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Introduction

Mathematicians and computer scientist are aware of the relation between boolean

formulas and computational complexity. Certainly, one of the most crucial un-

solved problems in mathematical logic and theoretical computer science is the P

vs NP problem as it has far-reaching consequences to other problems in mathe-

matics, artificial intelligence, game theory, philosophy, economics, and many other

fields. There is even a Clay Millennium Prize offering one million dollars for its

solution. Basically such problem asks whether or not, for all problems for which

an algorithm can verify a given solution quickly (that is, in polynomial time), an

algorithm can also find that solution quickly. This is equivalent to ask whether all

problems in NP are also in P.

A common example of an NP problem not known to be in P is the Boolean satis-

fiability problem, also called the SAT problem, which refers to the satisfiability of

propositional logic formulas in CNF form. The representation of formulas in its

CNF form is extremely important not only because it exacts essential information

but also because it deletes superfluous data. Every decision problem in the com-

plexity class NP can be reduced to the SAT problem, hence solving the question

whether SAT has a polynomial time algorithm is equivalent to the P versus NP

problem.

Given the SAT problem NP one can formulate the corresponding counting prob-

lem, asking how many solutions does a propositional formula have. The #SAT

problem counts the satisfying assignments of a given CNF formula and it is ex-

tremely harder than SAT. One approach for the solution of this counting problem

focuses on structural restrictions of the input formula. The idea behind this is

to solve #SAT faster on formulas where interaction between the clauses and the

variables is restricted. This is done by assigning a hypergraph (the generalization

of graph) to the input CNF formula. From this perspective the complexity of

vii
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#SAT is then studied on CNF formulas whose associated hypergraph belongs to

a restricted class of hypergraphs.

Among the various syntactic classes, we distinguish 2µ − e3MON , the class of

monotone CNF formulas with clauses having exactly three literals and such that

each variable occurs at most twice. It should be mentioned that until now it is

not known where the 2µ − e3MON class is located. In this thesis we present

a syntactic subclass within 2µ − e3MON for which we obtain results that lead

directly to efficient algorithms that compute the number of models of formulas

belonging to such subclass. The hypergraphs associated with such formulas allow

disjoint branches decomposition, for which #SAT is tractable [CDM14].

The organization of the thesis is as follows. Chapter 1 contains a review of ba-

sic concepts on graph theory and boolean expressions. Important definitions are

stated and some relevant examples are presented.

Next, in Chapter 2, a superficial description of complexity theory and syntactic

classes is explored. Also, hypergraphs are introduced and examples of notions

related to hypertree decomposition are detailed.

Unlike for graphs, there are various degrees of cyclicity for hypergraphs. As a

direct consequence, there are several reasonable ways of defining acyclicity for

hypergraphs, not to mention equivalent concepts for each degree of acyclicity. In

Chapter 3 details on this topic are given. In order to properly present the counting

algorithms for certain CNF formulas located in the 2µ− e3MON syntactic class,

the associated hypergraph representation is illustrated in this chapter.

Lastly, in Chapter 4, the definition of single chain, alternating chain, simple cycle,

and alternating cycle is given. Then, matrix operators acting over these struc-

tures are presented in order to obtain efficient algorithms that perform the model

counting on the identified family. Finally, the conclusions are stated.
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Chapter 1

Preliminaries

This chapter focuses on the basic concepts of graph theory and boolean formulae

which are necessary for the develpment of the thesis. The development of the first

section is based on [Die10].

1.1 Basic Concepts of Graph Theory

The symbols Z and N denote the set of integers and non-negative integers re-

spectively. The set of all subsets of A having k elements is denoted by [A]k.

For example, if A = {a, b, c}, then [A]0 = {∅}, [A]1 = {{a}, {b}, {c}}, [A]2 =

{{a, b}, {a, c}, {b, c}}, [A]3 = {A} and [A]k = ∅ for all k ∈ Z r {1, 2, 3}.

Definition 1.1. A simple graph G consists of a pair of sets (V,E), where V is

called the set of vertices (or nodes) and E ⊂ [V ]2 is the set of edges. The symbols

V (G) and E(G) are used to represent the set of nodes and the set of edges of G,

respectively.

For instance, in Figure 1.1, G is a simple graph where V (G) = {v1, v2, v3, v4, v5}
and E(G) = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}, {v3, v5}}.

If V (G) = ∅, then E(G) = ∅, thereby G = ∅ is called the empty graph.

Definition 1.2. The number of elements of V (G) is called the order of the simple

graph G and it is denoted by | G |. The number of edges is called the size of G

and is denoted by ‖ G ‖.

1
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v1

v2

v3

v4

v5

Figure 1.1: Simple graph G = (V,E).

A graph of order 0 or 1 is called a trivial.

Definition 1.3. Let G be a simple graph, v ∈ V (G), and e ∈ E(G). If vertex v

is in edge e, then vertex v is said to be incident with e or that e is an edge at v.

Given a simple graph G whose sets of vertices and edges are V and E, respectively,

if two nodes v and w belong to V (G), with vw ∈ E(G) it is meant that {v, w} is

an edge of G; v and w are called the ends of such edge.

Definition 1.4. Vertices v and w of a graph G are said to be neighbors or adjacent

nodes if vw ∈ E(G). Similarly, two edges are adjacent if they share a vertex.

Let G be a simple graph and v ∈ V (G). The set of all vertices in V (G) adjacent

to vertex v is symbolized by N(v). If every pair of vertices of G are adjacent, then

G is complete. The symbol Kn stands for a complete graph of n vertices.

(a) K1 (b) K6 (c) K12

Figure 1.2: Complete graphs.

In any simple graph there is at most one edge joining a given pair of vertices.

However, many results that hold for simple graphs can be extended to more general

objects in which two vertices may have several edges joining them. Actually, the
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restriction that an edge always joins two distinct vertices can be modified, allowing

the existence of loops, edges whose two ends are the same vertex. The resulting

object, in which loops and multiple edges are allowed, is formally described as

follows.

Definition 1.5. A multigraph G consists of a vertex set V , an edge set E and a

correspondence ψ : E → V ∪ [V ]2 which assigns to every edge either one or two

vertices.

v1 v2

v3

v5

v4

Figure 1.3: A multigraph G.

Thus every simple graph is a multigraph, but not every multigraph is a simple

graph.

Definition 1.6. A pair (V,E) of disjoint sets, vertices and edges, together with

the mappings in : E → V and ter : E → V, is called a directed graph, or simply a

digraph. These mappings assign to every edge e ∈ E an initial vertex in(e) and a

terminal vertex ter(e).

v1

v2

v3

v4

v5

v6

Figure 1.4: A digraph.
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The aforementioned definition indicates that edges of a directed graph have a

direction associated with them and allows to have more than one edge between

the same two vertices. Loops are also permitted since it the initial node and

terminal node might be the same. A directed graph can represent asymmetrical

relationships between nodes, while an undirected graph, in which edges have no

orientation, can represent only symmetrical relationships.

Definition 1.7. Let G1 and G2 be two undirected graphs. A function f :

V (G1) −→ V (G2) is called a graph isomorphism if it satisfies the following condi-

tions:

(i) f is a bijective function.

(ii) For all u and v ∈ V (G1), uv ∈ E(G1) if and only if f(u)f(v) ∈ E(G2).

Two graphs G1 and G2 are isomorphic if there exists an isomorphism from one to

the other. This is written G1 ' G2. Note that the correspondence of vertices of

a graph isomorphism preserves the adjacencies and, thereby, the structure of the

graphs is maintained.

Definition 1.8. A graph G is a bipartite graph, also called a bigraph, if its vertices

can be divided into two sets V1 and V2 with the following properties:

(i) V1 ∩ V2 = ∅.

(ii) V1 ∪ V2 = V (G).

(iii) If v ∈ V1 then it may only be adjacent to vertices in V2.

(iv) If v ∈ V2 then it may only be adjacent to vertices in V1.

A different way to view a bipartite graph is by coloring the set of vertices with

two different colors. For example, if all vertices of set V1 are colored blue and

all vertices of set V2 are colored purple, then each edge must connect vertices of

different colors (see Figure 1.5). Pay attention to the fact that all edges in a

bipartite graph go only between V1 and V2, there are no edges from V1 to V1 or

from V2 to V2.
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v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

(a)

v1

v2

v3

v5

v6

v4

v7

v8

v9

v10

V1 V2

(b)

Figure 1.5: Two different ways to represent a bipartite graph.

Definition 1.9. Given an undirected graph G, the cardinality of the set E(v) =

{e ∈ E(G)|v ∈ e} is called the degree of vertex v and it is denoted by d(v).

If an edge is a loop, it contributes 2 to the degree of that vertex. Vertex v is

isolated if E(v) = ∅, that is if d(v) = 0. The possible degrees in a simple graph

with n vertices are 0, 1, 2, . . . , n − 1. Note that no simple graph with n vertices

can contain both a vertex of degree 0 and a vertex of degree n− 1, so in each case

there are only n− 1 possible degrees for n vertices.

When all of its vertices have the same degree, the simple graph G is called regular.

Under other conditions the minimum degree and maximum degree are defined,

respectively, as follows

δ(G) := min{d(v)|v ∈ V (G)}

and

∆(G) := max{d(v)|v ∈ V (G)}.

As a matter of fact, complete graphs of order n are regular of degree n - 1, and

empty graphs are regular of degree 0. Two further examples are shown next.
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Figure 1.6: Regular graphs.

Definition 1.10. An independent set of a simple graph G is a subset X ⊆ V (G)

satisfying the following property: if v and w are any two distinct vertices in X,

then v and w are not adjacent.

Observe that this condition is trivially satisfied if X contains exactly one vertex

since X does not have two distinct vertices in the first place. Hence, every singleton

subset X ⊆ V (G) is an independent set of size 1. It follows that the maximum

size of an independent set in a complete graph is 1.

Definition 1.11. A graph G′ is a subgraph of G, written G′ ⊆ G, if V (G′) ⊆ V (G)

and E(G′) ⊆ E(G). If G′ consists of all edges of G which have ends in V ′ ,then

G′ is called an induced subgraph of G and is denoted by G[V ′]. It is also said that

V ′ induces G′ in G.

So, the construction of an induced subgraph is as simple as removing vertices from

V (G) together with all their incident edges, but no more edges. If additional edges

are deleted, then G′ is still a subgraph of G, but no longer an induced subgraph

of G. In particular, the resulting graph after removing only edges but no vertices

is not an induced graph.

In Figure 1.7, V (G1) = {v3, v4, v5, v6} ⊆ {v1, v2, v3, v4, v5, v6} = V (G) andE(G1) =

{v4v5, v5v6, v3v5, v4v6} ⊆ {v1v2, v2v3, v3v4, v4v5, v5v6, v3v6, v3v5, v4v6} = V (G) , like-

wise V (G2) = {v2, v3, v4} ⊆ V (G) and E(G2) = {v2v3, v3v4 ⊆ E(G), therefore

G1, G2 ⊆ G. Moreover, G2 is an induced subgraph of G.

Definition 1.12. A non-empty simple graph P where V (P ) = {x0, x1, . . . , xn},
E(P ) = {x0x1, x1x2, . . . , xn−1xn} and xi 6= xj for every i 6= j, is called a path.

Vertices x0 and xn are the ends of path P and x1, x2, . . . , xn−1 are its inner vertices.

The number of edges in a path is called its length. A path of length k is denoted

by P k.
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v1

v2

v3

v4

v5v6

(a) G

v3

v4

v5v6

(b) G1

v2

v3

v4

(c) G2

Figure 1.7: G1 is a subgraph of G and G2 is an induced subgraph of G.

Different authors use different terminology, some authors refer to a path as a

‘simple’ path. It is often said that P = x0x1 · · ·xn is a path from x0 to xn or

between x0 and xn. For example, in Figure 1.7 (a), P1 = v5v6v3v2 and P2 = v5v3v2

are both paths from v5 to v2 whose respective lengths are three and two.

Definition 1.13. A cycle or closed path is a path which starts and ends at the

same vertex.

In general, in simple graphs, it is possible for a path to have length 0, but the

least possible length of a cycle is 3.

Definition 1.14. Let u, v be two arbitrary vertices of a non-empty graph G.

If there is a path from u to v, then G is a connected graph. Otherwise it is

disconnected.

Consider the graphs G = (V,E) and G′ = (V ′, E ′), set G∪G′ := (V ∪ V ′, E ∪E ′)
and G∩G′ := (V ∩V ′, E∩E ′). Clearly, any disconnected graph G can be expressed

as the union of connected graphs.

Definition 1.15. Let G be a graph, a component of G is a maximally connected

subgraph G′ of G.
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Components form a partition of the set of vertices of a graph which means that

components are non-empty, they are pairwise disjoints, and the union of them

forms the set of all vertices of the graph.

Definition 1.16. A connected graph with no cycles is called a tree, the disjoint

union of them is a forest. A tree in which one prominent node have been designated

the root is a rooted tree. Every vertex of degree 1 in a tree is called a leaf node.

(a) G1 (b) G2

Figure 1.8: G1 is a rooted tree and G2 is a forest.

In that regard, every connected component in a forest is a tree and a forest with

one connected component is a tree. In a tree, there is only one way to get from

one node to another. Generally, this is not true in simple graphs as already seen

in Figure 1.7 (a). The root of a tree is never considered a leaf, even if it has degree

1.

Let 0 ≤ i ≤ j ≤ n, the following notations are introduced:

Pxi := x0 · · ·xi
xiP := xi · · ·xn
xiPxj := xi · · ·xj
P̊ := x1 · · ·xn−1
Px̊i := x0 · · ·xi−1
x̊iP := xi+1 · · ·xn

x̊iPx̊j := xi+1 · · ·xj−1

Definition 1.17. Two paths P1 and P2 are independent if V (P̊1) and V (P̊2) are

disjoint.
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Example 1.1. Let G be a graph as shown below. How many paths are there from

v2 to v4? Are they independent?

v1

v2v3

v4

v5

v6

v7

v8

Figure 1.9: G = (V,E).

In this specific problem, all the possible paths between vertices v2 and v4 can

be easily listed: P1 = v2v3v4, P2 = v2v8v5v4, P3 = v2v8v5v6v4, P4 = v2v8v7v6v4,

P5 = v2v8v7v6v5v4, P6 = v2v8v1v7v6v4, P7 = v2v8v1v7v6v5v4, P8 = v2v1v7v6v4,

P9 = v2v1v7v6v5v4, P10 = v2v1v7v8v5v4, P11 = v2v1v7v8v5v6v4, P12 = v2v1v8v7v6v4,

P13 = v2v1v8v7v6v5v4, P14 = v2v1v8v5v4, and P15 = v2v1v8v5v6v4. Unquestionably,

for every 1 < j ≤ 15, P1 and Pj are independent paths, as well as P2 and P8. All

the remaining pairs of paths are not independent.

1.2 Boolean Formulae

In this section, some notions and facts on boolean formulas are briefly described.

Definition 1.18. An alphabet, say σ, is a nonempty finite set consisting of:

(i) A countable set of symbols or letters, also known as variables :

x0, x1, x2, . . . ;

(ii) Logical connectives: ∨,∧,¬,⇒, and ⇔;

(iii) Auxiliary symbols: ( , ).

A chain, word or string over σ is a finite sequence of symbols from σ. The set of

all words over an alphabet σ is denoted σ∗. Whereas σn represents the set of all

words over an alphabet σ with length n.
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Mappings from {0, 1}n to {0, 1} are called logical or boolean formulas. If we use

a vector notation to represent the input variables of a logical formula denoted by

x1, x2, . . . , xn, the output is a function of these variables denoted as ϕ(x), where

x = (x1, x2, . . . , xn) is called an input. Each of the inputs and the output takes

one of two possible values which can be denoted by “1 and 0,” “yes and no,” or

“true and false.”

The most common logical connectives, previously stated, are defined in terms of

their relation to the truth or falsehood of the variable(s) they are operating on.

The definition of three logical connectives is presented below.

Definition 1.19. Let · represent the usual product.

(a) Negation (NOT, complement, or inversion) of x1 is a function denoted by

¬x1, also x1, such that

¬x1 =


1 if x1 = 0

0 if x1 = 1.

(b) A disjunction (OR, logical sum or union) of x1 and x2 denoted by x1 ∨ x2 is

a function such that x1 ∨ x2 = 1 if x1 = 1 or x2 = 1.

(c) A conjunction (AND, logical product or join) of x1 and x2 denoted by x1∧x2
is a function such that x1 ∧ x2 = x1 · x2 = x1x2.

Often, boolean formulas are more complicated than these and require two or more

connectives.

Definition 1.20. A literal is defined as a variable or its inversion. A conjunction

of literals is called a term. Similarly, a disjunction of literals is called a clause. A

Horn clause is a clause with at most one unnegated literal. A disjunction of terms

is called disjunctive normal form, or DNF for short. A conjunction of clauses is

called a conjunctive normal form, or simply CNF.

All conjunctions of literals and all disjunctions of literals are in CNF, as they can

be seen as conjunctions of one literal clauses and conjunctions of a single clause,

respectively. Notice that the only logical connectives that a formula in CNF can

contain are ¬,∨, and ∧. In addition, negation can only be used as part of a

literal which means that it can only precede a variable. For instance, the following

formulas are not in CNF:
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¬(x2 ∧ x7)
x1 ∧ (x3 ∨ (x2 ∧ x9).

Yet they are respectively equivalent to the following formulas that are in CNF:

¬x2 ∨ ¬x7
x1 ∧ (x2 ∨ x3) ∧ (x3 ∨ x4).

As a matter of fact, every logical formula can be converted into an equivalent

formula in conjunctive normal form. This transformation is based on rules about

logical equivalences: the double negative law, De Morgan’s laws, and the distribu-

tive law. Even the connectives ⇒ and ⇔ can be expressed in CNF as follows.

Let p and q be two boolean formulas, then

p⇒ q ≡ ¬p ∨ q and p⇔ q ≡ (¬p ∨ q) ∧ (p ∨ ¬q).

In an analogous way, all logical formulas can be converted into an equivalent

formula that is in DNF. Nonetheless, in some cases such conversions can lead to

an exponential blow up of the formula.

Definition 1.21. If a boolean formula contains only conjunctions and disjunctions

as connectives, but no negations, it is a monotone formula.

Particularly, a monotone monomial is a conjunction of literals with no negations,

and a monotone DNF formula is a disjunction of monotone monomials. Dually, a

monotone CNF formula is a conjunction of literals with no negations.

From now on, unless otherwise stated, the word ‘formula’ will be used as a synonym

for ‘boolean formula.’ The sets of variables and literals of ϕ will be denoted by

V ar(ϕ) and Lit(ϕ), respectively. The variable associated with the literal l is

denoted by v(l), for example, v(x2) = x2 and v(x7) = x7.

A table that contains the value of a given logical formula ϕ(x) for every input

vector is called the truth table of ϕ(x). Each row of the truth table contains a

assignment for the formula, which is a function A : V ar(ϕ) −→ {0, 1}, that is,

one possible configuration of the input variables and the result of the operation for

those values. To get the number of all possible assignments, multiply the number
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of options for each variable. In this case, there are always 2 options for each

variable. So the total number of rows is 2n, where n is the number of variables.

An important set of problems in computational complexity involves finding as-

signments to the variables of a boolean formula expressed in CNF such that the

formula is true. This leads to the following definitions.

Definition 1.22. (a) An assignment A satisfies

(i) a literal l if and only if

A(v(l)) =


1 if l ∈ V ar(ϕ)

0 if l ∈ ¬V ar(ϕ),

where ¬V ar(ϕ) := {x |x ∈ V ar(ϕ)};

(ii) a clause c if and only if there is a literal l ∈ c such that A satisfies it;

(iii) a formula in CNF ϕ if and only if A satisfies every clause of ϕ.

(b) A formula ϕ is satisfiable if there exist an assignment A which satisfies ϕ. If

such assignment does not exist then ϕ is unsatisfiable.

Definition 1.23. The set of models of a Boolean formula ϕ, written M(ϕ), is the

set of assignments on V ar(ϕ) satisfying ϕ.

Naturally, the number of assignments which satisfy a formula ϕ is represented by

|M(ϕ)|.

Example 1.2. 1. Let ϕ(x1, x2) = (x1∨x2)∧ (x1∨x2). A satisfying assignment

is given by A(x1) = A(x2) = 1. It can also be verified that |M(ϕ)| = 2.

2. Let ϕ(x1, x2, x3) = (x1∨x2)∧ (x1∨x2)∧ (x1∨x2)∧ (x1∨x3)∧ (x1∨x2∨x3).
The truth table method allows to conclude that ϕ is unsatisfiable since every

row ends with ϕ not satisfied, see Figure 1.10.

3. Determine whether or not ϕ(x1, x2, x3) = (x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨
x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)
is satisfiable.

In the truth table every single assignment is checked, therefore such method is

complete. Yet, practically, this approach is not feasible for all but very small
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x1 x2 x3 x1 ∨ x2 x1 ∨ x2 x1 ∨ x2 x1 ∨ x3 x1 ∨ x2 ∨ x3 ϕ(x1, x2, x3)

0 0 0 0 1 1 1 1 0
0 0 1 0 1 1 1 1 0
0 1 0 1 0 1 1 1 0
0 1 1 1 0 1 1 1 0
1 0 0 1 1 0 0 1 0
1 0 1 1 1 0 1 1 0
1 1 0 1 1 1 0 1 0
1 1 1 1 1 1 1 0 0

Figure 1.10: Truth table for ϕ(x1, x2, x3) = (x1 ∨ x2)∧ (x1 ∨ x2)∧ (x1 ∨ x2)∧
(x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

problem instances. In the former example with 3 variables, the total of all possible

assignments is 23 = 8, meaning that the corresponding truth table has 8 rows.

Since this is a small number, it was easy to check for the satisfiability of the

formula. For an instance with 30 variables, the total number of rows (230 =

1073741824) is still quite small for a modern computer. However, as the number

of variables grows, the number of rows increases all the more, leading to a quick

overwhelming of even the fastest computers.





Chapter 2

Hypertree Decomposition

Before proceeding it is important to mention basic notions on complexity theory

which are of our interest.

2.1 Complexity Classes

Computational complexity theory emphasizes on classifying certain problems ac-

cording to their difficulty and it is built on basic sets of assumptions called model

of computation. For instance Turing machines, recursive functions, and combina-

tory logic are models of computation. Two of the main goals of this theory are

to introduce classes of problems which have the same complexity with respect to

an specific computation model and complex measure and to study the essential

properties of such classes.

Three types of typical computational problems are defined: decision problems,

counting problems and optimization problems.

Decision problems correspond to those which have a boolean formula as an input

and admit either a “yes” or “no” as an output. Hence, we are only asked to verify

whether the input satisfies a certain property. An example of decision problem is

the 3-coloring problem: given an undirected graph, determine whether there is a

way to assign a color to each vertex in such a way that no two adjacent vertices

have the same color.

15
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Counting problems ask for the number of solutions of a given instance. Many

problems in enumerative combinatorics and in statistical physics fall in this cate-

gory. Given a directed graph and two vertices in it, source v1 and destination vn,

computing the number of independent paths from v1 to vn is a counting problem.

In decision problems all possible solutions are considered equally acceptable. Be

that as it may, in many practical situations this consideration is not fulfilled and

it is necessary to choose the solutions according to certain criteria. In these situa-

tions, a measure is associated with each solution and depending on the application,

the best solution is that in which a maximum measurement is reached, or a mini-

mum measurement, if it is the case. This type of problems are called optimization

problems.

Algorithms whose running time is bounded by a polynomial function are called

polynomial time algorithms, such algorithms are considered efficient.

A deterministic computation is a (non necessarily finite) sequence of global states,

starting with the initial global state such that each global state in the sequence

yields the next.

A nondeterministic computation can then be viewed as a tree called a compu-

tation tree; the nodes correspond to global states while the edges correspond to

transitions between global states caused by a single step. Each of the paths of the

tree starting from the root is said to be a computation path.

Below there are simple informal descriptions of a few of the most commonly en-

countered classes.

• P: includes all problems that can be solved in polynomial time.

• NP: decision problems solvable in polynomial time via nondeterministic al-

gorithms. (The set of problems whose solution can be VERIFIED in poly-

nomial time).

• NP hard: problems which are at least as hard as the hardest problems in

NP, but are not necessarily in NP.

• NP complete: problems which are in NP and are NP-hard.

• FP: functions computable in deterministic polynomial time.

• #P: counting problems solvable in nondeterministic polynomial time.
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There are hundreds of complexity classes. Some of them are a subset of others.

For example P is a subset of the NP class. To make the difference clear, if a

problem in the P class has solution it can be computed in polynomial time, on the

other hand a solution of an NP class problem can be verified in polynomial time

if the solution is given.

The first problem shown to be NP-complete is the SAT problem in which a formula

in CNF is instanced and it yields either a yes or a no, where yes means ϕ is

satisfiable and no indicates the formula is unsatisfiable. The extension of the SAT

problem to its counting version is denoted as #SAT, the input of which is a formula

in CNF, say ϕ, and its output is the number of assignments which satisfy ϕ.

2.1.1 Syntactic Classes

In general, the #SAT problem is difficult. This problem is #P -complete and is

difficult to approximate. Because of this, there are different ways to treat it. A

very common approach is to consider Boolean formulas in CNF as input formulas

to the problem. A second case is imposing restrictions on the number of literals

or the number of occurrences of variables in the clauses or formulas, respectively.

Having that in mind, the following classes are described:

Name Description

k-SAT
Formulas in which every clause contains at most k literals.

k-MON k-SAT formulas with no negations.

k-HORN Formulas containing HORN clauses of k literals.

kµ-SAT Each variable in the formula appears at most k times.

lµ-kMON
(HORN)

Monotone (HORN) formulas whose clauses contain at most k
literals and each variable appears at most l times.

lµ-ekMON
(HORN)

Monotone (HORN) formulas whose clauses contain exactly k
literals and each variable appears at most l times.

Figure 2.1: Syntactic classes limiting the size of clauses or formulas.
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If C denotes a syntactic subclass of Boolean formulas in CNF, then #C denotes its

corresponding counting problem, that is, the problem of counting models belonging

to class C.

2.2 Hypergraphs

Hypergraphs are the generalization and extension of graphs considered as an ef-

ficient tool to represent and model concepts and structures in various areas of

computer science and certain areas of mathematics.

Definition 2.1. Consider a set of vertices V and E ⊆ P(V ) \ {∅}, where P(V ) is

the power set of V , the ordered pair H = (V,E) is called a hypergraph.

Frequently, in literature, the word ‘hyperedge’ is used to refer to the edges of a

hypergraph. That is not our case, we simply use the word ‘edge’. A hypergraph H

may be drawn as a set of points representing the vertices and simple closed curves

enclosing the elements of each edge. Therefore, a simple graph is a hypergraph

each of whose edges has cardinality 2, in which a line is drawn to join two vertices

instead of drawing a closed curve around them; and a multigraph is a hypergraph

in which each edge has cardinality less or equal to 2. Isolated nodes of a hypergraph

graph shall not be considered as edges. The next figure shows a hypergraph having

an isolated node and four edges whose cardinalities are all different.

v1

v2

v3

v4

v5

v6

v7

e1

e2

e3

e4

(a)

v1

v2

v3

v4

v5

v6

v7

e1

e2

e3

e4

(b)

Figure 2.2: A hypergraph H.
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The prior definition suggests that edges of a hypergraph can contain an arbitrary

nonzero number of vertices. Thus, the possibility of having hypergraphs where all

edges have the same cardinality is not excluded.

Definition 2.2. A k-uniform hypergraph or k-graph H is a pair (V,E) where V

is a vertex set and E is a set of edges each consisting of k vertices.

In this sense a 2-uniform hypergraph is a graph, a 3-uniform hypergraph is a set

of 3-element subsets, and so on.

A hypergraph can be seen as an incidence structure, that is to say, a family of two

sets, “points” and “lines,” with an incidence relation between their elements, in

which the vertex set plays the role of “points,” the collection of edges plays the

role of “lines,” and the incidence relation is set membership ∈.

Definition 2.3. The incidence graph of a hypergraph H is the bipartite graph

I = (VI , EI), where VI = V (H) ∪ E(H) and such that there is an edge between

v ∈ V (H) and e ∈ E(H) if and only if v ∈ e.

v1

v2

v3

v4

v5

v6

e1

e2

e3

(a)

v1

v2

v3

v4

v5

v6

e1

e2

e3

V (H) E(H)

(b)

Figure 2.3: Hypergraph H (a) and its incidence graph (b).

The notation I(H) is used to mean that I is the incidence graph of the hypergraph

H. We keep the same notation as in graphs, V (H) stands for the set of vertices of

hypergraph H and E(H) represents the set of edges of H.

Another important notion on hypergraphs is independency which is described next.

Definition 2.4. Given a hypergraph H, X ⊆ V (H) is independent if X contains

no edges of H.
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In Figure 2.2, for hypergraph H, X = {v2, v3, v6, v7} is an independent set but if

node v5 is added to E1, it is no longer independent.

2.2.1 Hypertrees

Informally, a tree-decomposition of a graphG is a non-unique representation of G in

a tree-like structure with desirable properties that allow it to be used to determine

certain information of the original graph. This concept is useful in the study of

fundamental questions in graph theory. In some cases, the information obtained

from the tree-decomposition can be used to construct efficient algorithms to solve

problems on G. Sometimes, problems which are NP-hard might be solvable in

polynomial or even linear time when restricted to trees.

The concept of decomposition of a hypergraph and its associated notion of width

are presented next.

Definition 2.5. A hypertree for a hypergraph H is a triple (T, µ, λ), where T =

(V,E) is a tree and µ : V −→ P(V (H)) and λ : V −→ P(E(H)) are labeling

functions.

Example 2.1. A hypertree for the hypergraph in Figure 2.2 is (T, µ, λ), where

V (T ) = {w1, w2, w3, w4}, E(T ) = {w1w2, w1w3, w3w4} and the functions µ and λ

are defined as follows.

µ : V (T ) −→ P(V (H))

µ(w1) = {v1, v2, v3}
µ(w2) = {v2, v4, v6}
µ(w3) = {v3}
µ(w4) = ∅

λ : V (T ) −→ P(E(H))

λ(w1) = {e1}
λ(w2) = {e2, e3}
λ(w3) = E(H)

λ(w4) = {e1, e2, e4}.

〈{v1, v2, v3}, {e1}〉

〈{v2, v4, v6}, {e2, e3}〉 〈{v3}, E(H)〉

〈∅, {e1, e2, e4}〉

Figure 2.4: A hypertree for the hypergraph in Figure 2.2.
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Let C(T ) = {A |A is a subtree of T}. If T ′ = (V ′, E ′) is a subtree of T then

µ̃(T ′) : C(T ) −→ P(E(H)) is defined as µ̃(T ′) =
⋃

p∈V ′ µ(p).

Recalling the notation used in the first section, the root of T is written R. Now,

for every p ∈ V (T ) the subtree of T rooted at p is denoted by Tp. In the following

figure T is a tree, p ∈ V (T ) and Tp is shown.

Observe that T and Tp are isomorphic.

p

(a) A tree T

p

(b) Tp

Figure 2.5: A tree rooted at a given vertex.

Definition 2.6. A hypertree decomposition of a hypergraph H is a hypertree

(T, µ, λ) for H which satisties the following conditions:

(i) For all e ∈ E(H) there exists p ∈ V (T ) such that e ⊆ µ(p),

(ii) If v ∈ V (H) then the set {p ∈ V (T )|v ∈ µ(p)} induces a subtree of T,

(iii) For every p ∈ V (T ), µ(p) ⊆
⋃
λ(p), and

(iv) For any p ∈ V (T ),
⋃
λ(p) ∩ µ(Tp) ⊆ µ(p).

Example 2.2. Let H be a hypergraph such that V (H) = {v1, v2, v3, v4, v5, v6, v7,
v8, v9, v10} and E(H) = {e1, e2, e3, e4, e5, e6, e7, e8} with e1 = {v1, v2, v3}, e2 =

{v4, v5, v6}, e3 = {v3, v4, v7}, e4 = {v1, v6, v9}, e5 = {v7, v9}, e6 = {v2, v5, v8},
e7 = {v5, v10}, and e8 = {v1, v8, v10}.
A hypertree decomposition (T, µ, λ) of H is shown in the following figure. Clearly,

T is a tree such that V (T ) = {p, q, r, } and E(T ) = {ε1, ε2}. The labeling functions

µ and λ are defined as
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µ(p) = {v1, v2, v3, v4, v5, v6}
µ(q) = {v1, v3, v4, v6, v7, v9}
µ(r) = {v1, v2, v8, v10}

λ(p) = {e1, e2}
λ(q) = {e3, e4}
λ(r) = {e6, e8}.

Indeed, the four conditions of the definition are met.

(i) For e1, e2 ∈ E(H) it holds that e1, e2 ⊆ µ(p).

For e3, e4, e5 ∈ E(H) it holds that e3, e4, e5 ⊆ µ(q).

For e6, e7, e8 ∈ E(H) it holds that e6, e7, e8 ⊆ µ(r).

(ii)

v ∈ H {u ∈ V(T)|v ∈ µ(u)} Induced subtree of T

v1 {p, q, r}

v2, v5 {p, r}

v3, v4, v6 {p, q}

v7, v9 {q} • q

v8, v10 {r} • r

(iii) For p ∈ V (T ),

µ(p) = {v1, v2, v3, v4, v5, v6} ⊆
⋃
λ(p) = e1 ∪ e2 = {v1, v2, v3} ∪ {v4, v5, v6}.

For q ∈ V (T ),

µ(q) = {v1, v3, v4, v6, v7, v9} ⊆
⋃
λ(q) = e3 ∪ e4 = {v3, v4, v7} ∪ {v1, v6, v9}.

For r ∈ V (T ),

µ(r) = {v1, v2, v5, v8, v10} ⊆
⋃
λ(r) = e1 ∪ e2 = {v2, v5, v8} ∪ {v1, v8, v10}.

(iv) Given p ∈ V (T ), the set of vertices of Tp is V (Tp) = {p, q, r}.
Also µ(Tp) = µ(p) ∪ µ(q) ∪ µ(r) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10} and
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λ(p) = {e1, e2}. Hence
⋃
λ(p) ∩ µ(Tp) = e1 ∩ µ(Tp) ∪ e2 ∩ µ(Tp) = e1 ∪ e2 ⊆

µ(p) = {v1, v2, v3, v4, v5, v6}.

Similarly for q, r ∈ V (T ) :

V (Tq) = {q}, µ(Tq) = µ(q) = {v1, v3, v4, v6, v7, v9} and λ(q) = {e3, e4}. Thus⋃
λ(q)∩µ(Tq) = e3∩µ(Tq)∪e4∩µ(Tq) = e3∪e4 ⊆ µ(q) = {v1, v3, v4, v6, v7, v9};

V (Tr) = {r}, µ(Tr) = µ(r) = {v1, v2, v5, v8, v10} and λ(r) = {e6, e8}. Thus⋃
λ(r)∩µ(Tr) = e6∩µ(Tr)∪e8∩µ(Tr) = e6∪e8 ⊆ µ(r) = {v1, v2, v5, v8, v10}.

v1
v2

v3 v4
v5 v6

v7

v8

v9

v10

e1
e2

e3

e4 e5

e6 e7

e8

(a) Hypergraph H

λ = {e1, e2}
p

µ = {v1, v2, v3, v4, v5}

λ = {e3, e4}
q

µ = {v1, v3, v4, v7, v9}

ε1

λ = {e6, e8} r

µ = {v1, v2, v5, v8, v10}

ε2

(b) (T, µ, λ)

Figure 2.6: A hypergraph and its tree decomposition.

Definition 2.7. The width of a hypertree decomposition (T, µ, λ) is given by

max{|λ(p)| : p ∈ V (T )|}, and the hypertree-width of a hypergraph is the mini-

mum width over all its hypertree decompositions.

Figure 2.6 shows an example of a hypergraph and its hypertree decomposition of

width 2.

As pointed out in [GLS02], the concept of hypertree decomposition is a natural

generalization of the concept of tree decomposition to hypergraphs.





Chapter 3

Cycles in Hypergraphs

3.1 Cyclicity

Empty edges are worthless when studying hypergraph cyclicity and acyclicity no-

tions. This is because the empty edge cannot play a role in a cycle. In the same

manner, there is no reason to consider the case where some vertices are contained

in no edge. Due to these reasons, from this point on, any hypergraph can be

thought as a set of nonempty edges.

Definition 3.1. Consider a hypergraph H and two distinct vertices u, v ∈ V (H).

A path from vertex u to vertex v is a sequence of distinct edges (ep1 , ep2 , . . . , epk)

such that u ∈ ep1 , v ∈ epk , epi ∩ epi+1
6= ∅ and epi ∩ epj = ∅ if |i− j| ≥ 2.

The above sequence of edges is called an edge path (or just a path when no confusion

arises) from ep1 to epk .

The concept of connectedness of graphs can be extended in a natural way to

hypergraphs. Two nodes are connected if there is a path from one to the other.

Similarly, two edges are connected if there is an edge path from one to the other.

A set of nodes or edges is connected if every pair is connected. The components

of a hypergraph are its maximal connected sets of edges.

Definition 3.2. A cycle of a hypergraph H is a sequence of edges (ep1 , ep2 , . . . , epk)

satisfying the following conditions:

• ep1 = epk and

25
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• for all 2 ≤ i ≤ k − 2 and an arbitrary e ∈ E(H),

(
(epi−1

∩ epi) ∪ (epi ∩ epi+1
) ∪ (epi+1

∩ epi+2
)
)
\ e 6= ∅.

Such definition of cycles in hypergraphs works for graphs as well. In simple words,

a cycle is a sub(hyper)graph, such that after deleting one of its edges, the number of

connected components remains the same. However, unlike graphs, in hypergraphs

there are different “degrees” of cyclicity which are defined below.

Definition 3.3. A Berge cycle in a hypergraph H is a sequence (ep1 , vp1 , ep2 , vp2 ,

. . . , epn , vpn , epn+1) such that

(i) n ≥ 2;

(ii) epn+1 = ep1 ;

(iii) vp1 , vp2 , . . . , vpn are distinct vertices in V (H);

(iv) ep1 , ep2 , . . . , epn are distinct edges in E(H); and

(v) vpi ∈ epi ∩ epi+1
, for 1 ≤ i ≤ n.

If a hypergraph has a Berge cycle then it is said to be Berge-cyclic.

Example 3.1. Consider the hypergraph H shown in the figure below. The se-

quence (e2, v4, e3, v5, e2) is a Berge cycle.

e1

e2
e3

e4v2

v3

v4

v5

v6
v1

v7

v8

Figure 3.1: A Berge-cyclic hypergraph.

As seen in this example, if there is some pair of edges in a hypergraph H having

at least two vertices in common, then H is Berge-cyclic.
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Definition 3.4. For n ≥ 3, let (ep1 , vp1 , ep2 , vp2 , . . . , epn , vpn) be a sequence of

distinct edges epis and distinct vertices vpis in a hypergraph. If for every i ∈
{1, 2, . . . , n − 1}, vpi ∈ epi ∩ epi+1

but does not belong to any other epj and vpn ∈
epn ∩ ep1 (it may also be an element of other edges), then the sequence is called a

γ-cycle.

Definition 3.5. A β-cycle in a hypergraph is a γ-cycle (ep1 , vp1 , ep2 , vp2 , . . . , epn , vpn)

such that vpn belongs to ep1 ∩ epn and no other epj .

In the very first section, we said that two edges of a graph are neighbors if they

share a vertex, generalizing this concept to hypergraphs, we now say that two

edges ei and ej are neighbors if they share at least one vertex. Moreover, ei and

ej are α-neighboring if there is no other path allowing to go from one to the other

apart from the trivial one, that is (ei, ej).

Definition 3.6. An α-path in a hypergraph is a sequence of edges (ep1 , ep2 , . . . ,

epk) such that for all i , 1 ≤ i < k, epi and epi+1
are α-neighboring.

Definition 3.7. An α-cycle in a hypergraph is an α-path (ep1 , ep2 , . . . , epk) such

that k > 3, ep1 = epk , and there are no 1 ≤ i < j < k epi ∩ epi+1
⊂ epj ∩ epj+1

.

Example 3.2. Look at Figure 3.3. Consider the sequence S = (e5, v1, e1, v4, e2, v5,

e3, v7, e4, v10). In (a), S is a γ-cycle, however this same sequence corresponds to a

β-cycle in (b). Meanwhile in (c), the sequence (e1, e2, e3, e4, e5, e1) represents an

α-cycle.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

(a) γ-cycle.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

(b) β-cycle.
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v1

v2

v3

v4

v5

v6

v7

v8

v9

v10 e1

e2

e3

e4

e5

(a) α-cycle.

Figure 3.3: Three different degrees of cyclicity in hypergraphs.

3.2 Characterizations of acyclicity

Graph acyclicity is defined in a natural way thanks to the notion of cycles in graph

theory, meaning that a graph is acyclic if and only if it contains no cycle. Even

so, on hypergraphs, there exist different degrees of acyclicity and thus different

non-equivalent notions of acyclicity. This section is focused on α, β, γ, and Berge-

acyclicity. Each of these notions admits many different characterizations which

can be further studied in [BB16] and [Fag83].

Since we have already defined α, β, γ and Berge cycles, let us define the respective

different degrees of acyclicity in terms of their absence.

Definition 3.8. A hypergraph is α-acyclic (respectively β-acyclic, γ-acyclic, and

Berge-acyclic) if it contains no α cycles (respectively β, γ, and Berge cycles).

As far as α , β, and γ-acyclicity concerns, we will restrict ourselves to characteri-

zations involving the notion of join trees.

Definition 3.9. A join tree for a hypergraph H is, if it exist, a rooted tree

T = (E, J) with set of nodes the edges of H, J is its set of edges, and such that if

v ∈ V (H) belongs to two edges ei and ej in E(H) then it is also contained in all

nodes of e̊iP e̊j in T .
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Hence, the set of nodes of a join tree T that contain a vertex v ∈ V (H) is connected

in T . The root of T , denoted R, is some edge of H and a branch is a path in T

beginning with R and maximal for inclusion. See Figure 3.4.

The notion of α-acyclicity is the most general one known in the literature. How-

ever, the definition of α-acyclicity has not been fully studied in terms of cycles

on hypergraphs, instead it is usually defined via the Graham reduction process,

equivalent definitions based on articulations in hypergraphs or cycles in a graph

representation of hypergraphs related to connections of edges. Various authors

such as Duris [Dur12], Brault-Baron [BB16], and Jégou [JN09], to name a few,

frequently state the next theorem either as a definition or as a equivalent statement

of α-acyclicity.

Theorem 3.1. A hypergraph is α-acyclic if and only if it admits a join tree.

Other names for α-acyclic hypergraphs are decomposable hypergraphs or hypertrees.

e1

e2

e3

e4

e5

e6
e7

e8

(a) α-acyclic hypergraph H.

e1

e2

e3

e4

e5

e6

e7

e8

(b) Rooted tree T.

Figure 3.4: Join tree T of hypergraph H.

The following theorem is given as a definition of β-acyclicity in [Fag83]. It is also

proved to be equivalent to the definition we previouly presented.

Theorem 3.2. A hypergraph H is β- acyclic if and only if every subset of E(H)

is α-acyclic.

Definition 3.10. A join tree T of a hypergraph H has disjoint branches if edges

of H belonging to different branches of T are disjoint.
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In Figure 3.4, e4 and e6 belong to different branches but e4∩e6 6= ∅. Consequently,

the given join tree does not have disjoint branches. Figure 3.5(a) depicts an ex-

ample of a join tree with disjoint branches.

Theorem 3.3. If a hypergraph has a join tree with disjoint branches then it is

β-acyclic.

Proof. Let H be a hypergraph having a join tree T with disjoint branches whose

root isR. AssumeH is not β-acyclic, thus it contains a β-cycle (ep1 , vp1 , ep2 , vp2 , . . . ,

epn , vpn). Since for every pi, vpi ∈ epi ∩ epi+1
, all edges must belong to the same

branch of T . Assume without loss of generality that ep1 is closer to R than ep2 ,

else the β-cycle (ep2 , vp1 , ep1 , vpn , epn , vpn−1 , epn−1 , . . . , ep3 , vp2) would be considered

instead, so every epi belongs to the same branch in the order ep1 , ep2 , . . . , epn from

the root of T such that en is the farthest and ep2 , . . . , epn−1 lie between ep1 and epn .

By the definition of β-cycle vpn belongs to ep1 ∩ epn , and since T is a join tree vpn

should also belong to every other epi , which is a contradiction.

Theorem 3.4. For every γ-acyclic hypergraph H and for every edge e ∈ E(H),

H has a tree with disjoint branches whose root is e.

Proof. Mathematical induction on the number of edges is used to prove this. When

the hypergraph has only one edge, the statement is trivially valid. Let H =

(V,E) be a γ-acyclic hypergraph and assume the induction hypothesis is true for

hypergraphs with strictly less edges than H. Consider the hypergraph (V,E \ e)
splitted in connected components H1, ..., Hn ignoring the vertices that belong only

to e. Clearly, for every i ∈ {1, 2, . . . , n}, Hi = (Vi, Ei) is γ-acyclic and satisfies the

induction hypothesis allowing us to choose any edge of Hi as a root. For every

i, let Ti be a join tree with disjoint branches for Hi with ei as a root. The join

tree T for H with disjoint branches whose root is e is hereby defined. The root of

T is e and each Ti can be connected to Ti with an edge {e, ei}. It is know that

each Ti has disjoint branches and, by definition of component, the Vis are pairwise

disjoint. It follows that T has disjoint branches. It remains to prove that T is a

join tree, which means that for every v ∈ V , the set of nodes of T that contain v

is connected in T . Inasmuch as V =
n⋃

i=1

Vi ∪ e there are three cases: v ∈ e \
n⋃

i=1

Vi,

v ∈
n⋃

i=1

Vi \ e, or v ∈ e ∩
n⋃

i=1

Vi. If v ∈ e and v does not belong to any other edge,

there is nothing to prove. If the second case happens, there exist 1 ≤ i0 ≤ n
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such that v belongs Vi0 and the only edges that contain v are in Ti0 . Lastly, if

v ∈ e ∩
n⋃

i=1

Vi then v ∈ e and v ∈ Vi0 for some i0 ∈ {1, . . . , n}. In view of the fact

that for every i there exist ei ∈ Ei such that Vi ∩ e ⊆ ei [Dur12], particularly, it

follows that v ∈ e ∩ ei0 . Therefore, ei0 belongs to the set of edges containing v

in Ti0 . Moreover, the only edge which contains v and is not in Ti0 is e, which is

connected to ei0 in T . Thus, the set of edges of H that contain v is connected.

Since the three cases exhaust all the possibilities, this proves that for any γ-acyclic

hypergraph H and every e ∈ E(H), there exist a join tree with disjoint branches

whose root is e.

Corollary 3.1. If a hypergraph is γ-acyclic then it has a join tree with disjoint

branches.

In both preceding statements, Corollary 3.1 and Theorem 3.3, the converse is not

true. Below, Figure 3.5 (a ) depicts a γ-cyclic hypergraph which can be writen as

the sequence (e2, v2, e3, v1, e1, v3) = ({v2, v3}, v2, {v1, v2, v3}, v1, {v1, v3}, v3 ) and it

has a join tree with disjoint branches which is shown next to it. The hypergraph

shown in Figure 3.5 (b) is β-acyclic and it is not hard to check that it has no join

tree with disjoint branches.

v1 v2

v3

e1 e2

e3

(a)

e2

e3

e1

v1 v2

v3 v4

e1 e2

e3

e4

(b)

Figure 3.5: (a) A γ-cyclic hypergraph and its join tree with disjoint branches.
(b)A β-acyclic hypergraph having no join tree with disjoint branches.

It can be proved that the reverse of Theorem 3.4 is true, obtaining the following

characterization of γ-acyclicity [Dur12].

Theorem 3.5. A hypergraph H is γ-acyclic if and only if, for every edge e ∈
E(H), H has a tree with disjoint branches whose root is e.

Definition 3.11. A property ρ of hypergraphs is closed under an operation when

for all hypergaph H and all H ′ obtained by such operation, it holds that ρ(H)⇒
ρ(H ′).
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Thanks to the closure property, some facts are easy to derive. For instance, if

a hypergraph is β-acyclic (respectively γ- acyclic), then so is every subset of it.

Hence β-acyclicity and γ-acyclicity are closed under taking a subset. This is not

generally true for α-acyclic hypergraphs. There are α-acyclic hypergraphs whose

subsets are not all α-acyclic. Indeed, H = {{v1, v2}, {v2, v3}, {v1, v3}, {v1, v2, v3}}
is α-acyclic, however, H ′ = {{v1, v2}, {v2, v3}, {v1, v3}} ⊆ H is not, as portrayed

in Figure 3.6.

v1 v2

v3

(a)

v1 v2

v3

(b)

Figure 3.6: (a) α-acyclic hypergraph H. (b)α-cyclic hypergraph H ′.

In [Ber73], Claude Berge gives a result of Berge-acyclicity for hypergraphs.

Theorem 3.6. A hypergraph H is Berge-acyclic if and only if its incidence graph

is acyclic.

v1

v2

v3

v4

v5

v6

v7

v8

e1

e2

e3

e4

Figure 3.7: Incidence graph for hypergraph in figure 3.1 .

This equivalence, in fact matches with our definition of Berge acyclicity: if a

hypergraph has some pair of distinct vertices u, v and some pair of distinct edges
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e1, e2 such that both u and v belong to e1 and e2 simultaneously, then it is Berge-

cyclic. For instance, the incidence graph for the Berge-cyclic hypergraph given in

Figure 3.1 is clearly cyclic.

Berge acyclicity implies γ-acyclicity. Also, the notions of γ and β-acyclicity satisfy

the property that, if a hypergraph is γ-acyclic then it is β-acyclic. Further still, β-

acyclicity implies α-acyclicity. Yet, none of the reverse implications hold. A proof

of these implications can be found in [Fag83]. The following figure represents these

relationships.

α-cyclic

β-cyclic

γ-cyclic

Berge-cyclic

(a) Cyclicity

Berge-acyclic

γ-acyclic

β-acyclic

α-acyclic

(b) Acyclicity

Figure 3.8: Cyclicity and acyclicity relationships on hypergraphs.

The following result is known regarding cycles in hypergraphs. Its proof can be

found in [BB16]

Theorem 3.7. α, β and γ acyclicity are polynomial time decidable.

Remark α-acyclicity is even linear time decidable, as well as Berge-cyclicity since

it can be tested by an exploration of the incidence graph.

3.3 Hypergraphs and Boolean Formulae in CNF

Since many important problems in computer science are intractable in general,

it is a reasonable task to identify tractable subclasses of such problems which

can be solved efficiently. One approach to do this is to restrict the structure of

a problem represented as graph or hypergraph. For instance, the structure of

Boolean conjunctive queries can be naturally encoded by hypergraphs.
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Definition 3.12. Given a formula in CNF ϕ(x1, x2, . . . xn), its associated hyper-

graph is a hypergraph Hϕ such that V (Hϕ) = Lit(ϕ) and E(Hϕ) = {Lit(c) | c is

a clause of ϕ}.

Notice that V (Hϕ) = {x1, x2, . . . , xn} and E(Hϕ) = {V ar(c) | c is a clause of ϕ} if

ϕ is a monotone CNF formula.

Example 3.3. Consider the formula ϕ = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x5 ∨ x6 ∨
x7) ∧ (x1 ∨ x7). Its associated hypergraph is shown in the following figure, where

V (Hϕ) = {x1, x2, x3, x4, x5, x6, x7} and E(Hϕ) = {{x1, x2, x3}, {x3, x4}, {x5, x6, x7},
{x6, x7}}.

x1 x2
x3

x4

x5

x6

x7

Figure 3.9: Associated hypergraph of the formula
ϕ = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x5 ∨ x6 ∨ x7) ∧ (x1 ∨ x7).

Consequently, if some graphic property on the formula ϕ is mentioned, it should

be understood that such property refers to Hϕ. For example, “the formula ϕ is

connected” means that its associated hypergraph is connected.

Definition 3.13. The associated hypergraph of a formula ϕ in CNF represents

a simple chain if its clauses can be ordered in such a way that two consecutive

clauses match in one variable.

Figure 3.10 exemplifies a simple chain.

If consecutive clauses of a formula ϕ share one or more variables then ϕ can be

written as ϕ = c1c2 · · · cm where | ci ∩ ci+1| ≥ 1, for i ∈ {1, 2, . . . ,m − 1} and

ci ∩ cj = ∅ when | i− j |≥ 2.

Definition 3.14. The incidence graph of a CNF-formula ϕ is the bipartite graph

which has as vertices the set V ar(ϕ) ∪ clauses(F ) and x ∈ V ar(ϕ) and c ∈
clauses(F ) are connected by an edge if and only if x appears in c.
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c1

c2

c3

c4

c5

· · ·

cm−2

cm−1

cm

Figure 3.10: A simple chain ϕ.

The following result by Capelli et al. [CDM14] establishes the existence of a

polynomial time algorithm which solves the #SAT problem for CNF formulas

that allow a disjoint branches decomposition.

Theorem 3.8. Given a CNF formula ϕ, and a disjoint branches decomposition

of the hypergraph of ϕ, there is an algorithm that computes the number of models

of ϕ in polynomial time.

It is known known that #SAT for CNF formulas with α-acyclic hypergraphs is

#P-hard and tractable for γ-acyclic hypergraphs. Unfortunately, #SAT for CNF

formulas with β-acyclic hypergraphs is a problem whose complexity could so far

not be determined despite considerable attempts by several authors. Even more,

thanks to the last theorem, for CNF formulas whose hypergraphs have a disjoint

branches decompositions #SAT can be solved in polynomial time. The next table

shows the known complexity results for the restrictions of #SAT.

Class Lower bound Upper Bound
Primal treewidth FPT
Incidence treewidth FPT
Modular incidence treewidth FPT
Signed incidence cliquewidth FPT
Incidence cliquewidth W[1]-hard XP
γ-acyclic FP
β-acyclic ? ?
α-acyclic #P-hard #P
Disjoint branches FP

Figure 3.11: Known complexity results for structural restrictions of #SAT.
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For more information on the table and the definitions of the appearing complexity

classes see [CDM14].



Chapter 4

A Tractable Syntactic Subclass

within 2µ− e3MON

Within the versions of #SAT whose complexity classification still remains unde-

termined, #2µ-3MON and #2µ-kSAT with k > 2, are found.

In the present thesis, using the idea of model counting by means of matrix opera-

tors, a tractable family of functions within this syntactic classification is proposed.

Specifically, we deal with the 2µ − e3MON syntactic class. The tractability of

this family is determined by the topological structure of the hypergraph associated

with the formula. Formulas belonging to this class are associated with 3-graphs.

Most of the content of the chapter is based on [GLA13].

4.1 Charges

First, regarding Boolean formulas, the concepts of charge and conjoint charge of

one and two variables, respectively, are introduced. Simple results involving the

set of models of a formula, which will be useful, are established.

Consider a formula in CNF, for t ∈ {0, 1} and x ∈ V ar(ϕ), ϕx=t denotes the

formula obtained after making x = t in ϕ and simplifying the formula performing

the following steps:

1. Eliminate every clause containing 1.

37
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2. Remove each 0.

In particular, for ϕ(x1, x2, x3, x4, x5) = {{x1, x3, x5}, {x2, x4}, {x2, x3, x5}, {x1, x4}},
ϕx2=0 = {{x1, x3, x5}, {x4}, {x3, x5}, {x1, x4}} and ϕx1=1,x3=0 = {{x2, x4}, {x2, x5}}.

If the formula is indexed, a vertical line “|” is used to separate, avoid confusions

and prevent excessive use of parenthesis. For example, ϕj|x=t is the same as (ϕj)x=t.

Correspondingly, Mx=t(ϕ) represents the set of models in M(ϕ) which take the

value t in the variable x. In general, for tj ∈ {0, 1}, the set of models with the

restriction r over x1, x2, . . . , xk ∈ V ar(ϕ) is symbolized as Mr(x1,x2,...,xk)(ϕ), where

r(x1, x2, . . . , xk) = {x1 = t1, x2 = t2, . . . , xk = tk}. Observe that for any restriction

r, Mr(x1,x2,...,xk)(ϕ) ⊆M(ϕ).

Let Sx=t(ϕ) represent the set of variables from x eliminated when ϕ is simplified

to ϕx=t, this is, Sx=t(ϕ) = V ar(ϕ) \ ({x} ∪ V ar(ϕx=t)). For any two formulas ϕ1

and ϕ2 such that the intersection of sets V ar(ϕ1) and V ar(ϕ2) is equal to {x} or

∅, the following equalities are true:

V ar((ϕ1 ∪ ϕ2)x=t) = V ar(ϕ1|x=t) ∪ V ar(ϕ2|x=t) (4.1)

and

V ar(ϕ1|x=t) ∩ V ar(ϕ2|x=t) = ∅. (4.2)

Given a formula ϕ and t ∈ {0, 1},

|Mx=t(ϕ)| = 2|Sx=t(ϕ)||M(ϕx=t)|. (4.3)

Definition 4.1. Given a formula ϕ and x ∈ V ar(ϕ), the charge of x relative to

ϕ, is the ordered pair (`, η) such that ` = |Mx=1(ϕ)| and η = |Mx=0(ϕ)|. This pair

is denoted as #sat(ϕ, x).

Definition 4.2. Given a formula ϕ and x, y ∈ V ar(ϕ), the conjoint charge of x

relative to ϕ is the matrix (mi,j) such that (mi,j) = |Mx=i,y=j(ϕ)| where i, j ∈
{0, 1}. This matrix is denoted as #sat(ϕ, x, y).

Remark 1. Let Ai stand for the set of values in {0, 1}n where the restriction

ri(x1, x2, . . . , xk) holds for i ∈ {0, 1}. IfA1 andA2 are disjoint sets thenMr1∪r2(ϕ) =

Mr1(ϕ) ∪Mr2(ϕ), on that account

|Mr1∪r2(ϕ)| = |Mr1(ϕ)|+ |Mr2(ϕ)|. (4.4)
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The following equalities, where x and y are variables of ϕ, are examples of the

prior statement:

1. |M(ϕ)| = |Mx=1(ϕ)|+ |Mx=0(ϕ)|

2. |M(ϕ)| = |Mx=1,y=1(ϕ)|+ |Mx=1,y=0(ϕ)|+ |Mx=0,y=1(ϕ)|+ |Mx=0,y=0(ϕ)|

3. |Mx=0(ϕ)| = |Mx=0,y=1(ϕ)|+ |Mx=0,y=0(ϕ)|

4. |Mx=1(ϕ)| = |Mx=1,y=1(ϕ)|+ |Mx=1,y=0(ϕ)|.

Resultantly, the following matrix relation can be established

#sat(ϕ, x) = #sat(ϕ, x, y)

(
1

1

)
. (4.5)

Therefore, the #SAT problem can be seen as the problem of finding the charge of

a variable of an instance. Also note that the charges of the variables of a formula ϕ

provide information which is more accurate than the one provided by the number

|M(ϕ)|. In fact, not only the number of models of the formula is known, but also

the number of models where a certain variable takes the value 1 and the number

of models where this same variable takes the value 0. This information helps to

obtain direct algorithms and more concise proofs on the results presented in this

work.

The following definition presents a description of an operation that is directly

related to model counting. This operation has the pecularity of relating charges

of variables and allow certain reductions in a given formula.

Definition 4.3. Let A = (aij) and B = (bij) be m × n matrices with entries in

N. The Hadamard product of A and B is defined by

A�B = (aijbij) for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

As it can be seen, the Hadamard product is simply entrywise multiplication. Be-

cause of this, it inherits the same benefits (and restrictions) of multiplication in

the set of natural numbers.
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A component of a formula ϕ is a maximal connected subformula of ϕ. If ϕ1 and

ϕ2 are different components of ϕ, it is clear that

|M(ϕ) = |M(ϕ1)||M(ϕ2)|. (4.6)

For simplicity, it can be assumed that every formula is connected. The complexity

in time of a procedure for an arbitrary formula is not affected, since the procedures

to determine the components can be carried out in linear time.

The next lemma states that if the charges of one variable with respect to two

formulas that have only this variable in common is known, then the charge of

the union of the formulas can be calculated by the Hadamard of product of the

respective charges.

Lemma 4.1. If V ar(ϕ1) ∩ V ar(ϕ2) = {x} then

#sat(ϕ1 ∪ ϕ2, x) = #sat(ϕ1, x)�#sat(ϕ2, x).

Proof. By definition #sat(ϕ1∪ϕ2, x) = (|Mx=0(ϕ1∪ϕ2)|, |Mx=1(ϕ1∪ϕ2)|). Know-

ing that V ar(ϕ1|x=t) ∩ V ar(ϕ2|x=t) = ∅ for t ∈ {0, 1} and using equation (4.3) the

following is acomplished

|Mx=t(ϕ1 ∪ ϕ2)| = 2|Sx=t(ϕ1∪ϕ2)||M((ϕ1 ∪ ϕ2)x=t)|

= 2|Sx=t(ϕ1)|+|Sx=t(ϕ2)||M(ϕ1|x=t ∪ ϕ2|x=t)|

= 2|Sx=t(ϕ1)|2|Sx=t(ϕ2)||M(ϕ1|x=t)||M(ϕ2|x=t)|

= 2|Sx=t(ϕ1)||M(ϕ1|x=t)|2|Sx=t(ϕ2)||M(ϕ2|x=t)|

= |Mx=t(ϕ1)||Mx=t(ϕ2)|.

In that event

#sat(ϕ1 ∪ ϕ2, x) = (|M(ϕ1|x=1)||M(ϕ2|x=1)|, |M(ϕ1|x=0)||M(ϕ2|x=0)|)

= (|M(ϕ1|x=1)||M(ϕ2|x=0)|)� (|M(ϕ1|x=1)||M(ϕ2|x=0)|)

= #sat(ϕ1, x)�#sat(ϕ2, x).

There is an analogous result for the case of conjoint charges of two variables with

respect to the union of two formulas that have only one variable in common.
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Lemma 4.2. If V ar(ϕ1) ∩ V ar(ϕ2) = {x}, w ∈ V ar(ϕ1) \ V ar(ϕ2) and z ∈
V ar(ϕ2) \ V ar(ϕ1) then

#sat(ϕ1 ∪ ϕ2, w, z) = #sat(ϕ1, w, x)#sat(ϕ2, x, z).

Proof. To make the notation easier to follow, let aij = |Mw=i,x=j(ϕ1)|, bij =

|Mx=i,z=j(ϕ2)|, and cij = |Mw=i,z=j(ϕ1 ∪ ϕ2)|, which means that the entries of

#sat(ϕ1, w, x), #sat(ϕ2, x, z), and #sat(ϕ1 ∪ϕ2, w, z) are aij, bij, and cij, respec-

tively. From remark 1 ,

Mw=i,z=j(ϕ1 ∪ ϕ2) = Mw=i,x=1,z=j(ϕ1 ∪ ϕ2) ∪ Mw=i,x=0,z=j(ϕ1 ∪ ϕ2).

Since ϕ1|x=t and ϕ2|x=t have no variables in commmon for each for t ∈ {0, 1}, by

equation (4.6) the equality |Mw=i,x=t,z=j(ϕ1 ∪ ϕ2)| = aitbtj holds. As a result, it is

clear that cij = ai1bi1 + ai0bi0.

4.2 Counting for chains

Using a truth table, a counting operator for formulas whose associated hypergraphs

represent simple chains can be identified. This operator is proposed in the following

definition.

Definition 4.4. Let S : N2 −→ N2 be the operator defined by

S =

(
2 2

2 1

)
,

S is called the edge operator.

4.2.1 Simple chains

If a clause having exactly three variables is added to a formula ϕ which shares

one variable with the clause, it is possible to compute the charge of the resulting

formula as stated by the following lemma.

Lemma 4.3. Let ϕ be an arbitrary formula and c = {x, y, z} a clause such that

V ar(ϕ)∩ c = {x}, then #sat(ϕ∪ c, z) = #sat(ϕ∪ c, y) = S#sat(ϕ, x), where S is

the edge operator.
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Proof. Because ϕ and c are both formulas satisfying the conditions of Lemma 4.1,

then

#sat(ϕ ∪ c, x) = #sat(ϕ, x)�#sat(c, x).

It can be easily computed that #sat(c, x) = (4, 3). Also, let (`, η) stand for

#sat(ϕ, x), therefore

#sat(ϕ ∪ c, x) = (4, 3)� (`, η) = (4`, 3η).

This means that |Mx=1(ϕ ∪ c)| = 4` and |Mx=0(ϕ ∪ c)| = 3η.

Each model σ ∈ Mx=1(ϕ ∪ c) takes two possible values in y (as well as in z),

σ(y) = 1 or σ(y) = 0. Hence |Mx=1,y=1(ϕ ∪ c)| = 2` and |Mx=1,y=0(ϕ ∪ c)| = 2η.

Conjointly, for each model σ ∈ Mx=0(ϕ ∪ c) there are three possible values of

σ in the variables y and z: σ(y) = 0 ∧ σ(z) = 1, σ(y) = 1 ∧ σ(z) = 0, and

σ(y) = 1 ∧ σ(z) = 1. That is to say, two thirds of Mx=0(ϕ ∪ c) are models which

take the value 1 in the variable y. By all means, the remaining models take the

value 0 in this particular variable. It follows that |Mx=0,y=1(ϕ ∪ c)| = 2η and

|Mx=0,y=0(ϕ ∪ c)| = η.

So, the charge of y relative to ϕ is

#sat(ϕ ∪ c, y) = (|My=1(ϕ ∪ c, y)|, |My=0(ϕ ∪ c, y)|)

= (2`+ 2η, 2`+ η)

= S#sat(ϕ, x).

In the same manner, #sat(ϕ ∪ c, z) = S#sat(ϕ, x).

The following theorem establishes how to count the number of models of a formula

whose associated hypergraph is a simple chain.

Theorem 4.1. Let ϕm = c1c2 · · · cm, be a simple chain in 2µ− e3MON . Suppose

that cm = {x, y, z} and x ∈ cm ∩ cm−1, then

#sat(ϕm, z) = #sat(ϕm, y) = Sm

(
1

1

)
;

and if w ∈ ϕm−1 r cm, then

#sat(ϕm, w, z) = Sm,
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where S is the edge operator.

Proof. By induction over m. It is trivially true in the base case m = 1. For the

induction step, assume the theorem is valid for m− 1, that is

#sat(ϕm−1, x) = Sm−1

(
1

1

)
and #sat(ϕm, w, x) = Sm−1.

Consider the formula ϕm−1 = c1c2 · · · cm−1 and the clause cm, they fulfill the

conditions of Lemma 4.3, in consequence

#sat(ϕm, z) = #sat(ϕm−1 ∪ cm, z) = S#sat(ϕm−1, x)

= SSm−1

(
1

1

)
= Sm

(
1

1

)
.

At the same time, by Lemma 4.2

#sat(ϕm, w, z) = #sat(ϕm−1 ∪ cm, w, z)

= #sat(ϕm−1,w, x)#sat(cm, x, z)

= Sm−1S.

Given two hypergraphs with a single node in common, by Lemma 4.1, it is possible

to calculate the charge of the node with respect to the union of the hypergraphs.

This means that if the charge of the node relative to each of the substructures is

known, then the charge of the node in the complete structure is obtainable. So, an

important consideration when analyzing model counting based on substructures

is to calculate the distribution of charges of the nodes in each substructure, or at

least those nodes useful to relate a substructure with another. A case in point is

the analysis of the distribution of the charges of the variables y and z of clause

c = {x, y, z} knowing the charge of the variable x with respect to a formula ϕ such

that V ar(ϕ) ∩ c = {x}. This has been already stated in Lemma 4.3.

Example 4.1. Compute the distribution of charges of x4 and x5 with respect

to the formula ϕ = {c1, c2, c3} where c1 = {x1, x2, x3}, c2 = {x1, x4, x5} and

c3 = {x1, x6, x7}.
Solution. From Lemma 4.1,
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x1

x2

x3

x4
x5

x6

x7

c1

c2

c3

Figure 4.1: Hypergraph associated with ϕ = {c1, c2, c3}.

#sat(c1 ∪ c2, x1) = #sat(c1, x1)�#sat(c2, x1)

=

(
4

3

)
�

(
4

3

)
=

(
16

9

)

and, by Lemma 4.3

#sat(c1c2 ∪ c3, x4) = #sat(c1c2 ∪ c3, x5) = S#sat(ϕ, x1)

=

(
2 2

2 1

)(
16

9

)
=

(
50

41

)
.

Therefore, there are 91 models that satisfy the formula ϕ. Observe that in this

case ϕ is not a chain and does not belong to 2µ− 3MON .

4.2.2 Alternating chains

In this section we analyze model counting on 2µ − e3MON formulas whose hy-

pergraphs correspond to alternating chains. The following definition clarifies this

concept.

Definition 4.5. (a) Two clauses c1 and c2 are said to be simply linked if and

only if |c1 ∩ c2| = 1.

(b) Clauses c1 and c2 are doubly linked if and only if |c1 ∩ c2| = 2.

(c) A formula ϕ is an alternating chain if it can be writen as ϕ = c1c2 · · · cm
where ci and ci+1 are simply or doubly linked, ci−1 and ci+1 can not be doubly

linked to ci simultaneously, and ci ∩ cj = ∅ if |i− j| ≥ 2.
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Example 4.2. Let c1 = {x1, x2, x3}, c′1 = {x2, x3, x4}, c2 = {x3, x4, x5)}, c3 =

{x4, x5, x6}, c4 = {x6, x7, x8} and c5 = {x8, x9, x10}, the formula ϕ = {c1, c2, c3, c4,
c5} is an alternating chain as opposed to ϕ′ = {c′1, c2, c3, c4, c5}.

x1

x2 x3

x4
x5

x6

x7

x8x9x10

Figure 4.2: Alternating chain.

A model counting operator which acts on structures that correspond to doubly

linked clauses can be determined from the analysis of the simplest structure of an

alternating chain. In the following definition, this operator is detailed.

Definition 4.6. The operator D : N2 −→ N2 defined by

D =

(
1 1

3/2 0

)

is called the double-edge operator.

The operator D applied to the charge of any variable of an alternating chain

always produces charges with integer entries. Indeed, as an alternating chain

in 2µ − e3MON cannot have two consecutive doubly linked clauses, when the

operator D is applied to a charge (`, η), there are two possibilities: either (`, η) is

an initial charge, meaning (`, η) = (4, 3), or (`, η) comes from previously applying

the edge operator S to another charge (`1, η1), that is (`, η) = S(`1, η1) = (2`1 +

2η1, 2`1 + η1). In any case D(`, η) has integer entries.

The following lemma specifies how to calculate the charge of a variable with respect

to the union of a formula ϕ and a clause c such that they match in two variables.

Lemma 4.4. Given a formula ϕ and a clause c = {x, y, z} such that V ar(ϕ∪c) =

{x, y}, then

#sat(ϕ ∪ c, z) = (|M(ϕ)|, |M(ϕ)| − a00)

and

#sat(ϕ ∪ c, x) = (S�#sat(ϕ, x, y))

(
1

1

)
.



A Tractable Syntactic Class 46

Proof. By definition #sat(ϕ ∪ c, z) = (|Mz=1(ϕ ∪ c)|, |Mz=0(ϕ ∪ c)|). Let aij =

|Mx=i,y=j(ϕ)| be the elements of the matrix #sat(ϕ, x, y). On one hand, if z = 1

under an extension of a model in M(ϕ), clause c is valid regardless of the values

of the variables x and y. Hence there are a11 + a10 + a01 + a00 = |M(ϕ)| models

in M(ϕ ∪ c) where z takes the value 1. On the other hand, if z takes the value

0 under another extension of a model in M(ϕ), then under this same extension

x or y must take the value 1 for clause c to be valid. As a result there are

a11 +a10 +a01 = |M(ϕ)|−a00 models in M(ϕ∪ c) where z takes the value 0. Thus

#sat(ϕ ∪ c, z) = (|M(ϕ)|, |M(ϕ)| − a00).

For the latter part of the lemma, it follows from the above that in M(ϕ∪ c) there

are 2a11+2a10 models where the variable x takes the value 1 and 2a01+a00 models

where it takes the value 0. This is

#sat(ϕ ∪ c, x) = (|Mx=1(ϕ ∪ c)|, |Mx=0(ϕ ∪ c)|)

= (2a11 + 2a10, 2a01 + a00)

=

((
2 2

2 1

)
�

(
a11 a10

a01 a00

))(
1

1

)

= (S�#sat(ϕ, x, y))

(
1

1

)
.

The upcoming theorem determines the model counting for alternating chains.

Theorem 4.2. Given an alternating chain in 2µ − e3MON , ϕ = c1c2, · · · , cm
and x ∈ cm \ cm−1, #sat(ϕm, x) is obtained applying the recurrence equationq1 = (4, 3)

qi = ∆qi−1 for i = 2, 3, . . .m,
(4.7)

where q1 = #sat(ϕ1, x1), x1 ∈ c1, qi = #sat(ϕi, xi), xi ∈ ci \ ci−1, and ∆ is the

operator defined as

∆ =

S if ci and ci−1are simply linked

D if ci and ci−1are doubly linked.
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Proof. A proof of the theorem is about to be performed by mathematical induction

over m. If m = 1 , then there is nothing to prove. For i = 1, 2, . . . , 3 there are two

possible cases.

Case 1 ci−1 and ci are simply linked. Let ci = {x, y, z} and assume x ∈ ci \ ci−1.
By virtue of Lemma 4.3, it directly follows that qi = Sqi−1.

Case 2 ci−1 and ci are double linked. In this case, it must happen that ci−2 and

ci−1 are simply linked. Assume ci = {x, y, z} and ci−1 = {w, x, y} and let (`, η)

w

x

y

z

ci−2

ci−1

ci

Figure 4.3: Alternating chain, case 2 of Theorem 4.2.

be the charge of w relative to the chain ϕi−2. Notice that y ∈ ci−1 \ ci−2. On one

hand, because of the first case, the charge of y relative to ϕi−1 is (2`+ 2η, 2`+ η),

therefore |M(ϕi−1)| = 4`+ 3η. Now, the last lemma assures that

qi = #sat(ϕi−1 ∪ ci, z) = (|M(ϕi−1)|, |M(ϕi−1)| − a00),

where a00 is the number of models of ϕi−1 where x and y take the value 0. On the

other hand, |M(ϕi−1)| = 4`+ 3η and

|M(ϕi−1)| − a00 = |Mz=0(ϕi−1 ∪ ci)| = |Mx 6=0∨y 6=0(ϕi−1)|

= 3|M(ϕi−2)| = 3`+ 3η.

This way, the charge of z relative to ϕi−1 ∪ ci is

qi = (4`+ 3η, 3`+ 3η) =

(
1 1

3/2 0

)(
`+ 2η

2`+ η

)
= Dqi−1.

An example to illustrate this theorem is hereupon given.
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Example 4.3. Consider the alternating chain ϕ = {{x1, x2, x3}, {x2, x3, x4},
{x4, x5, x6}, {x6, x7, x8}, {x7, x8, x9}}. Using the recurrence equation (4.7)

q1 =

(
4

3

)
,

q2 =

(
1 1

3/2 0

)(
4

3

)
=

(
7

6

)
,

q3 =

(
2 2

2 1

)(
7

6

)
=

(
26

20

)
,

q4 =

(
2 2

2 1

)(
26

20

)
=

(
92

72

)
, and

q5 =

(
1 1

3/2 0

)(
92

72

)
=

(
164

138

)
,

where q1 is the charge of variables x1, x2, and x3; q2 is the charge of variable x4;

q3 is the charge of variables x5 and x6; q4 is the charge of variables x7 and x8; and

q5 is the charge of variable x9. It is concluded that there are 302 models satisfying

the formula ϕ.

4.3 Counting for cycles

In this section we distinguish two types of cycles in 2µ − e3MON , simple cycles

and alternating cycles.

Definition 4.7. A hypergraph of the form ϕ = c1c2 · · · cm is a simple cycle if

c1c2 · · · cm is a simple chain and |c1 ∩ cm| = 1; and it is an alternating cycle if

c1c2 · · · cm is an alternating chain and 1 ≤ |c1 ∩ cm| ≤ 2.

Thereupon, model counting is performed on formulas whose associated hyper-

graphs represent specific cases of α-cycles.

4.3.1 Simple Cycles

From the analysis of simple structures and with the help of Hadamard’s product,

the following theorem is reached.
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Theorem 4.3. Let ϕm = c1c2 · · · cm−1cm be a simple cycle in 2µ− e3MON , then

#sat(ϕm, x) = (S� Sm−1)

(
1

1

)
,

where x ∈ c1 ∩ cm and S is the edge operator.

Proof. Consider the formula ϕm−1 = c1c2 . . . cm−1 and clause cm = {x, y, z} such

that ϕm−1 ∩ cm = {x, z}. Lemma 4.4 guarantees that

#sat(ϕ, x) = #sat(ϕm−1 ∪ cm, x)

= (S�#sat(ϕm−1, x, z))

(
1

1

)
.

The formula ϕm−1 is evidently a simple chain in 2µ-e3MON. Also, z ∈ cm−1\ϕm−2

and x ∈ ϕm−2 \ cm−1. Therefore by Theorem 4.1

#sat(ϕm−1, x, z) = Sm−1,

eventually #sat(ϕ, x) = (S� Sm−1)

(
1

1

)
.

Example 4.4. Compute the number of models of the formula whose associated

hypergraph is the following.

x1

x2

x3

x4

x5

x6 x7

x8

x9

x10

c1

c4

c3c2

c5

Figure 4.4: Simple cycle.
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Solution.

Unmistakably, the given hypergraph represents a simple cycle whose formula is

ϕ = {{x1, x2, x3}, {x2, x4, x5}, {x4, x6, x7}, {x6, x8, x9}, {x8, x10, x1}}. According to

the previous theorem, for x1 ∈ c1 ∩ c5

#sat(ϕ, x1) = (S� S4)

(
1

1

)

=

((
2 2

2 1

)
�

(
100 78

78 61

))(
1

1

)

=

(
200 156

156 61

)(
1

1

)

=

(
356

217

)
.

In consequence there are 573 models for ϕ.

4.3.2 Alternating Cycles

Given the alternating chain c1c2 · · · cm, the operator ∆i is defined as ∆1 = S and

for i ∈ {2, . . . ,m},

∆i =


S if ci and ci−1 are simply linked

D otherwise.

For each k ∈ {1, 2, . . . ,m}, Ωk represents the product
∏k

i=1 ∆i, and J1, J2 denote

the matrices

(
0 0

0 1

)
and

(
0 1

0 0

)
, respectively.

Theorem 4.4. Let ϕm = c1c2 · · · cm be an alternating cycle in 2µ− e3MON and

x ∈ c1 ∩ cm. If cm−1 and cm are simply linked then

#sat(ϕ, x) = (S� Ωm−1)

(
1

1

)
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and

#sat(ϕ, x) = (Ωm−1 − J1Ωm−2J2)

(
1

1

)
otherwise.

Proof. Let ϕm−2 = c1c2 . . . cm−2 and ϕm−1 = c1c2 . . . cm−1,. Naturally, the alter-

nating chain ϕm can be written in terms of the aforementioned chains as

ϕm = ϕm−1 + cm = ϕm−2 + cm−1 + cm.

By Theorem 4.2,

#sat(ϕm−1, x) = Ωm−1

(
1

1

)
=

(
a11 a10

a01 a00

)(
1

1

)

and

#sat(ϕm−2, x) = Ωm−2

(
1

1

)
=

(
b11 b10

b01 b00

)(
1

1

)
.

From definition 4.2 and remark 1, it is known that

aij = |Mx=i,z=j(ϕm−1)| and bij = |Mx=i,w=j(ϕm−1)|.

The situation can be divided into two cases:

Case 1 cm−1 and cm are simply linked. The proof is followed step by step from

the proof of Theorem 4.3 by replacing Sm−1 with Ωm−1.

Case 2 cm−1 and cm are double linked. This means that cm−1 and cm−2 must be

simply linked. Assume w ∈ cm−1 ∩ cm−2 and let cm−1 = {w, y, z}, on that account

cm = {x, y, z}.
Since clause cm is a restriction that must satisfy a model of ϕm−1 which is also a

model of ϕm, it happens that M(ϕm) ⊆M(ϕm−1).

Because the assignments x = 1 ∧ z = 1, x = 1 ∧ z = 0, and x = 0 ∧ z = 1 make

the clause cm valid, the following equalities hold.

|Mx=1,z=1(ϕm)| = a11

|Mx=1,z=0(ϕm)| = a10

|Mx=0,z=1(ϕm)| = a01.
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x

y

z

w

c1

cm

cm−1

cm−2

�
�
�

Figure 4.5: Alternating cycle, case 2 of Theorem 4.4.

It is also unquestionable that

Mx=0,z=0(ϕm) = Mx=0,y=1(ϕm−1)

= Mx=0,z=0(ϕm−2) ∪Mx=0,z=1(ϕm−2).

As a consequence |Mx=0,z=0(ϕm)| = b00 + b01.

Given that cm−1 and cm−2 are simply linked, by virtue of Theorem 4.2, the equality

Ωm−1 = SΩm−2 is true, thereupon a00 = b00 + 2b01.

Under these circumstances,

#sat(ϕm, x) =

(
a11 a10

a01 b00 + b01

)(
1

1

)

=

(
a11 a10

a01 a00 + b01

)(
1

1

)

=

[(
a11 a10

a01 a00

)
−

(
0 0

0 b01

)](
1

1

)
.

Straightforward calculations show that(
0 0

0 b01

)
=

(
0 0

0 1

)(
b11 b10

b01 b00

)(
0 1

0 0

)
= J1Ωm−2J2.
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As a conclusion #sat(ϕ, x) = (Ωm−1 − J1Ωm−2J2)

(
1

1

)
.

Theorem 4.3 is important as it ensures that as long as a formula in CNF allows a

disjoint branches decomposition of its associated hypergraph then there exists an

algorithm that computes the number of models of the formula in polynomial time.

In fact, simple chains, alternating chains, simple cycle, and alternating chains ad-

mit disjoint branches decomposition. Examples of some of them are displayed

below.

v1
v2

v3 v4

v5 v6
v7

e1 e2 e3

(a) Simple chain

λ = {e1, e2}
p

µ = {v1, v2, v3, v5, v6, v7}

λ = {e3}
q

µ = {v3, v4, v5}

(b) (T, µ, λ)

Figure 4.6: A simple chain and its tree decomposition of width 2.

e1

e2 e3

v2
v3

v4 v5

v6

v1

(a) Alternating chain

λ = {e1}
p

µ = {v1, v2, v3}

λ = {e2}
q

µ = {v3, v4, v5}

λ = {e3} r

µ = {v4, v5, v6}

(b) (T, µ, λ)

Figure 4.7: An alternating chain and its tree decomposition of width 1.
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e1

e2

e3

e4

v1 v2
v3 v4

v5v8

v6
v7

(a) Simple Cycle

λ = {e1, e3}
p

µ = {v1, v2, v4, v5, v6, v8}

λ = {e2, e4}
q

µ = {v2, v3, v4, v6, v7, v8}

(b) (T, µ, λ)

Figure 4.8: A simple cycle and its tree decomposition of width 2.



Conclusions

A tractable subclass of the syntactic class #2µ−e3MON is obtained by means of

methods based on matrix counting operators that act on the structures of single

chains, alternating chains, simple cycles and alternating cycles of the hypergraph

associated with the formula. All the cases presented here lead us to treatable algo-

rithms, given that identifying whether a CNF formula belongs to one of the studied

classes can be done in quadratic time. In all the cases studied the calculation of

the number of models is reduced to the multiplication of at most m matrices of

size 2×2, where m is the number of clauses of the formula, thus the multiplication

of matrices can be done in linear time with respect to m. Much remains to be done

in this topic. As a future work, in the direction of the identification of tractable

structures in hypergraphs, new structures can be recognized if the idea of matrix

transfer methods applied to graphs is generalized to hypergraphs.
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