lluvia de conocimiento que se avecina y si lograra desarrollar en ellos el
nuevo razonamiento légico matematico. Y ademés, los alumnos deberan tener la
voluntad de darse su tiempo para procesar los conocimientos y comenzar a dar
resultados en sus tareas y exdmenes. Tiempo que muchas veces ellos no estéan
dispuestos a conceder por sus prisas de vivir todo lo nuevo en sus vidas. Los
alumnos juegan un papel importante en ésta etapa porque ponen a prueba todo
su conocimiento y su aguante para tolerar los resultados que al principio son muy
desalentadores.

En todo el sistema de ensenanza las matematicas han ocupado siempre un
papel privilegiado y despiertan sentimientos encontrados: mientras que la gran
mayoria mantiene hacia ellas una mezcla de respeto, formada durante los anos
escolares y producto de no haber sido capaces de dominarlas sino de sentirse
dominados por ellas, para otros, pocos, son lo mas bello del mundo y las aman
con pasion. Como ya es conocido, la carrera de Matematicas, en distintos paises
no tiene la misma demanda que las carreras del drea de sociales, administrativas
u otras. Por lo que se pretende indagar cuales son los factores que influyen en que
a los alumnos de nivel medio superior de la BUAP no les gusten.

En la prueba Enlace, los alumnos de nivel bachillerato tienen un nivel insufi-
ciente o elemental en habilidad matematica. Para Puebla, en el 2010 un 42.4 % de
los estudiantes tuvieron un dominio insuficiente en esta habilidad (|20]). Sabemos
que existen muchos factores que contribuyen a que la Educacién en México esté
disminuyendo el nivel educativo con respecto a afios anteriores. Entre estos fac-
tores tenemos al desempleo, la falta de mejores oportunidades de trabajo, carga
excesiva de trabajo, corrupcion en las instituciones, modas educativas adaptadas
por exigencias de organismos internacionales, estrés en profesores y alumnos, etc.

Un factor importante es el docente, quien interactua frecuentemente con los
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alumnos motivandolos o coartando sus gustos con sus técnicas de ensenanza, que
pone en practica para esa ocasion. Sabemos que ha ido creciendo el niimero de
docentes con licenciatura en matemaéticas que imparten cursos en nivel medio
superior, sin embargo son insuficientes para dar apoyo a todas las preparatorias
([3]). Pero si el docente no cuenta con experiencia o no tiene cursos de actu-
alizacion dirigidos a la ensenanza de las matematicas, puede ser un ‘reto muy
dificil” acercar a los alumnos al gusto por las matemaéticas (jpero no imposible!).

Esta investigacion es un ejercicio practico en cuanto al analisis de temas rela-
cionados con la matemaética y el uso de la estadistica como una herramienta para
plantear hipotesis de trabajo y de investigacion, lo cual nos lleva a reflexionar so-
bre lo que ocurre con los alumnos cuando llegan a nuestros espacios para realizar
un cambio que dé mejores resultados con los que desean ingresar a una carrera
de ciencias. Debemos participar en la divulgacion, ensenanza y vinculacion de las
matemaéticas en los centros de menor nivel educativo y mostrar nuestras areas con
més herramientas de apoyo didactico (uso de software, platicas de divulgacion por
expertos, hacer concursos interesantes para cada nivel del conocimiento, cursos
de actualizacion para profesores, etc.).

En el capitulo 1 se presentan los conceptos generales sobre el modelo de re-
gresion logistico, se tratan los conceptos de tablas de contingencia, pruebas de
independencia y de bondad de ajuste, material utilizado en el analisis de datos
categoricos. En el capitulo 2 se da una introduccién a la problematica que se
esta desarrollando en relacion con la ensenanza de las matematicas, lo que influye
en que al alumno le gusten o no las matematicas. En el capitulo 3 se muestra la
metodologia que se us6 en el anélisis de los datos que se obtuvieron de la encuesta
realizada a alumnos de las preparatorias de la Benemérita Universidad Auténo-
ma de Puebla. Y finalmente en el capitulo 4 se presentan las conclusiones de este
trabajo.

Objetivo:

1.- Encontrar cuales son algunos de los factores que influyen en el gusto por las
matematicas de los alumnos de algunas de las preparatorias de la Benemé-
rita Universidad Auténoma de Puebla.

2.- Encontrar las actitudes de los alumnos cuando llevan materias relacionadas
con las matematicas.

3.- Investigar la cantidad de horas que los alumnos dedican al estudio de las
matematicas.



Capitulo 1

Antecedentes

En este capitulo se presenta un panorama general del material bésico utilizado
en el analisis de los datos categoricos y el modelo de regresion logistica.
Se tratan los conceptos de tabla de contingencia, independencia entre variables,
probabilidad condicional y de pruebas de bondad de ajuste. Ademés se hace un
breve desarrollo sobre los modelos lineales generalizados y del modelo de regresion
logistico que se utilizo en el anélisis de los datos.

1.1. Clasificacion de variables

Una variable es una caracteristica que al ser medida en diferentes individuos
es susceptible de adoptar diferentes valores.

Existen diferentes tipos de variables:

Segin la medicion:

(1) Variables cualitativas.
Son las variables que expresan distintas caracteristicas o modalidades. Cada
modalidad que se presenta se denomina atributo o categoria y la medicion
consiste en una clasificaciéon de dichos atributos. Las variables cualitativas
pueden ser dicotémicas cuando sblo pueden tomar dos valores posibles como
si y no, hombre y mujer o son politémicas cuando pueden adquirir tres o
més valores. Dentro de ellas podemos distinguir:

(a) Variable cualitativa ordinal o variable cuasicuantitativa: La variable

3



4 1.2. Tablas de contingencia

puede tomar distintos valores ordenados siguiendo una escala estable-
cida, aunque no es necesario que el intervalo entre mediciones sea uni-
forme.

(b) Variable cualitativa nominal: En esta variable los valores no pueden
ser sometidos a un criterio de orden como por ejemplo los colores o el
lugar de residencia.

(2) Variables cuantitativas.
Son las variables que se expresan mediante cantidades numéricas. Las va-
riables cuantitativas ademas pueden ser:

(a) Variable discreta: Es la variable que presenta separaciones o interrup-
ciones en la escala de valores que puede tomar. Estas separaciones o
interrupciones indican la ausencia de valores entre los distintos valores
especificos que la variable pueda asumir.

(b) Variable continua: Es la variable que puede adquirir cualquier valor
dentro de un intervalo especificado de valores.

1.2. Tablas de contingencia

En una tabla de contingencia se puede expresar la relacion que existe entre
dos variables categoricas, X y Y; en el caso de que X tenga I niveles y Y tenga
J niveles. Cuando nosotros clasificamos ambas variables, hay IJ combinaciones
posibles de clasificarlas, como se muestra en la Tabla 1.1.

La respuesta (X,Y) de un sujeto elegido al azar de alguna poblacion tiene una
distribucién de probabilidad. Nosotros visualizamos esta distribucién sobre una
tabla rectangular teniendo I renglones para la categoria de X y J columnas para
la categoria de Y. Las celdas de la tabla representan los IJ resultados posibles.

Las probabilidades son {m;;} donde 7;; denota la probabilidad de que (X,Y)
esté en la celda con el rengléon i y la columna j, las celdas contienen la suma de las
frecuencias de los resultados. El nombre de tabla de contingencia fue introducido
por Karl Pearson en 1904 ([1]), otro nombre es tabla de clasificacion cruzada.

La distribucion de probabilidad {m;;} es la distribucion conjunta de X y Y. Las
distribuciones marginales son los totales de los renglones y columnas obtenidos
por la suma de las probabilidades conjuntas. Estas son: m;, = ) ; Tij €8 la pro-
babilidad marginal o probabilidad de X para el renglon y m; = > . m; es la
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Columnas (Y)
Renglon (X) | 1 2 e . Total
1 ™11 12 T LT T4+
2 21 929 94 .Tog T+
i 1 Yy e v LT T+
I T Tro Trg- LTIy T+
Total T4 | T2 | T4j. | - Tqg | Ty =T

Tabla 1.1: Tabla de contingencia de orden 2

probabilidad marginal o probabilidad de Y por columna (ver tabla 1.1), donde el
simbolo “+” denota la suma sobre todos los indices reemplazados. Estas expre-
siones cumplen que la suma sobre todos sus indices , 7, vale uno.

Las distribuciones marginales son sélo variables de informacion, y no pertenecen
a los vinculos de asociacion entre las variables.

En las tablas de contingencia, generalmente se asigna como Y a una variable
respuesta y la otra (X) es una variable explicativa. Cuando X es fija, la nocion
de distribucién conjunta para X y Y no es mas significativa. Sin embargo, para
un nivel fijo de X, Y tiene una distribucién de probabilidad. Esto es pertinente
para estudiar como las distribuciones de probabilidad de Y cambian cuando los
niveles de X cambian. Dado un sujeto que es clasificado en renglén i de X, mj;
denota la probabilidad de clasificacion en la columna j de Y, j =1, ...., J, donde
> ;i = 1. Las probabilidades {m1); ..., 7} forman la distribuciéon condicional
de Y a nivel i de X. Un objetivo principal de muchos estudios es la comparacion
de la distribucién condicional de Y en varios niveles de variables explicativas.

1.2.1. Independencia

Cuando ambas variables nos interesan, podemos describir la asociaciéon entre
ellas usando su distribuciéon conjunta, la distribucién condicional de Y dado X
o la distribucién condicional de X dado Y. La distribucién de Y dado X estéa
relacionada con la distribucién conjunta por:

.. T
Vi,j =

TI'Z'+'
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Las variables son estadisticamente independientes si todas las probabilidades
conjuntas de X y Y son iguales al producto de sus probabilidades marginales;
estoes,simy; =mmjcone=1,..,Tyj=1,.,J.

Cuando X y Y son independientes las relaciones anteriores se combinan y la
nueva expresion es:

TitT+j — o

Esto significa que cada distribucion condicional de Y es idéntica a la distribu-
cion marginal de Y. Por lo que si dos variables son independientes ocurre que la
probabilidad de la respuesta en la columna j es la misma en cada rengléon para
toda j.

A continuacion se muestra en la Tabla 1.2 ( de dimension Ix2) la notacion
para las distribuciones de probabilidad conjunta, marginal y condicional.

columna (Y)

renglon (X) 1 2 Total
1 i 12 T4
(m1/1) | (m2p1) | (1.0)
2 21 22 T2+

(m1/2) | (m2/2) | (1.0)

1 i1 T2 T4

(m1y) | (m2i) | (1.0)

I T T2 Try
(my1) | (moyr) | (1.0)
Total T4l T2 1.0

Tabla 1.2: Notacion de las distribuciones de probabilidad

En el caso muestral la frecuencia de la celda ij es denotada por n;; y n =
Z}]=1 Zle = 1'n;; donde n es el tamaiio de la muestra y asi la probabilidad de
la celda ¢j queda expresada como:
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¥
p’tj_ n

pi; es la distribucion conjunta muestral en la tabla de contingencia. La proporcion
de veces que un sujeto en el renglon ¢ da la respuesta j es:

Piji = it

N4 )

J
donde ni = np;y = Y5 nij.

1.3. Pruebas de Bondad de Ajuste

Algunos experimentos producen mediciones de respuesta que son dificiles de
cuantificar. Es decir, generan mediciones de respuesta que se pueden clasificar
(en categorias), pero la ubicacion de la respuesta en una escala de mediciones es
arbitraria. Los métodos estadisticos no paramétricos son ttiles para analizar este
tipo de datos.

El término estadistica no paramétrica se refiere a un conjunto de métodos
validos para verificar ciertas suposiciones de la poblaciéon. La aplicacion de estos
métodos no requiere conocer el modelo de poblacién.

Ventajas sobre las pruebas paramétricas:

(a) Implican menos requisitos de uso,
(b) Son mas sencillas de entender y aplicar, y

(¢) Los procedimientos de calculo resultan menos laboriosos.

Desventajas de los métodos no paramétricos.

(a) Se pierde informacion,
(b) La potencia es menor que la de las pruebas paramétricas, y

(c) Se orientan hacia la aceptacion de la hipotesis nula con més frecuencia de
lo que deberian.
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Cuando los datos son categoricos o continuos se hara un analisis estadistico,
utilizando el modelo de la X? (ji-cuadrada).

Para la prueba de bondad de ajuste se pueden emplear dos casos:

(1) La X? (ji-cuadrada) se emplea cuando la hipotesis esta relacionada con una
distribucion discreta; y

(2) La Kolmogorov-Smirnov cuando la hipotesis nula concierne a una distribu-
cion continua.

1.3.1. La prueba ji-cuadrada (X?)

Este modelo obtenido por K. Pearson en 1900, mide la discrepancia entre la
frecuencia observada y la esperada tedricamente, con base en una distribucion
hipotética.

La prueba de bondad de ajuste ayuda a decidir si los resultados de un expe-
rimento coinciden con los esperados de acuerdo con alguna ley, modelo o teoria
cientifica.

Esto se lleva a cabo de la siguiente manera:

1. Se obtienen las frecuencias observadas y se ubican en una tabla de contin-
gencia.

2. Se construye un cuadro de frecuencias esperadas que concuerda con la dis-
tribucién tedrica o el modelo cientifico.

3. Segiin el namero de variables de criterio que se consideran, sera la tabla de
contingencia (I x J); la prueba de bondad de ajuste se empleara para una
muestra y una o mas variables de criterio.

Para usar la prueba de X? para bondad de ajuste se requieren:

1. Minimo de 50 observaciones.

2. La frecuencia esperada para cada categoria debe de ser por lo menos de 5,
a fin de cumplir este requisito se pueden combinar las categorias.
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3. En el caso de bondad de ajuste para la distribucién normal, deben cono-
cerse ;' y o o sus estimadores T y s, a fin de poder calcular las frecuencias
esperadas.

Procedimiento:

1. Identificar la variable de interés.

2. Establecer el juego de hipotesis:

H, : Las observaciones muestrales han sido extraidas de una distribucién
donde existe independencia y tiene una forma de distribucién poblacional
establecido.

VS

H; : No es valida H,.
3. Proponer el valor de a(nivel de significancia asignado por el investigador).

4. El estadistico de prueba es:
2 __ (fo—fe)?
X2=> 7

donde
fe es la frecuencia esperada y
fo es la frecuencia observada.

5. La regla de decision para rechazar Hy es:

Si X% > X? entonces Hj se rechaza donde gl son los grados de libertad

(a,gl) »
de X(Qa o) al a % de confianza.

Ahora, una variable de criterio se tiene cuando las categorias de la distribucion
de frecuencias se basan en una sola variable de clasificacién. También se pueden
tener dos o més variables de clasificacion pero esto puede ser dificil de analizar
por lo cual es recomendable colocar los datos en una tabla de contingencia de a
lo mas dos entradas.
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1.3.2. Prueba de Kolmogorov-Smirnov (K-S)

Puede aplicarse a muestras pequeiias que requieren menos calculos que la X2
y ésta tnicamente procede para variables continuas.

Se supone que la poblacion tiene una distribucion determinada dividida en K
intervalos de igual area o probabilidad. Posteriormente, se selecciona al azar una
muestra de tamano n de dicha poblacion.

Esto significa que la prueba se utiliza para comparar frecuencias relativas acu-
muladas, observadas y esperadas, asi como para contrastar la hipotesis nula de
los datos observados que se han recopilado de una distribucién de probabilidad
determinada.

Esta prueba estadistica muestra cual es la diferencia méxima absoluta D,
entre cualquier par correspondiente de frecuencias relativas acumuladas, obser-
vadas y esperadas.

1. Juego de hipotesis:

donde:
F(z) : funcion de distribucion.
F.(z) : funcion de distribucion acumulada y teorica.

2. Estadistico de prueba:

Diaz = |Fs(x) - FT(I)|

3. La regla de decision:

La hipotesis nula se rechaza al nivel de significancia « si el valor calculado
de D, excede el valor mostrado en la tabla de Kolmogorov -Smirnov para
1- a y el tamano de la muestra n.
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1.4. Modelos de Regresion

Un modelo estadistico lineal que relaciona una respuesta aleatoria y en un
conjunto de variables independientes x1, xo, .., z) tiene la forma:

y=Po+ biz1+ ... + Brxk + €, (1.1)

donde fy, f1, ..., Bk son parametros desconocidos, € es una variable aleatoria y
x1,Xa, .., T} son constantes conocidas. En donde se supone que F(e) = 0, en con-
secuencia,

E(y) = Bo + bixy + ... + By (1.2)

1.4.1. Modelo de Regresion Lineal Simple

El modelo de regresion lineal simple tiene como proposito el determinar la
relacion que existe entre alguna variable x y una variable y asi como hacer esti-
maciones sobre el comportamiento de y. La variable z sera denotada como variable
independiente o predictora y la variable y como dependiente, el modelo es

E(y) = 6o + iz + ¢, (1.3)

donde la ordenada al origen 3, y la pendiente [3; son constantes desconocidas que
suelen llamarse coeficientes de regresion, y € es un componente aleatorio de error.
Se supone que los errores cumplen con E(e) = 0y Var(y) = 0. Las suposiciones
que deben cumplir los modelos de regresion lineal simple son:

1. x;, 2 = 1,...,n son observaciones de las variables indpendientes que estan
tomando y que son consideradas como no aleatorias.

2. B, v = 0,1 son pardmetros desconocidos que determinan la recta de regre-
sion.

3. €, 1 =1,...,n llamados residuales, son variables aleatorias no observables,
independientes idénticamente distribuidas en forma de N (0, o?).

4. y; son variables aleatorias independientes.
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Para estimar (3 y 31 se usa el método de minimos cuadrados. Esto es, se
estiman [y y [ tales que la suma de los cuadrados de las diferencias entre las
observaciones y; y la linea recta sea minima. De acuerdo a la ecuacion ( 1.3), se
puede escribir

Yi = Po+ Piri+e€, 1=1,2,... n. (1.4)

Por lo que se puede considerar que la ecuacion ( 1.3) es un modelo poblacional
de regresion, mientras que la ecuacion ( 1.4) es un modelo muestral de regresion.

Los estimadores por minimos cuadrados de By y (31 son:

s (@i —T)(yi —9)
pr= ST - (1.6)

Entonces, el modelo ajustado de regresion lineal simple es,

?3 :Bo—i-ﬁll’. (17)

La diferencia entre el valor observado y; y el valor ajustado correspondiente
y; se llama residual. Matematicamente, el i—ésimo residual es

e =y — Ui = yi — B + By, (1.8)

Los residuales tienen un papel importante para investigar la adecuacion del
modelo de regresion ajustado y para detectar diferencias respecto a las hipotesis
bésicas.
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Los estimadores por minimos cuadrados 3y y 1 tienen algunas propiedades
importantes. Ademés, By y 1 son combinaciones lineales de las observaciones y;,
son insesgados, es decir, E(3;) = (3;, parai = 0, 1; las expresiones de sus varianzas

A no2 ~
son: Var(fy) = 02% y Var(f) = J2m.

Sea Sy => 0 (2 —T)2 y ¢ = @S—j para i = 1,2, ...,n. Entonces

Bl = Z?:l CilYi-

La varianza de [3; se calcula como sigue:

2\ n o n 2
Var(b) = Var(3_i_, cyi) = >z, ¢ Var(yi),
ya que las variables g; no son correlacionadas, por lo que la varianza de la suma
es igual a la suma de las varianzas. La varianza de cada término en la suma es

c2Var(y;) y hemos supuesto que Var(y;) = 0?; en consecuencia,
o) n o235 (x;—%)2 o2
Var(3,) = o? Zi:l C? = % = 5. = UQm'
La varianza de ﬁo es:
Var(fy) = Var(y — fiz) = Var(y) + @Var(p1) — 22Cou(y, ).

. . _ . _ 2 .
Ahora bien, la varianza de 3 no es mas que Var(y) = %, y la covarianza entre

yy B es cero. Asi,

Var(fo) = Var(y) + #Var(f)) = o*(5 + &) = 0oty

Prueba de significancia de la regresion.

Hoiﬁlzo VS Hl:ﬁl#().



14 1.4. Modelos de Regresion

Este juego de hipotesis se relaciona con la significancia de la regresion. El no
rechazar Hy : #; = 0 implica que no hay relacion lineal entre x y y. Si se rechaza
Hy : 6y = 0, equivale a decir que = explica la variabilidad de .

Para construir intervalos de confianza para los pardmetros desconocidos, la
distribucién del estadistico de prueba es una ¢, es decir,

donde se = \/Var(f)

El ancho de dichos intervalos es una medida de la calidad general de la recta
de regresion.

Un intervalo de confianza de 100(1 — «) % para la pendiente ) se determina

por

61 — ta/2,n—256(ﬁ1) <p < 61 + ta/2,n—256(51), (1.10)

y un intervalo de confianza de 100(1 — «) por ciento para la ordenada al origen

(o €s

Bo — ta/2,n—256(ﬁ0) < Bo < fo + ta/2,n—256(50)‘ (1.11)

1.4.2. Modelo de Regresion Lineal Miiltiple

Un modelo de regresion donde interviene méas de una variable regresora se
llama modelo de regresiéon miltiple.

En general, se puede relacionar la respuesta y con k regresores, o variables
predictoras. El modelo

y = Do+ Prar + ... + Sray + €, (1.12)

se llama modelo de regresion lineal multiple con k regresores. Los parametros f3;,
j = 0,1,....,k son los coeficientes de regresion y cada uno representa el cambio
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esperado en la respuesta y por cambio unitario en z; cuando todas las demaés
variables regresoras ;(i # j) se mantienen constantes.

Se puede escribir en la siguiente forma el modelo muestral de regresiéon que
corresponde a la ecuacion ( 1.12):

k
inﬁo+51$i1+~-+ﬁink+€iZﬁo—FZﬁjxij-i—ﬁu i=0,1,..,n. (113)

J=1

La representacion matricial es la siguiente:

y=XF+e, (1.14)
donde
T
Y2
y=|" , (1.15)
[ Yn |

1 11 12 ... 1k
1 To21 X922 ... Lok

x=| | (1.16)

| 1 1 T2 - T

Bo
A

=1 | (1.17)

i |
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€1
€9

€= . (1.18)

En

En general y es un vector de n x 1 de las observaciones, X es una matriz de
n X p de los niveles de las variables regresoras, J es un vector de p x 1 de los
coeficientes de regresion y € es un vector de n x 1 de errores aleatorios.

El estimador de # por minimos cuadrados es

3= (X'X)"'Xly, (1.19)

siempre y cuando exista la matrix inversa (X'X)~!. Esta matriz existe si los re-
gresores son linealmente independientes, esto es, si ninguna columna de la matriz
X es una combinacion lineal de las demas columnas.

El modelo ajustado de regresion que corresponde a los niveles de las variables
regresoras &’ = [1, 2, T, ..., )] €s

j=aB=00+)_ B (1.20)

La diferencia entre el valor observado y; y el valor ajustado g; correspondiente
es el residual e; = y; —1;. Los n residuales se pueden escribir con notacién matricial
como sigue:

e=y-y, (1.21)

donde ﬁ es un estimador insesgado de (. La covarianza de los estimadores es
Cov(f) = 0*(X'X)™", la varianza de los estimadores es Var(f3;) = ¢;0?, donde

ci; es el elemento del renglén i y la columna i de (X'X) ™! y la Cov(;, 3;) = cijo°.

Prueba de significancia de la regresion.
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La prueba de la significancia es la extension del caso univariado de la regre-
sibn y se usa para determinar si hay una relaciéon lineal entre la respuesta y y
cualquiera de las variables regresoras x;, xs, ..., xx. Las hipdtesis son:

Hy:Bo=p1=..=0,=0 vs Hy:f;#0 al menos para una j.

El rechazo de la hipétesis nula implica que al menos uno de los regresores
x1, s, ..., Ty contribuye al modelo en forma significativa.

Fijando un nivel de significancia, para probar la hipotesis Hy se calcula el
estadistico de prueba Fy:

Fy= —<& (1.22)

tiene la distribucion Fj,,—g—1.

En donde la suma de cuadrados de la regresion es

n N2
SSp = Fxty — Loz W) (1.23)
n
la suma de cuadrados de residuales, o suma residual de cuadrados es
SSRCS = y/y - B/X/y (124)

y la suma total de cuadrados es

n

SSr=y'y —

Y se rechaza Hj si

Fy > Fa,k,nfkfl- (126)
Pruebas sobre coeficientes individuales de regresion.
Una vez determinado que al menos uno de los regresores es importante, saber

cual de ellos su valor es diferente de cero. Las hipdtesis para probar la significan-
cia de cualquier coeficiente individual de regresion, como por ejemplo 3; , son
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Hoiﬁj:() VS leﬁj%o

Si no se rechaza Hy : 3; = 0, quiere decir que se puede eliminar el regresor z;
del modelo. El estadistico de prueba para esta hipotesis es

~ ~

Bi B
Vo2Cy;  se(f;)

donde Cj; es el elemento diagonal de (X'X)~! que corresponde a Bj.

t():

(1.27)

Para construir los intervalos de confianza de los coeficientes de regresion f;,
se continuara suponiendo que los errores ¢; estan distribuidos normal e indepen-
dientemente, con promedio cero y varianza o?.

Se puede definir un intervalo de confianza de 100(1 — «) % para el coeficiente
de regresion 3;, 7 = 0,1, ..., k, como sigue:

~

B — tajanpV2C;; < B < B + tajonpV02Cj;. (1.28)

1.5. Modelos Lineales Generalizados

Un método alternativo para transformar datos, cuando no se satisfacen las
hipotesis “acostumbradas” de normalidad y de varianza constante, es el que se
basa en el modelo lineal generalizado.

El modelo lineal generalizado (MLG) es una unificacion de los modelos de
regresion lineal y no lineal, que también permite incorporar distribuciones de
respuesta no normales. En un modelo lineal generalizado la distribucién de la
variable de respuesta solo necesita ser un miembro de la familia exponencial, que
comprende las distribuciones normal, de Poisson, binomial, exponencial y gamma.

Un modelo lineal generalizado (MLG) describe una relacion entre el promedio
de la variable respuesta Y y una variable independiente x. Las relaciones pueden
ser mas complicadas que E(y;) = « + [z;. Muchos modelos pueden expresarse
como MLG, a continuacion se describira al modelo de regresion logistica. Un
modelo MLG consiste de 3 componentes: una aleatoria, una sistematica y una
funcion liga ([7]).
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1. Las variables respuesta 1, ..., y, son componentes aleatorias, se asume que
son v.a.i.id, cada una tiene distribucién que pertenece a la familia exponen-
cial.

2. La componente sistematica en el modelo, es la funcién lineal en los para-
metros de la variable predictora, en nuestro caso: a + (x;.

3. La funcion liga g(u) de las 2 componentes g(j1;) = a+ Bz; donde p; = E(y;)

es el promedio de la funcién liga el cual es llamado la liga identidad.

1.5.1. Modelo de Regresién Logistica

Se considera el caso en que la variable respuesta y es binaria o dicotémica,
s6lo asume dos valores posibles: 0 y 1; esos niimeros podrian ser asignaciones
arbitrarias a una respuesta cualitativa. Y tiene una distribuciéon Bernoulli, con
Plyy=1)=m=m(z;) y P(y;=0)=1—m;, i = 1,...,n individuos.

Como E(e) = 0, el valor esperado de la variable respuesta es:

La respuesta esperada es la probabilidad de que la variable de respuesta tenga
el valor 1.

La forma del modelo de regresion logistica es

r(z) = exp(Bo + f1x)

=1 e2p(Go+ o) + e (1.29)

donde x es una variable categérica y toma el valor de 0 6 1.

El momio se define como la razén de la probabilidad de que ocurra un evento
y la probabilidad de que no ocurra:

T
1—m

= exp(fy + f1) + €. (1.30)

donde x es una variable categoérica y toma el valor de 0 6 1.
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La transformacion de 7(x) es el estudio de la regresion logistica por medio de
la transformacion logit, que se define en términos de m(z) como:

g(x) = ln[lj(—:()x)] = o + Bix +e. (1.31)

donde = es una variable categorica y toma el valor de 0 6 1.

La importancia de esta transformacion es que g(x) tiene muchas de las propiedades
deseables de un modelo de regresion lineal, es decir, es una funcién lineal de las
variables independientes, y que permite que la probabilidad estimada de 7 esté
en el rango de valores de 0 y 1.

Como la respuesta es binaria, entonces el error € s6lo puede tener dos valores,
que son:

e=1—m(x) cuando Y =1,
¢ = —m(z) cuando Y = 0.

La varianza del error no es constante, ya que:

var(yi) = E((:)%) — (BE(y:))? = m — (m)* = mi(1 — m).
En este caso € esta distribuido de forma binomial.
Estimacion de los parametros.

Se usara el método de maxima verosimilitud para estimar los pardmetros del
predictor lineal By + f1x. Sea 3 = (o, f1)-

n n

LB) =[x (1 —m)' ¥ = [yin[r(2:)] + (1 = y)In[l — w(2;)]]. (1.32)

i=1 i=1

Para encontrar el valor de § que maximize L() se diferencia L((3) con res-
pecto a By y (1 y se iguala a cero el conjunto de expresiones resultantes. Estas
ecuaciones son:
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n

> lyi—m(@)] =0 (1.33)

=1

n

> ailys — w(a)] = 0. (1.34)

=1

Para la regresion logistica las expresiones en las ecuaciones anteriores son no
lineales en 3y v 31 y se requieren métodos especiales para su soluciéon, por lo que
se utilizan programas de cémputo.

Sea B el estimador final de los parametros del modelo.
El valor esperado del modelo de regresion logistica se escribe:

exp(fo + Pre)
L+ exp(Bo + Hir)

(1.35)

T =
Prueba de significancia de los coeficientes.
Un modelo saturado es aquel que contiene tantos parametros como hay puntos

de datos. La comparacion de observar a los valores previstos usando la funcion
de verosimilitud esta basada en la siguiente expresion:

D— _2ln[verosimilitud del modelo ajustado

) 1.
verosimilitud del modelo saturado (1.36)

La cantidad en el interior de los corchetes de la expresion ( 1.36) es llama-
da proporcion de verosimilitud. Usando las ecuaciones ( 1.32) y ( 1.36) obtenemos:

~

1—7Ti
L=y

D= —2Z{yizn<§> (1= gin () (1.37)

El estadistico D en la ecuacion ( 1.37) es llamado la desviacion.
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G = D(para el modelo sin la variable) - D(para el modelo con la variable)

n

G =20 [yaln(#) + (1= y)in(1 =) = D waln(d_w) + Y (1—y;) —nin(n)].

i=1
(1.38)
Bajo la hipoétesis de que (; = 0, el estadistico G seguird una distribuciéon
ji-cuadrada con 1 grado de libertad.

1.5.2. Modelo de Regresion Logistica Miiltiple

Si se considera la coleccion de p variables independientes que se denotan por
el vector ' = (z1, 29, ..., x,), entonces la transformacion logit del modelo de re-
gresion logistica multiple esta dado por la ecuacion:

g(x) = Po + Biz1 + Poma + ... + Bpxy + €, (1.39)
€1 cCuyo caso
e9(@)
m(x) = 1T @ (1.40)

Si algunas de las variables independientes son discretas, variables de escala
nominal (como raza, sexo, el grupo de tratamiento, etc.), entonces no es conve-
niente incluirlas en el modelo como si se tratara de intervalo de escala. Esto se
debe a que los nimeros usados para representar los distintos niveles no son més
que identificadores, y no tienen significado numérico. En este caso el método de
eleccion es el uso de un conjunto de variables de diseno (o variables indicadoras).

La mayor parte de los software de regresion logistica generan las variables in-
dicadoras. Si la variable de escala nominal tiene k posibles valores, entonces son
necesarias k — 1 variables indicadoras. Supongamos que la j-ésima variable inde-
pendiente, x; tiene k; niveles. Las k; —1 variables indicadoras son denotadas como
D, y los coeficientes de estas variables son denotadas como 3;,, u = 1,2,..., k;—1.
Asi, la transformacion logit para el modelo con p variables y la j-ésima variable
seria
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kj—1

g(ZE) = 50 —f- ﬁlxl —I— + Z ﬁjuDju —f- ﬁpxp. (141)
u=1

Estimacion de los parametros.

Sea ' = (B, b1, ..., Bp). El método utilizado para estimar los parametros es el
de maxima verosimilitud. Las ecuaciones de verosimilitud que resultan son:

S s — 7)) = 0 (1.42)

Z Tij [yi — m(z:)] = 0 (1.43)

para j =1,...,p.

Aqui la solucién de estas ecuaciones requieren programas de computo, donde
[ denota la soluciéon de estas ecuaciones. Por lo tanto, los valores ajustados de el
modelo de regresion logistica multiple es 7(x;):

eﬁo 6121 +3212+--~+Bpxp

#(x) = (1.44)

o 1+ eﬁo+31w1+ﬁ2$2+~--+3p$p '

Prueba para la significancia de el modelo.

La prueba esta basada en el estadistico G dado en la ecuacion ( 1.37). La
diferencia es que los valores ajustados, 7, bajo el modelo estan basados en el vec-
tor que contiene p+1 parametros, B . Bajo la hipotesis nula que los p coeficientes
de la pendiente de las covariables en el modelo es igual a cero, la distribuciéon de
G seré una ji-cuadrada con p grados de libertad.

Prueba de Wald: Al estimar los coeficientes del modelo y para conocer la
importancia de cada variable incluida en el modelo, es necesario probar si un
parametro (3; es diferente de cero, lo cual equivale a la hipotesis nula:
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Hy:06;,=0 vs H,:3;,#0 i=1,...,p.

La prueba estadistica utilizada para probar la hipétesis nula es la estadistica
de Wald, la cual se obtiene dividiendo el estimador de maxima verosimilitud del
parametro [3; entre el estimador de su error estandar:

W = —. 1.45
se(;) ( )

El resultado de este cociente bajo la hipotesis nula Hy, sigue el patréon de
una distribuciéon normal estandar, por lo que permite probar la significacion es-
tadistica del coeficiente 3;, mediante la comparacion con una distribucién normal
estandarizada Z. Es decir, si P(|Z| > |W]) < p, donde p es el nivel de significancia
admitido, se rechaza la hipotesis Hy.

Seleccion de variables:

Los criterios para la inclusién de una variable en un modelo pueden variar de
un problema a otro y de una disciplina cientifico a otra. Para el enfoque tradi-
cional de la construcciéon de modelos estadisticos es necesario conocer el modelo
més parsimonioso que ain explica los datos. Las razones para reducir al minimo
el niimero de variables en el modelo es que el modelo resultante es méas probable
que sea numéricamente estable, y es mas facil de generalizar.

Hay ciertos pasos que uno puede seguir para ayudar en la seleccién de las
variables de un modelo de regresion logistica. Todo el proceso es similar al usado
en regresion lineal.

(1) El proceso de seleccion debe comenzar con un cuidadoso andlisis univari-
ante de cada variable. Para las variables nominales, ordinales y continua con
algunos valores enteros, se sugiere que esto se haga con una tabla de contingencia
de los resultados (y = 0, 1) frente a los k niveles de la variable independiente. El
cociente de probabilidad ji-cuadrado con k — 1 grados de libertad es exactamente
igual al valor de la prueba de cociente de probabilidad para la significaciéon de los
coeficientes para las k — 1 variables de diseno en un modelo de regresion logistica
univariado que contiene solo la variable independiente. La ji-cuadrada de Pearson
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es asintoticamente equivalente a la proporcion de probabilidad ji-cuadrada.

El analisis univariante consiste en ajustar un modelo de regresion logistica
para obtener el coeficiente estimado, la estimacion del error estandar, la prue-
ba para la significancia de los coeficientes y el estadistico Wald univariado. Una
alternativa al analisis es la prueba ¢ de dos muestras. Por lo tanto, el anélisis
univariado basado en la prueba ¢ debe ser 1til para determinar si la variable debe
ser incluida en el modelo, ya que el p-valor debe ser del mismo orden de magnitud
que el de la Wald, prueba de Score o la prueba de razoén de verosimilitud de la
regresion logitica ([15]).

Para las covariables continuas, se puede desear complementar la evaluacion
de la adecuacion logistica univariada con algin tipo de diagrama de dispersion
suavizado.

(2) Una vez finalizado el anélisis univariado hay que seleccionar las variables
para el analisis multivariado. Cualquier variable cuya prueba univariada tenga
un valor de p < 0.25 podria ser considerada como candidata para el modelo
multivariado junto con otras variables de conocida importancia biolégica.

El uso de un nivel de 0.25 como criterio para la selecciéon de las variables can-
didatas esté basado en el trabajo de Bendel y Afifi(1977) sobre regresion lineal y
el trabajo de Mickey y Greenland (1989) sobre regresion logistica. Estos autores
muestran que el uso de un nivel més tradicional (como 0.05) a menudo no se
identifican las variables conocidas por su importancia.

Otro método para la seleccion de variables es el uso de un procedimiento paso
a paso en el que las variables se seleccionan incluyendolas o excluyendolas del
modelo de forma secuencial, basado tinicamente en criterios estadisticos. Hay dos
versiones principales del procedimiento paso a paso: (a) seleccion hacia adelante
con una prueba de eliminaciéon hacia atras y eliminacion hacia atras seguido por
una prueba de seleccién hacia adelante.

(3) Tras el ajuste del modelo multivariado, la importancia de cada variable
incluida en el modelo debe ser verificada. Esto debe incluir (a) una evaluacion de
la estadistica de Wald por cada variable y (b) una comparacion de cada coeficien-
te estimado con el coeficiente del modelo univariado que contiene sélo la variable.

(4) Una vez que se ha obtenido un modelo que pensamos contiene las variables
esenciales, debemos mirar mas de cerca las variables del modelo y considerar la
necesidad de incluir términos de interacciéon entre las variables. La decision final
sobre si un término de interaccion debe ser incluido en un modelo se debe basar
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en consideraciones estadisticas y practicas.



Capitulo 2

La Ensenanza de las matematicas

En todo el sistema de ensenanza las mateméaticas han ocupado siempre un
papel privilegiado y despiertan sentimientos encontrados: mientras que la gran
mayoria mantiene hacia ellas una mezcla de respeto, formada durante los anos
escolares y producto de no haber sido capaces de dominarlas sino de sentirse
dominados por ellas, para otros, pocos, son lo mas bello del mundo y las aman
con pasion. Las razones de esto hay que buscarlas en la peculiar naturaleza de las
matematicas como ciencia y en que cuando su ensefianza se empieza mal no se
consigue avanzar. Las matematicas han sido consideradas como una disciplina de
un gran valor formativo ademés de algo necesario, como contenido, para cualquier
tipo de estudio que se realice. Este capitulo esta basado en las referencias [8] y
[9] que hablan de estudios realizados en otros paises sobre la ensenanza de las
matemaéticas y el gusto que los alumnos manifiestan hacia ella.

2.1. Las matematicas en la sociedad

En el pasado las matematicas eran consideradas como la ciencia de la canti-
dad, referida a las magnitudes (como en la geometria), a los nimeros (como en
la aritmética), o a la generalizacién de ambos (como en el dlgebra). Hacia media-
dos del siglo XIX las matemaéticas se empezaron a considerar como la ciencia de
las relaciones, o como la ciencia que produce condiciones necesarias. Esta tltima
nocion abarca la l6gica matematica o simbdlica, ciencia que consiste en utilizar
simbolos para generar una teorfa exacta de deduccion e inferencia logica basada
en definiciones, axiomas, postulados y reglas que transforman elementos primi-
tivos en relaciones y teoremas més complejos. Se considera que los medios més
eficientes para aprender las matematicas, son los siguientes ([8]):

27
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1. Experiencias directas con la realidad.
2. Excursiones escolares.

3. Objetos, especimenes y modelos.

4. Auxiliares de la actividad.

5. Auxiliares visuales (material pictorico).
6. Auxiliares auditivos.

7. Auxiliares audiovisuales.

8. Simbolos de representacion plana.

De acuerdo a su grado de abstraccion y concrecion, el autor Edgar Dale ([18])
compone lo que se denomina “El cono de la experiencia”, que en forma de piramide
presenta los medios desde los méas abstractos (en el vértice) hasta los més concre-
tos (en la base). Es importante destacar que de una manera didactica también se
pueden ensenar las mateméaticas ante la sociedad, entre éstas tenemos:

1. Objetos originales.
2. Reproducciones de objetos originales.
3. Representaciones graficas, orales y escritas.

4. Simbolos.

5. Medios cibernéticos de ensenanza.

Cabe senalar, ademés, los medios de ensenanza generales: medios técnicos,
mobiliario y otros elementos de uso generalizado. Los medios empiricos, donde la
representacion o reproduccion de la naturaleza es de forma directa. Los medios
simbolicos, dados por representaciones en el plano abstracto y cuyos simbolos son
convencionales, determinados por la vida social. Por ende, no se puede dejar de
mencionar que los medios de transmision de informacién, son de suma importan-
cia porque atraen la atencion de la sociedad y por esto es que su funciéon esencial es
la transmision de las particularidades de los contenidos, son predominantemente
informativos. Ejemplo de ellos son el pizarrén, fotografias, maquetas, modelos,
laminas, mapas, murales, cine, television, acetatos, etc. Medios de entrenamien-
to: simuladores y entrenadores cuya funciéon esencial es la formacion de habitos y
habilidades. Son equipos de diferentes estructuras técnicas que van desde relojes
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hechos en cartulina para que los ninos aprendan la hora hasta entrenadores para
cosmonautas.

En concordancia con el enfoque que se le debe dar a la ensenanza para lograr
el desarrollo de un proceso docente educativo participativo mediante la resolucion
de problemas y con métodos que estimulen a los estudiantes, se deben trabajar
los medios de ensenanza con un enfoque de sistema, concibiéndolos de forma in-
tegrada de manera tal que se produzca un resultado superior ante la sociedad.
Para lograr un hombre instruido, desarrollado y educado se requiere de un proce-
so docente educativo al menos a un nivel de asimilacién productivo, pero ademaés
motivado, afectivo, emotivo, que estimule a los escolares y los incorpore conscien-
temente a su propio desarrollo. Las matemaéticas son eficientes cuando logran
transformar la necesidad social en motivos para los estudiantes, esto es muy im-
portante pues cuando el estudiante estd motivado, su mayor satisfaccion reside
en la asimilacion del contenido y se le convierte en una necesidad el desarrollo
de habilidades como una via fundamental para resolver los problemas que se le
presentan de la vida cotidiana.

De esa forma aumenta su credibilidad sobre la importancia y necesidad de
las matemaética en la vida cotidiana, convencido de que el contenido que asimi-
la se convertird en una herramienta para resolver problemas. Por tanto la carga
emocional que implica el método de aprendizaje es la mayor satisfaccion del es-
tudiante. En la ensenanza de las matematicas el profesor debe insistir en que el
estudiante adquiera el conocimiento en tanto le es significativo para su actuacion
posterior (la instruccion), de forma que la aspiracion del estudiante no se reduzca
a la satisfaccion inmediata de un examen final de las matematicas, de esta ma-
nera los objetivos generales se transforman, en el estudiante, en motivo esencial
del esfuerzo relativo en su actividad docente (el desarrollo). Para lograr esto, los
problemas a presentarles en las matemaéticas deben dejar explicito, en lo posible,
su vinculacién con objetos reales.

Los ideales se forman mediante la participacion activa del estudiante, en la
soluciéon de problemas sociales. El se esfuerza, desarrolla su voluntad y en esa
tension organiza y reorganiza los contenidos que domina, flexibiliza el sistema de
conocimientos y habilidades que posee para adecuarlos a las condiciones concretas
de algin problema planteado al que tiene que llevar a cabo. Ese es el camino para
la formacion educativa pero sin olvidar que para lograr formar convicciones en
los estudiantes se hace necesario la imprescindible relacion entre lo afectivo y lo
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cognitivo, mediante la comunicaciéon entre el profesor y el estudiante y mediante
la actividad que estos desarrollan.

Una preocupacion que constantemente tienen los maestros de matematicas es
la del bajo rendimiento escolar de los alumnos y sus dificultades. Pareciera que
la asignatura es especialmente problematica. El contenido disciplinario lo es: su
naturaleza es abstracta, su lenguaje simboélico y requiere de una curiosa combi-
nacion de conceptos, operaciones y discernimiento, para que pueda ser ttil en la
solucion de situaciones problematicas. Como complemento, la actividad escolar
en matematicas es compleja y a veces poco comprendida por los propios maestros.

Ensenar matemaéticas no garantiza saber matematicas, por otro lado, aunque
se tenga una buena formacion psicopedagogica, dificilmente puede ensenarse bien
un objeto que se desconoce o que se conoce limitadamente. El problema se ubica
en la educaciéon matematica, y no en una u otra disciplinaria. Las dificultades de
los alumnos en esta materia, son mucho mas de lo que se quisiera. En algunos
maestros esta latente en sus reflexiones como parte de una culpa que no puede
ser superada con esfuerzos que se orientan tan solo con la buena voluntad.

A través del trabajo cotidiano en algunas escuelas secundarias, se observo
que, salvo contadas excepciones, el rendimiento que los alumnos mostraban en
una materia escolar generalmente es similar al que se muestra en lo demas. El
caracter global de los planes de estudio y la presion que ejercen los padres de
familia sobre los adolescentes crean condiciones para que en las actividades es-
colares se manifiesten habitos de trabajo y disciplina que de alguna forma hacen
que el alumno avance de manera mas 6 menos homogénea. El rendimiento esco-
lar se manifiesta individualmente, tiene repercusiones de indole social. Esto es, si
bien el rendimiento escolar es s6lo un aspecto del proceso educativo, representa
una valoracion de logros y con ello también de posibilidades en otros ambitos,
pues en una sociedad competitiva y con recursos limitados como la nuestra, la
educacion publica no esté asegurada para todos, y la permanencia del sujeto en
el sistema social esta condicionada a que él haya “ probado” cierta capacidad ([8]).
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2.2. Ensenanza de las Matematicas

Las mateméticas es la asignatura de mayor necesidad e importancia para
todas las sociedades y, especialmente, para las tecnologicamente avanzadas, su
aplicacion es evidente en la totalidad de las profesiones, pero al mismo tiempo es
la peor comprendida y la que arrastra una reputaciéon que intimida a una gran
cantidad de personas; segun lo afirma Bishop (1999) (|5]) representa para muchos
la pesadilla y el fantasma que se debe enfrentar a lo largo del proceso educativo.

La ensenanza de las matematicas se ha convertido en la piedra angular del
proceso formativo de las personas. Son numerosas las investigaciones que dan
cuenta de la importancia de las matematicas en la formaciéon del ser humano.
Entre ellos, el tercer estudio internacional de matematicas y ciencias (TIMSS),
realizado entre los anos de 1991 y 1995 en el que participaron mas de 500,000
alumnos, provenientes de 15,000 centros docentes de 45 paises. Entre sus conclu-
siones, destacan la consideracion de las matematicas como una materia esencial,
para la formacion de los jovenes en todos los paises del mundo, y su importancia
para el desarrollo de habitos de razonamiento riguroso y critico en los humanos.
De igual manera, la UNESCO conjuntamente con la unién matematica interna-
cional declaré el ano 2000 como el ano internacional de las matematicas. En este
evento, se le proclamé como la disciplina clave para el desarrollo de las sociedades.
Asimismo, se decidié promocionar su presencia en la llamada sociedad de la in-
formacion.

Tanto la ensenanza como el aprendizaje de esta disciplina son areas recono-
cidamente problematicas en diversas partes del mundo (Bishop, 1999; Baroody,
2000; Hernandez y Soriano, 1999; Mora, 2001; Gonzalez, 2004) ([5]), la referencia
a esta ciencia significa abordar uno de los ambitos de mayor complejidad y crit-
icidad dentro del proceso de ensenanza-aprendizaje, debido entre otras razones,
al reducido niimero de estudiantes que logran a través de su paso por el sistema
educativo los niveles de competencia adecuados que le proporcionen satisfaccion
a partir de su desempeno. Por el contrario, la gran mayoria reporta insatisfaccion,
frustracion, miedo, apatia y desencanto, con la consiguiente actitud negativa ha-
cia esta disciplina, y todo lo que de alguna manera se relacione con ella.

Como consecuencia de estos aspectos, se observa en los resultados de diversas
investigaciones, que la matematica tiende a constituirse en un filtro selectivo en
todos los sistemas educativos de cualquier pais. Un estudio realizado por el Na-
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tional Research Council en 1989 corrobora estas afirmaciones al senalar que en los
Estados Unidos la mala preparacion de la poblacién en esta area es alarmante,
con las graves consecuencias econdémicas, sociales y politicas que esto conlleva.
Asimismo, el informe del diagnéstico general del sistema educativo espafol, ela-
borado por el Instituto Nacional de Calidad y Evaluacion (INCE), presentado en
el ano 2002, revela a la matematica como la asignatura con mayor porcentaje de
aplazados y fracasos escolares en el dltimo tramo de educacién secundaria obli-
gatoria. En una investigacion, presentada por Vilchez (1999) se subraya que el
estudio de la matematica en los centros educativos costarricenses, tanto en la edu-
cacion bésica como en educaciéon superior, es sumamente complejo, los alumnos
muestran una apatia automaética frente a los retos que les impone la rigurosidad
y la abstraccion, caracteristicas propias de esta ciencia.

México no escapa de esta dificultad, los estudios tanto cuantitativos como
cualitativos asi lo senalan, mostrando resultados muy bajos en el aprendizaje
matemaético, y problemas muy serios con respecto a su ensenanza. Las pruebas
Enlace que se aplican a los alumnos en diferentes niveles de educacién, en el ni-
vel medio superior presentan un dominio insuficiente y elemental en la habilidad
matematica y en el caso de nuestro estado, en la prueba realizada en el 2010 el
42.4 % muestran un dominio insuficiente en esta habilidad (]|20]).

Los estudios de Morales (1995) y Cardenas (1995) ([6]), demuestran que las
dificultades en el aprendizaje matematico se van acentuando a medida que el es-
tudiante avanza en el sistema educativo y llega a sus niveles mas criticos en la
educacion superior, donde esta asignatura presenta la mayor cantidad de reproba-
dos, concentrados en los primeros semestres de las diferentes carreras con los con-
secuentes elevados indices de exclusion, repeticion, desercion, abandono y bajo
rendimiento académico. En educaciéon media el aprendizaje recae totalmente en
el docente.

El profesor tiene la obligacion de controlar toda la actividad, incluso como
afirman Gascon y Munoz (2004) ([12]), lograr que el alumno se interese por la
matemética y esté motivado para su estudio. En el nivel medio se han incorporado
profesores con una formacion muy alejada del area de la matematica, lo que trae
como consecuencia que los profesores de matematicas dejen de ser matematicos,
para ser solo docentes, lo que provoca que la separacion entre el contenido de la
ensenanza matematica y la forma de dictar la asignatura que tiene el docente, es
decir, el componente pedagogico de la ensefianza, se siga profundizando (Gascon,
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Munoz y Sales, 2004) (|12]). Inclusive existen docentes que no tienen interés ni
les gusta esta asignatura, pero la estan dictando.

Este problema no acepta soluciones inmediatas y requiere de un enorme esfuer-
zo de todos los que de alguna manera estamos involucrados en la vida educativa
del pais. Es necesario un enorme esfuerzo de investigacion para que este problema
sea totalmente comprendido y resuelto. No hay soluciones magicas, basadas en el
sentido comiin, las buenas intenciones, la experiencia y la reflexion aislada.

En conclusion, las matematicas se siguen ensennando de la misma manera, con
ese caracter formalista, riguroso y abstracto, dominada por reglas complejas muy
precisas, aplicables a ejercicios rutinarios sin ninguna conexién con la realidad y
otras areas del saber. Para Hernandez y Soriano (1999) (|14]) este aspecto aparece
como denominador comin a nivel mundial, donde se aprecia que una cosa es lo
escrito en los programas de esta asignatura, y otra cosa muy diferente lo que
se vive diariamente en el aula. Los estudiantes siguen abordando esta asignatu-
ra repitiendo contenidos mecénicamente sin comprenderlos, y cuando llegan a la
universidad sufren los sinsabores de no entender qué paso con sus conocimientos,
como aplicar lo que les ensenaron.

. Por qué la ensenanza de las matemaéticas es tarea dificil?

La matematica es una actividad vieja y polivalente. A lo largo de los siglos ha
sido empleada con objetivos profundamente diversos. Fue un instrumento para
la elaboracion de vaticinios, entre los sacerdotes de los pueblos mesopotamios.
Se consider6 como un medio de aproximacién a una vida mas profundamente
humana y como camino de acercamiento a la divinidad, entre los pitagoricos.
Fue utilizado como un importante elemento disciplinador del pensamiento, en
el Medievo. Ha sido la més versatil e idonea herramienta para la exploracion
del universo, a partir del Renacimiento. Ha constituido una magnifica guia del
pensamiento filoséfico, entre los pensadores del racionalismo y filésofos contem-
poraneos. Ha sido un instrumento de creaciéon de belleza artistica, un campo de
ejercicio ludico, entre los matematicos de todos los tiempos.

Por otra parte la matematica misma es una ciencia intensamente dinamica
y cambiante. De manera rapida y hasta turbulenta en sus propios contenidos.
Y aiin en su propia concepcion profunda, aunque de modo mas lento. Todo ello
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sugiere que, efectivamente, la actividad matemética no puede ser una realidad
de abordaje sencillo. El otro miembro del binomio educaciéon-matematica, no es
tampoco nada simple. La educaciéon ha de hacer necesariamente referencia a lo
més profundo de la persona, una persona atin por conformar, a la sociedad en
evolucion en la que esta persona se ha de integrar, a la cultura que en esta so-
ciedad se desarrolla, a los medios concretos personales y materiales de que en el
momento se puede o se quiere disponer, a las finalidades prioritarias que a esta
educacion se le quiera asignar, que pueden ser extraordinariamente variadas. La
complejidad de la matematica y de la educacion sugiere que los teoéricos de la
educacion matematica, y no menos los agentes de ella, deban permanecer cons-
tantemente atentos y abiertos a los cambios profundos que en muchos aspectos
la dindmica rapidamente mutante de la situacion global venga exigiendo.

La educacién, como todo sistema complejo, presenta una fuerte resistencia
al cambio. Esto no es necesariamente malo. Una razonable persistencia ante las
variaciones es la caracteristica de los organismos vivos sanos. Lo malo ocurre
cuando esto no se conjuga con una capacidad de adaptaciéon ante la mutabilidad
de las circunstancias ambientales. En la educaciéon matemética a nivel interna-
cional apenas se habrian producido cambios de consideraciéon desde principios de
siglo hasta los afios 60. A comienzos de siglo habia tenido lugar un movimiento
de renovacion en educacion matematica, gracias al interés inicialmente desper-
tado por la prestigiosa figura del gran matematico alemén Felix Klein, con sus
proyectos de renovacion de la ensenanza media y con sus famosas lecciones so-
bre Matematica elemental desde un punto de vista superior (1908). En Espana
ejercieron gran influencia a partir de 1927, por el interés de Rey Pastor, quien
publico, en su Biblioteca Matematica, su traduccion al castellano.

En los anos 60 surgié un fuerte movimiento de innovaciéon. Se puede afirmar
con razén que el empuje de renovacion de aquél movimiento, a pesar de todos
los desperfectos que ha traido consigo en el panorama educativo internacional, ha
tenido con todo la gran virtud de llamar la atencion sobre la necesidad de alerta
constante sobre la evolucion del sistema educativo en matematicas a todos los
niveles. Los cambios introducidos en los anos 60 han provocado mareas y con-
tramareas a lo largo de la etapa intermedia. Hoy dia, podemos afirmar con toda
justificaciéon que seguimos estando en una etapa de profundos cambios.

. Las dificultades en el aprendizaje de las matematicas se explica por los méto-
dos de ensenanza?
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La mayor parte de los maestros de matematicas, se han formado en escuelas
o facultades de matemaéticas en donde la interacciéon con otras disciplinas, inclu-
sive tan cercanas como la fisica, es tradicionalmente escasa. En nuestro sistema
educativo, la ensenanza verbalista tiene una larga tradicion y los alumnos estéan
acostumbrados a ella. Esta poderosa inercia ha impedido a los estudiantes per-
catarse que en las ciencias, en particular en las mateméticas, lo importante es
entender.

En lo general, los alumnos en lugar de estar atentos a los razonamientos y
participar en clase, se limitan, por tradiciéon de aprendizaje, a tomar apuntes que
después tratardn de memorizar al estudiar para sus examenes. Un gran ntmero
de factores contribuyen a que esta situacion no cambie: con frecuencia el maestro
estd acostumbrado a este estado de cosas y lo ve como natural; por lo extenso de
los programas, el maestro decide cubrirlos en su totalidad y no se da tiempo para
generar el didlogo, fomentar las intervenciones de los alumnos y hacerles ver que
es posible sacar més provecho a los tiempos de las clases.

Lo anterior tiene como consecuencia que el interés por las matematicas sur-
ja de las mateméticas mismas y no de la interaccién con las otras ciencias. Los
profesores de las otras disciplinas que requieren de las matematicas como herra-
mienta que sitie e interrelacione adecuadamente, las ideas y conceptos centrales,
han recibido su formacion en instituciones donde han aprendido a eludir el uso
de las matematicas; actitud que mantienen, a pesar de que en sus disciplinas, las
matemaéticas cada dia cobran mayor relevancia. La amplitud de los programas de
los cursos, la rapidez con que éstos se imparten, la falta de ejemplos que muestren
la relacion de las materias con el resto del curriculum y la escasa motivacion con
que los emprenden, no permiten al alumno ubicar correctamente el contenido,
limitando su esfuerzo a estudiar para pasar los exdmenes, material que olvida en
su mayor parte.

Esto tltimo, tiene como consecuencia, que los profesores se encuentren cons-
tantemente con la disyuntiva de repasar el material que se supone que los alum-
nos ya conocfan, cuestion que va en contra del cumplimiento cabal del nuevo
contenido, o continuar adelante, dando por sabido los antecedentes. El desfase
entre los cursos de matematicas y los de las otras disciplinas en las que, segtun lo
programado, el alumno aplicaré los conocimientos matematicos adquiridos, tiene
como consecuencia una confusion considerable por parte de los alumnos, que se
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ve acrecentada ain mas cuando los profesores de las otras disciplinas le “dan la
vuelta” al uso de las matematicas.

Esta dificultad se podria salvar si en los cursos de mateméticas se contem-
plasen también los usos y las aplicaciones de los temas matematicos en estudio,
pero con frecuencia el profesor de matemaéaticas no tiene tiempo para verlos o los
desconoce. Sin embargo el problema es significativo en los cursos impartidos por
profesores temporales. Estos profesores no tienen tiempo para familiarizarse con
el sistema modular y no hay un programa especifico para ellos. Otro grave pro-
blema es que, no forma parte de los habitos de los alumnos el recurrir a asesorias
y, cuando lo hacen, el profesor dispone de poco tiempo para ello o carece de la
formacion y experiencia necesarias para entender, de manera personalizada, las
dificultades especificas de un estudiante.

Ademas de que en las instituciones hay poco espacio destinado a los alumnos
para el estudio en equipo, éstos no estan acostumbrados a ello, haciendo que los
malos habitos de estudio se perpetiien por no contar con espacios colectivos en los
que, en su caso, podrian ser confrontados por la experiencia de otros companeros.
En la formacion del alumno, las matematicas forman un cuerpo de conocimientos
ajeno a su area de estudio, pues ni los profesores de matematicas ni los de las
propias disciplinas ven las interrelaciones entre las matematicas y las especiali-
dades que cultivan, ni tampoco las aplicaciones.

Tanto los profesores de matemaéticas, como los de las otras asignaturas y los
alumnos estan convencidos de la necesidad de las matematicas en los planes de
estudio especificos de cada disciplina. Pero cuando se les pregunta con mas detalle
y profundidad, no muestran claridad en el porqué de ello. Bajo estas circunstan-
cias, los contenidos matematicos de los planes de estudio no tiene una justificacion
clara, lo que provoca que se discutan diversos contenidos muy contrastantes e in-
clusive se piense, cada tanto, en la eliminacién de las mateméaticas.

Como consecuencia, el alumno no le da importancia, ni pone empeno en el
aprendizaje de las matemaéticas, conformandose con aprobar los cursos y olvi-
dando sus contenidos tan pronto eso sucede. Otra situaciéon que se presenta con
frecuencia es la falta de interés de los profesores para discutir los cursos que tradi-
cionalmente muestran dificultades especiales, reflejadas en los altos porcentajes
de desercion y reprobacion. Ponerse de acuerdo, por ejemplo, al elegir un texto
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que sea usado por los alumnos a lo largo de varios semestres. Son pocos los que
participan en las discusiones y todavia menos los que se comprometen a llevar a
cabo un trabajo concreto.

Puede afirmarse que una parte considerable del profesorado piensa que su
compromiso docente queda cubierto, de manera suficiente, con la imparticiéon de
sus cursos y que eso basta para que los alumnos lleguen a los cursos posteriores
con la preparacién adecuada. Asi mismo, esta amplia proporcién de profesores
considera que el establecer las relaciones entre los temas de diversos cursos es un
problema que atane, esencialmente, a los que disenaron los planes y programas
de estudio.

A partir de estos puntos de vista, resulta opcional y no obligatorio, asistir
a reuniones para discutir como cumplir con los programas de estudio, elegir un
texto que sea usado por alumnos a lo largo de varios semestres o la elaboracion de
examenes departamentales. Para esta concepcion del trabajo docente, la simple
union de esfuerzos individuales, establecida por los planes, haré que la formacion
de buen nivel de los estudiantes ocurra por anadidura, esto es, sin esfuerzo adi-
cional alguno de relaciéon entre colegas. Una situaciéon que también se presenta
es que el profesor, cuando se percata de las dificultades que tienen los alumnos
en sus cursos, considera que, en gran parte, ¢l es responsable por lo que decide
tomar medidas al respecto. Las que estan a su alcance suelen ser: leer o consultar
un texto de didactica general, o tomar un cursillo en donde se encuentra con
puntos de vista interesantes, pero que no le ayudan a mejorar su situacion, pues
el problema radica en que, a pesar de tener una formacién matematica amplia
y dominar muchos temas avanzados, no maneja los temas bésicos con suficiente
soltura y no ha ubicado correctamente los puntos finos de su ensenanza y apren-
dizaje. La didéactica puede aportar mucho, pero de ninguna manera sustituye al
conocimiento profundo de la materia a impartir.

Una probleméatica que en sentido estricto corresponde a los profesores, pero
que incide en los puntos arriba mencionados, es que en general la adquisicion del
conocimiento es vista como un fenémeno mecanico en el que los alumnos simple y
sencillamente van almacenando las nuevas ideas y conocimientos, y no toman en
cuenta que el proceso de construccion del conocimiento es sensiblemente més com-
plicado y que no se lleva a cabo de manera homogénea en todos los alumnos de un
curso. Por ello la discusion, en el seno de los departamentos de matematicas, de
los problemas de la docencia es importante. Esta discusiéon deberia incluir, entre
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otros temas: como se lleva a cabo la construccion y adquisicion del conocimiento;
nuevas presentaciones de los temas que conforman posprogramas de las materias;
cambios curriculares; evaluacion de los alumnos y sobre todo, el compartir expe-
riencias -exitosas o no- en el apasionante espacio de la ensenanza.

Un reclamo constante de los profesores de matematicas es que, en muchos
casos, los alumnos llegan a la institucién con una preparaciéon matemaética fran-
camente deficiente que les impide un aprovechamiento minimamente aceptable
en los cursos de nivel superior, situaciéon que sbélo en un alto porcentaje de
reprobacion y desercion, que son preocupaciones constantes, tanto de los pro-
fesores como de las autoridades. Tratando de mejorar la situacion, se han puesto
en marcha distintos programas: rediseno del examen de ingreso, examenes de ubi-
cacion, cursos propedéuticos, etc.; pero los resultados no han sido los esperados,
quizas porque se requiere de un acercamiento que contemple el problema dentro
de un marco més general y busque soluciones a mas largo plazo ([9]).

2.3. Gusto por las matematicas

Los resultados reflejados en distintos informes nacionales e internacionales
(Cockroft, T..M.S.S., Ministerio de Educacion y Ciencia, Pisa, etc.) confirman
la complejidad del proceso de ensenanza-aprendizaje de las Matematicas tanto
en su vertiente intrinseca o epistemolédgica como extrinseca (politicas y modelos
educativos). Se han buscado y creado situaciones didacticas que permitan abor-
dar los obstaculos epistemologicos y se han revisado contenidos, metodologias,
estrategias y recursos. Pero todo ello, en nuestra opinién, ha de tener como re-
ferente al alumno y, por tanto, habria que “conocer” al alumno para encontrar
situaciones didacticas desde la realidad del alumno que propicien medidas que
disminuyan el fracaso escolar.

Las muy relevantes aportaciones de Z.P. Dienes y Piaget ([11]), entre otros,
nos han ayudado a estructurar el pensamiento matematico y desentranar su de-
sarrollo en funcién del estadio evolutivo del nino. Al decir “conocer” al alumno,
no nos referimos, inicamente, a la necesaria consideracion de la fase en la que
se encuentre el estudiante en el desarrollo del pensamiento mateméatico y de su
estadio evolutivo sino a un conjunto de elementos de tipo cognitivo y afectivo-
emocional que configuran lo que podriamos denominar el perfil matematico del
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alumno.

Goleman en una de sus obras mas conocidas mantiene que la persona tiene
dos mentes, una para pensar y otra para sentir y que estas dos formas fundamen-
tales de conocimiento interactiian para constituir nuestra vida mental (Goleman
1997) ([13]). Mente racional, pues, junto a mente emocional, reflexion junto sen-
timiento, cabeza y corazéon conforman esta sugestiva dualidad de la condicién hu-
mana. Asi, podriamos establecer un “tridngulo mental” con vértices: conocimien-
tos matematicos, capacidades o destrezas Matematicas bésicas y afectos-emociones
(actitudes) hacia las Matemaéticas. El estudio de esos vértices y de sus interrela-
ciones es una apasionante tarea en la que se encuentran trabajando un buen
ntmero de investigadores en educacién matemética.

Tradicionalmente, el sistema educativo ha dedicado mayor atencién al desa-
rrollo de la mente racional, del conocimiento logico y reflexivo. A partir de los
anos ochenta, al menos en lo concerniente a las Matemaéticas, se produce un
paulatino aumento en la valoracion de la dimension afectiva sobre el conocimien-
to (Mandler 1984, McLeod 1988; Gomez Chacon 1999, 2000; Hidalgo, Maroto
y Palacios 1998, 2000a, 2000b, 2005; Campos 2003). Surge en los docentes la
necesidad de descubrir los aspectos emocionales en la creencia de que el éxito en
esas tareas permitird comprender situaciones probleméticas de fracaso escolar y
poner las soluciones pertinentes. Pese a la juventud del papel de los afectos en
Matematicas, contamos con un nimero importante de investigaciones sobre el
tema. Algunas han hecho referencia a su significado en el contexto general de las
Matematicas, aunque son mas numerosas aquellas que se han dedicado al anélisis
de aspectos méas concretos, como la relaciéon entre actitudes y sexo, la incidencia
de la familia como determinante de actitudes Mateméticas o el papel del profesor
y sus métodos en las emociones de sus alumnos.

Entre las primeras, las mas generales, destaca el interés por relacionar afec-
tos y rendimiento escolar (Valdez, 1998; Gomez Chacon, 2000; Hidalgo Maroto y
Palacios 1999, 2000a, 2000b). Los aspectos méas importantes relativos a las conse-
cuencias de los afectos sobre el rendimiento son: el impacto poderoso que tienen en
como los alumnos aprenden y utilizan las Matematicas, el establecimiento del con-
texto personal dentro del cual funcionan los recursos y las estrategias heuristicas,
la influencia en la estructura del autoconcepto como aprendiz de Matemaéticas,
la importancia para la estructuracion de la realidad social del aula y el obstaculo
que es, en algunos casos, para el aprendizaje eficaz.
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Hidalgo, Maroto y Palacios (2005), tras realizar un agrupamiento de los alum-
nos segin sus gustos o rechazos matematicos en “perfiles matematicos” y “perfiles
anti-matematicos”, encuentran un aumento progresivo de estos tltimos, los anti-
matemaéticos, a la vez que lo hace el nivel educativo. Esta distribucién por perfiles
les permite, ademas, comparar el rendimiento matematico, ciertas aptitudes men-
tales primarias y dichos perfiles. Tanto en la prueba de conocimientos como en las
aptitudes numéricas y razonamiento encuentran rendimientos mejores entre los
alumnos que manifiestan gustarles las Matemaéticas; diferencias que en algunos
casos, como en las aptitudes numéricas, llegan a ser importantes. Se trata, pues,
de alumnos con mayores capacidades al menos en aspectos tan importantes para
las Matematicas como son el razonamiento, el calculo elemental o la vision espa-
cial.

Para Gomez Chacon (2000), la relacion que se establece entre los afectos
(emociones, actitudes y creencias) y el rendimiento es ciclica: por una parte, la
experiencia que tiene el estudiante al aprender Matematicas le provoca distintas
reacciones e influye en la formacion de sus creencias. Por otra, las creencias que
sostiene el sujeto tienen una consecuencia directa en su comportamiento en situa-
ciones de aprendizaje y en su capacidad para aprender. En las investigaciones
realizadas sobre la incidencia del sexo en el aprendizaje de las Matematicas se
ha detectado que no aparecen diferencias entre ambos sexos hasta los 12 6 13
anos (Fennema y Sherman, 1977); estas diferencias, cuando se producen, podrian
atribuirse a los cambios que acompanan a la pubertad y la adolescencia si no
fuera porque se mantienen en edades posteriores. Afectan, ademas, a la eleccion
posterior de itinerarios formativos y a los rendimientos que obtienen los alumnos.
Actualmente se tiende a dar mayor importancia a los factores educativos y cultu-
rales. Se ha comprobado que controlando los factores afectivos y motivacionales,
no se aprecian diferencias entre sexos.

Sin embargo, los estudios longitudinales sobre las actitudes hacia las Matemati-
cas son escasos. Si nos centramos en los trabajos que tratan la evolucién de la
actitud hacia las Matematicas, es general la conclusion de que se van hacien-
do menos favorables al avanzar la edad (Fennema, 1978; Fennema y Sherman,
1977; ICECE, 2002). Esta tendencia durante la escolarizacion no es exclusiva de
las Matematicas y se ha observado en otras materias y en las actitudes hacia la
escuela en general. Es mas, como sugieren Bell, Costello y Kiichemann (1988),
puede ser sélo el reflejo de un enfoque més critico de muchos aspectos de la vida.
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Los trabajos llevados a cabo por Gairin (1987) con alumnos de E.G.B. confirman
que la reduccién de las actitudes favorables se manifiesta particularmente durante
la adolescencia, siendo a los 11 anos cuando empiezan a consolidarse las actitudes
que se han desarrollado durante la ensenanza primaria y que estan fuertemente
polarizadas.

Hidalgo, Maroto y Palacios (2004) realizan un estudio con distintos niveles
educativos (desde Educacion Primaria hasta Bachillerato) en el que constatan
importantes diferencias en el gusto por las Mateméticas y los factores que lo de-
terminan. Entre otros resultados encuentran que el rechazo a las Matemaéticas
esta determinado, entre otros factores, por el nivel educativo de los alumnos. En-
tre los que han terminado el primer ciclo de Primaria se hace dificil encontrar
rechazos; probablemente, estamos ante una de las asignaturas preferidas (junto a
la Educacion Fisica). Esta situacion no se modifica sustancialmente, al final del
segundo y tercer ciclo de este mismo nivel de Primaria, aunque se aprecia una
tendencia descendente en el grado de aceptacion. Sin embargo, a partir de la Edu-
cacion Secundaria se produce un claro descenso en dicho gusto y un aumento en
el niimero de alumnos a quienes no gustan las Matematicas. Este punto de inflex-
i6n que se produce en la Ensenanza Secundaria Obligatoria (ESO), esté presente
en otros aspectos, tales como la percepcion de dificultad o el grado de apetencia
por las Matematicas. Otro dato confirma la presencia tardia del rechazo de las
Matematicas a lo largo de la escolarizacion. Cuando se pregunta a los estudiantes
de Bachillerato desde cuando sienten antipatia a las Matematicas, si es que la
tienen, ocho de cada diez la sitian en la ESO; afinando un poco maés, de esos 8
alumnos, 6 situarian en el segundo ciclo de la ESO el origen de la antipatia hacia
las Matematicas.

Este descenso en la percepcion positiva de las Matematicas no se encuentra
en otras asignaturas. Con pequenas diferencias, la opinién que los alumnos tienen
de las diferentes materias parece ser bastante consistente a lo largo de la esco-
larizacion, dato que les permite considerar que la disminucién en el gusto por
las Matematicas es mas propio de la disciplina que de la edad o del paso a nive-
les educativos superiores. Intentamos dar respuesta a interrogantes tales como:
. Percibe el nino la diferencia tematica en las distintas actividades? ;Es capaz
de priorizar sus gustos respecto a las distintas disciplinas? ;Es determinante en
este primer nivel educativo una predisposicion o rechazo hacia las Matematicas?
., Podemos hablar de una divisiéon temprana de los ninos y ninas en funciéon de su
perfil matematico? ;Hay diferencias en el perfil matematico en funcién del sexo?
... Todo este planteamiento no pretende, en modo alguno, defender un proceso
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de ensenanza-aprendizaje en la Educacion Infantil estratificado y diferenciado en
materias y disciplinas. Muy al contrario, admitimos la perspectiva globalizadora
y la forma ciclica de abordar los aprendizajes en la Educacion Infantil. Nuestro
propoésito es como, ya se ha indicado, estudiar el perfil matemético del nino desde
una perspectiva evolutiva, en todos los niveles educativos, con objeto de buscar
situaciones didacticas desde la propia realidad del alumno. Realidad, dinamica
y diversificada en funcién de los rasgos personales de cada individuo en la que
afecto y cognicién caminan de la mano haciendo méas verdad la unidad del ser
humano.

La actividad fisica es un placer para una persona sana. La actividad intelectu-
al tambien lo es. La matematica orientada a como saber ser auténomo, bajo una
guia adecuada, es un ejercicio atrayente. De hecho, una gran parte de los ninos
més jovenes pueden ser introducidos de forma agradable en actividades y ma-
nipulaciones que constituyen el inicio razonable de un conocimiento matematico.
Lo que suele suceder es que un poco més adelante nuestro sistema no ha sabido
mantener este interés y ahoga en abstracciones inmotivadas y a destiempo el de-
sarrollo matematico del nino. El gusto por el descubrimiento en matematicas es
posible y fuertemente motivador para superar otros aspectos rutinarios necesa-
rios de su aprendizaje, por los que por supuesto hay que pasar. La apreciacion
de las posibles aplicaciones del pensamiento matemaético en las ciencias y en las
tecnologias actuales puede llenar de asombro y placer a muchas personas mas ori-
entadas hacia la practica. Otros se sentiran mas movidos ante la contemplacion de
los impactos que la matematica ha ejercido sobre la historia y filosofia del hombre,
o ante la biografia de tal o cual matematico famoso. Es necesario romper, con
todos los medios, la idea preconcebida, y fuertemente arraigada en nuestra so-
ciedad, proveniente con probabilidad de bloqueos iniciales en la ninez de muchos,
de que la matematica es necesariamente aburrida, abstrusa, inttil, inhumana y
muy dificil.

La manera de evitar los escollos generales en el aprendizaje de las matemati-
cas seria invertir el procedimiento que se utiliza. Las matemaéticas no pueden en-
senarse en los primeros niveles como una teoria formal, abstracta, porque el nino
no es capaz de entenderla y tampoco ve la necesidad de una teoria de este tipo.
Lo primero que hay que hacer es crear en el nino la necesidad de las matemati-
cas, pues uno de los grandes problemas de la ensenanza de las matemaéticas, no
de ahora sino de siempre, es que el sujeto las considera como algo gratuito, no
ve ni la necesidad de introducir esas nociones ni, en niveles mas avanzados, la
necesidad de los pasos que se utilizan en una demostraciéon. Mientras el sujeto no
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vea primero la utilidad de las nociones matematicas y luego su necesidad, no sera
posible realizar una ensenanza adecuada que despierte interés en los alumnos.
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Capitulo 3

Aplicaciéon del Modelo

En los capitulos anteriores se presentaron conceptos teéricos del modelo de
regresion logistica y algunos estudios enfocados a la ensenanza de las mateméti-
cas, asi como al gusto que los alumnos manifiestan hacia ella que se han realizado
en algunas partes de el mundo.

En este capitulo se presenta la informacion obtenida de una encuesta realizada
a alumnos de preparatorias de la Benemérita Universidad Auténoma de Puebla.

3.1. Preparatorias de la Benemérita Universidad
Auténoma de Puebla (BUAP)

En la ciudad de Puebla se encuentran 6 preparatorias que pertenecen a la
BUAP, para nuestro estudio elegimos solo a 4 preparatorias del ciclo escolar
2010-2011, las cuales fueron: Benito Juarez, Emiliano Zapata, Lazaro Céardenas
y Enrique Cabrera. La situacién geografica de las preparatorias de la BUAP se
encuentra en la Figura 4.1.

De estas preparatorias la Benito Juarez tenia 29 grupos por la manana cada
uno con un promedio de 43 alumnos y por la tarde 21 grupos con un prome-
dio de 38 alumnos. La Enrique Cabrera tenia 15 grupos por la manana con un
promedio de 40 alunnos y 15 grupos por la tarde con un promedio de 32 alumnos.
En la Emiliano Zapata habia 12 grupos por la manana con un promedio de 35
alumnos por grupo y 12 grupos en la tarde con un promedio de 36 alumnos y
la Lazaro Cérdenas tenia 12 grupos por la manana cada uno con un promedio
de 38 alumnos y por la tarde 12 grupos con un promedio de 33 alumnos por grupo.

45
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Figura 3.1: Ubicacion de las preparatorias

3.2. Procedimiento

Se realiz6 la encuesta en mayo de 2010 a alumnos de las preparatorias de la
BUAP. Idealmente nos habiamos propuesto hacer un muestreo aleatorio en las
preparatorias para cada turno, nivel y grupo, pero desgraciadamente no se pudo
lograr, porque nos asignaron a los grupos a encuestar, de aqui que la encues-
ta no fue aleatoria. Asi que este fue un corte transversal de lo que ocurre en
las preparatorias. El tamafno de la muestra fue de 365 alumnos de las diferentes
preparatorias.

Preparatoria Porcentaje
Enrique Cabrera 29 %

Benito Juérez 24.1%
Emiliano Zapata 17%
Lazaro Cardenas 29.9%

Tabla 3.1: Encuestados por preparatoria

Las variables que incluimos en nuestra encuesta fueron:

1.- Preparatoria.
2.- Semestre.
3.- Gusto por las matematicas.

4.- Area que se les dificulta.
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5.- Horas de estudio que dedican a las matematicas.
6.- Realizas algun trabajo.
7.- Como se te hace mas facil aprender.
8.- Gusta método de ensenianza de su profesor.
9.- Confianza profesor.
10.- Coémo apruebas el curso.
11.- Promedio general.

12.- Promedio matemaéticas.

3.2.1. Analisis descriptivo

Podemos observar de los alumnos encuestados:

gusto hrs. estudio

251 150

100

Frecuencia
Frecuencia

Ningung Zhoras és de 2 horas
gusto hrs_estudio

Figura 3.2: Gusto por las matematicas Figura 3.3: Hrs. estudio matemaéticas

El 42.7 % tiene promedio en matematicas de 6-7.9, el 29.6 % de 9-10 y el 27.7 %
de 8-8.9 y ; el 40.8 % estudia 2 horas, el 29.9 % estudia mas de 2 horas y el 29.3 %
no estudia ninguna hora matematicas; al 69.3 % les gusta como ensefia su pro-
fesor; el 90.9% aprueban durante el curso; el 79.4 % no trabaja; el 80.8% tiene
confianza en su profesor; al 56.4 % se les hace més facil aprender individualmente
y al 43.5% en equipo, ver Tabla 3.11.
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Figura 3.4: Gusta método de ensenanza Figura 3.5: Confianza hacia su profesor

Promedio General Promedio

Frecuencia
Frecuencia

679 888 @10 7. 889
PromGeneral PromMate

Figura 3.6: Promedio general Figura 3.7: Promedio en matematicas

Se encontraron diferencias entre las preparatorias encuestadas:
Preparatoria Enrique Cabrera:

Los alumnos eran con un 54.7 % de 6to semestre, 32.1% de 4to y 13.2% de
2do. A la mayoria de los alumnos no les gustan las mateméticas con un 64.2 %
y a un 35.8% si les gusta. El area que mas se les dificulta es la trigonometria
y geometria con un 47.2 % seguido de calculo con un 34 % y por ultimo algebra
con un 18.9%. Los alumnos estudian 2 horas a la semana matematicas con un
42.5 % seguido de los que no estudian con un 34.9% y los que estudian mas de
2 horas con un 22.6 %. Como en todas las preparatorias los alumnos que no tra-
bajan son un 80.2 % y solo un 19.8 % lo hacen medio tiempo o los fines de semana.
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A la mitad de los alumnos les gusta trabajar en equipo y a la otra mitad
individualmente. Y a casi todos los alumnos les gusta como da clases su profesor
(89.6 %) (ver Figura 3.9) y en esta preparatoria los profesores tienen cursos en
ensenanza. Al igual que casi todos le tienen confianza a su profesor un 98.1 %
(ver Figura 3.8). Y como en todas las preparatorias aprueban las materias de
matemaéticas durante el curso (95.3%). Y un 46.2 % de los alumnos tienen prome-
dios de 9-10 en general en la preparatoria. Y en matematicas un 35.8% tienen

ese promedio.

confianza hacia el profesor

L

Figura 3.8: Confianza hacia profesor

gusta método de ensefianza

%

Figura 3.9: Gusta método de ensenanza

tablas de contingencia
PromMate
6-7.9 8-8.9 9-10 total
Recuento 10 14 13 37
frecuencia esperada 12.2 11.5 13.3 37
Nunguna % dentro de horas de estudio 27 % 37.8% 35.1% 100 %
% dentro de PromMate 28.6 % 42.4% 34.2% 34.9%
% del total 9.4 % 13.2% 12.3 % 34.9%
recuento 21 12 12 45
hrs. est. dos frecuencia esperada ) 14.9 14 16.1 45
mate horas % dentro de horas de estudio 46.7 % 26.7 % 26.7% 100.0 %
: % dentro de PromMate 60 % 36.4% 31.6 % 42.5%
% del total 19.8% 11.3% 11.3% 42.5 %
recuento 4 7 13 24
mas de frecuencia esperada 7.9 7.5 8.6 24
dos % dentro de horas de estudio 16.7% 29.2 % 54.2% 100.0 %
horas % dentro de PromMate 11.4% 21.2% 34.2% 22.6 %
% del total 3.8% 6.6 % 12.3 % 22.6 %
total recuento 35 33 38 106
frecuencia esperada 35 33 38 106
% dentro de horas de estudio 33% 31.1 % 35.8% 100.0 %
% dentro de PromMate 100.0 % 100.0 % 100.0 % 100.0 %
% dentro de el total 33 % 31.1 % 35.8% 100.0 %
Tabla 3.2: Tabla contingencia Promedio matematicas-Hrs. estudio
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Valor Sig. asintotico(bilateral)

=,

Chi-cuadrado de Pearson | 9.047% | 4 .060
Razén de verosimilitudes 8.996 4 .061
Asociacion lineal .983 1 321
por lineal
N. de casos validos 119

Tabla 3.3: Prueba ji-cuadrada

De acuerdo a la Tabla 3.3 hay independencia entre las variables con un nivel
de significancia de 0.05.

Preparatoria Lazaro Cardenas:

De los alumnos encuestados el 47.7 % eran de 2do semestre y el 52.3 % de 4to,
en esta escuela no se pudieron encuestar a alumnos de 6to semestre ya que habian
terminado sus cursos. A un 52.3 % si les gustan las matematicas, influido un poco
por los profesores este gusto. El drea que més se les dificulta es la trigonometria
y geometria con un 43.1 %, seguida de algebra con un 30.3 % y por ultimo calculo
con un 26.6 %.

La mayoria de alumnos que se encuestaron solo estudian 2 horas a la semana
matemaéticas con un 43.1 %, seguido de ninguna con un 31.2 % y por ultimo mas
de 2 horas con 25.7%. De todas las preparatorias encuestadas es en la que los
alumnos més trabajan con un 24.8 % y lo hacen ya sea medio tiempo o fines de
semana y un 75.2% no trabaja (ver Figura 3.10). Se les hace més facil aprender
individualmente con un 55% y a un 45% les gusta trabajar en equipo. A los
que les gusta el método de ensefianza de su profesor son un 70.6 %. Un 85.3% le
tienen confianza a su profesor.

Y sus promedios no son tan altos comparados con otras preparatorias en ge-
neral la mayoria tiene de 8-8.9 y son un 43.1 % y ya hay mas 6-7.9 con un 18.3 %,
y de 9-10 son un 38.5%. Y en matematica tienen promedios bajos de méas de 9
con un 27.5% y un 26.6 % de 8-8.9 y menos de 8 con un 45.9 % (ver Figura 3.11).
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trabajo

Promedio en

100

Figura 3.10: El alumno trabaja

trabajo

Frecuencia

889

PromMate

tablas de contingencia

Trabajas
Si No total
Recuento 8 26 34
frecuencia esperada 8.4 25.6 34
Nunguna % dentro de horas de estudio 23.5% 76.5 % 100.0 %
% dentro de trabajas 29.6 % 31.7% 31.2%
% del total 7.3% 23.9% 31.2%
recuento 14 33 47
hrs. est. dos frecuencia esperada . 11.6 35.4 47
mate horas % dentro de horas de estudio 29.8 % 70.2% 100.0 %
: % dentro de trabajas 51.9% 40.2 % 43.1 %
% del total 12.8% 30.3 % 43.1 %
recuento 5 23 28
méas de frecuencia esperada 6.9 21.1 28
dos % dentro de horas de estudio 17.9% 82.1% 100.0 %
horas % dentro de trabajas 18.5% 28 % 25.7%
% del total 4.6 % 21.1% 25.7 %
total recuento 27 82 109
frecuencia esperada 27 82 109
% dentro de horas de estudio 24.8 % 75.2% 100.0 %
% dentro de trabajas 100.0 % 100.0 % 100.0 %
% dentro de el total 24.8 % 75.2 % 100.0 %

Tabla 3.4: Tabla contingencia Trabajas-Hrs. estudio

Valor | gl. | Sig. asintético(bilateral)
Chi-cuadrado de Pearson | 1.381% 2 501
Razon de verosimilitudes | 1.409 2 494
Asociacion lineal 198 1 .657
por lineal
N. de casos validos 109

Tabla 3.5: Prueba ji-cuadrada

Figura 3.11: Promedio matemaéticas
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De acuerdo a la Tabla 3.5 hay independencia entre las variables con un nivel
de significancia de 0.05.

Preparatoria Emiliana Zapata:

Un 35.5% de los alumnos eran de 4to semestre y un 64.5% de 6to. A un
69.4 % no le gustan las matematicas y al 30.6 % si le gustan. El area que mas se
les dificulta es trigonometria y geometria con un 48.4 % seguido de célculo con
un 46.8 % y por ultimo algebra con un 4.8 %. Los alumnos estudian mas de 2
horas a la semana matematicas (48.4 %), seguida de 2 horas con un 30.6 % y por
ultimo ninguna con 21 % (ver Figura 3.12). Los alumnos no trabajan y son un
88.7%. Se les hace mas facil aprender individualmente (69.4 %). A un 77.4 % les
gusta el método de ensenanza de su profesor de matematicas. Un 87.1 % le tiene
confianza a su profesor.

En general tienen muy buenos promedios un 50 % tienen més de 9 y solo un
4.8 % tiene de 6-7.9 (ver Figura 3.13). Y en mateméticas un 41.9 % tiene prome-
dio de 6-7.9, un 22.6 % de 8-8.9 y un 35.5% de 9-10.

hrs. estudio matematicas Promedio General
Eninguna Me7s

oras
Elmde de 2 horas MEs10

Figura 3.12: Hrs. estudio matematicas Figura 3.13: Promedio general
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tablas de contingencia
PromMate
6-7.9 8-8.9 9-10 total
Recuento 11 11 21 43
frecuencia esperada 18 9.7 15.3 43
No % dentro de gusto 25.6 % 25.6 % 48.8% 100 %
% dentro de PromMate 42.3% 78.6 % 95.5 % 69.4 %
gusto % del total 17.7% 17.7 % 33.9 % 69.4 %
recuento 15 3 1 19
frecuencia esperada 8 4.3 6.7 19
Si % dentro de gusto 78.9 % 15.8% 5.3% 100.0 %
% dentro de PromMate 57.7% 21.4% 4.5% 30.6 %
% del total 24.2 % 4.8 % 1.6 % 30.6 %
total recuento 26 14 22 62
frecuencia esperada 26 14 22 62
% dentro de gusto 41.9% 22.6 % 35.5% 100.0 %
% dentro de PromMate 100.0 % 100.0 % 100.0 % 100.0 %
% dentro de el total 41.9% 22.6 % 35.5 % 100.0 %

Tabla 3.6: Tabla contingencia Promedio matematicas-Gusto mateméticas

Valor | gl. | Sig. asintotico(bilateral)
Chi-cuadrado de Pearson | 16.560% | 2 .000
Razén de verosimilitudes 18.303 2 .000
Asociacion lineal 15.822 1 .000
por lineal
N. de casos validos 62

Tabla 3.7: Prueba ji-cuadrada

De acuerdo a la Tabla 3.7 no hay independencia entre las variables a un nivel
de significancia de 0.05.

Preparatoria Benito Juarez:

El 51.1% de alumnos eran de 4to semestre, 37.5% de 2do y solo un 11.4%
de 6to, esto debido a que cuando se realizo la encuesta estaban por terminar el
semestre y los alumno de 6to ya tenian calificaciones y sus grupos no se podian
encontrar. A un 51.1 % le gustan las matematicas. El area que maés se les dificulta
fue el algebra con un 42 %, seguida de la trigonometria y geometria con un 34.1 %
y por tltimo calculo con 23.9% (ver Figura 3.14). La mayoria (43.2 %) solo es-
tudia 2 horas a la semana alguna materia relacionada con las mateméticas. Un
77.3 % de los alumnos encuestados no trabajan, lo cual no se refleja en las horas
que se dedican a estudiar mateméticas. En esta preparatoria en particular a los
alumnos no les gusta como da clases su profesor con un 62.5% (ver Figura 3.15)
pero los profesores no tienen la licenciatura en matematicas, son licenciados en
otras areas como quimicos. Solo un 50 % le tiene confianza a su profesor. En ge-
neral tienen buenos promedios de 8-8.9 con un 50 % y de 9-10 un 40.9 %. Y tienen
muy bajos promedios en matematicas un 51.1 % tiene de 6-7.9, y un 20.5% de
9-10.
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Area que mas se les dificulta

gusta método de ensefianza de su profesor

Frecuencia

Algebra Trigonemetria y Geometria

Area

Figura 3.14: Area que se les dificulta

Frecuencia

Calculo gusta_metodo

Figura 3.15: Gusta método de ensenan-
za de su profesor

tablas de contingencia
Trabajas
Si No total
Recuento 7 16 23
frecuencia esperada 5.2 17.8 23
Nunguna % dentro de horas de estudio 30.4 % 69.6 % 100.0 %
% dentro de trabajas 35 % 23.5% 26.1 %
% del total 8% 18.2 % 26.1 %
recuento 9 29 38
hrs. est. dos frecuencia esperada ) 8.6 29.4 38
mate horas % dentro de horas de estudio 23.7% 76.3 % 100.0 %
. % dentro de trabajas 45 % 42.6 % 43.2%
% del total 10.2% 33% 43.2%
recuento 4 23 27
mas de frecuencia esperada 6.1 20.9 27
dos % dentro de horas de estudio 14.8% 85.2% 100.0 %
horas % dentro de trabajas 20 % 33.8% 30.7 %
% del total 4.5 % 26.1 % 30.7 %
total recuento 20 68 88
frecuencia esperada 20 68 88
% dentro de horas de estudio 22.7% 77.3% 100.0 %
% dentro de trabajas 100.0 % 100.0 % 100.0 %
% dentro de el total 22.7 % 77.3 % 100.0 %

Tabla 3.8: Tabla contingencia Trabajas-Hrs. estudio

Valor | gl. | Sig. asintético(bilateral)
Chi-cuadrado de Pearson | 1.760% | 2 415
Razon de verosimilitudes 1.806 2 405
Asociacion lineal 1.727 1 189
por lineal
N. de casos validos 88

Tabla 3.9: Prueba ji-cuadrada

De acuerdo a la Tabla 3.9 hay independencia entre las variables a un nivel de

significancia de 0.05.
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3.2.2. Modelacién de la variable gusto por las matematicas

La variable de interés Gusto por las matematicas es dicotémica donde 1 ex-
presa que Sl le gustan y 0 es que NO le gustan. El cuestionario incluye preguntas
que se encontraron relacionadas segun el criterio de los investigadores y se fun-
dament6 en la literatura revisada. Las variables independientes con las que se
pretende explicar la variable respuesta son las que se muestran en la Tabla 3.10.
El modelo de regresion logistica es el apropiado para modelar la probabilidad de
que a un estudiante le gusten las matematicas.

Variable Etiqueta Asignada

1.- Preparatoria Prepa

2.- Semestre Semestre
3.- Area que se les dificulta Area

4.- Horas de estudio mateméticas hrs_estudio
5.- Realizas algun trabajo Trabajo

6.- Como se te hace mas facil aprender
7.- Gusta método de ensenanza de su profesor

facil_aprender
gusta_metodo

8.- Confianza profesor confianza

9.- Como apruebas el curso Aprobar

10.- Promedio general PromGeneral
11.- Promedio matematicas PromMate

Tabla 3.10: Variables independientes involucradas en el analisis y la etiqueta
asignada

Las frecuencias de ocurrencia para las variables independientes con su codifi-
cacion (codif.) de las categorias se presentan en la Tabla 3.11.

Debido a que son muchas variables independientes, se us6 el procedimiento de
seleccion de variables “hacia adelante” usando el criterio de Wald, las variables
elegidas por este método, después de cuatro pasos, son promMate, gusta_metodo,
facil_aprender y hrs_estudio (Tabla 3.12).
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Codificacion
de parametros
Frecuencia | (1) (2) | (3)

PromMate 6-7.9 156 1.000 | .000

8-8.9 101 .000 | 1.000

9-10 108 .000 | .000

Area Algebra 93 .000 | .000

Trigonometria y Geometria 157 1.000 | .000

Calculo 115 .000 | 1.000

hrs_estudio Ninguna 107 .000 | .000

2 horas 149 1.000 | .000

Mas de 2 horas 109 .000 | 1.000

Semestre 2do 99 .000 | .000

4to 158 1.000 | .000

6to 108 .000 | 1.000

PromGeneral 6-7.9 40 .000 | .000

8-8.9 167 1.000 | .000

9-10 158 .000 | 1.000
gusta_metodo Si 253 1.000
No 112 .000
aprobar Durante el curso 332 1.000
Fuera de el curso 33 .000
trabajo Si 75 1.000
No 290 .000
confianza Si 295 1.000
No 70 .000
facil _aprender Individualmente 206 .000
Por equipo 159 1.000

Tabla 3.11: Resumen de los codigos usados para las variables

Mejora Modelo
Paso Chi cuadrado gl Sig. Chi cuadrado gl Sig. % de clas. correcta variable
1 57.788 2 .000 57.788 2 .000 69.6 % IN: PromMate
2 10.875 1 .001 68.664 3 .000 69.6 % IN: gusta_metodo
3 7.804 1 .005 76.467 4 .000 69.6 % IN: facil _aprender
4 8.065 2 .018 84.533 6 .000 69.6 % IN: hrs_estudio

Tabla 3.12: Resumen de las iteraciones para encontrar el modelo.

Los parametros estimados del modelo seleccionado se presentan en la Tabla
3.13.
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1.C. 95 % para Exp(B)
B E.T. ‘Wald gl Sig. Exp(B) Inferior Superior
hrs_estudio 7.925 2 .019
hrs_estudio(1) -.775 .292 7.057 1 .008 .460 .260 .816
hrs_estudio(2) -.688 .312 4.864 1 .027 .503 273 1926
facil_aprender(1) .637 .241 6.967 1 .008 1.891 1.178 3.035
gusta_metodo(1l) -.833 .261 10.136 1 .001 .435 .261 726
PromMate 44.487 2 .000
PromMate(1) -1.330 .284 21.946 1 .000 .264 .152 461
PromMate(2) -1.887 .305 38.213 1 .000 .152 .083 276
Constante 1.436 .330 18.895 1 .000 4.203

Tabla 3.13: Variables finales propuestas en la ecuacion.

Si se usa la siguiente notacion:

x11 = 1 si el alumno estudia 2 horas y 0 si no es asi.
12 = 1 si el alumno estudia mas de 2 horas y 0 si no es asi.
x9 = 1 si al alumno se le hace mas facil aprender en grupo y 0 si individualmente.
x3 = 1 si al alumno le gusta el método de ensenanza de su profesor y 0 si no es
asi.
x41 =1 si el promedio matematicas del alumno esta en 8-8.9 y 0 si no es asi.
240 = 1 si el promedio matematicas del alumno esta en 9-10 y 0 si no es asi.

El modelo ajustado es:

Uy

In( ) = 1.436— 775211 — 6881546370 — 83315 — 1.33124, — 1.88724 (3.1)

1-— Uy

En la columna Sig (nivel de significancia) de la Tabla 3.13 se muestra el
p-valor de Hy : 3; = 0, esto es, la hipotesis de que la variable respectiva no con-
tribuye individualmente a explicar la probabilidad de que al alumno le gusten
las matematicas. Como se puede observar, para las cuatro variables se rechaza
la hipétesis Hy : 3; = 0, ¢ = 1,2,3,4 y por tanto las cuatro variables con-
tribuyen individualmente a explicar la probabilidad de que al alumno le gusten
las matematicas.

ji cuadrado | gl | Sig.

Paso 4 | Paso 8.065 2 |.018
Bloque 84.533 6 | .000

Modelo 84.533 6 | .000

Tabla 3.14: Prueba sobre los coeficientes del modelo

En la tabla 3.14 se muestra una prueba ji cuadrado que evalta la hipotesis
nula de que los coeficientes (;) de todos los términos (excepto la constante) in-



58 3.2. Procedimiento

cluidos en el modelo son cero.

El estadistico ji cuadrado para este contraste es la diferencia entre el valor de
-2 log verosimilitud (LL) para el modelo s6lo con la constante y el valor de -2 log
de la verosimilitud para el modelo actual:

Ji cuadrado = ( - 2LLmodel0 constante ) - ( - 2LLm0delo actual ) —=84.533

Este valor indica que se rechaza la hipotesis de los cuatro parametros son cero
simultaneamente, o lo que es lo mismo, que las variables independientes prom-
Mate, gusta-método, facil-aprender y hrs-estudio contribuyen a explicar la proba-
bilidad de que a un estudiante en la poblacién estudiada le guste las matemaéticas.

Paso | -2 log de la | R cuadrado de | R cuadrado de
verosimilitud | de Cox y Snell Nagelkerke
4 415.396“ 207 277

Tabla 3.15: Resumen del modelo seleccionado.

En la Tabla 3.15 se muestran dos medidas de bondad de ajuste del modelo re-
sultante, R? de Cox y de Snell y R? de Nagelkerke. El R cuadrado de Cox y Snell
es un coeficiente de determinacioén generalizado estima la proporcion de varianza
de la variable dependiente explicada por las variables independientes y su valor
oscila entre 0 y 1 pero siempre tiene un valor maximo inferior a 1, incluso para
un modelo "perfecto".

El R cuadrado de Nagelkerke es una version corregida de la R cuadrado de
Cox y Snell y corrige la escala del estadistico para cubrir el rango completo de 0 a
1. En nuestro caso, R? de Cox y de Snell = 0.207 lo que indica que el 20.7 % de la
variacion del Gusto por las matematicas es explicada por las variables incluidas
en el modelo. Por otro lado, R? de Nagelkerke = 0.277, lo que indica que el 27.7 %
de la variacion del Gusto por las mateméticas es explicada por las variables in-
cluidas en el modelo.

Un uso importante del modelo es clasificar a los estudiantes en uno de los
dos grupos: Si les gustan las matematicas o No les gustan las matematicas. Esto
se obtiene sustituyendo los valores de las variables independientes en el modelo
ajustado, lo que produce la probabilidad estimada, para predecir si el estudiante
estd en el grupo uno o dos. El software automaticamente emplea un punto de
corte de 0.5. Esto significa que aquellos estudiantes con probabilidad estimada <:
0.5 se clasifican como ESTADO = 0 (No les gusta las matemaéticas), mientras que
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si la probabilidad estimada es > 0.5 se clasifican como ESTADO = 1 (Si les gusta
las matematicas). El modelo final han sido clasificados correctamente 80.1 % de
los estudiantes que les gustan las matemaéaticas y un 56.0 % de los estudiantes que
no les gustan las matemaéticas. El porcentaje global de los estudiantes clasificados
correctamente es de 69.6 %.

Pronosticado
guto
Observado Si | No | Porcentaje correcto
Paso 4 | gusto Si 165 | 41 80.1
No 70 | 89 56.0
Porcentaje global 69.6

Tabla 3.16: Tabla de clasificacién.

3.2.3. Resultados

Los resultados del anélisis indican las siguientes afirmaciones al o = .05:

> Que a un alumno le gusten las matematicas es 1.891 veces mas probable de
ocurrir entre los alumnos que se les hace mas facil aprender en grupo que
entre los alumnos que se les hace maés facil aprender individualmente.

> Que a un alumno le guste las matematicas es 0.435 veces mas probable de
ocurrir entre los alumnos que si les gusta como ensena su profesor que entre
los alumnos que no les gusta.

> Que a un alumno le gusten las mateméticas es 0.460 veces méas probable
de ocurrir entre los alumnos que estudian 2 horas que entre los alumnos
que no estudian. Que a un alumno le gusten las matematicas es 0.503 veces
mas probable de ocurrir entre los alumnos que estudian més de 2 horas que
entre los alumnos que no estudian.

> Que a un alumno le gusten las matematicas es 0.264 veces mas probable de
ocurrir entre los alumnos con promedio entre 8 y 8.9 que entre los alumnos
con promedio entre 6 y 7.9. Que a un alumno le gusten las matematicas es
0.152 veces mas probable de ocurrir entre los alumnos con promedio entre
9 y 10 que entre los alumnos con promedio entre 6 y 7.9.
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Capitulo 4

Conclusiones

Los resultados revelan que el promedio que tienen los alumnos en matemati-
cas afecta el gusto por ellas. También muestran que las horas que le dedican a
estudiar son so6lo de 2 horas a la semana y esto es consecuencia, de lo primero.
Los resultados indican que el profesor es un factor muy relevante en que a los
alumnos le gusten las matematicas o no, su forma de ensenanza y esto se debe a
que la mayoria de los profesores que imparten clases de mateméaticas no tienen
la licenciatura en esta y algunos no tiene cursos de actualizacion dirigidas a la
ensenanza de las matematicas, por lo que esto hace que a los alumnos no les
gusten las matematicas. Los resultados de este trabajo podrian a ayudar a que
los profesores de las diferentes preparatorias encuestadas observen qué es lo que
pueden hacer para que a los alumnos les gusten las matematicas como realizar
sus clases de tal manera que para ellos no sean aburridas y les interese para asi
obtener mejores promedios en esta materia y dedicarle més horas a estudiarla.

Sabemos que existen muchos factores que contribuyen a que la Educaciéon en
Meéxico esté cada vez peor comparada con anos anteriores y que hay factores
multivariados que contribuyen a esta situacion. Algunos de ellos, son que en
los niveles de educacién basicos, a los alumnos no se les ensena a aprender y
razonar, s6lo a aprenderse de memoria los temas, por lo cual no tienen habitos
de estudio. En la sociedad existen distracciones muy fuertes, como son los juegos
de computadora, television, relaciones sociales demandantes que los alejan del
estudio y la dedicacién. También en las universidades no han creado espacios
de difusion y vinculaciéon en niveles de educaciéon menores para concientizar a la
sociedad de la existencia y creacion de lugares en donde se promueva la ciencia y
la tecnologia para mejorar nuestro nivel de vida a futuro.
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4. Conclusiones
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Apéndice A
Encuesta

ENCUESTA A ALUMNOS DE MATEMATICAS EN NIVEL
PREPARATORIA

1. Preparatoria_________________________________________________

2. Semestre:
a)ler b)2do c¢)3er d)4to e)5to f)6to

3. ;Te gustan las Matematicas?
a)Si jPor qué?
b)No ;Por qué?

4. ;Que area de las Matematicas se te dificulta méas?
a)Algebra  b)Trigonometria c¢)Calculo d) Geometria Analitica

5. {Cuantas horas a la semana dedicas para estudiar Mateméticas?
a)Ninguna b) 1-2 ¢) 2-4 d) 4 o més

6. ;Trabajas?

a)Si, medio tiempo  b) Si, fines de semana

¢)No

7. {Como se te hace més facil aprender?

a)Individualmente  b)Por equipo

8. (Te gusta el método de ensenanza de su profesor?

a)Si ;Por qué?

b)No ;Por qué?

9. (El profesor te inspira confianza para preguntarle tus dudas?
a)Si  b)No

10. Generalmente apruebas el curso de Matemaéticas en:
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A. Encuesta

a)Durante el curso  b)Ordinario  ¢)Extraordinario
11. Promedio General .
12. Promedio en Mateméticas____________________________

13. jHas pensado en estudiar la Lic. en Matematicas? ;Por qué?



