

PLAN DE ESTUDIOS (PE): Licenciatura en Matemáticas Aplicadas
ÁREA: Análisis y Métodos Numéricos
ASIGNATURA: Temas Selectos de Computación
CÓDIGO:
CRÉDITOS: 6
FECHA: Julio de 2017

1. DATOS GENERALES

Nivel Educativo:	Licenciatura	
Nombre del Plan de Estudios:	Licenciatura en Matemáticas Aplicadas	
Modalidad Académica:	Presencial	
Nombre de la Asignatura:	Temas Selectos de Computación	
Ubicación:	Nivel formativo	
Correlación:		
Asignaturas Precedentes:	Computación, Programación I, Programación II Análisis y Métodos Numéricos I, Algoritmos Estructuras de Datos y Objetos	
Asignaturas Consecuentes:		

2. CARGA HORARIA DEL ESTUDIANTE

	Horas por semana		Total de	Total de
Concepto	Teoría	Práctica	horas por periodo	créditos por periodo
Horas teoría y práctica (16 horas = 1 crédito)	2	3	100	6

3. REVISIONES Y ACTUALIZACIONES

OF REVIOUS 17 AS 1 OF RELEASED		
Autores:	Edgar Santiago Moyotl Hernández, Mónica Macías Pérez, Patricia Domínguez Soto	
Fecha de diseño:	Julio de 2017	
Fecha de la última actualización:	No aplica	

Fecha de aprobación por parte de la academia de área, departamento u otro.	6 de julio del 2017
Revisores:	Edgar Santiago Moyotl Hernández, Mónica Macías Pérez, Patricia Domínguez Soto, Sergio Adán Juárez
Sinopsis de la revisión y/o actualización:	Asignatura de nueva creación, la cual completa la formación en el área de Cómputo Científico.

4. PERFIL DESEABLE DEL PROFESOR (A) PARA IMPARTIR LA ASIGNATURA:

Disciplina profesional:	Matemáticas, Matemáticas Aplicadas y Ciencias de la computación
Nivel académico:	Maestría
Experiencia docente:	1 año
Experiencia profesional:	1 año

5. PROPÓSITO: El alumno reconocerá y analizará algunos conceptos avanzados de computación para incursionar en tópicos de actualidad.

6. COMPETENCIAS PROFESIONALES:

- Describir los conceptos básicos de la inteligencia artificial y aplicar técnicas de aprendizaje automático en la solución de problemas prácticos.
- Definir el concepto de paralelismo, así como reconocer los modelos y los lenguajes de programación en paralelo.
- Distinguir los conceptos y las metodologías de la minería de datos.
- Reconocer los fundamentos teóricos, técnicas y herramientas empleados en el análisis de grandes volúmenes de datos.

7. CONTENIDOS TEMÁTICOS

Unidad de Aprendizaje	Contenido Temático	Referencias
Inteligencia artificial	 Conceptos generales Aprendizaje automático Supervisado No supervisado Áreas de aplicación 	Carmel. Almeida F. (2008). Introducción a la programación paralela. España: Ediciones Paraninfo. Baase, S. y Van, G. A. (2002). Algoritmos computacionales.
2. Programación paralela y concurrente	 Paralelismo Programación en paralelo Lenguajes paralelos 	Introducción al Análisis y Diseño (3ra. ed.). México: Pearson Educación. Joyanes, L. (2013). Big data.
3. Minería de datos	 Definición Clasificación Predicción Descubrimiento Métodos Aplicaciones 	Análisis de grandes volúmenes de datos en organizaciones. México: Alfaomega. Pérez Marqués, M. (2015). Big Data. Técnicas, Herramientas y aplicaciones. México:
4. Análisis de grandes volúmenes de datos (Big Data)	 Conceptos de Big Data Fuentes de datos Analítica de datos Herramientas de Big Data 	Alfaomega. Petersen, W. P. y Arbenz, P. (2004). Parallel Computing. A Practical Guide with Examples in C. USA: Oxford University Press. Russell, S. J. y Norvig, P. (2004). Inteligencia Artificial. Un enfoque moderno (2da. ed.). España: Pearson Educación.

8. ESTRATEGIAS, TÉCNICAS Y RECURSOS DIDÁCTICOS

Estrategias y técnicas didácticas	Recursos didácticos
 Resúmenes Paráfrasis Aprendizaje basado en problemas Aprendizaje orientado a proyectos 	Materiales: Impreso: libros y fotocopias. Digital: libros, artículos y diapositivas. Pizarrón, plumones y borrador.

 Aprendizaje cooperativo y colaborativo Prácticas Elaboración de programas Investigación bibliográfica extraclase 	 Proyector y computadora. Software libre: R, Octave, Python, Open MPI, y/o Herramientas para programar en C. Páginas web, correo electrónico, chats y foros.
	foros.

9. EJES TRANSVERSALES

Eje (s) transversales	Contribución de la asignatura
Formación Humana y Social	Solucionar problemas reales promueve la participación del alumno de manera cooperativa y colaborativa.
Desarrollo de Habilidades en el uso de las Tecnologías de la Información y la Comunicación	El uso de herramientas computacionales promueve el uso de medios electrónicos.
Desarrollo de Habilidades del Pensamiento Complejo	La computación científica refuerza la comprensión de las matemáticas porque diversifica las aplicaciones de resultados matemáticos.
Lengua Extranjera	La bibliografía, el uso de software y los lenguajes de programación en idioma inglés desarrollan la habilidad lectora y de comprensión de textos escritos en otro idioma.
Innovación y Talento Universitario	Resolver problemas científicos ayuda a que el alumno desarrolle la habilidad para crear soluciones innovadoras y generar cambios.
Educación para la Investigación	Mediante la revisión de los tópicos actuales de computación se desarrollan las habilidades necesarias para el ejercicio de la investigación en la computación científica.

10. CRITERIOS DE EVALUACIÓN

10. CRITERIOS DE EVALUACION		
Criterios	Porcentaje	
 Exámenes 	50%	
 Participación en clase 	10%	
Tareas	10%	
 Prácticas 	20%	
 Proyecto final 	10%	
Total	100%	

11. REQUISITOS DE ACREDITACIÓN

Estar inscrito como alumno en la Unidad Académica en la BUAP

Asistir como mínimo al 80% de las sesiones para tener derecho a exentar por evaluación continua y/o presentar el examen final en ordinario o extraordinario

Asistir como mínimo al 70% delas sesiones para tener derecho al examen extraordinario

Cumplir con las actividades académicas y cargas de estudio asignadas que señale el PE

