

PLAN DE ESTUDIOS (PE): Licenciatura en Física Aplicada
ÁREA: FÍSICA EXPERIMENTAL
ASIGNATURA: FÍSICA EXPERIMENTAL I
CÓDIGO:
CRÉDITOS: 6
FECHA: DICIEMBRE DE 2016

1. DATOS GENERALES

Nivel Educativo:	Licenciatura
Nombre del Plan de Estudios:	Licenciatura en Física Aplicada
Modalidad Académica:	Presencial
Nombre de la Asignatura:	Física Experimental I
Ubicación:	<u>Básico</u>
Correlación:	
Asignaturas Precedentes:	SR
Asignaturas Consecuentes:	Física Experimental II

2. CARGA HORARIA DEL ESTUDIANTE

Concepto	Horas por semana		Total de horas por periodo	Total de créditos por periodo
	Teoría	Práctica		
Horas teoría y práctica Actividades bajo la conducción del docente como clases teóricas, prácticas de laboratorio, talleres, cursos por internet, seminarios, etc. (16 horas = 1 crédito)	2	<u>3</u>	<u>90</u>	6:

3. REVISIONES Y ACTUALIZACIONES

O. REVIOIONEO I AOTOREIZACIONE	-0
Autores:	Luis Arroyo, Benito Flores, Leticia Fuchs, Martha Palomino, Cupatitzio Ramírez, Obdulio Ramos, Pedro Tolentino, Gerardo Torres.
Fecha de diseño:	Julio de 2002

Fecha de la última actualización:	Diciembre de 2016
Fecha de aprobación por parte de la	
academia de área, departamento u	
otro.	
Revisores:	Javier M. Hernández López
	El programa se adecuó en el marco de la actualización
actualización:	curricular BUAP 2016.

4. PERFIL DESEABLE DEL PROFESOR (A) PARA IMPARTIR LA ASIGNATURA:

== = = =		
Disciplina profesional:	Física	
Nivel académico:	<u>Maestría</u>	
Experiencia docente:	2 años	
Experiencia profesional:	<u>2 años</u>	

5. PROPÓSITO:

A través de la experimentación aprenderá a describir los conceptos principios y leyes físicas sobre los que se sustenta la mecánica, explicará y predecirá el movimiento de una partícula.

Identificará las fundaciones de la investigación científica que regulan el desarrollo de las ciencias y la tecnología.

Relacionará los resultados experimentales, con los modelos teóricos y concluirá sobre la validez de los mismos.

Realizará medidas experimentales exactas para describir sistemas físicos

Se habilitará para recolectar, procesar, analizar y presentar correctamente datos y sus conclusiones. Escribirá reportes siguiendo normas internacionales.

Formular problemas (hipótesis)

Diseñar experimentos (constatar hipótesis)

Analizar datos (teoría de errores) Habilitar al estudiante en la interpretación de los resultados experimentales

Desarrollar en el estudiante la capacidad de análisis y de crítica y desarrollar su iniciativa y creatividad

6. COMPETENCIAS PROFESIONALES:

Interesarse por la adquisición de conocimientos amplios sobre la Naturaleza.

Aplicar en la interpretación de los fenómenos naturales un razonamiento crítico y creativo, sustentado en el análisis y la síntesis a través del desarrollo de su capacidad hipotético-deductiva.

Preocuparse por desarrollar el hábito de superación continua en el orden científico, técnico y cultural.

Describir y explicar fenómenos naturales, procesos tecnológicos en término de conceptos, teorías y principios físicos generales.

Demostrar una cultura científica general y actualizada así como una cultura técnica profesional específica.

Demostrar una actitud cooperativa que fomente la integración de esfuerzos consustancial a la organización actual de la ciencia.

Conocer los principios generales y fundamentos de la Física.

Reconocer, explicar y encontrar la solución de problemas físicos, experimentales y teóricos, haciendo uso de los instrumentos apropiados de laboratorio, computacionales o matemáticos. Demostrar hábitos de trabajo sistemático, persistente, ordenado e innovador que toda actividad científica o docente requiere.

Construir una concepción científica del mundo, esto es, con una visión objetiva, racional y coherente, que le permita explicar los fenómenos físicos a partir de su unicidad y contrariedad. Actuar de acuerdo a una ética profesional con la consecuente responsabilidad social, reconociendo a la ciencia como conocimiento histórico, cultural y social, que debe estar al servicio de la humanidad y del medio ambiente.

Demostrar una cultura integral.

7. CONTENIDOS TEMÁTICOS

Unidad de Aprendizaje	Contenido Temático	Referencias
1. Velocidad instantánea	1 Desplazamiento 2 Velocidad 3 Aceleración	D. C. Baird, Experimentación, una introducción a la teoría de mediciones y al diseño de experimentos, 2ª edición, Prentice Hall, México 1991 G. L. Squires, Practical physics, 3ª edition, Cambridge University Press, 1989
2. Cinemática de un automóvil	Derivación de las ecuaciones de movimiento. Gráficas de posición tiempo Gráficas de velocidad tiempo Gráficas de aceleración tiempo	D. C. Baird, Experimentación, una introducción a la teoría de mediciones y al diseño de experimentos, 2ª edición, Prentice Hall, México 1991 G. L. Squires, Practical physics, 3ª edition, Cambridge University Press, 1989
3. Análisis gráfico	Análisis de errores Ajuste de curvas Mínimos cuadrados	D. C. Baird, Experimentación, una introducción a la teoría de mediciones y al diseño de experimentos, 2ª edición, Prentice Hall, México 1991

Unidad de Aprendizaje	Contenido Temático	Referencias
		G. L. Squires, Practical physics, 3 ^a edition, Cambridge University Press, 1989
4. Causa y efecto	 Leyes de Newton Ley de la Inercia Concepto de masa. 	D. C. Baird, Experimentación, una introducción a la teoría de mediciones y al diseño de experimentos, 2ª edición, Prentice Hall, México 1991
		G. L. Squires, Practical physics, 3 ^a edition, Cambridge University Press, 1989
5. Colisiones	1. Momentum 2. Conservación del Momentum 3. Impulso.	D. C. Baird, Experimentación, una introducción a la teoría de mediciones y al diseño de experimentos, 2ª edición, Prentice Hall, México 1991 G. L. Squires, Practical physics, 3ª
		edition, Cambridge University Press, 1989
6. Sistema mecánico abierto	1. Sistemas de masa variable 2. Energía cinética 3. Energía potencial	D. C. Baird, Experimentación, una introducción a la teoría de mediciones y al diseño de experimentos, 2ª edición, Prentice Hall, México 1991
		G. L. Squires, Practical physics, 3 ^a edition, Cambridge University Press, 1989
7. Movimiento mecánico restringido	 Conservación de la energía mecánica Ley de Hooke Energía potencial elástica 	D. C. Baird, Experimentación, una introducción a la teoría de mediciones y al diseño de experimentos, 2ª edición, Prentice Hall, México 1991
		G. L. Squires, Practical physics, 3 ^a edition, Cambridge University Press, 1989

8. ESTRATEGIAS, TÉCNICAS Y RECURSOS DIDÁCTICOS

Estrategias y técnicas didácticas	Recursos didácticos
 Lluvia o tormenta de ideas Técnica de debate Método de casos Estado del arte Redes de palabras o mapas mentales Grupos de discusión Solución de Problemas Aprendizaje Basado en Problemas Aprendizaje Basado en Proyectos Estudio de casos 	 Impresos (textos): libros, fotocopias, periódicos, documentos Materiales de laboratorio Materiales audiovisuales: Materiales audiovisuales (vídeo): montajes audiovisuales, películas, vídeos, programas de televisión Programas informáticos (CD u on-line) educativos: presentaciones multimedia, enciclopedias, animaciones y simulaciones interactivas Páginas Web, Weblog, unidades didácticas y cursos on-line

9. EJES TRANSVERSALES

Eje (s) transversales	Contribución con la asignatura
Formación Humana y Social	Tener hábitos de trabajo necesarios para el desarrollo de la profesión tales como el rigor científico, el autoaprendizaje y la persistencia. Mostrar tolerancia en su entorno social, aceptando la diversidad cultural, étnica y humana.
Desarrollo de Habilidades en el uso de las Tecnologías de la Información y la Comunicación	Buscar, interpretar y utilizar adecuadamente la información científica y técnica.
Desarrollo de Habilidades del Pensamiento Complejo	Razonar con lógica, expresarse con claridad y precisión sobre diversos conceptos de la física. Conocer, entender y saber manejar las bases teóricas de la matemática fundamental y sus estructuras lógicas.
Lengua Extranjera	Práctica de lectura
Innovación y Talento Universitario	
Educación para la Investigación	Verificar y evaluar el ajuste de modelos a la realidad, identificando su dominio de validez.

10. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
 Exámenes 	70
 Participación en clase 	10
Tareas	20
Total 100%	100

11. REQUISITOS DE ACREDITACION
Estar inscrito como alumno en la Unidad Académica en la BUAP
Asistir como mínimo al 80% de las sesiones para tener derecho a exentar por evaluación continua
y/o presentar el examen final en ordinario o extraordinario
Asistir como mínimo al 70% de las sesiones para tener derecho al examen extraordinario
Cumplir con las actividades académicas y cargas de estudio asignadas que señale el PE