

Benemérita Universidad Autónoma de
Puebla

FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

LICENCIATURA EN ACTUARÍA

Deep learning applied to cryptocurrencies prices one-step forecast.

Degree in Actuarial Science.

Andrés Pérez Pérez

February 2019

SUPERVISOR:

Mtr. Radosav Sekulic

Mtr. José Asunción Hernández

1

2

Summary

 Over the_last few_years, neural_networks have become_extremely_popular, and

their usage is increasing_rapidly, it has become_a powerful tool that is_being_applied to

finance, business_decisions and unprecedented interest in the_search_for new_applications

has_been_generated. This thesis_has investigated_the_use_of neural networks for one-step

time series forecasting_on cryptocurrencies prices. Multi Layer Perceptron (MLP), Long Short

Term Memory (LSTM) and Convolutional Neural Networks (CNN) models are put to test to see

if binary classification_accuracy above 50% can be given using_time series data, in this case,

prices of_four of the_most capitalized cryptocurrencies, which are_extremely volatile

(Litecoin [57], Bitcoin [55], Ethereum [56] and Bitcoin Cash [58]). In this project, fundamental

properties of cryptocurrencies are not considered, only their technical aspects, namely price

movement and volume are observed. The_assignment focuses on designing_a small-

embedded neural network with greater accuracy than 50%.

The_popularity of cryptocurrencies skyrocketed in 2017 due to several consecutive

months of superexponential growth of their market capitalization, which peaked at more than

$800 billions in Jan. 2018 [62]. Today, there are more than actively traded cryptocurrencies.

According_to a recent survey, between 2.9 and 5.8 million of private as well as institutional

investors are in the_different transaction networks and access to the_market has become

easier over time [63]. Major cryptocurrencies can be bought using_𝑓𝑖𝑎𝑡 currency in many

online exchanges (e.g., Binance [64], Kraken [65], etc.) and then be used in their turn to buy

less popular cryptocurrencies. More recently, deep neural networks have attracted

the_attention of researchers in the_financial field to make predictions on financial markets.

 The_different neural network architectures are built using_a deep learning_library in

𝑃𝑦𝑡ℎ𝑜𝑛 [66], called 𝐾𝑒𝑟𝑎𝑠. This is a high-level software framework, built on top of either

Tensorflow 1or Theano2, for fast and easy prototyping_of neural networks. The_conclusion of

the_thesis is that, the_𝐿𝑆𝑇𝑀 and 𝑀𝐿𝑃 satisfied the_requirements of the_assignment

during_the_work of this thesis. The_𝐿𝑆𝑇𝑀 showed the_most promising_results, above 58 %

accuracy, being_able to extract information about the_training_set that increased the

classification_accuracy of the_test. This leads the_way for further development and an

eventual hardware implementation of the_inference phase reducing_the_run-time latency.

1 𝑇𝑒𝑛𝑠𝑜𝑟𝐹𝑙𝑜𝑤 is a f ree software library that is used to perform numerical calculations using data flow diagrams.
2 𝑇ℎ𝑒𝑎𝑛𝑜 is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional
arrays efficiently.

3

“We are made of star stuff. We are a way for t he_cosmos to know itself .”

 – Carl Sagan

 Acknowledgements

 I would like to thank the universe that gave us life, if there is life we have everything.

Note.

I have been working_on this project with my supervisor Radosav Sekulic and with Jose

Asuncion Hernandez’s help during_last year to accomplish this thesis.

The_code is written in Python [66]. The_neural networks are implemented

using_Keras [1], which is a free deep learning_library. This uses Tensorflow [2] as backend.

The_code is mostly based on numpy and panda’s libraries, using_Keras for the_neural

network implementations. In addition to the_Keras documentation, it is possible to find a long

list of examples, available on their GitHub repository [3].

4

Deep learning_applied to cryptocurrencies prices

one-step forecast.

Content.

Summary ... 2

Acknowledgements... 3

Note. .. 3

Abbreviations. .. 7

Part I. Background... 8

1. Introduction. ..10

1.1 Motivation ...10

1.2 Objectives ..11

1.3 Outcomes ..12

1.4 Thesis structure. ...12

Part II. Literature Review ..13

2. Deep learning. ..14

2.1 Origin and Statistical Learning Framework. ...14

2.1.1 Origin ..14

2.1.2 A Formal Model – The Statistical Learning Framework. ...15

2.2 Learning Algorithms...19

2.2.1 The Task, 𝑇...19

2.2.2 The Performance Measured, 𝑃..20

2.2.3 The Experience, 𝐸 ...20

2.3 Classification. ...20

2.4 Regression. ..21

2.5 Unsupervised learning algorithms..21

2.6 Supervised learning algorithms ...21

2.7 Linear Regression. ...22

2.8 Gradient-Based Optimization ..24

2.9 Stochastic Gradient Descent ...26

2.10 Biological Neuron ..27

5

2.11 Artificial Neuron ..27

2.11.1 Capacity, overfitting and underfitting ...28

2.11.2 Activation Functions ..30

2.12 Artificial Neural Networks (ANN) ...34

2.12.1 Forward Propagation ...34

2.12.2 Weights & Biases...35

2.12.3 Optimization...36

2.12.4 Backpropagation ...37

2.12.5 Batch size, Iterations, and Epochs ..37

2.12.6 Training_Phase and Inference. ..37

2.12.7 Dropout ...38

2.12.8 Data Augmentation ...38

2.12.9 Batch Normalization ..38

2.13 Multilayer Perceptron (MLP) ...39

2.14 Convolutional Neural Network (CNN) ...40

2.14.1 Input layer..41

2.14.2 Convolutional layer..41

2.15 Recurrent Neural Network (RNN)...45

2.15.1 Unfolding Computational Graphs...46

2.15.2 The long short-term memory. ...50

Part III Methodology...54

3. General Structure ...55

3.1 Method ...55

3.2 Specification...56

3.3 Baseline criteria ..57

4. Pre-processing data and tools ..57

4.1 Keras - Software Framework ...57

4.1.1. Model Creation..58

4.1.2 Layers ...58

4.1.3 Compilation ...58

4.1.4 Training ...59

4.1.5 Evaluation. ...59

4.2 Pre- Processing ...59

4.2.1 Shape of Input Frame ..59

4.4.2 Scaling. ..60

4.4.3 Labeling ...60

6

4.4.4 Feature Selection ..61

4.4.5 Selecting the Number of Samples ..61

5. Design ..62

5.1 Neural Network Topologies ..62

5.1.1 Multi-Layer Perceptron (MLP) ...63

5.1.2 Recurrent Neural Network (RNN) ..63

5.1.3 Long Short-Term Memory (LSTM) ..64

5.1.4 Convolutional Neural Network (CNN) ...64

5.2 Choosing Optimizer ...64

5.3 Choosing Look Back window. ..64

6 Implementation ..64

6.1 Multi-Layer Perceptron (MLP) ...65

6.2 Convolutional Neural Network (CNN) ...66

6.3 Long Short-Term Memory (LSTM) ..67

Part IV Results and Discussion ..68

7. Results and Discussion ..69

7.1 Multi-Layer Perceptron (MLP) ...69

7.2 Convolutional Neural Network (CNN) ...72

7.3 Long Short-Term Memory (LSTM) ..74

8. Results and Discussion ..76

9. Conclusion and Future work 9.1 Overview...77

9.2 Future Work ...78

Code: Pre-processing data ...79

Code: Multilayer Perceptron ..81

Code: Convolutional Neural Network ..83

Code: Long-Short Term Memory...85

Bibliography..87

7

Abbreviations.

SYMBOL = DEFINITION

𝐴𝐼 = 𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒

𝐴𝑁𝑁 = 𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝐶𝑁𝑁 = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝐶𝑃𝑈 = 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑈𝑛𝑖𝑡

𝐷𝑁𝑁 = 𝐷𝑒𝑒𝑝 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝐺𝑃𝑈 = 𝐺𝑟𝑎𝑝ℎ𝑖𝑐𝑠 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑈𝑛𝑖𝑡

𝐿𝑆𝑇𝑀 = 𝐿𝑜𝑛𝑔 𝑆ℎ𝑜𝑟𝑡 − 𝑇𝑒𝑟𝑚 𝑀𝑒𝑚𝑜𝑟𝑦

𝑀𝐿 = 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔

𝑀𝐿𝑃 = 𝑀𝑢𝑙𝑡𝑖𝑙𝑎𝑦𝑒𝑟 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛

𝑁𝐿𝑃 = 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

𝑁𝑁 = 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝑅𝑒𝐿𝑈 = 𝑅𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑑 𝐿𝑢𝑛𝑒𝑎𝑟 𝑈𝑛𝑖𝑡

𝑅𝑁𝑁 = 𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

8

Part I.

Background.

9

10

1. Introduction.

This chapter gives a short motivation, describes the_objectives, and presents

the_outcome from this thesis.

1.1 Motivation

Lately, deep neural networks have attracted the_attention of researchers in

the_financial field to make predictions on_financial markets, machine learning_algorithms

evolved from analyzing_samples of data instead of accurately modelling_all parts of a system

from known models and_equations. Indeep_learning, or_so called end-to-end learning, all

parameters of the_network are trained from input data, eliminating_the_need for prior

knowledge_about_the_system’s dynamics to_build a_model. Deep learning has proven to be

very effective. 𝑁𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠 (𝑁𝑁) have become impressively accurate, even being_as

good as humans in tasks_like image_classification. _However, it is still being_seen_that

humans perform_better_with degraded_or_distorted images, as discussed in [4] (Dodge, S.

2017) and [5] (Geirhos, R. 2017). Moreover, 𝐺𝑜𝑜𝑔𝑙𝑒’𝑠 𝐴𝑙𝑝ℎ𝑎𝑍𝑒𝑟𝑜 𝐴𝐼 won on all matches

against the_world champion chess program, Stockfish, in a 100-game match up, according_to

the_Guardian [6].

Much of the_interest_about_deep_neural networks (𝐷𝑁𝑁𝑠) has_been the

increasing_accuracy, but_this_project_mainly focuses_on an embedded_neural network,

a_smaller 𝑁𝑁 with focus_on size_and accuracy. It_is meant to_forecast one-

step_cryptocurrencies prices that contain highly random_data, containing very little

deterministic structures or patterns. Different 𝑁𝑁 architectures_are put to test_to see if any

patterns_can be extracted about this_type_of_data, and_thus increase_the_accuracy of a

binary classification to over 50%.

11

 1.2 Objectives

The_goal of this assignment is to evaluate the_ability of different neural network

topologies to forecast cryptocurrencies prices. A one-step forecast is implemented,

predicting_the_next single value of one-time series based on the_historical data. In this

project, the_prices of four of the_most capitalized cryptocurrencies [60], [61] (Litecoin [57],

Bitcoin [55], Ethereum [56] and Bitcoin Cash [58]) are used. This is repeated, doing_multiple

one-step predictions without retraining_the_model. The_data is highly random and will be

predicted using_no domain knowledge, meaning_that the_forecast is solely based on

the_time series itself.

Different architectures will be tested using_a deep learning_software framework.

Since the_data is highly random, containing_little or maybe no structures and patterns,

the_goal is to test the_different architectures to see if any of them can give binary

classification accuracy slightly above 50%.

The_objectives for this project are:

1. To write a literature review and acquire necessary background knowledge:

the_background theory consists of, among other things, the_basic understanding_of deep

learning, recurrent neural networks, and convolutional neural networks.

2. To design a theoretical suggestion of different neural network architectures based on

the_literature review.

3. Acquiring_and pre-processing_of input data. Test and compare the_results and evaluate

the_work.

12

1.3 Outcomes

The_outcomes from this thesis are:

• A literature review of neural network basics and neural networks used on time

series.

• System for pre-processing_and combining_feature data used in this thesis.

• Training_ANN models for binary classification of the_dataset in question.

• Discussion about the_use case and further development.

1.4 Thesis structure.

 The_document is divided into five different parts: Background, Literature Review,

Method, Results and Conclusion.

The_Background gives a short motivation and introduces the_problem and its

objectives. The_Literature Review consists of three chapters: Background Theory of Deep

Learning, Software Tools. The_theory chapter starts from the_basics of deep learning. This

reflects the_prior knowledge of the_writer, as an actuarial student, about the_subject. It goes

through the_necessary theory about neural networks, including_topics like basic properties

of neurons, layers, multi-layer perceptron, activation functions, forward and backward

propagation, etc.

Different network topologies can be used for cryptocurrencies prices prediction, and

for that reason the_chapter includes the_two commonly used networks: convolutional neural

networks and recurrent neural networks. GPUs3 are the_most commonly used platform for

𝑁𝑁𝑠 today. This chapter also covers the_most famous network architectures and

the_techniques they introduced. The_Method part includes the_following_chapters: Data

Preparation, Design, and Implementation.

3 A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the
creation of images in a frame buffer intended for output to a display device.

https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Memory_(computing)
https://en.wikipedia.org/wiki/Image
https://en.wikipedia.org/wiki/Frame_buffer
https://en.wikipedia.org/wiki/Display_device

13

Part II.

Literature Review

14

2. Deep learning.

 This chapter introduces the_basic terminology used in deep learning. It goes through

the_building_blocks of the_neural networks, and introduces the_commonly used network

topologies: Multilayer Perceptron, recurrent neural networks, and convolutional neural

networks [76].

 2.1 Origin and Statistical Learning Framework.

2.1.1 Origin

Deep learning_(𝐷𝐿) is_a_sub_field_of machine_learning_that_is a sub_field of

the_much_broader fieldof 𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒 (AI). AI is_deeply_covered by other texts

such_as Artificial_intelligence: a modern_approach by Stuart Russell_and_Peter Norvig [8]

and_will_not be_covered in_this thesis_apart from pointing out that deep learning

originates_from AI.

 The_idea of deep_learning_is inspired_by the_biological_behavior of_the_brain. Each

neuron, the_main component or building_block of the_brain, transmits information to other

neurons forming_a very large and complex network. Each node, or neuron, is stimulated by

inputs and passes information, or some of the_information, on to other neurons.

Figure 2.1 Comparison between artificial intelligence, machine learning_and deep learning. [67].

15

2.1.2 A Formal Model – The Statistical Learning Framework.

 This section (2.1.2) is_based_on_Vladimir_Vapkin_work [80]. The_setting_of learning. Only

basic explanation_of the_fundamentals_concepts_and elements to_understand deep_learning_are

covered in this_section since_Vapkin works_has explained_it_with more_detail_and strictness.

• The_system’s_input: _In_the_basic_statistical_learning_setting, the_system_has access to the

following:

o Domain set: An arbitrary set, 𝑋 . This is the_set of objects that should be_labeled. For

example. Usually, these domain_points will_be_represented by_a_vector_of features.

o Label set: For_this_thesis, the_label_set_is_restricted_to_be_a two-element set,

usually {0, 1} or {−1, +1}. Let_𝑌 denote_our_set_of_possible_labels.

o Training_data: 𝑆 = ((𝑥1, 𝑦1). . . (𝑥𝑚, 𝑦𝑚)) defined as a_sequence_of_pairs in

𝑋 × 𝑌: it is, a_sequence_of labeled domain_points. This is the_input_that

the_system has access_to. Be 𝑆 a training_set4.

• The_system’s output: The_system is requested to come up with prediction rule, ℎ ∶ 𝑋 → 𝑌.

This rule could be called also like a predictor, a hypothesis, or a classifier. The_predictor is

used to predict the_label of new domain samples. The_notation 𝐴(𝑆) is used to denote

the_hypothesis that a learning_algorithm, 𝐴, returns upon receiving_the_training_sequence

𝑆.

• A simple data-generation model: First, it is assumed that the_instances are generated by some

probability distribution. 𝐷 is the_probability distribution over 𝑋. It is important to assume that

the_system knows nothing_about this distribution. This could be any arbitrary probability

distribution. As to the_labels, in the_current discussion is assumed that there is some

“correct” labeling_function, 𝑓 ∶ 𝑋 → 𝑌, and that 𝑦𝑖 = 𝑓(𝑥𝑖) for all 𝑖. The_labeling_function

is unknown to the_system. In fact, this is just what the_system is trying_to figure out. In

summary, each pair in the_training_data 𝑆 is generated by first sampling_a point 𝑥𝑖

according_to 𝐷 and then labeling_it by 𝑓.

• Measures of success: The_error of a classifier is the_probability of predicting_the_wrong label

on a random data point generated by the_underlying_distribution. That is, the_error of ℎ is

the_probability to draw a random instance 𝑥, according_to the_distribution 𝐷, such that ℎ(𝑥)

does not equal 𝑓(𝑥).

4 Despite the “set” notation, S is a sequence. In particular, the same example may appear twice in S and some algorithms can consider the
order of examples in S.

16

Formally, given a domain subset5, 𝐴 ⊂ 𝑋 , the_probability distribution, 𝐷, assigns a number,

𝐷(𝐴), which determines how likely it is to observe a point 𝑥 ∈ 𝐴. In many cases, 𝐴 is an event

and express it using_a function 𝜋 ∶ 𝑋 → {0, 1}, namely, 𝐴 = {𝑥 ∈ 𝑋 ∶ 𝜋(𝑥) = 1}. In that

case, the_notation is 𝑃𝑥 ∼ 𝐷[𝜋(𝑥)] to express 𝐷(𝐴).

The_error of a prediction rule is , ℎ ∶ 𝑋 → 𝑌, to be 𝐿𝐷,𝑓 (ℎ) = 𝑃𝑥 ∼𝐷 [ℎ(𝑥) ≠ 𝑓(𝑥)] =

 𝐷({𝑥 ∶ ℎ(𝑥) ≠ 𝑓(𝑥)}). That is, the_error of such ℎ is the_probability of randomly

choosing_an example 𝑥 for which ℎ(𝑥) ≠ 𝑓(𝑥). The_subscript (𝐷, 𝑓) indicates that

the_error is measured with respect to the_probability distribution 𝐷 and the_correct

labeling_function 𝑓.

• A note about the_information available to the_system: The_system is blind to

the_underlying_distribution 𝐷 over the_world and to the_labeling_function 𝑓. The_only way

the_system can interact with the_environment is through observing_the_training_set.

2.1.2.1 Empirical Risk Minimization.

As mentioned earlier, a learning_algorithm receives as input a training_set 𝑆, sampled

from an unknown distribution 𝐷 and labeled by some target function 𝑓, and should output a

predictor ℎ𝑆 ∶ 𝑋 → 𝑌 (the_subscript 𝑆 emphasizes the_fact that the_output predictor

depends on 𝑆). The_goal of the_algorithm is to find ℎ𝑆 that minimizes the_error with respect

to the_unknown 𝐷 and 𝑓. Since the_system does not know what 𝐷 and 𝑓 are, the_true error

is not directly available to the_system. A useful notion of error that can be calculated by

the_system is the_training_error – the_error the_classifier incurs over the_training_sample:

𝐿𝑆 (ℎ) =
|{𝑖 ∈ [𝑚] ∶ ℎ(𝑥𝑖) ≠ 𝑦𝑖 }|

𝑚

where [𝑚] = {1, . . . , 𝑚}.

The_terms 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 and 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑟𝑖𝑠𝑘 are often used interchangeably for

this error. Since the_training_sample is the_snapshot of the_world that is available to

the_system, it makes sense to search for a solution that works well on that data. This

learning_paradigm – coming_up with a predictor ℎ that minimizes 𝐿𝑆 (ℎ) – is called

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑅𝑖𝑠𝑘 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 or 𝐸𝑅𝑀 for short.

Definition: (𝑇ℎ𝑒 𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) There exists ℎ∗ ∈ 𝐻 𝑠. 𝑡. 𝐿(𝐷,𝑓)(ℎ∗) = 0.

Note that this assumption implies that with probability 1 over random samples, 𝑆, where

the_instances of 𝑆 are sampled according_to 𝐷 and are labeled by 𝑓, then 𝐿𝑆 (ℎ∗) = 0.

The realizability assumption implies that for every 𝐸𝑅𝑀 hypothesis 𝐿𝑆 (ℎ𝑆) = 0.

5 Strictly speaking, 𝐴 is a member of some 𝜎-algebra of subsets of 𝑋, over which 𝐷 is defined.

17

However, Is the_more interest the_true risk of ℎ𝑆, 𝐿(𝐷,𝑓)(ℎ𝑆), rather than its

empirical risk. Clearly, any guarantee on the_error with respect to the underlying distribution,

𝐷, for an algorithm that has access only to a sample 𝑆 should depend on the_relationship

between 𝐷 and 𝑆. The_common assumption in statistical machine learning_is that

the_training_sample 𝑆 is generated by sampling_points from the distribution 𝐷

independently of each other. Formally

o The_𝑖. 𝑖. 𝑑. assumption: The_examples in the_training_set are independently and

identically distributed (𝑖. 𝑖. 𝑑.) according_to the_distribution 𝐷. That is, every 𝑥𝑖 in 𝑆

is freshly sampled according_to 𝐷 and then labeled according_to

the_labeling_function, 𝑓. This assumption is denoted by 𝑆 ∼ 𝐷 𝑚 where 𝑚 is the_size

of 𝑆, and 𝐷 𝑚 denotes the_probability over m-tuples induced by applying_𝐷 to pick

each element of the_tuple independently of the_other members of the_tuple.

Intuitively, the_training_set 𝑆 is a window through which the_system gets partial

information about the_distribution 𝐷 over the_world and the_labeling_function, 𝑓.

The_larger the_sample gets, the_more likely it is to reflect more accurately

the_distribution and labeling_used to generate it.

Since , 𝐿(𝐷,𝑓)(ℎ𝑆) depends on the_training_set, 𝑆, and that training_set is picked by a random

process, there is randomness in the_choice of the_predictor ℎ𝑆 and, consequently, in the_risk

𝐿(𝐷,𝑓)(ℎ𝑆). Formally, it is a random variable. It is not realistic to expect that with full certainty

𝑆 will suffice to direct the_system toward a good classifier (from the_point of view of 𝐷), as

there is always some probability that the_sampled training_data happens to be very no

representative of the_underlying_𝐷. The_is important to address the_probability to sample a

training_set for which 𝐿(𝐷,𝑓)(ℎ𝑆) is not too large. Usually, the_probability of getting_a no

representative sample denoted by 𝛿, and call (1 − 𝛿) the_confidence parameter of our

prediction. On top of that, since is not possible to guarantee perfect label prediction,

introduce another parameter should be introduced for the_quality of prediction,

the_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 commonly denoted by 𝜀. The_event 𝐿(𝐷,𝑓)(ℎ𝑆) > 𝜀 is a failure of

the_system, while if 𝐿(𝐷,𝑓) (ℎ𝑆) ≤ 𝜀 The_output of the_algorithm is as an approximately

correct predictor. Therefore (fixing_some labeling_function 𝑓 ∶ 𝑋 → 𝑌), is the_main interest

to upper bounding_the_probability to sample m-tuple of instances that will lead to failure of

the_system.

2.1.2.2 Probably Approximately Correct (PAC) learning.

Definition of 𝑃𝐴𝐶 Learnability: A hypothesis class 𝐻 is 𝑃𝐴𝐶 learnable if there exist a

function 𝑚𝐻 ∶ (0,1)2 → 𝑁 and a learning_algorithm with the_following_property: For every

𝜀, 𝛿 ∈ (0,1), for every distribution 𝐷 over 𝑋 , and for every labeling_function 𝑓 ∶ 𝑋 →

 {0, 1}, if the_realizable assumption holds with respect to 𝐻, 𝐷, 𝑓, then when

running_the_learning_algorithm on 𝑚 ≥ 𝑚𝐻 (𝜀, 𝛿) 𝑖. 𝑖. 𝑑. examples generated by 𝐷 and

18

labeled by 𝑓, the_algorithm returns a hypothesis ℎ such that, with probability of at least 1 −

 𝛿 (over the_choice of the_examples), 𝐿(𝐷,𝑓)(ℎ)≤ 𝜀.

The_definition of Probably Approximately Correct learnability contains two

approximation parameters. The_accuracy parameter 𝜀 determines how far the_output

classifier can be from the_optimal one (this corresponds to the_“approximately correct”), and

a confidence parameter 𝛿 indicating_how likely the_classifier is to meet that accuracy

requirement (corresponds to the_“probably” part of “PAC”). Under the_data access model

that is investigated, these approximations are inevitable. Since the_training_set is randomly

generated, there may always be a small chance that it will happen to be noninformative (for

example, there is always some chance that the_training_set will contain only one domain

point, sampled repeatedly). Furthermore, even when the_training_sample does faithfully

represent 𝐷, because it is just a finite sample, there may always be some fine details of 𝐷 that

it fails to reflect. The_accuracy parameter, 𝜀, allows “forgiving” the_system’s classifier for

making_minor errors.

𝑆𝑎𝑚𝑝𝑙𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦. The_function 𝑚𝐻 :(0, 1)2 → 𝑁 determines the_sample

complexity of learning_𝐻: that is, how many examples are required to guarantee a probably

approximately correct solution. The_sample complexity is a function of the_accuracy 𝜀 and

confidence (𝛿) parameters. It also depends on properties of the_hypothesis class 𝐻.

 Note that if 𝐻 is PAC learnable, there are many functions 𝑚𝐻 that satisfy

the_requirements given in the_definition of PAC learnability. Therefore, to be precise,

the_sample complexity of learning_𝐻 should be the_“minimal function,” in the_sense that for

any 𝜀, 𝛿, 𝑚𝐻 (𝜀, 𝛿) is the_minimal integer that satisfies the_requirements of PAC

learning_with accuracy 𝜀 and confidence 𝛿.

It can be rephrased as stating:

𝐶𝑂𝑅𝑂𝐿𝐿𝐴𝑅𝑌 3.2. Every finite hypothesis class is PAC learnable with sample

complexity.

𝑚𝐻 (𝜀, 𝛿) =
log(|H|/δ)

𝜀

2.1.2.3 Generalized Loss Functions

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠: Given any set 𝐻 (that plays the_role of our hypotheses, or

models) and some domain 𝑍 let 𝑙 be any function from 𝐻 × 𝑍 to the_set of nonnegative real

numbers, 𝑙 ∶ 𝐻 × 𝑍 → 𝑅+.

We call such functions loss functions.

Note that for prediction problems 𝑍 = 𝑋 × 𝑌. However, the_loss function is

generalized beyond prediction tasks, and therefore it allows 𝑍 to be any domain of example.

19

The_risk function to be the_expected loss of a classifier, ℎ ∈ 𝐻, with respect to a probability

distribution 𝐷 over 𝑍, namely,

𝐿𝐷(ℎ) = 𝐸𝑧∼𝐷 𝑙(ℎ, 𝑧).

That is, the_expectation of the_loss of ℎ over objects 𝑧 picked randomly according_to

𝐷. Similarly, the_empirical risk should be the_expected loss over a given sample 𝑆 =

 (𝑍𝑖 , . . . , 𝑍𝑚) ∈ 𝑍𝑚, namely,

𝐿𝑆 (ℎ) =
1

𝑚
∑𝑙(ℎ, 𝑧).

𝑚

𝑖=1

𝐷𝐸𝐹𝐼𝑁𝐼𝑇𝐼𝑂𝑁 3.4.(𝐴𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑃𝐴𝐶 𝐿𝑒𝑎𝑟𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠) A

hypothesis class 𝐻 is agnostic PAC learnable with respect to a set 𝑍 and a loss function 𝑙 ∶

 𝐻 × 𝑍 → 𝑅+, if there exist a function 𝑚𝐻 ∶ (0, 1)2 → 𝑁 and a learning_algorithm with

the_following_property: For every 𝜀, 𝛿 ∈ (0, 1) and for every distribution 𝐷 over 𝑍, when

running_the_learning_algorithm on 𝑚 ≥ 𝑚𝐻 (𝜀, 𝛿) 𝑖. 𝑖. 𝑑. examples generated by 𝐷,

the_algorithm returns ℎ ∈ 𝐻 such that, with probability of at least 1 − 𝛿 (over the_choice

of the_𝑚 training_examples).

𝐿𝐷 (ℎ) ≤ 𝑚𝑖𝑛 𝐿𝐷(ℎ′) + 𝜀

Where 𝐿𝐷 (ℎ) = 𝐸𝑧∼𝐷 𝑙(ℎ, 𝑧).

2.2 Learning Algorithms.

A machine-learning_algorithm is an algorithm that can learn from data, but what is

meant by learning? Mitchell in 2013 [13], provides a succinct definition:

“A computer program is said to learn from experience 𝐸 with respect to some class of

tasks 𝑇 and performance measure 𝑃, if its performance at tasks in 𝑇, as measured by 𝑃,

improves with experience 𝐸”. One can imagine a wide variety of experiences 𝐸, tasks T, and

performance measures 𝑃.

2.2.1 The Task, 𝑇

Machine learning_facilitates the_tacklement of tasks that are too difficult to solve

with fixed programs written and designed by human beings. From a scientist and philosophical

point of view, machine learning_is interesting_because developing the understanding_of it

entails developing_the_understanding_of the_principles that underlie intelligence.

In this relativity formal definition of the_word “task”, the_process of learning_itself is

not the_task. The_means to attain the_ability to perform a task is by learning. For example, if

it is desired that a robot could be able to walk, then walking_is the_task. The_robot could be

20

programed to learn how to walk, or a written program that specifies how to walk manually

could be directly attempted.

Machine learning_tasks are usually described in terms of how the_machine

learning_system should process an example. An example is a collection of features that have

been quantitatively measured from some object or event and that must be processed by

the_machine learning_system. Typically, an example is represented as a vector x ϵ Rn where

each entry xi of the_vector is another feature. For example, the_features of an image are

usually the_values of the_pixels in the_image.

Many kinds of tasks can be solved with machine learning, for example: classification,

regression, transcription, machine translation, structured output, anomaly detection,

synthesis and sampling, imputation of missing_values, denoising, density estimation… but for

the_purposes of the_current thesis, only classification and regression will be explained.

2.2.2 The Performance Measured, 𝑃.

To evaluate the_abilities of a machine-learning_algorithm, a quantitative measure of

its performance must be designed. Usually this performance measure 𝑃 is specific to the_task

𝑇 being_carried out of the_system.

For tasks such as classification, classification with missing_inputs, and transcriptions,

the_accuracy of the_model is measured. Accuracy is just the_proportion of examples for

which the_model produces the_correct output. Equivalent information can also be obtained

by measuring_the_error rate, the_proportion of examples for which the_model produces an

incorrect output. Error is often referred to as the_expected 0-1 loss. The_0-1 𝑙𝑜𝑠𝑠 on an

example is 0 if it is correctly classified, and 1 if it is not.

2.2.3 The Experience, 𝐸

Machine learning_algorithms can be broadly categorized as unsupervised or

supervised by the_kind of experience they can have during_the_learning_process.

2.3 Classification.

 In this type of task, the_computer is asked to specify which of 𝑘 categories some

input belongs. To solve this task, the_learning_algorithm is usually asked to produce a

function

𝑓: 𝑅𝑛 → {1, …, 𝑘}.

21

 When 𝑦 = 𝑓(𝑥), the_model assigns an input described by vector 𝒙 to a category identified

by numeric code 𝑦.

2.4 Regression.

In this type of task, the_computer program is asked to predict a numerical value given

some input. To solve this task, the_learning_algorithm is asked to output a function 𝑓 ∶ 𝑅𝑛 →

𝑅. This type of task is like classification, except that the_format of output is different. An

example of a regression task is the_prediction of the_expected claim amount that an insured

person will make (used to set insurance premiums), or the_prediction of future prices of

securities. These kinds of predictions are also used for algorithmic trading.

2.5 Unsupervised learning algorithms

It is first needed to experience a dataset containing_many features to then learn

useful properties of the_structure of this dataset. In the_context of deep learning, the_aim is

to learn the_entire probability distribution that generate a dataset, whether explicitly, as in

density estimation, or implicitly, for the_tasks like synthesis or denoising. Some other

unsupervised learning_algorithms perform other roles like clustering, which consists of

dividing_the_dataset into clusters of similar examples.

2.6 Supervised learning algorithms

It is necessary to experience a dataset containing_features, but each example also

associated with a label or target. For example, the_Iris dataset is annotated with the_species

of each iris plant. A supervised learning_algorithm can study the_Iris dataset and learns to

classify iris plants into three different species based on their measurements.

Overall, unsupervised learning_involves observing_several examples of random

vector 𝑥 and attempting_to implicitly or explicitly learn the_probability distribution 𝑝(𝑥), or

some interesting_properties of that distribution. While supervised learning_involves

observing_several examples of a random vector 𝑥 and an associated value or vector 𝑦, then

learning_to predict 𝑦 from 𝑥 usually by estimating_𝑝(𝑦|𝑥).

 The_term-supervised learning_originates from the_view_of the_target 𝒚 being provided

by an instructor or teacher who shows the_machine learning_system what to do. In

unsupervised learning_there is no instructor or teacher, and the_algorithm must learn to

make sense of the_data without this guide.

22

2.7 Linear Regression.

This review will not go in depth on linear regression topics, since they are broadly

covered in other texts like Rentier, A. [72] and Sober, G. [73]. However, it will be explained to

understand the_idea of machine learning.

To make this more concrete, an example of a simple machine learning_algorithm is

presented below. As the_name implies, linear regression solves a regression problem. In other

words, the_goal is to build a system that can take a vector 𝑥 ∈ 𝑅𝑛 as input and predict

the_value of a scalar 𝑦 ∈ 𝑅 as its input. The_output of linear regression is a linear function of

the_input. Let 𝑦̂ ∈ 𝑅 be the_value that the_model predicts 𝑦 should take on. The_output is

defined to be

𝑦̂ = 𝑤𝑇𝑥 2.7.1

where 𝑤 ∈ 𝑅𝑛 is a vector of parameters, 𝑤 = (𝑤1 , … , 𝑤𝑛) and 𝑥 = (𝑥1 ,… , 𝑥𝑛).

Parameters are values that control the_behavior of the_system. In this case, 𝑤𝑖 is

the_coefficient that is multiplied by feature 𝑥𝑖 before summing_up the_contributions from all

the_features. 𝑤 could be understood as a set of weights that determine how each feature

affects the_prediction. If a feature 𝑥𝑖 receives a positive weight 𝑤𝑖, then increasing_the_value

of that feature increases the_value of the_prediction 𝑦̂. If a feature receives a negative weight,

then increasing_the_value of that feature decreases the_value of the_prediction. If feature’s

weight is large in magnitude, then it has a large effect on the_prediction. If a feature’s weight

is zero, it has no effect on the_prediction. Then, the_definition of the_task 𝑇 is to predict 𝑦

from 𝑥 by outputting_ 𝑦̂ = 𝑤𝑇𝑥.

 Next, a definition of the_performance measure 𝑃 is needed.

Suppose there is a design matrix of 𝑚 example inputs that will not be used for training,

only for evaluating_how well the_model performs. There is also a vector of regression targets

providing_the_correct value of 𝑦 for ach of these examples. Because this dataset will only be

used for evaluation, it is called the_test set. The_design matrix of inputs are referred to as

𝑋(𝑡𝑒𝑠𝑡) and the_vector of regression targets as 𝑦(𝑡𝑒𝑠𝑡), being_𝑋(𝑡𝑒𝑠𝑡) =

(𝑋, … , 𝑋𝑚) 𝑎𝑛𝑑 𝑦(𝑡𝑒𝑠𝑡) = (𝑦𝑖 ,… , 𝑦𝑚) with 𝑚 ≤ 𝑛.

One way of measuring_the_performance of the_model is to compute the_mean

squared error of the_model on the_test set. If 𝑦(𝑡𝑒𝑠𝑡) gives the_predictions of the_model on

the_test set, then the_mean squared error is given by

𝑀𝑆𝐸𝑡𝑒𝑠𝑡 =
1

𝑚
∑(𝑦̂(𝑡𝑒𝑠𝑡) − 𝑦(𝑡𝑒𝑠𝑡))𝑖

2

𝑚

𝑖

 𝑖 = 1, …, 𝑚. 2.7.2.

23

Intuitively, it is observed that this error measure decreases to 0 when 𝑦̂(𝑡𝑒𝑠𝑡) = 𝑦(𝑡𝑒𝑠𝑡) .

Then.

𝑀𝑆𝐸𝑡𝑒𝑠𝑡 =
1

𝑚
∑|| 𝑦̂(𝑡𝑒𝑠𝑡) − 𝑦(𝑡𝑒𝑠𝑡) ||

2

2
𝑚

𝑖

 2.7.3.

 So, the_error increases whenever the_Euclidian distance between the_predictions and

the_targets increases.

To make a machine learning_algorithm, an algorithm that will improve the_weights 𝒘

in a way that reduces 𝑀𝑆𝐸𝑡𝑒𝑠𝑡 when the_algorithm can gain experience by observing_a

training_set (𝑋(𝑡𝑟𝑎𝑖𝑛) , 𝑦(𝑡𝑟𝑎𝑖𝑛)) needs to be created. One intuitive way of doing_this is just

to minimize the_mean squared error on the_training_set 𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 .

To minimize 𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 it can simply be solved for where its gradient is equal to 0.

𝛻𝑤𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 = 0 2.7.4

⇒
1

𝑚
𝛻𝑤|| 𝑦̂(𝑡𝑟𝑎𝑖𝑛) − 𝑦(𝑡𝑟𝑎𝑖𝑛)||

2

2
= 2.7.5

⇒
1

𝑚
𝛻𝑤|| 𝑋(𝑡𝑟𝑎𝑖𝑛)𝑤 − 𝑦(𝑡𝑟𝑎𝑖𝑛)||

2

2
= 2.7.6

⇒
1

𝑚
𝛻𝑤 (𝑋(𝑡𝑟𝑎𝑖𝑛)𝑤 − 𝑦(𝑡𝑟𝑎𝑖𝑛))

𝑇
(𝑋(𝑡𝑟𝑎𝑖𝑛)𝑤 − 𝑦(𝑡𝑟𝑎𝑖𝑛)) = 0 2.7.7

⇒
1

𝑚
𝛻𝑤 (𝑤𝑇𝑋(𝑡𝑟𝑎𝑖𝑛) 𝑇

 𝑋(𝑡𝑟𝑎𝑖𝑛)𝑤 − 2 𝑤𝑇𝑋(𝑡𝑟𝑎𝑖𝑛)𝑇
𝑦(𝑡𝑟𝑎𝑖𝑛)

+ 𝑦(𝑡𝑟𝑎𝑖𝑛)𝑇
𝑦(𝑡𝑟𝑎𝑖𝑛)) = 0 2.7.8

⇒ (2𝑋(𝑡𝑟𝑎𝑖𝑛)𝑇
 𝑋(𝑡𝑟𝑎𝑖𝑛)𝑤 − 2𝑋(𝑡𝑟𝑎𝑖𝑛)𝑇

𝑦(𝑡𝑟𝑎𝑖𝑛) = 0 2.7.9

⇒ 𝑤 = (𝑋(𝑡𝑟𝑎𝑖𝑛) 𝑇
 𝑋(𝑡𝑟𝑎𝑖𝑛))−1 𝑋(𝑡𝑟𝑎𝑖𝑛)𝑇

𝑦(𝑡𝑟𝑎𝑖𝑛). 2.7.10

The_system of equations whose solution is given by the_last formula is known as

the_normal equation. Evaluating_this equation constitutes a simple learning_algorithm.

It is worth noting_that the_term linear regression often used to refer to a slightly more

sophisticated model with one additional parameter an intercept term 𝑏. In this model

𝑦̂ = 𝑤𝑇𝑥 + 𝑏.

24

So, the_mapping_from parameters to predictions is still a linear function, but

the_mapping_from features to predictions is now an affine function. This extension to affine

functions means that the_plot of the_model’s predictions still looks like a line, but it needs to

not pass through the_origin. Instead of adding_the_bias parameter 𝑏, it is possible to use

the_model with only weights, but augment 𝑥 with an extra entry that is always set to 1.

The_weight corresponding_to the_extra 1 entry plays the_role of the_bias parameter.

The_intercept term 𝑏 is often called the_bias parameter of the_affine transformation.

This terminology derives from the_point of view that the_output of the_transformation is

biased toward being_𝑏 in the_absence of any input. This term is different from the_idea of a

statical bias, in which a statistical estimation algorithm’s expected estimate of a quantity is

not equal to the_true quantity.

Linear regression is of course an extremely simple and limited learning_algorithm, but

it provides an example of how a learning_algorithm can work.

2.8 Gradient-Based Optimization

Most deep learning_algorithms involve optimization of some sort. Optimization refers

to the_task of either minimizing_or maximizing_some function 𝑓(𝑥) by altering_𝑥. Most

optimization problems are phrased in terms of minimizing_𝑓(𝑥). Maximization may be

accomplished via minimization algorithm by minimizing_−𝑓(𝑥) [68].

The_function to be minimized or maximized is called the_objective function, or

criterion. When it is minimized, it may be also called it the_cost function, loss function, or

error function.

The_value that minimizes or maximizes a function would be denoted with a superscript *. For

example, 𝑥 ∗= arg𝑚𝑖𝑛𝑓(𝑥).

 Suppose there is a function 𝑦 = 𝑓(𝑥), where both 𝑥 and 𝑦 are real numbers.

The_derivative of this function is denoted as 𝑓′(𝑥) or
𝑑𝑦

𝑑𝑥
. The_derivative 𝑓′ (𝑥) gives

the_slope of 𝑓(𝑥) at the_point of 𝑥. In other words, it specifies how to scale a small change

in the_input to obtain the_corresponding_change in the_output: 𝑓(𝑥 + 𝜀) ≈ 𝑓(𝑥) + 𝜀𝑓′(𝑥).

The_derivative is therefore useful for minimizing_a function because it tells how to

change 𝑥 to make a small improvement in 𝑦. For example, it is known that 𝑓(𝑥 − 𝜀 𝑠𝑖𝑔𝑛(𝑓 ′ (𝑥)))

is less than 𝑓(𝑥) for small enough 𝜀. It can be reduced 𝑓(𝑥) by moving_𝑥 in small steps with

the_opposite sign of the_derivative. This technique is called gradient descent [16].

25

When 𝑓′ (𝑥) = 0, the_derivative provides no information about which direction to

move. Points where 𝑓′ (𝑥) = 0 are known as critical points. A local minimum is a point where

𝑓(𝑥) is lower than at all neighboring_points, so it is no longer possible to decrease 𝑓(𝑥) by

making_infinitesimal steps. A local maximum is a point where 𝑓(𝑥) is higher than at all

neighboring_points, so it is not possible to increase 𝑓(𝑥) by making_infinitesimal steps. Some

critical points are neither maxima nor minima. These are known as saddle points. See figure

2.2.

Figure 2.2. Type of critical points. [71].

 A point that obtains the_absolute lowest value of 𝑓(𝑥) is a global minimum. There

can be only one global minimum or multiple global minima of the_function. It is also possible

for there to be local minima that are not globally optimal. In the_context of deep learning,

functions that may have many local minima that are not optimal, and many saddle points

surrounded by very flat regions are optimized. All of this makes optimization difficult,

especially when the_input to the_function is multidimensional. Therefore, usually it is settled

for finding_a value of 𝑓 that is very low but not necessarily minimal in any formal sense. See

figure 2.3 for an example.

Functions that have multiple inputs are often minimized: 𝑓: ℝ2 → ℝ2 . For

the_concept of minimization to make sense, there must still be only one (scalar) output.

Figure 2.3: Global and local values. [70].

For functions with multiple inputs, the_concept of partial derivatives must be used.

The_partial derivatives
𝛿

𝛿𝑥𝑖
𝑓(𝑥) measures how 𝑓 changes as only the_variables 𝑥𝑖 increases

at point 𝑥.

26

The_gradient generalized the_notion of the_derivative to the_case where

the_derivative is with respect to a vector: the_gradient of 𝑓 is the_vector containing_all

the_partial derivatives, denoted 𝛻𝑥𝑓(𝑥). Element 𝑖 of the_gradient containing_all the_partial

derivative of 𝑓 with respect of 𝑥𝑖. In multiple dimensions, where 𝜀 is the_learning_rate, a

positive scalar determining_the_size of the_step. Several different ways can be chosen. A

popular approach is to set 𝜀 to a small constant. Sometimes, it is possible to solve for the_step

size that makes the_directional derivative vanishes. Another approach is to evaluate 𝑓(𝑥 −

𝜀𝛻𝑥𝑓(𝑥)) for severall values 𝜀 and choose the_one that results in the_smallest objective

function value. This last strategy is called a line search.

Steepest descent converges when every element of the_gradient is zero (or, in

practice, very close to cero). In some cases, sometimes running_this iterative algorithm could

be avoided and just jump directly to the_critical point by solving_the_𝛻𝑥𝑓(𝑥) equation for 𝑥.

Although gradient descent is limited to optimization in continuous spaces,

the_general concept of repeatedly making_a small move (that is approximately the_best

small move) toward better configurations can be generalized to discrete spaces.

Ascending_an objective function of discrete parameters is called hill climbing [17]. See figure

2.4 as an example of gradient descent algorithm.

Figure 2.4: Gradient descent algorithm. [69].

2.9 Stochastic Gradient Descent

Nearly all deep learning_is powered by one very important algorithm: Stochastic

Gradient Descent (SGD). Stochastic gradient descent is an extension of the_gradient descent

algorithm.

In stochastic gradient descent we do not require the_update direction to be based

exactly on the_gradient. Instead, we allow the_direction to be a random vector and only

require that its expected value at each iteration will equal the_gradient direction. Or, more

27

generally, we require that the_expected value of the_random vector will be a sub gradient of

the_function at the_current vector.

𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐷𝑒𝑠𝑐𝑒𝑛𝑡 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝑆𝐺𝐷) 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔

𝑓(𝑤)

parameters: 𝑆𝑐𝑎𝑙𝑎𝑟 𝜂 > 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑇 > 0

initialize: 𝑤1 = 0

for 𝑡 = 1, 2, . . . , 𝑇

choose 𝑣𝑡 at random from a distribution such that 𝐸[𝑣𝑡 | 𝑤(𝑡)] ∈ 𝜕𝑓(𝑤(𝑡))

update 𝑤(𝑡+1) = 𝑤(𝑡) − 𝑣𝑡

output 𝑤̅ =
1

𝑇
∑ 𝑤(𝑡)𝑇

𝑡=1

2.10 Biological Neuron

A simplified biological neuron is shown in Figure 2.5. In the_most basic sense,

the_biological neuron consists of a cell body with one axon and many dendrites.

The_connections between neurons are called synapses, and this is the_connection between

the_axon of one neuron and the_dendrite of another. A single neuron has many dendrites

and one axon, making_every neuron a multiple input single output building_block.

Connecting_many neurons together forms the_network of the_brain.

Figure 2.5: Simplified biological neuron. [18].

2.11 Artificial Neuron

 The_artificial neuron is based on the_biological version. It consists of inputs, weights

and a bias, a summation, an activation function, and the_output as shown in Figure 2.6.

The_output of a neuron can be called the_activation of a neuron. The_summation basically

does a linear transformation on the_inputs by its weights and bias as in equation 2.11.1.

28

The_non-linearity is introduced by the_activation function which decides how much of

the_information from this sum to pass through to the_output. There are diverse types of

activation functions, also linear activation. Neural networks using_only linear activations are

essentially linear regression models.

∑𝑤𝑖 ∗ 𝑥𝑖 + 𝑏

𝑛

𝑖=1

. 2.11.1

Figure 2.6: Artificial neuron. [74].

2.11.1 Capacity, overfitting and underfitting

The_central challenge in machine learning_is that the_algorithm must perform well

on 𝑛𝑒𝑤, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝑢𝑛𝑠𝑒𝑒𝑛 inputs -- not just those on which the_model was trained.

The_ability to perform well on previously unobserved inputs is called generalization [77].

Typically, when training_a machine learning_model, the_training_data set is

accessible and is possible to compute some error measure on the_training_set, called

training_error, and the_main purpose is to reduce this training_error. So far, what is described

is simply an optimization problem. What separates machine learning_from optimization is

that in machine learning, the_generalization error, also called test error, should be as low as

possible. Generalization error is defined as the_expected value of the_error on a new input.

Here the_expectation is taken across different possible inputs.

Typically, the_generalization error of machine learning_model is estimated by

measuring_its performance on a test set of examples that were collected separately from

the_training_set.

In the_linear regression example, the_model is trained by minimizing_the_training_error.

1

𝑚(𝑡𝑟𝑎𝑖𝑛)
|| 𝑋(𝑡𝑟𝑎𝑖𝑛)𝑤 − 𝑦(𝑡𝑟𝑎𝑖𝑛)||

2

2
. 2.11.2

but it is more important to measure the_test error.

1

𝑚(𝑡𝑒𝑠𝑡) || 𝑋(𝑡𝑒𝑠𝑡) 𝑤 − 𝑦(𝑡𝑒𝑠𝑡) ||
2

2
. 2.11.3

29

 How is the_performance affected on the_test set when only the_training_set is

observed? The_field of statistical learning_theory provides some answers. If the_training_and

the_test set are collected arbitrarily, there is indeed little that can be done. If it can make

some assumptions about how the_training_and test set are collected, then is possible to make

some progress.

These two factors correspond to the_two central challenges in machine-

learning_underfitting_and overfitting. Underfitting_occurs when the_model is not able to

obtain a sufficiently low error value on the_training_set. Overfitting_occurs when the_gap

between the_training_error and test error is too large [78].

Altering_its capacity of whether it is more likely to overfit or underfit can control a

model. Informally, a model’s capacity is its ability to fit a wide variety of functions. Models

with low capacity may struggle to fit the_training_set. Models with high capacity can overfit

by memorizing_properties of the_training_set that do not serve them well on the_test set.

On way to control the_capacity of a learning_algorithm is by choosing_its hypothesis

space, the_set of functions that the_learning_algorithm can select as being_the_solution. For

example, the_linear regression algorithm as the_set of all linear functions of its input as its

hypothesis space. Linear regression can be generalized to include polynomials, rather than

just linear functions, in its hypothesis space. By doing_so, it increases the_model’s capacity.

A polynomial of degree 1 gives the_linear regression model with the_already familiar

prediction.

𝑦̂ = 𝑏 + 𝑤.

By introducing_𝑥2 as another feature provided to the_linear regression model, it

enables to learn a model that is quadratic as a function of 𝑥.

𝑦̂ = 𝑏 + 𝑤1𝑥 + 𝑤2𝑥2 .

Though this model implements a quadratic function of its 𝑖𝑛𝑝𝑢𝑡, the_output is still a

linear function of the_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, so it can still use the_normal equations to train

the_model in closed form. More powers of 𝑥 can be added as additional feature, for example,

to obtain a polynomial of degree 9.

𝑦̂ = 𝑏 + ∑ 𝑤𝑖

9

𝑖=1

𝑤1𝑥𝑖 .

Machine learning_algorithms will generally perform best when their capacity is

appropriate for the_true complexity of the_task they need to perform and the_amount of

training_data they are provided with. Models with insufficient capacity are unable to solve

30

complex tasks. Model with high capacity can solve complex tasks, but when their capacity is

higher than needed to solve the_present task, they may overfit.

2.11.2 Activation Functions

Different activation functions are used for different problems. The_following_sub

sections give a brief overview of the_most common ones. The_information about each

function is taken from Patterson, J. [19, p. 65]. All plots of the_following_activation functions

are made in Python.

2.11.2.1 Linear

Figure 2.7 shows the_linear activation function 𝑓(𝑥) = 𝑥. When using_this activation

function, the_output is simply proportional to the_input. It basically lets the_signal through.

import matplotlib.pyplot as plt

plt.style.use('seaborn-whitegrid')

import numpy as np

fig = plt.figure()

ax = plt.axes()

ax = plt.axes()

x = np.linspace(0, 10, 10)

ax.plot(x, (1 * (x) + 0))

plt.show()

Figure 2.7: Linear Activation Function.

2.11.2.2 Rectified Linear

The_𝑅𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑑 𝐿𝑖𝑛𝑒𝑎𝑟 𝑈𝑛𝑖𝑡 (𝑅𝑒𝐿𝑈) function shown in the_equation below, illustrated in

Figure 2.8, is the_most common activation function due to its simplicity and good results. A subset

of neurons fire at the_same time, and this makes the_network sparser, improving_efficiency. With

31

a uniform initialization of the_weights, around 50% of the_hidden neurons will fire according_to

Glorot Xavier (2011) [21]. Sparsity is discussed in more depth later in the_literature review.

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥).

import matplotlib.pyplot as plt

plt.style.use('seaborn-whitegrid')

import numpy as np

fig = plt.figure()

ax = plt.axes()

ax = plt.axes()

x = np.linspace(-10, 10, 100)

ax.plot(x, np.maximum(.01 * (x), 0))

plt.show()

Figure 2.8: Rectified Linear Activation Function.

There is also a 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈. It is similar to the_𝑅𝑒𝐿𝑈 function except that when x is

less than 0 the_function has a small negative slope. Dying_ReLU [19, p. 70] can be a problem

with standard 𝑅𝑒𝐿𝑈. 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 prevents neurons from being_totally inactive, or to have

dead neurons, which means that the_neurons are inactive for all the_input samples.

Solving_dead neurons and other issues are discussed in solving_internal covariate shift in

deep learning_with linked neurons by Riera C. [22].

32

𝑓(𝑥) = {
𝑥 𝑥 > 0,

0.01𝑥 𝑥 ≤ 0.
 2.3

There is also a 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑠𝑒𝑑 𝑅𝑒𝐿𝑈 function, shown in Equation 2.4. The_𝑎, in

the_equation, decides the_slope for negative values of 𝑥. The_network trains the_added

parameter. This activation function can be used when the_Leaky ReLU does not solve

the_problem of 𝑑𝑒𝑎𝑑 𝑛𝑒𝑢𝑟𝑜𝑛𝑠.

𝑓(𝑥) = {
 𝑥 𝑥 > 0,
𝑎𝑥 𝑥 ≤ 0.

 2.4

2.11.2.3 Softplus

Figure 2.9 shows the_Softplus activation function. It is also a version of the_ReLU

function. The_standard ReLU function is graphed with a red dotted line. In contrast to

the_ReLU this function is continuously differentiable.

Figure 2.9: Softplus activation function.

2.11.2.4 Sigmoid

The_sigmoid function, in equation below, is also a very popular activation function. It

squeezes the_output between 0 and 1. It is continuously differentiable. The_gradient of this

function is highest around 0 and flattens out for higher or lower input values. Meaning_that

when the_network falls into that region of the_graph it learns slower and slower, i.e.

the_vanishing_gradient problem. The_sigmoid function is shown in Figure 2.10.

33

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 .

import matplotlib.pyplot as plt

plt.style.use('seaborn-whitegrid')

import numpy as np

fig = plt.figure()

ax = plt.axes()

x = np.linspace(-10, 10, 200)

ax.plot(x, 1/(1+np.exp(-x)))

plt.show()

Figure 2.10: Sigmoid activation function.

2.11.2.5 Softmax

The_softmax function, shown in the_equation below, is also like the_sigmoid

function. It outputs continuous values from 0 to 1 and is often used at the_output layer as a

classifier, because it outputs the_probabilities distributed over the_number of classes. I.e.

summing_up all the_probabilities add up to 1 or 100%.

Any time it is desired to represent a probability distribution over a discrete variable

with 𝑛 possible values, the_softmax function could be used. This can be seen as

the_generalization of the_sigmoid function, which was used to represent a probability

distribution over a binary variable.

34

 Softmax functions are most often used as the_output of a classifier, to represent

the_probability distribution over 𝑛 different classes. More rarely, softmax functions can be

used inside the_model itself.

𝑓(𝑥𝑖) =
𝑒 𝑥𝑖

∑ 𝑒𝑥𝑖𝑛
𝑖=1

 𝑓𝑜𝑟 𝑖 = 0,1,2, … , 𝑛.

2.11.2.6 Binary Step Function

The_binary step function, shown in the_following_equation, is basically just a threshold that

states if the_neuron should be active or not. It is shown in Figure 2.11.

𝑓(𝑥) = 1,𝑓𝑜𝑟 𝑥 ≥ 0.

Figure 2.11: Binary step function.

2.12 Artificial Neural Networks (ANN)

Basic artificial neurons are the_building_block of an artificial neural network. An 𝐴𝑁𝑁

consists of three different types of layers: the_input layer, the_hidden layers, and the_output

layer [23]. There may be many hidden layers in the_network. Figure 2.10 shows a basic ANN

with one hidden layer with four neurons, three inputs, and three outputs. A network where

each layer has multiple neurons and all the_neurons in one layer are connected to

the_neurons in the_next layer is called a fully connected network or multi-layer perceptron

(MLP).

 A deep neural network, a NN with more than two layers, is to a considerable extent

based on statistics and linear algebra. This review will not go in depth on these topics since

they are broadly covered in other texts like Patterson, J. [19], [24]

2.12.1 Forward Propagation

35

The_neural network feeds (forward) information from the_inputs through

the_hidden layers to the_outputs. This movement of information through the_network is

called forward propagation.

2.12.2 Weights & Biases

 Between layers in the_NN, the_output of neurons in one layer, or the_activations of

these neurons, are connected to the_input of neurons in the_next layer, each connection

associated with a weight. These weights are the_tuning_knobs of the_network. It could be

said that the_weight is the_strength of the_connection between two neurons, or how much

of the_activation from one neuron that is carried through to the_next. This can be illustrated

using_different thickness of the_connections like in Figure 2.12. The_weights, and the_bias

that basically offsets the_activation of the_neuron, are the_adjustable parameters of a NN.

Figure 2.12: Basic Artificial Neural Network.

36

Figure 2.13: Weights between neuron i a NN.

2.12.3 Optimization

The_parameters, weights and biases, in a neural network are updated using_a

training_data set. Initially, the_parameters of the_network can be assigned randomly. With

more training_data, the_model will more accurately resemble the_real system. Machine

learning_(ML) finds a way to represent data based on the_training_set. It does not try to

match the_data to a mathematical model, i.e. it is not told what patterns to look for, but

updates the_parameters of the_model based on a cost function which represents

the_differences between the_desired values, i.e. the_labels of the_training_data, and

the_actual output provided by the_network

The_weights and biases are updated such that the_average costs of the_entire

training_example are minimized the_most. As seen in Figure 2.14, using_a simple linear

function can be an under fit of the_data as it in many cases does not represent the_data very

well. There is also a problem with overfitting_in machine learning. Overfitting_the_model will

give a very low error in the_training_data but does not provide a generalized solution to

the_problem. This can result in a significant decrease in accuracy on the_test set, i.e. on new

unseen inputs after training, as it also will account for noise and outliers in the_training_set.

Figure 2.14: Underfitting_& overfitting. [19, p. 27]

37

The_process of updating_the_parameters of the_model is called parameter

optimization and is basically adjusting_the_weights based on the_cost function. The_weights

are adjusted such that the_cost function decreases most efficiently. A popular method is

the_first order optimization using_gradient descent, as it is easy to use and less time

consuming_and computationally heavy than for example using_the_hessian for second order

optimization.

2.12.4 Backpropagation

 Each step takes the_average cost of all the_training_samples. Each activation is a

weighted sum of all the_activations of the_previous layer and a bias. I.e. the_error is

dependent of these weights, the_bias and the_activations from the_last layer. Since

the_activations are dependent of the_previous layer and cannot be directly altered, it could

be back propagated though the_network, adjusting_the_weights. Using_every

training_sample for every gradient descent step takes a long time to compute. Stochastic

gradient descent (SGD) is used to make this process faster. It basically randomizes the_order

of the_input data and splits it up into mini batches. A step is computed according_to the_mini

batch. This does not give exactly the_correct direction in the_high dimensional space to move

in as it does not accord for the_whole training, but using_a subset gives a good approximation.

2.12.5 Batch size, Iterations, and Epochs

 These terms are easily explained using_an example: If there are 10000

training_samples divided into 10 batches. The_batch size is 1000, and there are 10 iterations

for each epoch. The_number of epochs represents the_number of times the_model has

trained on all the_training_samples in the_data set.

2.12.6 Training_Phase and Inference.

Normally the_dataset is split into a training_set, a validation set, and a test set.

During_the_training_phase, the_training_data is used to update the_parameters of

the_network. The_validation data is used during_training_to monitor the_training_process

and to detect e.g. overfitting. Inference is when the_trained model is tested with new unseen

data. E.g. when a trained model is deployed and used in a live application.

This sub section is mostly based on the_paper from Xavier Glorot, Antoine Bordes, and

Yoshua Bengio: 𝐷𝑒𝑒𝑝 𝑆𝑝𝑎𝑟𝑠𝑒 𝑅𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠 [25]. Using_activation functions

like 𝑅𝑒𝐿𝑈 which outputs 0 for negative input values naturally makes the_network sparse. This

can have some advantages over a non-sparse network. Pruning_is another technique to

achieve sparsity. It identifies non-important neurons and sets them to zero.

“We argue here that if one is going_to have fixed-size representations, then sparse

representations are more efficient (than non-sparse ones) in an information-theoretic sense,

allowing_for varying_the_effective number of bits per example” [26]. Sparse representations

allow the_network to vary the_effective dimension and required precision of a given input.

Using_𝑅𝑒𝐿𝑈 the_output is a linear representation of the_subset of active neurons.

38

Using_a sparse NN results in a less entanglement network making_it easier to identify

the_factors explaining_the_variations in the_data. Sparse NN gives a computational

advantage in comparison to a dense network and it can contribute to reducing_the_problem

of overfitting. Sparse networks are becoming_more popular, as the_accuracy of the_NNs do

not decrease significantly when introducing_a sparser network. “Maximum sparsity is

obtained by exploiting_both inter-channel and intra-channel redundancy, with a fine-

tuning_step that minimize the_recognition loss caused by maximizing_sparsity. This

procedure zeros out more than 90% of parameters, with a drop of accuracy that is less than

1% on the_ILSVRC2012 dataset” [27].

2.12.7 Dropout

Dropout is a technique used under training_to avoid overfitting. As the_name

suggests, it drops out random neurons in the_hidden layers. This means that the_neurons are

temporarily removed from the_network. An illustration of dropout neurons is shown in Figure

2.15 taken from Dropout: A Simple Way to Prevent Neural Networks from Overfitting [28]. For

each presentation of each training_case a different reduced network is used.

During_the_inference phase all neurons are active.

2.12.8 Data Augmentation

Having_too few training_samples is a frequent problem using_neural networks, as

they often need many samples to create a good generalization of the_problem. Data

augmentation is creating_new input data from already given inputs increasing_the_number

of samples. This is useful in application, which has a restricted a number of training_samples

available. Examples of data augmentation on images are mirroring, rotations, random

cropping_and color shifting.

2.12.9 Batch Normalization

It is common to normalize the_data before inputting_it to the_NN. Batch

normalization normalizes the_mean of the_layer’s output activation close to 0 and its

standard deviation close to 1. This method is commonly used to accelerate the_training_of

CNNs.

39

Figure 2.15: Illustration of dropout in a NN. [29].

“The_training_is complicated by the_fact that the_inputs to each layer are affected

by the_parameters of all preceding_layers so that small changes to the_network parameters

amplify as the_network becomes deeper” [39]. As the_title says: 𝐵𝑎𝑡𝑐ℎ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛:

Accelerating_Deep Network Training_by Reducing_Internal Covariate Shift, and the_paper

defines the_internal covariate shift as: “The_change in the_distribution of network activations

due to the_change in network parameters during_training”. As the_problem becomes much

more severe as the_networks get deeper, batch normalization layers are more needed in

these cases. The_network also trains the_two extra parameters introduced by batch

normalization.

2.13 Multilayer Perceptron (MLP)

The_goal of the_feedforward network is to approximate some function 𝑓∗ . For

example, a classifier, 𝑦 = 𝑓∗(𝑥) maps an input 𝑥 to a category 𝑦. A feedforward network

defines a mapping_𝑦 = 𝑓 (𝑥 ; 𝜃) and learns the_value of the_parameters 𝜃 the_result

in the_best function approximation.

The_models are called feedforward because information flows through

the_function being_evaluated from 𝑥, through the_intermediate computations used to

define 𝑓, and finally to the_output 𝑦. There are no feedback connections in which outputs

of the_model are fed back into itself. When feedforward neural networks are extended

to include feedback connections. They are called recurrent neural networks, as presented

later in this chapter.

Feedforward neural networks are called networks because typically they are

represented by composing_many different functions together. The_model is associated

with a directed acyclic graph describing_how the_functions are composed together. For

40

example, three functions 𝑓 (1), 𝑓 (2) 𝑎𝑛𝑑 𝑓(3) are connected into a chain, to form 𝑓(𝑥) =

 𝑓(3) (𝑓 (2) (𝑓(1)(𝑥))). These chain structures are the_most commonly used structures of

neural networks. In this case, 𝑓 (1) is called the_first layer of the_network, 𝑓(2) is called

the_second layer, and so on.

The_overall length of the_chain gives the_depth of the_model. The_name “deep

learning” arose from this terminology. The_final layer of the_feedforward network is called

the_output layer. During_neural network training, 𝑓(𝑥) is driven to match 𝑓 ∗(𝑥).

The_training_data provides noisy, approximate examples of 𝑓∗(𝑥) evaluated at different

training_points. Each example 𝑥 is accompanied by a label 𝑦 ≈ 𝑓∗(𝑥).

The_training_examples specify directly what the_output layer must do at each point

𝑥; it must produce a value that is close to 𝑦. The_behavior of the_other payers is not directly

specified by the_training_data. The_learning_algorithm must decide how to use those layers

to produce a value that is close to 𝑦. The_behavior of the_other layers is not directly specified

by the_training_data.

The_learning_algorithm must decide how to use those layers to produce the_desired

output, but the_training_data does not say what each individual layer should do. Instead,

the_learning_algorithm must decide how to use these layers to best implement an

approximation of 𝑓∗ . Because the_training_data does not show the_desired output for each

of these layers. They are called hidden layers.

Finally, these networks are called 𝑛𝑒𝑢𝑟𝑎𝑙 because they are loosely inspired by

neuroscience. Each hidden layer of the_networks is typically a vector valued. Each element of

the_vector may be interpreted as playing_a role analogous to a neuron. Rather than

thinking_of the_layer as representing_single vector-to-vector function, it could be explained

as a layer of many units that act in parallel, each representing_a vector-to-scalar function as

well.

2.14 Convolutional Neural Network (CNN)

 Convolutional neural networks are a type of neural network that has gained a lot of

momentum lately partly due to its great ability to classify objects in images. It learns to

recognize features through convolution. It utilizes that pixels closer together in an image are

more related to each other than pixels far apart. For classifying_images, MLPs does not scale

very well. It takes the_input as a one-dimensional vector and passes the_data through

the_fully connected hidden layers. This is fine for small images. 10 pixels by 10 pixels image

and 3 RGB channels will give 300 weights per neuron in the_first hidden layer. A 640x480

pixels image and 3 RGB channels will give on the_other hand 921600 weights per neuron in

the_first hidden layer.

The_CNN basically consists of several types of layers stacked on top of each other.

41

There is no given way to stack the_different layers, it is up to the_designer.

Using_object classification is a very intuitive example going_through the_basics of CNNs, but

they can be used on other types of data like text or sound, they are even being_used to make

computers learn to play video games [48].

 In the_following_sub sections different types of layers, input layer, convolutional

layer, pooling_layer, fully connected layer, and batch normalization will be described.

2.14.1 Input layer

The_input layer stores the_raw input data. It is a three-dimensional input

consisting_of the_width and height of the_image, and the_color channels, typically three for

RGB, represent the_depth.

2.14.2 Convolutional layer

2.14.2.1 The convolution Operation.

In its most general form, convolution is an operation on two functions of a real valued

argument. To motivate the_definition of convolution, see examples of two functions.

Suppose the_location of a spaceship is tracked with a laser sensor. This laser sensor

provides a single output 𝑥(𝑡), the_position of the_spaceship at time 𝑡. Both 𝑥 and 𝑡 are real

valued, that is, a different reading_from the_laser sensor can be given at any instant in time.

Now, if supposedly the_laser sensor is somewhat noisy, to obtain a less noisy estimate

of the_spaceship’s position, several measurements should be averaged. Of course, more

recent measurements are more relevant, so a weighted average that gives more weight to

recent measurement is wanted. It can be done this with a weighting_function 𝑤(𝑎), where 𝑎

is the_age of a measurement. If such weighted average operation was applied at every

moment, a new function 𝑠 is obtained, providing_a smoothed estimate of the_position of

the_spaceship.

𝑠(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎. 2.14.1

This operation is called convolution. The_convolution operations are typically denoted

with an asterisk:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡). 2.14.2

42

In this example, 𝑤 needs to be a valid probability density function, or the_output will

not be a weighted average. Also, 𝑤 needs to be 0 for all negative arguments or it will consider

the_future, which is presumably beyond any capabilities. These limitations are particular to

this example. In general, convolution is defined for any functions for which the_above integral

is defined and may be used for other purposes besides taking_weighted averages.

In convolutional network terminology, the_first argument (in this example,

the_function 𝑥) to the_convolution if often referred to as the_input, and the_second

argument (in this example the_function 𝑤) as the_Kernel. The_output is sometimes referred

to as the_feature map.

In the_example above, the_idea of a laser sensor that can provide measurements at

every instant is not realistic. Usually, when data is running_on a computer, time will be

discretized, and our sensor will provide data at regular intervals. In this example, it might be

more realistic to assume that the_laser provides a measurement per second. The_time index

𝑡 can then take on only integer values. If 𝑥 and 𝑤 are defined only on integer 𝑡, the_discrete

convolution can be defined:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑎)𝑤(𝑡 − 𝑎)

∞

𝑎=−∞

. 2.14.3

In machine learning_applications, the_input is usually a multidimensional array of

data, and the_kernel is usually a multidimensional array of parameters that are adapted by

the_learning_algorithm. It could be referred to these multidimensional arrays as tensors.

Because each element of the_input and kernel must be explicitly stored separately, it is usually

assumed that these functions are zero everywhere but in the_finite set of points for which

the_values are stored. This means that in practice, the_infinite summation can be

implemented as a summation over a finite number of array elements.

Finally, often convolution is used over more than one axis at a time. For example, if a

two-dimensional image 𝐼 is used as the_input, the_best option is a two-simensional kernel 𝐾:

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑𝐼(𝑚,𝑛) 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛). 2.14.4.
𝑛𝑚

Convolution is commutative, meaning_it can equivalently be written.

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑∑ 𝐼 (𝑖 − 𝑚,𝑗 − 𝑛)𝐾(𝑚,𝑛)
𝑛

.
𝑚

2.14.5.

43

Usually the_latter formula is more straightforward to implement in a machine-

learning_library, because there is less variation in the_range of valid values of 𝑚 and 𝑛.

The_commutative property of convolution arises because the_kernel relative to

the_input has been flipped, in the_sense that as 𝑚 increases, the_index into the_input

increses, but the_index to the_kernel decreases. The_only reason to flip the_kernel is to

obtain the_commutative property. While the_commutative property is useful for

writing_proofs, it is not usually an important property of a neural network implementation.

Instead, many neural network libraries implement a related function called the_cross-

correlation, which is the_same as convolution but without flipping_the_kernel:

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑∑ 𝐼 (𝑖 + 𝑚,𝑗 + 𝑛)𝐾(𝑚,𝑛).
𝑛

𝑚

2.14.6.

The_convolution layer is the_key layer of the_CNN. It uses filters, or kernels, that

basically is a smaller image than the_input. Convolution is done with a part of the_input and

the_kernel. This is done in a sliding_window manner, ultimately covering_the_whole input

image, as illustrated in Figure 2.16. It is done for every depth of the_input. The_output from

this process is called a feature map or an activation map.

 The_region of the_input the_feature map is looking_at, is called the_receptive field.

Each filter results in a feature map. The_activation map for each filter are stacked

outputting_a 3-dimensional tensor. As the_filters are trained they learn to recognize edges

and patterns, and deeper in the_network they can recognize more advanced shapes.

The_input to a convolution layer is either the_NN input or the_feature map output from

another convolution layer

Figure 2.16: Convolution Engineering. [31].

44

Very commonly used in CNNs are the_𝑅𝑒𝐿𝑈 activation functions. This layer basically

takes all the_negative inputs and sets them to zero. The_𝑅𝑒𝐿𝑈 layer has no hyperparameters,

i.e. parameters that are chosen by the_designer.

The_pooling_layer reduces the_size of the_data. The_most common version is

𝑚𝑎𝑥 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 , which outputs the_maximum value of the_given window size and ignores

the_rest. It does this operation over the_whole input. The_designer chooses the_stride. With

a common window size of 2x2 and a stride of 2 the_reduction would be 75% of the_original

size like shown in Figure 2.17. Pooling_doesn’t care about where in that window

the_maximum value is, which makes it a little less sensitive to the_position and helps to

control 𝑜𝑣𝑒𝑟𝑓𝑖𝑡𝑡𝑖𝑛𝑔.

Figure 2.17 Max Pooling_layer example [33].

Typically, at the_output, or classification of the_CNN, there are one or multiple fully

connected layers. The_classifier outputs probabilities for the_different classes. Figure 2.18

shows an illustration of the_famous CNN AleNet [33].

Figure 2.18: Fully connected neural network. [32].

45

2.15 Recurrent Neural Network (RNN)

Recurrent neural networks, or RNNs [34], are a family of neural networks for

processing_sequential data like 𝑥1 , … , 𝑥𝜏, they can scale to much longer sequences than

would be practical for networks without sequence-based specialization. Most recurrent

networks can also process sequences of variables lenght.

To go from multilayer networks to recurrent networks, it is helpful to revise one of

the_early ideas found in machine learning_and statistical models of the_1980s.

Sharing_parameters across different parts of a model. Parameter sharing_makes it possible

to extend and apply the_model to examples of different forms and generalize across them.

Such sharing_is particularly important when a specific piece of information can occur at

multiple positions within the_sequence. For examples, the_two sequences considered “I went

to Budapest in 2016” and “In 2016 I went to Budapest”. If a machine-learning_model is asked

to read each sentence and extract the_year in which the_narrator went to Budapest, the_year

2016 is what has to be considered as the_relevant piece of information, whether it appears in

the_sixth word or in the_second word of the_sentence. A traditional fully connected

feedforward network would have separate parameters for each input feature, so it would

need to learn all the_rules of the_language separately at each position in the_sentence. By

comparison, a recurrent neural network shares the_same weights across several time steps.

A related idea is the_use of convolution across a 1-D temporal sequence. This

convolutional approach is the_basis for time-delay neural networks [35], [36].

The_convolution operation allows a network to share parameters across time but is shallow.

The_output of convolution is a sequence where each member of the_output is a function of

a small number of neighboring_members of the_input. The_idea of parameter

sharing_manifests in the_application of the_same convolution kernel at each time step.

Recurrent networks share parameters in a different way. Each member of the_output is a

function of the_previous members of the_output. Each member of the_output is produced

using_the_same update rule applied to the_previous outputs.

This recurrent formulation results in the_sharing_of parameters through a very deep

computational graph.

For the_simplicity of exposition, RNNs are referred to as operating_on a sequence that

contains vectors 𝑥(𝑡) with the_time step index 𝑡 ranging_from 1 to τ. In practice, recurrent

networks usually operate on minibatches of such sequences, with a different sequence length

τ for each member of the_minibatch. To simplify notation, minibatch indices have been

omitted. Moreover, the_time step index need not literally refer to the_passage of time in

the_real world. Sometimes it refers only to the_position in the_sequence

This chapter extends the_idea of a computational graph to include cycles. These cycles

represent the_influence of the_present value of a variable on its own value at a future time

step. Such computational graphs facilitate the_definition of recurrent neural networks. Many

different ways to construct, train, and use recurrent neural networks are then described.

46

Figure 2.19: The_classical dynamical system described by equation 2.15.1. [75].

2.15.1 Unfolding Computational Graphs

A computational graph is a way to formalize the_structure of a set of computations, such as

those involved in mapping_inputs and parameters to outputs and loss. In this section it is

explained the_idea of unfolding_a recursive or recurrent computation into a computational

graph that has a repetitive structure, typically corresponding_to a chain of events.

Unfolding_this graph results in the_sharing_of parameters across a deep network structure.

For example, consider the_classical form of a dynamical system:

For example, if the_classical form of a dynamical system is considered:

𝑠𝑡 = 𝑓(𝑠(𝑡−1) ; 𝜃) 2.15.1

where 𝑠𝑡 called the_state of the_system.

Equation 2.15.1 is recurrent because the_definition of 𝑠 at time 𝑡 refers to the_same definition

at 𝑡 − 1.

For a finite number of time steps τ, the_graph can be unfolded by applying_the_definition

𝜏 − 1 times. For example, if equation 2.15.1 if unfolded for 𝜏 = 3 time step, the_result is.

𝑠(3) = 𝑓(𝑠2 ;𝜃) 2.15.2

𝑠(3) = 𝑓(𝑓(𝑠1 ; 𝜃) ; 𝜃). 2.15.3

Unfolding_the_equation by repeatedly applying_the_definition in this way has

yielded an expression that does not involve recurrence. Such an expression can now be

represented by a traditional directed acyclic computational graph. The_unfolded

computational graph of equation 2.15.1 and equation 2.15.3 is illustrated in figure 2.19.

Armed with the_graph-unrolling_and parameter-sharing_ideas of section 2.15.1, it is possible

to design a wide variety of recurrent neural networks.

 Some examples of important design patterns for recurrent neural networks include

the_following.

47

• Recurrent networks that produce an output at each time step and have recurrent

connections between hidden units, illustrated in figure 2.20

• Recurrent networks that produce an output at each time step and have recurrent

connections only from the_output at one-time step to the_hidden units at the_next

time step, illustrated in figure 2.21

• Recurrent networks with recurrent connections between hidden units, that read an

entire sequence and then produce a single output, illustrated figure 2.22

Figure 2.20: Graph to compute the_training_loss of a recurrent network. [75].

A loss function 𝐿 measures how far each 𝒐 is from the corresponding training target

𝑦. When using 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 outputs, it is assumed that 𝒐 is the unnormalized log probabilities.

The 𝐿 internally computes 𝑦̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒐) and compares this to the target y. The RNN has

input to hidden connections parametrized by a weight matrix U. hidden to hidden recurrent

connections parametrized by a weight matrix W, and hidden to output connection

parametrized by a weight matrix V.

 The_recurrent neural network of figure 2.20 and equation 2.15.4 is universal in

the_sense that any function computable by a Turing_machine6 can be computed by such a

recurrent network of a finite size. The_output can be read from the_𝑅𝑁𝑁 after several time

steps that is asymptotically linear in the_number of time steps used by the_Turing_machine

and asymptotically linear in the_length of the_input [37], [38]. The_functions computable by

a Turing_machine are discrete, so these results regard exact implementation of the_function,

not approximations. The_RNN, when used as a Turing_machine, takes a binary sequence as

input, and its outputs must be discretized to provide a binary output. It is

possible to compute all functions in this setting_using_a single specific RNN of finite size. [39].

6A Turin machine is a finite-state machine associated with a special kind of environment in which it can store and later recover sequences
of symbols.

48

Figure 2.21: A RNN whose only recurrence is the_feedback connection from the_output to the_hidden layer. [75]

The Input of the_Turing_machine is a specification of the_function to be computed,

so the_same network that simulates this Turing_machine is sufficient for all problems.

The_theorical RNN used for the_proof can simulate an unbounded stack by representing_its

activations and weights with rational number of unbounded precision.

The_forward propagation equations for a RNN are developed, depicted in figure 2.20

The_figure does not specify the_choice of activation function for the_hidden units.

The_hyperbolic tangent activation function is assumed. Also, the_figure does not specify

exactly what form the_output and loss function take. Here it is assumed that the_output is

discrete, as if the_RNN is used to predict words or characters. A natural way to represent

discrete variables is to regards the_output 𝑜 as giving_the_unnormalized 𝑙𝑜𝑔 probabilities of

each possible value of the_discrete variable. It is possible then to apply the_𝑠𝑜𝑓𝑡𝑚𝑎𝑥

operation as a post-processing_step to obtain a vector 𝑦̂ of normalized probabilities over

the_output. Forward propagation begins with a specification of the_initial state ℎ(0). Then,

for each time step from 𝑡 = 1 𝑡𝑜 𝑡 = τ, the_following_update equations are applied:

𝑎(𝑡) = 𝑏 + 𝑊ℎ(𝑡−1) + 𝑈𝑥(𝑡) 2.15.4

ℎ(𝑡) = tanh(𝑎(𝑡)) 2.15.5

𝑜(𝑡) = 𝑐 + 𝑉ℎ(𝑡) 2.15.6

𝑦̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜(𝑡)) 2.15.7

where the_parameters are the_bias vectors 𝑏 and 𝑐 along with the_weight matrices

𝑈, 𝑉 𝑎𝑛𝑑 𝑊, respectively, for input to hidden, hidden to output, and hidden to hidden

connections. This is an example of a recurrent network that maps an input sequence to an

output sequence of the_same length. The_total loss for a given sequence of 𝑥 vaues paired

49

with a sequence of 𝑦 values would then be just the_sum of the_losses over all the_time steps.

For example, if 𝐿(𝑡) is the_negative log-likehood of 𝑦(𝑡) given 𝑥(1), … , 𝑥(𝑡) then

𝐿({𝑥1 ,… , 𝑥𝜏}, {𝑦1,… , 𝑦𝜏}) 2.15.8

= ∑𝐿(𝑡)
𝑡

 2.15.9

= ∑ 𝑙𝑜𝑔𝑝𝑚𝑜𝑑𝑒𝑙 (𝑦𝑡|{𝑥1 ,… , 𝑥𝑡})
𝑡

 2.15.10

where 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑦𝑡|{𝑥1 , … , 𝑥𝑡 }) is given by reading_the_entry for 𝑦(𝑡) from the_model’s output

vector 𝑦̂(𝑡). Computing_the_gradient of this loss function with respect to the_parameters is

an expensive operation. The_gradient computation involves performing_a forward

propagation pass moving_left to right through our illustration of the_unrolled graph in

the_figure 2.20, followed by a backward propagation pass moving_right to left thought

the_graph. The_runtime is 𝑂(𝜏). and cannot be reduced by parallelization because

the_forward propagation graph is inherently sequential: each time step may be computed

only after the_previous one. States computed in the_forward pass must be stored until there

are reused during_the_backward pass, so the_memory cost is also 𝑂(𝜏). The_back-

progagation algorithm applied to the_unrolled graph with 𝑂(𝜏) cost is called 𝑏𝑎𝑐𝑘 −

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡𝑖𝑚𝑒 (BPTT).

Figure 2.22: Time-unfolded recurrent neural network with a single output at the_end of the_sequence. [75]

Recurrent neural networks can be used for all sequential forms of data like video

frames, text, music etc. The_feed-forward networks input some value to the_network and

returns some value based on that input and the_network parameters. A RNN has an internal

state that is fed back to the_input. It uses the_current information on the_input and

the_prediction of the_last input. The_time steps of a recurrent neural network are often

illustrated as in Figure 2.23.

50

Figure 2.23: Illustration of the_time steps of a RNN [40].

 RNNs have a problem with vanishing_gradient descent. This can happen when

the_gradient of the_activation function becomes very small. When back-

propagating_through the_network the_gradient becomes smaller and smaller further back in

the_network. This makes it hard to model long dependencies. One way of getting_around this

is to use long short-term memory (LSTM), which is a variant of the_RNN. The_opposite of

the_vanishing_gradient problem is the_exploding_gradient problem where the_gradient gets

to large.

2.15.2 The long short-term memory.

The_clever idea of introduction self-loops to produce paths where the_gradient can

flow for long durations is a core contribution of the_initial long-short term memory (LSTM)

model [41]. A crucial addition has been to make the_weight on this self-loop conditioned on

the_context, rather than fixed [42]. By making_the_weight on this self-loop gated (controlled

by another hidden unit, the_time scale of integration can be changed dynamically. In this case,

what is meant is that even for an LSTM with fixed parameters, the_time scale of integration

can change based on the_input sequence, because the_time contents are output by

the_model itself. The_LSTM has been found extremely successful in many applications, such

as unconstrained handwriting [43] and speech recognition [44]. See figure 2.24.

The_LSTM block diagram is illustrated in figure 2.23. The_corresponding_forward

propagation equations are given below, for a shallow recurrent network architecture. Deeper

architectures have also been successfully used [45]. Instead of a unit that simply applies an

element-wise nonlinearity to the_affine transformation of inputs and recurrent units, LSTM

recurrent networks have “LSTM cells” that have an internal recurrence (a self-loop), in

addition to the_outer recurrent network, but also has more parameters and a system of

gating_units that controls the_flow of information. The_most important component is

the_state units 𝑠𝑖
(𝑡)

, which has a linear self-loop like the_leaky units described in the_previous

section. Here, however, the_self-loop weight (or the_associated time constant) is controlled

by a forgot gate unit 𝑓𝑖
(𝑡)

 (for time step t and cell 𝑖), which sets this weight to a value between

0 and 1 via sigmoid unit:

51

Figure 2.24: Block diagram of the_LSTM recurrent network „cell”. Cells are connected recurrently to each replacing_the_usual

hidden units of ordinary recurrent networks. An input feature is computed with a regular artificial neuron unit. Its value can be

accumulated into the_state if the_sigmoidal input gate allows it. The_state unit has a linear self-loop whose weight is

controlled by the_forget gate. [75].

𝑓𝑖
(𝑡)

= 𝜎 (𝑏𝑖

(𝑡)
+ ∑ 𝑈𝑖 ,𝑗

(𝑓)

𝑗

𝑥𝑖

(𝑡)
+ ∑ 𝑊𝑖,𝑗

(𝑓)

𝑗

ℎ𝑖

(𝑡−1)
) . 2.15.11

 Where 𝑥𝑡 is the_current input vector and ℎ(𝑡) is the_current hidden layer vector,

containing_the_outputs of all the_LSTM cells, and 𝑏𝑓 , 𝑈𝑓 ,𝑊𝑓 are respectively biases, input

weights, and recurrent weights for the_forget gates. The_LSTM cell internal state is thus

updated as follows, but with a conditional self-loop weight 𝑓𝑖
(𝑡)

𝑠𝑖
(𝑡)

= 𝑓𝑖
(𝑡)

𝑠𝑖
(𝑡−1)

+ 𝑔𝑖

(𝑡)
𝜎 (𝑏𝑖

(𝑡)
+ ∑ 𝑈𝑖,𝑗

(𝑓)

𝑗

𝑥𝑖

(𝑡)
+ ∑ 𝑊𝑖,𝑗

(𝑓)

𝑗

ℎ𝑖

(𝑡−1)) . 2.15.12

where 𝒃,𝑼 𝑎𝑛𝑑 𝑾 respectively denote the_biases, input weights and recurrent weights into

the_LSTM cell. The_external input gate unit 𝑔𝑖
(𝑡)

 is computed similarly to the_forgot gate (with

a sigmoid unit to obtain a gatin value between 0 and 1), but with its own parameters:

52

 𝑔𝑖
(𝑡)

= 𝜎 (𝑏𝑖

(𝑔)
+ ∑ 𝑈𝑖,𝑗

(𝑔)

𝑗

𝑥𝑖

(𝑡)
+ ∑ 𝑊𝑖,𝑗

(𝑔)

𝑗

ℎ𝑖

(𝑡−1)
) . 2.15.13

 The_output ℎ
𝑖

(𝑡)
 of the_LSTM cell can also be shut off, via the_output gate 𝑞

𝑖

(𝑡)
 wich

also use a sigmoid unit for gating.

ℎ𝑖
(𝑡)

= tanh(𝑠𝑖

(𝑡)
)𝑞𝑖

(𝑡)
. 2.15.14

𝑞𝑖
(𝑡) = 𝜎 (𝑏𝑖

(0)
+ ∑𝑈𝑖,𝑗

(0)

𝑗

𝑥𝑖

(𝑡)
+ ∑ 𝑊𝑖,𝑗

(0)

𝑗

ℎ𝑖

(𝑡−1)) . 2.15.15

Which has parameters 𝑏0 , 𝑈0 ,𝑊0 for its biases, input weights and recurrent weights,

respectively. Among the_variants, one can choose to use the_cell state 𝑠𝑖
(𝑡) as an extra input

(with its weight) into the_three gates of the_𝑖 − 𝑡ℎ unit, as shown in the_figure 10.16. This

would require three additional parameters.

LSTM networks have been shown to learn long-term dependencies more easily than

the_simple recurrent architectures, first on artificial datasets designed for test ing_the_ability

to learn long-term dependencies [26], [41]. The_LSTM block consists of three so called gates;

the_forget gate, the_input gate, and the_output gate, in addition to the_input and output

blocks and the_memory cell. Figure 2.14 shows an illustration of the_block. The_vector

formulas for the_LSTM can be found in LSTM: A Search Space Odyssey [29].

Figure 2.14: Illustration of a LSTM block. [46].

53

2.15.2.1 Forget Gate

 The_LSTMs lack of an effective way to reset itself was solved introducing_the_forget

gate to the_network [47]. The_forget gate says how much of information from the_input 𝑥𝑡

and the_last output ℎ𝑡−1 to keep. 1 is hold on to everything_and 0 is forget everything

2.15.2.2 Input gate.

The_input gate says how much of the_information that should be stored in the_cell

state. It prevents the_cell from storing_unnecessary data.

2.15.2.3 Output Gate

Lastly, the_output gate decides how much of the_content in the_memory cell to

expose to the_block output.

54

Part III

Methodology

55

3. General Structure

3.1 Method

The_system consists of two sub systems: the_pre-processing_and application system

shown in Figures 3.1 and 3.2, respectively.

Figure 3.1: Pre-processing_system.

Figure 3.2: Application system.

The_pre-processing_system in Figure 3.1 inputs the_raw data. There is one file for

each item, and about 5 items in total in the_set. These contain a few parameters each. All

the_parameters from these items make up the_total number of available features. The_Data

fetcher combines all the_features represented by each parameter into big pandas Data

frames and saves them as csv files. I.e. each parameter from all the_items is stored in their

own csv7 file.

The_block diagram of the_Data fetcher is shown in Figure 3.3. In cryptocurrencies

most of the time the items are Open, Low, High, Close and Volume values within certain date

frame.

7 CSV is a simple file format used to store tabular data.

56

The_pickled list of item names is manually put together from a much larger selection

of items (open, high, low, close, Volume, Weighedvolume). The_application system in Figure

3.2 inputs the_numpy arrays of inputs and labels. These are split into a training, a validation

and a test set. The_model is built, compiled and fitted to the_training_data. Then the_results

are visualized and evaluated.

In this thesis, the_features taken from the_raw file are Close and Volume values from

the_cryptocurrencies prices: 𝐿𝑖𝑡𝑒𝑐𝑜𝑖𝑛, 𝐵𝑖𝑡𝑐𝑜𝑖𝑛 𝐸𝑡ℎ𝑒𝑟𝑒𝑢𝑚 𝑎𝑛𝑑 𝐵𝑖𝑡𝑐𝑜𝑖𝑛 𝐶𝑙𝑎𝑠𝑠𝑖𝑐 , the_values

are in dollars due the_importance of this currency in financial transactions.

The_pre-processing_system does some features extraction, i.e. choosing “close” and

“volume values”, in each parameter file. All the_selected features are scaled prior to saving

the_data as one set of numpy arrays of inputs and labels. There will thus be one set of

inputs/features and outputs/labels files.

Figure 3.3: Block diagram of the_data fetcher.

3.2 Specification

The_specification of the_pre-processing_is easily summarized by three simple bullet points:

• Inputs raw files. One for each feature containing_a few parameters each.

• Feature selection and scaling, in this thesis would be Close and Volume.

• Outputs one set of inputs and labels as numpy arrays.

57

The_neural networks should be small, and kept shallow minimizing_the_latency. Their

specification is shown in Table 3.1. Only the_common specification for all the_different

topologies are included here. This common specification is used to ease the_comparison of

performance between the_different architectures. Other specifics like number of epochs,

batch size, and optimizers might vary for the_different topologies and are found mostly by

trial and error in the_design chapter.

Input shape: look back · number of features

Output shape: binary classification

Number of features: < 50

Look back: < 100

Number of parameters: < 5000

Number of layers in depth: < 5

Number of training_examples: > 60000

Number of test examples: > 5000

Output metrics: accuracy

Baseline accuracy: > 50 %
Table 3.1: Common NN specification.

3.3 Baseline criteria

The_success criteria are simply to create a model that finds a generalization of

the_training_data that achieves better than 50% accuracy on a binary classification on

the_test data, i.e. predicting_if the_next value of a given feature is rising_or falling. This must

be showed on multiple runs, using_different features as the_classification feature.

4. Pre-processing data and tools

This chapter will briefly describe the_software framework chosen for the_neural

network implementation, and some of the_pre-processing_done prior to fitting_the_data to

the_model.

4.1 Keras - Software Framework

Based on the_selection of software frameworks in the_literature review, Keras is

chosen as the_software framework for testing_the_different neural network architectures for

predicting_time series data. This software framework is chosen because of its high-level user

interface, enabling_faster creation of different models compared to using_a more low-level

framework - yet still with a lot of options for tweaking_and modifications. All information not

58

cited elsewhere about the_Keras functional API8 is taken from the_official Keras

Documentation [1] Keras uses either Tensorflow or Theano as backend. In this project

Tensorflow is used. The_graphs are displayed with tensorboard9.

4.1.1. Model Creation

Building_of models is done using_the_Sequential function. The_Sequential model is

basically a stack of layers specified by the_user. Only the_first layer needs to specify

the_input shape of the_data.

When combining_multiple models, the_Model method is used.

4.1.2 Layers

A selection of the_core layers in Keras taken directly from the_documentation [1]:

• Dense: Just your regular densely-connected NN layer.

• Activation: Applies an activation function to an output.
• Dropout: Applies Dropout to the_input.

• Flatten: Flattens the_input. Does not affect the_batch size. E.g. used between

the_convolutional layer and the_classifier.

• Input: Input () is used to instantiate a Keras tensor. The_input can be specified as an
argument in the_first layer.

4.1.3 Compilation

Configuration of the_learning_process is done with the_compile method. The_loss function

and the_optimizer must be specified. All the_different optimizers and their arguments can be

found in the_Keras documentation.

The_Adam optimizer, is based on SGD. This is designed to work well with sparse gradients

and noisy inputs.

opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6)

model.compile(

 loss='sparse_categorical_crossentropy',

 optimizer=opt,

 metrics=['accuracy']

8 API is a set of functions and procedures allowing the creation of applications that access the features or data of an operating system,
application, or other service
9 Tensorboard is a tool to visualize TensorFlow graph, plot quantitative metrics about the execution of graphs, and show additional data
like images that pass through it.

59

4.1.4 Training

The_fit method to train the_training_data. It uses numpy arrays for inputs and labels.

The_number of epochs and the_batch size are specified here.

 history = model.fit(

 train_x, np.array(train_y),

 batch_size=BATCH,

 epochs=EPOCHS,

 validation_data=(validation_x, validation_y),

 callbacks=[tensorboard, checkpoint],)

4.1.5 Evaluation.

There is an evaluate method that returns the_loss value and the_metrics values. This

provides the_model accuracy for a given set of inputs and labels. There is also a method that

predicts the_output based on a given input. This method is used to predict future values of

the_time series. The_evaluation is done on a separate (unseen) test set, which is not part of

the_training_or validation set.

4.2 Pre- Processing

4.2.1 Shape of Input Frame

The_input frame is inspired by the_space-time arrangement from Wolfgang Groß’s

paper [30] in the_literature review.

The_input frame is made from a moving_window over all the_features in the_dataset.

Each input feature is a 1-dimensional array. The_length of the_array depends on how much

history that is included in each input frame, denoted by look back. Combining_all the_1-

dimensional arrays of features form the_input frame for each time stamp. Figure 4.1 illustrate

the_moving_window, which results in a new input frame for each sample. The_final shape of

the_input frame x will be on the_format: (samples, look back, number of features).

(a) Time series of 5 features. (b) One input frame from 5 features.

Figure 4.1: The_relationship between the_input features and the_input frame.

60

4.4.2 Scaling.

The_different features are not necessarily in scale when acquiring_the_dataset.

Normalization or standardization is done per input frame as shown in Equations 4.1 where

𝑥̅ is the_mean of 𝑥 and 𝜎 is the_standard deviation of 𝑥.

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑥 − 𝑥̅

𝜎
. 4.1

The_whole dataset cannot be scaled before use. When predicting_future values,

these futures vales cannot be a part of the_scaling. Here each input frame of LOOK BACK

length is scaled.

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
. 4.2

4.4.3 Labeling

Supervised learning_uses pre-labeled data to train the_models. Labels are

the_outputs or the_answers from the_NN in response to the_input data. Machine

learning_datasets may already be labeled, but not always. If the_data is gathered e.g. by

sensors they need to be labeled. In time series regression the_labels are basically a time-

shifted version of the_input feature that is to be predicted. In standard classification with e.g.

the_MNIST dataset there are 10 output probabilities, one for each handwritten digit. Each

number represents the_model predictions for the_specific classes. This can also be used for

classification of time series data. The_classifications could e.g. be rising_or falling_or any

number of classifications within specified ranges.

Labeling_e.g. if Feature 1 is rising_or falling, is done by looking_at the_previous and

current value like shown below:

def classify(current_price, future_price):

 if float(future_price) < float(current_price):

 return 0

 else:

 return 1

61

4.4.4 Feature Selection

The_prices of cryptocurrencies studied in this thesis, contain many features. All

the_features can in principle be used, but this would increase computational time a lot,

making_that approach very inconvenient for this study. Using_all the_features can also

contribute to overfitting. Some of the_features have missing_data fields, but since there are

enough features in this case, the_features with missing_data are not used.

The_dataset is highly random, containing_little, if any, structure or repetitive

patterns. This makes it hard to achieve any significant increase in classification accuracy.

The_goal here is to see if the_NNs can pick up any structures giving_a slightly better

performance then 50% on a binary classification.

Multiple features can be used to predict to the_rise or fall of one feature. Correlations

between features are used to pick out which features to be included in the_dataset. Several

different setups with different numbers of features will be tested.

4.4.5 Selecting the Number of Samples

The_dynamics of the_data can change over time. Using_too much history can lead to

worse results, making_the_network fit to older data, which has little or nothing_in common

with newer data. On the_other side, the_NN needs a fair number of examples to make a good

generalization of the_problem. In this project, there is a finite number of samples available.

Initially, and probably throughout the_project, all available samples will be used.

62

5. Design

This chapter will cover the_initial design of different network architectures used during_this

project.

 Finding_structures in highly random datasets, like the “mystery set”, is a

challenging_task. All the_topologies are therefore first tested using_a different dataset that

has the_same shape of the_input frame but contains much more structure to get the_feel of

the_dynamics of each topology. Then, using_this experience, the “mystery set” is tested to

see if any structures can be extracted.

 There is not one specific way of designing_a NN. It differs a lot depending_on the_problem.

Much is based on trial and error, but there exists a lot of tips and tricks, like the_guidelines

for building_a neural network explained in the_article from InfoWorld [49].

The_designs used in this project are kept simple and are to a considerable extent based on

trial and error. A small portion of the_testing_is included in this chapter. Some rules of thumb

were applied; one obviously needs many input examples for each classification, and there

should not be too many parameters compared to the_number of samples. Using_too large

networks would almost certainly result in overfitting.

The_dataset is split into training, validation, and a separate test set. It is a finite

number of samples in the_data set. The_validation set is kept relatively small, using_most of

the_data for training. 10% of the_data is set aside as a separate test set. The_smaller

validation set will affect the_validation graphs. There will be more variations or noise in

the_validation set, due to its small size, making_it less informative. It is good enough to get

some information about the_generalization of the_data not used in training, and to spot

overfitting.

5.1 Neural Network Topologies

Intuitively, RNNs are a good start for predicting_sequences of data. Replacing_the_RNN with

LSTM cells would make the_network able to learn longer dependencies. As seen in

the_literature review, CNN are also being_used for forecasting. Here dilated convolutions, for

example, can be used for enabling_the_network to exploit longer dependencies. Other papers

also reveal good results using_a combination of LSTMs and CNN.

The_following_topologies - from the_literature review - will be tested:

• MLP

• LSTM

• CNN

63

All the_networks will use a two neurons fully connected layer with softmax activation as

the_classifier. The_other activations are ReLU if nothing_else is mentioned. To make

the_comparison fair, each network should have approximately the_same number of

parameters. This number is kept low and limited to 10000 parameters. Larger networks

would also result in overfitting. In addition, none of the_networks should be very deep, since

this will increase the_computational requirements.

5.1.1 Multi-Layer Perceptron (MLP)

The_number of parameters in a fully connected layer is basically the_weights and the_bias of

each neuron, where the_number of weights depends on the_input size.

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = (𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 + 𝑏𝑖𝑎𝑠) · 𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠. (5.1)

For the_first layer the_input size would be the_number of features multiplied with

the_look back length, i.e. all the_samples in the_input frame shown in Figure 4.1(b). Visualized

with an image analogy; all pixels in the_input image are connected to each neuron in the_first

layer through a unique weight. For the_other layers the_input size is the_number of outputs

from the_previous layer.

Using_wide networks tend to result in overfitting. The_idea that substructures are

identified in different layers, and that more layers lead to more non-linearity often make

networks grow in depth and not in width.

5.1.2 Recurrent Neural Network (RNN)

In general, the_number of parameters of a RNN layer with a given number of cells is

shown in Equation 5.2. The_simple RNN cell has only one hidden state. That state has many

weights as inputs. If the_RNN cell is the_first layer, this equals the_number of features in

the_dataset. In addition, it has a bias and the_output state as shown in Figure 5.2.

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑠 · 𝑐𝑒𝑙𝑙𝑠 · ((𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 𝑏𝑖𝑎𝑠) + 𝑜𝑢𝑡𝑝𝑢𝑡𝑠) 5.2

Figure 5.2: Illustration of a hidden state in a RNN layer.

64

5.1.3 Long Short-Term Memory (LSTM)

 The_number of parameters in a LSTM layer is like the_RNN. It has four hidden states.

The_three gates and the_cell, which makes one LSTM unit, use four times as many parameters

compared to a RNN as shown in Equation 5.2.

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒𝑠 · 𝑢𝑛𝑖𝑡𝑠 · ((𝑤𝑒𝑖𝑔ℎ𝑡𝑠 + 𝑏𝑖𝑎𝑠) + 𝑜𝑢𝑡𝑝𝑢𝑡𝑠). 5.3

5.1.4 Convolutional Neural Network (CNN)

In a convolutional layer, the_number of parameters is basically the_size of

the_convolutional kernel and the_bias, multiplied with the_number of kernels like shown in

Equation 5.4

 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = (𝑚 · 𝑛 + 𝑏𝑖𝑎𝑠) · 𝑛 𝑘𝑒𝑟𝑛𝑒𝑙𝑠. 5.4

5.2 Choosing Optimizer

Tensorflow provides a range of optimizers with different configuration parameters,

though using_most optimizers Keras recommend leaving_the_parameters at their default

values. In this project, Adam optimizer is used.

5.3 Choosing Look Back window.

The_model accuracy is dependent on how much history is included in the_input

frame. Also, the_number of parameters, using_a MLP model, increases with the_size of

the_input frame, making_the_model more prone to overfitting. The_highest accuracy is

achieved using_a low look back using_MLP [42]. The_different graphs in each plot are from

runs using_a different classification feature. In some cases, the_model does not seem to learn

anything_using_too low look back. To avoid this, choosing_a look back of about 60 seems

appropriate.

6 Implementation

This chapter shows all the_different model stacks using_the_different architectures.

All the_activation functions except for the_classifiers in these model stacks are ReLU. Note

that the_activation functions can be a part of another layer, like dense 1 (Dense, ReLU), or as

a stand-alone layer, activation 1 (ReLU), the_estructure of the_neural networks was chosen

using_trial and error method.

65

6.1 Multi-Layer Perceptron (MLP)

The_model stack of the_MLP is shown in Table 6.1 and in Graph 6.1

Layer (type) Output shape

flatten_1 (Flatten) (None, 480)

dense_1 (Dense, ReLU) (None, 128)

dropout_1 (Dropout 0.3) (None, 360)

dense_2 (Dense, ReLU) (None, 128)

dropout_2 (Dropout 0.2) (None, 70)

dense_3 (Dense, ReLU) (None, 2)

activation_1 (softmax) (None, 2)
Table 6.1: MLP model.

Graph 6.1: MLP model.

66

6.2 Convolutional Neural Network (CNN)

The_model stack of the_CNN is shown in Table 6.2 and in Graph 6.2.

 Graph 6.2: CNN model.

Table 6.2: CNN model.

Layer (type)

conv_1 (Conv2D)

Kernel Size= [3,3]

batch normalization 1

Pool size= (2,2)

activation 1 (ReLU)

dropout 1 (Dropout 0.3)

conv_2 (Conv2D)

Kernel Size= [3,3]

batch normalization_2

Pool size= (2,2)

activation 2 (ReLU)

dropout_2 (Dropout 0.3)

flatten_1 (Flatten)

dense_1(Dense)

activation_1 (softmax)

67

6.3 Long Short-Term Memory (LSTM)

 The_model stack of the_LSTM is shown in Table 6.3 and Graph 6.3

Layer (type)

lstm_1 (5 units)

Drop-out 0.2

batch normalization 1

lstm_2 (5 units)

Activation= “relu”

Drop-out (0.1)

dense_1 (Dense)

activation_1 (softmax)
Table 9.3: LSTM model.

Graph 9.3: LSTM model.

68

Part IV

Results and Discussion

69

7. Results and Discussion

Many of the_models predict a much higher amount of one class. This may give a false

impression of performance when the_test set contains more of the_same class. For example:

if there are 60% rising_labels in the_test set, predicting_only that class would give 60%

accuracy. To compensate for this, the training data will be splited 50% when the prices goes

up and 50% when the prices goes down.

for seq, target in sequential_data:

 if target == 0:

 sells.append([seq, target])

 elif target ==1:

 buys.append([seq, target])

random.shuffle(buys)

random.shuffle(sells)

lower = min(len(buys), len(sells))

buys = buys[:lower]

sells = sells[:lower]

sequential_data = buys+sells

random.shuffle(sequential_data)

7.1 Multi-Layer Perceptron (MLP)

 Results of MLP, due computational and time limitations, the_model would run 9

times, each one with 50 epochs. The_MLP network does seem to find some patterns in

the_dataset. In some cases, it seems like the_network is learning_some patterns as shown

below, it is an example of the_network giving_in average about 53.5% accuracy on

the_validation set of the_best epoch for each run. The_network achieves right over 55% on

the_separate test set (Figure 7.1.2). Over time, the_classification accuracy closes in on 50%.

Figure 7.1.1 shows accuracy for 9 runs with 50 epochs each, using_the_MLP, the_model was

trained for 70 minutes which is extremely fast for a Neural Network.

Figure 7.1.1 (a) Accuracy for 9 runs with 50 epochs.

70

Figure 7.1.1 (b) Accuracy for 9 runs with 50 epochs.

Figure 7.1.2. Accuracy with test data.

Figure 7.1.4: Loss function.

Epoch Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 50.9% 50.8% 50.7% 51.4% 50.7% 50.8% 50.9% 50.8% 50.8%

1 52.1% 51.5% 51.7% 52.2% 52.1% 51.4% 52.3% 51.8% 52.1%

2 52.9% 51.8% 52.7% 52.4% 52.6% 52.3% 52.7% 52.6% 52.7%

3 52.8% 52.2% 52.7% 53.0% 52.7% 52.4% 53.0% 52.7% 53.1%

4 52.9% 52.6% 53.1% 53.2% 52.8% 52.6% 52.9% 53.1% 53.0%

5 52.8% 52.3% 53.0% 53.2% 53.0% 53.0% 53.1% 53.0% 53.4%

6 52.9% 52.4% 53.1% 53.5% 53.0% 53.0% 53.4% 53.1% 53.2%

7 53.3% 52.5% 53.2% 53.3% 53.5% 52.9% 53.2% 53.0% 53.2%

8 53.2% 51.9% 53.0% 53.1% 53.3% 53.0% 53.3% 53.1% 53.7%

9 53.1% 51.7% 53.1% 53.1% 53.0% 52.9% 53.3% 53.2% 53.0%

10 53.1% 51.3% 53.4% 53.1% 53.4% 52.3% 53.3% 53.1% 53.2%

11 53.1% 51.1% 52.6% 53.0% 53.5% 52.3% 53.2% 52.8% 53.0%

71

12 52.6% 50.1% 53.0% 52.7% 53.3% 52.8% 53.3% 53.0% 53.3%

13 52.5% 49.7% 52.7% 52.5% 53.3% 52.9% 53.2% 52.8% 51.2%

14 52.0% 50.1% 52.8% 52.3% 52.5% 52.7% 53.1% 52.6% 50.2%

15 52.0% 49.9% 52.6% 51.7% 53.1% 52.2% 52.7% 52.7% 50.1%

16 52.6% 49.8% 52.7% 51.9% 52.9% 51.8% 50.4% 52.9% 50.1%

17 52.2% 49.7% 52.2% 51.7% 52.7% 51.7% 49.9% 52.5% 50.2%

18 51.2% 50.5% 52.0% 51.5% 52.7% 50.8% 49.9% 51.7% 50.0%

19 50.8% 50.1% 51.6% 50.5% 52.0% 49.8% 49.9% 51.8% 49.9%

20 51.2% 49.9% 50.7% 50.3% 51.5% 49.9% 50.3% 51.7% 50.0%

21 50.1% 50.0% 49.9% 50.1% 51.2% 50.0% 50.0% 51.8% 50.2%

22 50.1% 49.9% 50.0% 50.0% 51.6% 50.1% 49.9% 50.7% 50.1%

23 50.1% 49.9% 49.8% 50.0% 51.1% 50.0% 49.8% 51.6% 49.9%

24 50.0% 49.8% 49.8% 50.0% 50.9% 50.1% 50.1% 50.6% 50.0%

25 50.0% 50.3% 50.0% 49.8% 50.6% 50.0% 50.0% 51.4% 49.9%

26 50.1% 49.4% 50.1% 49.7% 50.2% 50.0% 49.9% 51.3% 50.4%

27 49.8% 50.2% 50.1% 49.7% 50.2% 50.1% 50.0% 49.9% 49.8%

28 50.2% 49.7% 50.2% 49.8% 50.1% 50.1% 50.3% 49.9% 50.1%

29 49.9% 50.0% 49.8% 49.9% 50.2% 50.1% 50.0% 50.3% 50.0%

30 50.1% 49.8% 49.6% 50.1% 50.0% 50.0% 50.0% 49.7% 50.5%

31 49.9% 50.2% 50.1% 49.9% 49.8% 49.7% 50.1% 50.1% 49.7%

32 50.3% 49.8% 50.2% 49.9% 50.3% 50.3% 50.0% 49.6% 49.9%

33 49.9% 50.1% 49.9% 50.1% 50.4% 49.9% 50.1% 49.9% 49.8%

34 49.8% 50.1% 50.1% 50.2% 50.4% 50.3% 49.9% 49.9% 49.8%

35 49.9% 49.6% 49.8% 50.1% 49.7% 50.1% 49.8% 50.6% 50.0%

36 50.0% 49.9% 50.1% 50.0% 49.4% 50.3% 50.3% 50.2% 49.9%

37 50.0% 50.2% 50.1% 50.1% 50.0% 50.0% 50.0% 49.7% 50.2%

38 49.8% 49.9% 50.2% 50.1% 50.1% 50.1% 49.9% 50.1% 50.2%

39 49.7% 50.3% 50.1% 50.0% 49.7% 50.2% 49.9% 50.2% 50.0%

40 49.6% 50.1% 50.2% 49.9% 50.1% 49.8% 50.2% 50.3% 49.9%

41 49.9% 49.9% 49.9% 50.1% 49.9% 50.4% 49.8% 50.0% 49.7%

42 50.0% 50.2% 50.1% 50.4% 49.6% 50.2% 49.8% 50.1% 50.1%

43 49.8% 50.2% 49.7% 49.8% 49.5% 50.1% 50.3% 50.0% 49.9%

44 49.9% 49.9% 49.8% 49.9% 50.1% 50.1% 50.2% 49.8% 50.2%

45 49.9% 50.2% 49.8% 50.0% 49.8% 50.0% 49.9% 50.0% 49.8%

46 50.1% 50.2% 50.0% 50.0% 50.1% 49.9% 50.0% 50.0% 50.0%

47 49.9% 49.9% 49.9% 49.8% 49.6% 50.0% 50.0% 49.9% 49.9%

48 49.8% 50.0% 50.1% 49.9% 50.2% 50.2% 50.2% 49.9% 50.0%

49 49.9% 50.3% 49.9% 49.9% 50.2% 49.9% 50.1% 49.6% 49.9%
Table 7.1.1: Model Accuracy.

Figure 7.4 shows how loss function increases after the_10th epoch, which it is in agreement to

the_accuracy metric as it decreases in average with each epoch after the_10th one. The_average

performance comparing_to adjusted random is 3% better.

72

Figure 7.1.5: Table of results.

7.2 Convolutional Neural Network (CNN)

Due the_complexity of CNN models and computational limitations, the_example below

consists of 8 runs with 10 epochs each; training_the_model took around 1920 minutes (32 hours).

The_average accuracy of the_best epoch for each run is 0.001 % better than the_adjusted baseline

(Table 7.2.1).

The_CNN does not seem to find any patters in the_structure data. Besides, against any

possibilities, this model does not show any advantage over random classification. The_reason

behind this could be because of chosen attributes for this neural network, for instants,

the_optimizer, number of epochs, kernel size, etc. Unfortunately, due to the_time consuming_for

training_the_models for this project (almost one day and a half) in this thesis does not show other

results with different properties of the_model.

 Accuracy in validation and in test set behaves in the_same way, meaning_that some

properties and variables should be changed in future works for this model if some improvements

are required.

Figure 7.2.1 (b) Accuracy for 8 runs with 10 epochs.

73

Figure 7.2.1 (b) Accuracy for 8 runs with 10 epochs.

Figure 7.2.2 Loss for 8 runs with 10 epochs.

Epoch Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 0.502 0.491 0.509 0.513 0.503 0.492 0.509 0.497

1 0.489 0.501 0.508 0.502 0.51 0.496 0.496 0.506

2 0.51 0.501 0.5 0.493 0.503 0.5 0.494 0.491

3 0.504 0.508 0.496 0.498 0.513 0.495 0.49 0.495

4 0.504 0.511 0.491 0.508 0.506 0.49 0.501 0.508

5 0.51 0.507 0.511 0.498 0.513 0.5 0.509 0.493

6 0.505 0.505 0.513 0.503 0.497 0.503 0.51 0.494

7 0.51 0.492 0.512 0.499 0.506 0.493 0.49 0.506

8 0.504 0.504 0.497 0.506 0.498 0.511 0.496 0.506

9 0.5 0.501 0.503 0.508 0.498 0.5 0.509 0.497
Table 7.2.1: Model Accuracy.

Figure 7.2.3: Table of result.

74

7.3 Long Short-Term Memory (LSTM)

Due to the_complexity of LSTM models and computational limitations, the_example below

consists of 9 runs with 10 epochs each, training_the_model took around 840 minutes.

The_average accuracy of the_best epoch for each run is 6 % better than the_adjusted baseline

(Table 7.3.1). EUREKA!

It can be observed that the_model seems to find some patterns since the_accuracy in

validation data for most of the_cases increases with each epoch, Figure 7.3.1. However,

evaluating_the_accuracy in separate test set shows a diminution, Figure 7.3.2, this means that

the_model overfitted_after some runs, and ideally the_model should run with more epochs since

the_values seem to increase smoothly.

Figure 7.3.1 (a): Accuracy Validation Set (9 runs, 10 epochs).

Figure 7.3.1 (b): Accuracy Validation Set (9 runs, 10 epochs, 14 hours training).

Figure 7.3.2: Accuracy test Set (9 runs, 10 epochs).

75

Figure 7.3.3: Loss function validation Set (9 runs, 10 epochs).

Epoch Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

0 54.8% 54.9% 55.3% 54.6% 54.7% 51.1% 54.9% 55.1% 55.1%

1 56.2% 56.3% 56.2% 55.8% 55.9% 51.0% 56.3% 56.3% 56.4%

2 56.7% 56.6% 56.8% 56.6% 56.4% 50.1% 55.1% 56.9% 56.6%

3 57.1% 57.0% 57.0% 56.4% 56.8% 50.1% 50.3% 57.1% 57.3%

4 57.2% 57.5% 57.5% 56.9% 57.4% 50.0% 50.0% 57.5% 57.5%

5 57.7% 57.6% 57.9% 57.5% 57.6% 50.0% 50.0% 56.9% 58.0%

6 58.2% 58.1% 58.4% 57.6% 58.1% 50.1% 50.0% 50.0% 58.4%

7 58.6% 58.4% 59.2% 51.6% 58.5% 50.2% 50.0% 50.0% 58.9%

8 58.0% 59.1% 59.7% 50.0% 59.0% 49.8% 50.0% 50.0% 59.6%

9 59.2% 59.3% 61.0% 50.0% 59.7% 50.2% 50.0% 50.0% 60.5%
Table 7.3.2: Accuracy test Set (9 runs, 10 epochs).

Figure 7.3.4: Table of results.

76

8. Results and Discussion

The_success criteria from the_functional description of achieving_over 50% accuracy

was accomplished using_the_LSTM and MLP. Using_larger networks result in

overfitting_without having_more training_samples.

 The_main goal of the_project was achieved using_the_LSTM and MLP. The_results

from this thesis indicate that there are structures and pattern to be found in the_prices of

the_cryptocurrencies, moreover the_results indicate that the_accuracy for this model could

be better with more computational power, due to these limitations, the_model gets better

results than random choice, but is not the_optimal.

The_main limitation factor for this thesis was the_lack of powerful hardware, which is

able to process more complex operations within less time. These models were limited to 8 GB

RAM, resulting_in less accuracy, whether it was in validation or in test set data.

It is very likely that the_model performs better with further optimization models.

Besides, that there is most probably a lot to improve in the_pre-processing_and feature

selection phase, which is much based on trial and error during_this project. There exist other

methods which might give a better starting_point, resulting_in higher accuracy. From a better

starting_point, the_other topologies, which did not work in this case, might also do better,

although this thesis’ results indicate that LSTM probably are the_best choice for

forecasting_cryptocurrencies prices, it gives the_indented proof of concept and

starting_point for further research and development.

The_𝑠𝑜𝑓𝑡𝑚𝑎𝑥 classifier outputs the_probabilities, predicted by the_model, for each

class. Using_two classes, this results in two probabilities that represent how strongly

the_model predicts that the_next value of the_classification feature is greater or smaller than

the_current value.

In addition to binary classification, one could increase the_resolution of the_output

by adding_more classes. E.g. using_a three-way classifier for rising, falling, and staying_within

some limit. Regression can also be an option for future work. This project assesses one-step

forecasts for the_prices the_four of the_most capitalized cryptocurrencies. It is possible to

also do multi-step forecasts, most probably, with a probable decrease in accuracy because of

the complexity of the algorithm.

77

9. Conclusion and Future work

9.1 Overview

The_main goal of this thesis was to investigate the_application of three different types

of artificial neural networks, used in one-step prediction of the_prices of four of the_most

capitalized cryptocurrencies, specifically Litecoin [57], Bitcoin [55], Ethereum [56] and Bitcoin

Cash [58]. The_neural networks used in this project have been built and tested in Python with

the_most common and powerful libraries for deep learning, Tensorflow [2] and Keras [1].

The_literature review focuses in 3 different types of neural networks, due their

popularity within Data scientists and their wide research about them available in Internet,

𝑀𝐿𝑃𝑠, 𝐿𝑆𝑇𝑀 𝑎𝑛𝑑 𝐶𝑁𝑁𝑠. Models were built based on literature review and trial and error

method.

The_goal of this research was to see if it was possible to create functional deep neural

networks that could generate a better result than 50%. Fortunately, the_goals exceeded

the_expectations by creating_two working_models, which generates a good solution but not

enough to take the_risk to invest one savings life.

The_results have been a bit better than the_baseline of 50 %, most probably future

researches and projects will improve this thesis performance, maybe with different pre-

processing, construction of NN and with more computational power.

Given the_wildly unpredictable nature of the_price of the_Cryptocurrencies, what

was aimed for was creating_an evenly remotely accurate model. Although the_results aren

not perfectly accurate, they do have some predictive capability. The_results show large

statistical significant improvements in point forecasting_of time series when

using_combinations of univariate models. Hopefully, this analysis opens various research

agenda in predicting_prices of more cryptocurrencies on real time. For example, flexible

multivariate combination schemes, which would allow for different weights across series to

improve the_model accuracy. Moreover, new predictors based on crypto–market sentiments

might be considered to investigate cryptocurrencies sentiments and could result in forecast

gains across all series.

Further works might mention portfolio optimization, risk management, or the_usage

of more complex structures and neural networks, for example, reinforcement neural

networks. Also, this could help to create a new strategy for trading_cryptocurrencies online,

for instant, a bot trading_24 hour using_deep learning.

78

9.2 Future Work

Based on the_results, the_future work could be:

• To try a better strategy, probably using_Reinforcement Neural Networks

• To use more features for the_model, time, day, moving_average.

• The_usage of Natural Language Process for sentiment analysis in social media.

• To explore other ways of Pre-processing_and feature selection methods.

• To use other supervised machine learning_algorithms.

• Multi-step forecasting.

• Regression.

• To create a bot to trade in live markets with real money and gain some profit.

79

Anexos.

Code: Pre-processing data

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, LSTM, CuDNNLSTM,

BatchNormalization, Flatten

from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint

import time

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.15)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

directory = 'C:/Users/HUPerezA/Desktop/Tesis/crypto_data/crypto_data/'

df = pd.read_csv(directory, names=["time", "low", 'high', 'open', 'close',

'volume'])

LOOK_BACK_WINDOW = 60

FORWARD_WINDOW= 3

PRICE_TO_PREDICT = 'LTC-USD'

EPOCHS = 10

BATCH = 64

NAME = F"{LOOK_BACK_WINDOW}-SEQ-{FUTURE_PERIOD_PREDICT}-PRED-{int(time.time())}"

def classify(current_price, future_price):

 if float(future_price) < float(current_price):

 return 0

 else:

 return 1

def preprocess_df_price_vol(df_price_vol):

 df_price_vol = df_price_vol.drop('future',1)

 for col in df_price_vol.columns:

 if col != 'target':

 df_price_vol[col] = df_price_vol[col].pct_change()

 df_price_vol.dropna(inplace=True)

 # Scaling puede cambiar

 df_price_vol[col] = preprocessing.scale(df_price_vol[col].values)

 df_price_vol.dropna(inplace=True)

 sequential_data = []

 prev_days = deque(maxlen=LOOK_BACK_WINDOW)

 for i in df_price_vol.values:

 prev_days.append([n for n in i[:-1]])

 if len(prev_days) == LOOK_BACK_WINDOW:

 sequential_data.append([np.array(prev_days), i[-1]])

 # break

 random.shuffle(sequential_data)

 buys = []

 sells = []

 for seq, target in sequential_data:

 if target == 0:

 sells.append([seq, target])

 elif target ==1:

 buys.append([seq, target])

 random.shuffle(buys)

 random.shuffle(sells)

80

 lower = min(len(buys), len(sells))

 buys = buys[:lower]

 sells = sells[:lower]

 sequential_data = buys+sells

 random.shuffle(sequential_data)

 X = []

 y = []

 for seq, target in sequential_data:

 X.append(seq)

 y.append(target)

 return np.array(X), y

main_df_price_vol = pd.DataFrame()

Could scan the directory

ratios = ['BTC-USD', 'LTC-USD', 'ETH-USD', 'BCH-USD']

for ratio in ratios:

 dataset = f"{directory}/{ratio}.csv"

 df_price_vol = pd.read_csv(dataset, names=["time", "low", 'high', 'open',

'close', 'volume'])

 df_price_vol.rename(columns={"close": f"{ratio}_close", "volume":

f"{ratio}_volume"}, inplace=True)

 df_price_vol.set_index("time", inplace=True)

 df_price_vol = df_price_vol[[f"{ratio}_close", f"{ratio}_volume"]]

 if len(main_df_price_vol) ==0:

 main_df_price_vol = df_price_vol

 else:

 main_df_price_vol = main_df_price_vol.join(df_price_vol)

main_df_price_vol['future'] =

main_df_price_vol[f"{PRICE_TO_PREDICT}_close"].shift(-FUTURE_PERIOD_PREDICT)

main_df_price_vol['target'] = list(map(classify,

main_df_price_vol[f"{PRICE_TO_PREDICT}_close"], main_df_price_vol['future']))

times = sorted(main_df_price_vol.index.values)

last_p5ct = times[-int(0.05*len(times))]

validation_main_df_price_vol = main_df_price_vol[(main_df_price_vol.index >=

last_p5ct)]

main_df_price_vol = main_df_price_vol[(main_df_price_vol.index < last_p5ct)]

train_x, train_y = preprocess_df_price_vol(main_df_price_vol)

validation_x, validation_y = preprocess_df_price_vol(validation_main_df_price_vol)

81

Code: Multilayer Perceptron

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, LSTM, CuDNNLSTM,

BatchNormalization, Flatten

from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint

from PreprocessingData import data_to_train

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.50)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

import time

LOOK_BACK_WINDOW = 60

FORWARD_WINDOW= 3

PRICE_TO_PREDICT = 'LTC-USD'

EPOCHS = 50

BATCH = 32

MODEL = "MLP"

TIME = "28122018"

train_x, train_y, validation_x, validation_y = data_to_train()

for num_run in range(1, 10):

 NAME = F"{LOOK_BACK_WINDOW}-SEQ-{FUTURE_PERIOD_PREDICT}-Model-{MODEL}-Time-

{TIME}-run{num_run}"

 print(train_x.shape[1:])

 model = Sequential()

 model.add(Flatten())

 model.add(Dense(128, input_shape=(train_x.shape[1:])))

 model.add(Dropout(0.2))

 model.add(Dense(128))

 model.add(Dropout(0.1))

 model.add(Dense(128))

 model.add(Dropout(0.2))

 model.add(Dense(32, activation='relu'))

 model.add(Dropout(0.2))

 model.add(Dense(2, activation='softmax'))

 opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6)

 model.compile(

 loss='sparse_categorical_crossentropy',

 optimizer=opt,

 metrics=['accuracy']

)

 tensorboard = TensorBoard(log_dir=f'logs/{NAME}')

 filepath = "RNN_Final-{epoch:02d}-{val_acc:.3f}"

 checkpoint = ModelCheckpoint("models/{}.model".format(filepath,

monitor='val_acc', verbose=1, save_best_only=True, mode='max'))

82

 history = model.fit(

 train_x, np.array(train_y),

 batch_size=BATCH,

 epochs=EPOCHS,

 validation_data=(validation_x, validation_y),

 callbacks=[tensorboard, checkpoint],

)

 score = model.evaluate(validation_x, validation_y, verbose=0)

 print('Test loss:', score[0])

 print('Test accuracy:', score[1])

 model.save("models/{}".format(NAME))

83

Code: Convolutional Neural Network

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import BatchNormalization, Flatten, Dense, Dropout,

Activation, Flatten, Conv2D, MaxPooling2D, Conv1D

from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint

from PreprocessingData import data_to_train

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.15)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

from tensorflow.keras import backend as k

import time

LOOK_BACK_WINDOW = 60

FORWARD_WINDOW= 3

PRICE_TO_PREDICT = 'LTC-USD'

EPOCHS = 10

BATCH = 64

MODEL = "CNN"

TIME = "27122018"

train_x, train_y, validation_x, validation_y = data_to_train()

train_x = np.array(train_x).reshape(train_x.shape[0], train_x.shape[1],

train_x.shape[2], 1)

validation_x = np.array(validation_x).reshape(validation_x.shape[0],

validation_x.shape[1], validation_x.shape[2], 1)

for num_run in range(1, 10):

 NAME = F"{LOOK_BACK_WINDOW}-SEQ-{FUTURE_PERIOD_PREDICT}-Model-{MODEL}-Time-

{TIME}-run{num_run}"

 model = Sequential()

 model.add(Conv2D(64, kernel_size=[3, 3]))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(BatchNormalization())

 model.add(Dropout(0.3))

 model.add(Activation('relu'))

 model.add(Conv2D(64, kernel_size=[2, 2]))

 model.add(MaxPooling2D(pool_size=(2,2)))

 model.add(Activation('relu'))

 model.add(Flatten())

 model.add(Dense(64, activation='relu'))

 model.add(Dense(1, activation='softmax'))

 opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6)

 model.compile(

 loss='binary_crossentropy',

 optimizer=opt,

 metrics=['accuracy']

)

 tensorboard = TensorBoard(log_dir=f'logs/{NAME}')

 filepath = "CNN_Final-{epoch:02d}-{val_acc:.3f}"

 checkpoint = ModelCheckpoint("models/{}.model".format(filepath,

monitor='val_acc', verbose=1, save_best_only=True, mode='max'))

 history = model.fit(

 train_x, np.array(train_y),

84

 batch_size=BATCH,

 epochs=EPOCHS,

 validation_data=(validation_x, np.array(validation_y)),

 callbacks=[tensorboard, checkpoint],

)

 score = model.evaluate(validation_x, validation_y, verbose=0)

 model.save("models/{}".format(NAME))

85

Code: Long-Short Term Memory

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, LSTM, CuDNNLSTM,

BatchNormalization, Flatten

from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint

from PreprocessingData import data_to_train

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.50)

sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

import time

LOOK_BACK_WINDOW = 60

FORWARD_WINDOW= 3

PRICE_TO_PREDICT = 'LTC-USD'

EPOCHS = 10

BATCH = 64

MODEL = "LSTM"

TIME = "27122018"

train_x, train_y, validation_x, validation_y = data_to_train()

for num_run in range(1, 10):

 NAME = F"{LOOK_BACK_WINDOW}-SEQ-{FUTURE_PERIOD_PREDICT}-Model-{MODEL}-Time-

{TIME}-run{num_run}"

 model = Sequential()

 print((train_x.shape))

 print((train_x.shape[1:]))

 model = Sequential()

 model.add(LSTM(128, input_shape=(train_x.shape[1:]), return_sequences=True))

 model.add(Dropout(0.2))

 model.add(BatchNormalization())

 model.add(LSTM(128, activation='relu', return_sequences=False))

 model.add(Dropout(0.1))

 model.add(Dense(2, activation='softmax'))

 opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6)

 model.compile(

 loss='sparse_categorical_crossentropy',

 optimizer=opt,

 metrics=['accuracy']

)

 tensorboard = TensorBoard(log_dir=f'logs/{NAME}')

 filepath = "RNN_Final-{epoch:02d}-{val_acc:.3f}"

 checkpoint = ModelCheckpoint("models/{}.model".format(filepath,

monitor='val_acc', verbose=1, save_best_only=True, mode='max')) # saves only the

best ones

 # Training

history = model.fit(

 train_x, np.array(train_y),

 batch_size=BATCH,

 epochs=EPOCHS,

 validation_data=(validation_x, np.array(validation_y)),

 callbacks=[tensorboard, checkpoint],

)

86

 # Score model

 score = model.evaluate(validation_x, validation_y, verbose=0)

 print('Test loss:', score[0])

 print('Test accuracy:', score[1])

 # Save model

 model.save("models/{}".format(NAME))

87

Bibliography

[1] Chollet, F. (2015). Keras. Accessed: 31-12-2018 GitHub: https://github.com/fchollet/keras URL

https://keras.io.

[2] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R.,

Kaiser, L., Kudlur, M., Levenberg, J., Mane,´ D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster,
M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas,

F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., (2015). TensorFlow: Large-
scale machine learning on heterogeneous systems. Software available from tensorflow.org. Accessed:

31-12-2018. URL https://www.tensorflow.org/

[3] Keras-team, (2018). Keras git repository. Accessed: 31-12-2018. URL https://github.com/keras-

team/keras/tree/master/examples

[4] Dodge, S. and Karam, L., (2017). A study and comparison of human and deep learning recognition

performance under visual distortions. In Computer Communication and Networks (ICCCN), 2017 26th
International Conference on (pp. 1-7). IEEE.

[5] Geirhos, R., Janssen, D.H., Schütt, H.H., Rauber, J., Bethge, M. and Wichmann, F.A., (2017).
Comparing deep neural networks against humans: object recognition when the signal gets

weaker. arXiv preprint arXiv:1706.06969.

 [6] Gibbs, S., (2017). Alphazero AI beats champion chess program after teaching itself in four

hours. Retrieved from Guardian. Accessed: 31-12-2018. URL https://www. theguardian.
com/technology/2017/dec/07/alphazerogoogle-deepmind-ai-beats-champion-program-teaching-itself-

to-play-four-hours.

[7] Lacey, G., Taylor, G.W. and Areibi, S., (2016). Deep learning on fpgas: Past, present, and

future. arXiv preprint arXiv:1602.04283.

[8] Russell, S.J. and Norvig, P., (2016). Artificial intelligence: a modern approach. Malaysia; Pearson

Education Limited.

[9] Patterson, J. and Gibson, A., (2017). Deep Learning: A Practitioner's Approach. " O'Reilly Media,

Inc.".

[10] Stiles, J. and Jernigan, T.L., (2010). The basics of brain development. Neuropsychology

review, 20(4), (pp.327-348).

[11] Le, Q.V., 2013, May. Building high-level features using large scale unsupervised learning.

In Acoustics, Speech and Signal Processing (ICASSP), (2013) IEEE International Conference on (pp.
8595-8598). IEEE.

[12] Hsu, J., (2015). Biggest Neural Network Ever Pushes AI Deep Learning. IEEE Spectrum:
Technology, Engineering, and Science News.

[13] Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (2013). Machine learning: An artificial intelligence
approach. Springer Science & Business Media.

[14] Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge:
MIT press.

[15] Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). Deepface: Closing the gap to human-
level performance in face verification. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 1701-1708).

[16] Cauchy, A. (1847). Méthode générale pour la résolution des systemes d’équations

simultanées. Comp. Rend. Sci. Paris, 25(1847), (pp. 536-538).

https://keras.io/
https://www.tensorflow.org/
https://github.com/keras-team/keras/tree/master/examples
https://github.com/keras-team/keras/tree/master/examples

88

[17] Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia; Pearson

Education Limited.

[18] Harry Fairhead. (2014). The mcculloch-pitts neuron. Accessed: 31-12-2018. URL http://www.i-

programmer.info/babbages-bag/325- mcculloch-pitts-neural-networks.html

[19] Patterson, J., & Gibson, A. (2017). Deep Learning: A Practitioner's Approach. " O'Reilly Media,

Inc.".

[20] Gupta, D. (2017). Fundamentals of deep learning– activation functions and when to use them?

Accessed: 31-12-2018. URL: https://www. analyticsvidhya.com/blog/2017/10/fundamentals-deep-
learning-activationfunctions-when-to-use-them.

[21] Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics (pp. 315-323).

[22] Molina, C. R. R., & Vila, O. P. (2017). Solving internal covariate shift in deep learning with linked
neurons. arXiv preprint arXiv:1712.02609.

[23] Maind, S. B., & Wankar, P. (2014). Research paper on basic of artificial neural
network . International Journal on Recent and Innovation Trends in Computing and

Communication, 2(1), (pp.96-100).

[24] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61,

(pp.85-117).

[25] Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings

of the fourteenth international conference on artificial intelligence and statistics (pp. 315-323).

[26] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine

Learning, 2(1), 1-127.

[27] Liu, B., Wang, M., Foroosh, H., Tappen, M., & Pensky, M. (2015). Sparse convolutional neural

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.
806-814).

[28] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a
simple way to prevent neural networks from overfitting. The Journal of Machine Learning

Research, 15(1), (pp. 1929-1958).

[29] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a

simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1), (pp. 1929-1958). Accessed: 20-01-2018. URL

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

[30] Chen, Z., & Yi, D. (2017). The Game Imitation: Deep Supervised Convolutional Networks for Quick

Video Game AI. arXiv preprint arXiv:1702.05663.

[31] Engineering, H. (2015). Introduction to convolution neural networks. Accessed: 31-12-2018. URL

https://engineering.huew.co/introduction-toconvolution-neural-networks-18981d1cd09a

[32] FPGA, I. (2017). Introduction to intel fpga ip cores. Accessed: 31-12-2018. URL

https://www.altera.com/documentation/ mwh1409960636914.html.

[33] Floydhub, (2018). Accessed: 31-12-2018. URL https://docs.floydhub.com/

[34] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. nature, 323(6088), (pp. 533).

[35] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1988). Phoneme recognition: neural
networks vs. hidden Markov models vs. hidden Markov models. In Acoustics, Speech, and Signal

Processing, 1988. ICASSP-88., 1988 International Conference on (pp. 107-110). IEEE.

http://www.i-programmer.info/babbages-bag/325-%20mcculloch-pitts-neural-networks.html
http://www.i-programmer.info/babbages-bag/325-%20mcculloch-pitts-neural-networks.html
https://docs.floydhub.com/

89

[36] Reese, M. G. (2001). Application of a time-delay neural network to promoter annotation in the

Drosophila melanogaster genome. Computers & chemistry, 26(1), 51-56.

[37] Siegelmann, Hava T., and Eduardo D. Sontag. "Turing computability with neural nets." Applied

Mathematics Letters4.6 (1991): (pp. 77-80).

[38] Hyötyniemi, H. (1996). Turing machines are recurrent neural networks. Proceedings of step, (pp.

96).

[39] Siegelmann, H. T., & Sontag, E. D. (1995). On the computational power of neural nets. Journal of

computer and system sciences, 50(1), (pp. 132-150).

[40] FPGA, I., Platform designer. (2018). Accessed: 31-12-2018 URL

https://www.altera.com/products/design-software/fpgadesign/quartus-prime/features/qts-platform-
designer.html.

[41] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), (pp.
1735-1780).

[42] Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Proceedings of the
IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing:

New Challenges and Perspectives for the New Millennium Vol. 3, (pp. 189-194)

[43] Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., ... & Minx, P. (2009).

The B73 maize genome: complexity, diversity, and dynamics. science, 326 (5956), (pp. 1112-1115).

[44] Bartalena, L., & Fatourechi, V. (2014). Extrathyroidal manifestations of Graves’ disease: a 2014

update. Journal of Endocrinological Investigation, 37(8), 691-700.

[45] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent

neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

[46] Chen, J., & Wang, D. (2017). Long short-term memory for speaker generalization in supervised

speech separation. The Journal of the Acoustical Society of America, 141(6), (pp. 4705-4714).

[47] Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual prediction with

LSTM.

[48] Chen, Z., & Yi, D. (2017). The Game Imitation: Deep Supervised Convolutional Networks for Quick

Video Game AI. arXiv preprint arXiv:1702.05663.

[49] World, I., (2018). 5 guidelines for building a neural network architecture. Accessed: 31-12-2018.

URL https://www.infoworld.com/article/3155052/technologybusiness/5-guidelines-for-building-a-
neural-networkarchitecture.html

[50]. Tensorboard. (2018). Accessed: 31-12-2018. URL
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVE

tMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgi
OmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zL

U1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZSwiNjAtU0VRLTMtTW9kZWwtTFNUTS1UaW1l
LTI3MTIyMDE4IjpmYWxzZSwiNjAtU0VRLTMtTW9kZWwtTUxQLVRpbWUtMjgxMjIwMTgiOnRydWV9

&run=60-SEQ-3-Model-CNN-Time-27122018 Accessed: 31-12-2018

[51] Tensorboard. (2018). Accessed: 31-12-2018. URL

http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVE
tMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgi

OmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zL
U1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZSwiNjAtU0VRLTMtTW9kZWwtTFNUTS1UaW1l

LTI3MTIyMDE4IjpmYWxzZSwiNjAtU0VRLTMtTW9kZWwtTUxQLVRpbWUtMjgxMjIwMTgiOnRydWV9

&run=60-SEQ-3-Model-CNN-Time-27122018 Accessed: 31-12-2018

https://www.altera.com/products/design-software/fpgadesign/quartus-prime/features/qts-platform-designer.html
https://www.altera.com/products/design-software/fpgadesign/quartus-prime/features/qts-platform-designer.html
https://www.infoworld.com/article/3155052/technologybusiness/5-guidelines-for-building-a-neural-networkarchitecture.html
https://www.infoworld.com/article/3155052/technologybusiness/5-guidelines-for-building-a-neural-networkarchitecture.html
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS

90

[52] Tensorboard. (2018). Accessed: 31-12-2018. URL

http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVE
tMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgi

OmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zL
U1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZSwiNjAtU0VRLTMtTW9kZWwtTFNUTS1UaW1l

LTI3MTIyMDE4IjpmYWxzZSwiNjAtU0VRLTMtTW9kZWwtTUxQLVRpbWUtMjgxMjIwMTgiOnRydWV9
&run=60-SEQ-3-Model-LSTM-Time-27122018

[53] Brownlee, J. (2017). Gentle Introduction to the Adam Optimization Algorithm for Deep Learning.

[54] Tensorboard. (2018). Accessed: 31-12-2018. URL

http://huscse0budlt216:6006/#scalars&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVE
tMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgi

OmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zL
U1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZSwiNjAtU0VRLTMtTW9kZWwtTFNUTS1UaW1l

LTI3MTIyMDE4IjpmYWxzZSwiNjAtU0VRLTMtTW9kZWwtTUxQLVRpbWUtMjgxMjIwMTgtcnVuMSI6d
HJ1ZSwiNjAtU0VRLTMtTW9kZWwtTUxQLVRpbWUtMjgxMjIwMTgiOmZhbHNlLCI2MC1TRVEtMy1N

b2RlbC1MU1RNLVRpbWUtMjcxMjIwMTgtcnVuMSI6ZmFsc2V9&_smoothingWeight=0.308
Accessed: 31-12-2018

[55] Bitcoin (2008). Accessed: 31-12-2018. URL https://bitcoin.org/en/

[56] Ethereum. Accessed: 31-12-2018. URL https://www.ethereum.org

[57] Litecoin. Accessed: 31-12-2018. URL https://litecoin.org/

[58] Bitcoin Cash. Accessed: 31-12-2018. URL https://www.bitcoincash.org/

[59] Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2018). Feature
selection: A data perspective. ACM Computing Surveys (CSUR), 50(6), (pp. 94).

[60] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Accessed: 31-12-2018. URL
https://bitcoin.org/bitcoin.pdf

[61] Grinberg, R. (2012). Bitcoin: An innovative alternative digital currency. Hastings Sci. & Tech. LJ, 4,
(pp. 159).

[62] ElBahrawy, A., Alessandretti, L., Kandler, A., Pastor-Satorras, R., & Baronchelli, A. (2017).
Evolutionary dynamics of the cryptocurrency market. Royal Society open science, 4(11).

[63] Chapron, G. (2017). The environment needs cryptogovernance. Nature News, 545(7655), (pp.
403).

[64] Binance.com. (2017). Accessed: 31-12-2018. URL Binance https://www.binance.com/.

[65] P. Inc. (2012). Accessed: 31-12-2018. URL Kraken https://www.kraken.com/.

[66] Python. Accessed: 11-01-2018. URL. https://www.python.org/

[67] Atul. (2018) Ai vs machine learning vs deep learning. Accessed: 11-01-2018 URL

https://www.edureka.co/blog/author/atul-harshaedureka-co/

[68] Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., & Ng, A. Y. (2011). On optimization

methods for deep learning. In Proceedings of the 28th International Conference on International
Conference on Machine Learning Omnipress (pp. 265-272).

[69] Dabbura Imad, (2017). Gradient Descent Algorithm and its Vairants. Accessed: 11-01-2018 URL
https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

[70] Ramendra Thakur. (2016). What is the difference between local minima & maxima and absolute
minima & maxima? Accessed: 11-01-2018 URL https://www.quora.com/What-is-the-difference-

between-local-minima-maxima-and-absolute-minima-maxima.

http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#graphs&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZS
http://huscse0budlt216:6006/#scalars&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZ
http://huscse0budlt216:6006/#scalars&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZ
http://huscse0budlt216:6006/#scalars&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZ
http://huscse0budlt216:6006/#scalars&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZ
http://huscse0budlt216:6006/#scalars&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZ
http://huscse0budlt216:6006/#scalars&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZ
http://huscse0budlt216:6006/#scalars&_showDownloadLinks=true&runSelectionState=eyI2MC1TRVEtMy1Nb2RlbC1NTFAiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yN1xcMTJcXDIwMTgiOmZhbHNlLCI2MC1TRVEtMy1Nb2RlbC1NTFAtVGltZS0yNzEyMjAxOCI6ZmFsc2UsIjYwLVNFUS0zLU1vZGVsLUNOTi1UaW1lLTI3MTIyMDE4IjpmYWxzZ
https://bitcoin.org/en/
https://litecoin.org/
https://www.bitcoincash.org/
https://www.binance.com/
https://www.kraken.com/
https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
https://www.quora.com/profile/Ramendra-Thakur-1
https://www.quora.com/What-is-the-difference-between-local-minima-maxima-and-absolute-minima-maxima
https://www.quora.com/What-is-the-difference-between-local-minima-maxima-and-absolute-minima-maxima

91

[71] Antony Pallupetta, (2015). Maxima and minima application problems are difficult? Accessed: 11-

01-2018 URL. https://www.quora.com/Maxima-and-minima-application-problems-are-difficult-I-got-
stuck-on-how-to-begin-What-should-be-the-approach-and-line-of-thinking-to-be-followed.

[72] Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics. John Wiley & Sons.

[73] Seber, G. A., & Lee, A. J. (2012). Linear regression analysis (Vol. 329). John Wiley & Sons.

[74] Vieira, Sara. Neural Networks. Accessed: 20-01-2018. (2017) URL
https://www.researchgate.net/Figura/a-The-building-block-of-deep-neural-networks-artificial-neuron-

or-node-Each-input-x_fig1_312205163

[75] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (adaptive computation and

machine learning series). Adaptive Computation and Machine Learning series.

[76] Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). Cambridge:

MIT press.

[77] Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press.

[78] Brownlee, J. (2014). Machine learning mastery. Accessed: 21-01-2018. URL:
http://machinelearningmastery. com/discover-feature-engineering-howtoengineer-features-and-how-

to-getgood-at-it.

[79] Ali, A., Shamsuddin, S. M., & Ralescu, A. L. (2015). Classification with class imbalance problem: a

review. Int J Adv Soft Comput Appl, 7(3), (pp. 176-204).

[80] Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to

algorithms. Cambridge university press.

https://www.quora.com/profile/Antony-Pallupetta
https://www.quora.com/Maxima-and-minima-application-problems-are-difficult-I-got-stuck-on-how-to-begin-What-should-be-the-approach-and-line-of-thinking-to-be-followed
https://www.quora.com/Maxima-and-minima-application-problems-are-difficult-I-got-stuck-on-how-to-begin-What-should-be-the-approach-and-line-of-thinking-to-be-followed
https://www.researchgate.net/figure/a-The-building-block-of-deep-neural-networks-artificial-neuron-or-node-Each-input-x_fig1_312205163
https://www.researchgate.net/figure/a-The-building-block-of-deep-neural-networks-artificial-neuron-or-node-Each-input-x_fig1_312205163

