

| PLAN DE ESTUDIOS (PE): Licenciatura en Matemáticas |
|----------------------------------------------------|
| ÁREA: Interdisciplinaria                           |
| ASIGNATURA: Programación II                        |
| CÓDIGO:                                            |
| CRÉDITOS: 6                                        |
| FECHA: Noviembre 2016                              |



#### 1. DATOS GENERALES

| Nivel Educativo:             | Licenciatura                                                              |  |
|------------------------------|---------------------------------------------------------------------------|--|
| Nombre del Plan de Estudios: | Licenciatura en Matemáticas                                               |  |
| Modalidad Académica:         | Presencial                                                                |  |
| Nombre de la Asignatura:     | Programación II                                                           |  |
| Ubicación:                   | Nivel formativo                                                           |  |
| Correlación:                 |                                                                           |  |
| Asignaturas Precedentes:     | Computación, Programación I                                               |  |
| Asignaturas Consecuentes:    | Algoritmos, estructuras de datos y objetos, Temas selectos de computación |  |

#### 2. CARGA HORARIA DEL ESTUDIANTE

| 2                                                 | Horas por semana |          | Total de             | Total de                |
|---------------------------------------------------|------------------|----------|----------------------|-------------------------|
| Concepto                                          | Teoría           | Práctica | horas por<br>periodo | créditos<br>por periodo |
| Horas teoría y práctica<br>(16 horas = 1 crédito) | 2                | 3        | 100                  | 6                       |



#### 3. REVISIONES Y ACTUALIZACIONES

| Autores:                                                                   | Edgar Santiago Moyotl Hernández, Mónica Macías Pérez<br>Patricia Domínguez Soto, Sergio Adán Juárez                                                                            |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fecha de diseño:                                                           | Diciembre 2009                                                                                                                                                                 |
| Fecha de la última actualización:                                          | Noviembre 2015                                                                                                                                                                 |
| Fecha de aprobación por parte de la academia de área, departamento u otro. |                                                                                                                                                                                |
| Revisores:                                                                 | Edgar Santiago Moyotl Hernández, Mónica Macías Pérez<br>Sergio Adán Juárez                                                                                                     |
| Sinopsis de la revisión y/o<br>actualización:                              | Se describieron las competencias profesionales a desarrollar, se reorganizaron las unidades de aprendizaje y se actualizaron tanto el contenido temático como la bibliografía. |

4. PERFIL DESEABLE DEL PROFESOR (A) PARA IMPARTIR LA ASIGNATURA:

| 111 Ett 12 92027822 922 1 1to 1 2001t (7.) 1 7tt 7tt 11111 7tt 111t 27t 7to 101t/ti |                                                                                                    |  |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| Disciplina profesional:                                                             | Ciencias de la computación, Ingeniería en sistemas computacionales, Matemáticas o carreras afines. |  |  |
| Nivel académico:                                                                    | Maestría                                                                                           |  |  |
| Experiencia docente:                                                                | 1 año                                                                                              |  |  |
| Experiencia profesional:                                                            | 1 año                                                                                              |  |  |

**5. PROPÓSITO:** El alumno desarrollará habilidades para aplicar elementos avanzados del lenguaje C en la resolución de problemas computacionales, desarrollando programas que optimicen el aprovechamiento de los recursos computacionales y utilizando la programación estructurada.





#### 6. COMPETENCIAS PROFESIONALES:

- Describir cómo una computadora codifica la información y qué operaciones puede realizar con ella para seleccionar la forma óptima de almacenarla.
- Aplicar los componentes de bajo nivel para manipular datos utilizando los operadores a nivel de bits.
- Definir y aplicar el concepto de apuntador para elaborar programas que manejen de manera eficiente la memoria principal.
- Definir y aplicar el concepto de recursividad para resolver problemas que tengan naturaleza recursiva.
- Describir el concepto de estructura de datos y aplicar el concepto de registro en problemas que requieren procesar elementos relacionados entre sí, pero de distintos tipos.
- Aplicar el concepto de archivo para escribir programas que requieran almacenar y recuperar datos en dispositivos de memoria secundaria.
- Describir las herramientas matemáticas necesarias para la evaluación de la complejidad de un algoritmo.
- Aplicar los conceptos avanzados del lenguaje C para escribir programas que den solución a diversos problemas computacionales.
- Definir y aplicar conceptos básicos de graficación para codificar programas que permitan mostrar la salida de resultados en modo gráfico.
- Evaluar la importancia y el impacto de la programación en el contexto de las matemáticas.

#### 7. CONTENIDOS TEMÁTICOS

| CONTENIDOS TEMÁTICOS                                 |                                                                                                                                                                                                                                                                                                                |                                                                                                                                          |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Unidad de<br>Aprendizaje                             | Contenido Temático                                                                                                                                                                                                                                                                                             | Referencias                                                                                                                              |  |  |
| 1.Representación<br>de la información<br>(2 semanas) | Sistemas de numeración     1.1. Sistema binario, octal y hexadecimal     1.2. Conversión entre sistemas     1.3. Operaciones aritméticas: suma,     resta, multiplicación y división     2. La memoria principal     2.1. Organización y representación     2.2. Unidades de información: bit, byte y     word | Andries, V. D., Hughes, J., Foley, J. D. y Feiner, S. K. (2007). Computer Graphics Principles and Practice in C (2nd ed.). USA: Pearson. |  |  |
|                                                      | 3. Representación de números enteros 3.1. Signo y magnitud 3.2. Complemento a 1 3.3. Complemento a 2 4. Representación de números reales                                                                                                                                                                       | Ceballos, J. (2015). C/C++<br>Curso de Programación (4ta.<br>ed.). México: Alfaomega                                                     |  |  |
|                                                      | <ul> <li>4.1. Notación científica: mantisa, exponente y normalización</li> <li>4.2. Estándar IEEE 754</li> <li>5. Codificación de caracteres</li> <li>6. Manejo de bits</li> <li>6.1. Representación de números en C</li> </ul>                                                                                | Deitel, P. J. y Deitel, H. M. (2010). <i>C how to program</i> (6th. ed.). México: Prentice Hall.                                         |  |  |
|                                                      | <ul><li>6.2. Operador sizeof</li><li>6.3. Operadores lógicos de bits</li><li>6.4. Operadores de desplazamiento de bits</li></ul>                                                                                                                                                                               | Joyanes Aguilar, L. (2014).  Programación en C, C++, Java y  UML (2da. ed.). México:  McGraw-Hill.                                       |  |  |
| 2. Apuntadores<br>(3 semanas)                        | <ol> <li>Direcciones de memoria</li> <li>Operadores de dirección "&amp;" e indirección "*"</li> <li>Declaración de variables apuntador 2.1. Tipos de apuntadores</li> <li>Inicialización de apuntadores</li> <li>Aritmética de apuntadores</li> <li>Apuntador nulo</li> <li>Usos de los apuntadores</li> </ol> | Mora Escobar, H. M. (2004).  Introducción a C y a métodos numéricos.  Colombia: Universidad Nacional de Colombia.                        |  |  |
|                                                      | <ul> <li>3.1. Apuntadores</li> <li>3.2. Apuntadores y cadenas</li> <li>3.3. Arreglos de apuntadores</li> <li>3.4. Parámetros de funciones por referencia</li> <li>3.5. Apuntadores a funciones</li> </ul>                                                                                                      | Shirley, P., Ashikmin, M. y<br>Marschner, S. (2009).<br>Fundamentals of Computer<br>Graphics (3th ed.). USA: A K<br>Peters/CRC Press.    |  |  |





| Unidad de<br>Aprendizaje                       | Contenido Temático                                                                                                                                                                                                                                                      | Referencias |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                | <ul> <li>4. Gestión dinámica de memoria</li> <li>4.1. Estructura de la memoria: segmento<br/>de código, memoria estática, heap,<br/>pila.</li> <li>4.2. Reserva de memoria</li> <li>4.3. Liberación de memoria</li> <li>4.4. Variables estáticas y dinámicas</li> </ul> |             |
| 3. Recursividad<br>(2 semanas)                 | <ol> <li>Definición</li> <li>Funciones recursivas         <ol> <li>1. Caso base</li> <li>2. Caso recursivo</li> </ol> </li> <li>Funcionamiento de la recursión</li> <li>Tipos de recursividad</li> <li>Ventajas y desventajas</li> </ol>                                |             |
| 4. Estructuras de datos: registros (3 semanas) | <ol> <li>Datos simples y estructurados</li> <li>Definición y declaración de registros         <ol> <li>1. Inicialización de registros</li> <li>2.1. Inicialización de registros</li> <li>2.2. Acceso a los campos de un registro:</li></ol></li></ol>                   |             |
| 5. Graficación<br>(3 semanas)                  | <ol> <li>Primitivas de graficación en 2D</li> <li>Trazado de Polígonos</li> <li>Rotación, Traslación y Escala de polígonos</li> <li>Animación básica de polígonos</li> <li>Introducción a los fractales</li> </ol>                                                      |             |
| 6. Archivos<br>(3 semanas)                     | <ol> <li>Medios de almacenamiento (memoria secundaria)</li> <li>Tipos de archivos: texto y binario</li> <li>Métodos de acceso: secuencial y directo</li> </ol>                                                                                                          |             |



| Unidad de<br>Aprendizaje               | Contenido Temático                                                                                                                                                                                                                                                                                                                                                                                             | Referencias |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                        | <ul> <li>3.1. Indicador de la posición en el archivo</li> <li>4. Gestión de archivos</li> <li>4.1. Apertura de archivos</li> <li>4.2. Modos de apertura</li> <li>4.3. Procesamiento de archivos: leer, escribir y actualizar</li> <li>4.4. Cierre de archivos</li> </ul>                                                                                                                                       |             |
| 7. Complejidad algorítmica (2 semanas) | <ol> <li>Conceptos iniciales         <ol> <li>1.1. Eficiencia y complejidad</li> <li>1.2. Recursos del sistema</li> <li>1.3. Coste computacional</li> </ol> </li> <li>Cotas de complejidad asintóticas         <ol> <li>1.1. Cota superior, notación O</li> <li>2.2. Cota inferior, notación Ω</li> <li>2.3. Cota ajustada, notación Θ</li> </ol> </li> <li>Resolución de ecuaciones de recurrencia</li> </ol> |             |

#### B. ESTRATEGIAS, TÉCNICAS Y RECURSOS DIDÁCTICOS

| 8. ESTRATEGIAS, TECNICAS Y RECURSOS DID  Estrategias y técnicas didácticas                                                                                                                                                                                                                                                                                                                                                  | Recursos didácticos                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Resúmenes</li> <li>Paráfrasis</li> <li>Mapas conceptuales</li> <li>Lluvia de ideas</li> <li>Aprendizaje basado en problemas</li> <li>Aprendizaje orientado a proyectos</li> <li>Aprendizaje cooperativo</li> <li>Aprendizaje colaborativo</li> <li>Responder a preguntas exploratorias y literales</li> <li>Prácticas</li> <li>Elaboración de programas</li> <li>Investigación bibliográfica extraclase</li> </ul> | <ul> <li>Materiales:</li> <li>Impreso: libros y fotocopias.</li> <li>Digital: libros, artículos y diapositivas.</li> <li>Pizarrón, plumones y borrador.</li> <li>Proyector y computadora.</li> <li>Programas informáticos: se sugiere DevC++, Code::Blocks y/o Zinjai.</li> <li>Páginas web, correo electrónico, chats y foros.</li> </ul> |



#### 9. EJES TRANSVERSALES

| Eje (s) transversales                                                                      | Contribución de la asignatura                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formación Humana y Social                                                                  | Solucionar problemas reales promueve la participación del alumno de manera cooperativa y colaborativa.                                                                                            |
| Desarrollo de Habilidades en el uso de las Tecnologías de la Información y la Comunicación | El uso de software para programar promueve el uso de medios electrónicos.                                                                                                                         |
| Desarrollo de Habilidades del Pensamiento<br>Complejo                                      | Mediante la programación se desarrolla la habilidad de resolver problemas conceptuales y cuantitativos utilizando diferentes formas de razonamiento (lógico, aritmético, algebraico y analógico). |
| Lengua Extranjera                                                                          | Dado que la gran mayoría de los lenguajes de programación están en idioma inglés, se desarrolla la habilidad lectora y de comprensión de textos escritos en otro idioma.                          |
| Innovación y Talento Universitario                                                         | Resolver problemas computacionales ayuda a que el alumno desarrolle la habilidad para crear soluciones innovadoras y generar cambios.                                                             |
| Educación para la Investigación                                                            | Mediante la programación estructurada se orienta a una cultura de indagación, descubrimiento y construcción de conocimientos nuevos.                                                              |

#### 10. CRITERIOS DE EVALUACIÓN

| Criterios                                    | Porcentaje |  |  |
|----------------------------------------------|------------|--|--|
| ■ Exámenes                                   | 50%        |  |  |
| <ul> <li>Participación en clase</li> </ul>   | 10%        |  |  |
| ■ Tareas                                     | 15%        |  |  |
| <ul> <li>Prácticas de laboratorio</li> </ul> | 15%        |  |  |
| <ul><li>Proyecto final</li></ul>             | 10%        |  |  |
| Total                                        | 100%       |  |  |

#### 11. REQUISITOS DE ACREDITACIÓN

Estar inscrito como alumno en la Unidad Académica en la BUAP

Asistir como mínimo al 80% de las sesiones para tener derecho a exentar por evaluación continua y/o presentar el examen final en ordinario o extraordinario

Asistir como mínimo al 70% delas sesiones para tener derecho al examen extraordinario

Cumplir con las actividades académicas y cargas de estudio asignadas que señale el PE

