
Benemérita Universidad
Autónoma de Puebla

FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS
LICENCIATURA EN MATEMÁTICAS
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Fernando Maćıas Romero por la oportunidad de trabajar con ellos y mos-
trarme el emocionante mundo de la teoŕıa de continuos y sus hiperespacios.
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Índice alfabético 77
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Introducción

En este trabajo presentamos algunos resultados relacionados con la teoŕıa
de continuos e hiperespacios. La teoŕıa de continuos tiene sus origenes en el
siglo XIX cuando G. Cantor [1845-1918] da por primera ves la definición
orignal de continuo la cual establece que un continuo es un subconjunto per-
fecto, es decir, cerrado y denso en si mismo conexo en un espacio Euclidiano.
Tiempo más tarde los matemáticos Bronislaw Knaster [1893-1980], Kazi-
mierz Kuratowski [1896-1980] y Waclaw Sierpinski [1882-1983] se dedicaron
a cultivar la Teoŕıa de los Continuos y casi al mismo tiempo se empezaron
estudiar también los hiperespacios de continuos. En la actualidad entedemos
que un continuo es un espacio métrico no vaćıo compacto y conexo.

En el caṕıtulo 1, se presentan algunos resultados previos acerca de los
espacios métricos y topológicos, ya que estos servirán para los caṕıtulos si-
guientes. Después introduciremos a los continuos, veremos algunos ejemplos
y algunas propiedades interesantes acerca de ellos. Estudiaremos un poco a
los continuos encadenables. Por último, se tratará a profundidad las descom-
posiciones de un continuo que no son más que una partición de un continuo
X. Primero daremos la definición de espacio de descomposición en general y
veremos cuando un espacio de descomposición de un continuo es continuo.

En el caṕıtulo 2, se centra en estudiar a los hiperespacios de un continuo
X, estos son familias de subconjuntos de X que cumplen alguna propiedad
en particular. Los más estudiados son:

i



ii ÍNDICE GENERAL

2X ={A → X : A es cerrado de X y no vaćıo},

C(X) ={A ↑ 2X : A es conexo},

Cn(X) ={A ↑ 2X : A tiene a lo más n componentes},

Fn(X) ={A → X : A tiene a lo más n puntos},

F (X) =
→⋃

n=1

Fn(X).

Al hiperespacio C(X) se le conoce como el hiperespacio de subcontinuos
de X a Fn(X) como el n-ésimo producto simétrico. Veremos que estos hiper-
espacios se les pueda dotar de una métrica llamada métrica de Hausdor!, se
darán algunos resultados interesantes que cumple esta métrica. Después in-
troduciremos una clase de conjuntos llamados Vietóricos, estos nos ayudarán
a construir una topoloǵıa para el hiperespacio 2X llamada topoloǵıa de Vie-
toris y se verá que la topoloǵıa generada por la métrica de Hausdor! coincide
con la topoloǵıa de Vietoris. Por último, se estudiará la convergencia en el
hiperespacio 2X , se mostrarán algunos reultados interesantes, y veremos que
este hiperespacio es un continuo.

Finalmente, en el caṕıtulo 3 presentamos tres modelos de C(X), para
cuando X es alguno de los siguientes continuos: el intervalo cerrado [0, 1], la
circunferencia y el triodo simple. Básicamente, un modelo geométrico para
un hiperespacio H, (donde H puede ser 2X , C(X), Cn(X) o Fn(X)) de un
continuo X, es un espacio conocido que es homeomorfo a H y cuyos elementos
son puntos en lugar de subconjuntos de X. En [8] se presentan más modelos
geométricos de C(X) y F2(X).



Caṕıtulo 1

Preliminares

En este capitulo escribiremos a manera de repaso algunas definiciones y
propiedades acerca de los espacios métricos y topológicos, los cuales nos serán
muy útiles en caṕıtulos siguientes. Como es usual denotaremos por R, N y
R+

↓{0}, el conjunto de numeros reales, el conjunto de los numeros naturales
y el conjunto de numeros reales positivos unión con el cero respectivamente.

Definición 1.1. Sea X un conjunto no vaćıo. Una métrica en X es una
función d : X ↔X ↗↘ R+

↓ {0} tal que para cualesquiera x, y, z ↑ X :

(i) d(x, y) ≃ 0,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) = 0 si y sólo si x = y,

(iv) d(x, y) ⇐ d(x, z) + d(z, y).

El siguiente teorema enuncia que una función d que cumpla con los incisos
(i), (iii) y (iv) es automáticamente una métrica.

Teorema 1.2. [3, Teorema 2.2] Sea X un conjunto no vaćıo y d : X↔X ↗↘

R+
↓ {0} una función. Entonces d es una métrica para X si y sólo si las

siguientes condiciones se satisfacen

(i) d(x, y) ≃ 0,

(ii) d(x, y) = 0 si y sólo si x = y,

1



2 Preliminares

(iii) d(x, y) ⇐ d(x, z) + d(z, y).

Definición 1.3. Un espacio métrico es una pareja formada por un con-
junto no vaćıo X y una métrica d definida en X.

Ejemplo 1.4. Algunos ejemplos de espacios métricos son:

(i) En R, la función d
1 : R↔ R ↗↘ R+

↓ {0} definida, para cada (x, y) ↑
R↔ R por d

1(x, y) = |x↗ y| es una métrica.

(ii) En general, para cada n ↑ N, la función d
n : Rn

↔ Rn
↗↘ R+

↓ {0},
definida, para cada (x, y) ↑ R↔ R, por

d
n(x, y) =

√√√√
n∑

i=1

(xi ↗ yi)2,

donde x = (x1, x2, ..., xn) y y = (y1, y2, ..., yn), es una métrica para Rn,
conocida como métrica euclidiana.

(iii) Si consideramos T : Rn
↔ Rn

↗↘ R+
↓ {0}, definida por

T (x, y) =
n∑

i=1

|xi ↗ yi|,

es una métrica para Rn, conocida como la métrica del taxista.

(iv) En Rn, la función dmáx = máx{|xi ↗ yi| : xi, yi ↑ R} es una métrica
para Rn y se le llama métrica uniforme.

(v) Si X es un conjunto no vaćıo. Definimos ddis : R ↔ R ↗↘ R+
↓ {0}

como

ddis =

{
0 si x ⇒= y,

1 si x = y.

Aśı, ddis es una métrica para el conjunto X y recibe el nombre de
métrica discreta.

Las demostraciones de los ejemplos mencionados se pueden consultar en
[3].
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Notación 1.5. Si X es un espacio métrico con métrica d lo denotamos por
(X, d).

Definición 1.6. Sean un espacio métrico (X, d) y x ↑ X, ω > 0 . La bola

abierta centrada en x y de radio ω es el conjunto

B(x, ω) = {y ↑ X : d(x, y) < ω}.

Definición 1.7. La distancia de un punto x de un espacio métrico (X, d)
a un subconjunto A de X, es

d(x,A) = ı́nf{d(x, a) : a ↑ A}.

Definición 1.8. La distancia entre dos subconjuntos A y B de un
espacio métrico (X, d) con métrica d, está dada por

d(A,B) = ı́nf{d(a, b) : a ↑ A y b ↑ B}.

Definición 1.9. El diámetro de un subconjunto A de un espacio métrico
(X, d) es

diám(A) = sup{d(a, b) : a, b ↑ A}.

Véase figura 1.1.

p

q

A

diám(A)

Figura 1.1: Diámetro de un conjunto.

Teorema 1.10. [3, Lema 5.8] Sean (X, d) un espacio métrico y a ↑ X. La
función f : X ↘ R+

↓ {0} definida para cada x ↑ X, por f(x) = d(x, a), es
continua en X.
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Teorema 1.11. [3, Lema 5.9] Sea (X, d) un espacio métrico y A → X. La
función g : X ↗↘ R+

↓ {0} definida, para todo x ↑ X, por g(x) = d(x,A)
es continua.

Proposición 1.12. Si (X, d) es un espacio métrico, A es un subconjunto
compacto de X, entonces se cumple lo siguiente:

(i) Si x ↑ X, entonces existe a ↑ A tal que d(x,A) = d(x, a).

(ii) Si B es un subconjunto compacto de X, entonces existen a ↑ A y b ↑ B

tales que d(A,B) = d(a, b).

Demostración. (i) Sea f : A → X ↗↘ R+
↓{0} definida, para cada x0 ↑ A,

por f(x0) = d(x, x0). Por el teorema 1.10, tenemos que f es continua.
Como A es compacto se sigue que f es acotada, aśı existe el ı́nfimo de
f(A), es decir, existe a ↑ A tal que f(a) ⇐ f(x0), para cada x0 ↑ A.
Luego, de la definición de d(x,A) se sigue que d(x,A) = d(x, a).

(ii) Sea g : A ↗↘ R+
↓ {0} definida, para cada x0 ↑ A, por g(x0) =

d(x0, B). Por el teorema 1.11 tenemos que g es continua. Como A es
compacto se sigue que g es acotada y por tanto existe el ı́nfimo de g(A),
es decir, existe a ↑ A tal que g(a) ⇐ g(x0). Aśı que, d(a,B) ⇐ d(x0, B).
Además, como B es compacto y por el inciso (i), existe b ↑ B tal que
d(a,B) = d(a, b), por lo que d(A,B) = d(a, b).

↭

Teorema 1.13. [3, Lema 5.26] Sean (X, d) un espacio métrico, A un sub-
conjunto compacto de X y B un subconjunto cerrado y no vaćıo de X. Si
A ⇑ B ⇒= ⇓, entonces d(A,B) > 0.

Teorema 1.14. [3, Corolario 4.13] Si A es un subconjunto de un espacio
métrico X con x0 ↑ A, x0 ↑ A si y sólo si existe una sucesión {xi}i↑N en A

tal que ĺım
i↓→

xi = x.

Teorema 1.15. [3, Teorema 4.16] Si {xn}
→
n=1 converge a x0 en un espacio

métrico X, entonces toda subsucesión de {xn}
→
n=1 converge a x0.

Teorema 1.16. [3, Teorema 3.38] Sea n ↑ N y K → Rn. Entonces K es
compacto si y sólo si K es cerrado y acotado en Rn.
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Definición 1.17. Sean (X, dX) y (Y, dY ) espacios métricos y f : X ↗↘ Y

una función biyectiva. Decimos que es una isometŕıa si para cualesquiera
x, y ↑ X, dX(x, y) = dY (f(x), f(y)).

Definición 1.18. Sea X un conjunto no vaćıo. Si d y d̂ son dos métricas
para X. Decimos que d y d̂ son métricas equivalentes si y sólo si para
cada x ↑ X y para todo r > 0, existen números ω1 > 0 y ω2 > 0 tales que
Bd(x, ω1) → B

d̂
(x, r) y B

d̂
(x, ω2) → Bd(x, r).

Definición 1.19. Sean X y Y dos espacios métricos. Si h : X ↗↘ Y es una
función biyectiva y continua y h

↔1 : Y ↗↘ X es continua, decimos que h es
un homeomorfismo.

Definición 1.20. Sea X un conjunto no vaćıo. Una topoloǵıa sobre el con-
junto X es una familia ε de subconjuntos de X tal que

(i) ⇓, X ↑ ε .

(ii) Si U es una familia arbitraria de subconjuntos de ε , entonces
⋃

U ↑ ε .

(iii) Si U y V son elementos de ε , entonces U ⇑ V ↑ ε .

Al par (X, ε) se le llama espacio topológico.

Definición 1.21. Sea X un espacio topológico y x ↑ X. Un subconjunto V

de X es una vecindad de x si contiene un abierto U de X que contiene a
x.

Definición 1.22. Sea (X, ε) un espacio topológico. Una base para la topo-
loǵıa ε es una familia B → ε tal que para cada U ↑ ε , existe C → B tal que
U =

⋃
C .

Definición 1.23. Sea (X, ε) un espacio topológico. Una subbase para la
topoloǵıa es una familia J → ε tal que la familia de todas las intersecciones
finitas de elementos de J forma una base para ε .

Teorema 1.24. [2, proposicón 2.42.] Sea X ⇒= ⇓. Una familia B de subcon-
juntos de X es una base para alguna topoloǵıa ε si:

(i) ⇓ ↑ B.
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(ii) Siempre que B0,B1 ↑ B y x ↑ B0 ⇑B1, existe B ↑ B tal que x ↑ B →

B0 ⇑ B1.

(iii) X =
⋃

B.

Definición 1.25. Un espacio topológico es conexo si no puede expresar-
se como la unión de dos subconjuntos cerrados, ajenos y no vaćıos de X, o
equivalentemente, si no puede expresarse como la unión de dos subconjun-
tos abiertos, ajenos y no vaćıos de X. Si X no es conexo, decimos que es
disconexo.

Definición 1.26. Una pareja (U, V ) de subconjuntos de un espacio topológico
X es una separación de X si U y V son abiertos de X, X = U ↓ V ,
U ⇑ V = ⇓ y U ⇒= ⇓ ⇒= V .

Observación 1.27. Algunas observaciones son

(i) Un espacio topológico X es conexo si y sólo si no existe una separación
de X.

(ii) Si X es conexo y X = U ↓ V , donde U y V son abiertos de X y no
vaćıos, entonces U ⇑ V ⇒= ⇓.

(iii) Si X es conexo y X = U ↓ V , donde U y V son abiertos y ajenos de
X, entonces U = ⇓ o V = ⇓. De hecho U ⇑ V = ⇓, se tiene que (U = ⇓

y V = X) o (U = X y V = ⇓).

Ejemplo 1.28.

(i) Es claro que cualquier conjunto con la topoloǵıa indiscreta es un espacio
conexo, pues dichos espacios no contienen dos subconjuntos abiertos no
vacios diferentes.

(ii) Si X es un conjunto con la topológia discreta y x ↑ X, entonces los
conjuntos {x} y X \ {x} son abiertos de X, ajenos, no vaćıos y {x} ↓

(X \ {x}) = X. Luego, X es disconexo.

(iii) Cualquier conjunto infinito X con la topoloǵıa cofinita es conexo pues
cualesquiera dos subconjuntos abiertos de X en él tienen intersección
no vaćıa.
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Proposición 1.29. [1, proposicón 8.1.4] Los subconjuntos conexos de R son
exactamente el vaćıo, los subconjuntos unipuntuales y los intervalos.

Definición 1.30. Una familia {Ai : i ↑ I} de subconjuntos de un conjunto
X tiene la propiedad de intersección finita si, dado J → I finito, se cumple
que

⋂
i↑J Ai ⇒= ⇓.

Teorema 1.31. [1, Proposición 8.1.11] Sea {Aj : j ↑ J} es una familia de
subconjuntos conexos de un espacio topológico X. Si

⋂
j↑J Aj ⇒= ⇓, entonces⋃

j↑J Aj es conexo.

Definición 1.32. Un espacio topológico X es conexo por trayectorias si
dados dos puntos x, y ↑ X, existe una función continua ϑ : [0, 1] ↗↘ X tal
que ϑ(0) = x y ϑ(1) = y.

Teorema 1.33. [1, Teorema 8.2.3] Cualquier espacio topológico X conexo
por trayectorias es conexo.

Recordemos los axiomas de separación y algunos resultados de ellos.

Definición 1.34. Sea X un espacio topológico.

(i) Decimos que X es un espacio topológico T0, si dados cualesquiera
dos puntos de X, existe un subconjunto abierto de X que contiene solo
uno de ellos.

(ii) Decimos que X es un espacio topológico es T1, si dados cualesquiera
dos puntos de X, digamos x, y ↑ X existen subconjuntos abiertos U y
V de X, tales que x ↑ U , y /↑ U , x /↑ V y y ↑ V .

(iii) Decimos que X es un espacio topológico T2 o espacio Hausdor!

si dados dos puntos x, y ↑ X existen subconjuntos abiertos U y V de
X ajenos, tales que x ↑ U y y ↑ V .

(iv) Decimos que X es un espacio topológico T3 o espacio regular si
dados un subconjunto cerrado F de X y x ↑ X\F , existen subconjuntos
abiertos U y V de X ajenos, tales que x ↑ U y F → V ; además de ser
un espacio T1.

Proposición 1.35. [1, Ejemplo 5.1.15] Todo espacio métrico X es un espa-
cio Hausdor!.
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Teorema 1.36. [1, Teorema 5.1.6] Un espacio topológico X es un espacio
T1 si y sólo si para todo x ↑ X, el conjunto {x} es un subconjunto cerrado
de X.

Definición 1.37. Sea X un espacio topológico T1. Decimos que X es un
espacio topológico normal o T4, si dados dos subconjuntos cerrados F1

y F2 de X, existen dos subconjuntos abiertos U y V de X, ajenos, tales que
F1 → U y F2 → V .

Definición 1.38. Sea X un espacio topológico.

(i) Una colección U de subconjuntos de X es una cubierta de X si X =
↓U . Si además cada uno de los elementos de U es un subconjunto
abierto de X, entonces a U le llamaremos cubierta abierta de X.
Por otro lado, si U es una cubierta de X y V es una subcolección de
U , diremos que V es una subcubierta de U si ↓V = U .

(ii) Decimos que X es un espacio topológico compacto si toda cubierta
abierta de X tiene una subcubierta finita.

Proposición 1.39. [1, proposición 7.1.6] Si X es un espacio topológico com-
pacto, Y es un espacio topológico, y existe una función continua f : X ↗↘ Y

tal que f [X] = Y , entonces Y es compacto.

Proposición 1.40. [1, proposición 7.1.4] Sean X un espacio topológico com-
pacto y F un subespacio cerrado de X. Entonces F es compacto.

Proposición 1.41. [1, corolario 7.1.9] Sean X un espacio topológico com-
pacto, Y un espacio Hausdor! y f : X ↗↘ Y una función continua, entonces
f es una función cerrada.

Proposición 1.42. [1, Teorema 7.1.7] Sean X un espacio topológico Haus-
dor!, y K1 y K2 subespacios compactos de X. Si K1 ⇑ K2 = ⇓, entonces
existen subconjuntos abiertos ajenos U y V de X tales que K1 → U y K2 → V .

Definición 1.43. Un espacio topológico (X, ε) se dice que es metrizable

si existe una métrica d sobre X que es compatible con la topoloǵıa de X, es
decir, que la topoloǵıa εd coincide con la topoloǵıa original de X.

Teorema 1.44. [1, Teorema 6.5.1] Todo espacio topológico Hausdor! normal
y segundo numerable es metrizable.
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Para finalizar esta primera parte enunciaremos los siguientes resultados.

Teorema 1.45. [11, Teorema 2.6] Si C es un conjunto numerable y U es la
clase de los subconjuntos finitos de C, es decir, si

U = {L → C : L es un subconjunto finito de C},

entonces U es numerable.

Teorema 1.46. [9, Teorema 7.1] Sea B un conjunto no vaćıo. Entonces las
siguientes afirmaciones son equivalentes:

(i) B es numerable.

(ii) Existe una función suprayectiva f : N ↗↘ B.

(iii) Existe una función inyectiva f : B ↗↘ N.

1.1. Continuos

Definición 1.47. Un continuo es un espacio métrico compacto, conexo y
con más de un punto. Dado un subconjunto Y de un continuo X, diremos
que Y es un subcontinuo de X si Y es un continuo como subespacio de X

o bien, si Y tiene exactamente un punto.

La propiedad de ser un continuo es una propiedad topológica, es decir, si
X es un continuo y Y es un espacio métrico homeomorfo a X, entonces Y

también es un continuo. Veamos algunos ejemplos de continuos:

Ejemplo 1.48. Si consideremos [0, 1] con la métrica usual, se cumple lo
siguiente :

(i) [0, 1] es conexo por ser un intervalo, véase 1.29.

(ii) [0, 1] es compacto ya que es cerrado y acotado, véase 1.16.

Aśı, [0, 1] es un continuo.

Definición 1.49. Un arco es un espacio topológico homeomorfo al intervalo
cerrado [0, 1]. Si ϖ : [0, 1] ↗↘ A un homeomorfismo, diremos que ϖ(0) y ϖ(1)
son los puntos extremos del arco A.
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En la figura 1.2 se representan imagenes de arcos

Figura 1.2: Ejemplos de arcos

Teorema 1.50. Sea un espacio métrico X. Si A es un arco en X, entonces
A es un continuo.

Demostración. Sea A un arco en X. Existe un homeomorfismo h : [0, 1] ↗↘
A. Por el ejemplo 1.48, sabemos que el intervalo cerrado [0, 1] es compacto
y conexo. Ahora, como la compacidad y la conexidad se preservan bajo fun-
ciones continuas, entonces A es compacto y conexo. Por lo tanto, A es un
continuo. ↭

Ejemplo 1.51. Sea S
1 = {(x, y) ↑ R2 : x2 + y

2 = 1} la circunferencia

unitaria con la métrica euclidea de R2, entonces se cumple que

(i) S
1 es conexo pues S1 es conexo por trayectorias y por el teorema 1.33,

se tiene que S
1 es conexo.

(ii) S
1 es compacto pues es un conjunto cerrado y acotado.

Definición 1.52. Una curva cerrada simple es un espacio topológico
homeomorfo a la circunferencia unitaria S

1.

En la figura 1.3 se muestran algunas curvas cerradas simples.
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Figura 1.3: Ejemplos de curvas cerradas simples.

Teorema 1.53. Sea X un espacio métrico. Si C es una curva cerrada simple
en X, entonces C es un continuo.

Demostración. Sea C un curva cerrada simple. Entonces existe un homeo-
morfismo h : S1

↗↘ C. Por el ejemplo 1.51, sabemos que la circunferencia
unitaria S

1 es conexo y compacto. Ahora, como la compacidad y conexidad
se preservan bajo funciones continuas, tenemos que C es compacto y conexo,
Por lo tanto, C es un continuo. ↭

Definición 1.54. Sea n ↑ N. Una n-celda es un espacio topológico homeo-
morfo a la bola cerrada n-dimensional Bn en Rn, donde

B
n = {(x1, ..., xn) ↑ Rn :

√
x
2
1 + ...+ x2

n
⇐ 1}.

Definición 1.55. Sea n ↑ N. Una n-esfera es cualquier espacio homeo-
morfo a la esfera n-dimensional Sn en Rn+1, donde

S
n = {(x1, ..., xn+1) ↑ Rn+1 :

√
x
2
1 + ...+ x

2
n+1 = 1}.

Definición 1.56. Un triodo simple T es la unión de tres arcos que úni-
camente se intersectan en un punto v. El punto v es llamado vértice de T .
Véase figura 1.4.
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Figura 1.4: Triodo simple.

Teorema 1.57. Sea X es un espacio métrico. Si T es un triodo simple en
X, entonces T es un continuo.

Demostración. Sea T = A1↓A2↓A3 un triodo simple en X con vértice v, es
decir, A1, A2 y A3 son arcos tales que la intersección dos a dos es {v}. Como
los arcos son continuos, tenemos que A1, A2 y A3 son compactos y conexos.
Luego, A1↓A2↓A3 es conexo puesto que A1⇑A2⇑A3 = {v}. Más aún, dado
que la unión finita de compactos es un compacto, tenemos que A1 ↓A2 ↓A3

es compacto. Por lo tanto, T es un continuo. ↭
Una propiedad que comparten el arco y la curva cerrada simple, y que no

tiene el triodo simple, es que todo subcontinuo propio con más de un punto
es un arco, lo cual se demuestra a continuación.

Teorema 1.58. Sea A un arco. Si B es un subcontinuo propio de A con más
de un punto, entonces B es un arco.

Demostración. Sea B un subcontinuo propio de A con más de un punto.
Como A es un arco, entonces existe un homeomorfismo ϖ : A ↗↘ [0, 1],
dado que B es un subcontinuo de A, entonces B es conexo. Aśı ϖ(B) es
un intervalo, el cual es conexo por la proposición 1.29. Además como B es
compacto se sigue que ϖ(B) es un intervalo cerrado. De esta forma tenemos
que ϖ(B) es homeomorfo al intervalo cerrado [0, 1]. Luego, por transitividad,
tenemos que B es un arco. ↭

Teorema 1.59. Sea C una curva cerrada simple. Si S es un subcontinuo
propio de C con más de un punto, entonces S es un arco.

Demostración. Sean S un subcontinuo propio de C con más de un punto y
p ↑ C \ S, entonces existe ϱ : C \ {p} ↗↘ (0, 1) homeomorfismo. Como S es
conexo, tenemos que ϱ(S) es un intervalo. Más aún, al ser S compacto, tene-
mos que ϱ(S) es un intervalo cerrado. Aśı, ϱ(S) es homeomorfo al intervalo
cerrado [0, 1] y por transitividad S es un arco. ↭
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Ejemplo 1.60. Si W = {(x, sen 1
x
) ↑ R2 : 0 < x ⇐ 1}, entonces W en R2 es

un continuo llamdo curva senoidal del topólogo. Véase figura 1.5.

Figura 1.5

Ejemplo 1.61. El continuo ocho, es la unión de dos circunferencias uni-
das por un punto, es decir, O = S

1
↓ {(x, y) ↑ R2 : (x↗ 2)2+ y

2 = 1}. Como
se muestra en la figura 1.6.

Figura 1.6: Continuo del ocho

Definición 1.62. Para n ≃ 1, un n-odo simple es un continuo X que
es unión de n arcos J1, ..., Jn que únicamente se intersectan en un punto v

llamado vértice.

Se pueden construir continuos uniendo un número finito de continuos de
tal forma que se vallan intersectando cada uno de ellos para que el resultado
sea conexo. La figura resultante de estos continuos son llamadas gráficas
finitas.

Definición 1.63. Un continuo X es una gráfica finita si es la unión de
una familia finita de arcos tales que cada par de ellos o son ajenos o se
intersectan en uno o dos de sus puntos extremos.

Algunas gráficas finitas significativas son: el intervalo cerrado [0, 1], la
circunferencia unitaria S

1 y los n-odos simples. Una vez dicho lo anterior
pasemos a ver otros ejemplos interesantes de continuos.
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Ejemplo 1.64. El continuo de la paleta, es la unión de la circunferencia
S
1, del ejemplo 1.51, con el conjunto [1, 2]↔ {0}, es decir, P = S

1
↓ ([1, 2]↔

{0}) es un continuo. Véase la figura 1.7.

Figura 1.7: Continuo de la paleta

Ejemplo 1.65. El ćırculo de Varsovia. Tomemos el continuo de la curva
senoidal del topólogo W y sea T un arco del punto p = (0, 1) al punto q =
(2ς,1) de forma que W ⇑ T = {p, q}. Entonces el conjunto ” = W ↓ T es
llamado el continuo del ćırculo de Varsovia. Véase la figura 1.8.

Figura 1.8: Continuo del ćırculo de Varsovia.

Ejemplo 1.66. Sea X un 5-odo simple este continuo esta representado en
la siguiente figura 1.9.
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Figura 1.9: El continuo 5-odo simple.

En la figura 1.9 los puntos terminales de X son e1, e2, e3, e4 y e5 y v es
el vértice en el origen en R2.

1.2. Intersecciones anidadas

Una de las técnicas más importantes para obtener ejemplos interesantes
de continuos es el uso de las intersecciones anidadas. De hecho, se puede decir
que dicha técnica es fundamental para la teoŕıa de continuos, pues, no solo se
utiliza para construir ejemplos, sino que es la idea clave para la demostración
de muchos teoremas.

Teorema 1.67. Sean X un espacio métrico compacto y {Xn}
→
n=1 una suce-

sión de subconjuntos cerrados de X tal que para cada n ↑ N; Xn+1 → Xn.
Si U es un subconjunto abierto de X tal que

⋂→
n=1 Xn → U , entonces existe

N ↑ N tal que XN → U .

Demostración. Dado que U es abierto de X, tenemos que X \ U es cerrado
de X y por tanto compacto. Además, sabemos que

⋂→
n=1 Xn → U . Tomando

complementos tenemos queX\U → X\(
⋂→

n=1 Xn). Por las leyes de D’Morgan
llegamos a que X \ U →

⋃→
n=1(X \Xn). Ahora note, que {X \Xn : n ↑ N}

es una cubierta abierta de X \ U y dado que X \ U es compacto existe
una subcubierta finita tal que X \ U →

⋃
k

j=1(X \Xnj) con n1, · · · , nk ↑ N.
Aśı, tenemos que

⋂
k

j=1 Xnj → U . Sea N = máx{n1, · · · , nk}. Tenemos que

XN =
⋂

k

j=1 Xnj y por lo tanto, XN → U . ↭
El siguiente ejemplo que proporcionamos nos muestra que la intersección

anidada de conjuntos conexos no es un conexo.
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Ejemplo 1.68. Para cada n ↑ N, sea

Xn = [↗1, 1]↔

[
↗
1

n
.
1

n

]
\

{(
↗
1

2
,
1

2

)
↔ {0}


.

Observemos que cada Xn es un subconjunto conexo de R2, pero

→

i=1

Xn =

([
↗1,↗

1

2

]
↔ {0}

)
↓

([
1

2
, 1

]
↔ {0}

)
,

el cual no es conexo, veáse la figura 1.10.

Figura 1.10

El resultado que sigue muestra una forma de como construir un continuo,
a partir de una familia anidada de subcontinuos.

Teorema 1.69. Sean X un espacio métrico compacto y {Xn : n ↑ N} una
sucesión de subcontinuos de X. Si Xn+1 → Xn, para cada n ↑ N, entonces⋂→

i=1 Xn es un subcontinuo de X.

Demostración. Primero veamos que
⋂→

n=1 Xn es no vaćıo. Supongamos lo
contrario, es decir que

⋂→
n=1 Xn = ⇓. Entonces X = X \

⋂→
n=1 Xn. Luego

por las leyes de D’Morgan X =
⋃→

n=1(X \ Xn). Ahora, note que para cada
n ↑ N, tenemos que Xn es un conjunto cerrado de X, pues, cada Xn es un
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subcontinuo, que en particular es compacto y por tanto cerrado de X. Aho-
ra, sea {X \Xn : n ↑ N} una cubierta abierta de X. Como X es compacto,
existe una subcubierta finita de X, digamos {Xj : j ↑ {1, · · · , k}} tal que⋃

k

j=1(X \ Xj) = X. Sea m = máx{1, · · · , k}. Luego X = X \ Xm, por lo
que Xm es vaćıo, lo cual es una contradicción . Por lo tanto, ,

⋂→
n=1 Xn ⇒= ⇓.

Ahora, observe que
⋂→

n=1 Xn es un conjunto cerrado dentro del compacto
X. Por lo tanto, se tiene que

⋂→
n=1 Xn es compacto. Por último veamos que⋂→

n=1 Xn es conexo. Supongamos lo contrario, es decir, que
⋂→

n=1 Xn es dis-
conexo. Entonces existen dos subconjuntos cerrados y ajenos de X tales que⋂→

n=1 Xn = A ↓ B. Ahora, como X es un espacio T4 podemos encontrar
U y V subconjuntos abiertos de X tales que A → U y B → V . Luego,⋂→

n=1 Xn → U↓B. Aśı, por el teorema 1.67 existe N ↑ N tal que XN → A↓B.
Como XN es conexo tenemos que XN → U o XN → V . Supongamos que
XN → U . Puesto que

⋂→
n=1 Xn → XN → U y

⋂→
n=1 Xn = A ↓ B, se sigue que

B → U , aśı B → U ⇑ V lo que es absurdo. Por lo tanto,
⋂→

n=1 Xn es conexo y
concluimos que

⋂→
n=1 Xn es un continuo. ↭

Ejemplo 1.70. La curva universal de Sierpinski. Este continuo famoso
se construye empezando por un cuadrado en el plano R2, es decir, C = [0, 1]2

dicho cuadrado lo dividimos en 9 cuadrados de lado 1
3 y le quitamos el interior

del cuadrado central. De los 8 cuadrados restantes le hacemos lo mismo. Esto
es, a cada uno lo dividimos en 9 partes iguales de lado 1

27 y le quitamos el
interior del central. A cada uno de estos cuadrados le hacemos lo mismo y
continuamos este proceso una infinidad de veces. El resultado de los cuatro
primeros pasos se muestra en la figura 1.11.

Figura 1.11

Ejemplo 1.71. La curva universal de Menger. Consideremos primero
el cubo en R3, Cub = [0, 1]3. Ahora, si dividimos cada una de las caras de Cub
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en nueve cuadrados congruentes y si además hacemos un agujero a través del
interior de cada cuadrado central el resultado nos da un continuo, llamemos-
le M1. Si continuamos de esta manera con M1 obtenemos ahora cuarenta y
ocho cuadrados y nueve cuadrados congruentes y de igual maneral si se hace
un agujero a través del interior de los cuadrados centrales, aśı obtenemos
otro nuevo continuo M2. Siguiendo esté algoritmo podemos obtener Mn con-
tinuos. La curva universal de Menger es por definición M =

⋂→
n=1 Mn. Por

el teorema 1.69, tenemos que M es un continuo. Véase figura 1.12.

Figura 1.12

Observación 1.72. El término universal se refiere en este caso, al hecho de
que M contiene una copia topológica de cualquier espacio métrico separable
de dimensión uno.

Teorema 1.73. Sea un continuo X y A un subcontinuo de X tal que X \A

no es conexo. Si U y V son subconjuntos abiertos y ajenos de X tales que
X \ A = U ↓ V , entonces A ↓ U y A ↓ V son subcontinuos de X.

Demostración. Sea X \A = U ↓ V , note que X \ U = A ↓ V es un conjunto
cerrado de X. Como X es compacto, tenemos que A ↓ V es compacto.
Ahora supongamos que A↓V no es conexo, entonces existen H y K subcon-
juntos cerrados de X, ajenos y no vaćıos tales que

A ↓ U = H ↓K.

Como A es conexo se sigue que A = (A ⇑H) ↓ (A ⇑K) y estos dos últimos
conjuntos son cerrados de X y ajenos. Luego, uno de ellos tiene que ser vaćıo.
Entonces podemos suponer A = A ⇑H, esto implica que A → H. Dado que
H y K son disjuntos, también se cumple que K → V . Observé que K⇑V ⇒= ⇓
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pues de lo contrario existiŕıa un elemento a ↑ K ⇑ V , lo cual implica que
a ↑ K y a ↑ V . Como a ↑ V entonces dado cualquier subconjunto abierto L

de X tal que a ↑ L se tiene que L ⇑ V = ⇓, pero a ↑ K → V . Aśı tenemos
que a ↑ V lo que es absurdo. Por tanto, K ⇑ V ⇒= ⇓.
Dicho lo anterior se sigue que X = K ↓ (H ↓ V ) donde K y H ↓ V son
subconjuntos cerrados de X, no vaćıos y ajenos de X. Pero esto es una
contradicción pues estamos diciendo que X no es conexo. Por lo tanto, A↓V

es conexo. Concluimos que A ↓ V es un subcontinuo de X.
Para el caso de A↓U se sigue del mismo razonamiento del caso anterior.

Aśı, el teorema queda demostrado. ↭

1.3. Continuos encadenables

A continuación estudiaremos a los continuos encadenables.

Definición 1.74. Una familia {U1, · · · , Un} de subconjuntos de un espacio
métrico X es una cadena simple en X si se tiene que Uj ⇑Uk ⇒= ⇓ si y sólo
si |j ↗ k| ⇐ 1. A cada Uk se le llama eslabón de la cadena simple. Se dice
que una cadena simple C = {U1, · · ·Un} conecta a los puntos a y b en X si
a ↑ U1 y b ↑ Un.

Teorema 1.75. Sea X un espacio métrico conexo. Si U = {Ui}i↑I es una
cubierta abierta de X y a, b ↑ X, entonces existe una cadena simple que
conecta al elemento a con b cuyos eslabones son miembros de U .

Demostración. Sea B = {x ↑ X : existe una cadena simple C → U que
conecta a a con x}. La idea de la demostración es probar que el conjunto B
es un subconjunto abierto y cerrado de X, y dado que X es conexo, tiene
que suceder que X sea igual a B . Nótese que B no es vaćıo porque a ↑ B .
Dicho lo anterior veamos que B es un subconjunto abierto de X. Para ello
sea x ↑ B . Luego, existe una cadena simple C = {U1, · · · , Un} → U de tal
forma que a ↑ U1 y x ↑ Un. Como cada Un es un subconjunto abierto de X

se sigue que Un → B , y de aqúı obtenemos que B es un subconjunto abierto
de X.
Por último veamos que B es un subconjunto cerrado de X. Para ello proba-
remos que B = B . Sea x ↑ B , donde B = B ↓ frX(B), si x ↑ B no hay nada
que probar. Por otro lado, supongamos que x ↑ frX(B). Como U es una
cubierta abierta de X, existe U ↑ U tal que x ↑ U . Como x ↑ frX(B) se
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sigue que U ⇑B ⇒= ⇓. Aśı, existe p ↑ U ⇑B y por lo tanto, existe una cadena
simple {V1 · · ·Vm} → U que une a a con p. Tomemos j ↑ {1, · · · ,m} tal que
U ⇑ Vj ⇒= ⇓, tenemos que {V1, · · · , Vm, U} es una cadena simple que conecta
a a con x, y por lo tanto, x ↑ B . ↭

Definición 1.76. Una cadena simple C de conjuntos abiertos en un espacio
métrico X es llamada ω-cadena si el diámetro de cada eslabón de C es
menor que ω.

Definición 1.77. Un espacio métrico es encadenable si existe una ω-cadena
que cubre a X. Si a, b ↑ X, entonces X es encadenable de a a b si para cada
ω > 0, existe una ω-cadena C = {C1, ..., Cn} que cubre a X tal que a ↑ C1 y
b ↑ Cn.

1.4. Descomposiciones de continuos

En esta sección vemos otra forma de construir continuos a partir de los ya
conocidos, este se logra por el método de las descomposiciones semicontinuas
superiores. Describimos qué es un espacio de descomposición, damos algunos
resultados interesantes y vemos cuando una descomposición es un continuo.

Sea S un espacio topológico no vaćıo. Una familia D de conjuntos no
vaćıos y ajenos dos a dos de S tales que

⋃
D = S, se llama partición de

S. Si los miembros de la partición son todos subconjuntos cerrados de S, se
dice que la partición es cerrada.

Teorema 1.78. Sean (S, ε) un espacio topológico no vaćıo y D una partición
de S. La colección

T (D) =

{
U → D :

⋃

U↑U

U ↑ ε


,

una topoloǵıa para D .

Demostración. Note que D ↑ T (D) porque D → D y es tal que
⋃

D = S ↑ ε .
Como ⇓ → D y

⋃
⇓ = ⇓ ↑ ε, se tiene que ⇓ ↑ T (D).

Ahora, tomemos a U ,V ↑ T (D). Luego, U ,V → D y cumplen que
⋃

U↑U U ↑



1.4 Descomposiciones de continuos 21

ε y
⋃

V ↑V V ↑ ε . Luego,
⋃

U↑U U

⇑
⋃

V ↑V V

↑ ε . Ahora note que


⋃

U↑U

U


⇑


⋃

V ↑V

V


=

⋃

C↑U ↗V

C,

aśı concluimos que
⋃

C↑U ↗V C es un abierto de S. Por lo tanto, U ⇑ V ↑

T (D).

Por último sea {Ui : i ↑ I} una familia de subconjuntos de T (D). Veamos
que

⋃
i↑I Ui ↑ T (D). Para cada i ↑ I, tenemos que

⋃
A↑Ui

A es un abierto de
S. Luego,

⋃
i↑I

⋃
A↑Ui

A

es un abierto de S. Por lo tanto,

⋃
i↑I Ui ↑ T (D).

↭

Definición 1.79. Sea S un espacio topológico y D una partición de S. El
espacio topológico (D , T (D)) es llamado espacio de descomposición de
S y la topoloǵıa T (D) es llamada la topoloǵıa de descomposición.

Intuitivamente una descomposición es el espacio que se obtiene del espa-
cio original indentificando todos los puntos de cada miembro de una partición
determinada. Por esta razón, las descomposiciones frecuentemente se les lla-
ma espacios de identificación o también se les suele llamar espacios cocientes.
Un ejemplo de espacio de descomposición es el siguiente:

Ejemplo 1.80. [9, Sección 22, Ejemplo 4, página 139] Sean X = {(x, y) ↑
R2 : x2+y

2
⇐ 1} y D = {{(x, y)} : x2+y

2
< 1}↓{(x, y) ↑ R2 : x2+y

2 = 1}.
El espacio (D , T (D)) es un espacio descomposición que es homeomorfo a la
esfera.

Las descomposiciones son una fuente importante de ejemplos, contra-
ejemplos en la teoŕıa de continuos. Cabe mencionar que un espacio de des-
composición de un continuo X puede no ser un continuo incluso cuando los
miembros de la partición sean subconjuntos cerrados de X. Como veremos
en el ejemplo 1.92.

Teorema 1.81. [1, Teorema 4.4.1, página 116] Sea (S, ε) un espacio to-
pológico, Y un conjunto no vaćıo y g : S ↗↘ Y una función suprayectiva,
entonces

εg = {E → Y : g
↔1[E] ↑ ε}

es una topoloǵıa para Y .



22 Preliminares

Notemos que la función g es continua con la topoloǵıa εg. Además, si ε
es otra topoloǵıa para Y con la que g resulta ser continua, entonces ε → εg.

Definición 1.82. Un espacio topológico Y es un espacio cociente de un
espacio topológico S si existe una función suprayectiva g : S ↗↘ Y tal que εg

coincide con la topoloǵıa de Y . En tal caso, la función g se llama función

cociente.

Definición 1.83. Sea (S, ε) un espacio topológico, Y un conjunto no vaćıo y
g : S ↗↘ Y una función suprayectiva. La topoloǵıa εg = {E → Y : g

↔1[E] ↑
ε} es conocida como la topoloǵıa cociente sobre Y inducida por la función
Y .

Teorema 1.84. [1, Proposición 4.5.3] Sean S y Y dos espacios topológicos
y sea g : S ↗↘ Y una función continua y suprayectiva. Si g es una función
abierta o cerrada, entonces la topoloǵıa de Y coincide con la topoloǵıa cociente
en Y definida por g.

Ejemplo 1.85. Como toda función continua de un espacio compacto a un
espacio de Hausdor! es cerrada, por el teorema anterior, toda función supra-
yectiva de un espacio de Hausdor! es una función cociente. En particular,
toda función continua y suprayectiva entre continuos es una función cociente.

Definición 1.86. Sean S un espacio topológico y D una partición de S.
La función natural de S sobre D es la función ς : S ↗↘ D dada por
ς(x) = D si y sólo si x ↑ D.

Observación 1.87. La función natural ς es una función continua. Dado
U → D , tenemos que

ς
↔1[U ] = {x ↑ S : existe D ↑ U tal que ς(x) = D}

= {x ↑ S : existe D ↑ U tal que x ↑ D}

=
⋃

D↑U

D.

Si U es un abierto de D , tenemos que
⋃

D↑U D es abierto de S. Luego,
ς
↔1[U ] es abierto de S. Por lo tanto, la función natural es continua.

Si tenemos un espacio de descomposición de un espacio topológico S,
la topoloǵıa T (D) es la topoloǵıa más grande tal que la función natural es
continua. Más aún, ς es una función cociente como lo establece el siguiente
resultado.
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Teorema 1.88. Todo espacio de descomposición de un espacio topológico S

es un espacio cociente de S.

Demostración. Sea (D , T (D)) un espacio de descomposición de un espacio
topológico S. Veamos que la función ς : S ↗↘ D satisface que T (D) = εg.
Si A ↑ T (D), entonces A → D y es tal que

⋃
A↑A A es un abierto de S,

luego ς
↔1[A ] =

⋃
A↑A A es un abierto de S, se sigue que A ↑ εg. Ahora, sea

U ↑ εg. Tenenemos que U → D y es tal que ς
↔1[U ] es un abierto de S y

dado que ς
↔1[U ] =

⋃
U↑U U se sigue que

⋃
U↑U U es un abierto de S, por

tanto U ↑ T (D). Concluimos que T (D) = εg y aśı (D , T (D)) es un espacio
cociente. ↭

El siguiente resultado muestra cuando un espacio topológico es metriza-
ble.

Teorema 1.89. Sean X un espacio métrico compacto y Y un espacio to-
pológico Hausdor!. Si f : X ↗↘ Y es una función continua y suprayectiva,
entonces Y es metrizable.

Demostración. Sea f : X ↗↘ Y una función continua y suprayectiva de un
espacio métrico compacto sobre un espacio de Hausdor! Y . Note que como
X es un espacio métrico compacto, tenemos que X es Hausdor!, por la pro-
posición 1.35 . Luego, como f es continua y suprayectiva, por el teorema 1.39
se sigue que Y es compacto. Es decir, Y es un espacio Hausor! compacto.
Ahora, afirmamos que, todo espacio Hausdor! compacto es un espacio nor-
mal. En efecto, sean Y un espacio compacto Hausdor! y F1, F2 subconjuntos
cerrados ajenos de Y . Como F1 y F2 son subconjuntos cerrados de Y , tenemos
que F1 y F2 son compactos, por la proposición 1.40, y dado que F1 ⇑F2 = ⇓,
por el teorema 1.42 existen abiertos U y V de X, ajenos, tales que F1 → U

y F2 → V . Por lo tanto, Y es normal.
Veamos ahora que Y tiene una base numerable. Sea C una base numera-
ble para X. Sea C0 la colección de los subconjuntos finitos de C . Para cada
L ↑ C0 def́ınase el siguiente conjunto

E(L ) = Y \


f


X \

⋃
L


.

Note que los elementos de L son abiertos de X y en particular
⋃

L es
abierto de X, aśı X \

⋃
L es cerrado de X. Como f es continua y X es

compacto, por el teorema 1.41 se cumple que f [X \
⋃

L ] es cerrado de Y .
Por lo tanto, E(L ) es un abierto de Y .
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Sea P = {E(L ) : L → C y L es finito}. Afirmamos que P es numerable.
En efecto, como C es numerable, por el teorema 1.45, C0 es numerable.
Consideremos la función h : C0 ↗↘ P definida, para cada L ↑ C0 como
h(L ) = E(L ). Es claro que h es una función suprayectiva, por el teorema
1.46, se sigue que P es numerable.

Ahora, veamos que P es una base para Y . Para ello, sean U un subconjunto
abierto de Y y q ↑ U . Luego, f↔1({q}) → f

↔1(U). Como f es continua,
f
↔1(U) es un subconjunto abierto de X. Como C es una base de X, entonces

para cada p ↑ f
↔1({q}), existe, Vp ↑ C tal que p ↑ Vp → f

↔1({q}) → f
↔1(U).

Aśı,

f
↔1({q}) →

⋃

p↑f→1({q})

Vp → f
↔1(U).

Como f
↔1({q}) es un subconjunto cerrado del compacto X se sigue que

f
↔1({q}) es compacto. Por lo tanto, existen p1, ..., pn ↑ f

↔1({q}) con n ↑ N
tales que

f
↔1({q}) →

n⋃

i=1

Vpi .

Ahora, sea L = {Vp1 , ..., Vpn}. Entonces L ↑ C0 y f
↔1({q}) →

⋃
L →

f
↔1(U). Al tomar complementos

X \ f
↔1(U) → X \

⋃
L


→ X \ f

↔1({q}).

Luego,

f

X \ f

↔1(U)

→ f


X \

⋃
L


→ f


X \ f

↔1({q})

.

Tomando de nuevo complementos

Y \ f

X \ f

↔1({q})

→ Y \ f


X \

⋃
U


→ Y \ f


X \ f

↔1(U)

. (1.1)

Observemos que q ↑ Y \ f (X \ f
↔1({q})), pues de lo contrario se tiene que

q ↑ f (X \ f
↔1({q})), entonces existe a ↑ X \ f

↔1({q}) tal que f(a) = q,
luego inferimos que a ↑ f

↔1({q}). Pero a /↑ f
↔1({q}) lo que es absurdo. Por
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lo tanto, q ↑ Y \ f (X \ f
↔1({q})).

Como f es suprayectiva se cumple que

Y \ U = Y \ f(f↔1({q})) → f

X \ f

↔1(U)

,

luego Y \ f (X \ f
↔1(U)) → U . De esto último y por la contención (1.1) se

sigue que q ↑ E(L ) → U . Aśı P es una base numerable para Y . Por lo
tanto, Y es metrizable. ↭
Teorema 1.90. Sean X un espacio métrico compacto y (D , T (D)) es una
descompasición de X. Entonces D es metrizable si y sólo si D es Hausdor!.

Demostración. [⇔] Como la función natural ς de X sobre D es continua y
suprayectiva, entonces si suponemos que (D , T (D)) es un espacio Hausdor!.
Por el teorema 1.89, tenemos que (D , T (D)) es metrizable.
[↖] Supongamos ahora que (D , T (D)) es metrizable. Luego, (D , T (D)) ob-
viamente es un espacio Hausdor!. ↭
Teorema 1.91. Un espacio de descomposición (D , T (D)) de un continuo X

es un continuo si y sólo si (D , T (D)) es Hausdor!.

Demostración. Si (D , T (D)) es un continuo, tenemos que (D , T (D)) es me-
trizable. Luego (D , T (D)) es Hausdor!. Ahora, supongamos que (D , T (D))
es un espacio Hausdor!, por el teorema 1.90 tenemos que (D , T (D)) es me-
trizable. Como la función natural ς : X ↗↘ D es continua, y dado que la
compacidad y la conexidad son invariantes topológicos, tenemos que D es
compacto y conexo. Por lo tanto, (D , T (D)) es un continua y el teorema
queda demostrado. ↭

A continuación presentamos un ejemplo donde una partición D no es un
continuo.

Ejemplo 1.92. Sea S = [↗1, 1] y sea D la partición cerrada dada por

D = {{x,↗x} : ↗1 < x < 1} ↓ {{↗1}, {1}}.

La descomposición (D , T (D)) no es un continuo ya que no es de Hausdor!
y por tanto no es metrizable.

Ahora estudiaremos las descomposiciones semicontinuas superiores. Po-
demos usar la descomposición de continuos para construir otros continuos. La
siguiente definición nos dará una útil condición para poder establecer cuando
una descomposición es metrizable, sin necesidad de verificar en cada ocasión
que la descomposición es un espacio Hausdor!.
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Definición 1.93. Sea (S, T ) un espacio topológico. Una partición D de S

es semicontinua superior si para cada D ↑ D y U ↑ T tal que D → U

existe V ↑ T con D → V tal que si A ↑ D y A ⇑ V ⇒= ⇓, entonces A → U.

Definición 1.94. Sea D un espacio de descomposición de un espacio to-
pológico S. Un subconjunto E de S es D-saturado si existe U → D tal que⋃

U↑U U = E.

Observación 1.95. Dado un espacio de descomposición D de un espacio
topológico S, consideremos la función natural ς : S ↗↘ D . Para C → D
tenemos que ς

↔1[C ] es D-saturado. En efecto, sea C → D y veamos que
ς
↔1[C ] =

⋃
C =

⋃
C↑C C. Note que se cumple lo siguiente

ς
↔1[C ] = {x ↑ S : ς(x) ↑ C }

= {x ↑ S : existe C ↑ C tal que ς(x) = C}

= {x ↑ S : existe C ↑ C tal que x ↑ C}

=
⋃

C↑C

C.

Por lo tanto, ς↔1[C ] es D-saturado.

Proposición 1.96. San S un espacio topológico y D un espacio de des-
composición. Entonces un subconjunto A de S es D-saturado si y sólo si
A = ς

↔1[ς[A]].

Demostración. Supongamos que A es D-saturado. Entonces existe una sub-
colección U → D tal que A =

⋃
U↑U U . Aśı, ς[A] = {ς(x) : x ↑ A} = U .

Por lo tanto, ς↔1[ς[A]] = ς
↔1[U ] =

⋃
U↑U U = A.

Por último supongamos que A = ς
↔1[ς[A]] y veamos que A es D-saturado.

Dado que ς[A] → D , por la observación 1.95, tenemos que ς
↔1[ς[A]] es D-

saturado y por lo tanto, A es D-saturado. ↭

Proposición 1.97. Sean S un espacio topológico y D un espacio de descom-
posición. Si V es D-saturado y abierto de S, entonces el conjunto ς[V ] es
abierto de D .

Demostración. Dado que V es D-saturado, existe una subcolección U → D
tal que V =

⋃
U es abierto de S. Luego

ς[V ] = ς[
⋃

U ] =
⋃

ς[U ] → D .
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Como D ↑ U y x ↑ D, tenemos que ς(x) = D →
⋃

U = V . Por lo tanto,
ς[V ] es abierto de D . ↭

Teorema 1.98. Sean (S, T ) un espacio topológico, D una descomposición
de S y ς : S ↗↘ D la función natural. Entonces las siguientes afirmaciones
son equivalentes:

(i) D es una descomposición semicontinua superior.

(ii) ς es una función cerrada.

(iii) Si D ↑ D y U ↑ T son tales que D → U , entonces existe V ↑ T tal que
D → V → U y V es D-saturado.

Demostración. Veamos primero que [(i) ↖ (ii)]. Sea C un subconjunto ce-
rrado de S. Para ver que ς[C] es cerrado de D , basta probar que D \ς[C] es
abierto de D , o que es lo mismo que probar que ς

↔1[D \ ς[C]] es abierto de
S. Sea x ↑ ς

↔1[D \ ς[C]]. Luego ς(x) ↑ D \ ς[C]. Veamos que ς(x) → S \C.
Supongamos lo contrario, es decir, que existe z ↑ ς(x) tal que z /↑ S \ C.
Note que esto último es equivalente a decir que ς(x) ⇑ C ⇒= ⇓, aśı exis-
te z ↑ ς(x) ⇑ C. Si z ↑ ς(x), entonces ς(z) = ς(x) lo cual implica que
ς(z) ⇑ ς(x) ⇒= ⇓, además ς(z) = ς(x) ↑ ς[C] lo cual es una contradicción.
Por lo tanto, ς(x) → S \ C.

Ahora, como S\C es un subconjunto abierto de S y D es una descomposición
semicontinua superior, existe un subconjunto abierto V de S con ς(x) → V

tal que si D ↑ D y D ⇑ V ⇒= ⇓, entonces D → S \ C. Notemos que si p ↑ V ,
entonces ς(p) = D. Luego, ς(p) ⇑ V ⇒= ⇓, lo cual implica ς(p) → S \ C.
Veamos que ς[V ] → D \ ς[C], para ello sea U ↑ ς[V ]. Existe r ↑ V tal que
ς(r) = U . Supongamos, por el contrario, que ς(r) ↑ ς[C]. Existe un c ↑ C

tal que ς(r) = ς(c). Aśı, c ↑ C ⇑ ς(r). Esto último implica que ς(r) ⇒↙ S \C

y por tanto r /↑ V , lo cual es una contradicción. Aśı, ς[V ] → D \ς[C]. Luego,
V → ς

↔1[D \ ς[C]]. Como x ↑ ς(x) → V , tenemos que ς
↔1[D \ ς[C]] es

un subconjunto abierto de S, y de acuerdo con la observación 1.95, tenemos
que ς

↔1[D \ ς[C]] es D-saturado, y por la proposición 1.97, se sigue que
ς[ς↔1[D \ ς[C]]] es un subconjunto abierto de D . Como ς es suprayectiva,
se tiene que ς[ς↔1[D \ ς[C]]] = D \ ς[C]. De esta forma D \ ς[C] es un
subconjunto abierto de D . Por lo tanto, ς[C] es un subconjunto cerrado de
D .
Probemos ahora que [(ii) ↖ (iii)]. Para ello supongamos que ς es cerrada.
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Sean D ↑ D , U ↑ T tal que D → U y V = ς
↔1[D \ ς[S \ U ]]. Veamos que V

satisface las condiciones de (3). Como U ↑ T , tenemos que S \ U es cerrado
de S, y por hipótesis, ς[S \U ] es cerrado de D , luego D \ ς[S \U ] es abierto
de D aśı por la continuidad de ς se sigue que V ↑ T y por la observación
1.95, tenemos que V es D-saturado.
Por último veamos que (iii) ↖ (i). Para ello supongamos (3). Sean D ↑ D
y U ↑ T con D → U . Por hipótesis existe V ↑ T tal que D → V → U y
V es D-saturado. Si algún A ↑ D es tal que A ⇑ V ⇒= ⇓, entonces veamos
que A → V → U . En efecto, como V es D-saturado, existe una subcolección
U1 → D tal que V =

⋃
U1. Como A ⇑ V ⇒= ⇓ se sigue que A ⇑ [

⋃
U1] ⇒= ⇓.

Esto implica que
⋃

B↑U1
(A ⇑ B) ⇒= ⇓. Aśı, existe B ↑ U1 tal que A ⇑ B ⇒= ⇓.

Luego A = B, aśı A →
⋃

B↑U1
B = V → U . Por lo tanto, A → U . Concluimos

que D es semicontinua superior. ↭

Teorema 1.99. Si S es un espacio topológico y D es una partición de S,
entonces el espacio de descomposición (D , T (D)) es un espacio T1 si y sólo
si D es una partición cerrada.

Demostración. Por el teorema 1.36, (D , T (D)) es un espacio T1 si y sólo si
dado cualquier U ↑ D se cumple que {U} es un subconjunto cerrado de D .
Luego D \ {U} es abierto de D . Por la observación 1.87, esto es equivalente
a que ς↔1[D \ {U}] es un subconjunto abierto de S y como ς es suprayectiva
tenemos que S \ ς

↔1[U ] es abierto de S si y sólo si ς↔1[{U}] es cerrado de S;
además como la familia los miembros de {ς↔1[{U}] : U ↑ D} es una partición
de S, tenemos que, D es una partición cerrada. ↭

Lema 1.100. Si (D , T (D)) es una descomposición semicontinua superior
de un espacio topológico S que tiene la propiedad T1, entonces D es una
partición cerrada.

Demostración. Sean U ↑ D , x ↑ U y ς : S ↗↘ D la función natural. Por
hipótesis {x} es un subconjunto cerrado de S. Luego por el teorema 1.98,
tenemos que ς[{x}] es cerrado de D . Note que ς[{x}] = {ς(x)} = {U} es
cerrado de D y como ς es continua se sigue que ς

↔1[{U}] es cerrado de S,
además U = ς

↔1[{U}]. Por lo tanto, U es un subconjunto cerrado de S. Aśı
concluimos que D es una partición cerrada. ↭

Teorema 1.101. Si D es una descomposición semicontinua superior de un
espacio métrico compacto X, entonces (D , T (D)) es metrizable.
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Demostración. En virtud del teorema 1.89, es suficiente probar que el es-
pacio de descomposición (D , T (D)) es un espacio Hausdor!. Para ello sean
D1, D2 ↑ D tales que D1 ⇒= D2. Por el lema 1.100, tenemos que D1 y D2

son cerrados de X y D1 ⇑ D2 = ⇓. Luego, como X es normal existen dos
subconjuntos abiertos y ajenos de X, digamos U1 y U2 tales que D1 → U1

y D2 → U2. Como D es una descomposición semicontinua superior por el
apartado (iii) del teorema 1.98, existen dos subconjuntos V1 y V2 abiertos de
X tales que, para cada i ↑ {1, 2}, Di → Vi → Ui y Vi es D-saturado. Ahora,
observemos que para todo i ↑ {1, 2}, se tiene que Di ↑ ς[Vi], pues de lo
contrario si Di /↑ ς[Vi] entonces Di ⇒→ Vi, pero Di → Vi lo que es absurdo.

Ahora, por la proposición 1.97, tenemos que ς[V1] y ς[V2] son abiertos de D .
Como U1 ⇑ U2 = ⇓ y Vi → Ui; se sigue que V1 ⇑ U2 = ⇓. Luego, por la propo-
sición 1.96, tenemos que para todo i ↑ {1, 2} se cumple que ς

↔1[ς[Vi]] = Vi.
Aśı, ς[V1]⇑ ς[V2] = ⇓. De esta forma encontramos dos subconjuntos abiertos
ς[V1] y ς[V2] ajenos de D tales que D1 ↑ ς[V1] y D2 ↑ ς[V2]. Por lo tanto,
hemos probado que (D , T (D)) es un espacio Hausdor!. ↭

Teorema 1.102. Sean un continuo X y D una descomposición semicontinua
superior de X, entonces D es un continuo.

Demostración. Consideremos a ς : X ↗↘ D la función natural. Como ς es
continua, la compacidad y conexidad son invariantes topológicos. Tenemos
que D es compacto y conexo. Además, por el teorema 1.101, tenemos que D
es metrizable. Aśı, D es un continuo. ↭
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Caṕıtulo 2

Hiperespacios

En el caṕıtulo anterior vimos que un continuo es un espacio métrico que
es compacto, conexo y con más de un punto. También, vimos algunas de
sus propiedades y algunos ejemplos de continuos más comunes. En este se-
gundo caṕıtulo estudiaremos a los hiperespacios que son subconjuntos de
un continuo que cumplen alguna propiedad. En particular, veremos algunos
ejemplos y algunas propiedades que nos ayudarán a definir una nueva métri-
ca para estos hiperespacios llamada métrica Haussdor!. Para culminar este
caṕıtulo construiremos una topoloǵıa para los hiperespacios llamada topo-
loǵıa de Vietoris, probaremos algunas propiedades y además probaremos que
la métrica Haussdor! genera la topoloǵıa de Vietoris. Por último probaremos
que el hiperespacio de todos los subconjuntos cerrados y no vaćıos de X es
un continuo.

2.1. Métrica Hausdor! y sus propiedades

Daremos la definición de hiperespacio y algunos ejemplos comunes de
ellos. Además, presentamos algunas propiedades básicas que serán de gran
ayuda para construir la métrica de Hausdor!.

Definición 2.1. Sea un continuo X, decimos que un hiperespacio de X

es una colección de subconjuntos de X que cumplen alguna propiedad en
particular.

Por ejemplo, podemos considerar los siguientes hiperespacios de X

31
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2X ={A → X : A es cerrado de X y no vaćıo},

C(X) ={A ↑ 2X : A es conexo},

Cn(X) ={A ↑ 2X : A tiene a lo más n componentes},

Fn(X) ={A → X : A tiene a lo más n puntos},

F (X) =
→⋃

n=1

Fn(X).

Observación 2.2. Para un continuo X y n ↑ N, se tiene lo siguiente:

(i) C(X) = C1(X),

(ii) Fn(X) → Fn+1(X) y Cn(X) → Cn+1(X),

(iii) Fn(X) → Cn(X).

Note que como X es un compacto, entonces 2X es el hiperespacio de todos
los subconjuntos compactos no vaćıos de X, en particular X ↑ 2X , y C(X) es
el hiperespacio de todos los subcontinuos de X. Veamos algunas definiciones
y propiedades interesantes.

Definición 2.3. Sean un continuo X con métrica d, A → X y r > 0. La
nube de radio r con centro en A es

N(r, A) = {x ↑ X : d(x, a) < r para algún a ↑ A}.

Teorema 2.4. Sean un continuo X con métrica d, r > 0 y A ↑ 2X , se
cumplen las siguientes condiciones

(i) Si U es un subconjunto abierto de X tal que A → U . Entonces existe
φ > 0 tal que N(φ, A) → U .

(ii) Si 0 < φ ⇐ r y A → B, entonces N(φ, A) → N(r, B).

(iii) N(r, A) =
⋃
{N(φ, A) : φ ↑ (0, r)}.

(iv) N(r, A) =
⋃

a↑A B(a, r). Es decir N(r, A) es un abierto de X.
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Demostración. (i) Sea A → U , como U es abierto de X tenemos que X \U

es cerrado de X y por tanto compacto. Aśı tenemos que A⇑(X \U) = ⇓

y por lo tanto, d(A,X\U) > 0. Ahora, sean φ = d(A,X\U)
2 y x ↑ N(φ, A),

existe a ↑ A tal que d(x, a) < φ. Se sigue que x ↑ B(a, φ). Si suponemos
que x ↑ X \ U , entonces d(A,X \ U) ⇐ d(x, a); lo cual implica que
d(A,X \ U) < φ = d(A,X\U)

2 , lo que es absurdo. Por lo tanto, x ↑ U .

(ii) Sea φ > 0 tal que φ ⇐ r. Tomemos x ↑ N(φ, A). Existe un a ↑ A tal
que d(x, a) < φ ⇐ r, luego d(x, a) ⇐ r, para algún a ↑ A. Como A → B,
tenemos que a ↑ B. Aśı, x ↑ N(r, B).

(iii) Dado φ > 0 tal que φ < r, por (2) de este teorema se tiene queN(φ, A) →
N(r, A). Entonces

⋃
{N(φ, A) : 0 < φ < r} → N(r, A). Por otro lado,

tomemos x ↑ N(r, A). Entonces existe a ↑ A tal que d(x, a) < r.
Tomemos un φ

↘
> 0 tal que d(x, a) < φ

↘
< r. Luego, x ↑ N(φ↘, A),

además, N(φ↘, A) →
⋃
{N(φ, A) : 0 < φ < r}. Por lo tanto, N(r, A) →⋃

{N(φ, A) : 0 < φ < r}.

(iv) Sea x ↑ N(r, A), luego por definición de nube se sigue que existe un
elemento a ↑ A tal que d(x, a) < r, aśı x ↑ B(x, r) y por lo tanto,
x ↑

⋃
a↑A B(x, r). Por último, sea x ↑

⋃
a↑A B(x, r), entonces existe

a ↑ A tal que x ↑ B(x, r), luego por definición de bola abierta se sigue
que d(x, a) < r, por lo tanto, x ↑ N(x,A).

↭

Observación 2.5. Sean un continuo X con métrica d, A,B ↑ 2X y ω > 0,
entonces se cumple que N(ω, A) ↓N(ω, B) = N(ω, A ↓B).

En efecto, primero veamos que que se cumpleN(ω, A)↓N(ω, B) → N(ω, A↓B).
Sea acuerdo con el teorema 2.4, apartado (iii), se deduce que N(ω, A) →

N(ω, A ↓ B) y N(ω, B) → N(ω, A ↓B). Aśı,

N(ω, A) ↓N(ω, B) → N(ω, A ↓B).

Para ver que se cumple la otra contención, sea z ↑ N(ω, A ↓ B). Existe
a ↑ A ↓ B tal que d(a, z) < ω. Ahora, observemos que tenemos dos casos:

(i) Si a ↑ A, entonces d(a, z) < ω se sigue que z ↑ N(ω, A).

(ii) Ahora si a ↑ B, entonces d(a, z) < ω, con lo cual se tiene que z ↑

N(ω, B).
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En ambos casos se tiene que z ↑ N(ω, A)↓N(ω, B). Por lo tanto, concluimos
que N(ω, A) ↓N(ω, B) = N(ω, A ↓ B). ↭

Lema 2.6. Sean un continuo X con métrica d y A,B ↑ 2X . Si A ⇑ B = ⇓,
entonces existe un ω > 0 tal que N(ω, A) ⇑N(ω, B) = ⇓.

Demostración. Como A y B son compactos, entonces d(A,B) > 0. Sea ω =
d(A,B)

2 > 0 y supongamos a manera de contradicción que existe y ↑ N(ω, A)⇑
N(ω, B). Luego, existe a ↑ A tal que d(a, y) < ω, de forma similar, existe
b ↑ B tal que d(b, y) < ω. Ahora aplicando la desigualdad del triángulo,

d(a, b) ⇐ d(a, y) + d(b, y) < ω+ ω = d(A,B),

aśı que d(a, b) < d(A,B), lo cual contradice que d(A,B) = ı́nf{d(a, b) : a ↑

A, b ↑ B}. ↭
Nuestro propósito es definir una métrica en 2X que se encuentre estre-

chamente relacionada con la métrica de X. Para ello definamos la siguiente
función :

Hd : 2
X
↔ 2X ↗↘ R+

↓ {0}

(A,B) ∝↘ ı́nf{r > 0 : A → N(r, B) y B → N(r, A)}.

De aqúı en adelante denotaremos al conjunto {r > 0 : A → N(r, B) y B →

N(r, A)} por E(A,B). El siguiente resultado establece que en efecto el con-
junto E(A,B) definido anteriormente tiene ı́nfimo.

Teorema 2.7. Sean un continuo X con su métrica d y A,B ↑ 2X , entonces
el conjunto E(A,B) = {r > 0 : A → N(r, B) y B → N(r, A)} tiene ı́nfimo.

Demostración. Dea cuerdo con la definición 1.9 tenemos que para cuales-
quiera a ↑ A y b ↑ B, se cumple que d(a, b) < diám(X) + 1. Por lo tanto,
A → N(diám(X)+1, B) yB → (diám(X)+1, A). Aśı, diám(X)+1 ↑ E(A,B).
Por consiguiente 0 es una cota inferior de E(A,B) y entonces concluimos que
en efecto existe el ı́nf(E(A,B)). ↭

Teorema 2.8. La función definida anteriormente es una métrica para el
hiperespacio 2X .

Demostración. Por el teorema 2.7, la función Hd esta bien definida y es tal
que Hd(A,B) ≃ 0, para cualesquiera A,B ↑ 2X . Veamos que se cumplen las
propiedades restantes.
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(i) Si A = B, entonces para cualquier r > 0 tenemos que A → N(B, r) y
B → N(A, r) esto implica que {r > 0 : A → N(B, r) y B → N(A, r)} =
[0,′). Por lo cual,

Hd(A,B) = ı́nf{r > 0 : A → N(B, r) y B → N(A, r)} = 0.

Por otro lado si Hd(A,B) = 0, entonces el ı́nf{r > 0 : A → N(B, r) y
B → N(A, r)} = 0. Esto implica que para todo r > 0 se cumple
A → N(B, r) y B → N(A, r). Luego, para cualquier r > 0 y a ↑ A

tenemos que B(a, r) ⇑ B ⇒= ⇓ y dado cualquier b ↑ B se tiene que
B(b, r)⇑A ⇒= ⇓. Aśı, para todo a ↑ A y b ↑ B tenemos que a ↑ B = B

y b ↑ A = A. Observe que esto se cumple porque A y B son conjuntos
compactos. Luego, A → B y B → A. Por lo tanto, A = B.

(ii) Es claro que la propiedad simetrica se cumple por definición de Hd. Por
lo tanto, Hd(A,B) = Hd(B,A).

(iii) Por último veamos la desigualdad del triángulo. Para ello seanA,B,C ↑

2X y tomemos φ y ↼ de los siguientes conjuntos :

φ ↑{r > 0 : A → N(B, r) y B → N(A, r)} = E(A,B),

↼ ↑{r > 0 : B → N(C, r) y C → N(B, r)} = E(B,C).

Esto último implica que si a ↑ A, entonces existen b ↑ B y c ↑ C tales
que d(b, c) ⇐ φ y d(a, b) ⇐ ↼. Aplicando la desigualdad del triángulo
obtenemos

d(a, c) ⇐ d(a, b) + d(b, c) < φ + ↼.

Dado que a ↑ A, tenemos que A → N(C, φ + ↼). Intercambiando A y
C tenemos que C → N(A, φ + ↼). Por lo cual φ + ↼ ↑ {r > 0 : A →

N(C, r) y C → N(A, ↼)}, aśı tenemos que {φ+ ↼ : φ ↑ E(A,B) y ↼ ↑

E(B,C)} → {r > 0 : A → N(C, r) y C → N(A, r)}. Entonces

Hd(A,C) = ı́nf{r > 0 : A → N(C, r) y C → N(A, r)}

⇐ ı́nf{φ + ↼ : φ ↑ E(A,B) y ↼ ↑ E(B,C)}

= ı́nf(E(A,B)) + ı́nf(E(B,C))

=Hd(A,B) +Hd(B,C).

Por lo tanto, Hd(A,C) ⇐ Hd(A,B)+Hd(B,C). Aśı, concluimos que la
función Hd es una métrica para 2X .
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↭

Definición 2.9. Si X es un espacio métrico con métrica d, la métrica de

Hausdor! para 2X inducida por d, denotada por Hd, para cada A, B ↑ 2X

es
Hd(A,B) = ı́nf {r > 0 : A → N(r, B) y B → N(r, A)} .

Para todo continuo X, se tiene que el par (2X , Hd) es un espacio métrico.
Como C(X) está contenido en 2X , entonces C(X) es un subespacio métrico
de 2X . La métrica de Hausdor! la podemos interprentar geométricamente
como se muestra en la figura 2.1. La idea intuitiva de esta métrica es que dos
conjuntos están cercanos si ellos casi se empalman uno con otro.

Figura 2.1: Métrica Huasdor!

Teorema 2.10. Sean un continuo X, A,B ↑ 2X y r > 0. Entonces Hd(A,B) <
r si y sólo si A → N(r, B) y B → N(r, A).

Demostración. [↖] Si Hd(A,B) < r, entonces r es una cota inferior de
E(A,B). Luego, dado un elemento φ ↑ E(A,B) se cumple que φ < r. Luego,
A → N(φ, B) y B → N(φ, A). Por consiguiente N(φ, A) → N(r, A), esto último
se cumple por el aparatdo (ii) del teorema 2.4. Como B → N(φ, A) → N(r, A),
se tiene que B → N(r, A). Por otro lado, como B ↑ 2X también se cumple que
si φ ↑ E(A,B), entonces φ < r. Aśı utilizando de nuevo el apartado (ii) del
teorema 2.4, se tiene que N(φ, B) → N(r, B). Como A → N(φ, B) → N(r, B),
se sigue que B → N(r, B). Por lo tanto, lo que hemos probado es que si

Hd(A,B) < r ↖ A → N(r, B) y B → N(r, B).
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[⇔] Ahora, supongamos que A → N(r, B) y B → N(r, A). Por el apartado
(iii) del teorema 2.4, tenemos que A → N(r, B) =

⋃
{N(φ, B) : 0 < φ < r} y

B → N(r, A) =
⋃
{N(φ, A) : 0 < φ < r}.

Como A y B son compactos, entonces existen φ1, ..., φn ↑ (0, r] y φ
↘
1, ..., φ

↘
m
↑

(0, r] tales que A →
⋃

n

i=1 N(φi, B) y B →
⋃

m

i=1 N(φ↘
i
, A). Tomemos a φ

↘ =
máx{φi : i = 1, ...n} y φ

↘↘ = máx{φ↘
i
: i = 1, ...m}. Aśı, A →

⋃
N(φ↘, B)

y B → N(φ↘↘, A). Sea ω = máx{φ↘, φ↘↘}. Se sigue que 0 < ω < r y además
A → N(ω, B) y B → N(ω, A). Luego, por la definición de la métrica de
Hausdor!, tenemos que Hd(A,B) ⇐ ω < r. Se concluye que Hd(A,B) < r. ↭

Los siguientes resultados nos muestra una forma equivalente de ver a la
métrica de Hausdor!.

Definición 2.11. Sean un continuo X con métrica d y una función Dd :
2X ↔ 2X ↗↘ R+

↓ {0} cuya regla de correspondecia esta dada por:

Dd(A,B) = máx{sup{d(a,B) : a ↑ A}, sup{d(b, A) : b ↑ B}}.

Teorema 2.12. Sean un continuo X con métrica d y A,B ↑ 2X . Entonces
Dd(A,B) = Hd(A,B).

Demostración. Denotemos por ω = Dd(A,B) y supongamos, por el contrario
que, Hd(A,B) ⇒= ω. Entonces tenemos los siguientes dos casos:

(i) Si Hd(A,B) < ω, por el teorema 2.10, tenemos que A → N(ω, B) y
B → N(ω, A). Sea g : X ↗↘ R+

↓ {0} definida, para cada, x ↑ X por
g(x) = d(x,B). Por el teorema 1.11 sabemos que g es continua y en
particular su restricción al conjunto A también es continua. Como A es
compacto, la función g|A es acotada y por tanto existe a0 ↑ A tal que

d(a0, B) = sup{d(a,B) : a ↑ A}.

Como A → N(ω, B), existe un b0 ↑ B tal que d(a0, b0) < ω. Aśı,

d(a0, B) ⇐ d(a0, b0) < ω.

Por otro lado si consideramos a la función h : X ↗↘ R+
↓{0} definida,

para cada x ↑ X por h(x) = d(x,A), sabemos, por el teorema 1.11, h
es continua y en particular h|B también lo es. Como B es compacto se
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sigue que h|B es acotada y por tanto existe el supremo. Existe b0 ↑ B

tal que

d(b0, A) = sup{d(b.A) : b ↑ B}.

Dado que B → N(ω, A), existe un a0 ↑ A tal que d(b0, a0) < ω, por
consiguiente

d(b0, A) ⇐ d(b0, a0) < ω.

Ahora, de acuerdo con la definición 2.11, tenemos que

Dd(A,B) = máx{sup{d(a,B) : a ↑ A}, sup{d(b, A)} : b ↑ B} < ω.

Como ω = Dd(A,B), tenemos que Dd(A,B) < Dd(A,B), lo cual es una
contradicción.

(ii) Supongamos que Hd(A,B) > ω. Tomemos r > 0 tal que ω < r <

Hd(A,B). Veamos que A → N(r, B). Sea a0 ↑ A, como B es compacto,
por la proposición 1.12, tenemos que existe b ↑ B tal que d(a0, B) =
d(a0, b). Por lo tanto,

d(a0, b) = d(a0, B) ⇐ sup{d(a,B) : a ↑ A} ⇐ Dd(A,B) < r.

De esta forma, d(a0, b) < r, para algún b ↑ B. Aśı que A → N(r, B).
Por otro lado, si b0 ↑ B y dado que A es compacto, existe a ↑ A tal
que d(b0, A) = d(b0, a). Luego,

d(b0, a) = d(b0, A) ⇐ sup{d(b, A) : b ↑ B} ⇐ ω < r.

Aśı, para el elemento b0 ↑ B, existe a ↑ A tal que d(b0, a) < r. Tenemos
que B → N(r, A), lo cual implica que Hd(A,B) < r lo que es absurdo
pues Hd(A,B) > r.
Por lo tanto, concluimos de los dos casos anteriores que Hd(A,B) =
Dd(A,B).

↭

Proposición 2.13. Sea un continuo X con métrica d. Si A,B ↑ 2X y a ↑ A,
entonces existe b ↑ B tal que d(a, b) ⇐ Hd(A,B).
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Demostración. Sean A,B ↑ 2X y a ↑ A. Si a ↑ B, entonces se cumple que
0 = d(a, a) ⇐ Hd(A,B).

Por otro lado supóngase que a /↑ B. De acuerdo con el teorema 1.10,
tenemos que la función g : B ↗↘ R+

↓ {0} definida, para todo x ↑ B,
por g(x) = d(a, x) es continua. Dado que B es compacto tenemos que g

alcanza su mı́nimo, es decir, existe b ↑ B tal que d(a, b) ⇐ d(a, x), para
toda x ↑ B. Como queremos probar que d(a, b) ⇐ Hd(A,B), supongamos,
por el contrario que Hd(A,B) < d(a, b). Por la propiedad del ı́nfimo, que
es Hd(A,B), existe un número real ω1 tal que ω1 < d(a, b). Se sigue que
A → N(ω1, B) y B → N(ω1, A) y dado que a ↑ A, existe z ↑ B tal que
d(a, z) < ω1, es decir, d(a, z) < ω1 < d(a, b), pero cuando x = z esto contradice
el hecho de que d(a, b) ⇐ d(a, x), para toda x ↑ B. Por lo tanto, concluimos
que d(a, b) ⇐ Hd(A,B), y de esta forma la proposición queda demostrada. ↭

Proposición 2.14. Sean un continuo X con métrica d y A,B ↑ 2X , entonces
existen a ↑ A y b ↑ B tal que d(a, b) = Hd(A,B).

Demostración. Por la compacidad de A y B, tenemos que sup{d(a,B) :
a ↑ A} = d(a, b) para algún b ↑ B. De forma similar sup{d(b, A) : b ↑

B} = d(b, a), para algún a ↑ A. Aśı, aplicando el teorema 2.12, tenemos que
D(A,B) = máx{d(a, b), d(b, a)} = d(a, b), es decir, Hd(A,B) = d(a, b) y el
teorema queda demostrado. ↭

Proposición 2.15. Si X un contiuo con métrica d y A,B,A
↘
, B

↘
↑ 2X tales

que A
↘
→ A y B

↘
→ B, entonces

Hd(A ↓ B
↘
, B ↓ A

↘) ⇐ Hd(A,B).

Demostración. Denotemos por r = Hd(A,B), veamos que se cumplen las
siguientes condiciones

(1) A ↓ B
↘
→ N(r, B ↓ A

↘) y (2) B ↓ A
↘
→ N(r, A ↓ B

↘).

Para ver (1) tomemos un elemento x ↑ A ↓ B
↘. Si x ↑ A, entonces podemos

considerar la función f : B ↓ A
↘
↗↘ R+

↓ {0} dada por f(b) = d(x, b), para
cada b ↑ B ↓ A

↘. Luego note que por el teorema 1.10, tenemos que f es una
función continua y como B ↓A

↘ es compacto, f alcanza su mı́nimo, es decir,
existe z ↑ B ↓ A

↘ tal que d(x, z) ⇐ d(x, b). Por la proposición 2.13, tenemos
que d(x, z) ⇐ r y de esta forma obtenemos que x ↑ N(r, B ↓ A

↘). Por otro
lado si x ↑ B

↘, entonces por la hipótesis x ↑ B. Luego 0 = d(x, x) ⇐ r y por
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tanto x ↑ N(r, B ↓ A
↘).

Para último veamos que se cumple (2). Sea x ↑ B ↓ A
↘. Entonces tenemos

dos casos, por un lado si x ↑ B entonces podemos considerar una función
f : A ↓ B

↘
↗↘ R+

↓ {0} dada por f(a) = d(x, a), para cada a ↑ A ↓ B
↘.

Luego por el teorema 1.10, tenemos que f es una función continua y como
A↓B

↘ es compacto, f alcanza su mı́nimo, es decir, que existe un b ↑ A↓B
↘

tal que d(x, b) ⇐ d(x, a), y de acuerdo con la proposición 2.13, tenemos
que d(x, b) ⇐ r. Aśı obtenemos que x ↑ N(r, A ↓ B

↘). Por otro lado si
x ↑ A

↘, entonces por hipótesis x ↑ A, luego 0 = d(x, x) < r y por lo tanto,
x ↑ N(r, A ↓ B

↘). Concluimos de los casos (1) y (2) que la proposición es
cierta y por tanto queda demostrada. ↭

2.2. Topoloǵıa de Vietoris

A continuación veremos que todos los hiperespacios de un continuo X

los podemos considerar con la métrica de Hausdor! o con la topoloǵıa de
Vietoris. Empezaremos enunciando las siguientes definiciones.

Definición 2.16. Sea un continuo X y A un subconjunto de X. Considere-
mos las siguientes subcolecciones del hiperespacio 2X

#(A) = {B ↑ 2X : B → A},

$(A) = {B ↑ 2X : A ⇑B ⇒= ⇓},

”(A) = {B ↑ 2X : A → B}.

Definición 2.17. Sean un continuo X, n ↑ N y U1, U2, ..., Un subconjuntos
de X no vaćıos. El vietórico de U1, U2, ..., Un es el conjunto

∞U1, U2, ..., Un∈ =

{
A ↑ 2X : A →

n⋃

i=1

Ui y A ⇑ Ui ⇒= ⇓, para i ↑ {1, ..., n}


.

Teorema 2.18. Sean un continuo X, n ↑ N y U1, U2, ..., Un subconjuntos de
X, no vaćıos. Entonces se cumple las siguientes condiciones

(i) ∞U1, U2, ..., Un∈ = # (
⋃

n

i=1 Ui) ⇑ [
⋂

n

i=1 $(Ui)],

(ii) #(A) = ∞A∈ para cada A → X,
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(iii) $(A) = ∞X,A∈ para cada A → X.

Demostración. (i) Observe que el conjunto vietórico se puede ver como
sigue

∞U1, U2, ..., Un∈ = {A ↑ 2X : A →

n⋃

i=1

Ui con i ↑ {1, 2, ..., n}}

⇑ {A ↑ 2X : A ⇑ Ui ⇒= ⇓ con i ↑ {1, 2, ..., n}}

= #


n⋃

i=1

Ui


⇑


n

i=1

$(Ui)


.

(ii) [→] Sea B ↑ #(A), luego B → A. Ahora afirmamos que B ⇑ A ⇒= ⇓.
Basta ver que B \A ⇒= B. En efecto supongamos que B \A = B. Dado
un elemento z ↑ B \A se cumple que z ↑ B y z /↑ A, pero como B → A

entonces z ↑ A, aśı tenemos que z ↑ A y z /↑ A lo que es absurdo. Por
lo tanto, B \ A ⇒= B. Es decir B ⇑ A ⇒= ⇓ y por tanto B ↑ $(A). Aśı
concluimos que B ↑ ∞A∈.

[∋] Sea B ↑ ∞A∈ luego por definición de ∞A∈ se sigue que B ↑ #(A).

(iii) [→] SiB ↑ $(A), entoncesB⇑A ⇒= ⇓ yB⇑X ⇒= ⇓. Por tantoB ↑ ∞X,A∈.

[→] Por último, sea B ↑ ∞X,A∈ entonces B → X ↓ A = X y B ⇑ (X ⇑

A) ⇒= ⇓ esto implica que B ⇑ A ⇒= ⇓. Por lo tanto, B ↑ $(A).
↭

Teorema 2.19. Sean n,m ↑ N, U1, U2, ..., Un y V1, V2, ..., Vm subconjuntos
de un continuo X. Si U =

⋃
n

i=1 Ui y V =
⋃

m

i=1 Vi, entonces

∞U1, U2, ..., Un∈ ⇑ ∞V1, V2, ..., Vn∈ = ∞V ⇑ U1, V ⇑ U2, ..., V ⇑ Un, U ⇑ V1, U ⇑ V2,

..., U ⇑ Vm∈

Demostración. Notemos primero que

U ⇑ V =


U ⇑


m⋃

i=1

Vi


↓


V ⇑


n⋃

i=1

Ui


(2.1)

=


m⋃

i=1

(U ⇑ Vi)


↓


n⋃

i=1

(V ⇑ Ui)


(2.2)

[→] Sea B ↑ ∞U1, U2, ..., Un∈ ⇑ ∞V1, V2, ..., Vn∈, entonces B ↑ ∞U1, U2, ..., Un∈ y
B ↑ ∞V1, V2, ..., Vn∈.
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(i) Si B ↑ ∞U1, U2, ..., Un∈, entonces se cumple que

B ↑ #


n⋃

i=1

Ui


⇑


n

i=1

$(Ui)



↖ B →

n⋃

i=1

Ui y B ↑ $(Ui) para todo i ↑ {1, 2, ..., n}

↖ B →

n⋃

i=1

Ui = U y B ⇑ Ui para todo i ↑ {1, 2, ..., n}.

(ii) De forma similar se comprueba para el elemento B ↑ ∞V1, V2, ..., Vn∈,
para obtener

B →

m⋃

i=1

Vi = V y B ⇑ Vi para todo i ↑ {1, 2, ...,m}.

De esto último observemos que B → (
⋃

n

i=1 Ui) ⇑ (
⋃

m

i=1 Vi) = U ⇑ V .
Además, de acuerdo con la ecuación 2.1, tenemos que

B →


m⋃

i=1

(U ⇑ Vi)


↓


n⋃

i=1

(V ⇑ Ui)


.

Como B → U se cumple que B = B⇑U . Además, observe que B⇑Vi =
B ⇑ (U ⇑ Vi) ⇒= ⇓, para cada i ↑ {1, 2, ...,m}. Del mismo modo se
prueba que B ⇑ (V ⇑ Ui) ⇒= ⇓, para todo i ↑ {1, 2, ..., n}. Por lo tanto,
concluimos que

B ↑ ∞U ⇑ V1, ..., U ⇑ Vm, V ⇑ U1, ..., V ⇑ Un∈.

[∋] Sea B ↑ ∞U ⇑ V1, ..., U ⇑ Vm, V ⇑ U1, ..., V ⇑ Un∈. Luego por la igualdad
2.1, tenemos que B → U ⇑V . Tomemos i ↑ {1, 2, ..., n}, como B⇑ (V ⇑Ui) ⇒=
⇓, tenemos que B = B ⇑ V y B ⇑ Ui = B ⇑ (V ⇑ Ui). Aśı se tiene que
B ⇑ (V ⇑ Ui) ⇒= ⇓, es decir, B ⇑ Ui ⇒= ⇓. De la misma forma se prueba que
B ⇑ Vi ⇒= ⇓, para cualquier i ↑ {1, 2, ...,m}. Por lo tanto,

B ↑ ∞U1, U2, ..., Un∈ ⇑ ∞V1, V2, ..., Vn∈.

Aśı, concluimos que

∞U1, U2, ..., Un∈ ⇑ ∞V1, V2, ..., Vn∈ = ∞V ⇑ U1, V ⇑ U2, ..., V ⇑ Un, U ⇑ V1, U ⇑ V2,

..., U ⇑ Vm∈

↭
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Teorema 2.20. Sean un continuo X y n ↑ N. Consideremos los siguientes
conjuntos

(i) C = {∞U1, U2, ..., Un∈ : U1, U2, ..., Un son abiertos de X},

(ii) ↽ = {#(U) : U es abierto de X} ↓ {$(U) : U es abierto de X}.

Entonces C es una base para la topoloǵıa obtenida por la métrica de Hausdor!
para 2X y ↽ es una subbase para tal topoloǵıa.

Demostración. Demostraremos las tres condiciones del teorema 1.24. Enton-
ces:

(i) Note que el ⇓ ↑ C ya que ∞⇓∈ = {B ↑ 2X : B → ⇓ y B ⇑ ⇓ ⇒= ⇓} = ⇓ y
dado que ⇓ es abierto de X, se sigue que ⇓ ↑ C.

Sean U, V ↑ C y B ↑ U⇑V . Veamos que existe U0 ↑ C tal que B ↑ U0 →

U ⇑ V . Como U, V ↑ C, entonces U = ∞U1, ..., Un∈ y V = ∞V1, ..., Vm∈

donde cada U1, ..., Un y V1, ..., Vm son abiertos de X, con n,m ↑ N.
Ahora, por el teorema 2.19, existe un conjunto U0 tal que

U0 = ∞V ⇑ U1, ..., V ⇑ Un, U ⇑ V1, ..., U ⇑ Vm∈ ↑ C.

Del mismo teorema 2.19 se sigue que U⇑V = U0 ↑ C. Como B ↑ U⇑V

tenemos que B ↑ U0 → U ⇑ V .

Por último, veamos que 2X =
⋃

C. En efecto, notemos que ∞X∈ =
{A ↑ 2X : A → X} = 2X , aśı 2X ↑ C. De manera que 2X →

⋃
C, luego,

2X =
⋃

C. Por lo tanto, C es una base para lo topoloǵıa εV para 2X .

(ii) Ahora, sea [↽] = {
⋂

L : L es finito y L → ↽}, para ver que ↽ es una
subbase para la topoloǵıa εV , basta ver que [↽] = C.

Sea V ↑ C, entonces V = ∞U1, ..., Un∈, donde cada Ui es un abierto
de X, para todo i ↑ {1, ..., n}. Denotemos por W =

⋃
n

i=1 Ui, luego
aplicando el teorema 2.18, apartado (i) tenemos que V = ∞U1, ..., Un∈ =
#(W )⇑[

⋂
n

i=1 $(Ui)], de aqúı obtenemos que V es una intersección finita
de elementos de ↽. Por lo tanto, V ↑ [↽] y aśı obtenemos la primera
contención C → ↽.

Por otro lado, note que ↽ → C, pues si V ↑ ↽, entonces tenemos
los siguientes casos V ↑ {#(U) : U es abierto de X} o V ↑ {$(U) :
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U es abierto de X}. Si V ↑ {#(U) : U es abierto de X}, entonces V =
#(U) para algún U abierto de X y aplicando el teorema 2.18, apartado
(ii), tenemos que V = #(U) = ∞U∈ aśı V ↑ C. Ahora si V ↑ {$(U) :
U es abierto de X}, entonces V = $(U) para algún U abierto de X,
luego aplicando de nuevo el teorema 2.18, apartado (iii), tenemos que
V = $(U) = ∞X,U∈. Se sigue que V ↑ C. Además, por el teorema 2.19,
tenemos que C es cerrado bajo intersecciones finitas de manera que
[↽] → C. Por lo tanto, [↽] = C y aśı de ambas contenciones concluimos
que ↽ es una subbase para la topoloǵıa εV .

↭
A la topoloǵıa generada por C y denotada por εV se le llama topoloǵıa

de Vietoris para el hiperespacio 2X .

Teorema 2.21. Sea un continuo X con métrica d. La topoloǵıa de Vietoris
εV y la topoloǵıa inducida por la métrica de Hausdor! εHd

en 2X son iguales.

Demostración. Mostraremos primero que εV → εHd
. Como ↽ es una subbase

de εV , veamos que #(U) ↑ εHd
y $(U) ↑ εHd

. Para ello fijemos un subconjunto
abierto U de X tal que U ⇒= X y tomemos a A ↑ #(U). Sea ω = d(A,X \U),
por la proposición 1.13, tenemos que ω > 0. Ahora, sea K ↑ BHd

(A, ω), luego
Hd(A,K) < ω y veamos que K → U . Sea k1 ↑ K entonces por la proposición
2.13, existe a ↑ A tal que

d(a, k1) ⇐ Hd(A,K).

Supongamos, por el contrario, que k1 /↑ U entonces k1 ↑ X\U , aśı obtenemos
que

d(a, k1) < ω y ω ⇐ d(a, k1),

lo cual es una contradicción, aśı K → U y por lo tanto, K ↑ #(U). Esto
implica que BHd

(A, ω) → #(U).

Ahora si A ↑ $(U), entonces A ⇑ U ⇒= ⇓ con lo cual existe p ↑ A ⇑ U .
Sea ω = d({p}, X \ U), por la proposición 1.13, tenemos que ω > 0. Sea
K ↑ BHd

(A, ω) y veamos que K ⇑ U ⇒= ⇓. Para ello supongamos por el
contrario, que K⇑U = ⇓. Luego, K → X \U . Como p ↑ A, por la proposición
2.13, existe k0 ↑ K tal que

d(p, k) ⇐ Hd(A,K) < ω.
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Como p ↑ {p} y k0 ↑ X \ U , tenemos que ω ⇐ d(p, k), lo cual es una
contradicción. Aśı,K⇑U ⇒= ⇓, es decir,K ↑ $(U) y por lo tanto, BHd

(A, ω) →
$(U).

Esto último nos dice que #(U),$(U) ↑ εHd
para U un subconjunto abierto

de X con U ⇒= X. Más aún, se tiene que $(X) = #(X) = 2X . Por lo tanto,
↽ → εHd

y esto implica que εV → εHd
.

Ahora, veamos que εH → εV . Como C es una base para la topoloǵıa εV es
suficiente probar que la bola con la métrica de Hausdor! BHd

(A, ω) es un
conjunto abierto de 2X . Para ello sean A ↑ 2X y ω > 0, consideremos la
bola BHd

(A, ω). Es claro que A ↑ BHd
(A, ω), por tanto buscamos U1, ..., Un

subconjuntos abiertos de X tales que

A ↑ ∞U1, ..., Un∈ → BHd
(A, ω).

Veamos que primero que A ↑ ∞U1, ..., Un∈. Consideremos la siguiente cubierta
abierta U = {B(a, ω

2) : a ↑ A} de A. Como A es compacto podemos extraer
una subcubierta finita de U , digamos V = {B(ai,

ω

2) : i ↑ {1, .., n}}. Note
que los elementos de la cubierta tienen diámetro menor que ω. Def́ınase Ui =
B(ai,

ω

2), para cada i ↑ {1, ..., n}. Tenemos entonces lo siguiente:

(i) A →
⋃

n

i=1 Ui y

(ii) A ⇑ Ui ⇒= ⇓, para cada i ↑ {1, .., n}.

De lo anterior concluimos que A ↑ ∞U1, ..., Un∈. Resta probar que Hd(A,B) <
ω o que es lo mismo que A → N(ω, B) y B → N(ω, A). Sea a ↑ A. Existe j ↑

{1, ..., n} tal que a ↑ B(aj,
ω

2). Aśı, d(aj, a) <
ω

2 . Ahora como A → N( ω2 , B),
existe b ↑ B tal que d(aj, b) <

ω

2 . Luego de las dos desigualdades anteriores
se tiene que d(a, b) ⇐ d(aj, a) + d(aj, b) <

ω

2 +
ω

2 = ω, con lo cual tenemos que
d(a, b) < ω y por lo tanto, A → N(ω, B). Por otro lado, como B →

⋃
n

i=1 Ui y
diám(Ui) < ω, tenemos que B → N(ω, A). Finalmente Hd(A,B) < ω y por lo
tanto, concluimos que B ↑ BHd

(A, ω). ↭
Dado un continuo X, la topoloǵıa obtenida de la métrica de Hausdor!

para 2X , depende solo de la topoloǵıa de X, como lo establece el siguiente
corolario.

Corolario 2.22. Sea un continuo X, si d y D son métricas para X, cada
una de las cuales genera la topoloǵıa ε de X, entonces la topoloǵıa para 2X

obtenida de Hd y la obtenida de HD son idénticas.
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Demostración. Sean d y D dos métricas para X. Si εd y εD son las topoloǵıas
obtenidas por las métricas d y D respectivamente, tales que εd = εD. Ahora,
sean εHd

y εHD las topoloǵıas obtenidas por métricas de Hausdor! Hd y HD

respectivamente para 2X . Mostraremos que εHd
= εHD .

Para ver esto último, sean

Cd = {∞U1, U2, ..., Un∈ : Ui ↑ εd para cada i ↑ {1, 2, ..., n}}

y
CD = {∞U1, U2, ..., Un∈ : Ui ↑ εD para cada i ↑ {1, 2, ..., n}}.

Por el teorema 2.20, sabemos que Cd es una base para la topoloǵıa obteni-
da de la métrica de Hausdor! Hd y también CD es una base para la topoloǵıa
obtenida de la métrica de Hausdor! HD. Como εd = εD, entonces Cd = CD,
es decir, εHd

= εHD . ↭

Teorema 2.23. Sea un continuo X con métrica d y A un subconjunto cerrado
de X. Entonces #(A), $(A) y ”(A) son cerrados de 2X .

Demostración. Sea A un subconjunto cerrado de X. Veamos primero que
#(A) es cerrado de 2X , esto último es equivalente a demostrar que #(A) =
#(A). Probemos que #(A) → #(A). Si B ↑ #(A), entonces B es cerrado
de X y no vaćıo y es tal que B → A. Luego se cumple que B = B y
A = A. Se sigue que B → A. Aśı tenemos que B ↑ #(A). Resta probar
la otra contención #(A) → #(A). Para ello sea B ↑ #(A), supongamos,
por el contrario, B /↑ #(A), es decir, B ⇒→ A. Como estamos suponiendo
que B ⇒→ A, entonces B \ A ⇒= ⇓. De esta forma aseguramos que existe un
elemento n ↑ B\A. Luego, como A es compacto en X y n ↑ B se cumple que
d(n,A) > 0, pues A ⇑ {n} = ⇓. Denotemos por ω = d(n,A), como B ↑ #(A)
tenemos que BHd

(B, ω) ⇑ #(A) ⇒= ⇓. Aśı, existe Z ↑ BHd
(B, ω) ⇑ #(A). Se

sigue que Hd(B,Z) < ω y Z → A. Luego, B → N(ω, Z) y Z → N(ω, B). Como
n ↑ B tenemos que n ↑ N(ω, Z). Aśı, existe m ↑ Z tal que d(n,m) < ω.
Además, sabemos que Z → A, luego m ↑ A. Se sigue que d(n,A) ⇐ d(n,m).
De manera que d(n,A) < ω, lo que es absurdo. Aśı B ↑ #(A), por lo que
#(A) → #(A). Por lo tanto, #(A) es cerrado de 2X .

Veamos que $(A) es un conjunto cerrado de 2X . Para ello note que como
A es cerrado de X, entonces X \ A es abierto de X. Luego, por (i) de este
teorema #(X \A) es abierto de 2X . Por tanto 2X \#(X \A) es cerrado de 2X .
Afirmamos que $(A) = 2X \ #(X \A). En efecto. Tenemos que B ↑ $(A) si
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y sólo si B ⇑ A ⇒= ⇓, si y sólo si B \ (B \ A) ⇒= ⇓, si y sólo si no ocurre que
B \ (B \A) = ⇓, si y sólo si no ocurre que B → B \A, si y sólo si B ⇒→ B \A,
si y sólo si B ↑ 2X \ #(X \A). Por lo tanto, concluimos que $(A) es cerrado
de 2X .

Por último probemos que ”(A) es un conjunto cerrado de 2X . Bastara probar
que ”(A) = ”(A). Sea B ↑ ”(A). Supongamos, por el contrario que B /↑

”(A), es decir, A ⇒→ B. Tomemos n ↑ A \ B, luego d(n,B) > 0 y denotemos
por ω = d(n,B). Como B ↑ ”(A), entonces BHd

(ω, B) ⇑ ”(A) ⇒= ⇓. Luego,
existe un elemento Z ↑ BHd

(ω, B) ⇑ ”(A), esto implica que Z ↑ BHd
(ω, B) y

Z ↑ ”(A). Si Z ↑ BHd
(ω, B), Hd(B,Z) < ω. Por el teorema 2.10. Estó último

es equivalente a decir que B → N(ω, Z) y Z → N(ω, B). Luego, como n ↑ A y
Z ↑ ”(A) se sigue que A → Z, en particular n ↑ Z y aśı n ↑ N(ω, B). Luego,
existe m ↑ B tal que d(n,m) < ω. Entonces, d(n,B) ⇐ d(n,m), con lo cual
d(n,B) < ω, es decir, ω < ω lo que es absurdo. Por lo tonta ”(A) es cerrado
de 2X . ↭

Teorema 2.24. Sean X y Y dos continuos con d y d
↘ sus métricas res-

pectivas, y sea un homeomorfismo h : X ↗↘ Y . Existe un homeomorfismo
h
≃ : 2X ↗↘ 2Y tal que h

≃[C(X)] = C(Y ).

Demostración. Sea h
≃ : 2X ↗↘ 2Y definida como h

≃(A) = h(A), para cada
A ↑ 2X . Nótese que como h es un homeomorfismo, h es una función cerrada
y por tanto h(A) ↑ 2Y .

Veamos que h
≃ es inyectiva, entonces sean A,B ↑ 2X tales que h

≃(A) =
h
≃(B), luego h(A) = h(B), como h es inyectiva tenemos que A = B. Por lo

tanto, h≃ es inyectiva.

Probemos que h
≃ es suprayectiva, para ello tomemos cualquier B ↑ 2Y .

Luego, B es un subconjunto cerrado de Y tenemos que h
↔1(B) ↑ 2X pues h

es una función continua y es tal que

h
≃(h↔1(B)) = h(h↔1(B)) = B,

esto último es porque h es suprayectiva. Por lo tanto, h≃ es suprayectiva, y
por tanto h

≃ es biyectiva.

Veamos que h
≃[C(X)] = C(Y ). Sea B ↑ h

≃[C(X)]. Existe A ↑ C(X) tal
que B = h

≃(A), como las funciones continuas preservan conexidad se sigue
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que h(A) = B es conexo, luego por definición de h tenemos que B es cerrado
de X, luego B es compacto. Aśı B ↑ C(Y ). De esta manera hemos probado
que h

≃[C(X)] → C(Y ).

Sea B ↑ C(Y ). Como h≃ es suprayectiva existe A ↑ 2X tal que h≃(A) = B.
Como h(A) = B y h

↔1(B) = h
↔1(h(A)) = A, se tiene que A es conexo.

Por lo tanto, A ↑ C(X), aśı A ↑ h
≃[C(X)] y por lo tanto, concluimos que

h
≃[C(X)] = C(Y ).

Resta mostrar la continuidad de h
≃, pero antes de ello definamos D :

X ↔ X ↗↘ R como D(x, y) = d
↘(h(x), h(y)), para cada (x, y) ↑ X ↔ X.

Como que d
↘ es una métrica en Y , entonces D es una métrica para X.

Ahora, afirmamos que d yD son métricas equivalentes. En efecto, sean x ↑ X

y r > 0, deseamos probar que existe un ω1 > 0 tal que Bd(x, ω1) → BD(x, r).
Sea t ↑ BD(x, r), entonces D(x, t) < r. Como D(x, t) = d

↘(h(x), h(t)), h(t) ↑
Bd↑(h(x), r) que es lo mismo que t ↑ h

↔1[Bd↑(h(x), r)]. Denotemos a Ux =
h
↔1[Bd↑(h(x), r)], note que Ux es un subconjunto abierto de X. Luego existe

un ω1 > 0 tal que Bd(t, ω1) → Ux. Ahora, veamos que Ux → BD(x, r). Para
ello, supongamos, por el contrario que existe x1 ↑ Ux tal que x1 /↑ BD(x, r).
Entonces h(x1) /↑ Bd↑(h(x), r), que es lo mismo que, x1 /↑ h

↔1[Bd↑(h(x), r)],
es decir, x1 /↑ Ux, lo cual es una contradicción pues x1 ↑ Ux. Por lo tanto,
Bd(t, ω1) → BD(x, r). De forma análogoa se prueba que existe un ω2 > 0 tal
que BD(x, ω2) → Bd(x, r). Por lo tanto, D es equivalente a d.

Ahora, afirmamos que

HD(A,B) = Hd↑(h
≃(A), h≃(B)), para cada A,B ↑ 2X .

En efecto, denotemos por

E(A,B) = {ω > 0 : A → ND(ω, B) y B → ND(ω, A)}

y

E
↘(h(A), h(B)) = {ω > 0 : h(A) → Nd↑(ω, h(B)) y h(B) → Nd↑(ω, h(A))}.

Probemos que E(A,B) = E
↘(h(A), h(B)). Sea ω ↑ E(A,B), entonces A →

ND(ω, B) y B → ND(ω, B). Ahora, sea a ↑ A, existe un b ↑ B tal que
D(a, b) < ω, luego d

↘(h(a), h(b)) < ω, o sea que h(a) ↑ Nd↑(ω, h(b)), que
es lo mismo que, h(A) → Nd↑(ω, h(B)). De forma similar se prueba que
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si B → ND(ω, A), entonces h(B) → Nd↑(ω, h(A)). Por lo tanto, E(A,B) →

E
↘(h(A), h(B)).

Por último sea ω ↑ E
↘(h(A), h(B)), entonces h(A) → Nd↑(ω, h(B)) y h(B) →

Nd↑(ω, h(A)). Sea a ↑ h(A), entonces existe b ↑ h(B) tal que d
↘(h(a), h(b)) <

ω, que es lo mismo que, D(a, b) < ω, es decir, A → ND(ω, B). De forma similar
se prueba que si h(B) → Nd↑(ω, h(A)), entonces B → ND(ω, A). Por lo tanto,
E(A,B) = E

↘(h(A), h(B)).

Ahora, por el teorema 2.7, tenemos que ı́nf(E(A,B)) = ı́nf(E ↘(h(A), h(B))).
Por lo tanto, HD(A,B) = Hd↑(h≃(A), h≃(B)).

Ya estamos listos par ver que en efecto h≃ es una función continua. Por el coro-
lario 2.22, tenemos que HD y Hd son métricas equivalentes, aśı dado un ω > 0
existe un φ > 0 tal que BHd

(A, φ) → BHD(A, ω), es decir, si B ↑ BHd
(A, φ),

entonces B ↑ BHD(A, ω), o sea que si, Hd(A,B) < φ, entonces HD(A,B) < ω.
Pero HD(A,B) = Hd↑(h≃(A), h≃(B)), se sigue que Hd↑(h≃(A), h≃(B)) < ω. Por
lo tanto, h≃ es continua en A con Hd↑ y Hd. ↭

2.3. Convergencia en hiperespacios

En esta sección presentamos una descripción apropiada de la convergencia
con respecto a la métrica Hausdor!.

Definición 2.25. Sean un continuo X y {Ai}i↑N una sucesión de elementos
de 2X . El limite superior y el limite inferior, denotados como ĺım sup(Ai)
y ĺım inf (Ai), son :

ĺım sup (Ai) = {x ↑ X : para todo ω > 0, B(x, ω) ⇑ Ai ⇒= ⇓ para una cantidad

infinita de ı́ndices i},

ĺım inf (Ai) = {x ↑ X : para todo ω > 0, existe N ↑ N B(x, ω) ⇑ Ai ⇒= ⇓ para

toda i ≃ N}.

Observación 2.26. El ĺım inf (Ai) → ĺım sup (Ai), por la definición de estos
conjuntos.

Definición 2.27. Sean un continuo X, {Ai}i↑N una sucesión de elementos
de 2X y A ↑ 2X . Si ĺım inf Ai = ĺım supAi = A, entonces el ĺımite de

{Ai}i↑N es A y se denota por ĺımAi = A.
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Lema 2.28. Sean un continuo X y {Ai}i↑N una sucesión de subconjuntos de
X y A → X. Entonces los siguientes enunciados son equivalentes

(i) ĺım(Ai) = A.

(ii) A → ĺım inf(Ai) y ĺım supAi → A.

Demostración. [↖] Si ĺımAi = A, entonces ĺım inf Ai = ĺım supAi = A lo
cual implica que ĺım inf (Ai) → ĺım sup (Ai) y ĺım sup (Ai) → ĺım inf (Ai). Aśı
A → ĺım inf (Ai) y ĺım sup (Ai) → A.
[⇔] Ahora, note queA → ĺım inf (Ai) → ĺım sup(Ai) → A. Luego, ĺım inf(Ai) =
ĺım sup (Ai), es decir, ĺım(Ai) = A. ↭
Lema 2.29. Sean un continuo X con métrica d, {Ai}i↑N una sucesión de
elementos de 2X y A ↑ 2X , entonces se cumple :

(i) ĺım sup (Ai) y el ĺım inf Ai son conjuntos cerrados de X.

(ii) ĺım sup (Ai) ⇒= ⇓ para toda sucesión en 2X .

Demostración. (i) Deseamos probar que ĺım sup (Ai) = ĺım supAi. Es evi-
dente que ĺım sup(Ai) → ĺım sup(Ai). Lo interesante es la otra conten-
ción, es decir, ĺım sup(Ai) → ĺım sup(Ai). Para ello, sea x ↑ ĺım sup(Ai).
Dado cualquier ω > 0, tenemos que B(x, ω) ⇑ ĺım sup(Ai) ⇒= ⇓. Luego,
consideremos a un elemento p ↑ B(x, ω)⇑ ĺım sup(Ai). Como p ↑ B(x, ω)
esto implica que existe ω0 > 0 tal que B(p, ω0) → B(x, ω), donde ω0 =
ω ↗ d(p, x). Por otro lado, como también se tiene que p ↑ ĺım sup(Ai),
entonces para dicho ω0 > 0 tenemos que B(p, ω0) ⇑ Ai ⇒= ⇓ para una
cantidad infinita de ı́ndices i y dado que B(p, ω0) → B(x, ω), se sigue
que, B(x, ω) ⇑ Ai ⇒= ⇓ para una cantidad infinita de ı́ndices i. Por lo
tanto, x ↑ ĺım sup(Ai).

Veamos ahora que ĺım inf(Ai) es un subconjunto cerrado deX. Para ello
solo probaremos la siguiente contención ĺım inf(Ai) → ĺım inf(Ai), ya
que la otra contención es evidente. Dicho esto, tomemos x ↑ ĺım inf(Ai).
Luego, dado cualquier ω > 0, se cumple que B(x, ω) ⇑ ĺım inf(Ai) ⇒= ⇓.
Aśı existe x0 ↑ B(x, ω) ⇑ ĺım inf(Ai). Como x0 ↑ B(x, ω), podemos
encontrar un ω1 = ω ↗ d(x, x0) > 0 tal que B(x0, ω0) → B(x, ω). Por
otro lado, como x0 ↑ ĺım inf(Ai), para ω0 > 0 existe N ↑ N tal que
B(x0, ω0, )⇑Ai ⇒= ⇓, para toda i ≃ N . Dado que B(x0, ω0) → B(x, ω) se si-
gue que B(x, ω)⇑Ai ⇒= ⇓, para toda i ≃ N . Por lo tanto, x ↑ ĺım inf(Ai).



2.3 Convergencia en hiperespacios 51

(ii) Note que para cada sucesión {Ai}i↑N de elementos de 2X Ai es diferente
del vaćıo para toda i ↑ N. Ahora para cada i ↑ N sea ai ↑ Ai → X.
Tenemos que {ai}i↑N es una sucesión en X. Dado que X es compacto,
existe una subsucesión {aij}j↑N de {ai}i↑N que converge a un elemento
a de X. Dicho lo anterior tenemos que para cada ω > 0, existe N ↑ N
tal que

aij ↑ B(ω, x), para toda j ≃ N.

De esta forma tenemos que B(ω, x)⇑Ai ⇒= ⇓ para una cantidad infinita
de ı́ndices i. De aqui, se sigue que x ↑ ĺım sup(Ai), y por lo tanto,
ĺım sup(Ai) ⇒= ⇓.

↭

Lema 2.30. Sea un continuo X con métrica d. Si {Ai}i↑N es una sucesión
de elementos de 2X , entonces se cumple :

(i) x ↑ ĺım inf(Ai) si solo si existe una sucesión {xi}i↑N en X que converge
a x tal que xi ↑ Ai, para cada i ↑ N.

(ii) x ↑ ĺım sup(Ai) si y sólo si existen una sucesión de números naturales
{ik}k↑N tales que i1 < i2 < ... < ik < ... y puntos xik

↑ Aik
, para cada

k ↑ N y xik
converge a x.

Demostración. Veamos que se cumple que (i).
[↖] Sea x ↑ ĺım inf(Ai). Para cada i ↑ N, sea xi ↑ Ai de tal forma que

d(x, xi) = mı́n{d(x, y) : y ↑ Ai}.

Sean x ↑ X fijo y f : X ↗↘ R+
↓ {0} definida, para cada x ↑ X, por

f(y) = d(x, y). Por el teorema 1.10, sabemos que f es continua y dado que
Ai ↑ 2X , para cada i ↑ N, se sigue que Ai es compacto. Aśı f es acotada y
alcanza su mı́nimo en Ai para cada i ↑ N, es decir, existe i ↑ N tal que

f(xi) = mı́n{d(x, y) : y ↑ Ai}.

Sea ω > 0, como x ↑ ĺım inf(Ai) existe un N ↑ N tal que B(x, ω) ⇑ Ai ⇒= ⇓,
para cada i ≃ N . Aśı, para cada i ≃ N , existe ai ↑ Ai tal que d(x, ai) < ω.
Además

d(x, xi) = mı́n{d(x, y) : y ↑ Ai} ⇐ d(x, ai) < ω.
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De lo anterior tenemos que d(x, xi) < ω, para cada i ≃ N , por lo tanto, xi

converge a x.
[⇔] Ahora sea {xi}i↑N una sucesión de elementos de X tal que xi converge a
x y xi ↑ Ai para cada i ↑ N. Sea ω > 0. Existe N ↑ N tal que

d(x, xi) < ω para cada i ≃ N.

Aśı, para cualquier ω > 0 se cumple que xi ↑ B(x, ω) y xi ↑ Ai, para cada
i ↑ N. De esta forma obtenemos que dado cualquier ω > 0, existe N ↑ N tal
que xi ↑ B(x, ω) ⇑ Ai, para cada i ≃ N , es decir, x ↑ ĺım inf(Ai).

Por último, veamos que se cumple (ii).
[↖] Sea x ↑ ĺım sup(Ai). Para todo ω > 0, tenemos que B(x, ω)⇑Ai ⇒= ⇓ para
una cantidad infinita ı́ndices i. Elijamos a ω = 1. Luego, B(x, 1)⇑Ai ⇒= ⇓ para
una cantidad infinita de ı́ndices i. Tomemos i1 ↑ N tal que xi1 ↑ B(x, 1)⇑Ai1 .
Luego, d(x, xi1) < 1 y xi1 ↑ Ai1 . Ahora, tomemos a ω = 1

2 . Tenemos que,
B(x, 12)⇑Ai ⇒= ⇓ para una cantidad infinita de ı́ndices i. Tomemos i2 ↑ N tal
que i2 > i1. Luego, B(x, 12)⇑Ai2 ⇒= ⇓. Por lo tanto, existe xi2 ↑ B(x, 12)⇑Ai2 .
Aśı, d(x, xi2) <

1
2 y xi2 ↑ Ai2 .

Continuando este procedimiento se construye una sucesión de números natu-
rales {ik}k↑N tales que i1 < i2 < ... < ik... y una sucesión de puntos xik

↑ Aik
,

para cada k ↑ N tales que d(x, xik
) < 1

k
. Por lo tanto, {xik

}k↑N converge a x.
[⇔] Supongamos que existe una sucesión {ik}k↑N tal que i1 < i2 < ... < ik <

.... Sea xik
↑ Aik

, para todo k ↑ N, tal que {xik
}k↑N converge a x. Como

{xik
}k↑N converge a x, para todo ω > 0, existe N ↑ N tal que d(x, xik

) < ω,
para todo k ≃ N . Luego, xik

↑ B(x, ω). De esta forma tenemos que

xik
↑ B(x, ω) ⇑ Aik

, para toda k ≃ N.

Aśı, para toda ω > 0, tenemos que B(x, ω) ⇑ Aik
⇒= ⇓, para una cantidad

infinita de ı́ndices i. Por lo tanto, x ↑ ĺım sup(Ai). ↭
Teorema 2.31. Sean un continuo X y {Ai}i↑N una sucesión de elementos
de 2X . Se cumple que

ĺım sup (Ai) =
→

n=1

 →⋃

i=n

Ai


.

Demostración. Probemos primero que ĺım sup (Ai) →
⋂→

n=1

⋃→
i=n

Ai


. Para

ello, sea x ↑ ĺım sup (Ai). Dado cualquier ω > 0 se cumple que B(x, ω)⇑Ai ⇒= ⇓
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para una cantidad infinita de ı́ndices i. Luego para toda n ≃ 1, tenemos que
B(x, ω) ⇑ (

⋃→
i=n

Ai) ⇒= ⇓, lo cual implica que x ↑
⋃→

i=n
Ai, para todo n ≃ 1,

es decir, x ↑
⋂→

n=1

⋃→
i=n

Ai


.

Por último veamos que
⋂→

n=1

⋃→
i=n

Ai


→ ĺım sup (Ai). Entonces sea x ↑

⋂→
n=1

⋃→
i=n

Ai


, luego x ↑

⋃→
i=n

Ai


para todo n ≃ 1. Aśı dado cualquier

ω > 0, tenemos que B(x, ω) ⇑ (
⋃→

i=n
Ai) ⇒= ⇓, para todo n ≃ 1. Es decir,

B(x, ω) ⇑ Ai ⇒= ⇓ para una cantidad infinita de ı́ndices i. Por lo tanto, x ↑

ĺım sup (Ai). ↭
El siguiente resultado es fundamental.

Teorema 2.32. Sean un continuo X con métrica d y {Ai}i↑N una sucesión
de subconjuntos no vaćıos y compactos de X. Entonces el ĺımAi = A si y
sólo si {Ai}i↑N converge a A en 2X con repecto a la métrica de Hausdor!
Hd.

Demostración. [↖] Supongamos que ĺımAi = A y probemos que {Ai}i↑N
converge con la métrica de Hausdor!. Puesto que A = ĺım sup(Ai), de (i) y
de (ii), del teorema 2.29, se sigue que A ⇒= ⇓ y A ↑ 2X . Ahora, sea ω > 0,
deseamos probar que existen N1, N2 ↑ N tales que

(a) A → N(ω, Ai) para toda i ≃ N1,

(b) Ai → N(ω, A) para toda i ≃ N2.

Veamos que se cumple (a). Para ello observemos que la familia U = {B(a, ω

2) :
a ↑ A} es una cubierta abierta de A, dado que A es compacto existe una
subcubierta finita de U , es decir, existen a1, a2, ..., an elementos de A con
n ↑ N tales que

A →

n⋃

j=1

B


aj,

ω

2


.

Ahora, como A = ĺım inf(Ai) para toda j ↑ {1, 2, ..., n}, se tiene que aj ↑

ĺım inf(Ai). Aśı, para cada j ↑ {1, .., n}, existe Mi ↑ N tal que B(aj,
ω

2) ⇑
Ai ⇒= ⇓, para todo i ≃ Mi. Consideremos N1 = máx{M1,M2, ...,Mi}. Luego,
afirmamos que A → N(ω, Ai), para todo i ≃ N1. En efecto, sea a ↑ A y
i ≃ N1. Como A →

⋃
n

j=1 B(aj,
ω

2), existe un j0 ↑ {1, ..., n} tal que a ↑

B(aj0 ,
ω

2). Luego, d(a, aj0) <
ω

2 . Además, note que para todo i ≃ M1, existe



54 Hiperespacios

x ↑ B(aj,
ω

2)⇑Ai. Aśı d(x, aj) <
ω

2 y x ↑ Ai. Por la desigualdad del triángulo
tenemos que

d(a, x) ⇐ d(a, aj0) + d(aj0 , x) =
ω

2
+

ω

2
= ω.

De esta forma d(a, x) < ω, para algún x ↑ Ai. Aśı a ↑ N(ω, Ai), para todo
i ≃ N1. Por lo tanto, A → N(ω, Ai) para toda i ≃ N1.

Ahora, veamos que se cumple (b). Para ello supongamos, por el contrario, que
para cadaN2 ↑ N existe i ≃ N2 tal que Ai ⇒→ N(ω, A). Aśı, paraN2 = 1, existe
un i1 ≃ N2 tal que Ai1 ⇒→ N(ω, A). Ahora, si N2 = i1 + 1, existe i2 ≃ i1 tal
que Ai2 ⇒→ N(ω, A). Luego si N2 = i2+1, entonces existe i3 ≃ i2 tal que Ai3 ⇒→

N(ω, A). Continuando este procedimiento se tiene una sucesión de números
naturales i1 < i2 < i3, ..., ik, ... tales que Aik

⇒→ N(ω, A), para cada k ↑ N. Sea
xik

↑ Aik
\N(ω, A) → X. Consideremos la sucesión {xik

}k↑Nen el compactoX.
Existe una subsucesión {xikl

}l↑N de {xik
}k↑N tal que ĺım

l↓→
xikl

= x0, para algún

x0 ↑ X. Observemos que para cada l ↑ N se tiene que xikl
↑ X \ N(ω, A)

y como X \ N(ω, A) es cerrado de X, se sigue que x0 ↑ X \ N(ω, A) y en
particular x0 ↑ X \ A. Aśı, x0 /↑ A.
Por otro lado, tenemos que una sucesión de números naturales {ikl}l↑N tales
que i1 < i2 < i3, ..., ik, ... y existen puntos xikl

↑ Aikl
, para cada l ↑ N tal que

ĺım
l↓→

xikl
= x0. Por el lema 2.30, apartado (ii), se sigue que x0 ↑ ĺım sup(Ai) =

A, lo cual implica que x0 ↑ A. Lo cual es una contradicción. Por lo tanto,
existe un N2 ↑ N tal que Ai → N(ω, A), para cada i ≃ N2. Concluimos de
los apartados (a) y (b) que la sucesión {Ai}i↑N converge a A en 2X con la
métrica de Hausdor!.

[⇔] Finalmente supongamos que la sucesión {Ai}i↑N converge a A en 2X con
la métrica de Hausdor! y veamos que ĺımAi = A, es decir, ĺım inf(Ai) =
ĺım sup(Ai) = A. Por la observación 2.26, sabemos que ĺım inf(Ai) → ĺım sup
(Ai), por lo que es suficiente probar que

(a’) A → ĺım inf(Ai) y

(b’) ĺım sup(Ai) → A.

Veamos que se cumple (a’). Para ello, sea a ↑ A. Como la sucesión {Ai}i↑N
converge a A en 2X con la métrica de Hausdor!, entonces para cualquier
ω > 0, existe N ↑ N tal que Hd(A,Ai) < ω si i ≃ N . Luego, A → N(ω, Ai) y
Ai → N(ω, A). Como a ↑ A → N(ω, Ai), existe xi ↑ Ai tal que d(x, xi) < ω,
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para todo i ≃ N de aqúı obtenemos que xi ↑ B(a, ω) y dado que xi ↑ Ai, se
sigue que xi ↑ B(a, ω) ⇑ A para todo i ≃ N . Por lo tanto, a ↑ ĺım inf(Ai).

Por último veamos que se cumple (b’). Para ello supongamos, por el contrario,
que ĺım sup(Ai) ⇒→ A, es decir, existe un x ↑ ĺım sup(Ai) tal que x /↑ A. Como
A es compacto y por tanto cerrado de X, se sigue que existe un ω > 0 tal
que B(x, ω) ⇑ A = ⇓. Ahora, dado que x ↑ ĺım sup(Ai), si ω > 0 se cumple
que B(x, ω) ⇑ Ai ⇒= ⇓ para una cantidad infinita de ı́ndices i y como {Ai}i↑N
converge a A en 2X con la métrica de Hausdor!, tomemos ω

2 > 0. Aśı,

Hd(Ai, A) < ω para i ≃ N.

Luego, Ai → N( ω2 , A) y A → N( ω2 , Ai), para i ≃ N . Sea n ≃ N tal que

B


x,

ω

2


⇑ An ⇒= ⇓.

Sea w ↑ B(x, ω

2) ⇑An. Luego d(x, w) < ω

2 y w ↑ An → N( ω2 , A). Por lo tanto,
a ↑ A tal que d(a, w) <

ω

2 , luego por la desigualdad del triángulo tenemos
que

d(x, a) ⇐ d(x, w) + d(a, w) <
ω

2
+

ω

2
= ω.

Aśı d(x, a) < ω, para a ↑ A, lo cual implica que a ↑ B(x, ω) ⇑A. Esto es una
contradicción, pues B(x, ω) ⇑ A ⇒= ⇓. Por lo tanto, ĺım sup(Ai) → A, de esta
forma concluimos que ĺımAi = A, es decir, ĺım inf(Ai) = ĺım sup(Ai) = A y
el teorema queda demostrado. ↭

Proposición 2.33. Sea un continuo X con su métrica d. Si {An}n↑N y
{Bn}n↑N son sucesiones de elementos de 2X tales que ĺımAn = A y ĺımBn =
B, donde A,B ↑ 2X , entonces se cumplen las siguientes condiciones

(i) Si An → Bn para cada n ↑ N, entonces A → B,

(ii) ĺımAn ↓ Bn = A ↓ B,

(iii) Si An ⇑ Bn ⇒= ⇓ para cada n ↑ N, entonces A ⇑ B ⇒= ⇓.

Demostración. Primero demostremos (i). Sea a ↑ A, para cada n ↑ N, sea
An → Bn. Como B ↑ 2X sabemos que B es cerrado de X y no vaćıo, por
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lo que es suficiente probar que a ↑ B = B. Para ello, sea ω > 0. Como
ĺımAn = A y ĺımBn = B, existen N1, N2 ↑ N tales que

Hd(An, A) <
ω

2
para cada n ≃ N1

y

Hd(Bn, B) <
ω

2
para cada n ≃ N2.

Ahora, tomemos a N = máx{N1, N2}. Para cada n ≃ N , tenemos que
Hd(An, A) <

ω

2 y Hd(Bn, B) <
ω

2 . Luego, de acuerdo con el teorema 2.10,
se cumple que

An → N


ω

2
, A


y A → N


ω

2
, An



y

Bn → N


ω

2
, B


y B → N


ω

2
, Bn


.

Fijemos m ↑ N tal que m ≃ N . Como a ↑ A, de donde existe x ↑ An tal que
d(a, x) < ω

2 . Por hipótesis sabemos que Am → Bm, se sigue que x ↑ Bm. Por
lo cual existe z ↑ B tal que d(x, z) < ω

2 . Aśı, por la desigualdad del triángulo
tenemos que

d(a, z) ⇐ d(a, x) + d(x, z) <
ω

2
+

ω

2
= ω.

De lo anterior tenemos que d(a, z) < ω y z ↑ B aśı se sigue que z ↑ B(a, ω)⇑B
y por tanto B(a, ω) ⇑ B ⇒= ⇓, es decir, a ↑ B = B. Por lo tanto, a ↑ B y de
esta forma se comprueba que A → B.

Ahora veamos que se cumple (ii). Deseamos probar que, dado cualquier
ω > 0, existe N ↘

↑ N tal que Hd(An ↓Bn, A↓B) < ω, para toda n ⇐ N
↘. Sea

ω > 0, como ĺımAn = A y ĺımBn = B, existen N1, N2 ↑ N tales que

Hd(An, A) < ω para cada n ≃ N1

y
Hd(Bn, B) < ω para cada n ≃ N2.

Tomemos a N
↘ = máx{N1, N2} y n ≃ N

↘. Luego por el teorema 2.10, inferi-
mos que

A → N(ω, An) y An → N(ω, An)
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y
B → N(ω, Bn) y Bn → N(ω, Bn).

Por consiguiente, A↓B → N(ω, An)↓N(ω, Bn) y An↓Bn → N(ω, A)↓N(ω, B).
Por la observación 2.5, se cumple que

A ↓ B → N(ω, An ↓ Bn) y An ↓ Bn → N(ω, A ↓B).

Esto último equivale a decir que Hd(A↓B,An ↓Bn) < ω, para toda n ≃ N
↘.

Por lo tanto, concluimos que ĺımAn ↓ Bn = A ↓B.

Por último veamos que se cumple (iii). Supongamos, por el contrario,
que A ⇑ B = ⇓. Por el lema 2.6, tenemos que N(ω, A) ⇑ N(ω, B) = ⇓.
Como ĺımAn = B y ĺımBn = B sabemos que existen N1, N2 ↑ N tales
que Hd(An, A) < ω y Hd(Bn, B) < ω, para toda n ≃ N1, N2. Sea N =
máx{N1, N2}. Tenemos que

Hd(An, A) < ω para toda n ≃ N

y
Hd(Bn, B) < ω para toda n ≃ N.

Ahora aplicando el teorema 2.10, tenemos que A → N(ω, An), An → N(ω, A),
Bn → N(ω, B) y B → N(ω, Bn), para cada n ≃ N . Por hipótesis sabemos
que An ⇑ Bn ⇒= ⇓. Aśı, existe un z ↑ An ⇑ Bn. Luego, z ↑ An y z ↑ Bn,
por lo anterior se sigue que z ↑ N(ω, A) y z ↑ N(ω, B) que es lo mismo
que z ↑ N(ω, A) ⇑ N(ω, B) ⇒= ⇓. Lo cual es una contradicción. Por lo tanto,
A ⇑ B ⇒= ⇓. ↭

Observación 2.34. Sea un continuo X. Si {An}n↑N y {Bn}n↑N son sucesio-
nes de elementos de 2X tales que ĺımAn = A y ĺımBn = B, donde A,B ↑ 2X .
No siempre se cumple que ĺım(An ⇑Bn) = A ⇑ B.

Lema 2.35. Sea un continuo X. Si {An}n↑N es una sucesión de elementos
de 2X tal que ĺımAn = A, entonces p ↑ A si y sólo si existe una sucesión de
puntos {pn}n↑N de X tal que pn ↑ An para toda n ↑ N y ĺım pn = p.

Demostración. Primero supongamos que p ↑ A. Por hipótesis sabemos que
ĺımAn = A. Luego, por el lema 2.30, existe una sucesión de puntos {pn}n↑N
tal que ĺım

n↓→
pn = p y pn ↑ N, para todo n ↑ N.
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Por último, supongamos que existe una sucesión de puntos {pn}n↑N de X tal
que ĺım

n↓→
pn = p y pn ↑ An. Por el lema 2.30, se sigue que p ↑ ĺım inf(An),

pero como ĺımAn = A, que es lo mismo que, ĺım inf(An) = ĺım sup(An) = A,
tenemos que p ↑ A. Aśı, el teorema queda demostrado. ↭

A continuación enunciamos el Lema de la subbase de Alexander, ya
que este nos ayudara a demostrar que el hiperespacio 2X es compacto, cuando
X es un espacio métrico compacto. La prueba de este lema se encuentra en
[11].

Lema 2.36 (Lema de la subbase de Alexander). Sean Y un espacio
topológico y S una subbase para Y . Entonces Y es compacto si y sólo si toda
cubierta de Y formada por elementos de S tiene una subcubierta finita.

Teorema 2.37. Si X es un espacio métrico compacto, entonces 2X es com-
pacto.

Demostración. Por el teorema 2.20, la familia

↽ = {#(U) : U es abierto de X} ↓ {$(U) : U es abierto de X},

es una subbase para la topoloǵıa de Vietoris para 2X . Aśı por el lema de
Alexander, bastará probar que para cada cubierta de 2X de elementos de ↽

tiene una subcubierta finita. Para ello supongamos que L → ↽, donde,

L = {#(Uε) : ϑ ↑ %} ↓ {$(Vϑ) : ⇀ ↑ ”},

y es tal que 2X =
⋃
L, es decir,

2X =


⋃

ε↑!

Uε


↓


⋃

ϑ↑”

Uϑ


.

Sea Y = X \ ↓{Vϑ : ⇀ ↑ ”}. Consideremos los siguientes casos:

Caso 1: Si Y = ⇓, entonces X = ↓{Vϑ : ⇀ ↑ ”}. Como X es compacto, existe
un subconjunto finito, digamos ”0 contenido en ” y es tal que

2X =
⋃

ϑ↑”0

$(Vϑ).

En efecto. Sea A ↑ 2X , entonces A → X y A es cerrado de X y no
vaćıo. Pero también A →

⋃
ϑ↑”0

Vϑ, por lo que, para cada a ↑ A,
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existe ⇀ ↑ ”0 tal que a ↑ Vϑ y por tanto A ⇑ Vϑ ⇒= ⇓. Se sigue que
A ↑ ∞X, Vϑ∈ = $(Vϑ). Aśı, 2X =

⋃
ϑ↑”0

$(Vϑ) y por tanto 2X tiene una
subcubierta finita, de elementos de ↽. Por lo tanto, 2X es compacto.

Caso 2: Ahora si Y ⇒= ⇓, nótese que Y es cerrado, pues X \ Y =
⋃

ϑ↑” Vϑ, el
cual es abierto, por tanto

Y ↑ 2X =


⋃

ε↑!

#(Uε)


↓


⋃

ϑ↑”

$(Vϑ)


.

Ahora afirmamos que para cualquier ⇀ ↑ ”, no ocurre que Y /↑ $(Vϑ).
En efecto: supongamos a manera de contradicción que Y ↑ $(Vϑ) para
algún ⇀0 ↑ ”. Entonces, Y ⇑ Vϑ0 ⇒= ⇓. Sea z ↑ Y ⇑ Vϑ0 , luego z ↑

X \ ↓{Vϑ : ⇀ ↑ ”} y z ↑ Vϑ0 →
⋃

ϑ↑” Vϑ, esto quiere decir que,
z /↑ ↓{Vϑ : ⇀ ↑ ”} y z ↑

⋃
ϑ↑” Vϑ, lo cual es una contradicción. Por

lo tanto, Y ↑
⋃

ε↑! #(Uε). Dicho lo anterior tenemos que, existe ϑ ↑ %
tal que Y ↑ #(Uε). Por lo tanto, Y → Uε. Tomando complementos
tenemos que X \ Uε → X \ Y , pero X \ Y =

⋃
ϑ↑” Vϑ. Notemos que

X\Uε es un subconjunto cerrado deX y por tanto es compacto. De esta
forma existe un subconjunto finito ”1 de ” tal que X \Uε →

⋃
ϑ↑”1

Vϑ.
Finalmente, tomando complementos tenemos que Uε → X \

⋃
ϑ↑”1

Vϑ

y dado que Y = X \ ↓{Vϑ : ⇀ ↑ ”} tenemos que Uε → Y , es decir,
Y ↑ #(Uε). Luego,

2X = #(Uε) ↓


⋃

ϑ↑”1

$(Vϑ)


.

Aśı, L es una subcubierta finita de 2X . Por lo tanto, el hiperespacio 2X es
compacto. ↭

Los siguientes resultados que presentamos a continuación se refieren a
la conexidad. En particular veremos en el teorema 2.44, que el hiperespacio
C(X) es compacto. Para este útimo introduciremos el concepto de (d, ω)-
cadena y mostraremos unos resultados importantes.

Definición 2.38. Sean un continuo X con métrica d y ω > 0. Una (d, ω)-
cadena en X es un subconjunto finito y no vaćıo {x1, ..., xn} tal que

d(xi, xi+1) < ω, para cada i = 1, ..., n↗ 1.

Decimos que una (d, ω)-cadena {x1, ..., xn}, con p = x1 y q = xn va de p a q

o que une de p a q.
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Definición 2.39. Sea un continuo X con métrica d y ω > 0 fijo. Si Z es un
subconjunto de X, decimos que Z está (d, ω)-encadenado siempre que dos
puntos cualesquiera de Z puedan unirse mediante una (d, ω)-cadena en Z.

Definición 2.40. Sea un continuo X con métrica d. Si U es un subconjun-
to de X que es (d, ω)-encadenado para toda ω, se dice que U está d-bien-
encadenado.

Teorema 2.41. Sea un espacio métrico X con métrica d. Si para todo Z → X

y dado un ω > 0, consideremos el siguiente conjunto

C (Z, ω) = {x ↑ X : existe una (d, ω)-cadena en X desde algún punto

de Z a x},

entonces C (Z, ω) es un subconjunto abierto y cerrado de X.

Demostración. Primero veamos que C (Z, ω) es un subconjunto abierto de
X. Para ello sea y ↑ C (Z, ω), entonces existe una (d, ω)-cadena en X des-
de algún punto z de Z a y. Luego existe un subconjunto finito Ay = {x1 =
z, x2, ..., xn = y} deX. Se cumple que d(xi, xi+1) < ω para cada i = 1, 2, ..., n↗
1, luego y ↑ B(xn↔1, ω). Ahora afirmamos que B(y, ω) → C (Z, ω): en efecto,
sea t ↑ B(y, ω). Luego, d(y, t) < ω. Aśı existe una (d, ω)-cadena digamos
At = {z, x2, ..., y, t} que une a z con t, se sigue que t ↑ C (Z, ω). Por tanto
B(y, ω) → C (Z, ω). Aśı, C (Z, ω) es un subconjunto abierto de X.
Por último veamos que C (Z, ω) es un subconjunto cerrado de X. Para ello es
suficiente probar que C (Z, ω) = C (Z, ω). La contención hacia la derecha es
evidente. Para la otra contención sea b ↑ C (Z, ω), entonces para todo ω > 0
se cumple que B(b, ω) ⇑ C (Z, ω) ⇒= ⇓. Tomemos a ↑ B(b, ω) ⇑ C (Z, ω). Luego,
a ↑ B(b, ω) y a ↑ C (Z, ω). Si a ↑ C (Z, ω), entonces existe una (d, ω)-cadena en
X desde un punto z de Z a a, digamos Aa = {z, x2, ..., a}. Ahora considérese
a Aa ↓ {b} y dado que a ↑ B(b, ω) tenemos que d(b, a) < ω, se sigue que
Aa ↓ {b} es una (d, ω)-cadena que une a z con b. Aśı, b ↑ C (Z, ω). Por lo
tanto, el subconjunto C (Z, ω) es cerrado de X. ↭
Corolario 2.42. Todo espacio métrico conexo X es d-bien-encadenado.

Demostración. Sean X un espacio métrico conexo con métrica d y U → X

tal que U = {x} para cualquier x ↑ X. Consideremos

C ({x}, ω) = {x
↘
↑ X : existe una (d, ω)-cadena que une x

↘ con x}.

Note que x ↑ C ({x}, ω). Por la conexidad de X y por el teorema 2.41, se
sigue que C ({x}, ω) = X. Por lo tanto, X es d-bien-encadenado. ↭
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Teorema 2.43. Sean un espacio métrico compacto X con su métrica d y
{Ai}i↑N una sucesión de elementos de 2X que converge a A ↑ 2X . Si para
cada Ai es un (d, ω)-encadenado, donde {ωi}i↑N es una sucesión que converge
a cero, entonces A ↑ C(X).

Demostración. Supongamos que A no es conexo en 2X . Entonces A = K↓L,
con K y L cerrados y ajenos no vaćıos de A, y por tanto de X. Ahora, como
X es normal, existen U y V subconjuntos abiertos de X y ajenos tales que
K → U , L → V y U ⇑ V = ⇓. De aqúı obtenemos que A ↑ ∞U, V ∈, el cual es
un abierto de 2X .
Como la sucesión {Ai}i↑N converge a A en 2X , entonces existe N ↑ N tal que

Ai ↑ ∞U, V ∈ para todo i ≃ N . (2.3)

Ahora sea,

φ = ı́nf{d(x, y) : x ↑ U y y ↑ V }.

Por la compacidad de U y V tenemos que φ > 0. Ahora, como {ωi}i↑N converge
a cero, existe k ≃ N tal que ωk < φ. Aśı, por 2.3, tenemos que Ak ↑ ∞U, V ∈.
Luego, Ak ⇑ U ⇒= ⇓, Ak ⇑ V ⇒= ⇓ y además Ak → U ↓ V . Como Ak es
(d, ω)-encadenado y ωk < φ, existe un subconjunto finito de X, digamos,
{x1, x2, · · · , xn} → Ak tales que x1 ↑ Ak ⇑ U y xn ↑ Ak ⇑ V con x1 = x y
xn = y. Aśı,

d(xi, xi+1) < ωk < φ para toda i = 1, 2, · · · , n↗ 1.

Notemos que x1 ↑ U y xn ↑ V . Se sigue que φ = d(U, V ) = d(x1, xn), lo que
es absurdo pues ωK < φ. Por lo tanto, A ↑ C(X). ↭

Dicho todo lo anterior, ya estamos listos para probar que el hiperespacio
C(X) es compacto.

Teorema 2.44. Si X es un espacio métrico compacto con métrica d, enton-
ces C(X) es compacto.

Demostración. De acuerdo con el teorema 2.37 es suficiente probar que C(X)
es un subconjunto cerrado de 2X . Para ello, sean A ↑ 2X y {Ai}i↑N una su-
cesión de elementos de C(X) tal que ĺımAi = A. Consideremos una sucesión
{ωi}i↑N de números reales positivos, que converge a cero. Luego, como Ai es
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conexo para cada i ↑ N, por el corolario 2.42, se sigue que cada Ai es d-bien-
encadenado. Ahora, aplicando el teorema 2.43 se sigue que A ↑ C(X). Por
lo tanto, C(X) es compacto. ↭

Nuestro siguiente objetivo será mostrar que si X es un continuo, entonces
2X es un continuo. Por un lado ya tenemos que 2X es un espacio métrico con la
métrica de Hausdor! Hd y por el teorema 2.37 tenemos que 2X es compacto,
aśı que falta ver que 2X sea conexo. Para ello, daremos algunos resultados
que no ayudaran a demostrar este hecho.

Teorema 2.45. Sean un continuo X con métrica d y n ↑ N. Si Dmáx denota
la métrica en X

n, dada por

Dmáx = máx{d(x1, x2), ..., d(xn, yn)},

para cada par (x1, ..., xn), (y1, ..., yn) ↑ X
n, entonces la función fn : Xn

↗↘

Fn(X), definida por fn((x1, ..., xn)) = {x1, ..., xn} es suprayectiva y continua.

Demostración. Primero veamos que fn es suprayectiva. Para ello, sea A =
{x1, ..., xm} ↑ Fn(X). Por un lado tenemos que si m = n, se cumple qe
(x1, ..., xn) ↑ X

n y aśı fn((x1, ..., xm)) = A. Por otro lado si m < n, entonces
note que xm+1 = ... = an = am, aśı (x1, ..., xm, xm+1, ..., xn) ↑ X

n. Por lo
tanto, fn((x1, ..., xm, xm+1, ..., xn)) = A, es decir, fn es suprayectiva.

Por último veamos que fn es continua. De hecho se probará que fn es uni-
formemente continua. Sean ω > 0 y (x1, ..., xn), (y1, ..., yn) ↑ X

n tales que

Dmáx((x1, ..., xn), (y1, ..., yn)) = máx{d(x1, y1), ..., d(xn.yn)} < ω,

entonces d(xi, yi) < ω, para cada i ↑ {1, ..., n}. De modo que

{x1, ..., xn} → N(ω, {y1, ..., yn}) y {y1, ..., yn} → N(ω, {x1, ..., xn}).

Aśı Hd({x1, ..., xn}, {y1, ..., yn}) < ω, es decir, Hd(fn(x1, ..., xn), fn(y1, ..., yn))
< ω. Por lo tanto, fn es uniformemente continua. ↭

Por el teorema 2.45, podemos probar que el hiperespacio Fn(X) es un
continuo.

Lema 2.46. Sea un continuo X, entonces Fn(X) es un continuo, para cada
n ↑ N.
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Demostración. Al ser X un continuo, se sigue que X
n es un continuo con

métrica Dmáx por el teorema de Tychono! [1, Teorema 7.2.2]. Además se
sabe que Xn es conexo si X es conexo [1, Teorema 8.1.18]. Aśı por el teorema
2.45, tenemos que Fn(X) es la imagen continua de un conjunto compacto y
conexo, por lo que Fn(X) es compacto y conexo. Por lo tanto, F (X) es un
continuo. ↭

Teorema 2.47. Sea un continuo X, entonces el hiperespacio Fn(X) es denso
en 2X .

Demostración. Sean A ↑ 2X y ω > 0. Notemos que la familia {B(a, ω) :
a ↑ A} es una cubierta abierta de A y dado que A es compacto existen
a1, a2, ..., an ↑ A tales que A →

⋃
n

i=1 B(ai, ω). Ahora consideremos a la co-
lección {a1, a2, ..., an}, entonces por el teorema 2.4, apartado (iv) tenemos
que N(ω, {a1, a2, ..., an}) =

⋃
n

i=1 B(ai, ω), luego A → N(ω, {a1, a2, ..., an}).
Por otro lado la colección {a1, a2, ..., an} → A y como A → N(ω, A), se
sigue que {a1, a2, ..., an} → N(ω, A). Aśı, por el teoram 2.10, tenemos que
Hd(A, {a1, a2, ..., an}) < ω, es decir, la colección {a1, a2, ..., an} ↑ BHd

(A, ω) ⇑
F (X). Por lo tanto, el hiperespacio Fn(X) es denso en 2X . ↭

Teorema 2.48. Sea un continuo X, entonces 2X es un continuo.

Demostración. Sea fn la función del teorema 2.45, entonces fn(X) = Fn(X),
para todo n ↑ N. Puesto que Fn(X) es conexo y F1(X) → Fn(X), para todo
n ↑ N, entonces F (X) =

⋃
n

i=1 Fn(X) es conexo, pues es la unión de conexos
que intersectan a un conexo en común, a saber F1(X). Aśı F (X) es conexo.
Ahora, por el teorema 2.47 tenemos que 2X = F (X), se sigue que 2X es
conexo. Además por el teorema 2.37, tenemos que 2X es compacto. Por lo
tanto, el hiperespacio 2X es un continuo. ↭

La conexidad de C(X) se deriva del hecho de que este es conexo por arcos
véase [10, página 84]. Por lo tanto, el hiperespacio C(X) es un continuo. Para
finalizar este caṕıtulo daremos un resultado que se deduce del teorema 2.44.

Corolario 2.49. Sea un espacio métrico compacto X. Entonces cada suce-
sión de subcontinuos de X tiene una subsusesión convergiendo a un subcon-
tinuo de X, por lo que cada sucesión convergente de subcontinuos de X tiene
un subcontinuo de X como su limite.
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Caṕıtulo 3

Modelos de Hiperespacios

Desde una perspectiva geométrica, los modelos de hiperespacios represen-
tan un tema sumamente atractivo. Estos modelos, como mencionamos pre-
viamente, se presentan como una herramienta de gran poder para descubrir
nuevas propiedades y resultados en los hiperespacios. Sin embargo, lamenta-
blemente, como veremos más adelante, solo unos pocos hiperespacios pueden
ser modelados.

3.1. Modelo para C([0, 1])

Los modelos geométricos para los hiperespacios son imágenes que mues-
tran como se ven estos espacios. En esta sección construiremos un modelo
para el hiperespacio de subcontinuos del intervalo cerrado [0, 1].

Sea X = [0, 1] y consideremos el hiperespacio de subcontinuos de X es
decir

C([0, 1]) = {[a, b] → [0, 1] : 0 ⇐ a ⇐ b ⇐ 1}.

Nótese que cada elemento de C([0, 1]) es un subintervalo cerrado, conexo y
no vaćıo de [0, 1].

Teorema 3.1. Si T = {(a, b) ↑ R2 : 0 ⇐ a ⇐ b ⇐ 1}, entonces la función
⇁ : C([0, 1]) ↗↘ T definida, para cada [a, b] ↑ C([0, 1]), por ⇁([0, 1]) = (a, b)
es un homeomorfismo.

Demostración. (i) Veamos que ⇁ es inyectiva, para ello sean [a, b], [c, d] ↑
C([0, 1]) y supongamos que ⇁([a, b]) = ⇁([c, d]). Por definición de ⇁

65
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tenemos que (a, b) = (c, d), esto último es equivalente a que a = c y
b = d, es decir, [a, b] = [c, d]. Por lo tanto, ⇁ es una función inyectiva.

(ii) Para ver que ⇁ es suprayectiva tomemos un punto del codominio T ,
digamos p = (a, b) ↑ T . Aśı existe un subintervalo [a, b] ↑ C([0, 1]) tal
que ⇁([a, b]) = p. Por lo tanto, hemos demostrado que ⇁ es una función
suprayectiva. Luego, ⇁ es biyectiva.

(iii) Ahora veamos que ⇁ es una función continua. Para ello considere-
mos una sucesión de subintervalos {[an, bn]}→n=1 de C([0, 1]) tal que
ĺım
n↓→

[an, bn] = [a, b]. Entonces deseamos ver que ĺım
n↓→

⇁([an, bn]) = ⇁([a, b])

también existe. Dado que la sucesión {[an, bn]}→n=1 converge a [a, b], exis-
te n ≃ N tal que Hd([an, bn], [a, b]) <

ω⇐
2
. Ahora, observe que

N

(
ω
△
2
, [a, b]

)
=

(
a↗

ω
△
2
, b+

ω
△
2

)

y

N

(
ω
△
2
, [an, bn]

)
=

(
an ↗

ω
△
2
, bn +

ω
△
2

)
.

Luego, por el teorema2.10, tenemos que [a, b] →


an ↗

ω⇐
2
, bn +

ω⇐
2



y [an, bn] →

a↗

ω⇐
2
, b+ ω⇐

2


. Aśı, tenemos que an ↗

ω⇐
2
< a y b <

bn+
ω⇐
2
. Por otro lado también tenemos que a↗ ω⇐

2
< an y bn < b+ ω⇐

2
.

De estas últimas desigualdades llegamos a que a ↗ an <
ω⇐
2
y b ↗

bn <
ω⇐
2
. Ahora, si sumamos y elevamos al cuadrado las desigualdades

anteriores tenemos que (a ↗ an)2 + (b ↗ bn)2 < ω
2, lo cual implica que

(a↗ an)2 + (b↗ bn)2 < ω. Aśı, si n > N entonces d((an, bn), (a, b)) <
ω. Por lo tanto, concluimos que la sucesión de puntos {(an, bn)}→n=1

converge al punto (a, b) en R2. Aśı concluimos que ⇁ es una función
continua.

Por último, note que el dominio de la función es un continuo y por tanto
compacto y el codominio es de Hausdor!, entonces la función es cerrada y
por el teorema [1, Proposición 3.1.20], ⇁ es un homeomorfismo. ↭

Hasta este momento ya se puede decir que un modelo para C([0, 1]) es el
triángulo T como se muestra en la siguiente figura.
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Figura 3.1: Modelo para el hiperespacio C([0, 1]).

Otra forma de respresentar a C([0, 1]) es usando la función ψ : C([0, 1]) ↗↘
R2 definida, para cada [a, b] ↑ C([0, 1]), por ψ([a, b]) = (a+b

2 , b↗ a).
Tenemos que ψ : C([0, 1]) ↗↘ R2 es un homeomorfismo, donde ψ(C([0, 1]))
es el triángulo que tiene como vértices a los puntos (0, 0), (1, 0) y (12 , 1), el
cual lo denotamos por ↫, es decir,

↫= {(x, y) ↑ R2 : y ⇐ 2, y ≃ 0 y 2x ⇐ 2↗ y},

cuya representación gráfica se muestra en la siguiente figura

Figura 3.2

Pasemos ahora a ver como quedan representados algunos subintervalos

(i) El intervalo [0, 1] queda representado en el triángulo ↫ por el punto
C = (12 , 1).
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(ii) Los conjuntos singulares {a} = [a, a], donde a ↑ [0, 1] quedan represen-
tados en la base del triángulo, pues ψ([a, a]) = (a, 0).

(iii) Los intervalos de la forma [0, b], quedan representados por la recta
izquierda del triángulo. Pues ψ([0, b]) = ( b2 , b), es decir, todos los puntos
de esta forma estan sobre la recta y = 2x.

(iv) Los intervalos de la forma [a, 1] quedan representados en la recta de-
recha del triángulo. Pues ψ([a, 1]) = (a+1

2 , 1 ↗ a), es decir, todos los
puntos de esta forma estan sobre la recta y = 1↗ x.

3.2. Modelo para C(S1)

Ahora construyamos un modelo para el hiperespacio de subcontinuos de
la circunferencia unitaria de R2. En el hiperespacio de subcontinuos de S

1

solo contamos con tres subcontinuos los cuales son los conjuntos de un solo
punto, a los subarcos y a la cincunferencia misma S

1. Para cada subarco A

de S
1 sean m(A) el punto medio de A en S

1 y -(A) la longitud de A.

Notación 3.2. Sea D = {(x, y) ↑ R2 : x2 + y
2
⇐ 1} el disco unitario de R2.

Teorema 3.3. Sea ▷ : C(S1) ↗↘ D definida, para cada A ↑ C(S1), por

▷(A) =






[
1↗

-(A)

2ς

]
m(A) si A ↑ C(S1) \ {S1

},

(0, 0) si A = S
1
.

La función ▷ es un homeomorfismo.

Demostración. Primero veamos que ▷ es inyectiva. Para ello sean A,B ↑

C(S1) tales que A ⇒= B. Si A = S
1 y B ⇒= S

1, entonces ▷(A) ⇒= ▷(B). De
forma similar se tiene para el caso de que A ⇒= S

1 y B = S
1.

Ahora supongamos que A,B ↑ C(S1)\{S1
}, entonces tenemos los siguientes

casos:

(i) Sim(A) ⇒= m(B) y -(A) ⇒= -(B), como ▷(A) y ▷(B) están en la recta que
pasa por el origen (0, 0) y los puntos m(A) y m(B), respectivamente,
además estos dos últimos puntos son distintos. Luego, ▷(A) ⇒= ▷(B).
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(ii) Si m(A) ⇒= m(B) y -(A) = -(B), sean m(A) = (a1, a2) y m(B) =
(b1, b2). Entonces, a1 ⇒= b1 o a2 ⇒= b2. Supongamos que a1 ⇒= b1, luego(
1↗

-(A)

2ς

)
a1 ⇒=

(
1↗

-(b)

2ς

)
b1, por tanto ▷(A) ⇒= ▷(B). De forma

similar se obtiene el mismo resultado para el caso a2 ⇒= b2.

(iii) Si m(A) = m(B) y -(A) ⇒= -(B), entonces

(
1↗

-(A)

2ς

)
⇒=

(
1↗

-(B)

2ς

)
,

se sigue que

(
1↗

-(A)

2ς

)
m(A) ⇒=

(
1↗

-(B)

2ς

)
m(B), es decir, ▷(A) ⇒=

▷(B).

De los tres casos anteriores concluimos que ▷ es una función inyectiva. Ahora
veamos que ▷ es suprayectiva, es decir, deseamos probar que para cada punto

(x, y) ↑ D, existe A ↑ C(S1) tal que

(
1↗

-(A)

2ς

)
m(A) = (x, y). O sea que

1↗
-(A)

2ς

 ||m(A)|| = ||(x, y)||, que es lo mismo que 1↗
-(A)

2ς
= ||(x, y)||. De

esto último tenemos tres casos:

(i’) Si ||(x, y)|| = 0, entonces 1↗
-(A)

2ς
= 0, lo cual implica que -(A) = 2ς.

Aśı, A = S
1 con lo cual ▷(A) = (x, y).

(ii’) Si ||(x, y)|| = 1, entonces 1 ↗
-(A)

2ς
= 1 y (x, y) ↑ S

1, por lo que

-(A) = 0. Aśı, considerando a A = {(x, y)} se sigue que ▷(A) = (x, y).

(iii’) Si 0 < ||(x, y|| < 1, entonces 0 < 1↗
-(A)

2ς
< 1, esto es, 0 < -(A) < 2ς.

De esto, A es un arco de S
1. Si r es el rayo con punto inicial (0, 0),

podemos elegir un punto (z, w) ↑ r⇑S
1, de tal manera que 0 < -(A) <

2ς y m(A) = (z, w). Por lo tanto, ▷(A) = (x, y).

Aśı de los tres casos anteriores tenemos que ▷ es suprayectiva, y por lo tanto,
▷ es una función biyectiva.

Resta probar la continuidad de ▷. Para ello sea {An}n↑N una sucesión de
elementos de C(S1) \ {S1

} que converge a A en C(S1) \ {S1
}. Observe que

si xn y yn son los puntos extremos de An y x y y son los puntos extremos
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de A, entonces ĺım
n↓→

xn = x y ĺım
n↓→

yn = y. Dicho esto, ĺım
n↓→

m(An) = A y

ĺım
n↓→

-(An) = -(A). Es decir , - y m son funciones continuas en C(S1) \ {S1
}.

Por lo tanto, ▷ es continua en C(S1) \ {S
1
}. Por último probemos que ▷

es continua en S
1. Para ello sea {An}n↑N una sucesión de arcos de S

1 que
converge a A = S

1. Por el comportamiento de la función ▷, tenemos que entre
más grande sea el arco An, su longitud tiende a 2ς y aśı ▷(An) tiende al origen.
Como la sucesión {An}n↑N tiende a S

1, entonces el ĺım
n↓→

▷(An) = (0, 0). Por

lo tanto, ▷ es continua. Ahora, como el dominio es compacto y el codominio
es Hausdor! se sigue que ▷ es un homomorfismo. ↭

Pasemos ahora a ver como quedan representados algunos subcontinuos
de la circunferencia en el disco D. Para ello tenemos los siguientes casos

(i) Si A ↑ C(S1) tal que A = {x}, entonces la imagen de A bajo ▷ es

▷(A) =

1↗ ϖ(A)

2ϱ


m(A). Note que la longitud de A es cero, entonces

▷(A) = m(A), es decir, la imagen de A bajo ▷ es el punto medio de A el
cual es un punto de la frontera del disco D. En general, si consideramos
al hiperespacio F1(S1), su imagen bajo ▷ es ▷(F1(S1)) = S

1. Este hecho
se ilustra en la siguiente figura 3.3.

Figura 3.3

(ii) Ahora consideremos al conjunto de subcontinuos de S
1 cuya longitud

sea fija, digamos l, es decir, sea Cl(S1) = {A ↑ C(S1) : -(A) =
l para cada l ↑ (0, 2ς]}. La imagen de Cl(S1) bajo ▷ esta representa-
da por una circunferencia con centro en el origen. De hecho mientras
más chica sea la longitud l de A, más grande será el radio de la circun-
ferencia. Este hecho se muestra en la siguiente figura 3.4.
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Figura 3.4

3.3. Modelo del triodo simple

El siguiente continuo que consideraremos es el triodo simple T . Recor-
demos que este continuo esta formado por la unión de tres arcos que coinciden
exactamente en un punto en común, el cual es un extremo de cada uno de los
arcos, veáse definición 1.56. Notemos que hay dos clase de subcontinuos en T,
los cuales son, aquellos que tienen el vértice v y aquellos que no lo contienen.
En otras palabras el hiperespacio C(T ), lo podemos ver como sigue

C(T ) = C(L1) ↓ C(L2) ↓ C(L3) ↓ Cv(T ),

donde L1, L2 y L3 son los tres arcos que coinciden en el vértice v de T

y además Cv(T ) = {A ↑ C(T ) : v ↑ A}. Como cada Li para i = 1, 2, 3
es un arco, entonces por el modelo de la sección 3.1 cada C(Li) puede ser
representado por triángulo convexo como se muestra en la figura 3.5.

Figura 3.5: Para cada i = 1, 2, 3, se tiene que C(Li) es homeomorfo a un
triángulo.
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Observe que el lado punteado de cada uno de los tres triángulos indican
que sobre ese lado se encuentran los subcontinuos de L1, L2 y L3.

Ahora sea A ↑ Cv(T ), para i = 1, 2, 3, hacemos Ji = A ⇑ Li. Entonces
cada Ji es un subcontinuo de Li que contiene a v, este continuo podŕıa constar
de un solo punto el cual seŕıa el vértice v. Sea ai la longitud de Ji. De manera
que podemos asignarle a A un punto de R3 dado por (a1, a2, a3). Notemos
que esta asociación es inyectiva pues A esta determinado por las longitudes
de J1, J2 y J3. También notemos que como cada una de las longitudes ai

podŕıa variar desde 0 hasta 1, entonces la imagen de esta asociación es un
cubo sólido (o 3-celda). Hasta este momento tenemos que los subcontinuos
de T que contienen a v pueden ser identificados por el cubo C = [0, 1]3 como
se muestra en la figura 3.6.

Figura 3.6: Representación de los elementos de Cv(T ).

De nuevo observemos que las aristas punteadas de C indican cada uno de los
tipos de subcontinuos de Li, para cada i = 1, 2, 3, que contienen a v. Aśı que
vamos identificar estas aristas con la de los triángulos marcadas en la figura
3.6, de esta forma el hiperespacios C(T ) es un cubo sólido en R3 con tres
triángulos convexos pegados, como se muestra en la figura 3.7.
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Figura 3.7: Modelo del triodo simple.

Para un estudio más profundo acerca de los modelos de los hiprespacios
sugerimos al lector consultar [8].
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