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Resumen

En esta tesis, realizamos un estudio teórico de la susceptibilidad magnética anisótropa
de un coloide dipolar, debida a la presencia de un campo externo.
Para esto se requieren los parámetros de orden, que se obtienen a partir de la fun-
ción de densidad de probabilidad (pdf por sus siglas en inglés) de un cuerpo, que es
solución de la ecuación de equilibrio de Smoluchowski. Utilizando la aproximación
de Boltzmann y la aproximación esférica media (MSA por sus siglas en inglés) para
la función de correlación par; se calculan potenciales efectivos para ambas aproxima-
ciones.

Calculamos y comparamos las susceptibilidad magnética proporcionada por ambas
aproximaciones. Esta propiedad se obtiene considerando bajas densidades. La sus-
ceptibilidad magnética está en función del parámetro de orden uno 〈P1〉, de acuerdo
con la teoría de Landau-de Gennes. Se calcula la curva de magnetización dada por
la ecuación de Langevin para campos pequeños; la magnetización es lineal y propor-
ciona la susceptibilidad, lo cual concuerda con nuestros resultados. Al comparar la
susceptibilidad calculada por medio de ambas aproximaciones, se tiene que la MSA
es una mejor aproximación, comparada con los resultados experimentales.
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Introducción

Un cristal coloidal consiste de partículas con un tamaño de aproximadamente 10nm-
10µm inmersas en un solvente.

Los cristales coloidales tales como el virus del tabaco, poseen propiedades mecáni-
cas de los líquidos, como el autofactor de estructura orientacional estático, pero al
mismo tiempo propiedades físicas de los cristales, como la susceptibilidad magnética
anisótropa [2].

Los cristales coloidales al estar compuestos de cuerpos microscópicos, necesitan de
una descripción estadística a un tiempo característico, llamado tiempo difusivo τD,
en el cual, las coordenadas del momento traslacional y angular de las partículas coloi-
dales relajan al equilibrio térmico, dando así, la descripción estadística de la posición
y orientación de las partículas. En este trabajo estamos principalmente interesados
en la descripción orientacional del sistema.

Se han hecho modelos de sistemas reales, por ejemplo los glóbulos rojos de la sangre
o la eumelanina. En el trabajo de E. Cano et al. [5] se reportan datos experimentales
de la magnetización como función del campo aplicado y datos por simulación de
Monte Carlo del modelo de esferas duras con dipolo en el centro, para ambos datos
se obtiene la curva de magnetización de la eumelanina en acuerdo cualitativo, con
nuestros resultados.

En trabajos recientes [1–3] se reportaron fases nemáticas inducidas en coloides dipo-
lares y cuadrupolares, considerando la función de densidad de probabilidad orienta-
cional de un cuerpo para sistemas a dilución infinita y muy diluidos, se encontraron
parámetros de orden y se relacionaron con alguna propiedad física del sistema de
acuerdo con la teoría de Landau - de Gennes. En el caso de coloides dipolares Butter
et al. [4], reporto que al aplicar un campo magnético a las ferropartículas de un ferro-
fluido, se alinean en dirección a este. La influencia de un campo externo es relevante
en las propiedades físicas de coloides dipolares, una de estas propiedades de interés
es la susceptibilidad magnética.

Para mayor comprensión de este trabajo se van desglozando los conceptos necesarios
en cada capítulo. En el Capítulo 1 se presentan las características y definición de un
cristal coloidal, la descripción del movimiento browniano, movimiento que presentan
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CAPÍTULO 0. INTRODUCCIÓN

los coloides y sus tiempos característicos. En el Capítulo 2 se discuten los parámetros
de orden, la propiedad física con la que los relacionamos y la teoría de Landau-de
Gennes, que nos ayuda a conectarlos y de esta manera obtener la curva de magne-
tización y la susceptibilidad magnética. En el Capítulo 4 discutimos la obtención de
la función de densidad de probabilidad pdf, que es solución de la ecuación de Smo-
luchowski en equilibrio. En el capítulo 5 se discuten los resultados de este trabajo y
los de otros autores [3, 5]. Finalmente se dan las conclusiones.

v





Capítulo 1

Cristales Coloidales

En este capítulo estudiaremos las propiedades de los cristales coloidales. Nuestro tra-
bajo consiste en obtener una de las propiedades orientacionales de un cristal coloidal,
que en nuestro caso es la susceptibilidad magnética anisótropa.

1.1. Coloides

La definición de un coloide no es precisamente la más simple, para definirlo, espe-
cifiquemos qué es una solución y una suspensión. La solución se forma cuando una
sustancia en menor proporción (soluto) se dispersa uniformemente a lo largo de otra
(solvente) [6], mientras que, las suspensiones son partículas sólidas no solubles (fa-
se dispersa) dispersas en un medio líquido (fase dispersora). Los coloides pueden
ser definidos como el puente que comunica a las suspensiones con las soluciones, es
decir, son un paso intermedio entre ambas, marcando un límite entre los sistemas
heterogéneos (suspensión) y sistemas homogéneos (solución) [7, 8].

Thomas Graham (1805-1869), químico británico y padre de la ciencia coloidal, es-
tudió la difusión de las sustancias disueltas distinguiendo dos clases de solutos a los
que denominó cristaloides y coloides. Los cristaloides se difunden rápidamente en
agua, dializan fácilmente a través de las membranas permeables y, al ser evaporadas
las soluciones de que forman parte, quedan como residuo cristalino. Los coloides se
difunden lentamente, dializan con mucha dificultad y, al ser evaporadas las soluciones
de que forman parte, quedan como residuo «semejante a la cola». De esta caracterís-
tica se deduce su nombre [7]. A pesar de estas diferencias, en la actualidad carecen de
valor absoluto pues algunas sustancias aparentemente coloides se comportan como
cristaloides [7] y viceversa.

El nombre coloide proviene del griego kolas que significa que puede pegarse. Este
nombre hace referencia a la propiedad que tienen los coloides a tender a formar
coágulos de manera espontánea [7].
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CAPÍTULO 1. CRISTALES COLOIDALES
1.1. COLOIDES

1.1.1. Propiedades de los coloides

Cualquier partícula que tenga una dimensión lineal entre 1nm y 1µm es considerada
una partícula coloidal o browniana [9]. Estos límites no deben ser considerados como
absolutos, puesto que se les ha tomado sobre la base del poder resolutivo del mejor
microscopio posible, usando luz azul para el caso de las partículas más grandes y del
ultramicroscopio para el de las más pequeñas [8](ver figura 1.1).

Figura 1.1: Dominio coloidal

Un ejemplo de coloide es la molécula de la hemoglobina, encargada de transportar el
oxígeno en la sangre. A pesar de que las partículas coloidales son tan pequeñas, son
lo suficientemente grandes para dispersar la luz. Gracias a ellas podemos observar un
haz de luz a medida que pasa a través de una suspensión coloidal, a esta dispersión
de la luz se le conoce como el efecto Tyndall. Este efecto es el responsable de que
podamos ver el haz de luz de un automóvil en un camino lleno de polvo o la luz del
Sol a través de la copa de los árboles [6].

En los coloides se habla de partículas coloidales o fase dispersa y de solvente o me-
dio de dispersión [7]. Una dispersión coloidal puede incluso consistir en una única
molécula «gigante», gigante en comparación con el medio de dispersión pero lo su-
ficientemente pequeña como para exhibir movimiento térmico [6, 10]. La diferencia
entre tamaños radica en la relación que existe entre la partícula coloidal y el medio
en el que está [7].

Otra característica de los coloides es que no se sedimentan al dejarlos en reposo [7],
estos se separan por medio de coagulación o diálisis. La coagulación puede lograr-
se al agregar un coagulante a la mezcla, sustancia que reduce las fuerzas eléctricas
repulsivas en la superficie de las partículas, logrando así, reunir el material coloidal
que se encuentra disuelto en el solvente. Las partículas coaguladas se pueden separar
por filtración o simplemente sedimentándose fuera del solvente. La diálisis se puede
lograr mediante una membrana semipermeable a través de la cual solo los iones pa-
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CAPÍTULO 1. CRISTALES COLOIDALES
1.1. COLOIDES

san, mientras que las partículas coloidales no [6].

En general, podemos clasificar a los sistemas coloidales en diferentes formas, ya sea
por su comportamiento físico o químico. En este trabajo presentamos algunas de ellas.

Los sistemas coloidales binarios (partículas coloidales en menor proporción que el me-
dio de dispersión) pueden clasificarse atendiendo al estado físico de sus componentes.
Estos se denominan como: aerosol líquido (líquido-gas), aerosol sólido (sólido-gas),
espuma (gas-líquido), emulsión (líquido-líquido), sol (sólido-líquido), espuma sólida
(gas-sólido), gel (líquido-sólido), sol sólido (sólido-sólido) [11]. Si el medio de disper-
sión es el agua hay dos tipos importantes de coloides hidrófilo e hidrófobo [6].

Además, dependiendo de la naturaleza de las partículas coloidales, se clasifican en:

Liófilo: presentan afinidad entre las partículas dispersas y el medio de dispersión
[7].

Liófilos : no presentan afinidad entre las partículas dispersas y el medio de
dispersión [7].

Orgánicos e inorgánicos: de acuerdo a su composición química. A su vez se
subdividen en:

• Orgánicos: metales, no metales, soles de óxidos y sales coloidales.

• Inorgánicos: soles homopolares, hidroxisoles y soles [8].

Esféricos y laminares; de acuerdo a la forma de la partícula que los forman. Los
coloides esféricos tienen partículas globulares más o menos compactas, mien-
tras que los coloides lineales poseen unidades largas y fibrosas. La forma de
las partículas coloidales puede determinarse de manera aproximada ya que,
en la mayoría de los casos, puede ser muy compleja: elipsoides de revolución
(proteínas), también semejantes a discos (oblatos); cigarro puro (prolatos), ba-
rras, tablillas, cintas o filamentos (polietileno y caucho)(ver figura 1.2). Como
primera aproximación se pueden reducir a formas relativamente sencillas como
la esfera que además representa muchos casos reales: partículas esencialmente
fluidos, dispersiones de plásticos y caucho en agua (látex), así como en muchos
negros de carbono son casi esféricas, al igual que en ciertos virus y las gotitas
de un líquido dispersas en otro para formar una emulsión. Las propiedades
mecánicas de una dispersión coloidal dependen en primer lugar de la forma de
las partículas. Por ejemplo las dispersiones de partículas esféricas tienen bajas
viscosidades, y las de partículas lineales, que pueden enredarse entre sí, tienen
altas viscosidades [8]. En este trabajo los objetos de estudios serán los coloides
esféricos.

Los sistemas coloidales se mantienen unidos por las fuerzas de interacción entre
partículas, es decir, las fuerzas intermoleculares y no por las fuerzas intramoleculares
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Figura 1.2: Morfología coloidal.

(enlaces químicos). En general, un sistema coloidal es eléctricamente neutro (Ghosh,
2009, p.10), las partículas coloidales se cargan eléctricamente y poseen el mismo tipo
de carga, negativa o positivo, mientras que el medio de dispersión posee una carga
igual pero opuesta. Por tanto, las partículas coloidales se repelen entre sí. El origen
de la carga las mezclas coloidales se puede deber a:

La adsorción preferencial de cationes o aniones por partículas coloidales.

Las partículas coloidales llevan una carga.

Durante la formación de coloides, especialmente por el método de arco de
Bredig, las partículas coloidales captan electrones y se cargan [11].

Si un campo externo actúa sobre las partículas ya sea, para orientarlas, moverlas o
concentrarlas, la respuesta a éste es instantánea; esto se deriva de la ecuación del
ímpetu F t = mv. Como la masa del coloide es muy pequeña, el tiempo requerido
para cambiar el estado base es esencialmente nulo. La capacidad de manipulación de
las partículas coloides a través de un campo externo ofrece una de las estrategias im-
portantes para el control de los sistemas coloidales [12], capacidad que aprovechamos
en este trabajo.

1.2. Cristal coloidal
Usando el modelo de esfera dura con un dipolo en su centro de masa para un sistema
coloidal se logra obtener asimetría en la partícula browniana, de esta manera los
cristales coloidales presentan propiedades idénticas a las de los cristales líquidos.

Como bien dijera de Gennes, desde nuestros años de primaria hemos aprendido que
la materia solo existe en tres estados: sólido, líquido y gas. Sin embargo, gracias a
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las investigaciones realizadas los últimos ciento treinta años sabemos que ésto no es
correcto. Existen ciertos materiales orgánicos llamados cristales líquidos que presen-
tan una «cascada» de transiciones implicando nuevas fases [13, 14].

El cristal líquido fue descubierto en 1888 por Friedrich Reinitzer (1857-1927) cuan-
do, al estudiar el benzoato de colesterilo, observó una fase extraña intermedia entre
la masa fundida líquida y la fase cristalina al calentar y enfriar dicha sustancia.
Reinitzer envió una muestra del componente a Otto Lehmann (1855-1922), quién
comprendió que se trataba de un nuevo estado de la materia. Lehmann observó las
fases intermedias y decidió darle el nombre de cristales líquidos [15, 16].

El momento del descubrimiento de los cristales líquidos tuvo mala suerte, coincidien-
do con el período del asentamiento de los fundamentos de la física moderna pero,
cerca de los 70’s se desarrolló el conocimiento básico del estado líquido-cristalino.
Por un tiempo se creyó que esta ciencia estaba casi terminada, sin embargo, se ha
ampliado más en los últimos treinta años desde su descubrimiento. Entre algunos de
los principales autores a este desarrollo, se encuentran Leslie, Saupe y especialmente
de Gennes [16, 17]

A pesar de ello, no es posible dar una definición concisa del cristal líquido, pero
tenemos un panorama general gracias a sus características y estructuras más sobre-
salientes. Las propiedades mecánicas y simétricas del estado líquido-cristalino son
intermediadas entre las de un líquido y las de un cristal. Por esta razón, Lehmann
decidió llamarlos cristales líquidos, un nombre más apropiado sería fase mesomórfica,
fase mesogénica o mesofase [13, 17].

Figura 1.3: Esquema fases de la materia.

Para comprender mejor el estado cristal-líquido, la diferencia básica entre un cristal
y un líquido es que las moléculas en un cristal se ordenan formando enrejados (en
3D) mientras que en un líquido no [13]. Además el cristal líquido debe presentar al
menos una dirección de orden y poseer un alto grado de anisotropía [13, 16]. Ver
figura 1.3.
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Para darle paso a las mesofases del cristal líquido se tienen tres tipos de ordenamiento:

Orden orientacional: Es el más sencillo de los tipos de orden. Se refiere al grado
de ordenamiento de las moléculas, las cuales en promedio, están orientadas
de manera paralela a lo largo de una dirección específica n̂, conocido como
director, en nuestro caso la dirección del campo en el eje Z. El grado de orden
está denotado por el parámetro de orden orientacional S = 1/2(cos2θ − 1).
Típicamente este parámetro de orden es una función de la temperatura [18,19].

Orden posicional o traslacional: Se refiere al grado de ordenamiento en que las
moléculas o grupos de moléculas, en promedio, muestran simetría traslacional.
Aquí el sistema permanece invariante bajo traslación [18,19]. Dependiendo del
grado de orden posicional surgen diferentes mesofases.

Orden de enlace orientacional: En este contexto, en lo que se refiere a enlace
no es un enlace químico, más bien es una línea que une los centros de dos
moléculas adyacentes sin necesidad de una separación regular a lo largo de esta
línea. Si la orientación de estos enlaces se conserva durante un largo alcance
con respecto a la línea de los centros el sistema posee entonces, orden de enlaces
orientacionales [18, 20].

Asimismo dependiendo de la naturaleza de su estructura molecular, un compuesto
puede pasar a través de diferentes tipos de fases de cristal líquido mientras transitan
de una fase ordenada a una desordenada, o viceversa. Los cristales líquidos que de-
penden de la temperatura para dicho cambio de fase, se denominan cristales líquidos
termotrópicos. Los cristales líquidos que dependen de la concentración de la mezcla
se les llaman cristales líquidos liotrópicos [14, 19].

La simetría de los cristales líquidos es una de las principales guías en el estudio de
los mismos, ya que las propiedades físicas que poseen dependen de la simetría de la
mesofase [18]. Algunos de los ejemplos más comunes de las mesofases (figura 1.4)
son:

Fase isótropa, (I): No existe ningún tipo de orden posicional u orientacional de
las moléculas del sistema.

Fase nemática (N): Las posiciones de las moléculas carecen de orden posicional
pero existe una tendencia de las moléculas a orientarse preferencialmente en
una dirección específica definida por el director [14, 19].

Fase esméctica (Sm): Básicamente las moléculas siguen ordenadas pero sus
posiciones se mantienen ordenadas sólo en una dirección, desarrollando lajas
de material, siendo esta dirección (el orden posicional) perpendicular a los
planos que forman las lajas. Las posiciones de las moléculas vistas en el plano
de las lajas se encuentran desordenadas. Hay tres tipos principales de fase
esméctica: A, C, C* [14,19]. En la esméctica A (SmA), el director es normal al

6
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plano de las capas y pose simetría rotacional sobre el director. En la esméctica C
(SmC) es similar a la A, excepto que el director está inclinado con respecto a la
capa normal. La esméctica C* (SmC*) está formada por moléculas ópticamente
activas, es decir, cuando la fase esméctica C se «dopa» con una sustancia quiral
(produce rotación en la luz polarizada) [19].

Fase colestérica (Ch): Similar a la nemática, sin embargo, el director no es un
vector uniforme o constante en el espacio, sino que describe una rotación a lo
largo de un eje en el espacio, dando como resultado una estructura helicoidal
[14, 19].

Fase columnar (C): Cuando las moléculas que poseen forma de discos se api-
lan en columnas. Estas, se embalan juntas para formar una matriz cristalina
bidimensional. El arreglo dentro de las moléculas y el arreglo de las columnas
conducen a nuevas mesofases [19].

Figura 1.4: Esquema de las mesofases en el cristal líquido

1.2.1. Propiedades de Cristales Coloidales

Como habíamos mencionado uno de los requisitos fundamentales de los cristales lí-
quidos es su alto grado de anisotropía, la cual se presenta en las propiedades físicas
del sistema. Por ejemplo, en la viscosidad, en las propiedades eléctricas, magnéticas
y ópticas [21].

El hecho que haya un orden orientacional en el sistema (fase nemática) introduce la
anisotropía al mismo [18]. La anisotropía depende de la dirección del vector director,
es decir, no todas las direcciones son equivalentes [17]. En esta sección presentamos
algunas de las propiedades anisótropas de estos sistemas.
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Viscosidad

La resistencia de la sustancia a fluir cuando se somete a un flujo cortante se conoce
como viscosidad [21]. El comportamiento viscoso de los cristales líquidos da pronun-
ciados efectos en el comportamiento dinámico del sistema. En particular, el aumento
de viscosidad a bajas temperaturas es actualmente uno de los factores limitantes
de muchas aplicaciones de cristales líquidos. La viscosidad puede ser expresada co-
mo viscosidad cinemática η o viscosidad dinámica ν. Para la determinación de ν, la
densidad ρ del material tiene que ser conocida:

ν =
η

ρ
(1.1)

La viscosidad de cualquier material es una propiedad colectiva resultante de la inter-
acción de las moléculas entre sí. Por tanto, una fuerte dependencia de la viscosidad
en el ambiente molecular está presente. Para una caracterización completa de un
cristal líquido nemático son necesarios diferentes coeficientes de viscosidad.

Hay cinco coeficientes de viscosidad anisótropa dependiendo de la orientación relativa
de las moléculas con respecto al flujo del material: η1 el director es perpendicular
al flujo y paralelo a la velocidad del gradiente, η2 el director es paralelo al flujo y
perpendicular a la velocidad del gradiente, η3 el director es perpendicular al flujo y
perpendicular a la velocidad del gradiente. Estos tres coeficientes son llamados las
viscosidades de Miesowicz difíciles de determinar. Además tenemos el coeficiente de
viscosidad simétrico η12 en el cual el director está a 45 del flujo y de la velocidad
del gradiente y el coeficiente de viscosidad rotacional γ1, el cual es la rotación de la
molécula alrededor del eje perpendicular [17].

Auto-difusión

La auto-difusión (SD por sus siglas en inglés) es un movimiento molecular activado
térmicamente que no afecta al orden orientacional de la mesofase. Generalmente, a
partir de los resultados experimentales, se observa la anisotropía en las constantes
de difusión: la difusión D⊥, que se mide en la dirección perpendicular al director y
es menor que la difusión D‖, la cual se mide en la dirección paralela al director.

El coeficiente de difusión D‖ aumenta con la densidad en la fase nemática inicial-
mente, alcanza un valor máximo y luego disminuye. Esta disminución de la difusión,
con un aumento adicional de la densidad, se atribuye al aumento de las colisiones en
las densidades más altas. La constante de difusión D⊥ disminuye monotónicamente
en la forma usual. Este efecto parece estar asociado con la variación de la densidad
del parámetro de orden nemático cerca de la transición de fase.
Frecuentemente, la constante de difusión promedio:

〈D〉 = 1

3

(
2D⊥ +D‖

)
(1.2)
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se define así, esperando que sea igual a la constante de difusión en la fase isotrópica.
Varias teorías se discuten en la literatura asumiendo la validez de la ley de Fick para
la auto-difusión en cristales líquidos, con el fin de explicar las propiedades de difusión
en términos de las propiedades moleculares [22].

Índice de refracción

Hablar de índices de refracción es hablar de la velocidad de propagación de la luz en
un medio. Dado a que el cristal líquido es anisótropo, la velocidad de propagación
de la luz no es uniforme, ya que depende de la dirección y de la polarización de las
ondas de luz que atraviesa el material. Por tanto, el material posee diferentes índices
de refracción en diferentes direcciones [21].

En general los cristales líquidos uniaxiales son birrefringentes, es decir, poseen dos
índices de refracción diferentes [19, 21]. Un índice de refracción corresponde a la luz
polarizada paralela al director, el índice extraordinario ne, y el otro es para la luz
polarizada perpendicular al director, índice ordinario no [16]. Cuando la temperatura
aumenta, la birrefringencia del sistema disminuye y es cero en la transición N−I [19].

La birrefringencia o anisotropía óptica está definida por:

∆n = ne − no (1.3)

Si ne > no la birrefringencia será positiva, si ne < no la birrefringencia será negativa
[16].
El grado de orden de orientación y por lo tanto la birrefringencia se pueden manipular
fácilmente con la ayuda de campos magnéticos, eléctricos u ópticos [19].

Permitividad dieléctrica

Al aplicar un campo eléctrico al sistema obtenemos una respuesta, esta es la llamada
permitividad dieléctrica ε [21]. Si aplicamos el campo eléctrico a lo largo del director
la permitividad será paralela a éste ε‖. Sin embargo, si aplicamos el campo eléctrico
perpendicular al director la permitividad será ε⊥, y se considera un solo valor del
mismo [17].

La anisotropía de la permitividad dieléctrica está dada por

∆ε = ε‖ − ε⊥ (1.4)

∆ε desaparece en la fase isótropa y se vuelve máxima cuando la fase nemática está
perfectamente ordenada [18], el signo de ∆ε es de mayor importancia en aplicacio-
nes de dispositivos de cristal líquido [16]. Debido a la anisotropía en la constante
dieléctrica, las moléculas pueden alinearse de manera paralela o perpendicular a los
campos aplicados dependiendo del signo de su anisotropía dieléctrica. Se presenta
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una anisotropía dieléctrica positiva (∆ε > 0) cuando hay alineación paralela al cam-
po, pero lo contrario también es posible (∆ε < 0) [16].

La permitividad dieléctrica promedio ε para un cristal líquido nemático puede ser
descrita como [17]:

ε =
1

3

(
ε‖ + 2ε⊥

)
(1.5)

Otra de las propiedades de los cristales líquidos son la susceptibilidad magnética y
el diamagnetismo anisótropo, de los cuales se hablara más adelante.

1.3. Fuerzas de interacción

Como mencionamos anteriormente, los sistemas coloidales se mantienen unidos gra-
cias a las fuerzas intermoleculares, más no por las intramoleculares. En esta sección
repasaremos qué son estas fuerzas. Ver Figura 1.5.

1.3.1. Fuerzas intramoleculares

Las fuerzas intramoleculares son las encargadas de formar a las moléculas en deter-
minadas composiciones manteniendo unidos a los átomos. Debido a esto, determinan
las propiedades químicas de las moléculas, o dicho de otra manera, son las fuerzas a
vencer para producir un cambio químico.

Enlace Iónico

El enlace iónico, también llamado electrovalente o salino, se forma cuando se une un
metal con un no metal y se caracteriza por la transferencia de electrones, donde el
metal tiende a ceder electrones (formando iones positivos llamados «cationes») y el
no metal tiende a recibirlos (dando lugar a iones negativos denominados «aniones»).
Al comparar las electronegatividades de los elementos participantes en la unión, se
observa que el no metal es muy electronegativo y el metal es poco electronegativo [23].

Enlace Covalente

En el enlace covalente los átomos adquieren la estructura de los gases nobles, que-
dándose con ocho electrones o capa llena en cada órbita, haciendolos muy estables.
Los gases nobles son elementos que siempre cumplen con esta regla llamada del oc-
teto. Se dice que una molécula tiene un enlace covalente cuando todos los átomos
que la constituyen comparten sus electrones de manera que cada uno presenta ocho
electrones en su capa de valencia.

Los enlaces covalentes se presentan principalmente entre no metales y se indican con
una raya entre los símbolos de los átomos que los forman; ésta representa el par
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de electrones compartidos. Los compuestos formados por enlaces covalentes son más
abundantes que los iónicos y pueden ser sólidos, líquidos o gaseosos [24].

Enlace metálico

El enlace metálico ocurre en los metales puros y en las aleaciones. Se caracteriza
por la presencia de un enrejado cristalino que tiene nodos cargados positivamente y
una nube electrónica que permite la conducción de la corriente eléctrica y del calor.
Además este tipo de enlace explica en los metales: la alta densidad, la maleabilidad, el
brillo metálico, el que suelan ser sólidos a temperatura ambiente (excepto el mercurio)
y que sus puntos de fusión y ebullición varíen notablemente [23, 24].

(a) Enlace Iónico. (b) Enlace Covalente.

(c) Enlace Metálico.

Figura 1.5: Fuerzas intramoleculares. a) Enlace Iónico del NaCl. Al atraerse el metal
(Na+) y el no metal (Cl−), sus cargas se cancelan formando un compuesto iónico
neutral. b) Enlace Covalente. Diagrama de Punto de Lewis para el HF . a) F posee
siete electrones de valencia, H posee uno. b) Al compartir dos electrones en un enlace
el H ahora posee dos electrones de valencia y el F posee ocho electrones de valencia.
c) Reemplazo de los electrones compartidos por una línea. c) Enlace metálico. Los
átomos ceden sus electrones de valencia formando iones, los cuales se mantienen
unidos por la nube de electrones que les rodea.

1.3.2. Fuerzas intermoleculares

Las fuerzas intermoleculares son las fuerzas que determinan las propiedades físicas de
las sustancias. Ejercen más influencia en las fases condensadas de la materia, líquidos
y sólidos, permitiendo que las moleculas se atraigan con mayor o menor intensidad
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para formar el colectivo correspondiente; vea la figura 1.6.

Las fuerzas intermoleculares son más débiles que las fuerzas intramoleculares debido
a que se necesita menos energía para evaporar o fundir un sólido que para romper los
enlaces moleculares [25]. Para comprender las propiedades de la materia condensada,
necesitamos estudiar las llamadas fuerzas de van der Waals (fuerza de dispersión,
dipolo-dipolo), llamadas así en honor al físico holandés Johannes van der Waals
(1837-1923), además del llamado puente de Hidrógeno.

Fuerza ion-dipolo

La fuerza de ion-dipolo se produce cuando interaccionan un ion y la carga parcial
de un extremo de una molécula polar [26] (dipolos). Los iones positivos son atraídos
hacia el extremo negativo de un dipolo, mientras que los iones negativos son atraídos
hacia el extremo positivo. La magnitud de la atracción aumenta al incrementarse la
carga del ion o la magnitud del momento dipolar [26].

Las fuerzas ion-dipolo son las más fuertes de los tipos de fuerzas intermoleculares
y son responsables de la capacidad de las sustancias iónicas para formar soluciones
con agua [26].

Fuerza de dispersión

La fuerza de dispersión o fuerza de London es causada por las fluctuaciones en la
distribución de los electrones dentro de las moléculas o átomos. Dado que todos los
átomos y las moléculas tienen electrones, todos ellos tienen fuerzas de dispersión [26].

Se dice que el dipolo del átomo es un dipolo inducido porque la separación de cargas
positiva y negativa se debe a la proximidad de un ion o una molécula polar. En un
instante cualquiera los átomos pueden tener un momento dipolar generado por las
posiciones específicas de los electrones, este momento dipolar se denomina dipolo
temporal o instantáneo porque dura solo una fracción de segundo [25].

Dado que los electrones se repelen, los movimientos de los electrones de un átomo
influyen en los movimientos de los electrones de los vecinos cercanos. Así, el dipolo
temporal de un átomo puede inducir un dipolo similar en un átomo adyacente y ha-
cer que los átomos se atraigan, esta atracción es la fuerza de dispersión. Los dipolos
responsables de la fuerza de dispersión son transitorios, constantemente apareciendo
y desapareciendo en respuesta a las fluctuaciones en las nubes de electrones [26].

La magnitud de la fuerza de dispersión depende de la facilidad con que los electro-
nes en el átomo o molécula puedan moverse o polarizarse en respuesta a un dipolo
inducido, que a su vez depende del tamaño (o volumen) de la nube de electrones [26].
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Fuerza dipolo-dipolo

Las fuerzas dipolo-dipolo son las fuerzas de atracción entre moléculas polares [25].
Las moléculas polares tienen dipolos permanentes que interactúan con los dipolos
permanentes de las moléculas vecinas, atrayendo el extremo positivo de un dipolo al
extremo negativo del otro; esta atracción es la fuerza dipolo-dipolo. Recordemos que
todas las moléculas tienen fuerzas de dispersión [26], por tanto las moléculas polares
tienen, además, fuerzas dipolo-dipolo. Esta fuerza de atracción adicional aumenta
sus puntos de fusión y ebullición en relación a las moléculas no polares de masa
molecular similar [26]. Su origen es electrostático y se pueden entender en función de
la ley de Coulomb. A mayor momento dipolar mayor es la fuerza [25]. La polaridad de
las moléculas que constutuyen los líquidos, también es importante para determinar
la miscibilidad (capacidad de mezclar sin separar en dos estados de líquidos). En
general, los líquidos polares son miscibles con otros líquidos polares, pero no son
miscibles con los líquidos no polares [26].

Puente de Hidrógeno

Los puentes de Hidrógeno son un tipo especial de atracción intermolecular que existe
entre el átomo de Hidrógeno de un enlace polar (sobre todo H−F , H−O o H−N)
y un par de electrones no compartidos en un ion o átomo electronegativo pequeño
cercano (usualmente un átomo de F , O o N de otra molécula). Los puentes de Hi-
drógeno pueden considerarse atracciones dipolo-dipolo únicas [26].

El átomo de Hidrógeno no tiene electrones internos; por tanto el lado positivo del di-
polo de enlace tiene la carga concentrada del protón parcialmente expuesto al núcleo
de Hidrógeno. Esta carga es atraída hacia la carga negativa de un átomo electronega-
tivo de una molécula cercana. Dado el tamaño tan pequeño del Hidrogeno deficiente
en electrones, se puede acercar mucho a un átomo electronegativo e interactuar fuer-
temente con él [26].

1.4. Movimiento Browniano

Anteriormente señalamos que una de las propiedades de los coloides es su peculiar
movimiento. En 1827 Robert Brown (1773-1857) un botánico escocés, observó el mo-
vimiento irregular de los granos de polen en el agua, dicho granos poseen tamaño
coloidal [10]. A este movimiento se le conoce como movimiento Browniano, el cual es
el resultado de continuas colisiones aleatorias de las moléculas del medio de disper-
sión sobre la partícula browniana, debido al movimiento térmico [10], figura 1.7. Una
sola molécula difícilmente podría tener suficiente ímpetu para que el efecto sobre la
partícula en suspensión se apreciara en el microscopio. Pero si muchas moléculas cho-
can con la partícula en la misma dirección, simultáneamente producen una deflexión
observable de su trayectoria [27].
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(a) Fuerza ion-dipolo. (b) Fuerzas de dispersión.

(c) Fuerza dipolo-dipolo. (d) Puente de Hidrógeno.

Figura 1.6: Fuerzas intermoleculares. a) Fuerzas ion-dipolo. La magnitud de atracción
aumenta con la carga del ion y la carga del dipolo. b) Fuerza de dispersión o de
London. Dos átomos de He. A medida que se acerquen, los electrones cambian de
posición debido a la atracción y repulsión electrostática, creando dipolos temporales.
Los dipolos temporales poseen densidades de carga positiva y negativa. c) Fuerza
dipolo- dipolo. Las moléculas que tienen momento dipolar permanente tienden a
alinearse con las polaridades puestas en la fase sólida para hacer máxima atracción.d)
Puente de Hidrógeno del H2O. El átomo de Hidrógeno al ser positivo, es atraído
hacia los pares de electrones sin compartir de los átomos electronegativos de otras
moléculas, en este caso el O.

El movimiento browniano es, por consiguiente, un efecto doblemente aleatorio: la
trayectoria aleatoria de la partícula browniana proviene de las fluctuaciones arbitra-
rias de la velocidad de las moléculas del medio de dispersión [27]. Por otro lado, a
un mayor aumento, partes de la trayectoria de la partícula que inicialmente habían
aparecido como rectas se observarían ahora dotadas de una estructura quebrada e
irregular [27]. En general, como lo afirma Borghini (2015) «el interés de este pro-
blema físico es el hecho de que la ecuación que rige el movimiento de la partícula
browniana en realidad también se aplica a muchas propiedades colectivas estocásti-
cas de un sistema macroscópico cuando se acercan a sus valores de equilibrio» (p. 72).

El primero en describir matemáticamente el movimiento fue Thorvald N. Thiele en
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Figura 1.7: Esquema del movimiento browniano.

1880, en un documento sobre el método de los mínimos cuadrados, pero no fue hasta
que Albert Einstein en su artículo de 1905 «Sobre el movimiento requerido por la
teoría cinética molecular del calor de pequeñas partículas suspendidas en un líquido
estacionario», acabó con los dolores de cabeza de los físicos de la época, mostrán-
doles la solución como una forma indirecta de confirmar la existencia de átomos y
moléculas. Cabe mencionar, que en esa época la naturaleza atómica de la materia
aún era una idea controvertida. Paralela e independientemente, Marian Smoluchows-
ki afirmaba lo mismo que Einstein.

En dicho artículo Einstein tenía dos hipótesis:

a) El movimiento tiene como origen los impactos de las moléculas del fluido sobre
la partícula browniana, además del continuo movimiento debido a la agitación
térmica.

b) Al ser aleatorios los impactos, solo podemos describir el movimiento de manera
probabilista [28].

Con estas suposiciones encontró la ecuación de difusión en una dimensión. Además
aplicando la teoría cinética al desplazamiento cuadrático medio de una esfera de
radio a y viscosidad η, encontró que este está dado por:

〈x2(t)〉 = 2Dt (1.6)

Por tanto, el desplazamiento radial de una partícula que se difunde en cualquier
dirección a partir de un punto central «no era proporcional al tiempo sino a la raíz
cuadrada del tiempo». Este resultado se sigue, afirmaba Einstein «de los caminos
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recorridos durante dos intervalos consecutivos de tiempo, que no siempre deben su-
marse, sino que con casi igual frecuencia se deben restar» [27].

Una vez sentado el trabajo de Einstein y Smoluchowski, Jean Baptiste Perrin calculó
el desplazamiento cuadrático medio de una partícula de radio 0,53µm, valiéndole el
premio Nobel de Física en 1926. Por otro lado, Przibram en la segunda década del
siglo XX observó la primera evidencia de movimiento browniano activo [28].

1.4.1. La ecuación de Langevin

La interacción de la partícula coloidal y las moléculas del medio de dispersión puede
ser descrita por ecuaciones macroscópicas de movimiento para el fluido, con condicio-
nes de contorno para el flujo de disolvente en la superficie de la partícula coloidal [10].

Paul Langevin (1872-1946), físico francés, también encontró una descripción directa
del movimiento browniano. Su ecuación se ve entre dos mundos: el macroscópico y
el microscópico [27].

Siguió ciertas consideraciones, muy parecidas a las de Einstein, tales como:

a) El principio de equipartición de energía cinética entre los grados de libertad del
sistema, es decir, entre las partículas del fluido y del movimiento browniano de
la partícula coloidal.

b) Una partícula «grande» (browniana) inmersa en un fluido de partículas más
pequeñas.

Además, Langevin tomo en cuenta la fuerza

De arrastre viscosa. Para modelarla utilizó los resultados de la hidrodinámica,
en donde la fuerza está dada por −γv(t) (mundo macroscópico).

Fluctuante ξ, la cual representa los impactos de las moléculas del medio de
dispersión sobre la partícula browniana. Se impone también que esta fuerza
pueda ser positiva o negativa con igual probabilidad (mundo microscópico) [28].

Ahora bien, si el volumen de la partícula browniana es mucho mayor que las molé-
culas del solvente, la fuerza fluctuante será igual a la fuerza de fricción de arrastre
viscosa de la partícula browniana. Para velocidades pequeñas la fuerza de fricción
es directamente proporcional a la velocidad de la partícula browniana y el factor de
proporcionalidad γ = 6η0a es el coeficiente de fricción o el coeficiente de Stokes [27].

Por último, haciendo uso de la segunda ley de Newton para describir la posición de
la partícula, pudo deducir la ecuación de movimiento para el movimiento browniano,
dada por

m
d2

dt2
r(t) = −γ

d

dt
r(t) + ξ(t) (1.7)
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La cual es la llamada ecuación de Langevin.

Si la interacción entre moléculas del solvente se hace explicita, entonces el promedio
de ensamble de las fuerzas fluctuantes es cero

〈ξ(t)〉 = 0 (1.8)

Debido a la separación de las escalas de tiempo podemos calcular el movimiento
térmico de la partícula browniana utilizando una delta correlacionada con la fuerza
fluctuante en el tiempo

〈ξ(t)ξ(t′)〉 = Gδ(t− t′) (1.9)

Resolviendo la ecuación de Langevin para tiempos difusivos el desplazamiento cua-
drático medio [10] estaría dado por:

〈r2(t)〉 − 〈r20(t)〉 =
1

βγ
t (1.10)

Lo cual concuerda con el resultado de Einstein.

1.5. Escalas de tiempo
En el contexto de la dinámica de sistemas coloidales existen múltiples tiempos carac-
terísticos o escalas de tiempo, las cuales nos dan una descripción estadística factible
del sistema para comprender y para «retener» lo que en realidad se observa en el
movimiento browniano de los coloides a través del microscopio [10,29,30]. Por ejem-
plo, en un experimento, la escala de tiempo se establece por el intervalo de tiempo
durante el cual se promedian las observables durante una medición. Una escala de
tiempo es, por tanto, la resolución de un experimento o teoría en un tiempo mínimo,
las observables se promedian en el intervalo de tiempo en la que establece la escala
de tiempo [10].
Experimentalmente se conoce que los tiempos de relajación, escala de tiempo, para
las moléculas del fluido o medio de dispersión son aproximadamente del orden de
τsol = 10−14 s [10]. Gracias a ello se pueden promediar fluctuaciones rápidas en las
partículas del fluido, posiciones y momentos [29]. El tiempo de relajación relevante
de las partículas brownianas es de al menos τB = M/γ ≈ 10−8 s [10]. Aquí M es la
masa de la partícula coloidal y γ el coeficiente de fricción.

Esta separación de escalas de tiempo es consecuencia de la gran masa de la partícula
browniana en comparación con la masa de las moléculas del solvente, de otra manera,
el movimiento de agitación de la partícula browniana es más lenta en comparación
con las moléculas del solvente dando como resultado, las aleatorias y rápidas colisio-
nes debido a la densidad de fluctuaciones en el fluido [28, 31].

Recordando las restricciones para la fuerza fluctuante de la ecuación de Langevin,
en la escala de tiempo de Fokker Plank τFP , estás son válidas. La escala de Fokker
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Plank es una escala de tiempo mucho mayor que el tiempo del fluido τsol. En esta
escala las coordenadas del solvente relajan al equilibrio térmico, y solo el momento
y la posición de la partícula Browniana necesitan ser consideradas [10].

Si consideramos tiempos t � M/γ el desplazamiento cuadrático medio de la par-
tícula browniana será proporcional a t2, teniendo así, un movimiento balístico. En
esta escala la partícula sufre colisiones aleatorias debido a las moléculas del solvente,
cambiando aleatoriamente la velocidad y por tanto reduciendo su desplazamiento
con el tiempo [10].

Para tiempos t � M/γ, el desplazamiento cuadrático medio de la partícula será
lineal con el tiempo. El momento de la partícula browniana está en equilibrio con el
baño térmico de las moléculas del fluido. Esta escala de tiempo τD es llamada Brow-
niana, Difusiva o de Smoluchowski. Esta escala da la descripción del desplazamiento
significativo de la partícula Browniana [10].

Figura 1.8: Escala de tiempo difusiva τD.

Para nuestro caso, partículas no interactuantes, la escala de tiempo difusiva es la
escala de tiempo de mayor importancia. Cuando comienza la interacción entre par-
tículas entran en acción: la escala de tiempo hidrodinámica τH , del mismo orden
que la difusiva, y la escala de tiempo de interacción τI , mucho mayor que el tiempo
hidrodinámico [10].

La escala de tiempo τI = a2/D es el tiempo requerido para un cambio perceptible
de la configuración de las partículas debido a la difusión de esta [29]. En un sistema
débilmente interactuante se puede definir como la duración de una colisión entre par-
tículas [32]. En coloides muy densos τI puede llegar a ser muy largo (minutos hasta
horas) [29, 31].

La escala hidrodinámica τH = (a2ρ)/η, es el tiempo de vida característica de una
onda de corte viscoso creado por el movimiento inestable de la partícula brownia-
na [29]. Es el tiempo requerido para que una onda transversal del solvente viaje una
distancia típica entre partículas. Para un sistema muy diluido, las interacciones hi-
drodinámicas pueden ser despreciadas [32].

Otro tipo de escala es el tiempo de propagación del sonido τc = a/c, el cual es el
tiempo requerido para que una onda de sonido viaje una distancia igual al radio de
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la partícula browniana.

En las escalas τI , τc, τH , el radio de la partícula coloidal está dado por a = (1/2)σ,
donde σ es el diámetro de la partícula, D es el coeficiente de difusión traslacional, c
es la velocidad de la luz, η el coeficiente de viscosidad y ρ la densidad de masa.

En tiempos difusivos la resolución espacial no es mejor que la distancia sobre la cual
las partículas brownianas se mueven durante un intervalo de tiempo igual a la escala
difusiva. El promedio de ensamble de esta distancia, es la longitud difusiva lD, dada
por:

lD =

√
3MkBT

γ
(1.11)

kB es constante de Boltzman T es la temperatura.

Algunos valores típicos para la longitud difusiva son:

lD
a

≈ 10−4 − 10−3 (1.12)
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Capítulo 2

Termodinámica-Estadística

2.1. Teoría de Landau - de Gennes

Las transiciones de fase desorden-orden involucran cambios en el orden de las molé-
culas y se caracterizan por los parámetros de orden. En términos de estos, existen
dos tipos de transiciones de fase: la transición de fase de primer orden en la cual
son discontinuos, y la transición de fase de segundo orden en la cual son continuos.
En este trabajo, nos ocupamos de parámetros de orden con transiciones de fase de
segundo orden. Si conectamos los potenciales termodinámicos con los parámetros de
orden observaremos las transiciones de fase de primer orden, al querer observar cam-
bios abruptos en la transición. Para ello necesitamos la teoría de Landau-de Gennes
(1973), la cual es una extensión de la transición isótropo-nemático de la teoría de
Landau [34, 35].

Lev Landau demostró que la distinción entre las transiciones de primer y segundo
orden tiene su raíz en la naturaleza del orden que tiene lugar en la transición. Pro-
puso una teoría en la que el potencial termodinámico del sistema se hacía función
continua del parámetro de orden, en este caso la energía libre de Gibbs. Entonces
se calcula una «densidad de energía libre» como función de los parámetros de orden
y de sus derivadas espaciales. La energía libre es obtenida integrado la densidad de
energía libre sobre el volumen del sistema para cualquier variación espacial del pará-
metro de orden Q. Para una transición de segundo orden, si la densidad de energía
libre se conoce sólo en la proximidad de la transición de fase (temperaturas en esta
proximidad), Landau sugirió que la función de densidad de energía libre se podría
ampliar como una serie de potencias (expansión de Taylor) en el parámetro de orden
y sus derivadas espaciales. La teoría de Landau no se puede aplicar directamente a
cristales coloidales porque la mayor parte de las transiciones de fase que éstos pre-
sentan son de primer orden.

En la teoría de Landau-de Gennes para transiciones de fase de primer orden, los
parámetros de orden deben ser tratados como un tensor, con el director molecular (en
nuestro caso el campo) jugando un importante papel. Podemos expandir el potencial
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termodinámico g(P, T,Qαβ) en función del tensor parámetro de orden. Cerca de la
transición de fase el tensor parámetro de orden es muy pequeño por lo que podemos
expandir a g en una serie de potencias. Entonces la energía libre toma la forma:

g = gi +
1

2
AQαβQαβ − 1

3
BQαβQβγQγα +

1

4
CQαβQαβQβδQβδ − 1

2
χαHαQαβHβ (2.1)

donde gi es la densidad de energia libre en la fase isótropa, H es el campo aplicado y
χ es la susceptibilidad magnética anisótropa debido a la presencia del campo, asocia-
mos la susceptibilidad con un parámetro de orden. Esta expresión es correcta hasta
cuarto orden en Qαβ (de Gennes, 1969a). Los coeficientes A, B y C son funciones
del estado de equilibrio, que pueden ser obtenidas del mínimo de la energía libre.

De acuerdo con el trabajo [1,2], siguiendo las ideas de Landau-de Gennes se propone
una generalización para coloidales multipolares. El tensor parámetro de orden es
definido por:

Q˜ l =
∆χ1

χl
max

(2.2)

donde ∆χ1 es la parte anisotrópica del tensor de susceptibilidad generalizado y χl
max

es la máxima anisotropía observada en la fase nemática. Esta ecuación representa
una relación tensorial de acuerdo al orden del multipolo.

Las diferentes componentes de este tensor pueden ser obtenidas como respuesta a un
campo externo. Si aplicamos el campo externo en la dirección de eje Z para cada
multipolo entonces:


El =
zl−1

(l − 1)
El

0k̂ (2.3)

con El
0 la intensidad del campo asociado con el momento de orden l.

En la teoría de Landau-de Gennes la presencia de un campo externo conduce a un
término adicional en la energía libre, es decir:

U l = −∆χ� F˜ l (2.4)

F˜ l es el tensor de campo acuerdo al orden del l-ésimo momento y � representa el
producto interno generalizado.

Para la descripción microscópica, la definición general del potencial externo es des-
crito por [41],:

φl
ext(û) = − 1

(2l − 1)!!
MlP˜ l �∇l−1 
El (2.5)

donde P˜ l es el tensor polinomio de Legendre de orden l, Ml es el momento multipolar
y 
El es el campo externo para cada momento multipolar.

21



CAPÍTULO 2. TERMODINÁMICA-ESTADÍSTICA
2.1. TEORÍA DE LANDAU - DE GENNES

Asociando la ecuación 2.2, 2.4 y 2.5, se tiene que

F˜ l con ∇l−1 
El

Q˜ l con < P˜ l >

χl
max con

1

(2l − 1)!!
Ml (2.6)

El seguimiento de este enfoque para obtener fase nemáticas multipolares se construye
y como consecuencia, del parámetro de orden asociado con ellos. Estas propiedades
macroscópicas son capaces de describir los diferentes grados de orden en la fase ne-
mática.

Para nuestro caso, el dipolo, considerando la ecuación 2.3 para l = 1


E0
1 = E1

0R̂

φext(û) = −µE1 cos θ (2.7)

La forma del campo se elige porque de esta manera la respuesta final del potencial
externo dependerá del ángulo polar para la orientación del dipolo.

2.1.1. Parámetros de orden macroscópicos

En algunos casos la descripción microscópica de los sistemas mesogénicos reales ya no
es adecuada y algunos otros medios se deben de encontrar para especificar el grado
de orden.

Una diferencia significativa entre el líquido isótropo de alta temperatura y la fase
cristalina líquida se observa en las mediciones de todas las propiedades macroscópi-
cas del tensor. Podemos apreciar diferencias significativas en las mediciones de las
propiedades macroscópicas como la susceptibilidad diamagnética, el índice de refrac-
ción, la permitividad dieléctrica, etc.; y, haciendo uso de estas mismas, identificamos
los parámetros de orden macroscópicos.

Como ejemplo tenemos en cuenta la susceptibilidad diamagnética, la relación entre
el momento magnético M (debido a la diamagnetismo molecular) y el campo H tiene
la forma:

Mα = χαβHβ (2.8)

Donde α, β = x, y, z. χαβ es un elemento del tensor susceptibilidad χ. Cuando el
campo H es estático, el tensor χαβ es simétrico y posee traza. En la fase isótropa
tiene la forma simple

χαβ = χδαβ (2.9)
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Para la fase nemática uniaxial, donde el eje Z es paralelo al eje nemático, χαβ puede
escribirse en la forma diagonal

χ =

⎛⎝ χ⊥ 0 0
0 χ⊥ 0
0 0 χ‖

⎞⎠ (2.10)

donde χ⊥ y χ‖ son las susceptibilidades perpendiculares y paralelas al eje de sime-
tría, respectivamente. Comparando las dos últimas ecuaciones, observamos que la
parte anisotrópa de la susceptibilidad diamagnética cumple la regla impuesta a un
parámetro de orden,

∆χαβ = χαβ − 1

3
χδαβ (2.11)

Por lo tanto, el tensor parámetro de orden Q se puede definir como

Qαβ =
∆χαβ

∆χmax
(2.12)

Donde χmax es la máxima anisotropía que se observaría una mesofase perfectamente
ordenada [33].

2.2. Magnetización y susceptibilidad magnética

Los átomos de los que está compuesta la materia tienen momentos magnéticos debi-
do al movimiento de sus electrones (momento angular), además cada electrón tiene
un momento magnético intrínseco asociado a su spin. El momento magnético neto
de un átomo, depende de la distribución de electrones del mismo.

Cuando un material se sitúa en un campo magnético intenso, los momentos dipolares
magnéticos (permanentes o inducidos) dentro del material tienden a alinearse en la
dirección del campo aplicado, y decimos entonces que la materia se ha magnetiza-
do [36]. Si un campo magnético es paralelo al director induce una cierta cantidad
de magnetización, mientras que, si el campo aplicado es perpendicular al director
induce una cantidad diferente de magnetización, esto es simplemente otro ejemplo
de anisotropía. Cuanto mayor sea la anisotropía de la magnetización menor será el
campo magnético necesario para alinear con el director [37].

El comportamiento de los materiales bajo la aplicación de un campo magnético es
una propiedad física importante. En muchos materiales, cuando no hay campo apli-
cado los efectos magnéticos asociados con los movimientos orbitales y de spin de los
electrones atómicos se cancelan exactamente. Dependiendo de dicho comportamien-
to, podemos encontrar tres principales materiales magnéticos: los diamagnéticos, los
paramagnéticos y los ferromagnéticos [17], vea la figura 2.1.
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Al aplicar un campo en materiales diamagnéticos, los espines de sus átomos se orien-
tan paralela pero inversamente a este; su magnetización es débil y en dirección opues-
ta al campo y por tanto, la susceptibilidad, χ es negativa y pequeña. Estos materiales
son repelidos muy ligeramente ante un campo magnético como el de un imán. Su
característica fundamental es que tienen los niveles energéticos de sus electrones
completos (electrones pares en sus capas) y no existen momentos magnéticos des-
apareados. Sin embargo, al aplicar un campo externo se induce un momento que
tiende a compensar el flujo magnético que se ejerce sobre los orbitales, efecto que les
da su distintiva magnetización débil y en dirección opuesto al campo [38].

En los materiales paramagnéticos, al aplicar un campo, los espines de sus átomos
se orientan paralelos y en la misma dirección que este, su magnetización es débil y
en la misma dirección que el campo. Su susceptibilidad, χ es positiva y de magni-
tud pequeña, pero algo mayor a la de los materiales diamagnéticos. Los materiales
paramagnéticos son ligeramente atraídos por un campo magnético como el de un
imán, su característica es que en ellos los niveles energéticos de sus electrones están
incompletos (electrones impares en sus capas) [38].

Los materiales que conservan magnetización remanente, aún en ausencia de un campo
externo, son conocidos en general como ferromagnéticos o más coloquialmente como
«magnéticos» y por lo regular son fácilmente identificables porque son atraídos por
un imán. En ellos los espines de sus electrones se acoplan de forma espontánea,
alineándose paralelamente mediante una interacción que permanece aún en ausencia
de campo externo; propiedad denominada magnetización espontánea. Esta propiedad
se presenta en los elementos de la primera serie de transición con electrones no
apareados en la capa 3D, disminuyendo la magnetización que surge del movimiento
orbital de los electrones [38].
En el ferromagnetismo los momentos dipolares magnéticos de los átomos ejercen
fuerzas intensas sobre sus vecinos, de modo que en una pequeña región del espacio
los momentos están alienados unos con otros aun cuando no existe un campo ex-
terno, esta pequeña región se llama dominio magnético, su tamaño es normalmente
microscópico. Dentro del dominio todos lo momentos magnéticos están alineados,
pero la dirección de alineación varia de un dominio a otro [39], vea la figura 2.2.
Cuando una partícula magnética de dominio único está dispersa en un fluido portador
adecuado, puede ser racionalizada como un dipolo magnético que puede reorientarse
por dos mecanismos, vea la figura 2.3:

Mediante la rotación de toda la partícula browniana dentro del fluido (tipo
Browniano).

Mediante la reorientación colectiva de los momentos magnéticos atómicos (tipo
Néel).

De cualquier manera, la fluctuación térmica de los dipolos conduce a una magneti-
zación neta cero en ausencia de campos externos. Bajo la influencia del gradiente del
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campo se consigue una alineación de los dipolos [40].

En los casos de materiales para y diamagnéticos, la magnetización M de un material
cuando se expone a un fuerte campo magnético puede ser definido como

M = (µr − 1)H (2.13)

donde µr es la permeabilidad de la sustancia [17].
En un cristal líquido, la magnetización se denomina como la cantidad del momento
magnético por unidad de volumen [37]. En esta tesis, se toma como referencia el
trabajo de B. H. Erné et al. [4] sobre ferrofluidos, en la cual se contempla la mag-
netización en un campo magnético constante, es decir que no van en el tiempo. Los
ferrofluidos son dispersiones coloidales de partículas nanomagnéticas con un solo do-
minio magnético [4].

En un campo magnético externo cero, las orientaciones de los dipolos magnéticos
están distribuidas isotrópicamente en todas las direcciones, dando como resultado
magnetización cero del ferrofluido. Cuando se aplica un campo magnético, la alinea-
ción de los dipolos magnéticos se ve favorecida en la misma dirección que el campo
magnético debido a que las partículas son (super) paramagnéticas. La energía de
interacción de un dipolo de momento magnético µ alineado con un campo magnético
H es igual a µ0H . El promedio de grado de alineamiento de los dipolos magnéti-
cos depende de la relación de µ0H − kBT , porque el movimiento térmico tiende a
destruir la alineación. Para partículas monodispersas no interactuantes, el promedio
de magnetización M del ferrofluido como una función del campo magnético externo
está dada por la ecuación de Langevin: [4].

M = Ms

[
coth

(
µµ0H

kBT

)
kBT

µµ0H

]
(2.14)

donde Ms es la magnetización de saturación, suponiendo que todas las partículas
tienen el mismo momento dipolar magnético. Esta ecuación representa la forma ge-
neral de la curva de magnetización [4].

Para valores pequeños del campo la magnetización es lineal con el campo magnético
externo, y el factor de proporcionalidad se denomina susceptibilidad magnética χ:

M = χH (2.15)

Según la ecuación de Langevin, en el estado base la susceptibilidad magnética para
campos pequeños está dada por:

χ =
1

3

(
µµ0H

kBT

)
Ms (2.16)

La susceptibilidad magnética de un sistema describe la respuesta del sistema a la
acción de un campo externo y es una cantidad adimensional [21, 36].
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Para campos grandes todos los dipolos magnéticos apuntan en la misma dirección y
la magnetización del ferrofluido [4] está dada por:

Ms = nµ (2.17)

que como habíamos mencionado,Ms es la magnetización de saturación. Pero, £qué
es la Ms? La Ms se presenta si todos los átomos o moléculas de un material poseen
alineados sus momentos magnéticos,esta cantidad representa el momento magnético
por unidad de volumen del material, y es el producto del número de moléculas por
unidad de volumen n por momento magnético µ de cada molécula [39].

La medición de la curva de magnetización permite la determinación de la relación
de χ−Ms, de la cual se puede calcular el momento dipolar magnético [4].

Cuando cambiamos el campo externo, no podemos obtener una nueva magnetización
inmediatamente, debido a que la reorientación de los momentos dipolares magnéti-
cos lleva cierto tiempo. Si aplicamos un campo magnético débil, la reorientación
probablemente ocurra por el movimiento térmico [4].

2.3. Parámetros de Orden

Siempre estamos en búsqueda de las variables físicas más importantes por ejemplo,
en nuestro sistema de estudio buscamos la magnetización M del sistema a campos
pequeños. Podemos darle un significado cuantitativo [13] a dichas variables del sis-
tema por medio de los parámetros de orden.

Al momento de inducir el campo en cualquier dirección del eje Z, el sistema coloidal
cambiara de fase difiriendo una de la otra con respecto a su simetría. La transición
entre las diferentes fases corresponde a la ruptura de alguna simetría y se puede
describir en términos de los llamados parámetros de orden ; estos representan el
grado en que la configuración de las moléculas en la fase menos simétrica difiere
de la fase más simétrica. En general, los parámetros de orden, Q, describen una
transición de fase debiendo cumplir los siguientes requisitos:

Q = 0, en la fase más simétrica (menos ordenada), y

Q 	= 0, en la fase menos simétrica (más ordenada).

Estos requisitos no definen el parámetro de orden de una manera única. A pesar de
esta arbitrariedad, en muchos casos la elección se realiza de una manera bastante
natural.

En el caso de transición líquido-vapor el parámetro de orden es la diferencia de
densidad entre las fases de líquido y vapor, el cual es un escalar. En el caso de las

26



CAPÍTULO 2. TERMODINÁMICA-ESTADÍSTICA
2.3. PARÁMETROS DE ORDEN

transiciones ferromagnéticas sin fuerzas anisótropas el parámetro de orden es la mag-
netización, que es un vector con tres componentes.

En los casos más complicados de la elección de los parámetros de orden requiere
algunas consideraciones cuidadosas [33], como bien dijera Sethna (2011) «la elección
de un parámetro de orden es un arte» (p. 204).

2.3.1. Parámetros de orden microscópicos

Los parámetros de orden construidos en relación con un modelo molecular específico,
pueden dar una descripción microscópica del sistema y se conocen como parámetros
de orden microscópicos. Por definición estos parámetros de orden pueden contener
más información que sólo la simetría de la fase [33].

La función de distribución de probabilidad de una sola o de N partículas es la
mejor candidata para ser utilizada para la definición de los parámetros de orden. Los
parámetros de orden orientacionales son definidos como:

〈Pl〉 =
∫

dûPl(cos θ)P
eq(û) (2.18)

donde θ es el ángulo entre el director n̂, en este caso k̂ y el eje de simetría molecular
(orientación) û, P eq es la función de distribución de probabilidad en el equilibrio y
〈Pl〉 es el promedio de ensamble de los polinomios de Legendre [33].
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Figura 2.1: Esquemas de los diferentes tipos de magnetización. a) Diamagnetismo:
Podemos observar un momento magnético total nulo; al aplicar un campo, los mo-
mentos magnéticos inducidos se alinean en sentido opuesto al campo. b) Paramagné-
ticos: Se observan momentos magnéticos aleatorios, al aplicarles un campos se alinean
con dirección a este. c) Ferromagnético: Poseen momentos magnéticos permaneces
aun en ausencia de campo externo; al aplicarle un campo, los momentos magnéticos
se orientan en dirección a este.

Figura 2.2: a) Los dominios magnéticos en un material no magnetizado se encuen-
tran orientados al azar. b) La orientación preferida de los dominios en un material
magnetizado.

Figura 2.3: Orientación de os momentos dipolares. a) Tipo Néel. b) Tipo Browniano.
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Capítulo 3

Ecuación de Smoluchowski

3.1. Potenciales de interacción

3.1.1. Potencial Externo

Para momentos dipolares, estudiamos la respuesta del sistema coloidal cuando el
campo, eléctrico o magnético, está en la dirección del eje Z positivo y cuando está
en dirección del eje Z negativo.

Considerando: un campo de la forma 
E = ±E k̂ y momento dipolar 
µ = µ û, entonces
el potencial de interacción externo, tiene la forma

φext = − 
µ · 
E
= ∓E0 cos θ (3.1)

donde las magnitudes µE = E0 y θ es el ángulo entre la dirección del campo k̂ y la
orientación de la partícula û.

Adimensionando con β
βφext = ∓E∗

0 cos θ (3.2)

donde βµE = E∗
0 y β = 1/KBT es el inverso de la energía térmica.

3.1.2. Potencial a Pares

De acuerdo con J.-P. Hansen y I.I. McDonald (2013), «la característica más impor-
tante del potencial par entre los átomos o moléculas es la alta repulsión que aparece
a cortas distancias, el efecto de estas fuerzas intesamente repulsivas es crear la ca-
racterística de orden de corto alcance, las fuerzas de atracción, que actúan a larga
distancia» (p. 4).

Consideramos un modelo esferas duras con un dipolo en su centro. Si tomamos dos,
estas tiene un momento dipolar y orientaciones separadas por un vector 
r. El poten-
cial de interación a pares dipolo-dipolo lineal, es importante para la aproximación
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de correlación par (ecuación 3.49), y esta dada por:

φDD (
r, û1, û2) =
∑

m1,m2,m

U112(r) c(1 1 2;m1m2 m)Y 1
1m1

Y 2
1m2

Y ∗r
2m (3.3)

[φDD]
2 =

∑
m1,m2,m

∑
m′

1,m′
2,m′

[
U112(r)

]2
c(1 1 2;m1m2 m) c(1 1 2;m′

1m
′
2m

′)

× Y 1
1m1

Y 1
1m′

1
Y 2
1m2

Y 2
1m′

2
Y ∗r
2mY

∗r
2m′ (3.4)

con U1/2(r) el potencial de interacción entre las partículas i-ésima y j-ésima.
Recordemos que el potencial para esfera dura de diámetro σ (la distancia de máxima
proximidad entre dos partículas), está dado como

U(r) =

⎧⎨⎩
0 si r ≥ σ

∞ si r < σ

y

U112(r) = −4π

√
8π

15

µ2

r3
(3.5)

Este potencial es el más simple potencial de interacción par que se puede pensar.

3.1.3. Potenciales efectivos

Potencial efectivo dipolar

Modificando la ecuación de Smoluchowskien en equilibrio con potencial efectivo,
tenemos:

0 = R̂2P (û) + βR̂ ·
[
R̂φext

]
P (û) + R̂

[
R̂P (û) · R̂V eff (û)

]
(3.6)

donde, el potecial efectivo Maier-Saupe V eff está dado por

V eff(û) = −4

9
πρ∗

(
µ∗2)2(1 + 1

5
P2(cos θ) 〈P2(cos θ)〉

)
(3.7)

Potencial efectivo para MSA

Para realizar el cálculo necesitaremos la ecuación de Smoluchowski en equilibrio
modificada para MSA, dada por:

0 = R̂2P (û) + R̂ ·
[
P (û)

(
R̂V eff

)]
+ βR̂ ·

[
R̂φext

]
P (û) (3.8)

donde V eff es el potencial efectivo para la MSA:

V eff (û) = −3H1 0P1 〈P1〉 −H00 (3.9)

con H1 0 la función de correlación directa calculada por medio de la ecuación 3.60.
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3.2. Función de Densidad de Probabilidad

Dar una descripción analítica de las coordenadas de posición y momento de las par-
tículas individuales en un sistema microscópico no es factible. Para ello requerimos
la solución de las ecuaciones de movimiento de Newton para dicho sistema, las cua-
les, solo podemos resolver numéricamente a través de simulaciones por computadora.

Podemos ayudarnos de una descripción estadística desarrollada en términos de pro-
babilidades de eventos, por ejemplo: el desplazamiento instantáneo de una partícula
coloidal debido a las colisiones de las moléculas del solvente. Las probabilidades son
cuantificadas por las llamadas funciones de densidad de probabilidad (pdf, por sus
siglas en inglés).

Consideremos un ensamble, que es una colección muy grande de copias idénticas del
sistema en equilibrio térmico, que comparten los mismos valores de las las variables
termodinámicas, pero microscópicamente cada una de ellas están generalmente en
un estado mecánico diferente. El espacio fase para partículas esféricas está definido
como el espacio 6N dimensional, el cual está dado por las coordenadas de posición

r1,..., 
rN = 
rN y momento 
p1,..., 
pN = 
pN de todas las N partículas del sistema.

Los valores instantáneos de las posiciones, orientaciones, momentos traslacionales
y angulares que especifican el microestado de un sistema, están representados por
un punto del espacio fase. La evolución de las posiciones, orientaciones, momentos
traslacional y angular del sistema se describen por una curva del espacio fase. Ahora
supongamos que tomamos una fotografía de todo el ensamble, y que el microesta-
do de cada sistema en el ensamble se determina a partir de la fotografía. Con esta
información se conforma un punto en el espacio fase para cada uno de los sistemas,
resultando una distribución de puntos para el ensamble.

La densidad de puntos es proporcional a la probabilidad de encontrar al sistema
en un microestado en un tiempo particular. Entonces la función de densidad de
probabilidad, P (X, t) de la variable X, donde esta puede ser, posición, momento,
orientación etc., está definida como:

P (X, t)dX = la probabilidad que la variable tome un valor
dentro del intervalo, (X,X + dX),en un tiempo t. (3.10)

X,X + dX denota un incremento infinitesimal de X. La pdf debe ser normalizada,
es decir: ∫

dXP (X, t) = 1 (3.11)

Consideremos la llamada función fase, f(X), que puede ser escalar o vectorial. Las
funciones fase son microscópicas, fluctuantes térmicamente y análogas a las variables
macroscópicas. La variable macroscópica correspondiente a la función de fase se
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obtiene por el promedio de ensamble, dado por:

〈f(X)〉 =
∫

dXf(X)P (X, t) (3.12)

Los 〈. . .〉 indican promedio de ensamble, como se define en la ec.(3.3). Este promedio
es la cantidad experimentalmente accesible, donde se probaron muchas realizaciones
independientes de X. Puede ser dependiente del tiempo cuando el sistema está fuera
de equilibrio, a través de la dependencia temporal de la pdf [10, 40].

3.3. Deducción de la ecuación de Smoluchowski

La pdf para N partículas está dada por

P
(

rN , ûN , t

)
(3.13)

donde 
rN son las posiciones y ûN las orientaciones de las partículas, respectivamen-
te. La pdf depende tanto de las posiciones como de las orientaciones de las partículas.

Sea
P (
r, û, t) d
r dû (3.14)

la probabilidad de que una partícula con posición 
r y orientación û este en d
r y dû
respectivamente al tiempo t. Como vimos en la sección anterior, la probabilidad debe
ser normalizada por lo que ∫

d
r

∫
dû P (
r, û, t) = 1 (3.15)

donde dû = sin θ dθ dφ y 0 ≤ θ ≤ π y 0 ≤ φ ≤ 2π .

Ahora bien, consideramos un ensamble del tipo cánonico NV T , donde cada uno de
sus elementos es una partícula coloidal esférica axial (partícula browniana) en un
fluido molecular. A pesar de que estos elementos son macroscópicamente idénticos,
generalmente son microscópicamente diferentes, en el sentido de que las posiciones
y las orientaciones de la partícula browniana son diferentes. Cada microestado está
definido por N puntos en R

3 y por N puntos en la superficie esferica unitaria R
2, es

decir, por las posiciones y orientaciones, respectivamente.

Para el ensamble se tiene una distribución N de puntos en R
2 y R

3. Sea entonces,
un volumen arbitrario W en R

3 y A en R
2, una superficie arbitraria. La densidad de

puntos en la posición y orientación es proporcional a la probabilidad de encontrar
a la partícula en un microestado, contenido en estas dos regiones. De manera que
para hallar la ecuación de movimiento para la probabilidad se requiere la razón de
la variación de la cantidad de puntos dentro de W y A, vea la figura 3.1.
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(a) W εR3 (b) A εR2

Figura 3.1: Distribución de puntos en el espacio R
3 y en la superficie esférica R

2.

El número de puntos en función del tiempo N(t) está relacionado con la pdf, P (
r, û, t)
para la posición 
r y la orientación û, de la siguiente manera

N(t) =

∫
W
d
r

∫
A
dû P (
r, û, t) (3.16)

donde dû = sin θ dθ dφ es un elemento de superficie en la esfera unitaria. La variación
en el tiempo de número de puntos en W, A está dado por:

dN(t)

dt
=

∫
W
d
r

∫
A
dû

∂

∂t
P (
r, û, t) (3.17)

=

∫
∂W

dS

∫
A
dû jtrans +

∫
W
d
r

∫
∂A

dl jrot (3.18)

Notemos que el cambio en el número de puntos está relacionado con los flujos de
puntos, jtrans y jrot que entran y salen a través de las fronteras ∂W (superficie), ∂A
(curva cerrada, línea) de W y A, respectivamente.

Consideramos el flujo de puntos a través de ∂W y de ∂A. La contribución local
al cambio de números de puntos en W es igual a la densidad local de P (
r, û, t)
multiplicado por la componente v⊥ de la velocidad de traslación del centro de masa
a ∂W. Mientras que la contribución local al cambio de números de puntos en A, es
el vector perpendicular localmente a ∂A, es decir, l̂ × û, por la densidad local de
P (
r, û, t), vea la figura 3.2. Entonces, los flujos salientes traslacional y rotacional
están dados como:

jtras = (n̂ · v̂)P (
r, û, t)

jrot = l̂ ·
(
û× dû

dt

)
P (
r, û, t) (3.19)
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(a) (b)

Figura 3.2: a) Flujo a través de ∂W, donde la única contribución está dada por
v⊥ = n̂ · 
v. b) Flujo a través de ∂W, donde la única contribución está dada por
n̂ · (dû/dt).

Sustituyendo jtras y jrot en la variación en el tiempo del número de puntos (ecuación
3.17), se tiene que

dN(t)

dt
= −

∫
∂W

dS

∫
A
dû n̂ · v̂ P (
r, û, t)−

∫
W
d
r

∫
∂A

dl l̂ ·
(
û× dû

dt

)
P (
r, û, t) (3.20)

el signo menos se debe al hecho de que la dirección de û apunta fuera de W y A;
cuando 
v ∼ n̂, entonces n̂ · 
v > 0 y n̂ · dûdt > 0, el número de puntos en W y A
decrece en el tiempo.

Si d
S = n̂ dS, entonces

dN(t)

dt
= −

∫
∂W

d
S ·
∫
A
dû [v̂ P (
r, û, t)]−

∫
W
d
r

∫
∂A

dl l̂ ·
(
û× dû

dt

)
P (
r, û, t) (3.21)

Utilizando los teoremas integrales de Gauss y Stokes en la ecuación 3.21 y realizando
los cálculos pertinentes, la variación en el tiempo de número de puntos toma la forma

dN(t)

dt
= −

∫
W
d
r

∫
A
dû

{
∇ · [v̂ P (
r, û, t)] + R̂ ·

[

ΩP (
r, û, t)

]}
(3.22)

donde R̂ ≡ û×∇û es el operador de rotación. Ahora igualando la ecuación 3.17 con
la ecuación 3.22, finalmente se tiene

∂

∂t
P (
r, û, t) = −∇ · [v̂ P (
r, û, t)]− R̂ ·

[

ΩP (
r, û, t)

]
(3.23)

que es la ecuación de continuidad del movimiento traslacional y rotacional para una
partícula, donde 
v es la velocidad traslacional y 
Ω es la velocidad rotacional.

Para muchas partículas, la probabilidad de encontrar la partícula 1 hasta la N , 
rN ûN

al tiempo t es:
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∂

∂t
P
(

rN , ûN , t

)
= −

N∑
j=1

∇j ·
[

vj P

(

rN , ûN , t

)]
+ R̂j ·

[
ΩP

(

rN , ûN , t

)]
(3.24)

Recordemos que en la escala de tiempo difusiva, las coordenadas de los momentos
traslacional y angular de las partículas brownianas están en equilibro con el baño
térmico de las moléculas del solvente. Las fuerzas y torcas totales sobre cada partícula
browniana son cero. Hay tres fuerzas y torcas que actúan sobre cada partícula: las
brownianas 
FB

j , 
τBj ; las hidrodinámicas 
FH
j , 
τHj y las de interacción directa 
F I

j , 
τ Ij .
Entonces se debe cumplir para la parte rotacional y traslacional, respectivamente:

m
d
vj
dt

= 
FH
j + 
F I

j + 
FB
j = 0

m
d
Ωj

dt
= 
τHj + 
τ Ij + 
τBj = 0 (3.25)

No consideramos la interacción hidrodinámica entre partículas coloidales pero toma-
mos las fuerzas y torcas hidrodinámicas debidas a la fricción de la partícula browniana
con el solvente.


FH
j = −γt 
vj


τHj = −γr 
Ωj (3.26)

con γt el coeficiente de fricción traslacional y γr el coeficiente de fricción rotacional.

Las fuerzas y torcas de interacción directa se pueden expresar en términos de la
energía potencial Φ de las partículas brownianas. Entonces


F I
j = −∇�rjΦ

(

rN , ûN

)

τ Ij = −R̂jΦ

(

rN , ûN

)
(3.27)

sustituimos estas ecuaciones en la ecuación de balance de fuerzas (ecuación 3.25),
obteniendo así las velocidades traslacional y rotacional.


vj = βDt

(
−∇�rjΦ + 
FB

j

)

Ωj = βDr

(
−R̂jΦ+ 
τBj

)
(3.28)

recordemos que γ−1
t,r = βDt,r, con β = 1/kBT .

Para tiempos largos, la pdf P (
rN , ûN , t) es proporcional a la exponencial de Boltz-
mann, exp {−βΦ}. Al no depender del tiempo, la derivada temporal en la ecuación
de continuidad es cero, esta igualdad se cumple al relacionar la pdf con las fuerzas y
torcas brownianas por medio de:


FB
j = −kBT∇�rj lnP


τBj = −kBTR̂j lnP (3.29)
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Sustituyendo estas ecuaciones en las velocidades y dichas velocidades en la ecuación
de continuidad, obtendremos de manera general, la ecuación de Smoluchowski para
N esferas que interactúan.

∂P
(

rN , ûN , t

)
∂t

= LSP
(

rN , ûN , t

)
(3.30)

con LS el operador de Smoluchowski, definido como

LS(
r
N , ûN) =

N∑
j=1

{
Dt∇�rj ·

[
β∇�rjΦ(
r

N , ûN) +∇�rj

]
+DrR̂j ·

[
β[R̂jΦ](
r

N , ûN) + R̂j

]}
(3.31)

La pdf orientacional de un cuerpo P (û) para sistemas coloidades esféricos interac-
tuantes y que depende del tiempo, se obtiene de integrar la ecuación de Smoluchowski
sobre todas las coordenadas de posición 
rN y sobre las N − 1 coordenadas de orien-
tación ûN .

Definimos

P (û1, t) =

∫
d
rN

∮
dûN−1P (
rN , ûN , t) (3.32)

P (
r1, 
r2, û1, û2, t) =

∫
d
rN−2

∮
ûN−2P (
rN , ûN , t) (3.33)

Entonces realizando, dicho proceso en la ecuación de Smoluchowski (3.30) y aplicando
los teoremas de Gauss y Stokes, se obtiene

∂P (û1, t)

∂t
= DrR̂

2P (û1) +DrβR̂1 ·
∫

d
r1 · · ·
∫

d
rN

∮
dû2 (3.34)

· · ·
∮

dûN

[
R̂1Φ(
r

N , ûN)
]
P (
rN , ûN , t)

considerando que el potencial de interacción entre partículas ΦI es aditivo a pares

ΦI =
∑
1=i<j

φI(
rij, ûi, ûj) (3.35)

con 
rij = 
ri−
rj. Además la energía potencial de las N partículas en presencia de un
campo externo está dada por:

Φext =

N∑
l=1

φext(ûl) (3.36)

pdonde Φ = ΦI + Φext, entonces reescribiendo

∂P (û1, t)

∂t
= DrR̂

2
1P (û1, t) + (N − 1)DrβR̂1 ·

∫
d
r1

∫
d
r2

∮
dû2

×
[
R̂1 (φI (
r12, û1, û2) + φext(ûl))

]
P (
r1, 
r2, û1, û2) (3.37)
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Para un sistema homogéneo, isotrópico y en equilibrio térmico y para partículas
esféricas identicas, la ecuación de movimiento de la pdf se reescribe como:

0 =
∂P (û1, t)

∂t
= DrR̂

2
1P (û1, t)

+ (N − 1)DrβR̂1 ·
∫

d
r1

∫
d
r2

∮
dû2 ·

[
R̂ΦI(
r, û1, û2)

]
P (
r1, 
r2, û1, û2, t)

+ DrβR̂1

∫
d
rN

∫
dûN−1

[
R̂1φext(û)

]
P (
rN , ûN , t) (3.38)

Ya que el sistema está en equilibrio, entonces la pdf no depende del tiempo. Sea la
pdf de dos cuerpos dada por

P (
r1, 
r2, û1, û2) =
1

V 2
g(| 
r12 |, û1, û2)P (û1)P (û2) (3.39)

donde g es la función de correlación a pares de equilibrio, V es el volumen del sistema
y P (û1) es la función de densidad de probabilidad orientacional de una partícula.
Por lo que

0 = DrR̂
2
1P (û) +DrβR̂1 ·

[
R̂1φext(û1)

]
P (û1)

− ρDrβR̂1P (û1)

∮
dû2τ(û1, û2)P (û2) (3.40)

donde ρ = N/V y la torca 
τ

τ(û1, û2) = −
∫

d
r
[
R̂ΦI(
r, û1, û2)

]
g(| 
r |, û1, û2) (3.41)

con 
r = 
r1 − 
r2.

Por tanto, la ecuación de Smoluchowski en el equilibrio para tiempos difusivos , está
dada por:

0 = R̂2
1 P (û1) + βR̂1 ·

[
R̂1φext(û1)

]
P (û1)− ρ β R̂1 · P 0(û1)

∮
dû2 τ(û1, û2)P

0(û2)

(3.42)
P 0(ûn) es la solución de la ecuación de Smoluchowski con ρ = 0, debido a esta
aproximación solamente podemos tomar ρ muy pequeños.

3.3.1. Ecuación de Smoluchowski para una partícula

Si tomamos la ecuación de Smoluchowski dada por la ecuación 3.42 y hacemos a
ρ = 0, la ecuación diferencial para una sola partícula coloidal toma la forma

0 = R̂2
1 P (û1) + β R̂1 · [R̂1 φext(û1)]P (û1) (3.43)

37



CAPÍTULO 3. ECUACIÓN DE SMOLUCHOWSKI
3.4. FUNCIÓN DE CORRELACIÓN PAR

La solución de esta ecuación proporciona la probabalidad orientacional de una sola
partícula en un campo externo en equilibrio térmico.

P (û1) = c exp {−β φext (û1)} (3.44)

Como habíamos mencionado anteriormente, la pdf debe ser normalizada, por lo que
c es una constante de normalización. De manera general, se tiene la función de
distribución de probabilidad en el equilibrio de una partícula, con un campo externo
como:

P 0 (û1) = c exp {−β φext (û1)} (3.45)

Notemos que la pdf depende del potencial externo sobre el coloide.

3.3.2. Ecuación de Smoluchowski para sistemas diluidos

Para resolver la ecuación de Smoluchowski (ecuación 3.42) para sistemas diluidos en
el equilibrio.

Se propone una solución en serie para la ecuación de Smoluchowski de la forma

P (û) =
∞∑
l=0

l∑
m=−l

αlmYlm (3.46)

αlm =

∮
dûP (û)Ylm

donde l equivale al movimiento en el ángulo polar θ y m equivale al movimiento en
el ángulo azimutal φ, rotación y traslación respectivamente. La P (û) es la función de
distribución de probabilidad (pdf ). Ahora bien, si sólo nos fijamos en el movimiento
del ángulo polar, ya que φext depende solo de θ y no de φ, θ 	= 0 entonces el mo-
vimiento azimutal φ = 0, por lo que m = 0. Entonces la solución a la ecuación de
Smoluchowski toma la forma.

P (û) =
∑
l

αl0Yl0 (3.47)

αl0 =

∮
dûP (û)Yl0

con αl ≡ 〈Pl〉.

3.4. Función de correlación par

3.4.1. Aproximación de Boltzmann

La función de correlación par, está en la expresión para la torca (ecuación 3.41).
La función de correlación par es la más relevante para sistemas muy diluidos, en
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los cuales, las interacciones simultáneas entre tres o más partículas son poco proba-
bles. Ahora bien, al ser un sistema muy diluido, podemos aproximar la función de
correlación par g, a la estadística de Boltzmann por la siguiente expresión

g(
r, û1, û2) = exp{−βφI} (3.48)

haciendo una expansión de Taylor para la exponencial, se obtiene:

g(
r, û1, û2) = 1− βφI +
(βφI)

2

2
· · · (3.49)

donde φI ≡ φDD para el caso del dipolo y g está en función del potencial de interac-
ción.

Hableremos de los potenciales de interacción y externo en la siguiente sección.

3.4.2. Aproximación Esférica Media (MSA)

La teoría de la aproximación esférica media o MSA (por sus siglas en ingles) pa-
ra fluidos es una aproximación para sistemas con altas densidades y es usualmente
aplicada a potenciales con esfera dura. Fue propuesta por Lebowitz y Percus (1966).
Algunos de los sistemas más importantes para los que se ha resuelto analíticamente
la MSA son: el potencial de Yukawa con una esfera dura (Waisman, 1973) y el mo-
delo de esferas duras con dipolos en su interior (Waisman y Lebowitz, 1970).

La MSA está basada en la ecuación de Ornstein-Zernike (OZ) para un sistema ho-
mogéneo e isotrópico, dada por:

h(r) = c(r) + ρ

∫
c(r′)h(
r − 
r ′)dr′ (3.50)

donde ρ es la densidad del número de partículas y h(r) es la función de correlación
total, que representa una medida de la influencia total de la partícula en el origen
sobre otra partícula que se encuentre en una posición 
r. Ornstein y Zernike la consi-
deraron como la suma de la función de correlación directa (potencial de interacción)
y la función de correlación indirecta (correlaciones de las partículas intermedias).

Tomemos un ejemplo. Sean cinco partículas, si queremos la ecuación de OZ para
h(r12) (ver figura 3.3) tendríamos

h(r12) = c(r12) + ρ

∫
c(r13)h(r32)dr3

h(r32) = c(r32) + ρ

∫
c(r34)h(r42)dr4

h(r42) = c(r42) + ρ

∫
c(r45)h(r52)dr5
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Figura 3.3: Interacción entre partículas.

...

Notemos que hay una corrrelación directa entre la partícula 1 y 2 (c(r12)), debido
a la interacción directa a través del potencial a pares U(r12) y correlaciones indirectas
de la partícula 1 y 2 con las demás partículas (segundo sumando de la ecuación OZ),
y así sucesivamente.

La función de correlación directa c(r) es de largo alcance, es decir, su alcance es
mucho mayor que el alcance del potencial de interacción entre dos partículas. Para
sistemas con ρ 	= 0, Ornstein y Zernike mencionaron que la c(r) debía tener el mismo
alcance que el potencial de interacción y ser proporcional a [32, 41–45]

c(r) = −βU(r) (3.51)

La ecuación de Ornstein-Zernike tiene una expresión más sencilla en el espacio de
Fourier. Sea la transformada de Fourier de la ecuación OZ para un fluido puro de
esferas duras:

ρ ĥ(
k) = ρ ĉ(
k) + ρ ĉ(
k)ρ ĥ(
k) (3.52)

donde
H(
k) = ρ ĥ(
k), C(
k) = ρ ĉ(
k) (3.53)

entonces, sumando un uno a la ecuación de OZ en el espacio de Fourier y haciendo
los cálculos se obtiene [

1 +H(
k)
] [

1− C(
k)
]
= 1 (3.54)[

1 +H(
k)
]
=

[
1− C(
k)

]−1

(3.55)

S(k) = 1 +H(
k) =
[
1− C(
k)

]−1

(3.56)
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donde S(k) el factor de estructura, el cual nos indica la correlación de las orienta-
ciones de las partículas. El factor de estructura se mide a través de experimentos de
dispersión de radiación electromagnética y es proporcional a la radiación. Finalmente
obtenemos que

H(
k) = −1 +
[
1− C(
k)

]−1

(3.57)

haciendo 
k = 0

H(
k = 0) = −1 +
[
1− C(
k = 0)

]−1

(3.58)

en componentes
Hij(x) = −1 + [1− Cij(x)]

−1 (3.59)

donde x = 8ϕ
T ∗ , 1

T ∗ = β µ2

σ3 = µ∗2, ϕ = π
6
ρ∗, ρ∗ = ρσ3.

Obteniendo H10(x)

H10(x) = −1 + [1− C10(x)] (3.60)

donde C10(x) = 8ϕ(x)
[
1
2
CD1(x) +

1
3
CD3(x) +

1
3
C�0(x) +

1
4
C�1(x) + +1

6
C�3(x)

]
.

CD1(x) =
1

4
κ(x) [2C1(2κ(x)ϕ(x)) + C1(−κ(x)ϕ(x))]

CD3(x) =
1

2
κ(x) [2C3(2κ(x)ϕ(x)) + C3(−κ(x)ϕ(x))]

y
C�ν(x) = 2κ(x) [2Cν(2κ(x)ϕ(x)) + Cν(−κ(x)ϕ(x))]

con ν = 0, 1, 2

C1(x) = 6x

(
1 + 1

2

)2
(1− x)4

(3.61)

C3(x) =
1

(2
(x)C0(x) (3.62)

y resolvemos la siguiente ecuación para encontrar κ

−C0(x)(2κ(x)ϕ(x))− C0(x)(−κ(x)ϕ(x)) = x (3.63)

donde −C0(x) = − (1+2x)2

(1−x)4
, ϕ(x) = x

µ∗2 y de esta manera obtenemos H10(x) calculada
numéricamente a través de un programa realizado en Mathematica con los valores
en equilibrio de nuestro sistema.
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Capítulo 4

Funciones de densidad de
probabilidad orientacional

Las funciones de densidad de probabilidad orientacionales para una partícula, para
sistemas diluidos (aproximación de Boltzmann) y para MSA se muestran en este
capítulo. Las cuales son soluciones de la ecuación de Smoluchowski en equilibrio.

4.1. Pdf orientacional para una partícula

Ahora que conocemos el potencial externo, la función de densidad de probabilidad
de orientación de una partícula para campos positivos y negativos (hacia el eje Z
positivo y negativo, respecti vamente) en el equlibrio tiene la forma

P 0(û) =
E∗

0

4π sinhE∗
0

exp {±E∗
0 cos θ} (4.1)

donde E∗
0 = βµE0 y θes el ángulo entre la dirección del momemto dipolar y el eje z.

4.2. Pdf orientacional para sistemas diluidos

Gracias a la propuesta de solución en serie (ecuación 3.47) a la ecuación de Smo-
luchowski (ecuación 3.42) para sistemas diluidos en el equilibrio, se obtuvo la pdf
orientacional.
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Finalmente la solución de la Ecuación de Smoluchowski tiene la forma

−
∑
l

αl0 l (l + 1)Yl0 ± 2

√
4π

3
E∗

0

∑
l

αl0

1+l∑
l′=|1−l|

√
3(2l + 1)

4π(2l′ + 1){
c(1 l l′; 0 0 0)2 +

√
2

4

√
1(l + 1) c(1 l l′; 0 0 0) [c(1 l l′; 1 1 0) + c(1 l l′; 1 1 0)]

}
Yl′0

=
√
2

(
128

540

)
ρ∗π3

(
µ∗2)2∑

l

√
l(l + 1)

∫ π

0

∫ 2π

0

E∗
0

4π sinhE∗
0

exp [±E∗
0 cos θ] Y

1
10

[
Y 1
11Y

1
l1 + Y 1

11Y
1
l1

]
sin θ dφ dθ

∫ π

0

∫ 2π

0

E∗
0

4π sinhE∗
0

exp [±E∗
0 cos θ]

[
Y 2
11Y

2
11 + 4Y 2

10Y
2
11

]
sin θ dφ dθ Yl0 (4.2)

donde E∗
0 , ρ∗ y (µ∗2), son el campo, la densidad de número y el momento dipolar

magnético adimensionales, respectivamente. Resolvemos este sistema de ecuaciones
hasta orden 14 para las αl0

4.3. Aproximación a campos pequeños
En este trabajo nos interesa la susceptibilidad magnética y como vimos en la sec-
ción 2.3, esta se obtiene en la región lineal de la curva magnetización para campos
pequeños.

Hacemos una aproximación para campos pequeños, E∗
0 � 1, en la pdf de una par-

tícula dada por la ecuación 3.45. Obtenemos una nueva constante de normalización,
por lo que la pdf orientacional para campos pequeños tiene la forma

P (û) =
1

4π
[1± E∗

0 cos θ] (4.3)

Sustituyendo en la pdf orientacional en el equilibrio para sistemas diluidos (ecuación
4.2), repetimos el mismo procedimiento para encontrar los parámetros de orden.

4.4. Parámetros de orden
Calculamos de los parámetros de orden de acuerdo con la ecuación 2.18. Notemos
que son promedios de los polinomios de Legendre. Al ir calculándolos veamos que
finalmente toman la forma
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〈Pl〉 =
√

4π

2l + 1
αl 0 (4.4)

con l = 1, 2, . . ..
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Capítulo 5

Resultados

Consideramos un sistema de N partículas coloidales inmerso en un baño térmico a
una temperatura T y un volumen V fijos, cada partícula coloidal es modelada por
una esfera dura con un dipolo en el centro. Dicho sistema está expuesto a un campo
externo, el cual al interaccionar con las partículas coloidales las ordenada de una fase
isotrópica a una nemática.

Las condiciones de equilibrio del sistema están dadas por la densidad de número
ρ∗ = ρσ3 = 0,005 y el momento dipolar µ∗2 = βµ2/σ3 = 0,4, ambas adimensionales.
Recordemos que σ es el diámetro de la partícula, ρ = N/V la densidad de número,
µ la magnitud del momento dipolar y β el inverso de la energía térmica. El campo
externo adimensional se define por E∗

0D = βµE.

5.1. Funciones de densidad de probabilidad de una
partícula

Se gráfica la pdf orientacional de una partícula en función del ángulo polar, en las
cuales las interacciones entre las partículas no es relevante. Para campos dirigidos
hacia el eje Z negativo la máxima alineación llega en un ángulo θ = π, mientras
que, en campos dirigidos hacia el eje Z positivo, la máxima alineación sucede en
un ángulo θ = 0. Notemos que si aplicamos un campo adimensional cada vez más
intenso la alineación no cambia.

5.2. Funciones de densidad de probabilidad de un
sistema diluido

Ahora graficamos la pdf orientacional de un sistema diluido, aplicando nuevamente
diferentes intensidades de campos en dirección del eje Z positivo y negativo. Obser-
vemos que inicialmente para ambas direcciones del eje Z las partículas presentan un
comportamiento parecido al de la pdf orientacional de un solo cuerpo sin embargo,
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Figura 5.1: Función de densidad de probabilidad de una partícula como función de
ángulo polar, θ, para un coloide dipolar. Se toman diferentes intensidades del campo
en el eje Z positivo.

al ir aumentando la intensidad campo adimensional, en ambas pdf ’s se obtiene una
segunda alineación antiparalela al campo. Mientras más intenso sea el campo, nuevas
alineaciones apareceran y la mayor probabilidad de alineación se presenta en θ = π.
Este es un comportamento no observado en las pdf ’s de un solo cuerpo pudiéndose
deber a dos razones: la intensidad del campo y la interacción entre partículas.

5.3. Parámetros de orden

Los parámetros de orden los calculamos con la ayuda de la pdf, por medio de la
ecuación 2.18. Se pueden obtener infinidad de ellos, pero dependiendo de las consi-
deraciones del problema a tratar la serie se corta en un valor adecuado de l. Cabe
destacar que los parámetros de orden para el dipolo son diferentes de cero.

Graficamos los parámetros de orden en función de la dirección del campo hasta el
sexto orden l = 6. Notemos que en los parámetros de orden con el campo en el eje Z
negativo, los de orden par se encuentran en la parte superior de la gráfica, mientras
que, los de orden impar se encuentran en la parte inferior. Esto es debido a la paridad
de la función coseno, vea la figura 5.5.
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Figura 5.2: Función de densidad de probabilidad de una partícula como función de
ángulo polar, θ, para un coloide dipolar. Se toman diferentes intensidades del campo
en el eje Z negativo.

5.4. Susceptibilidad Magnética

La pdf orientacional en el equilibrio nos permite calcular diferentes propiedades del
sistema. De acuerdo con la teoría de Landau-de Gennes podemos relacionar un pa-
rámetro de orden a una propiedad física del sistema, en nuestro caso relacionamos el
parámetro de orden uno 〈Pl〉 con la curva de magnetización del sistema. Recordemos
que la susceptibilidad magnética está presente en dicha curva a campos pequeños
(E∗

0 → 0).

Graficando el parámetro de orden uno en función del campo externo, obtenemos la
curva de magnetización que comparada con mediciones experimentales y de simula-
ción de las propiedades magnéticas de la eumelanina sintética [5], es cualitativamente
correcta.

Siguiendo la generalización para coloidales multipolares presentado en la sección 2.1,
regresando a la teoría de Landau-de Gennes y considerando el campo a lo largo del
eje Z; si las partículas presentan χmax > 0, se alinearan de manera paralela a la
dirección del campo pero si presentan χmax < 0, la alineación será antiparalela al
campo.

Para la susceptibilidad, se fue aumentando la densidad del sistema, por lo que la
susceptibilidad también debe aumentar.
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Figura 5.3: Función de densidad de probabilidad de una partícula como función de
ángulo polar, θ, para un coloide dipolar. Se toman diferentes intensidades del campo
en el eje Z positivo.

5.4.1. Aproximación de Boltzmann

Entonces tomando valores de campo E∗
0 pequeño y densidades de ρ∗ = 0,005, 0,01, 0,05, 0,1, 0,15,

graficamos la susceptibilidad. Notemos que se llega al límite de 1/3 de acuerdo con
la ecuación de Langevin.

χB =
1

3
+

π

50
µ∗2ρ∗ (5.1)

5.4.2. Aproximación MSA

Para los mismos valores de densidad, se grafica la susceptibilidad en la aproximación
MSA. Al igual que en la aproximación de Boltzmann se tiene el límite de un 1/3.

χMSA =
1

3
− 1

24
H10 (5.2)
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Figura 5.4: Función de densidad de probabilidad de una partícula como función de
ángulo polar, θ, para un coloide dipolar. Se toman diferentes intensidades del campo
en el eje Z negativo.

5.4.3. Boltzmann vs MSA

En una misma gráfica, colocamos los resultados para ambas aproximaciones y pode-
mos notar que para la MSA se tiene una mejor aproximación lineal y proporcional a
1/3 de acuerdo al límite de Langevin que con la aproximación de Boltzmann.
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Figura 5.5: Los parámetros de orden para el sistema diluido. Notemos la dependencia
de la intensidad del campo con dirección en el eje Z negativo.

Figura 5.6: Los parámetros de orden para el sistema diluido. Notemos la dependencia
de la intensidad del campo con dirección en el eje Z positivo.
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(a)

(b)

Figura 5.7: a) Parámetro de orden uno 〈P1〉, de acuerdo con la teoría de Landau -
de Gennes, se aprecia la curva de magnetización. b) Curva de magnetización, expe-
rimentalmente (círculos blancos) y por simulación de Monte Carlo (círculos negros).
Tomado de [5]
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Figura 5.8: Susceptibilidad magnética por aproximación de Boltzmann para diferen-
tes densidades.
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Figura 5.9: Susceptibilidad magnética por aproximación esférica media para diferen-
tes densidades.
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Figura 5.10: Comparación de las susceptibilidades para ambas aproximaciones y
diferentes densidades.
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Conclusiones

En este trabajo analizamos la susceptibilidad magnética anisótropa de un cristal co-
loidal monodisperso de esferas duras dipolares, que están diluidas y controladas por
un campo externo a lo largo del eje Z.

Obtuvimos la función de distribución de probabilidad orientacional que es solución
de la ecuación de Smoluchowski en el equilibrio (solo depende del ángulo polar), a
través de una serie de los polinomios de Legendre, con la cual obtenemos los pará-
metros de orden en función del campo externo aplicado, muy importantes en la fase
nemática, ya que, a través de ellos obtenemos información de las propiedades físicas
del sistema al relacionarlos por medio de la teoría de Landau-de Gennes.

Para campos magnéticos pequeños recuperamos el resultado de Langevin para la
susceptibilidad magnética en la aproximación de Boltzmann y la MSA. Podemos
apreciar que esta última es una aproximación más precisa y confiable para un siste-
ma con una mayor densidad.

El asociar los parámetros de orden con la fase nematica, abre las puertas al estudio de
diferentes campos que conduncen a la formación de nemáticos exóticos, con el simple
uso del tensor parámetro de orden y la anisotropía correspondiente a la propiedad
física de estudio, en este caso la susceptibilidad magnética.
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