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Introduccion

En este trabajo presentamos algunos resultados relacionados con la teoria
de continuos e hiperespacios. La teoria de continuos tiene sus origenes en el
siglo XIX cuando G. Cantor [1845-1918] da por primera ves la definicién
orignal de continuo la cual establece que un continuo es un subconjunto per-
fecto, es decir, cerrado y denso en si mismo conexo en un espacio Euclidiano.
Tiempo més tarde los matematicos Bronislaw Knaster [1893-1980], Kazi-
mierz Kuratowski [1896-1980] y Waclaw Sierpinski [1882-1983] se dedicaron
a cultivar la Teoria de los Continuos y casi al mismo tiempo se empezaron
estudiar también los hiperespacios de continuos. En la actualidad entedemos
que un continuo es un espacio métrico no vacio compacto y conexo.

En el capitulo 1, se presentan algunos resultados previos acerca de los
espacios métricos y topoldgicos, ya que estos serviran para los capitulos si-
guientes. Después introduciremos a los continuos, veremos algunos ejemplos
y algunas propiedades interesantes acerca de ellos. Estudiaremos un poco a
los continuos encadenables. Por 1ltimo, se tratara a profundidad las descom-
posiciones de un continuo que no son mas que una particion de un continuo
X. Primero daremos la definicién de espacio de descomposicién en general y
veremos cuando un espacio de descomposiciéon de un continuo es continuo.

En el capitulo 2, se centra en estudiar a los hiperespacios de un continuo
X, estos son familias de subconjuntos de X que cumplen alguna propiedad
en particular. Los mas estudiados son:
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2% ={A C X : A es cerrado de X y no vacio},
C(X)={A€2¥: A es conexo},
Cp(X) ={A € 2 : A tiene a lo méas n componentes},
F.(X)={AC X : A tiene a lo mas n puntos},

F(X) =] F.(X).

Al hiperespacio C'(X) se le conoce como el hiperespacio de subcontinuos
de X a F,(X) como el n-ésimo producto simétrico. Veremos que estos hiper-
espacios se les pueda dotar de una métrica llamada métrica de Hausdorff, se
daran algunos resultados interesantes que cumple esta métrica. Después in-
troduciremos una clase de conjuntos llamados Vietéricos, estos nos ayudaran
a construir una topologia para el hiperespacio 2% llamada topologia de Vie-
toris y se vera que la topologia generada por la métrica de Hausdorff coincide
con la topologia de Vietoris. Por tltimo, se estudiara la convergencia en el
hiperespacio 2%, se mostrardn algunos reultados interesantes, y veremos que
este hiperespacio es un continuo.

Finalmente, en el capitulo 3 presentamos tres modelos de C(X), para
cuando X es alguno de los siguientes continuos: el intervalo cerrado [0, 1], la
circunferencia y el triodo simple. Basicamente, un modelo geométrico para
un hiperespacio H, (donde H puede ser 2%, C(X),C,(X) o F,(X)) de un
continuo X, es un espacio conocido que es homeomorfo a H y cuyos elementos
son puntos en lugar de subconjuntos de X. En [§] se presentan mas modelos
geométricos de C'(X) y Fo(X).



Capitulo 1

Preliminares

En este capitulo escribiremos a manera de repaso algunas definiciones y
propiedades acerca de los espacios métricos y topoldgicos, los cuales nos seran
muy utiles en capitulos siguientes. Como es usual denotaremos por R, N y
R*TU{0}, el conjunto de numeros reales, el conjunto de los numeros naturales
y el conjunto de numeros reales positivos unién con el cero respectivamente.

Definicion 1.1. Sea X un conjunto no vacio. Una métrica en X es una
funcion d : X x X — RT U {0} tal que para cualesquiera x,y,z € X :

(i) d(z,y) = 0,

(i) d(z,y) = d(y, z),
(iii) d(z,y) =0siy sélosiz =y,
(iv) d(z,y) < d(z,z) +d(z,y).

El siguiente teorema enuncia que una funcién d que cumpla con los incisos
(i), (iii) y (iv) es autométicamente una métrica.

Teorema 1.2. [3, Teorema 2.2] Sea X un conjunto no vacio yd : X x X —
R* U {0} wuna funcién. Entonces d es una métrica para X si y solo si las
siguientes condiciones se satisfacen

(i) d(z,y) =0,

(i) d(z,y) =0siysélosiz =y,
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(i)

d(z,y) < d(z,z) +d(z,vy).

Definicién 1.3. Un espacio métrico es una pareja formada por un con-
gunto no vacio X y una métrica d definida en X .

Ejemplo 1.4. Algunos ejemplos de espacios métricos son:

(i)

(i)

(iii)

En R, la funcién d' : R x R — RT U {0} definida, para cada (x,y) €
R x R por d'(z,y) = |x — y| es una métrica.

En general, para cada n € N, la funcion d* : R" x R — Rt U {0},
definida, para cada (z,y) € R X R, por

donde © = (21,29, ..., Tn) Y Y = (Y1, Y2, -, Yn), €S una métrica para R™,
conocida como métrica euclidiana.

Si consideramos T : R* x R" — R* U {0}, definida por

n

T(.’Iﬁ,y) = Z |$1 - yi‘a

i=1
es una métrica para R™, conocida como la métrica del taxista.

En R™, la funcion dysx = méx{|z; — yi| : x;,y; € R} es una métrica
para R™ y se le llama métrica uniforme.

Si X es un conjunto no vacio. Definimos dgis : R x R — R U {0}
como
0 si xz ,
ddz‘s - { . 7& Y
1 si x=y.

Asi, dgs es una métrica para el conjunto X y recibe el nombre de
métrica discreta.

Las demostraciones de los ejemplos mencionados se pueden consultar en

[31.



Notacion 1.5. Si X es un espacio métrico con métrica d lo denotamos por
(X,d).

Definicién 1.6. Sean un espacio métrico (X,d) yx € X, ¢ > 0 . La bola
abierta centrada en x y de radio € es el conjunto

B(z,e) ={y € X : d(z,y) < €}.

Definicién 1.7. La distancia de un punto x de un espacio métrico (X, d)
a un subconjunto A de X, es

d(x, A) = inf{d(z,a) : a € A}.

Definicién 1.8. La distancia entre dos subconjuntos A y B de un
espacio métrico (X, d) con métrica d, estd dada por

d(A, B) = inf{d(a,b):a € A y b € B}.

Definicién 1.9. El didmetro de un subconjunto A de un espacio métrico
(X,d) es
didm(A) = sup{d(a,b) : a,b € A}.

Véase figura 1.1.

Figura 1.1: Didmetro de un conjunto.

Teorema 1.10. [3, Lema 5.8] Sean (X,d) un espacio métrico y a € X. La
funcion f: X — RTU{0} definida para cada x € X, por f(x) =d(z,a), es
continua en X.
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Teorema 1.11. [3, Lema 5.9] Sea (X, d) un espacio métrico y A C X. La
funcion g : X — RT U {0} definida, para todo x € X, por g(x) = d(x, A)
es continua.

Proposicién 1.12. Si (X,d) es un espacio métrico, A es un subconjunto
compacto de X, entonces se cumple lo siguiente:

(i) Stz € X, entonces existe a € A tal que d(z, A) = d(z,a).

(i) Si B es un subconjunto compacto de X, entonces ezxistena € A yb € B

tales que d(A, B) = d(a,b).

Demostracion. (1) Sea f: A C X — RTU{0} definida, para cada zy € A,
por f(xg) = d(z, o). Por el teorema tenemos que f es continua.
Como A es compacto se sigue que f es acotada, asi existe el infimo de
f(A), es decir, existe a € A tal que f(a) < f(zo), para cada zy € A.
Luego, de la definicién de d(z, A) se sigue que d(z, A) = d(x, a).

(ii) Sea g : A — R* U {0} definida, para cada zq € A, por g(xy) =
d(xg, B). Por el teorema tenemos que g es continua. Como A es
compacto se sigue que g es acotada y por tanto existe el infimo de g(A),
es decir, existe a € A tal que g(a) < g(zo). Asi que, d(a, B) < d(z, B).
Ademds, como B es compacto y por el inciso (i), existe b € B tal que
d(a, B) = d(a,b), por lo que d(A, B) = d(a,b).

[ |

Teorema 1.13. [3, Lema 5.26] Sean (X,d) un espacio métrico, A un sub-
conjunto compacto de X y B un subconjunto cerrado y no vacio de X. Si

AN B #0, entonces d(A, B) > 0.

Teorema 1.14. [3, Corolario 4.13] Si A es un subconjunto de un espacio
métrico X con xg € A, xg € A si y sélo si existe una sucesion {i}ien en A
tal que lim x; = z.

1—00
Teorema 1.15. [3, Teorema 4.16] Si {x,}°, converge a xq en un espacio
métrico X, entonces toda subsucesion de {x,}2, converge a xy.

Teorema 1.16. [3, Teorema 3.38] Sea n € N y K C R". Entonces K es
compacto si y solo st K es cerrado y acotado en R™.



Definicién 1.17. Sean (X,dx) y (Y,dy) espacios métricos y f : X — Y
una funcion biyectiva. Decimos que es una tsometria si para cualesquiera
z,y € X, dx(z,y) = dy(f(2), f(y))-

Definicién 1.18. Sea X un conjunto no vacio. Si d y d son dos métricas
para X . Decimos que d y d son métricas equivalentes si y solo si para
cada x € X y para todo r > 0, existen niumeros €, > 0 y €3 > 0 tales que

By(z,€e1) C Bs(x,r) y Bj(x,€2) C By(w,r).

Definicién 1.19. Sean X y Y dos espacios métricos. Sih : X — Y es una
funcion biyectiva y continua y h™' : Y — X es continua, decimos que h es
un homeomorfismo.

Definicién 1.20. Sea X un conjunto no vacio. Una topologia sobre el con-
junto X es una familia T de subconjuntos de X tal que

(i) 0,X €.
(i) Si % esuna familia arbitraria de subconjuntos de T, entonces |\ J% € T.

(iii) SiU y V son elementos de T, entonces UNV € 7.

Al par (X, 1) se le llama espacio topoldgico.

Definicién 1.21. Sea X un espacio topologico y x € X. Un subconjunto V'
de X es una vecindad de x si contiene un abierto U de X que contiene a
x.

Definicién 1.22. Sea (X, 7) un espacio topolégico. Una base para la topo-

logia T es una familia 8 C 7 tal que para cada U € T, existe € C A tal que
U=U¢%.

Definicién 1.23. Sea (X, 1) un espacio topoldgico. Una subbase para la
topologia es una familia # C 7 tal que la familia de todas las intersecciones
finitas de elementos de # forma una base para 7.

Teorema 1.24. [2, proposicon 2.42.] Sea X # 0. Una familia B de subcon-
juntos de X es una base para alguna topologia T si:

(i) 0 ez



6 Preliminares

(ii) Siempre que By,By € B yx € ByN By, existe B € A tal que x € B C
By N By.

(i) X = 2.

Definicién 1.25. Un espacio topologico es conexo si no puede expresar-
se como la union de dos subconjuntos cerrados, ajenos y no vacios de X, o
equivalentemente, si no puede expresarse como la union de dos subconjun-
tos abiertos, ajenos y no vacios de X. Si X no es conexo, decimos que es
disconexo.

Definicién 1.26. Una pareja (U, V') de subconjuntos de un espacio topoldgico
X es una separacion de X st U y V son abiertos de X, X = U UV,
UNnV=0yU#£0#V.

Observacion 1.27. Algunas observaciones son

(i) Un espacio topoldgico X es conexo si y solo si no eziste una separacion
de X.

(i1) Si X es conexo y X = U UV, donde U y V son abiertos de X y no
vacios, entonces U NV # ().

(i) Si X es conero y X = U UV, donde U y V' son abiertos y ajenos de
X, entonces U =0 oV =1. De hecho UNV =0, se tiene que (U =
yV=X)o(U=XyV=0).

Ejemplo 1.28.

(i) Es claro que cualquier conjunto con la topologia indiscreta es un espacio
conexo, pues dichos espacios no contienen dos subconjuntos abiertos no
vacios diferentes.

(il) Si X es un conjunto con la topoldgia discreta y x € X, entonces los
conjuntos {x} y X \ {x} son abiertos de X, ajenos, no vacios y {x} U
(X \ {z}) = X. Luego, X es disconexo.

(iii) Cualquier conjunto infinito X con la topologia cofinita es conexo pues
cualesquiera dos subconjuntos abiertos de X en él tienen interseccion
no vacia.



Proposicién 1.29. [1, proposicon 8.1.4] Los subconjuntos conexos de R son
exactamente el vacio, los subconjuntos unipuntuales y los intervalos.

Definicién 1.30. Una familia {A; : i € I} de subconjuntos de un conjunto
X tiene la propiedad de tnterseccion finita si, dado J C I finito, se cumple

que ey Ai # 0.

Teorema 1.31. [1, Proposicion 8.1.11] Sea {A; : j € J} es una familia de
subconjuntos conexos de un espacio topologico X. Si ﬂjGJ A; # 0, entonces
Ujes A4j es conezo.

Definicién 1.32. Un espacio topologico X es conexo por trayectorias si
dados dos puntos x,y € X, existe una funcion continua o : [0,1] — X tal

que c(0) =z yo(l) =y.

Teorema 1.33. [1, Teorema 8.2.3] Cualquier espacio topoldgico X conexo
por trayectorias es conexo.

Recordemos los axiomas de separacién y algunos resultados de ellos.

Definicién 1.34. Sea X un espacio topoldgico.

(i) Decimos que X es un espacio topoldgico Ty, si dados cualesquiera
dos puntos de X, existe un subconjunto abierto de X que contiene solo
uno de ellos.

(ii) Decimos que X es un espacio topologico es Ty, si dados cualesquiera
dos puntos de X, digamos x,y € X existen subconjuntos abiertos U y
Vde X, tales quex € U, y¢ U, x ¢V yyeV.

(iii) Decimos que X es un espacio topolégico T, o espacio Hausdorff
st dados dos puntos x,y € X existen subconjuntos abiertos U y V' de
X ajenos, tales que x € U yy € V.

(iv) Decimos que X es un espacio topolégico Ts o espacio regular si
dados un subconjunto cerrado F de X yx € X\ F, existen subconjuntos
abiertos U y 'V de X ajenos, tales que x € U y F' C V'; ademdas de ser
un espacio T;.

Proposicién 1.35. [1, Ejemplo 5.1.15] Todo espacio métrico X es un espa-
cio Hausdorff.
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Teorema 1.36. [1, Teorema 5.1.6] Un espacio topoldgico X es un espacio

T si y solo si para todo x € X, el conjunto {x} es un subconjunto cerrado
de X.

Definicién 1.37. Sea X un espacio topolégico Ty. Decimos que X es un
espactio topolégico normal o Ty, si dados dos subconjuntos cerrados F

y Fy de X, existen dos subconjuntos abiertos U y V de X, ajenos, tales que
F1 cU Yy FQ cV.

Definicién 1.38. Sea X un espacio topologico.

(i) Una coleccion % de subconjuntos de X es una cubierta de X si X =
U . St ademds cada uno de los elementos de % es un subconjunto
abierto de X, entonces a % le llamaremos cubierta abierta de X.
Por otro lado, si % es una cubierta de X y ¥ es una subcoleccion de
U , diremos que V' es una subcubierta de % si UV = U .

(ii) Decimos que X es un espacio topolégico compacto si toda cubierta
abierta de X tiene una subcubierta finita.

Proposicién 1.39. [1, proposicion 7.1.6] Si X es un espacio topoldgico com-
pacto, Y es un espacio topoldgico, y existe una funcion continua f : X — Y
tal que f[X] =Y, entonces Y es compacto.

Proposicién 1.40. [1, proposicion 7.1.4] Sean X un espacio topoldgico com-
pacto y F un subespacio cerrado de X. Entonces F' es compacto.

Proposicién 1.41. [1, corolario 7.1.9] Sean X un espacio topoldgico com-
pacto, Y un espacio Hausdorffy f : X — Y una funcion continua, entonces
f es una funcion cerrada.

Proposicién 1.42. [1, Teorema 7.1.7] Sean X un espacio topoldgico Haus-
dorff, y K, y Ky subespacios compactos de X. St K1 N Ky = (), entonces
existen subconjuntos abiertos ajenos U yV de X tales que Ky CU y Ky C V.

Definicién 1.43. Un espacio topoldgico (X, T) se dice que es metrizable
st existe una métrica d sobre X que es compatible con la topologia de X, es
decir, que la topologia T4 coincide con la topologia original de X .

Teorema 1.44. [1|, Teorema 6.5.1] Todo espacio topolégico Hausdorff normal
y sequndo numerable es metrizable.
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Para finalizar esta primera parte enunciaremos los siguientes resultados.

Teorema 1.45. [11, Teorema 2.6/ Si C es un conjunto numerable y U es la
clase de los subconjuntos finitos de C, es decir, si

U={LCC: L esun subconjunto finito de C},

entonces U es numerable.

Teorema 1.46. [9, Teorema 7.1] Sea B un conjunto no vacio. Entonces las
siguientes afirmaciones son equivalentes:

(i) B es numerable.
(ii) Existe una funcién suprayectiva f: N — B.

(iii) Existe una funcién inyectiva f: B — N.

1.1. Continuos

Definicién 1.47. Un continuo es un espacio métrico compacto, conexo y
con mas de un punto. Dado un subconjunto Y de un continuo X, diremos
que Y es un subcontinuo de X si Y es un continuo como subespacio de X
o bien, si 'Y tiene exactamente un punto.

La propiedad de ser un continuo es una propiedad topoldgica, es decir, si
X es un continuo y Y es un espacio métrico homeomorfo a X, entonces Y
también es un continuo. Veamos algunos ejemplos de continuos:

Ejemplo 1.48. Si consideremos [0,1] con la métrica usual, se cumple lo
siquiente:

(i) [0,1] es conexo por ser un intervalo, véase

(ii) [0, 1] es compacto ya que es cerrado y acotado, véase

Asi, [0,1] es un continuo.

Definicién 1.49. Un arco es un espacio topologico homeomorfo al intervalo
cerrado [0,1]. Sia : [0,1] — A un homeomorfismo, diremos que a(0) y a(1)
son los puntos extremos del arco A.
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En la figura 1.2 se representan imagenes de arcos

a4
W @ VY

Figura 1.2: Ejemplos de arcos

Teorema 1.50. Sea un espacio métrico X. Si A es un arco en X, entonces
A es un continuo.

Demostracion. Sea A un arco en X. Existe un homeomorfismo A : [0, 1] —
A. Por el ejemplo sabemos que el intervalo cerrado [0, 1] es compacto
y conexo. Ahora, como la compacidad y la conexidad se preservan bajo fun-
ciones continuas, entonces A es compacto y conexo. Por lo tanto, A es un
continuo. |

Ejemplo 1.51. Sea S' = {(x,y) € R? : 22 + y* = 1} la circunferencia
unitaria con la métrica euclidea de R?, entonces se cumple que

(i) S* es conero pues S es conexo por trayectorias y por el teorema
se tiene que S* es conexo.

(ii) S es compacto pues es un conjunto cerrado y acotado.

Definicién 1.52. Una curva cerrada simple es un espacio topoldgico
homeomorfo a la circunferencia unitaria S*.

En la figura 1.3 se muestran algunas curvas cerradas simples.
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Oans

Figura 1.3: Ejemplos de curvas cerradas simples.

Teorema 1.53. Sea X un espacio métrico. St C' es una curva cerrada simple
en X, entonces C' es un continuo.

Demostracion. Sea C un curva cerrada simple. Entonces existe un homeo-
morfismo h : S* — C. Por el ejemplo , sabemos que la circunferencia
unitaria S' es conexo y compacto. Ahora, como la compacidad y conexidad
se preservan bajo funciones continuas, tenemos que C' es compacto y conexo,
Por lo tanto, C' es un continuo. |

Definicién 1.54. Sea n € N. Una n-celda es un espacio topolégico homeo-
morfo a la bola cerrada n-dimensional B™ en R™, donde

B" ={(z1,...,x,) € R": \/m <1}

Definicién 1.55. Sea n € N. Una n-esfera es cualquier espacio homeo-
morfo a la esfera n-dimensional S™ en R", donde

S™ = {(x1, .., Tny1) € R \/x% +..+a2, =1}

Definicién 1.56. Un triodo simple T es la union de tres arcos que uni-
camente se intersectan en un punto v. El punto v es llamado vértice de T'.
Véase figura 1.4.
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Figura 1.4: Triodo simple.

Teorema 1.57. Sea X es un espacio métrico. Si T es un triodo simple en
X, entonces T" es un continuo.

Demostracion. Sea T = A; U Ay U Az un triodo simple en X con vértice v, es
decir, Ay, A2 y Az son arcos tales que la interseccion dos a dos es {v}. Como
los arcos son continuos, tenemos que A;, As y Az son compactos y conexos.
Luego, A;UA;U Ajz es conexo puesto que Ay N AsN Az = {v}. Més atin, dado
que la unién finita de compactos es un compacto, tenemos que A; U Ay U A3
es compacto. Por lo tanto, T" es un continuo. |

Una propiedad que comparten el arco y la curva cerrada simple, y que no
tiene el triodo simple, es que todo subcontinuo propio con mas de un punto
es un arco, lo cual se demuestra a continuacion.

Teorema 1.58. Sea A un arco. Si B es un subcontinuo propio de A con mds
de un punto, entonces B es un arco.

Demostracion. Sea B un subcontinuo propio de A con més de un punto.
Como A es un arco, entonces existe un homeomorfismo o : A — [0, 1],
dado que B es un subcontinuo de A, entonces B es conexo. Asi a(B) es
un intervalo, el cual es conexo por la proposicion Ademas como B es
compacto se sigue que «(B) es un intervalo cerrado. De esta forma tenemos
que «(B) es homeomorfo al intervalo cerrado [0, 1]. Luego, por transitividad,
tenemos que B es un arco. [ |

Teorema 1.59. Sea C' una curva cerrada simple. Si S es un subcontinuo
propio de C' con mds de un punto, entonces S es un arco.

Demostracion. Sean S un subcontinuo propio de C' con mas de un punto y
p € C\ S, entonces existe 4 : C'\ {p} — (0,1) homeomorfismo. Como S es
conexo, tenemos que [(.5) es un intervalo. Mas aun, al ser S compacto, tene-
mos que (3(.S) es un intervalo cerrado. Asi, (S) es homeomorfo al intervalo
cerrado [0, 1] y por transitividad S es un arco. [ |
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Ejemplo 1.60. Si W = {(z,sen1) € R* : 0 <z < 1}, entonces W en R? es
un continuo llamdo curva senotidal del topologo. Véase figura 1.5.

Tannd
U

Ejemplo 1.61. El continuo ocho, es la union de dos circunferencias uni-
das por un punto, es decir, O = S*U{(x,y) € R*: (x —2)*+y* = 1}. Como
se muestra en la figura 1.6.

Figura 1.5

Figura 1.6: Continuo del ocho

Definicién 1.62. Para n > 1, un n-odo simple es un continuo X que
es union de n arcos Jy, ..., J, que unicamente se intersectan en un punto v
llamado vértice.

Se pueden construir continuos uniendo un nimero finito de continuos de
tal forma que se vallan intersectando cada uno de ellos para que el resultado
sea conexo. La figura resultante de estos continuos son llamadas graficas
finitas.

Definicion 1.63. Un continuo X es una grdfica finita si es la union de
una familia finita de arcos tales que cada par de ellos o son ajenos o se
intersectan en uno o dos de sus puntos extremos.

Algunas gréficas finitas significativas son: el intervalo cerrado [0, 1], la
circunferencia unitaria S! y los n-odos simples. Una vez dicho lo anterior
pasemos a ver otros ejemplos interesantes de continuos.
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Ejemplo 1.64. El continuo de la paleta, es la union de la circunferencia
St del ejemplo con el conjunto [1,2] x {0}, es decir, P = ST U ([1,2] x
{0}) es un continuo. Véase la figura[1.7

Figura 1.7: Continuo de la paleta

Ejemplo 1.65. FEl circulo de Varsovia. Tomemos el continuo de la curva
senoidal del topdlogo W y sea T un arco del punto p = (0,1) al punto q¢ =
(2m,1) de forma que WN'T = {p,q}. Entonces el conjunto Q =W UT es
llamado el continuo del circulo de Varsovia. Véase la figura[1.8

AT
)\

Figura 1.8: Continuo del circulo de Varsovia.

Ejemplo 1.66. Sea X un 5-odo simple este continuo esta representado en

la siguiente figura[1.9.



1.2 Intersecciones anidadas 15

Figura 1.9: El continuo 5-odo simple.

En la figura los puntos terminales de X son e, ea,e3,e4 Y €5 Y U €8
el vértice en el origen en R?.

1.2. Intersecciones anidadas

Una de las técnicas mas importantes para obtener ejemplos interesantes
de continuos es el uso de las intersecciones anidadas. De hecho, se puede decir
que dicha técnica es fundamental para la teoria de continuos, pues, no solo se
utiliza para construir ejemplos, sino que es la idea clave para la demostracion
de muchos teoremas.

Teorema 1.67. Sean X un espacio métrico compacto y { X, }5°, una suce-
sion de subconjuntos cerrados de X tal que para cada n € N; X, C X,,.
Si U es un subconjunto abierto de X tal que (\,—, X, C U, entonces existe
N €N tal que Xy C U.

Demostracion. Dado que U es abierto de X, tenemos que X \ U es cerrado
de X y por tanto compacto. Ademads, sabemos que (),—, X,, C U. Tomando
complementos tenemos que X\U C X\ (2, X,,). Por las leyes de D’Morgan
llegamos a que X \ U C |J,—, (X \ X,,). Ahora note, que {X \ X,, : n € N}
es una cubierta abierta de X \ U y dado que X \ U es compacto existe
una subcubierta finita tal que X \ U C U?:1(X \ Xy,) con ny,--- ,ny €N,

. k .
Asi, tenemos que ﬂj:l Xn, CU. Sea N = méx{ny,---,ni}. Tenemos que
k
Xn =(j=; Xu; y por lo tanto, Xy C U. [ |
El siguiente ejemplo que proporcionamos nos muestra que la interseccién
anidada de conjuntos conexos no es un conexo.
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Ejemplo 1.68. Para cada n € N, sea

X, = [-1,1] x {—%H \{(-%, %) < {0}}.

Observemos que cada X, es un subconjunto conexo de R?, pero

ﬁXn = ({—1,—%} X {O}) u ([%1} x {0}) ,

el cual no es conero, vedse la figura[1.10.

-1.1) a.1)

(-1,1/72) (1,1/2)

(-1,1/n) X (1,1/n)

1.0 —— 1.0

(-1,-1/n) (1,-1/n)

(-1,-1/2) (1,-1/2)

-1,-1) (1,-1)
Figura 1.10

El resultado que sigue muestra una forma de como construir un continuo,
a partir de una familia anidada de subcontinuos.

Teorema 1.69. Sean X un espacio métrico compacto y {X,, : n € N} una
sucesion de subcontinuos de X. St X,,11 C X,,, para cada n € N, entonces
Nizy X es un subcontinuo de X.

Demostracidn. Primero veamos que [~ ; X,, es no vacio. Supongamos lo
contrario, es decir que () —, X,, = 0. Entonces X = X \ () —, X,,. Luego
por las leyes de D’Morgan X = [J2,(X \ X,,). Ahora, note que para cada
n € N, tenemos que X,, es un conjunto cerrado de X, pues, cada X, es un
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subcontinuo, que en particular es compacto y por tanto cerrado de X. Aho-
ra, sea {X \ X,, : n € N} una cubierta abierta de X. Como X es compacto,
existe una subcubierta finita de X, digamos {X; : j € {1,--- ,k}} tal que
Ule(X\Xj) = X. Sea m = max{l, -, k}. Luego X = X \ X,,, por lo
que X, es vacio, lo cual es una contradiccién . Por lo tanto, ,() 2, X, # 0.
Ahora, observe que (2, X,, es un conjunto cerrado dentro del compacto
X. Por lo tanto, se tiene que [, X,, es compacto. Por dltimo veamos que
(Moo, X, es conexo. Supongamos lo contrario, es decir, que () —, X, es dis-
conexo. Entonces existen dos subconjuntos cerrados y ajenos de X tales que
No—, X, = AU B. Ahora, como X es un espacio Ty podemos encontrar
U y V subconjuntos abiertos de X tales que A C U y B C V. Luego,
Mo, X, C UUB. Asf, por el teoremaexiste N € N tal que Xy C AUB.
Como Xy es conexo tenemos que Xy C U o Xy C V. Supongamos que
Xy CU. Puesto que (), X,, C Xy CUy ()~ X» =AU B, se sigue que
B C U, asi BC UNYV lo que es absurdo. Por lo tanto, (2, X,, es conexo y
concluimos que (.2, X,, es un continuo. |

Ejemplo 1.70. La curva universal de Sierpinski. Este continuo famoso
se construye empezando por un cuadrado en el plano R?, es decir, C' = [0, 1]?
dicho cuadrado lo dividimos en 9 cuadrados de lado % y le quitamos el interior
del cuadrado central. De los 8 cuadrados restantes le hacemos lo mismo. Esto
es, a cada uno lo diwvidimos en 9 partes iguales de lado % y le quitamos el
interior del central. A cada uno de estos cuadrados le hacemos lo mismo y
continuamos este proceso una infinidad de veces. El resultado de los cuatro

primeros pasos se muestra en la figura 1.11.

DDoDODODODOOO
o[ Jo o[ Jo o[Je
oooooOoOO0OOO
ooo ooo
o[Jo o[ Jo
ooo ooo
DooooOOOOO
o[Jo o[Jo o[Jo
DDODODDODODOODO

Figura 1.11

Ejemplo 1.71. La curva universal de Menger. Consideremos primero
el cubo en R3, Cub = [0, 1]*. Ahora, si dividimos cada una de las caras de Cub
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en nueve cuadrados congruentes y si ademds hacemos un agujero a través del
interior de cada cuadrado central el resultado nos da un continuo, llamemos-
le My. St continuamos de esta manera con My obtenemos ahora cuarenta y
ocho cuadrados y nueve cuadrados congruentes y de igual maneral si se hace
un agujero a través del interior de los cuadrados centrales, asi obtenemos
otro nuevo continuo Msy. Siguiendo esté algoritmo podemos obtener M, con-
tinuos. La curva universal de Menger es por definicion M = (\,—, M,,. Por
el teorema[1.69, tenemos que M es un continuo. Véase figura 1.12.

CEE N NN NEE)

Figura 1.12

Observaciéon 1.72. El término universal se refiere en este caso, al hecho de
que M contiene una copia topologica de cualquier espacio métrico separable
de dimension uno.

Teorema 1.73. Sea un continuo X y A un subcontinuo de X tal que X \ A
no es conexo. St U y V' son subconjuntos abiertos y ajenos de X tales que
X\NA=UUV, entonces AUU y AUV son subcontinuos de X.

Demostracion. Sea X \ A=U UV, note que X \ U = AUV es un conjunto
cerrado de X. Como X es compacto, tenemos que AUV es compacto.
Ahora supongamos que AUV no es conexo, entonces existen H y K subcon-
juntos cerrados de X, ajenos y no vacios tales que

AUU =HUK.

Como A es conexo se sigue que A = (ANH)U (AN K) y estos dos ultimos
conjuntos son cerrados de X y ajenos. Luego, uno de ellos tiene que ser vacio.
Entonces podemos suponer A = AN H, esto implica que A C H. Dado que
H y K son disjuntos, también se cumple que K C V. Observé que KNV # ()
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pues de lo contrario existirfa un elemento a € K NV, lo cual implica que
a€ KyacV.Comoa€V entonces dado cualquier subconjunto abierto L
de X tal que a € L se tiene que LNV = (), pero a € K C V. As{ tenemos
que a € V lo que es absurdo. Por tanto, K NV # ().
Dicho lo anterior se sigue que X = K U (H UV) donde K y H UV son
subconjuntos cerrados de X, no vacios y ajenos de X. Pero esto es una
contradiccién pues estamos diciendo que X no es conexo. Por lo tanto, AUV
es conexo. Concluimos que AUV es un subcontinuo de X.

Para el caso de AUU se sigue del mismo razonamiento del caso anterior.
Asi, el teorema queda demostrado. [ |

1.3. Continuos encadenables
A continuacion estudiaremos a los continuos encadenables.

Definicién 1.74. Una familia {Uy,--- ,U,} de subconjuntos de un espacio
métrico X es una cadena simple en X si se tiene que U;yNUy # 0 si y sélo
si|j—k| < 1. A cada Uy se le llama eslabon de la cadena simple. Se dice
que una cadena simple C' = {Uy,---U,} conecta a los puntos a y b en X si
aclU; ybelU,.

Teorema 1.75. Sea X un espacio métrico conexo. Si % = {U;}icr es una
cubierta abierta de X y a,b € X, entonces existe una cadena simple que
conecta al elemento a con b cuyos eslabones son miembros de U .

Demostracion. Sea B = {x € X : existe una cadena simple C C % que
conecta a a con x}. La idea de la demostracion es probar que el conjunto B
es un subconjunto abierto y cerrado de X, y dado que X es conexo, tiene
que suceder que X sea igual a B. Nétese que B no es vacio porque a € B.
Dicho lo anterior veamos que B es un subconjunto abierto de X. Para ello
sea € B. Luego, existe una cadena simple C = {Uy,--- ,U,} C % de tal
forma que a € U; y x € U,. Como cada U,, es un subconjunto abierto de X
se sigue que U,, C B,y de aqui obtenemos que B es un subconjunto abierto
de X.

Por tltimo veamos que B es un subconjunto cerrado de X. Para ello proba-
remos que B = B. Sea x € B, donde B = BU frx(B), si # € B no hay nada
que probar. Por otro lado, supongamos que = € fry(B). Como % es una
cubierta abierta de X, existe U € % tal que z € U. Como x € frx(B) se



20 Preliminares

sigue que U N B # (). Asi, existe p € UN B y por lo tanto, existe una cadena

simple {V} ---V,,} C % que une a a con p. Tomemos j € {1,--- ,m} tal que
UNV;#0, tenemos que {Vi,---,V;,, U} es una cadena simple que conecta
a a con x, y por lo tanto, x € B. [ |

Definicién 1.76. Una cadena simple C' de conjuntos abiertos en un espacio
métrico X es llamada e-cadena si el didmetro de cada eslabon de C' es
MENOT que €.

Definicién 1.77. Un espacio métrico es encadenable si existe una e-cadena
que cubre a X. Si a,b € X, entonces X es encadenable de a a b si para cada
e > 0, existe una e-cadena C = {C4,...,C,} que cubre a X tal que a € Cy y
beC,.

1.4. Descomposiciones de continuos

En esta seccién vemos otra forma de construir continuos a partir de los ya
conocidos, este se logra por el método de las descomposiciones semicontinuas
superiores. Describimos qué es un espacio de descomposicion, damos algunos
resultados interesantes y vemos cuando una descomposiciéon es un continuo.

Sea S un espacio topoldgico no vacio. Una familia & de conjuntos no
vacios y ajenos dos a dos de S tales que | JZ = S, se llama particién de
S. Si los miembros de la particién son todos subconjuntos cerrados de S, se
dice que la particién es cerrada.

Teorema 1.78. Sean (S, 7) un espacio topoldgico no vacio y 2 una particion
de S. La coleccion

T(@):{%C@: U UET},
Uew
una topologia para 9.

Demostracion. Note que Z € T(Z) porque 2 C P yestalque|JZ =S € 7.
Como 0 C 2y b =10 € T, se tiene que ) € T(2).

Ahora, tomemos a %,V € T(Z). Luego, %,V C 2y cumplen que | J,.,, U €
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7y Uyey V € 7. Luego, [Upey U] N [Uyey V] € 7. Ahora note que

Ju Uvi= U o

Uew Vey Ceunv

N

asi concluimos que |Jocyny C es un abierto de S. Por lo tanto, Z NV €

7(2).

Por dltimo sea {U; : ¢ € I} una familia de subconjuntos de T'(Z). Veamos
que U, Ui € T(2). Para cada i € I, tenemos que | J o, A es un abierto de
S. Luego, U;e; (U, A) es un abierto de S. Por lo tanto, (e, Ui € T(2).
|

Definicién 1.79. Sea S un espacio topoldgico y & una particion de S. El
espacio topolégico (2,T(9)) es llamado espacio de descomposicion de
S y la topologia T(2P) es llamada la topologia de descomposicion.

Intuitivamente una descomposicion es el espacio que se obtiene del espa-
cio original indentificando todos los puntos de cada miembro de una particion
determinada. Por esta razén, las descomposiciones frecuentemente se les lla-
ma espacios de identificacién o también se les suele llamar espacios cocientes.
Un ejemplo de espacio de descomposicién es el siguiente:

Ejemplo 1.80. [9, Seccion 22, Ejemplo 4, pdgina 139] Sean X = {(z,y) €
R*: 22 +y* <1}y 2 = {{(z,y)} : 2+ ¢y* < 1}U{(z,y) € R?* : 2* +y* = 1},
El espacio (2,T(2)) es un espacio descomposicion que es homeomorfo a la
esfera.

Las descomposiciones son una fuente importante de ejemplos, contra-
ejemplos en la teoria de continuos. Cabe mencionar que un espacio de des-
composicion de un continuo X puede no ser un continuo incluso cuando los
miembros de la particion sean subconjuntos cerrados de X. Como veremos

en el ejemplo [1.92]

Teorema 1.81. [1, Teorema 4.4.1, pdgina 116/ Sea (S,T) un espacio to-
poldgico, Y un conjunto no vacio y g : S — Y wuna funcion suprayectiva,
entonces

,={ECY: g'E] €T}

es una topologia para 'Y .
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Notemos que la funcién g es continua con la topologia 7,. Ademas, si 7
es otra topologia para Y con la que g resulta ser continua, entonces 7 C 7.

Definicién 1.82. Un espacio topologico Y es un espacto cociente de un
espacto topoldgico S si existe una funcion suprayectiva g : S — Y tal que 7,
coincide con la topologia de Y. En tal caso, la funcion g se llama funcion
cociente.

Definicién 1.83. Sea (S, 1) un espacio topoldgico, Y un conjunto no vacio y
g: S — Y una funcidn suprayectiva. La topologia 7, = {E CY : g '[E] €
T} es conocida como la topologia cociente sobre Y inducida por la funcion

Y.

Teorema 1.84. [1, Proposicion 4.5.3] Sean S yY dos espacios topoldgicos
y sea g : S — Y una funcion continua y suprayectiva. Si g es una funcion
abierta o cerrada, entonces la topologia de'Y coincide con la topologia cociente
en'Y definida por g.

Ejemplo 1.85. Como toda funcion continua de un espacio compacto a un
espacio de Hausdorff es cerrada, por el teorema anterior, toda funcion supra-
yectiva de un espacio de Hausdorff es una funcion cociente. En particular,
toda funcion continua y suprayectiva entre continuos es una funcion cociente.

Definicién 1.86. Sean S un espacio topologico y & una particion de S.
La funcion natural de S sobre & es la funcion © : S — 2 dada por
m(x) =D siy sdlo six € D.

Observacién 1.87. La funcion natural m es una funcion continua. Dado
U C D, tenemos que

7 %) ={x €S : eviste D€ U tal que 7(x) = D}
={z€S: existe D€ X tal que x € D}
=J D
Dew

St U es un abierto de P, tenemos que \Jpoy D es abierto de S. Luego,
7 U] es abierto de S. Por lo tanto, la funcién natural es continua.

Si tenemos un espacio de descomposicién de un espacio topoldgico S,
la topologia T'(2) es la topologia mas grande tal que la funcién natural es
continua. Més ain, 7 es una funcién cociente como lo establece el siguiente
resultado.
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Teorema 1.88. Todo espacio de descomposicion de un espacio topologico S
es un espacio cociente de S.

Demostracion. Sea (2,T(2)) un espacio de descomposiciéon de un espacio
topoldgico S. Veamos que la funcién 7 : S — Z satisface que T(2) = 7,.
Si o7 € T(Z), entonces &/ C Py es tal que [J,e,, A es un abierto de S,
luego ' [#/] = (U ey A s un abierto de S, se sigue que & € 7,. Ahora, sea
U € 1,. Tenenemos que Z C Py es tal que 7~ '[Z] es un abierto de Sy
dado que 7 %] = Upeqy U se sigue que (Jyey U es un abierto de S, por
tanto % € T'(2). Concluimos que T(Z) =1, y asi (2,T(Z)) es un espacio
cociente. |

El siguiente resultado muestra cuando un espacio topoldgico es metriza-
ble.

Teorema 1.89. Sean X wun espacio métrico compacto y Y un espacio to-
poldgico Hausdorff. Si f : X — Y es una funcion continua y suprayectiva,
entonces Y es metrizable.

Demostracion. Sea f: X — Y una funcién continua y suprayectiva de un
espacio métrico compacto sobre un espacio de Hausdorff Y. Note que como
X es un espacio métrico compacto, tenemos que X es Hausdorff, por la pro-
posicién . Luego, como f es continua y suprayectiva, por el teorema
se sigue que Y es compacto. Es decir, Y es un espacio Hausorff compacto.
Ahora, afirmamos que, todo espacio Hausdorff compacto es un espacio nor-
mal. En efecto, sean Y un espacio compacto Hausdorff y F, F5 subconjuntos
cerrados ajenos de Y. Como F} y F5 son subconjuntos cerrados de Y, tenemos
que Fy y Fy son compactos, por la proposicion y dado que FyNF, =0,
por el teorema [1.42] existen abiertos U y V' de X, ajenos, tales que Fy C U
y F» C V. Por lo tanto, Y es normal.

Veamos ahora que Y tiene una base numerable. Sea % una base numera-
ble para X. Sea % la coleccion de los subconjuntos finitos de €. Para cada
£ € 6, definase el siguiente conjunto

E(.Z)zY\(f[X\U,ZD.

Note que los elementos de £ son abiertos de X y en particular | J.Z es
abierto de X, asi X \ |J.Z es cerrado de X. Como f es continua y X es
compacto, por el teorema se cumple que f[X \ |J-Z] es cerrado de Y.
Por lo tanto, F(.Z) es un abierto de Y.
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Sea & ={FE(¥): <L C €y L esfinito}. Afirmamos que & es numerable.
En efecto, como % es numerable, por el teorema %o es numerable.
Consideremos la funcion h : 6y — & definida, para cada £ € %, como
hZ) = E(Z). Es claro que h es una funcién suprayectiva, por el teorema

se sigue que & es numerable.

Ahora, veamos que & es una base para Y. Para ello, sean U un subconjunto
abierto de Y y ¢ € U. Luego, f~'({¢q}) € f~Y(U). Como f es continua,
f7YU) es un subconjunto abierto de X. Como % es una base de X, entonces
para cada p € f~1({q}), existe, V, € € tal que p € V, C [~ ({q}) C fH(U).
Asi,

M Y vcr o).
pef~1({q})

Como f~'({¢}) es un subconjunto cerrado del compacto X se sigue que
f*({q}) es compacto. Por lo tanto, existen pi,...,p, € f~'({q}) con n € N
tales que

' Hah) < UV

=1

Ahora, sea & = {V,,,...,Vp, }. Entonces £ € ¢y [ ({¢}) c UZ C
f~YU). Al tomar complementos

XAy e X\ (UJ2) € x\ s da.

Luego,

FEONFH) < F(xAUZ) < F (0 Ha)-

Tomando de nuevo complementos

VAL (XS b)) v\ f () cv s st o)

Observemos que ¢ € Y\ f (X \ f7*({q})), pues de lo contrario se tiene que

1€ f(X\ /7 ({g}), entonces existe @ € X \ /'({g}) tal que f(a) =
luego inferimos que a € f~1({q}). Pero a ¢ f~'({q}) lo que es absurdo. Por
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lo tanto, ¢ € Y\ f (X' \ f'({q})).
Como f es suprayectiva se cumple que

YAU=Y\f(f{ah) c F(X\FHU)),

luego Y\ f(X \ f~5(U)) € U. De esto dltimo y por la contencién (1.1) se
sigue que ¢ € E(Z) C U. Asi & es una base numerable para Y. Por lo
tanto, Y es metrizable. [ |

Teorema 1.90. Sean X un espacio métrico compacto y (2,1T(Z)) es una
descompasicion de X. Entonces 9 es metrizable si y solo si 9 es Hausdorff.

Demostracion. [<] Como la funcién natural = de X sobre & es continua y
suprayectiva, entonces si suponemos que (2, T(2)) es un espacio Hausdorf.
Por el teorema tenemos que (2,7(2)) es metrizable.

[=] Supongamos ahora que (Z,7T(Z)) es metrizable. Luego, (2,7(Z)) ob-
viamente es un espacio Hausdorff. |

Teorema 1.91. Un espacio de descomposicion (2,T(D)) de un continuo X
es un continuo si y solo si (2,1T(2)) es Hausdorff.

Demostracion. Si (2,T(2)) es un continuo, tenemos que (Z2,1(%)) es me-
trizable. Luego (2,T(2)) es Hausdorff. Ahora, supongamos que (2,7(2))
es un espacio Hausdorff, por el teorema tenemos que (2,7(2)) es me-
trizable. Como la funcién natural 7 : X — & es continua, y dado que la
compacidad y la conexidad son invariantes topoldgicos, tenemos que & es
compacto y conexo. Por lo tanto, (2,7(%)) es un continua y el teorema
queda demostrado. [ |

A continuacion presentamos un ejemplo donde una particion Z no es un
continuo.

Ejemplo 1.92. Sea S = [—1,1] y sea Z la particion cerrada dada por

7 ={{z,—x}: -1<ax<1}U{{-1},{1}}.

La descomposicion (2,T(2)) no es un continuo ya que no es de Hausdorff
y por tanto no es metrizable.

Ahora estudiaremos las descomposiciones semicontinuas superiores. Po-
demos usar la descomposicion de continuos para construir otros continuos. La
siguiente definicién nos dard una 1util condiciéon para poder establecer cuando
una descomposicién es metrizable, sin necesidad de verificar en cada ocasion
que la descomposicion es un espacio Hausdorff.
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Definicién 1.93. Sea (S,T) un espacio topolégico. Una particion 2 de S
es semicontinua superior si para cada D € & yU € T tal que D C U
eriste V.€ T con D CV tal que si A€ D y ANV # (), entonces A C U.

Definicién 1.94. Sea ¥ un espacio de descomposicion de un espacio to-
polégico S. Un subconjunto E de S es P-saturado si existe % C D tal que

Uper U = E.

Observacion 1.95. Dado un espacio de descomposicion & de un espacio
topologico S, consideremos la funcion natural m : S — 9. Para € C 9
tenemos que m'[€] es PD-saturado. En efecto, sea € C 2 y veamos que
1 HE) =U% = Upey C- Note que se cumple lo siguiente

7€) ={reS:n(zx) €€}
={zx € S: eviste C € € tal que n(v) = C}
={x e S: eriste C € € tal que v € C}

=Jc

Cev
Por lo tanto, 771[€] es P-saturado.

Proposiciéon 1.96. San S un espacio topologico y & un espacio de des-

composicion. Entonces un subconjunto A de S es P-saturado si y solo si
A =r"1r[A]]

Demostracion. Supongamos que A es Z-saturado. Entonces existe una sub-
coleccion % C 2 tal que A = |Jyey U. Asi, w[A] = {7(x) 1z € A} = %.
Por lo tanto, 7' [n[A]] = 77 %] = Upyeqy U = A

Por tltimo supongamos que A = 7 ![r[A]] y veamos que A es Z-saturado.
Dado que w[A] C 2, por la observacion tenemos que 7|1 [A]] es Z-
saturado y por lo tanto, A es Z-saturado. |

Proposicién 1.97. Sean S un espacio topologico y & un espacio de descom-
posicion. Si V' es D-saturado y abierto de S, entonces el conjunto w[V] es
abierto de 9.

Demostracion. Dado que V' es Z-saturado, existe una subcoleccion % C 2
tal que V = |J % es abierto de S. Luego

V==l J#]=\Jrl%) c 2.
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Como D € % y x € D, tenemos que 7(x) = D C |JZ = V. Por lo tanto,
7[V] es abierto de 2. [ |

Teorema 1.98. Sean (S,T") un espacio topoldgico, P una descomposicion
de S ym:S — Z la funcion natural. Entonces las siguientes afirmaciones
son equivalentes:

(1) Z es una descomposicion semicontinua superior.
(ii) 7 es una funcion cerrada.

(iii) SiD e 2 yU €T son tales que D C U, entonces existe V € T tal que
DcVcUyV es Z-saturado.

Demostracion. Veamos primero que [(i) = (i7)]. Sea C' un subconjunto ce-
rrado de S. Para ver que 7[C] es cerrado de &, basta probar que 2 \ 7[C] es
abierto de 2, o que es lo mismo que probar que 7~ [Z \ 7[C]] es abierto de
S. Sea z € 712\ 7[C]]. Luego 7(z) € 2\ «[C]. Veamos que 7(z) C S\ C.
Supongamos lo contrario, es decir, que existe z € m(x) tal que z ¢ S\ C.
Note que esto ultimo es equivalente a decir que w(x) N C # (), asi exis-
te z € m(x) N C. Si z € w(x), entonces 7w(z) = w(x) lo cual implica que
n(z) Nw(x) # 0, ademés 7(z) = w(x) € 7[C] lo cual es una contradiccién.
Por lo tanto, m(x) C S\ C.

Ahora, como S\ C es un subconjunto abierto de S'y Z es una descomposicién
semicontinua superior, existe un subconjunto abierto V de S con w(z) C V
tal quesi D€ 2y DNV # (), entonces D C S\ C. Notemos que si p € V,
entonces m(p) = D. Luego, 7(p) NV # 0, lo cual implica w(p) € S\ C.
Veamos que 7[V] C 2 \ 7[C], para ello sea U € w[V]. Existe r € V tal que
7(r) = U. Supongamos, por el contrario, que m(r) € 7[C]. Existe un ¢ € C
tal que 7(r) = w(c). Asi, c € C'Nx(r). Esto ultimo implica que w(r) € S\ C
y por tanto r ¢ V', lo cual es una contradiccién. Asi, 7[V] C 2\ 7[C]. Luego,
V Cc 72\ 7[C]]. Como z € 7w(x) C V, tenemos que 7 '[Z \ 7[C]] es
un subconjunto abierto de S, y de acuerdo con la observacién [1.95] tenemos
que 72 \ 7[C]] es PD-saturado, y por la proposicién se sigue que
n[r 712 \ 7[C]]] es un subconjunto abierto de 2. Como 7 es suprayectiva,
se tiene que w[r[2 \ 7[C]]] = 2 \ 7[C]. De esta forma Z \ 7[C] es un
subconjunto abierto de Z. Por lo tanto, 7[C] es un subconjunto cerrado de
2.

Probemos ahora que [(ii) = (i2)]. Para ello supongamos que 7 es cerrada.
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Sean D€ 2, U €T talque DC Uy V =712\ xS\ U]]. Veamos que V
satisface las condiciones de (3). Como U € T, tenemos que S \ U es cerrado
de S, y por hipétesis, 7[S '\ U] es cerrado de Z, luego 2 \ 7[S \ U] es abierto
de & asi por la continuidad de 7 se sigue que V' € T y por la observacion
tenemos que V' es Z-saturado.

Por ultimo veamos que (iii) = (7). Para ello supongamos (3). Sean D € 2
y U € T con D C U. Por hipétesis existe V € T tal que D Cc V C U y
V es PD-saturado. Si algin A € 2 es tal que ANV # (), entonces veamos
que A C V C U. En efecto, como V es Z-saturado, existe una subcoleccion
U C 2 tal que V =J%. Como ANV # 0 se sigue que AN [J2%] # 0.
Esto implica que (Jgeq, (AN B) # (. Asi, existe B € %, tal que AN B # .
Luego A = B, asi A C Ugeqy, B=V CU. Por lo tanto, A C U. Concluimos
que Z es semicontinua superior. |

Teorema 1.99. Si S es un espacio topoldgico y & es una particion de S,
entonces el espacio de descomposicion (2, T(D)) es un espacio Ty si y sdlo
st D es una particion cerrada.

Demostracion. Por el teorema (2,T(2)) es un espacio T si y sélo si
dado cualquier U € & se cumple que {U} es un subconjunto cerrado de 2.
Luego 2 \ {U} es abierto de 2. Por la observacion [1.87] esto es equivalente
a que 7 '[2\ {U}] es un subconjunto abierto de S y como 7 es suprayectiva
tenemos que S\ 7 ~![U] es abierto de S siy sélo si m![{U}] es cerrado de S;
ademds como la familia los miembros de {7 '[{U}]: U € 2} es una particién
de S, tenemos que, Z es una particién cerrada. |

Lema 1.100. Si (2,7(2)) es una descomposicion semicontinua Superior
de un espacio topolégico S que tiene la propiedad T, entonces & es una
particion cerrada.

Demostracion. Sean U € 9, x € Uy m: S — & la funcién natural. Por
hipétesis {z} es un subconjunto cerrado de S. Luego por el teorema m
tenemos que w[{z}] es cerrado de Z. Note que w[{z}] = {n(z)} = {U} es
cerrado de & y como 7 es continua se sigue que 7 [{U}] es cerrado de S,
ademds U = 7! [{U}]. Por lo tanto, U es un subconjunto cerrado de S. Asf
concluimos que Z es una particion cerrada. |

Teorema 1.101. Si & es una descomposicion semicontinua superior de un
espacio métrico compacto X, entonces (2,1(2)) es metrizable.
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Demostracion. En virtud del teorema [1.89] es suficiente probar que el es-
pacio de descomposicién (2,T(2)) es un espacio Hausdorff. Para ello sean
D1,Dy € P tales que Dy # Ds. Por el lema [1.100] tenemos que Dy y Ds
son cerrados de X y Dy N Dy = (. Luego, como X es normal existen dos
subconjuntos abiertos y ajenos de X, digamos U; y U, tales que Dy C U;
y Dy C Uy. Como Z es una descomposicion semicontinua superior por el
apartado (iii) del teorema existen dos subconjuntos V; y V5 abiertos de
X tales que, para cada i € {1,2}, D; C V; C U; y V; es P-saturado. Ahora,
observemos que para todo i € {1,2}, se tiene que D; € 7[V;], pues de lo
contrario si D; ¢ 7[V;] entonces D; ¢ V;, pero D; C V; lo que es absurdo.

Ahora, por la proposicién [1.97] tenemos que w[V4] y 7[V5] son abiertos de 2.
Como Uy NUy =0 y V; C Uy; se sigue que V; N Uy = (). Luego, por la propo-
sicion [1.96] tenemos que para todo i € {1,2} se cumple que 7~ ![7[V;]] = V;.
Asi, m[Vi] N 7[Va] = 0. De esta forma encontramos dos subconjuntos abiertos
7[Vi] y m[Va] ajenos de Z tales que Dy € w[Vi] y Dy € m[Va]. Por lo tanto,
hemos probado que (2,7(%)) es un espacio Hausdorff. [

Teorema 1.102. Sean un continuo X y & una descomposicion semicontinua
superior de X, entonces &9 es un continuo.

Demostracion. Consideremos a 7 : X — & la funcién natural. Como 7 es
continua, la compacidad y conexidad son invariantes topoldgicos. Tenemos
que 2 es compacto y conexo. Ademds, por el teorema [I.101], tenemos que 2
es metrizable. Asi, Z es un continuo. |
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Capitulo 2

Hiperespacios

En el capitulo anterior vimos que un continuo es un espacio métrico que
es compacto, conexo y con mas de un punto. También, vimos algunas de
sus propiedades y algunos ejemplos de continuos mas comunes. En este se-
gundo capitulo estudiaremos a los hiperespacios que son subconjuntos de
un continuo que cumplen alguna propiedad. En particular, veremos algunos
ejemplos y algunas propiedades que nos ayudaran a definir una nueva métri-
ca para estos hiperespacios llamada métrica Haussdorff. Para culminar este
capitulo construiremos una topologia para los hiperespacios llamada topo-
logia de Vietoris, probaremos algunas propiedades y ademas probaremos que
la métrica Haussdorff genera la topologia de Vietoris. Por tltimo probaremos
que el hiperespacio de todos los subconjuntos cerrados y no vacios de X es
un continuo.

2.1. Métrica Hausdorff y sus propiedades
Daremos la definicién de hiperespacio y algunos ejemplos comunes de
ellos. Ademads, presentamos algunas propiedades basicas que seran de gran

ayuda para construir la métrica de Hausdorff.

Definicién 2.1. Sea un continuo X, decimos que un hiperespacio de X
es una coleccion de subconjuntos de X que cumplen alguna propiedad en
particular.

Por ejemplo, podemos considerar los siguientes hiperespacios de X

31
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2% ={A C X : A es cerrado de X y no vacio},
C(X)={A€2¥: A es conexo},
Co(X) ={A € 2% : A tiene a lo méds n componentes},
F.(X)={AC X : A tiene a lo mas n puntos},

F(X) =] F.(X).

Observacion 2.2. Para un continuo X yn € N, se tiene lo siguiente:
(i) C(X) = Cu(X),
(ﬁ) Fn(X) - Fn+l<X) y Cn(X) - OnJrl(X)»

(iii) Fo(X) C Cu(X).

Note que como X es un compacto, entonces 2% es el hiperespacio de todos
los subconjuntos compactos no vacios de X, en particular X € 2%,y C(X) es
el hiperespacio de todos los subcontinuos de X. Veamos algunas definiciones
y propiedades interesantes.

Definicién 2.3. Sean un continuo X con métrica d, A C X yr > 0. La
nube de radio v con centro en A es

N(r,A) ={z € X : d(x,a) < r para algin a € A}.

Teorema 2.4. Sean un continuo X con métrica d, r > 0 y A € 2%, se
cumplen las siguientes condiciones

(i) St U es un subconjunto abierto de X tal que A C U. Entonces existe
d >0 tal que N(5,A) C U.

(i) Si0<d <ryAC B, entonces N(6,A) C N(r, B).
(iii) N(r,A) =U{N(0,A):0 € (0,r)}.

(iv) N(r,A) = U,ea Bla,r). Es decir N(r, A) es un abierto de X.
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Demostracion. (i) Sea A C U, como U es abierto de X tenemos que X \ U

es cerrado de X y por tanto compacto. Asf tenemos que AN(X\U) =0
y por lo tanto, d(A, X\U) > 0. Ahora, sean § = w yx € N(6,A),
existe a € A tal que d(x,a) < . Se sigue que = € B(a, d). Si suponemos
que x € X \ U, entonces d(A, X \ U) < d(z,a); lo cual implica que

d(A, X \U) <6 = w, lo que es absurdo. Por lo tanto, x € U.

Sea d > 0 tal que § < r. Tomemos x € N(§, A). Existe un a € A tal
que d(z,a) < 6 <r,luego d(z,a) < r, para algin a € A. Como A C B,
tenemos que a € B. Asi, x € N(r, B).

Dado § > 0tal que d < r, por (2) de este teorema se tiene que N (6, A) C
N(r,A). Entonces (J{N(0,A) : 0 < < r} C N(r,A). Por otro lado,
tomemos x € N(r, A). Entonces existe a € A tal que d(z,a) < 7.
Tomemos un § > 0 tal que d(z,a) < ¢’ < r. Luego, © € N(¢, A),
ademds, N (0, A) C |J{N(0,A) : 0 < < r}. Por lo tanto, N(r, A) C
U{N(@,A):0<d <r}.

Sea x € N(r, A), luego por definicién de nube se sigue que existe un
elemento a € A tal que d(x,a) < r, asi x € B(x,r) y por lo tanto,
r € Uyeq Bz, 7). Por tltimo, sea € |J,.4 B(z,7), entonces existe
a € A tal que x € B(z,r), luego por definicién de bola abierta se sigue
que d(x,a) < r, por lo tanto, x € N(zx, A).

[ |

Observacién 2.5. Sean un continuo X con métrica d, A,B € 2% ye > 0,
entonces se cumple que N(e, A)U N(e,B) = N(e, AU B).

En efecto, primero veamos que que se cumple N (e, A)UN (e, B) C N(e, AUB).
Sea acuerdo con el teorema , apartado (iii), se deduce que N(e, A) C
N(e,AUB)y N(¢,B) C N(e, AU B). Asi,

N(e,A)UN(e,B) C N(e, AU B).

Para ver que se cumple la otra contencién, sea z € N(¢, AU B). Existe
a € AU B tal que d(a, z) < e. Ahora, observemos que tenemos dos casos:

(i)
(i)

Si a € A, entonces d(a, z) < € se sigue que z € N(e, A).

Ahora si a € B, entonces d(a,z) < €, con lo cual se tiene que z €
N(e, B).
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En ambos casos se tiene que z € N(¢, A) U N(e, B). Por lo tanto, concluimos
que N(e, A)UN(e,B) = N(¢,AUB). R

Lema 2.6. Sean un continuo X con métrica d y A,B € 2%X. Si AN B = 0,
entonces existe un € > 0 tal que N(e, A) N N (e, B) = ().

Demostracion. Como A y B son compactos, entonces d(A, B) > 0. Sea € =

@ > (0 y supongamos a manera de contradiccién que existe y € N (e, A)N
N(e, B). Luego, existe a € A tal que d(a,y) < €, de forma similar, existe

b € B tal que d(b,y) < e. Ahora aplicando la desigualdad del tridngulo,
d(a,b) < d(a,y) +d(b,y) < e+e=d(A,B),

asi que d(a,b) < d(A, B), lo cual contradice que d(A, B) = inf{d(a,b) : a €
A b e B}, [ |

Nuestro propdsito es definir una métrica en 2% que se encuentre estre-
chamente relacionada con la métrica de X. Para ello definamos la siguiente
funcion :

Hy: 2% x2¥ — RT U {0}
(A,B) »inf{r >0: AC N(r,B) y BC N(r,A)}.

De aqui en adelante denotaremos al conjunto {r >0: A C N(r,B)y B C
N(r,A)} por E(A, B). El siguiente resultado establece que en efecto el con-
junto E(A, B) definido anteriormente tiene infimo.

Teorema 2.7. Sean un continuo X con su métrica d y A, B € 2%, entonces
el conjunto E(A,B) ={r >0: AC N(r,B)y B C N(r,A)} tiene infimo.

Demostracion. Dea cuerdo con la definicién tenemos que para cuales-
quiera a € Ay b € B, se cumple que d(a,b) < didm(X) + 1. Por lo tanto,
A C N(diam(X)+1,B)y B C (didm(X)+1, A). Asi, didam(X)+1 € E(A, B).
Por consiguiente 0 es una cota inferior de E(A, B) y entonces concluimos que
en efecto existe el inf(E (A, B)). [ |

Teorema 2.8. La funcion definida anteriormente es una métrica para el
hiperespacio 2% .

Demostracién. Por el teorema [2.7] la funcién H, esta bien definida y es tal
que Hy(A, B) > 0, para cualesquiera A, B € 2%. Veamos que se cumplen las
propiedades restantes.
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ot

(i)

Si A = B, entonces para cualquier r > 0 tenemos que A C N(B,r)
B C N(A,r)estoimplicaque {r >0: AC N(B,r) y BC N(A4,r)
[0, 00). Por lo cual,

[l

Hy(A,B) =f{r >0: AC N(B,r) y BC N(A,r)} =0.

Por otro lado si Hy(A, B) = 0, entonces el inf{r >0: A C N(B,r) y
B C N(A,r)} = 0. Esto implica que para todo r > 0 se cumple
A C N(B,r) y B C N(A,r). Luego, para cualquier r > 0y a € A
tenemos que B(a,r) N B # () y dado cualquier b € B se tiene que
B(b,7)N A # (). Asi, para todo a € Ay b € B tenemos que a € B = B
y b e A= A. Observe que esto se cumple porque A y B son conjuntos
compactos. Luego, A C By B C A. Por lo tanto, A = B.

Es claro que la propiedad simetrica se cumple por definicién de H;. Por

lo tanto, Hy(A, B) = Hq(B, A).

Por ultimo veamos la desigualdad del tridangulo. Para ello sean A, B, C' €
2% vy tomemos 6 y 7y de los siguientes conjuntos:

de{r>0: AC N(B,r) y BC N(A,r)} = E(A, B),
velr>0:BCc NC,r)y Cc NB,r)} =E(B,C).

Esto tltimo implica que si a € A, entonces existen b € B y ¢ € C tales
que d(b,c) < 0y d(a,b) < ~. Aplicando la desigualdad del tridngulo
obtenemos

d(a,c) < d(a,b) +d(b,c) <6+ .

Dado que a € A, tenemos que A C N(C,§ + ). Intercambiando A y
C' tenemos que C' C N(A,§+ ). Porlocual §+~v € {r >0: A C
N(C,r) y C C N(A,~)}, asi tenemos que {6 +v:0 € E(A,B) y 7 €
EB,C)}yc{r>0: ACN(C,r) y C C N(A,r)}. Entonces

Hy(A,C)=inf{r >0: ACN(C,r) y C C N(A,r)}
<inf{o0+v:0€ E(A,B) y y€ E(B,C)}
=inf(E(A, B)) + inf(E(B, C))

—Hy(A, B) + Hy(B,C).

Por lo tanto, Hy(A, C') < Hq(A, B) + Hq(B, C). Asi, concluimos que la
funcién Hy es una métrica para 2.
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Definicién 2.9. Si X es un espacio métrico con métrica d, la métrica de
Hausdorff para 2~ inducida por d, denotada por Hy, para cada A, B € 2%
es

Hy(A,B)=inf{r >0: AC N(r,B)y BC N(r,A)}.

Para todo continuo X, se tiene que el par (2%, H,) es un espacio métrico.
Como C'(X) estd contenido en 2%, entonces C'(X) es un subespacio métrico
de 2¥. La métrica de Hausdorff la podemos interprentar geométricamente
como se muestra en la figura[2.1] La idea intuitiva de esta métrica es que dos
conjuntos estan cercanos si ellos casi se empalman uno con otro.

Figura 2.1: Métrica Huasdorff

Teorema 2.10. Sean un continuo X, A, B € 2% yr > 0. Entonces Hy(A, B) <
rsiy solosiAC N(r,B)yBC N(r,A).

Demostracion. [=] Si Hy(A,B) < r, entonces r es una cota inferior de
E(A, B). Luego, dado un elemento § € E(A, B) se cumple que 6 < r. Luego,
ACN(6,B)y B C N(§,A). Por consiguiente N(§, A) C N(r, A), esto iltimo
se cumple por el aparatdo (ii) del teoremal[2.4] Como B C N(§, A) C N(r, A),
se tiene que B C N(r, A). Por otro lado, como B € 2% también se cumple que
si 0 € E(A, B), entonces 6 < r. Asi utilizando de nuevo el apartado (ii) del
teorema [2.4] se tiene que N(d, B) C N(r, B). Como A C N (8, B) C N(r, B),
se sigue que B C N(r, B). Por lo tanto, lo que hemos probado es que si

Hy(A,B)<r= AC N(r,B) y BC N(r,B).
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[«<] Ahora, supongamos que A C N(r, B) y B C N(r, A). Por el apartado
(iii) del teorema [2.4] tenemos que A C N(r,B) = | J{N(6,B):0<d <r}y
B C N(r,A) =U{N(5,A): 0 < <r}.

Como A y B son compactos, entonces existen 01, ...,d, € (0,7] y 0,...,0! €
(0,7] tales que A C U, N(9;,B) y B € -, N(¢, A). Tomemos a ¢ =
max{d; : ¢ = 1,.n} y 0" = max{0; : i« = 1,..m}. Asi, A C |JN(¢,B)
y B C N(§",A). Sea ¢ = méax{d,d"}. Se sigue que 0 < € < r y ademds
A C N(e,B) y B C N(¢, A). Luego, por la definicién de la métrica de
Hausdorff, tenemos que Hy(A, B) < e < r. Se concluye que Hy(A,B) <r. &

Los siguientes resultados nos muestra una forma equivalente de ver a la

métrica de Hausdorff.

Definicion 2.11. Sean un continuo X con métrica d y una funcion Dy :
2% x 2% — RY U {0} cuya regla de correspondecia esta dada por:

D4(A, B) = méx{sup{d(a, B) : a € A},sup{d(b, A) : b € B}}.

Teorema 2.12. Sean un continuo X con métrica d y A, B € 2%. Entonces
Dd<A7 B) = Hd(A> B)

Demostracion. Denotemos por € = D4(A, B) y supongamos, por el contrario
que, Hy(A, B) # e. Entonces tenemos los siguientes dos casos:

(i) Si Hy(A,B) < ¢, por el teorema [2.10] tenemos que A C N(e,B) y
B C N(e, A). Sea g : X — R* U {0} definida, para cada, x € X por
g(x) = d(x, B). Por el teorema sabemos que ¢ es continua y en
particular su restriccion al conjunto A también es continua. Como A es
compacto, la funcién g|4 es acotada y por tanto existe ay € A tal que

d(ag, B) = sup{d(a, B) : a € A}.

Como A C N(e, B), existe un by € B tal que d(ag, by) < €. Asi,

d(CLo, B) < d(ao,bo) < €.

Por otro lado si consideramos a la funcién b : X — RTU{0} definida,
para cada = € X por h(x) = d(z, A), sabemos, por el teorema|l.11], h
es continua y en particular h|p también lo es. Como B es compacto se



38

Hiperespacios

sigue que h|p es acotada y por tanto existe el supremo. Existe by € B
tal que
d(by, A) = sup{d(b.A) : b € B}.

Dado que B C N(¢, A), existe un ag € A tal que d(by,ap) < €, por
consiguiente

d(bo, A) < d(bo, CL()) < €.
Ahora, de acuerdo con la definicion tenemos que

D4(A, B) = méx{sup{d(a, B) : a € A},sup{d(b, A)} : b€ B} <e.

Como € = Dy(A, B), tenemos que Dy(A, B) < Dy(A, B), lo cual es una

contradiccion.

Supongamos que Hy(A, B) > e. Tomemos r > 0 tal que ¢ < r <
H4(A, B). Veamos que A C N(r, B). Sea ay € A, como B es compacto,
por la proposicién tenemos que existe b € B tal que d(ag, B) =
d(ag,b). Por lo tanto,

d(ag,b) = d(ag, B) < sup{d(a,B) :a € A} < Dy4(A,B) <.

De esta forma, d(ag,b) < r, para algin b € B. Asi que A C N(r, B).
Por otro lado, si by € B y dado que A es compacto, existe a € A tal

que d(by, A) = d(bg, a). Luego,

d(bg,a) = d(by, A) < sup{d(b,A) :be B} <e<r.

Asi, para el elemento by € B, existe a € A tal que d(bg, a) < r. Tenemos
que B C N(r, A), lo cual implica que Hy(A, B) < r lo que es absurdo
pues Hy(A, B) > r.

Por lo tanto, concluimos de los dos casos anteriores que Hy(A, B) =
D4(A, B).

Proposicién 2.13. Sea un continuo X con métricad. Si A, B € 2X ya € A,
entonces existe b € B tal que d(a,b) < Hy(A, B).
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Demostracién. Sean A, B € 2% y a € A. Si a € B, entonces se cumple que
0=d(a,a) < Hy(A, B).

Por otro lado supéngase que a ¢ B. De acuerdo con el teorema
tenemos que la funcién g : B — R* U {0} definida, para todo x € B,
por g(x) = d(a,z) es continua. Dado que B es compacto tenemos que g
alcanza su minimo, es decir, existe b € B tal que d(a,b) < d(a,x), para
toda x € B. Como queremos probar que d(a,b) < Hy(A, B), supongamos,
por el contrario que Hy(A, B) < d(a,b). Por la propiedad del infimo, que
es Hy(A, B), existe un numero real € tal que ¢ < d(a,b). Se sigue que
A C N(e,B)y B C N(e,A) y dado que a € A, existe z € B tal que
d(a,z) < €1, es decir, d(a, z) < €, < d(a,b), pero cuando = = z esto contradice
el hecho de que d(a,b) < d(a,z), para toda = € B. Por lo tanto, concluimos
que d(a,b) < Hy(A, B), y de esta forma la proposicién queda demostrada. B

Proposicién 2.14. Sean un continuo X con métrica d y A, B € 2%, entonces
existen a € A y b € B tal que d(a,b) = Hq(A, B).

Demostracion. Por la compacidad de A y B, tenemos que sup{d(a, B) :
a € A} = d(a,b) para algin b € B. De forma similar sup{d(b,A) : b €
B} = d(b,a), para algiin a € A. Asi, aplicando el teorema tenemos que
D(A, B) = max{d(a,b),d(b,a)} = d(a,b), es decir, Hy(A, B) = d(a,b) y el

teorema queda demostrado. |

Proposicién 2.15. Si X un contiuo con métrica d y A, B, A’, B’ € 2% tales
que A’ C A y B' C B, entonces

Hy(AUB',BUA") < Hy(A, B).

Demostracion. Denotemos por r = Hy(A, B), veamos que se cumplen las
siguientes condiciones

(1) AUB' ¢ N(r,BUA) y (2) BUA' C N(r, AUB).

Para ver (1) tomemos un elemento z € AU B'. Si z € A, entonces podemos
considerar la funcién f: BU A" — R* U {0} dada por f(b) = d(z,b), para
cada b € BU A’. Luego note que por el teorema tenemos que f es una
funcién continua y como B U A’ es compacto, f alcanza su minimo, es decir,
existe z € BU A’ tal que d(x, z) < d(z,b). Por la proposicion [2.13] tenemos
que d(z,z) < ry de esta forma obtenemos que x € N(r, BU A’). Por otro
lado si « € B’, entonces por la hipétesis x € B. Luego 0 = d(z,z) < r y por



40 Hiperespacios

tanto x € N(r, BUA").

Para 1ltimo veamos que se cumple (2). Sea x € B U A’. Entonces tenemos
dos casos, por un lado si x € B entonces podemos considerar una funcion
f:AuB — RT U{0} dada por f(a) = d(z,a), para cada a € AU B'.
Luego por el teorema tenemos que f es una funcién continua y como
AU B’ es compacto, f alcanza su minimo, es decir, que existe un b € AU B’
tal que d(z,b) < d(z,a), y de acuerdo con la proposicién tenemos
que d(xz,b) < r. Asi obtenemos que z € N(r,AU B’). Por otro lado si
x € A’, entonces por hipétesis € A, luego 0 = d(z,z) < r y por lo tanto,
x € N(r,AU B'). Concluimos de los casos (1) y (2) que la proposicién es
cierta y por tanto queda demostrada. |

2.2. Topologia de Vietoris

A continuacion veremos que todos los hiperespacios de un continuo X
los podemos considerar con la métrica de Hausdorff o con la topologia de
Vietoris. Empezaremos enunciando las siguientes definiciones.

Definicién 2.16. Sea un continuo X y A un subconjunto de X . Considere-
mos las siguientes subcolecciones del hiperespacio 2%

[(A)={Be€2*:.BcCA}
A(A) = {Be2X:ANB # 0},
Q(A)={Be2¥: Ac B}

Definicién 2.17. Sean un continuo X, n € N y Uy, Us, ..., U, subconjuntos
de X no vacios. El vietéorico de Uy,U,,...,U, es el conjunto

(U1,Us,...,U,) = {A c2X: AcC UUi yANU; £ 0, para i€ {1,...,n}} .
i=1

Teorema 2.18. Sean un continuo X, n € N y Uy, Us, ..., U, subconjuntos de
X, no vacios. Entonces se cumple las siguientes condiciones

(i> <U17 U, ..., Un> =T (U?:l Ul) n [m?:l A(UZ>]7
(i) I'(A) = (A) para cada A C X,
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(iii) A(A) = (X, A) para cada A C X.

Demostracion. (i) Observe que el conjunto vietdrico se puede ver como
sigue

(U,Uy, ..U,y ={Aec2%: AC UUi con i€ {l1,2,..,n}}
i=1

N{Ae€2¥ : ANU; #0 con i € {1,2,....,n}}
=T (UUi) N (AW,
=1

(ii) [C] Sea B € I'(A), luego B C A. Ahora afirmamos que BN A # ().
Basta ver que B\ A # B. En efecto supongamos que B\ A = B. Dado
un elemento z € B\ A se cumple que z € By z ¢ A, pero como B C A
entonces z € A, asi tenemos que z € Ay z ¢ A lo que es absurdo. Por
lo tanto, B\ A # B. Es decir BN A # () y por tanto B € A(A). Asi
concluimos que B € (A).

[D] Sea B € (A) luego por definicién de (A) se sigue que B € T'(A).
(iii) [C]SiB € A(A), entonces BNA # )y BNX # (). Por tanto B € (X, A).

[C] Por tltimo, sea B € (X, A) entonces BC XUA =Xy BnN(XnN
A) # () esto implica que BN A # (). Por lo tanto, B € A(A).

Teorema 2.19. Sean n,m € N, Uy, U,,...,U, y V1, Vs, ..., Vi, subconjuntos
de un continuo X. SiU =J._,U; y V =", Vi, entonces

(U, Usy .., Up) NV, Vo, V) = (VD ULV N Uy, .., VDU, UNV,UNV,,

SUN V)
Demostracion. Notemos primero que
Uunv = Um(Um) U Vﬂ(UUZ) (2.1)
= Jwnw)|u UVﬂU (2.2)
Li=1 1

[C] Sea B € (Uy,Us,...,Up) N (V4, Vs, ..., V), entonces B € (U, Us,...,U,) y
B e (Vi,Va, ..., V).



42 Hiperespacios

(i) Si B € (Uy,Us,...,U,), entonces se cumple que

BGF( U2>ﬂ
i=1

= B C UUZ' y B € A(U;) para todo i € {1,2,....,n}

=1

n

AW

=1

=

= BC UUi =U y BNU; para todo i € {1,2,...,n}.
i=1
(ii) De forma similar se comprueba para el elemento B € (Vi,Va, ..., V),
para obtener

B C UVi =V y BNV, para todo i € {1,2,...,m}.
i=1

De esto ultimo observemos que B C (J_, U;) N (UL, Vi) =UNV.
Ademas, de acuerdo con la ecuacién tenemos que
Uwnw)
i=1
Como B C U se cumple que B = BNU. Ademas, observe que BNV, =
BN (UNYV;) # 0, para cada i € {1,2,...,m}. Del mismo modo se
prueba que BN (V NU;) # (), para todo i € {1,2,...,n}. Por lo tanto,
concluimos que

Be{UNVi,..UNV,,VAU,...VOU,).

n

Uwvnw)

i=1

B C U

[D] Sea B € (UNWy,..,UNV,,VNU,..,VNU,). Luego por la igualdad
, tenemos que B C UNV. Tomemos i € {1,2,...,n}, como BN(VNU,) #
(0, tenemos que B = BNV y BNU; = BN (VNU;). Asi se tiene que
BN (VNU) # 0, es decir, BNU; # (). De la misma forma se prueba que
BNV, # (), para cualquier ¢ € {1,2,...,m}. Por lo tanto,

B e <U1, Us, ..., Un> n <Vi, Vo, ..., Vn>
Asi, concluimos que

(U, Usy ., Up) NV, Vo, V) = (VUL VN Uy, .., VDU, UNV,UNV,,
L UNVy)
[ ]
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Teorema 2.20. Sean un continuo X yn € N. Consideremos los siguientes
conjuntos

(i) €= {(U1,Us,....,U,) : Uy, Us, ..., U, son abiertos de X},
(i) p={T(U): U es abierto de X} U{A(U) : U es abierto de X}.

Entonces € es una base para la topologia obtenida por la métrica de Hausdorff
para 2% y o es una subbase para tal topologia.

Demostracion. Demostraremos las tres condiciones del teorema [1.241 Enton-
ces:

(i) Note que el e € yaque () ={Be€2X:BcCcly BNO#0} =0y
dado que () es abierto de X, se sigue que () € €.

Sean U,V € €y B € UNV. Veamos que existe Uy € € tal que B € Uy C
UNV.Como U,V € € entonces U = (Uy,....,U,) y V. = (V1,..., V)
donde cada Uy,...,U, y Vi,...,V,, son abiertos de X, con n,m € N.
Ahora, por el teorema existe un conjunto Uj tal que

Up={VNU,..VNU,UNVi,..,.UNV,) € €.

Del mismo teorema se sigue que UNV = Uy € €. Como B € UNV
tenemos que Be Uy CcUNV.

Por tltimo, veamos que 2% = |J€. En efecto, notemos que (X) =
{Ae2X: AcC X} =2% asf 2% € € De manera que 2% C |J €, luego,
2% = J €. Por lo tanto, € es una base para lo topologia 7, para 2%.

(ii) Ahora, sea [p] = {(-Z : L es finito y £ C p}, para ver que p es una
subbase para la topologia 7y, basta ver que [p| = €.

Sea V € €, entonces V = (Uy,...,U,), donde cada U; es un abierto
de X, para todo i € {1,...,n}. Denotemos por W = J._, U;, luego
aplicando el teorema[2.18] apartado (i) tenemos que V = (U1, ..., U,) =
(W)N[N:, A(U;)], de aqui obtenemos que V' es una interseccién finita
de elementos de p. Por lo tanto, V' € [p| y asi obtenemos la primera
contencion € C .

Por otro lado, note que p C €, pues si V € g, entonces tenemos
los siguientes casos V € {I'(U) : U es abierto de X} o V € {A(U) :



44 Hiperespacios

U es abierto de X}.SiV € {I'(U) : U es abierto de X}, entonces V' =
['(U) para algtin U abierto de X y aplicando el teorema[2.18] apartado
(ii), tenemos que V = I'(U) = (U) asi V € €. Ahorasi V € {A(U) :
U es abierto de X'}, entonces V' = A(U) para algin U abierto de X,
luego aplicando de nuevo el teorema apartado (iii), tenemos que
V =A(U) = (X,U). Se sigue que V € €. Ademds, por el teorema[2.19]
tenemos que € es cerrado bajo intersecciones finitas de manera que
[p] C €. Por lo tanto, [p] = € y asi de ambas contenciones concluimos
que p es una subbase para la topologia 7y .

A la topologia generada por € y denotada por 7y se le llama topologia
de Vietoris para el hiperespacio 2%.

Teorema 2.21. Sea un continuo X con métrica d. La topologia de Vietoris
Tv y la topologia inducida por la métrica de Hausdorff i, en 2% son iguales.

Demostracion. Mostraremos primero que 7y C 75,. Como @ es una subbase
de 1y, veamos que I'(U) € 7y, y A(U) € 7y, Para ello fijemos un subconjunto
abierto U de X tal que U # X y tomemos a A € ['(U). Sea e = d(A, X \ U),
por la proposicion tenemos que € > 0. Ahora, sea K € By, (A4, €), luego
Hy(A, K) < ey veamos que K C U. Sea k; € K entonces por la proposicién
[2.13] existe a € A tal que

d(a, k1) < Hg(A, K).

Supongamos, por el contrario, que k; ¢ U entonces k; € X \U, asi obtenemos
que
d(a, k) < ey e<d(a,ky),

lo cual es una contradiccién, asi K C U y por lo tanto, K € I'(U). Esto
implica que By, (A, e) C T'(U).

Ahora si A € A(U), entonces ANU # ) con lo cual existe p € ANU.
Sea ¢ = d({p}, X \ U), por la proposicién tenemos que € > 0. Sea
K € Bpy,(Aje) y veamos que K NU # (. Para ello supongamos por el
contrario, que KNU = (). Luego, K C X \U. Como p € A, por la proposicién
existe ky € K tal que

d(p, k) < Hy(A,K) < e.
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Como p € {p} y ko € X \ U, tenemos que € < d(p, k), lo cual es una
contradiccién. Asi, KNU # (0, es decir, K € A(U) y por lo tanto, By, (A, €) C
AU).

Esto tltimo nos dice que I'(U), A(U) € 1y, para U un subconjunto abierto

de X con U # X. Mas atin, se tiene que A(X) = I'(X) = 2%. Por lo tanto,
© C Ty, y esto implica que 7y C 7p,.
Ahora, veamos que 7y C 7y. Como € es una base para la topologia 1y es
suficiente probar que la bola con la métrica de Hausdorff By, (A,¢€) es un
conjunto abierto de 2. Para ello sean A € 2% y € > 0, consideremos la
bola By, (A, €). Es claro que A € By, (A, ¢€), por tanto buscamos Uy, ..., U,
subconjuntos abiertos de X tales que

A€ (Uy,..,U,) C By, (A,e).

Veamos que primero que A € (Uy, ..., U,). Consideremos la siguiente cubierta
abierta U = {B(a, §) : a € A} de A. Como A es compacto podemos extraer
una subcubierta finita de U/, digamos V = {B(a;, 5) : @ € {1,..,n}}. Note
que los elementos de la cubierta tienen didametro menor que €. Definase U; =

B(ai, §5), para cada i € {1,...,n}. Tenemos entonces lo siguiente:
i) AcU Uiy
(i) ANU; # 0, para cada i € {1,..,n}.

De lo anterior concluimos que A € (Uy, ..., U,). Resta probar que Hy(A, B) <
€ 0 que es lo mismo que A C N(¢,B)y B C N(e, A). Sea a € A. Existe j €
{1,...,n} tal que a € B(ay, 5). Asi, d(a;,a) < §. Ahora como A C N(§,B),
existe b € B tal que d(a;,b) < §. Luego de las dos desigualdades anteriores
se tiene que d(a,b) < d(a;, a) +d(a;,b) < 5+ 5 = €, con lo cual tenemos que
d(a,b) < e y por lo tanto, A C N(e, B). Por otro lado, como B C |J_, U; y
didm(U;) < €, tenemos que B C N(e, A). Finalmente Hy(A, B) < € y por lo
tanto, concluimos que B € By, (A, €). |

Dado un continuo X, la topologia obtenida de la métrica de Hausdorff
para 2%, depende solo de la topologia de X, como lo establece el siguiente
corolario.

Corolario 2.22. Sea un continuo X, si d y D son métricas para X, cada
una de las cuales genera la topologia T de X, entonces la topologia para 2%
obtenida de Hy y la obtenida de Hp son idénticas.



46 Hiperespacios

Demostracion. Sean d 'y D dos métricas para X. Si 74 vy 7p son las topologias
obtenidas por las métricas d y D respectivamente, tales que 7; = 7p. Ahora,
sean Ty, Y Tu, las topologias obtenidas por métricas de Hausdorft Hy y Hp
respectivamente para 2X. Mostraremos que 7y . = THp-

Para ver esto ultimo, sean

Cq={(U1,Us,....U,) : U € 74 paracada i € {1,2,...,n}}

Cp={(U,Us,....U,) : U; € Tp paracadai € {1,2,...,n}}.

Por el teorema[2.20] sabemos que €, es una base para la topologia obteni-
da de la métrica de Hausdorft H; y también € es una base para la topologia
obtenida de la métrica de Hausdorff Hp. Como 75 = 7p, entonces €; = €p,
es decir, Ty, = TwH,. [ |

Teorema 2.23. Sea un continuo X con métrica d y A un subconjunto cerrado
de X. Entonces T'(A), A(A) y Q(A) son cerrados de 2%

Demostracion. Sea A un subconjunto cerrado de X. Veamos primero que
['(A) es cerrado de 2%, esto tltimo es equivalente a demostrar que I'(A) =
I'(A). Probemos que I'(A) C I'(A). Si B € I'(A), entonces B es cerrado
de X y no vacio y es tal que B C A. Luego se cumple que B = By
A = A. Se sigue que B C A. Asi tenemos que B € I'(A). Resta probar
la otra contencién T'(A) C I'(A). Para ello sea B € T'(A), supongamos,
por el contrario, B ¢ I'(A), es decir, B ¢ A. Como estamos suponiendo
que B ¢ A, entonces B\ A # (). De esta forma aseguramos que existe un
elemento n € B\ A. Luego, como A es compacto en X y n € B se cumple que
d(n,A) > 0, pues AN {n} = (). Denotemos por € = d(n, A), como B € I'(A)
tenemos que By, (B,e) NT(A) # (). Asi, existe Z € Bpy,(B,e) NT'(A). Se
sigue que Hy(B,Z) <ey Z C A. Luego, BC N(e,Z)y Z C N(¢, B). Como
n € B tenemos que n € N(¢, 7). Asi, existe m € Z tal que d(n,m) < e.
Ademads, sabemos que Z C A, luego m € A. Se sigue que d(n, A) < d(n,m).
De manera que d(n, A) < e, lo que es absurdo. Asi B € T'(A), por lo que
['(A) c T(A). Por lo tanto, T'(A) es cerrado de 2¥.

Veamos que A(A) es un conjunto cerrado de 2%. Para ello note que como
A es cerrado de X, entonces X \ A es abierto de X. Luego, por (i) de este
teorema I'(X \ A) es abierto de 2%. Por tanto 2%\ ['(X \ A) es cerrado de 2%,
Afirmamos que A(A) = 2¥ \ (X \ A). En efecto. Tenemos que B € A(A) si
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ysélosi BNA#0D, siysélosi B\ (B\A)#0,siy sélosino ocurre que
B\ (B\ A) =0, siy sdlo si no ocurre que B C B\ A, siysélosi B¢ B\ A,
siy sélosi B € 2X\T(X \ A). Por lo tanto, concluimos que A(A) es cerrado
de 2%.

Por tltimo probemos que €2(A) es un conjunto cerrado de 2. Bastara probar
que Q(A) = Q(A). Sea B € Q(A). Supongamos, por el contrario que B ¢
Q(A), es decir, A ¢ B. Tomemos n € A\ B, luego d(n, B) > 0 y denotemos
por € = d(n,B). Como B € Q(A), entonces By, (e, B) N Q(A) # 0. Luego,
existe un elemento Z € By, (e, B) N §(A), esto implica que Z € By, (e, B) y
Z € Q(A). Si Z € By,(e, B), Hy(B, Z) < e. Por el teorema|2.10| Esté tltimo
es equivalente a decir que B C N(¢,Z) y Z C N(e, B). Luego, comon € Ay
Z € Q(A) se sigue que A C Z, en particular n € Z y asi n € N(¢, B). Luego,
existe m € B tal que d(n,m) < e. Entonces, d(n, B) < d(n,m), con lo cual
d(n, B) < €, es decir, € < € lo que es absurdo. Por lo tonta 2(A) es cerrado
de 2X. [ |

Teorema 2.24. Sean X y Y dos continuos con d y d' sus métricas res-
pectivas, y sea un homeomorfismo h : X — Y. Fxiste un homeomorfismo
h* : 2% — 2Y tal que W*[C(X)] = C(Y).

Demostracion. Sea h* : 2X — 2V definida como h*(A) = h(A), para cada
A € 2%, Nétese que como h es un homeomorfismo, h es una funcién cerrada,
y por tanto h(A) € 2Y.

Veamos que h* es inyectiva, entonces sean A, B € 2% tales que h*(A) =
h*(B), luego h(A) = h(B), como h es inyectiva tenemos que A = B. Por lo
tanto, h* es inyectiva.

Probemos que h* es suprayectiva, para ello tomemos cualquier B € 2V
Luego, B es un subconjunto cerrado de Y tenemos que h™*(B) € 2% pues h
es una funcién continua y es tal que

B (h™\(B)) = h(h™\(B)) = B,

esto ultimo es porque h es suprayectiva. Por lo tanto, h* es suprayectiva, y
por tanto h* es biyectiva.

Veamos que h*[C(X)] = C(Y). Sea B € h*[C(X)]. Existe A € C(X) tal
que B = h*(A), como las funciones continuas preservan conexidad se sigue
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que h(A) = B es conexo, luego por definicién de h tenemos que B es cerrado
de X, luego B es compacto. Asi B € C(Y). De esta manera hemos probado

que h*[C(X)] C C(Y).

Sea B € C(Y). Como h* es suprayectiva existe A € 2% tal que h*(A) = B.
Como h(A) = By h™{(B) = h™}(h(A)) = A, se tiene que A es conexo.
Por lo tanto, A € C(X), asi A € h*[C(X)] y por lo tanto, concluimos que
hr[C(X)] = C(Y).

Resta mostrar la continuidad de h*, pero antes de ello definamos D :
X X X — R como D(z,y) = d'(h(z),h(y)), para cada (z,y) € X x X.
Como que d’' es una métrica en Y, entonces D es una métrica para X.
Ahora, afirmamos que d y D son métricas equivalentes. En efecto, sean x € X
y r > 0, deseamos probar que existe un €; > 0 tal que By(z,€1) C Bp(x,r).
Sea t € Bp(z,r), entonces D(z,t) < r. Como D(z,t) = d'(h(z),h(t)), h(t) €
By(h(z),7) que es lo mismo que t € h™'[By(h(z),r)]. Denotemos a U, =
h='[By(h(z),r)], note que U, es un subconjunto abierto de X. Luego existe
un €; > 0 tal que By(t,e) C U,. Ahora, veamos que U, C Bp(z,r). Para
ello, supongamos, por el contrario que existe z; € U, tal que x; ¢ Bp(x,r).
Entonces h(z1) ¢ By (h(z),r), que es lo mismo que, x; ¢ h™'[By(h(z),7)],
es decir, x; ¢ U,, lo cual es una contradiccién pues x; € U,. Por lo tanto,
By(t,e1) C Bp(z,r). De forma andlogoa se prueba que existe un e, > 0 tal
que Bp(z,€3) C By(x, 7). Por lo tanto, D es equivalente a d.

Ahora, afirmamos que
Hp(A,B) = Hy(h*(A),h*(B)), paracada A, B € 2%,
En efecto, denotemos por
E(A,B)={e¢>0:AC Np(e,B) y B C Np(e,A)}
y
E'(h(A),h(B)) = {e>0: h(A) C Na(e,h(B)) 'y h(B) C Na(e,h(A))}.

Probemos que E(A, B) = E'(h(A),h(B)). Sea ¢ € E(A, B), entonces A C
Np(e,B) y B C Np(e, B). Ahora, sea a € A, existe un b € B tal que
D(a,b) < e, luego d'(h(a),h(b)) < €, o sea que h(a) € Ny(e, h(b)), que
es lo mismo que, h(A) C Ng(e, h(B)). De forma similar se prueba que
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si B C Np(e, A), entonces h(B) C Ng(e, h(A)). Por lo tanto, E(A, B) C
E'(h(A), h(B)).

Por ultimo sea € € E'(h(A), h(B)), entonces h(A) C Ny (e, h(B)) y h(B) C
Ng(e,h(A)). Sea a € h(A), entonces existe b € h(B) tal que d'(h(a),h(b)) <
€, que es lo mismo que, D(a,b) < ¢, es decir, A C Np(e, B). De forma similar
se prueba que si h(B) C Ny (e, h(A)), entonces B C Np(e, A). Por lo tanto,
E(A,B) = E'(h(A), h(B)).

Ahora, por el teorema 2.7 tenemos que inf(E(A, B)) = inf(E'(h(A), h(B))).
Por lo tanto, Hp(A, B) = Hy(h*(A), h*(B)).

Ya estamos listos par ver que en efecto h* es una funcién continua. Por el coro-
lario [2.22] tenemos que Hp y Hy son métricas equivalentes, asi dado un e > 0
existe un 0 > 0 tal que Bpy,(A,0) C Bu,(A,€), es decir, si B € By, (A,J),
entonces B € By, (A, ¢), o sea que si, Hy(A, B) < 6, entonces Hp(A, B) < e.
Pero Hp(A, B) = Hy(h*(A), h*(B)), se sigue que Hy(h*(A), h*(B)) < €. Por
lo tanto, h* es continua en A con Hy y Hy. [ |

2.3. Convergencia en hiperespacios

En esta seccion presentamos una descripcion apropiada de la convergencia
con respecto a la métrica Hausdorff.

Definicién 2.25. Sean un continuo X y {A;}ien una sucesion de elementos
de 2% . El limite superior y el limite inferior, denotados como lim sup(A;)
y liminf (A;), son :

limsup (A4;) = {z € X : para todo e >0, B(x,e)NA; # 0 para una cantidad

infinita de indices i},

liminf (A;) = {x € X : para todo € > 0, existe N € N B(x,e) N A; # 0 para
todai > N}.

Observaciéon 2.26. Elliminf (A;) C limsup (A4;), por la definicién de estos
conjuntos.

Definicién 2.27. Sean un continuo X, {A;}ien una sucesion de elementos
de 2%X y A € 2%, Si liminf A, = limsup A; = A, entonces el limite de
{A;}ien es A y se denota por lim A; = A.
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Lema 2.28. Sean un continuo X y {A; }ien una sucesion de subconjuntos de
X y A C X. Entonces los siguientes enunciados son equivalentes

(ii) A C liminf(4;) y limsup A; C A.

Demostracion. [=] Si lim A; = A, entonces liminf A; = limsup A; = A lo

cual implica que liminf (A4;) C limsup (A;) y limsup (4;) C liminf (A4;). Asi

A C liminf (4;) y limsup (4;) C A.

[«] Ahora, note que A C liminf (A;) C limsup(A;) C A. Luego, liminf(A4;) =

lim sup (A4;), es decir, lim(A;) = A. [ |
de

Lema 2.29. Sean un continuo X con métrica d, {A;}ien una sucesion
elementos de 2% y A € 2%, entonces se cumple:

(i) limsup (4;) y el liminf A; son conjuntos cerrados de X.
(ii) limsup (4;) # 0 para toda sucesion en 2X.

Demostracion. (1) Deseamos probar que lim sup (A;) = limsup A;. Es evi-
dente que limsup(A;) C limsup(A4;). Lo interesante es la otra conten-
cién, es decir, limsup(A;) C limsup(A;). Para ello, sea x € lim sup(A;).
Dado cualquier € > 0, tenemos que B(z,€) N limsup(4;) # 0. Luego,
consideremos a un elemento p € B(x, €)Nlimsup(4;). Como p € B(z,¢)
esto implica que existe ¢y > 0 tal que B(p,ey) C B(z,€), donde ¢y =
e — d(p, x). Por otro lado, como también se tiene que p € limsup(A4;),
entonces para dicho €y > 0 tenemos que B(p,ey) N A; # () para una
cantidad infinita de indices i y dado que B(p,€y) C B(z,€), se sigue
que, B(z,e) N A; # 0 para una cantidad infinita de indices i. Por lo
tanto, x € lim sup(A;).

Veamos ahora que lim inf(A;) es un subconjunto cerrado de X. Para ello
solo probaremos la siguiente contencién liminf(A;) C liminf(4;), ya
que la otra contencion es evidente. Dicho esto, tomemos x € lim inf(A;).
Luego, dado cualquier € > 0, se cumple que B(x,€) Nliminf(A;) # 0.
Asi existe xy € B(x,€) N liminf(A;). Como xy € B(z,€), podemos
encontrar un €¢; = € — d(x,x9) > 0 tal que B(xg,€e9) C B(z,€). Por
otro lado, como zy € liminf(A;), para ¢ > 0 existe N € N tal que
B(xg, €9, )NA; # (), paratodai > N. Dado que B(xg, €9) C B(x,€) se si-
gue que B(z,e)NA; # 0, para todai > N. Por lo tanto, x € liminf(A4;).
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(ii) Note que para cada sucesién {4;};en de elementos de 2% A; es diferente
del vacio para toda ¢ € N. Ahora para cada ¢ € N sea a; € A; C X.
Tenemos que {a;};en es una sucesién en X. Dado que X es compacto,
existe una subsucesién {a;, }jen de {a;}ien que converge a un elemento
a de X. Dicho lo anterior tenemos que para cada € > 0, existe N € N
tal que

ai; € B(e,r), paratoda j > N.

De esta forma tenemos que B(e, x) N A; # () para una cantidad infinita
de indices i. De aqui, se sigue que z € limsup(4;), y por lo tanto,
lim sup(A4;) # 0.

|

Lema 2.30. Sea un continuo X con métrica d. Si {A;}ien €s una sucesion
de elementos de 2%, entonces se cumple:

(i) « € iminf(A;) si solo si existe una sucesion {z; };en en X que converge
a x tal que x; € A;, para cada i € N.

(ii) = € limsup(A4;) siy sdlo si existen una sucesion de nimeros naturales
{ir}ren tales que iy < iy < ... < i < ...y puntos x; € A, , para cada
ke Ny x; converge a x.

Demostracion. Veamos que se cumple que (i).
[=] Sea x € liminf(A;). Para cada i € N, sea z; € A; de tal forma que

d(xz,z;) = min{d(z,y) : y € A;}.

Sean z € X fijoy f : X — R™ U {0} definida, para cada x € X, por
f(y) = d(z,y). Por el teorema sabemos que f es continua y dado que
A; € 2%, para cada i € N, se sigue que A; es compacto. Asi f es acotada y
alcanza su minimo en A; para cada i € N, es decir, existe ¢ € N tal que

f(z;) = min{d(z,y) : y € A;}.

Sea € > 0, como x € liminf(A4;) existe un N € N tal que B(x,¢) N A; # 0,
para cada i > N. Asi, para cada i > N, existe a; € A; tal que d(x,a;) < e.
Ademas

d(z,z;) = min{d(z,y) : y € A;} < d(x,a;) <e.
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De lo anterior tenemos que d(z,x;) < €, para cada i > N, por lo tanto, x;
converge a .

[«<] Ahora sea {; };en una sucesién de elementos de X tal que z; converge a
ry x; €A; para cada i € N. Sea € > 0. Existe N € N tal que

d(xz,x;) < e para cada i > N.

Asi, para cualquier € > 0 se cumple que x; € B(z,€) y x; € A;, para cada
¢ € N. De esta forma obtenemos que dado cualquier € > 0, existe N € N tal
que z; € B(x,e) N A;, para cada i > N, es decir, = € liminf(4;).

Por tltimo, veamos que se cumple (ii).
[=] Sea x € limsup(A;). Para todo € > 0, tenemos que B(z,e) N A; # () para
una cantidad infinita indices i. Elijamos a € = 1. Luego, B(z,1)NA; # () para
una cantidad infinita de indices i. Tomemos 7; € N tal que z;, € B(z,1)NA;,.
Luego, d(z,z;,) < 1y x; € A;. Ahora, tomemos a € = 3. Tenemos que,
B(x,3) N A; # 0 para una cantidad infinita de fndices ¢. Tomemos i, € N tal
que iy > 1. Luego, B(z, 1) N A;, # 0. Por lo tanto, existe z;, € B(z, 3) N Aj,.
Asl, d(z, m;,) < 35 @iy € Ay
Continuando este procedimiento se construye una sucesion de niimeros natu-
rales {iy }ren tales que iy < iy < ... < ij... y una sucesién de puntos z;, € A;,,
para cada k € N tales que d(z, z;,) < % Por lo tanto, {z;, }ren converge a .
[«<] Supongamos que existe una sucesion {iy }ren tal que i; < i < ... < i <
... Sea z;, € A;,, para todo k € N, tal que {z;, }ren converge a z. Como
{2, }ren converge a x, para todo € > 0, existe N € N tal que d(z,z;,) < e,
para todo k > N. Luego, z;, € B(x,¢€). De esta forma tenemos que

x;, € B(z,e) N A,;,, para toda k > N.

Tk

Asi, para toda € > 0, tenemos que B(z,¢e) N A; # 0, para una cantidad
infinita de indices ¢. Por lo tanto, x € lim sup(4;). [ |

Teorema 2.31. Sean un continuo X y {A;}ien una sucesion de elementos
de 2%. Se cumple que

limsup (4;) = ﬂ <U AZ-) .
n=1 \i=n
Demostracidn. Probemos primero que limsup (A4;) C (2, (U;’in Ai). Para

ello, sea = € lim sup (4;). Dado cualquier € > 0 se cumple que B(z,e)NA; # ()
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para una cantidad infinita de indices ¢. Luego para toda n > 1, tenemos que

B(z,e) N (U, Ai) # 0, lo cual implica que z € (J;-, A;, para todo n > 1,
es decir, z € (2, <U2n Ai).

Por dltimo veamos que (-, (Ufin AZ-) C limsup (4;). Entonces sea x €

N, <U;’in Ai>, luego = € (Uzn Ai> para todo n > 1. Asi dado cualquier

¢ > 0, tenemos que B(z,¢) N (U;2, Ai) # 0, para todo n > 1. Es decir,

B(z,e) N A; # 0 para una cantidad infinita de indices i. Por lo tanto, z €

lim sup (4;). [
El siguiente resultado es fundamental.

Teorema 2.32. Sean un continuo X con métrica d y {A;}ien una sucesion
de subconjuntos no vacios y compactos de X. Entonces el imA; = A si y

sélo si {A;}ien converge a A en 2% con repecto a la métrica de Hausdorff
Hy.

Demostracion. [=] Supongamos que lim A; = A y probemos que {A;}ien
converge con la métrica de Hausdorff. Puesto que A = limsup(4;), de (i) y
de (ii), del teorema se sigue que A # () y A € 2%, Ahora, sea € > 0,
deseamos probar que existen Ni, Ny € N tales que

(a) A C N(e, A;) para toda i > Ny,
(b) A; C N(e, A) para toda i > Ns.

Veamos que se cumple (a). Para ello observemos que la familia &/ = {B(a, §) :
a € A} es una cubierta abierta de A, dado que A es compacto existe una
subcubierta finita de U, es decir, existen ay,as, ..., a, elementos de A con

n € N tales que
" €
A B( —>
C]L_Jl a; 5

Ahora, como A = liminf(A;) para toda j € {1,2,...,n}, se tiene que a; €
liminf(A;). Asi, para cada j € {1,..,n}, existe M; € N tal que B(a;,5) N
A; # 0, para todo ¢ > M;. Consideremos Ny = max{ M, My, ..., M;}. Luego,
afirmamos que A C N(e, A;), para todo ¢ > Ni. En efecto, sea a € Ay
i > Np. Como A C U_, B(aj,5), existe un jo € {1,...,n} tal que a €
B(aj,, 5). Luego, d(a,a;,) < 5. Ademds, note que para todo ¢ > M, existe
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r € B(aj, 5)NA;. Asid(z,a;) < §y v € A;. Por la desigualdad del tridngulo
tenemos que

d(a,z) < d(a, a5) + d(ajo, ) = % +

= €.

(NN e

De esta forma d(a,z) < €, para algun x € A;. Asi a € N(¢, A;), para todo
i > Njp. Por lo tanto, A C N (e, A;) para toda i > Nj.

Ahora, veamos que se cumple (b). Para ello supongamos, por el contrario, que
para cada Ny € Nexiste i > Ny tal que A; ¢ N(e, A). Asi, para Ny = 1, existe
un i; > Ny tal que A;; ¢ N(e, A). Ahora, si Ny = i; + 1, existe 15 > iy tal
que A;, ¢ N(e, A). Luego si Ny = is+ 1, entonces existe i3 > iy tal que A;, ¢
N (e, A). Continuando este procedimiento se tiene una sucesién de nimeros
naturales i; < iy < s, ..., i, ... tales que A;, ¢ N(e, A), para cada k € N. Sea
z;, € A;, \N(e,A) C X. Consideremos la sucesién {x;, }renen el compacto X.
Existe una subsucesién {xikl hen de {24, }ren tal que llirgo Ti,, = To, Para algin

zo € X. Observemos que para cada I € N se tiene que z;, € X \ N(e, 4)
y como X \ N(e, A) es cerrado de X, se sigue que zp € X \ N(e, A) y en
particular zo € X \ A. Asi, zy ¢ A.

Por otro lado, tenemos que una sucesién de nimeros naturales {iy, }en tales
que 1y < i <13, ..., 0, ... y existen puntos x;, € Aikl, para cada [ € N tal que

sz i, = To. Por el lema|2.30, apartado (i), se sigue que xy € limsup(A;) =
— 00

A, lo cual implica que xg € A. Lo cual es una contradiccion. Por lo tanto,
existe un Ny € N tal que A; C N(e, A), para cada i > N,. Concluimos de
los apartados (a) y (b) que la sucesién {A;}icn converge a A en 2% con la
métrica de Hausdorft.

[«] Finalmente supongamos que la sucesion { A, };en converge a A en 2% con
la métrica de Hausdorff y veamos que lim A; = A, es decir, liminf(4;) =
lim sup(A;) = A. Por la observacién sabemos que liminf(A;) C lim sup
(A;), por lo que es suficiente probar que

(a’) A C liminf(4;) y
(b)) limsup(4;) C A.

Veamos que se cumple (a’). Para ello, sea a € A. Como la sucesion {A4;}en
converge a A en 2% con la métrica de Hausdorff, entonces para cualquier
e > 0, existe N € N tal que Hy(A, A;) < esii> N. Luego, A C N(e, A;) y
A; C N(e,A). Como a € A C N(e, A;), existe x; € A; tal que d(x,z;) < €,
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para todo ¢ > N de aqui obtenemos que x; € B(a,¢) y dado que x; € A;, se
sigue que x; € B(a,€) N A para todo i > N. Por lo tanto, a € liminf(A4;).

Por tltimo veamos que se cumple (b’). Para ello supongamos, por el contrario,
que limsup(A4;) ¢ A, es decir, existe un = € limsup(4;) tal que z ¢ A. Como
A es compacto y por tanto cerrado de X, se sigue que existe un € > 0 tal
que B(z,e) N A = (). Ahora, dado que = € limsup(4;), si € > 0 se cumple
que B(z,e) N A; # 0 para una cantidad infinita de indices ¢ y como {A; }ien
converge a A en 2% con la métrica de Hausdorff, tomemos 5> 0. Asi,

Hy(A;, A) < eparai> N.
Luego, A; C N(5,A) y AC N(5,4;), parai > N. Sean > N tal que

B(x,%)ﬂAnst@.

Sea w € B(x,5) N Ay. Luego d(z,w) < § y w € A, C N(§,A). Por lo tanto,
a € A tal que d(a,w) < §, luego por la desigualdad del tridngulo tenemos
que

d(z,a) < d(z,w) + d(a,w) < % + % =e.

Asi d(z,a) < €, para a € A, lo cual implica que a € B(z,€) N A. Esto es una
contradiccién, pues B(z,e) N A # (. Por lo tanto, limsup(4;) C A, de esta
forma concluimos que lim A; = A, es decir, liminf(A;) = limsup(4;) = Ay
el teorema queda demostrado. |

Proposicién 2.33. Sea un continuo X con su métrica d. Si {An}nen ¥
{Bn}nen son sucesiones de elementos de 2X tales quelim A, = A ylim B, =
B, donde A, B € 2%, entonces se cumplen las siquientes condiciones

(i) Si A, C B, para cada n € N, entonces A C B,
(i) lim A, U B, = AU B,

(iii) Si A, N B, # 0 para cada n € N, entonces AN B # .

Demostracion. Primero demostremos (i). Sea a € A, para cada n € N, sea
A, C B,. Como B € 2X sabemos que B es cerrado de X y no vacio, por
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lo que es suficiente probar que a € B = B. Para ello, sea ¢ > 0. Como
limA, = Ay limB, = B, existen N1, Ny € N tales que

Hy(A,, A) < g para cada n > N;

Hy(B,, B) < g para cada n > Ns.

Ahora, tomemos a N = max{N;, No}. Para cada n > N, tenemos que
Hy(A,, A) < §y Hy(B,,B) < §. Luego, de acuerdo con el teorema

2
se cumple que
A, C N (%,A) y ACN G,An)

BncNG,B) y BcN(%,Bn).

Fijemos m € N tal que m > N. Como a € A, de donde existe x € A, tal que
d(a,x) < 5. Por hipétesis sabemos que A,, C B, se sigue que z € B,,. Por
lo cual existe z € B tal que d(z, z) < §. Asi, por la desigualdad del tridngulo
tenemos que

d(a,z) <d(a,z) +d(z,z) < % + % =e

De lo anterior tenemos que d(a, z) < ey 2 € B asi se sigue que z € B(a,¢)NB
y por tanto B(a,€) N B # 0, es decir, a € B = B. Por lo tanto, a € B y de
esta forma se comprueba que A C B.

Ahora veamos que se cumple (ii). Deseamos probar que, dado cualquier
e > 0, existe N’ € N tal que Hy(A, U B,, AU B) < ¢, para todan < N'. Sea
€ >0, como limA,, = Ay limB, = B, existen N1, N, € N tales que

Hy(A,, A) < € para cadan > N,

Hy(B,, B) < € para cada n > Nj.

Tomemos a N’ = max{Ny, No} y n > N’. Luego por el teorema [2.10} inferi-
mos que

ACN(e, Ay) vy Ay C N(e, Ay)
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B C N(¢,By) v B, C N(e, By).

Por consiguiente, AUB C N(¢, A,)UN(e, B,) y A,UB,, C N(¢, A)UN (e, B).
Por la observacién [2.5] se cumple que

AUB C N(¢,A,UB,) y A,UB, C N(¢, AU B).

Esto ultimo equivale a decir que Hy(AU B, A, U B,,) < €, para toda n > N'.
Por lo tanto, concluimos que lim A, U B,, = AU B.

Por ultimo veamos que se cumple (iii). Supongamos, por el contrario,
que AN B = (. Por el lema [2.6] tenemos que N(e, A) N N(e,B) = 0.
Como lim A, = B y lim B,, = B sabemos que existen Ni, Ny € N tales
que Hy(A,, A) < ey Hy(B,,B) < €, para toda n > N;, Ny. Sea N =
max{ Ny, No}. Tenemos que

Hq(A,, A) < € para toda n > N

Hy(B,, B) < € para todan > N.

Ahora aplicando el teorema , tenemos que A C N (¢, A,), A, C N(¢, A),
B, C N(¢,B) y B C N(e B,), para cada n > N. Por hipétesis sabemos
que A, N B, # 0. Asi, existe un z € A, N B,. Luego, 2 € A, y 2 € B,,
por lo anterior se sigue que z € N(¢,A) y z € N(¢,B) que es lo mismo
que z € N(e, A) N N(e,B) # ). Lo cual es una contradiccién. Por lo tanto,
ANB #0. [ |

Observacion 2.34. Sea un continuo X. Si {A,}nen ¥ {Bn}nen son sucesio-
nes de elementos de 2% tales quelim A, = A ylim B, = B, donde A, B € 2X.
No siempre se cumple que lim(A, N B,) = AN B.

Lema 2.35. Sea un continuo X. Si {A,}nen €s una sucesion de elementos
de 2% tal que lim A, = A, entonces p € A si y sélo si existe una sucesion de
puntos {pntnen de X tal que p, € A, para todan € N ylimp, = p.

Demostracion. Primero supongamos que p € A. Por hipdtesis sabemos que
lim A,, = A. Luego, por el lema [2.30] existe una sucesion de puntos {py }nen
tal que lim p, =py p, € N, para todo n € N.

n—oo
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Por tltimo, supongamos que existe una sucesiéon de puntos {p, }nen de X tal
que lim p, = py p, € A,. Por el lema [2.30] se sigue que p € liminf(A4,,),
n—oo

pero como lim A,, = A, que es lo mismo que, liminf(A4,,) = limsup(4,,) = A,
tenemos que p € A. Asi, el teorema queda demostrado. |

A continuacién enunciamos el Lema de la subbase de Alexander, ya
que este nos ayudara a demostrar que el hiperespacio 2% es compacto, cuando

X es un espacio métrico compacto. La prueba de este lema se encuentra en
[11].

Lema 2.36 (Lema de la subbase de Alexander). Sean Y un espacio
topoldgico y S una subbase para Y. Entonces Y es compacto si y solo si toda
cubierta de 'Y formada por elementos de S tiene una subcubierta finita.

Teorema 2.37. Si X es un espacio métrico compacto, entonces 2% es com-
pacto.

Demostracion. Por el teorema la familia
o =AT(U) : U es abierto de X} U{A(U) : U es abierto de X},

es una subbase para la topologia de Vietoris para 2%. Asi por el lema de
Alexander, bastard probar que para cada cubierta de 2% de elementos de p
tiene una subcubierta finita. Para ello supongamos que £ C @, donde,

L={T(U,):0e€X}U{A(V,) : w € Q},

y es tal que 2% = (J £, es decir,

X — U

Uu, .

oeY

Ju.

weN

Sea Y = X \ W{V,, : w € Q}. Consideremos los siguientes casos:

Caso 1: SiY =0, entonces X = U{V,, : w € Q}. Como X es compacto, existe
un subconjunto finito, digamos 2y contenido en €2 y es tal que

2¥ = A(VL).

wEN

En efecto. Sea A € 2%, entonces A C X y A es cerrado de X y no

vacio. Pero también A C UWGQO V., por lo que, para cada a € A,
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existe w € Qo tal que a € V,, y por tanto ANV, # (. Se sigue que
A e (X, V,) = AV,). Asi, 2% =, cq, A(V,) y por tanto 2% tiene una
subcubierta finita, de elementos de . Por lo tanto, 2% es compacto.

Caso 2: Ahora si Y # (), ndtese que Y es cerrado, pues X \'Y = (J,cq Vi, €l
cual es abierto, por tanto

Y e2¥ = [U r(U,)

oeY

U

Uam)

weN

Ahora afirmamos que para cualquier w € 2, no ocurre que Y ¢ A(V,,).
En efecto: supongamos a manera de contradiccién que Y € A(V],) para
algin wy € Q. Entonces, Y NV, # 0. Sea z € Y NV, luego z €
X\NU{V, twe QtyzeVy CUyenV, esto quiere decir que,
z ¢ UV, :weQ}yzelU,eqVe locual es una contradiccion. Por
lo tanto, Y € |J, ey, I'(Us). Dicho lo anterior tenemos que, existe o € X
tal que Y € I'(U,). Por lo tanto, Y C U,. Tomando complementos
tenemos que X \ U, C X \'Y, pero X \'Y = [J,cq V- Notemos que
X\ U, es un subconjunto cerrado de X y por tanto es compacto. De esta
forma existe un subconjunto finito €, de Q tal que X\ U, C U, cq, Ve
Finalmente, tomando complementos tenemos que U, C X \ U, cq, Vi
y dado que Y = X \ W{V,, : w € Q} tenemos que U, C Y, es decir,
Y € I'(U,). Luego,

2X=T(U,) U | |J A(VL)

wEeN

Asi, £ es una subcubierta finita de 2%. Por lo tanto, el hiperespacio 2% es
compacto. |

Los siguientes resultados que presentamos a continuacién se refieren a
la conexidad. En particular veremos en el teorema [2.44] que el hiperespacio
C(X) es compacto. Para este ttimo introduciremos el concepto de (d, €)-
cadena y mostraremos unos resultados importantes.

Definicién 2.38. Sean un continuo X con métrica d y € > 0. Una (d,¢)-
cadena en X es un subconjunto finito y no vacio {x1,...,x,} tal que

d(x;, xi41) < €, para cada it =1,....,n — 1.

Decimos que una (d, €)-cadena {1, ...,xp}, conp=1x1 yq=x, va dep aq
0 que une de p a q.
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Definicién 2.39. Sea un continuo X con métrica d y € > 0 fijo. St Z es un
subconjunto de X, decimos que Z estd (d,€)-encadenado siempre que dos
puntos cualesquiera de Z puedan unirse mediante una (d, €)-cadena en Z.

Definicién 2.40. Sea un continuo X con métrica d. Si U es un subconjun-
to de X que es (d,€)-encadenado para toda €, se dice que U estd d-bien-
encadenado.

Teorema 2.41. Sea un espacio métrico X con métrica d. St para todo Z C X
y dado un € > 0, consideremos el siguiente conjunto

C(Z,e) ={x € X : existe una (d, €)-cadena en X desde algin punto
de Z a x},

entonces € (Z,€) es un subconjunto abierto y cerrado de X.

Demostracion. Primero veamos que % (Z,€) es un subconjunto abierto de
X. Para ello sea y € €(Z,¢€), entonces existe una (d, ¢)-cadena en X des-
de algin punto z de Z a y. Luego existe un subconjunto finito <7, = {z; =
2, To, ..., T, =y} de X. Se cumple que d(z;, x;41) < e paracadai=1,2,....n—
1, luego y € B(xy,_1,€). Ahora afirmamos que B(y,€) C €(Z,¢€): en efecto,
sea t € B(y,e€). Luego, d(y,t) < e. Asi existe una (d,¢)-cadena digamos
o, = {z,29,...,y,t} que une a z con t, se sigue que t € €(Z,¢). Por tanto
B(y,e) C €(Z,¢€). Asi, €(Z,¢€) es un subconjunto abierto de X.

Por tltimo veamos que €(Z, €) es un subconjunto cerrado de X. Para ello es
suficiente probar que € (Z,¢) = ¢ (Z,¢). La contencién hacia la derecha es
evidente. Para la otra contencién sea b € € (Z, €), entonces para todo € > 0
se cumple que B(b,e) N € (Z,¢€) # (). Tomemos a € B(b,e) N € (Z,€). Luego,
a € B(b,e)yae€€(Ze). Sia € € (Z e), entonces existe una (d, €)-cadena en
X desde un punto z de Z a a, digamos 7, = {z, 3, ..., a}. Ahora considérese
a o, U{b} y dado que a € B(b,¢) tenemos que d(b,a) < €, se sigue que
o, U {b} es una (d,€)-cadena que une a z con b. Asi, b € € (Z,¢€). Por lo
tanto, el subconjunto (7, ¢€) es cerrado de X. [ |

Corolario 2.42. Todo espacio métrico conexo X es d-bien-encadenado.

Demostracion. Sean X un espacio métrico conexo con métrica d y U C X
tal que U = {z} para cualquier x € X. Consideremos

C({x},e) = {2’ € X : existe una (d, €)-cadena que une =’ con z}.

Note que = € € ({z},¢€). Por la conexidad de X y por el teorema [2.41} se
sigue que €' ({z},€) = X. Por lo tanto, X es d-bien-encadenado. [ |
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Teorema 2.43. Sean un espacio métrico compacto X con su métrica d y
{A;}ien una sucesion de elementos de 2% que converge a A € 2%. Si para
cada A; es un (d, €)-encadenado, donde {€;};en €s una sucesion que converge
a cero, entonces A € C(X).

Demostracion. Supongamos que A no es conexo en 2%. Entonces A = K UL,
con K y L cerrados y ajenos no vacios de A, y por tanto de X. Ahora, como
X es normal, existen U y V subconjuntos abiertos de X y ajenos tales que
KcU,LCcVyUnNV ={. De aqui obtenemos que A € (U, V), el cual es
un abierto de 2¥.

Como la sucesién {4; }ien converge a A en 2% entonces existe N € N tal que

A; € (U, V) para todo i > N. (2.3)

Ahora sea,

§ =mf{d(z,y):2€UyyeV}

Por la compacidad de U y V tenemos que § > 0. Ahora, como {¢; };cn converge
a cero, existe k > N tal que ¢, < §. Asi, por , tenemos que Ay € (U, V).
Luego, Ay, NU # 0, Ay NV # 0y ademds A, € U U V. Como A; es
(d,e)-encadenado y €, < ¢, existe un subconjunto finito de X, digamos,
{z1, 29, -+ ,x,} C Ay tales que zy € Ay NU yz, € Az,NV conzy =xy
Tn =vy. Asi,

d(x;,xip1) < €, < 9 paratodai=1,2,--+ ,n— 1.

Notemos que z; € U y z, € V. Se sigue que § = d(U,V) = d(x1, x,), lo que
es absurdo pues €x < d. Por lo tanto, A € C(X). [ |

Dicho todo lo anterior, ya estamos listos para probar que el hiperespacio
C(X) es compacto.

Teorema 2.44. Si X es un espacio métrico compacto con métrica d, enton-
ces C(X) es compacto.

Demostracidn. De acuerdo con el teorema[2.37]es suficiente probar que C'(X)
es un subconjunto cerrado de 2X. Para ello, sean A € 2% y {A;}icn una su-
cesién de elementos de C'(X) tal que lim A; = A. Consideremos una sucesién
{€ }ien de nimeros reales positivos, que converge a cero. Luego, como A; es
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conexo para cada i € N, por el corolario [2.42] se sigue que cada A; es d-bien-
encadenado. Ahora, aplicando el teorema se sigue que A € C(X). Por
lo tanto, C'(X) es compacto. [ |
Nuestro siguiente objetivo sera mostrar que si X es un continuo, entonces
es un continuo. Por un lado ya tenemos que 2% es un espacio métrico con la
métrica de Hausdorft H; y por el teorema tenemos que 2% es compacto,
asi que falta ver que 2% sea conexo. Para ello, daremos algunos resultados
que no ayudaran a demostrar este hecho.

2X

Teorema 2.45. Sean un continuo X con métrica d yn € N. Si Dy denota
la métrica en X™, dada por

Disx = méx{d(z1,12), ..., d(Tn,yn)},

para cada par (x1,...,x,), (Y1, ..., yn) € X", entonces la funcion f, : X" —
F.(X), definida por f,((x1,...,x,)) = {x1, ..., 20} s suprayectiva y continua.

Demostracion. Primero veamos que f, es suprayectiva. Para ello, sea A =
{z1,...;xpm} € F,(X). Por un lado tenemos que si m = n, se cumple qe
(1, ., zp) € X™y ast f((x1,...,2,)) = A. Por otro lado si m < n, entonces
note que Ty,11 = ... = Ay = U, a1 (T1, ooy Tny Tips1s -, Tn) € X Por lo
tanto, fn((T1, .., Tm, Tmats - Tn)) = A, es decir, f, es suprayectiva.

Por dltimo veamos que f, es continua. De hecho se probard que f, es uni-
formemente continua. Sean € > 0y (1, ...,x,), (Y1, ..., Yn) € X" tales que

Driax (1, oy 2n), (Y1, ooy Yn)) = max{d(z1,y1), ..., d(zn.yn) } <,

entonces d(z;,y;) < €, para cada i € {1,...,n}. De modo que

{z1, .., } CTNEAY, o un}) Y {y1, - yn} C N(e,{x1, .y 20 }).

Ast Hy({x1, ..., zn}, {y1, -, Un}) <€, es decir, Hy(fr(z1, s 2n), fo(Y1, -y Yn))

< €. Por lo tanto, f, es uniformemente continua. |
Por el teorema podemos probar que el hiperespacio F,(X) es un
continuo.

Lema 2.46. Sea un continuo X, entonces F,,(X) es un continuo, para cada
n € N.
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Demostracion. Al ser X un continuo, se sigue que X™ es un continuo con
métrica Dpsx por el teorema de Tychonoff [I Teorema 7.2.2]. Ademads se
sabe que X™ es conexo si X es conexo [I, Teorema 8.1.18]. Asi por el teorema
[2.45] tenemos que F,(X) es la imagen continua de un conjunto compacto y
conexo, por lo que F,,(X) es compacto y conexo. Por lo tanto, F'(X) es un
continuo. |

Teorema 2.47. Sea un continuo X, entonces el hiperespacio F,,(X) es denso
en 2X.

Demostracion. Sean A € 2% y € > 0. Notemos que la familia {B(a,¢) :
a € A} es una cubierta abierta de A y dado que A es compacto existen
a, g, ...,a, € A tales que A C |J;_, B(a;,€). Ahora consideremos a la co-
leccién {ay, as, ...,a,}, entonces por el teorema [2.4] apartado (iv) tenemos
que N(e, {ai,az,....,a,}) = Uiy Blai,€), luego A C N(e, {a1,az,...,an}).
Por otro lado la coleccién {aq,as,...,a,} C Ay como A C N(e A), se
sigue que {ai,as,...,a,} C N(e, A). Asi, por el teoram tenemos que
Hqi(A, {a1, a9, ...,a,}) <€, es decir, la coleccién {ay, as, ..., an} € B, (A, €) N
F(X). Por lo tanto, el hiperespacio F,,(X) es denso en 2. [

Teorema 2.48. Sea un continuo X, entonces 2% es un continuo.

Demostracion. Sea f, la funcién del teorema entonces f,(X) = F,(X),
para todo n € N. Puesto que F,,(X) es conexo y F(X) C F,(X), para todo
n € N, entonces F(X) = J, F,,(X) es conexo, pues es la unién de conexos

que intersectan a un conexo en comun, a saber Fy(X). Asi F'(X) es conexo.
Ahora, por el teorema tenemos que 2% = F(X), se sigue que 2% es
conexo. Ademés por el teorema [2.37, tenemos que 2X es compacto. Por lo
tanto, el hiperespacio 2% es un continuo. |

La conexidad de C(X) se deriva del hecho de que este es conexo por arcos
véase [10], pagina 84]. Por lo tanto, el hiperespacio C'(X) es un continuo. Para

finalizar este capitulo daremos un resultado que se deduce del teorema [2.44

Corolario 2.49. Sea un espacio métrico compacto X . Entonces cada suce-
sion de subcontinuos de X tiene una subsusesion convergiendo a un subcon-
tinuo de X, por lo que cada sucesion convergente de subcontinuos de X tiene
un subcontinuo de X como su limite.
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Capitulo 3

Modelos de Hiperespacios

Desde una perspectiva geométrica, los modelos de hiperespacios represen-
tan un tema sumamente atractivo. Estos modelos, como mencionamos pre-
viamente, se presentan como una herramienta de gran poder para descubrir
nuevas propiedades y resultados en los hiperespacios. Sin embargo, lamenta-
blemente, como veremos mas adelante, solo unos pocos hiperespacios pueden
ser modelados.

3.1. Modelo para C([0,1])

Los modelos geométricos para los hiperespacios son imagenes que mues-
tran como se ven estos espacios. En esta secciéon construiremos un modelo
para el hiperespacio de subcontinuos del intervalo cerrado [0, 1].

Sea X = [0,1] y consideremos el hiperespacio de subcontinuos de X es
decir
C((0,1]) = {la,0] C 0,1 : 0 <a <b <1}
Noétese que cada elemento de C([0,1]) es un subintervalo cerrado, conexo y

no vacio de [0, 1].

Teorema 3.1. Si T = {(a,b) € R* : 0 < a < b < 1}, entonces la funcién
n: C([0,1]) — T definida, para cada [a, ] C([0,1]), por n([0,1]) = (a,b)
es un homeomorfismo.

Demostracion. (1) Veamos que 7 es inyectiva, para ello sean [a, b], [c,d] €
C([0,1]) y supongamos que 71([a,b]) = n([c,d]). Por definicién de 7

65
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tenemos que (a,b) = (c¢,d), esto ultimo es equivalente a que a = ¢y
b = d, es decir, [a,b] = [c,d]. Por lo tanto, n es una funcién inyectiva.

(ii) Para ver que 7 es suprayectiva tomemos un punto del codominio 7T,
digamos p = (a,b) € T. Asi existe un subintervalo [a,b] € C([0, 1]) tal
que 7([a,b]) = p. Por lo tanto, hemos demostrado que 7 es una funcién
suprayectiva. Luego, 1 es biyectiva.

(iii) Ahora veamos que 7 es una funcién continua. Para ello considere-

mos una sucesién de subintervalos {[a,,b,]}22, de C([0,1]) tal que
lim [a,, b,] = [a, b]. Entonces deseamos ver que lim 71([a,, b,]) = n([a, b])
n—00 n—00

también existe. Dado que la sucesién {[a,, b,]}72 | converge a [a, b], exis-
te n > N tal que Hy([an, b, [a,b]) < 5. Ahora, observe que

() (-0

Luego, por el teorema2.10| tenemos que [a,b] C (an — \/Li,bn + \%)

Y [an, by] C (a—\%,b—l—\%). Asi, tenemos que a,, — 5 <ayb<

b, + \/LE Por otro lado también tenemos que a — ﬁ < a,yb, <b+ \/LE
De estas tultimas desigualdades llegamos a que a — a, < \/Li vy b—
b, < \/LE Ahora, si sumamos y elevamos al cuadrado las desigualdades
anteriores tenemos que (a — a,)? + (b — b,)? < €2, lo cual implica que
Vi(a—a,)?+ (b—0b,)? <e Asi, si n > N entonces d((an,b,), (a,b)) <
e. Por lo tanto, concluimos que la sucesién de puntos {(an,b,)}5°,
converge al punto (a,b) en R?. Asi concluimos que 1 es una funcién

continua.

Por tltimo, note que el dominio de la funcién es un continuo y por tanto
compacto y el codominio es de Hausdorff, entonces la funcién es cerrada y
por el teorema [I, Proposicién 3.1.20], n es un homeomorfismo. [ |

Hasta este momento ya se puede decir que un modelo para C([0, 1]) es el
triangulo 7 como se muestra en la siguiente figura.
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Funcién 5

Intervalo cerrado [0,1]

Tridangulo 7
Figura 3.1: Modelo para el hiperespacio C([0, 1]).
Otra forma de respresentar a C'([0, 1]) es usando la funcién ¢ : C([0,1]) —
R? definida, para cada [a,b] € C([0,1]), por ¢([a,b]) = (£, — a).
Tenemos que v : C([0,1]) — R? es un homeomorfismo, donde 1 (C([0, 1]))

es el tridngulo que tiene como vértices a los puntos (0,0), (1,0) y (3,1), el
cual lo denotamos por A, es decir,

A={(z,y) eR*:y <2, y>0 y 22<2—y},
cuya representacion grafica se muestra en la siguiente figura

|y C

Funcién ¢

Intervalo cerrado [0,1]

0

Figura 3.2

Pasemos ahora a ver como quedan representados algunos subintervalos

(i) El intervalo [0,1] queda representado en el tridngulo A por el punto

C=(1).

2
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(ii) Los conjuntos singulares {a} = [a, a], donde a € [0, 1] quedan represen-
tados en la base del tridngulo, pues ¥ ([a, a]) = (a,0).

(iii) Los intervalos de la forma [0,b], quedan representados por la recta
izquierda del tridngulo. Pues 1([0,]) = (3, b), es decir, todos los puntos
de esta forma estan sobre la recta y = 2.

(iv) Los intervalos de la forma [a, 1] quedan representados en la recta de-
recha del tridngulo. Pues ¢ ([a,1]) = (%+,1 — a), es decir, todos los
puntos de esta forma estan sobre la recta y =1 — x.

3.2. Modelo para C(S?)

Ahora construyamos un modelo para el hiperespacio de subcontinuos de
la circunferencia unitaria de R% En el hiperespacio de subcontinuos de S*
solo contamos con tres subcontinuos los cuales son los conjuntos de un solo
punto, a los subarcos y a la cincunferencia misma S!. Para cada subarco A
de S* sean m(A) el punto medio de A en S* y £(A) la longitud de A.

Notacién 3.2. Sea D = {(z,y) € R?: 22 + y* < 1} el disco unitario de R

Teorema 3.3. Sea p: C(S') — D definida, para cada A € C(S'), por

{1 . %] m(d) si AeC(SH\{S).

p(A) =
(0,0) si A=S.

La funcion p es un homeomorfismo.

Demostracion. Primero veamos que p es inyectiva. Para ello sean A, B €
C(S') tales que A # B. Si A = S'y B # S entonces p(A) # p(B). De
forma similar se tiene para el caso de que A # S'y B = S'.

Ahora supongamos que A, B € C(S')\ {S'}, entonces tenemos los siguientes
casos:

(i) Sim(A) #m(B)yl(A) # {(B), como p(A) y p(B) estén en la recta que
pasa por el origen (0,0) y los puntos m(A) y m(B), respectivamente,
ademas estos dos ltimos puntos son distintos. Luego, p(A) # p(B).
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(i) Si m(A) # m(B) y {(A) = {(B), sean m(A) = (ar,a2) y m(B) =
(b1, by). Entonces, a; # by 0 as # be. Supongamos que a; # by, luego

(1= 52 o # (1= 52 ) bus por tanto o) # p(E). De form

2 27
similar se obtiene el mismo resultado para el caso ay # bs.
(iii) Sim(A) =m(B)y ¢(A) # {(B), entonces ( — 6;_,4)) # (1 — Eé_B))’
s T
se sigue que (1 - @) m(A) # (1 - @> m(B), es decir, p(A) #
2 2
p(B).

De los tres casos anteriores concluimos que p es una funcion inyectiva. Ahora
veamos que p es suprayectiva, es decir, deseamos probar que para cada punto

(z,y) € D, existe A € C(S?) tal que ( — @) m(A) = (z,y). O sea que
T

U(A ' (A
— _éﬂ') [|m(A)|] = ||(x,y)||, que es lo mismo que 1 — ;—W) = |[(z,y)||- De

esto ultimo tenemos tres casos:

((A
(i) Si ||(x,y)|| =0, entonces 1 — % =0, lo cual implica que ¢(A) = 2.

0
Asi, A= 5" con lo cual p(A) = (z,y).

(A
(ii") Si ||(z,y)|| = 1, entonces 1 — % =1y (z,y) € S, por lo que
m
((A) = 0. Asi, considerando a A = {(x,y)} se sigue que p(A) = (z,y).
oy ((A)
(iii’) Si0 < |[(x,y|| < 1, entonces 0 < 1 — = < 1, esto es, 0 < ((A) < 2.
T

De esto, A es un arco de S'. Si 7 es el rayo con punto inicial (0,0),
podemos elegir un punto (z,w) € NS, de tal manera que 0 < £(A) <
2y m(A) = (z,w). Por lo tanto, p(A) = (z,v).

Asi de los tres casos anteriores tenemos que p es suprayectiva, y por lo tanto,
p es una funcién biyectiva.

Resta probar la continuidad de p. Para ello sea {A,, },en una sucesién de
elementos de C'(S') \ {S'} que converge a A en C'(S') \ {S'}. Observe que
si x, ¥V yn son los puntos extremos de A, y x y y son los puntos extremos
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de A, entonces lim x, = z y lim y, = y. Dicho esto, lim m(A4,) = Ay
n—oo n—oo n—oo

nll_{glo ((A,) = £(A). Es decir , £ y m son funciones continuas en C'(S')\ {S'}.
Por lo tanto, p es continua en C(S') \ {S'}. Por ultimo probemos que p
es continua en S'. Para ello sea {A, },en una sucesién de arcos de S! que
converge a A = S!. Por el comportamiento de la funcién p, tenemos que entre
més grande sea el arco A,,, su longitud tiende a 27 y asi p(A,,) tiende al origen.
Como la sucesion {A, },en tiende a S, entonces el nlgg@ p(A,) = (0,0). Por

lo tanto, p es continua. Ahora, como el dominio es compacto y el codominio
es Hausdorff se sigue que p es un homomorfismo. |

Pasemos ahora a ver como quedan representados algunos subcontinuos
de la circunferencia en el disco . Para ello tenemos los siguientes casos

(i) Si A € C(S') tal que A = {x}, entonces la imagen de A bajo p es
¢

p(A) = [1 ;—;1)} m(A). Note que la longitud de A es cero, entonces

p(A) = m(A), es decir, la imagen de A bajo p es el punto medio de A el
cual es un punto de la frontera del disco D. En general, si consideramos
al hiperespacio F;(S'), su imagen bajo p es p(F;(S')) = S*. Este hecho
se ilustra en la siguiente figura 3.3.

plA)

p(F(SY))

Figura 3.3

(ii) Ahora consideremos al conjunto de subcontinuos de S' cuya longitud
sea fija, digamos [, es decir, sea C;(S') = {A € C(SY) : ((A) =
[ para cada [ € (0,27]}. La imagen de C;(S*) bajo p esta representa-
da por una circunferencia con centro en el origen. De hecho mientras
mas chica sea la longitud [ de A, mas grande sera el radio de la circun-
ferencia. Este hecho se muestra en la siguiente figura 3.4.
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P
—_—

~ \44 arco de longitud fija
N\

p(Ci(SY))

Figura 3.4

3.3. Modelo del triodo simple

El siguiente continuo que consideraremos es el triodo simple 7. Recor-
demos que este continuo esta formado por la unién de tres arcos que coinciden
exactamente en un punto en comun, el cual es un extremo de cada uno de los
arcos, vedse definicién [1.56] Notemos que hay dos clase de subcontinuos en T,
los cuales son, aquellos que tienen el vértice v y aquellos que no lo contienen.
En otras palabras el hiperespacio C(T'), lo podemos ver como sigue

C(T) = C(L1) UC(L2) U C(L3) U Cy(T),

donde Ly, Ly y L3 son los tres arcos que coinciden en el vértice v de T'
y ademas C,(T) = {A € C(T) : v € A}. Como cada L; para i = 1,2,3
es un arco, entonces por el modelo de la seccién 3.1 cada C(L;) puede ser
representado por tridngulo convexo como se muestra en la figura 3.5.

Figura 3.5: Para cada i = 1,2, 3, se tiene que C(L;) es homeomorfo a un
triangulo.
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Observe que el lado punteado de cada uno de los tres tridangulos indican
que sobre ese lado se encuentran los subcontinuos de Ly, Ly y Ls.

Ahora sea A € C,(T), para i = 1,2,3, hacemos J; = AN L;. Entonces
cada J; es un subcontinuo de L; que contiene a v, este continuo podria constar
de un solo punto el cual seria el vértice v. Sea a; la longitud de J;. De manera
que podemos asignarle a A un punto de R?® dado por (ay, as, as). Notemos
que esta asociacion es inyectiva pues A esta determinado por las longitudes
de Ji, Jo y Js. También notemos que como cada una de las longitudes a;
podria variar desde 0 hasta 1, entonces la imagen de esta asociacién es un
cubo sélido (o 3-celda). Hasta este momento tenemos que los subcontinuos
de T que contienen a v pueden ser identificados por el cubo C' = [0, 1]* como
se muestra en la figura 3.6.

C =[0,1)"

Figura 3.6: Representacion de los elementos de C,(T).

De nuevo observemos que las aristas punteadas de C' indican cada uno de los
tipos de subcontinuos de L;, para cada i = 1,2, 3, que contienen a v. Asi que
vamos identificar estas aristas con la de los tridngulos marcadas en la figura
3.6, de esta forma el hiperespacios C'(T) es un cubo sélido en R? con tres
triangulos convexos pegados, como se muestra en la figura 3.7.
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Figura 3.7: Modelo del triodo simple.

Para un estudio mas profundo acerca de los modelos de los hiprespacios
sugerimos al lector consultar [§].
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