

PLAN DE ESTUDIOS (PE): Licenciatura en Matemáticas Aplicadas
ÁREA: Optimización
ASIGNATURA: Programación Lineal
CÓDIGO:
CRÉDITOS: 6
FECHA: Julio/2017

1. DATOS GENERALES

Nivel Educativo:	Licenciatura		
Nombre del Plan de Estudios:	Licenciatura en Matemáticas Aplicadas		
Modalidad Académica:	Presencial		
Nombre de la Asignatura:	Programación Lineal		
Ubicación:	Básico		
Correlación:			
Asignaturas Precedentes:	Algebra Lineal, Cálculo Diferencial en Varias Variables		
Asignaturas Consecuentes:	: Programación No Lineal		

2. CARGA HORARIA DEL ESTUDIANTE

	Horas por semana		Total de	Total de
Concepto	Teoría	Práctica	horas por periodo	créditos por periodo
Horas teoría y práctica (16 horas = 1 crédito)	3	2	100	6

3. REVISIONES Y ACTUALIZACIONES

<u> </u>	•
	Hernández Rebollar Lidia Aurora
Autores:	López Mayo Guillermo
	Zavala López Brenda
Fecha de diseño:	Julio/2017
Fecha de la última actualización:	
Fecha de aprobación por parte de la	
academia de área, departamento u	06/Julio/2017
otro.	
Revisores:	
Sinopsis de la revisión y/o	
actualización:	

4. PERFIL DESEABLE DEL PROFESOR (A) PARA IMPARTIR LA ASIGNATURA:

Disciplina profesional:	Matemáticas
Nivel académico:	Maestría
Experiencia docente:	2 años
Experiencia profesional:	2 años

5. PROPÓSITO: Identificar los problemas que pueden modelarse con Programación Lineal y solucionarlos con el Algoritmo simplex. Conocer y aplicar algún software para la solución de problemas de programación lineal.

6. COMPETENCIAS PROFESIONALES:

- 1. Reconocerá y será capaz de modelar problemas de la programación lineal.
- 2. Resolverá problemas de programación lineal con el método gráfico.
- 3. Aplicar los conceptos básicos del Análisis Convexo.
- 4. Utilizar el método simplex en la solución de problemas de programación lineal.
- 5. Realizar análisis de sensibilidad
- 6. Optimizar la solución de problemas de programación lineal con el uso de algún software.

7. CONTENIDOS TEMÁTICOS

7. CONTENIDOS TEMATICOS Unidad de				
Aprendizaje	Contenido Temático	Referencias		
Modelos clásicos de la programación lineal.	 1.1 Modelado y ejemplos de la programación lineal. 1.2 La región de soluciones factibles. 1.3 El espacio de requerimientos 1.4 Método Gráfico 1.5 Método geométrico. 	Bazaraa & Jarvis (2011), Linear Programming and Network Flows.Cuarta Edición. Editorial Wiley. Taha (2012). Investigación		
2. Conceptos Básicos sobre Poliedros Convexos.	2.1 Análisis Convexo. 2.2 Poliedros Convexos. 2.3 Teoremas de representación.	de operaciones. Novena edición.Editorial Pearson. 3. Winston(2003) Operation research application and algorithms. Duxbury Press.		
3. El método Simplex.	 3.1 Puntos extremos y optimalidad. 3.2 Soluciones básicas factibles. 3.3 Álgebra del método Simplex. 3.4 El método simplex en el formato de tabla. 3.5 Casos especiales en el método simplex. 3.6 Tablas de Tucker. 	4. Luenberger (2015) Linear and nonlinear programming. Cuarta Edicion. Editorial Springer.		
Solución Inicial Dualidad	4.1 Método de las dos Fases 4.2 Método de la Gran M 4.3 Regla Lexicográfica y Regla de Bland 5.1 Construcción del problema dual	5. Chvatal Vasek (2016) Linear Programming. Beadford books.		
6. Análisis de sensibilidad y uso	5.2 Teorema Fundamental de dualidad. 5.3 Teorema de Holguras complementarias 5.4 Algoritmo dual simplex 6.1 Cambio en el vector de costos y cambio paramétrico en el vector de costos.	6. James Strayer(2012) Linear Programming and its applications. Editorial Springer.		
de software.	 6.2 Cambios en el vector b y en la matriz A. 6.3 Aumento de restricciones 6.4 Aumento de variables. 6.5 Algoritmo Simplex Revisado 6.6 Uso de Matlab, lingo, phpsimplex o solver 	7. Schrage (1999) Optimization Modeling with Lingo. Quinta edición. Lindo Systems		
	para la solución de problemas.	8. Ilker Cingillioglu (2017). Operations Management: with Project Management, Excel Solver and Data Analysis.		

8. ESTRATEGIAS, TÉCNICAS Y RECURSOS DIDÁCTICOS

Estrategias y técnicas didácticas	Recursos didácticos
 Grupos de discusión Solución de Problemas Aprendizaje Basado en Problemas Aprendizaje Basado en Proyectos Estudio de casos 	 Materiales: Plumón, borrador y pizarrón, proyectores, uso de las TICs, notas de clase. Libro de texto Bibliografía complementaria. Listas de ejercicios. Uso de Paquetería Office, Lingo, phpsimplex o Matlab

9. EJES TRANSVERSALES

Eje (s) transversales	Contribución con la asignatura
Formación Humana y Social	Explica de manera clara y precisa las
·	resoluciones de diversos problemas.
Desarrollo de Habilidades en el uso de las	Maneja software especializado para la resolución
Tecnologías de la Información y la Comunicación	de problemas.
Desarrollo de Habilidades del Pensamiento	Estructura adecuadamente su pensamiento en la
Complejo	resolución de problemas.
Lengua Extranjera	Es capaz de interpretar el contenido de los textos
	relacionados en lengua extranjera.
Innovación y Talento Universitario	Entender mejor como conducirse de manera
	ética en su profesión a fin de cumplir el
	compromiso que se tiene con la sociedad.
Educación para la Investigación	Investigar e indagar acerca de los problemas que
	se pueden resolver utilizando programación
	lineal.

10. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje	
Exámenes	70%	
Tareas	20%	
Simulaciones	10%	
Total	100%	

11. REQUISITOS DE ACREDITACIÓN

Estar inscrito como alumno en la Unidad Académica en la BUAP

Asistir como mínimo al 80% de las sesiones para tener derecho a exentar por evaluación continua y/o presentar el examen final en ordinario o extraordinario

Asistir como mínimo al 70% delas sesiones para tener derecho al examen extraordinario

Cumplir con las actividades académicas y cargas de estudio asignadas que señale el PE

