

PLAN DE ESTUDIOS (PE): Licenciatura en Física Aplicada
ÁREA: OPTATIVAS
ASIGNATURA: NANOESTRUCTURAS
CÓDIGO:
CRÉDITOS: 6
FECHA: JUNIO DE 2017

1. DATOS GENERALES

Nivel Educativo:	Licenciatura
Nombre del Plan de Estudios:	Licenciatura en Física Aplicada
Modalidad Académica:	<u>Presencial</u>
Nombre de la Asignatura:	Nanoestructuras
Ubicación:	Nivel Formativo
Correlación:	
Asignaturas Precedentes:	Física Experimental II, Estado Sólido I o Ciencia de Materiales I
Asignaturas Consecuentes:	S/C

2. CARGA HORARIA DEL ESTUDIANTE

0	Horas po	r semana	Total de	Total de
Concepto	Teoría	Práctica	horas por periodo	créditos por periodo
Horas teoría y práctica Actividades bajo la conducción del docente como clases teóricas, prácticas de laboratorio, talleres, cursos por internet, seminarios, etc. (16 horas = 1 crédito)	<u>3</u>	2	90	6

3. REVISIONES Y ACTUALIZACIONES

Autores:	Claudia Mendoza Barrera, Martha Palomino Ovando.
Fecha de diseño:	Junio de 2017
Fecha de la última actualización:	
Fecha de aprobación por parte de la	
academia de área, departamento u	7 de Julio de 2017
otro.	

Revisores:	
Sinopsis de la revisión y/o	El programa se adecuó en el marco de la actualización
actualización:	curricular 2017.

4. PERFIL DESEABLE DEL PROFESOR (A) PARA IMPARTIR LA ASIGNATURA:

T. I LIVI IL DEGLADLE DEL I NOI LO	on (A) I ANA IIII ANTIN LA AGIONATONA.
Disciplina profesional:	Física
Nivel académico:	Doctorado
Experiencia docente:	2 años
Experiencia profesional:	2 años

5. PROPÓSITO

Las nanoestructuras son sistemas con tamaños característicos en el rango de 1-100 nm, que poseen propiedades físicas muy diferentes de las de átomos o moléculas individuales, así como de los materiales en bulto. Este curso interdisciplinario introducirá al estudiante a las bases teóricas, mecanismos de síntesis y técnicas de caracterización empleadas para nanomateriales. Los temas a tratar incluyen una sección introductoria a la mecánica cuántica, físico-química de superficies sólidas, métodos de fabricación y caracterización de nanoestructuras, así como ejemplos de sistemas nanostructurados de diversas dimensiones.

6. COMPETENCIAS PROFESIONALES:

Conocerá las formas de nanoestructuras y sus rutas de fabricación y caracterización.

Desarrollará habilidades de búsqueda de información en investigación de frontera en el área de nanociencia y nanotecnología.

Reconocerá y explicará problemas relacionados con nanociencia y nanotecnología en forma teórica y experimental haciendo uso de los instrumentos apropiados de laboratorio, computacionales o matemáticos.

Demostrará hábitos de trabajo sistemático, persistente, ordenado e innovador que toda actividad científica o docente requiere.

7. CONTENIDOS TEMÁTICOS

Unidad de Aprendizaje	Contenido Temático	Referencias
1. Introducción	Definiciones. Nacimiento de la Nanociencia y Nanotecnología. Aproximaciones Bottom-Up y Top-Down. Retos en la fabricación y caracterización de nanoestructuras.	 Nanostructures and Nanomaterials: Synthesis, Properties and Applications, G. Cao, ICP, London, 2004 Nanomaterials: Synthesis, Properties and Applications, ed. A. S. Edelstein and R. C. Cammarata, IoP (UK), 1998 Hari Singh Nalwa (ed.), Nanostructured materials and nanotechnology (Academic Press, London, 2002). R.P. Feynman, in H.D. Gilbert (ed.), Miniaturization (Reinhold, New York, 1961), pp. 282-296. P. Moriarty, Nanostructured materials, Rep. Prog. Phys. 64, 297 (2001).
2. Propiedades físico-químicas de superficies sólidas	Energía superficial. Potencial químico como función de la curvatura superficial. Estabilización electrostática. Estabilización estérica.	 Nanostructures and Nanomaterials: Synthesis, Properties and Applications, G. Cao, ICP, London, 2004 Nanomaterials: Synthesis, Properties and Applications, ed. A. S. Edelstein and R. C. Cammarata, IoP (UK), 1998 Introduction to Nanotechnology, CP Poole Jr, F.J. Owens, Wiley Onterscience
3. Nanopartículas	Nucleación homogénea. Nucleación heterogénea. Síntesis de nanopartículas cinéticamente confinadas. Propiedades de nanopartículas individuales.	 Nanostructures and Nanomaterials: Synthesis, Properties and Applications, G. Cao, ICP, London, 2004 Nanomaterials: Synthesis, Properties and Applications, ed. A. S. Edelstein and R. C. Cammarata, IoP (UK), 1998 Introduction to Nanotechnology, CP Poole Jr, F.J. Owens, Wiley Onterscience
4. Nanoestructuras uno-dimensionales	Crecimiento espontaneo Síntesis empleando substratos Fibras y otras formas uno-dimensionales Métodos de síntesis	 Nanostructures and Nanomaterials: Synthesis, Properties and Applications, G. Cao, ICP, London, 2004 Nanomaterials: Synthesis, Properties and Applications, ed. A. S. Edelstein and R. C. Cammarata, IoP (UK), 1998 Introduction to Nanotechnology, CP Poole Jr, F.J. Owens, Wiley Onterscience
5. Películas delgadas	Fundamentos de crecimiento de películas y vacío Síntesis por PVD (Physical Vapor Deposition) Síntesis por CVD (Chemical Vapor Deposition) Síntesis por ALD (Atomic Layer Deposition) Superredes Autoensamblado	 Nanostructures and Nanomaterials: Synthesis, Properties and Applications, G. Cao, ICP, London, 2004 Nanomaterials: Synthesis, Properties and Applications, ed. A. S. Edelstein and R. C. Cammarata, IoP (UK), 1998 Introduction to Nanotechnology, CP Poole Jr, F.J. Owens, Wiley Onterscience

Unidad de Aprendizaje	Contenido Temático	Referencias
6. Nanomateriales especiales	Fulerenos y nanotubos Materiales micro y mesoporosos Estructuras núcleo/capa Nanocompositos	 Nanostructures and Nanomaterials: Synthesis, Properties and Applications, G. Cao, ICP, London, 2004 Nanomaterials: Synthesis, Properties and Applications, ed. A. S. Edelstein and R. C. Cammarata, IoP (UK), 1998 Nanotubes and nanowires, C.N.R. Rao, FRS and A. Govindaraj, RSCPublishing (UK), 2003 Introduction to Nanotechnology, CP Poole Jr, F.J. Owens, Wiley Onterscience
7. Síntesis de nanoestructuras por rutas físicas	Microfabricación Litografía Nanomanipulación y nanolitografía Litografía suave	 Nanostructures and Nanomaterials: Synthesis, Properties and Applications, G. Cao, ICP, London, 2004 Nanomaterials: Synthesis, Properties and Applications, ed. A. S. Edelstein and R. C. Cammarata, IoP (UK), 1998 Introduction to Nanotechnology, CP Poole Jr, F.J. Owens, Wiley Onterscience

8. ESTRATEGIAS, TÉCNICAS Y RECURSOS DIDÁCTICOS

Estrategias y técnicas didácticas	Recursos didácticos
 El profesor utilizará en clase ejemplos físicos que involucren el concepto de la nanociencia para la fabricación de nanoestructuras. El estudiante realizará problemas en ciencia básica y aplicada que involucren conceptos, mecanismos de síntesis y caracterización de nanoestructuras. El profesor hará uso de videos para la observación directa de algunos fenómenos. El profesor empleará bases de datos para la búsqueda de investigaciones recientes en los temas presentados. El estudiante realizará un proyecto de investigación que involucre los conceptos que se desarrollan en clase. Trabajará con el profesor en la planeación, elaboración y desarrollo de su trabajo de investigación. El reporte lo presentará por escrito y realizará una presentación oral. El estudiante presentará, en clase, sus ideas sobre los conceptos descritos y discutirá con sus pares su aplicación en el desarrollo de investigación del estado del arte en nanociencia y nanotecnología que discutirá en clase. 	 Impresos (textos): libros, artículos de investigación, periódicos, documentos. Materiales audiovisuales (vídeo): montajes audiovisuales, películas, vídeos, programas de televisión. El estudiante hará uso de recursos en multimedia para enriquecer los conocimientos adquiridos: cursos en línea, bases de datos y simuladores.

9. EJES TRANSVERSALES

Eje (s) transversales	Contribución con la asignatura
Formación Humana y Social	Afianzar hábitos de trabajo para el desarrollo de su profesión, como rigor científico, autoaprendizaje, compromiso y continuidad. Profundizar la tolerancia a su entorno social, aceptando la diversidad cultural, étnica y humana. Ubicará el desarrollo histórico del electromagnetismo y su repercusión sobre el conocimiento y control de la naturaleza, así como del desarrollo tecnológico resaltando su uso para el bien social.
Desarrollo de Habilidades en el uso de las Tecnologías de la Información y la Comunicación	Buscar, interpretar y utilizar adecuadamente la información científica, técnica y tecnológica a su alcance, incluyendo bases de datos y cursos en línea impartidos por otras universidades nacionales y extranjeras. Hacer uso de simuladores para observar experimentos relativos a la nanociencia y nanotecnología.
Desarrollo de Habilidades del Pensamiento Complejo	Razonar con lógica, expresarse con claridad y precisión sobre diversos conceptos de la física. Conocer, entender y saber manejar las bases teóricas de la física fundamental y sus estructuras lógicas. Construir los conceptos y sacar conclusiones a partir de la observación de fenómenos naturales relacionados con la nanociencia y la nanotecnología.
Lengua Extranjera	Leer literatura y redactar presentaciones en inglés.
Innovación y Talento Universitario	Procurar involucrarse en algún laboratorio que desarrolle nanoestructuras
Educación para la Investigación	Verificar y evaluar el ajuste de modelos a la realidad, identificando su dominio de validez.

10. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	50
■ <i>Tareas</i>	10
 Desarrollo y presentación de un proyecto 	25
 Discusión y presentación de un artículo de investigación 	15
Total 100%	100

11. REQUISITOS DE ACREDITACIÓN

Estar inscrito como alumno en la Unidad Académica en la BUAP.
Asistir como mínimo al 80% de las sesiones para tener derecho a examen.
Presentar todos los exámenes parciales obteniendo un promedio aprobatorio.
Asistir como mínimo al 80% de las sesiones para tener derecho al examen extraordinario.
Cumplir con las actividades académicas y cargas de estudio asignadas que señale el PE.