

PLAN DE ESTUDIOS (PE): Licenciatura en Física
ÁREA: FÍSICA TEÓRICA
ASIGNATURA: ELECTRODINÁMICA
CÓDIGO:
CRÉDITOS: 6
FECHA: junio de 2017

1. DATOS GENERALES

Nivel Educativo:	Licenciatura			
Nombre del Plan de Estudios:	Licenciatura en Física			
Modalidad Académica:	<u>Presencial</u>			
Nombre de la Asignatura:	Electrodinámica			
Ubicación:	Formativo#			
Correlación:				
Asignaturas Precedentes:	Cálculo diferencial en varias variables, Cálculo integral en varias variables, Variable compleja, Funciones Especiales			
Asignaturas Consecuentes:	Óptica, Curso Optativo (Electrodinámica)			

2. CARGA HORARIA DEL ESTUDIANTE

Composito	Horas po	r semana		
Concepto	Teoría	Práctica	horas por periodo	créditos por periodo
Horas teoría y práctica Actividades bajo la conducción del docente como clases teóricas, prácticas de laboratorio, talleres, cursos por internet, seminarios, etc. (16 horas = 1 crédito)	<u>3</u>	2	<u>90</u>	6

3. REVISIONES Y ACTUALIZACIONES

Autores:	Arturo Fernández Téllez, Gerardo F. Torres del Castillo, Martha A. Palomino Ovando, Areli Montes Pérez, Miller Toledo Solano, Benito Flores Desirena
Fecha de diseño:	Junio de 2017
Fecha de la última actualización:	

Fecha de aprobación por parte de la academia de área, departamento u	
otro.	
Revisores:	
Sinopsis de la revisión y/o	El programa se adecuó en el marco de la actualización
actualización:	curricular 2016.

4. PERFIL DESEABLE DEL PROFESOR (A) PARA IMPARTIR LA ASIGNATURA:

Disciplina profesional:	Física
Nivel académico:	<u>Maestría</u>
Experiencia docente:	<u>2 años</u>
Experiencia profesional:	<u>2 años</u>

5. PROPÓSITO

Conocer, entender y saber distinguir las situaciones en las que debe aplicarse la electrodinámica en lugar de la electrostática, conocer los experimentos de Maxwell y Faraday que lo fundamentan y lo diferencian del fenómeno puramente estático. Describir y explicar fenómenos naturales y procesos tecnológicos en término de conceptos, y leyes fundamentales de la electrodinámica. Aplicar el conocimiento del curso a la resolución de problemas, utilizando herramientas matemáticas formales, así como herramientas computacionales de simulación o lenguajes de programación.

6. COMPETENCIAS PROFESIONALES:

Describirá y explicará los fenómenos electrodinámicos presentes en fenómenos naturales, así como los principios presentes en los procesos tecnológicos, utilizando para ello conceptos, teorías y leyes propios de la materia. Reconocerá, explicará y encontrará la solución a problemas relacionados con fenómenos naturales y/o procesos tecnológicos relacionados con la electrodinámica en forma teórica y/o experimental, haciendo uso de los instrumentos apropiados de laboratorio, computacionales o matemáticos. Demostrar hábitos de trabajo sistemático, persistente, ordenado e innovador que toda actividad científica o docente requiere

7. CONTENIDOS TEMÁTICOS

Unidad de Aprendizaje	Contenido Temático	Referencias
Electrostática	 1.1 Ley de Coulomb campo eléctrico y ley de Gauss 1.2 Potencial eléctrico 1.3 Método de imágenes 1.4 Desarrollo Multipolar del potencial eléctrico. 1.5 Ecuaciones de Poisson y Laplace 1.6 Solución a la ecuación de Laplace y aplicaciones. 	W. Greiner, Classical Electrodynamics, Springer-Verlag New York, 1998. David J. Griffiths, Introduction to Electrodynamics, Pentice Hall, 2013 Marion, J. B. Classical Electromagnetic Radiation, New York, Academic Press, 1995.
2 Campo eléctricos en medios dieléctricos	 2.1 Polarización eléctrica. 2.2 Condiciones de frontera 2.3 Teoría microscópica de la polarización eléctrica. 2.4 Desplazamiento eléctrico. 2.5 Ley de Gauss. 2.6 Energía electrostática. 	David J. Griffiths, Introduction to Electrodynamics, Pentice Hall, 2013 R. W. Greiner, Classical Electrodynamics, Springer-Verlag New York, 1998. Marion, J. B. Classical Electromagnetic Radiation, New York, Academic Press, 1995.
3 Magnetostática	3.1 Corriente y vector densidad de corriente eléctrica.3.2 Fuerza de Lorentz.3.3 Leyes de Biot y Savart y Ampere3.4 Materiales Magnéticos.3.5 Potencial escalar y vectorial magnéticos.	Marion, J. B. Classical Electromagnetic Radiation, New York, Academic Press, 1995.R. David J. Griffiths, Introduction to Electrodynamics, Pentice Hall, 2013 W. Greiner, Classical Electrodynamics, Springer-Verlag New York, 1998.
4.2 Ley de Ampere Maxwell. 4.3 Ley de inducción de Faraday. 4.4 Ecuaciones de Maxwell. 4.5 Condiciones de frontera para el campo 4.6 Potenciales del campo electromagnético y Poynting.	 4.3 Ley de inducción de Faraday. 4.4 Ecuaciones de Maxwell. 4.5 Condiciones de frontera para el campo electromagnético. 4.6 Potenciales del campo electromagnético. 4.7 Energía del campo electromagnético y el teorema de 	Marion, J. B. Classical Electromagnetic Radiation, New York, Academic Press, 1995. David J. Griffiths, Introduction to Electrodynamics, Pentice Hall, 2013 W. Greiner, Classical Electrodynamics, Springer-Verlag New York, 1998. R. Reitz, F. J. Mildford, R. W. Christy, Fundamentos de la teoría electromagnética, Ed. Pearson, 1996.
5 Ondas electromagnéticas	 5.1 La ecuación de onda para el campo electromagnético. 5.2 Propagación de una onda electromagnética en un medio dieléctrico. 5.3 Polarización. 5.4 Presión de radiación. 5.5 Propagación de una onda electromagnética en un medio conductor. 	David J. Griffiths, Introduction to Electrodynamics, Pentice Hall, 2013 Marion, J. B. Classical Electromagnetic Radiation, New York, Academic Press, 1995. W. Greiner, Classical Electrodynamics, Springer-Verlag New York, 1998.
6 Radiación	 6.1 Radiación de un dipolo oscilante. 6.2 Potenciales de Liénard-Wiechert. 6.3 El campo producido por el movimiento de una partícula cargada. 6.4 Radiación debida a una carga acelerada. 6.5 Campos de radiación para velocidades pequeñas. 	R. Reitz, F. J. Mildford, R. W. Christy, Fundamentos de la teoría electromagnética, Ed. Pearson, 1996. W. Greiner, Classical Electrodynamics, Springer-Verlag New York, 1998. Marion, J. B. Classical Electromagnetic Radiation, New York, Academic Press, 1995.

8. ESTRATEGIAS, TÉCNICAS Y RECURSOS DIDÁCTICOS

	Estrategias y técnicas didácticas	Recursos didácticos
•	EL profesor podrá utilizar apuntes, libro de texto guía, diapositivas, videos y simulaciones por computadora para exponer su curso	
•	Los alumnos deberán resolver los ejercicios y tareas asignadas por el profesor. El profesor utilizará ejemplos físicos que involucren	Libros, artículos, y documentos relacionados con la materia, tanto impresos como en
•	conceptos o leyes de la electrodinámica. El estudiante presentará en clase los conceptos, leyes y teorías del curso a través de problemas resueltos y discutirá en clase las soluciones halladas.	formato digital. • Materiales audiovisuales como: montajes audiovisuales, películas, vídeos, programas
•	El estudiante desarrollará mapas conceptuales y mentales de la electrostática, magnetismo y electromagnetismo.	 de televisión, conferencias a distancia Se hará uso de paquetes computacionales o lenguajes de programación para simular
•	El estudiante construirá mapas conceptuales y mentales con los conceptos fundamentales involucrados en la materia y su relación con otras áreas.	situaciones que se presentan en el curso. • El estudiante hará uso de recursos en multimedia, tales como cursos o conferencias interactivas a distancia.
•	Elaboración por parte del estudiante, de un portafolio de retroalimentación y seguimiento, el cual le permitirá al profesor apreciar mejor la capacidad y desempeño de éste.	comorcincias interactivas a distancia.

9. EJES TRANSVERSALES

Eje (s) transversales	Contribución con la asignatura
Formación Humana y Social	Presentará el desarrollo histórico que ocupa la disciplina en el contexto de la ciencia en general y su repercusión sobre el conocimiento y contribución al desarrollo tecnológico, resaltando su uso para el bien social. Contribuirá en la formación de un pensamiento crítico y disciplinado con hábitos de trabajo y rigor científico.
Desarrollo de Habilidades en el uso de las Tecnologías de la Información y la Comunicación	Buscar, interpretar y utilizar adecuadamente la información científica y técnica Hacer uso de simuladores, software comerciales o programas elaborados por los propios estudiantes o profesor, los cuales permitirán simular situaciones electrodinámicas en estructuras o dispositivos Aplicar cálculo numérico y/o computacional para la solución de problemas propios de la electrodinámica
Desarrollo de Habilidades del Pensamiento Complejo	Razonar con lógica, expresarse con claridad y precisión sobre diversos conceptos de la física. Conocer, entender y manejar las bases teóricas del cálculo diferencial e integral, así como las estructuras lógicas de la matemática en general. Construir hipótesis y sacar conclusiones a partir de la observación de fenómenos naturales y/o procesos tecnológicos relacionados con la electrodinámica
Lengua Extranjera	La mayoría de los cursos en esta área están en inglés, por lo cual el curso contribuye aumentar el vocabulario técnico y fluidez de lectura en este idioma.

Innovación y Talento Universitario	En el curso se presentan gran número de conceptos, principios y leyes que servirán o darán base para contribuir con talento e imaginación, ya sea en la solución novedosa puramente teórica de un problema o en la aplicación práctica de un resultado teórico encontrado o ya existente.
Educación para la Investigación	Contribuye en la formación de un pensamiento crítico y de rigor científico, cualidades útiles para el trabajo de investigación.

10. CRITERIOS DE EVALUACIÓ

Criterios			Porcentaje
Exámenes			60
 Participación en clase 			10
Tareas			20
 Presentación de un proyecto 			10
	Total	100%	100

11. REQUISITOS DE ACREDITACIÓN

Estar inscrito como alumno en la Unidad Académica en la BUAP
Asistir como mínimo al 80% de las sesiones para tener derecho a examen
Presentar todos los exámenes parciales obteniendo un promedio aprobatorio
Asistir como mínimo al 80% de las sesiones para tener derecho al examen extraordinario
Cumplir con las actividades académicas y cargas de estudio asignadas que señale el PE