・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Search for the Higgs boson candidate with the CMS Experiment at the LHC Detailed look at $H \rightarrow ZZ^{(*)}$ decay

and general status as of Moriond 2013

Piet Verwilligen

INFN Sezione di Bari

March 15th 2013, Puebla, Mexico

Outline

- SM Higgs Boson
- Ingredients:
 - Large Hadron Collider
 - CMS Collaboration
 - Compact Muon Solenoid

- $H \rightarrow ZZ^{(*)}$
 - Analysis
 - Mass and Couplings
 - Spin and Parity
- Moriond 2013 Status

Higgs production and decays

Valentina Dutta, MIT

Moriond EW, March 2013

Large Hadron Collider

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CMS Collaboration

a Huge amount of work done by many, many people (\sim 3000)

うせん 正則 ふゆやえゆ ふしゃ

Readout Cables – Cooling – Gas – HV – LV

Resistive Plate Chambers

· < □ > < @ > < 표 > < 표 > < 표 > < 0 > <

CMS instantaneous luminosity

In 2010: luminosity increased by 5 orders of magnitude

In 2011: instantaneous luminosity reached 40% of the nominal LHC luminosity In 2012: The LHC reached 77% of the nominal luminosity

Maria Chamizo Hatas

Data taking efficiency and data validated

Data taking efficiency

Increased in 2012 due to development of automatic recovery procedures

Data validated

Very stable over time ~90%

Period	√s [GeV]	Delivered luminosity [fb ⁻¹]	Data taking efficiency [%]	Data validated [%]
2010	7	0.044	92.2	88.6
2011	7	6.13	90.5	90.1
2012	8	23.20	93.5	90.0

CMS superment at LHC / CERN Pata redormed: Mon Max 28 01:16 20 2012 / CER Runet; ent 198098/25408125 Libri apchan: 66 Optil Crossiao: 16992111, 2295

MS

CMS design value: 25 pile up events at luminosity 10³⁴cm⁻²s⁻¹ and 25 ns bunch spacing

The challenge in 2012

Raw $\Sigma E_T \sim 2$ TeV 14 jets with $E_T > 40$ GeV Estimated PU ~ 50

11 / 31

 $H \rightarrow ZZ^{(*)}$

Introduction - Event Selection

leptons

- ▶ $p_{\rm T}(\mu) > 5 \,{\rm GeV}/c, \, \eta^{\mu} < 2.4 \\ p_{\rm T}(e) > 7 \,{\rm GeV}/c, \, \eta^{e} < 2.5$
- $| \frac{\sigma_{\rm IP}}{\rm IP} | < 4.0 \qquad I_{\rm rel}^{\rm PF} < 0.4$

signal

► Narrow resonance O(2 - 4 GeV/c²)

background

- ► *Z* + *X* (reducible)
 - ► Z + jets
 - ▶ *Z* + *bb*
 - estimated from data
- ZZ (ireducible)
 - estimated from MC

13 / 31

Building 4ℓ candidates

Lepton Selection

one on-shell $Z \Rightarrow hard \ell$ one off-shell $Z \Rightarrow soft \ell$:

▶ 50% below 10 GeV/c

this is a big Challenge

- background rate
- selection efficiency

Lepton Resolution and Scale

SAR

Cross Check: Precise Measurement of $Z \rightarrow 4\ell$

16 / 31

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$m_{4\ell}$ distribution

Kinematic Analysis

Improve Signal to Background discrimination by the use of kinematic information

$$\begin{split} \mathcal{K}_{D} &= \frac{\mathcal{P}_{\text{sig}}}{\mathcal{P}_{\text{sig}} + \mathcal{P}_{\text{bkg}}} = \left[1 + \frac{\mathcal{P}_{\text{bkg}}(m_{1}, m_{2}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\text{sig}}(m_{1}, m_{2}, \vec{\Omega} | m_{4\ell})} \right]^{-1} \\ \vec{\Omega} &= (\theta^{*}, \Phi_{1}, \theta_{1}, \theta_{2}, \Phi) \end{split}$$

arXiv:1208:4018[hep-ph]

∃| = ∽へ

Kinematic Analysis

Improve Signal to Background discrimination by the use of kinematic information

$$\begin{split} \mathcal{K}_{D} &= \frac{\mathcal{P}_{\mathsf{sig}}}{\mathcal{P}_{\mathsf{sig}} + \mathcal{P}_{\mathsf{bkg}}} = \left[1 + \frac{\mathcal{P}_{\mathsf{bkg}}(m_{1}, m_{2}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\mathsf{sig}}(m_{1}, m_{2}, \vec{\Omega} | m_{4\ell})} \right]^{-1} \\ \vec{\Omega} &= (\theta^{*}, \Phi_{1}, \theta_{1}, \theta_{2}, \Phi) \end{split}$$

arXiv:1208:4018[hep-ph]

‼≡ ⁄)९(

Probing the Production Mechanisms

dijet tagged

- ► ≥ 2jets
- Sensitive to VH and qqH
- measure Boson Couplings
- 25% VBF (qqH)
- Discriminant: V_D(Δη_{ij}, M_{ij})

untagged

- ► < 2jets</p>
- Sensitive to ggH and ttH
- measure Fermion Couplings

- ▶ 5% VBF (*qqH*)
- Discriminant: $\frac{p_{T}(4\ell)}{m_{4\ell}}$

20 / 31

Probing the Production Mechanisms

dijet tagged

- ► ≥ 2jets
- Sensitive to VH and qqH
- measure Boson Couplings
- 25% VBF (qqH)
- Discriminant: V_D(Δη_{ij}, M_{ij})

untagged

- ► < 2jets</p>
- Sensitive to ggH and ttH
- measure Fermion Couplings

- ▶ 5% VBF (*qqH*)
- Discriminant: $\frac{p_{T}(4\ell)}{m_{4\ell}}$

Significance: $4\ell + 2\ell 2\tau$

Significance: $4\ell + 2\ell 2\tau$

21 / 31

999

Signal Strength - Mass - Production Mechanisms

- Signal Strength (w.r.t. the expectation for a SM Higgs boson): $\mu = 0.91^{+0.30}_{-0.24}$ at 125.8 GeV/ c^2
- Mass Measurement (3D fit using $m_{4\ell}$, $\sigma(m_{4\ell})$, K_D): $m_H = 125.78 \pm 0.48$ (stat) ± 0.15 (syst) GeV/ c^2
- Production Mechanisms Measurement (2D fit using μ_V and μ_F at 125.8 GeV/ c^2):
 - Bosonic signal strength modifier (qqH and VH): μ_V = 1.0^{+2.4}_{-2.3}
 Fermionic signal strength modifier (ggH and ttH): μ_F = 0.9^{+0.5}_{-0.4}

Spin-Parity Measurement

$$\mathcal{D}_{\mathsf{bkg}} = rac{\mathcal{P}_{\mathsf{sig}}}{\mathcal{P}_{\mathsf{sig}} + \mathcal{P}_{\mathsf{bkg}}} = K_D$$
 $\mathcal{D}_{J^P} = rac{\mathcal{P}_{\mathsf{SM}}}{\mathcal{P}_{\mathsf{SM}} + \mathcal{P}_{J^P}} = \left[1 + rac{\mathcal{P}_{J^P}(m_1, m_2, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\mathsf{SM}}(m_1, m_2, \vec{\Omega} | m_{4\ell})}
ight]$

Models

JР	production	comment
0-	$gg \rightarrow X$	pseudoscalar
0_{h}^{+}	$gg \rightarrow X$	higher dim operators
$2^{+}_{m(gg)}$	$gg \rightarrow X$	minimal couplings
$2^{+}_{m(qq)}$	$q\bar{q} \rightarrow X$	minimal couplings
1-00	$q\bar{q} \rightarrow X$	exotic vector
1+	$q\bar{q} \rightarrow X$	exotic pseudovector

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 通言 めん⊙

Spin-Parity Distributions

 \mathcal{D}_{I^P} for $\mathcal{D}_{bkg} > 0.5$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

 $q = -2\ln(\mathcal{L}_{J^P}/\mathcal{L}_{SM})$

25 / 31

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

 $q = -2 \ln(\mathcal{L}_{J^P}/\mathcal{L}_{SM})$

25 / 31

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

 $q = -2 \ln(\mathcal{L}_{J^P}/\mathcal{L}_{SM})$

 $q = -2 \ln(\mathcal{L}_{J^P}/\mathcal{L}_{SM})$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

25 / 31

 $q = -2 \ln(\mathcal{L}_{J^P}/\mathcal{L}_{SM})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

25 / 31

 $q = -2 \ln(\mathcal{L}_{J^P}/\mathcal{L}_{SM})$

25 / 31

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $q = -2 \ln(\mathcal{L}_{J^P}/\mathcal{L}_{SM})$

25 / 31

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

26 / 31

Moriond 2013 $H \rightarrow \tau\tau$ $G \rightarrow gg$

Anatomy of the analysis

- Select isolated, well-identified leptons, $\tau_{\rm h}$
- Topological cuts (e.g. $m_{\rm T}$ in $l\tau_{\rm h}$, $p_{\rm T}({\rm H})$ in $\tau_{\rm h}\tau_{\rm h}$) to suppress backgrounds
- Categorize events based on number of jets, τp_{T}
- Template fit to m_{TT} shape

Combined 1-jet and VBF

$et_h, \mu t_h, e\mu, t_h t_h$

Combined channels and categories, each category in each channel weighted by its S/B

Results consistent with expectation for background + SM scalar at 125 GeV

Η→ττ

Signal strength

- Consistent picture across channels and categories
- Combined best-fit µ̂ of 1.1±0.4

Significance

Η→ττ

- Broad excess observed over range of m_H
- Maximum local significance of 2.930 at 120 GeV,

compatible with presence of 125 GeV SM scalar boson

 Observed (expected) significance of 2.85σ (2.62σ) for m_H = 125 GeV

- Events are separated in exclusive categories with different S/B and resolution.
- \succ Special "tagged" categories enriched in VBF and VH signal production.
 - Improve the sensitivity of the analysis for the coupling measurements.
- Background directly estimated from data
 - Fit the $\gamma\gamma$ invariant mass in categories using polynomials (3rd-5th order)
 - 3
 - Two different analysis
 - Cut-based (CiC)
 - Multivariate (MVA): select and categorize events using a BDT
 - Baseline result: MVA approach (~15% better expected sensitivity)

$H \rightarrow \gamma \gamma$: Results (p-values)

CMS-HIG-13-001

In the following: results of the two analyses are shown side by side

With additional data and new analysis: significance decreased compared to the published results

MVA mass-factorized

Cut-based

Bump at ~125 GeV consistent with expectations

Each event category is weighted by its S/(S+B) only for visualization purpose

$H \rightarrow \gamma \gamma$: Results (channel compatibility) CMS-HIG-13-001

Cut-based MET CMS preliminary MET CMS preliminary is = 7 TeV. L = 5.1 fb⁻¹ (s = 7 TeV, L = 5.1 fb⁻¹ Electron Electron s = 8 TeV, L = 19.6 fb = 8 TeV, L = 19.6 fb Event Class Muon - Event Class Muon 8Te/ Cut-based Combined Combined Di-jet loose Di-jet loose m. = 125.0 GeV m_H = 124.5 GeV a/a___ = 0.78+0.28-0.26 a/a_u = 1.11+0.32-0.30 MVA Di-jet tight **Di-jet tight** Untagged 3 Untagged 3 00 Untagged 2 Untagged 2 Untagged 1 Untagged 1 Untagged 0 Untagged 0 Di-jet Di-iet Cut-based Ð Untagged 3 Untagged 3 M Untagged 2 Untagged 2 Untagged 1 Untagged 1 Untagged 0 Untagged 0 6 8 10 1; Best Fit σ/σ_{sm} -2 0 2 10 2 12 -10 8 n Best Fit o/osm 7+8 TeV:σ/σSM @ 124.5 GeV = 1.11 7+8 TeV: σ/σSM @ 125.0 GeV = 0.78 +0.32-0.30 +0.28-0.268 TeV: σ/σSM @ 125.0 GeV = 0.55 +0.29-0.27 8 TeV: σ/σSM @ 124.5 GeV = 0.93 +0.34-0.32

MVA mass-factorized

Despite the same names, the untagged categories in MVA and Cut-basd are not equivalent

H $\rightarrow\gamma\gamma$: Compatibility among the two analysis CMS-HIG-13-001

Low signal to background ratio a fundamental feature of this channel

- Uncertainty on signal strength driven by statistical fluctuations of the background
- Analysis changes can lead to statistical changes due to fluctuations in selected events and their mass
- The correlation coefficient between the MVA and cut-based signal strength measurements is found to be r=0.76 (estimated using jackknie (including correlation)

MVA vs CiC 7+8 TeV	1.5 σ
MVA vs CiC 8 TeV only	1.8 σ
Updated MVA vs published (5.3/fb &TeV)	1.6 σ
Updated CiC vs published (5.3/fb 8TeV)	0.5 σ

Observed changes in results and differences between analyses are all statistically compatible at less than 2σ

Mass measurement

$H \rightarrow ZZ \rightarrow 4I$

- Lepton momentum scale & resolution validated with Z, J/ψ , and $\Upsilon \rightarrow II$ samples.
- m4l uncertainties due to lepton scale:

$H \rightarrow \gamma \gamma$

Systematic errors dominated by overall photon energy scale: 0.47%

(mostly coming from extrapolation from $Z \rightarrow H$ and $e \rightarrow \gamma$)

Measurements in the two channels are well compatible.

Conclusions

- ► The LHC has had a tremendeously succesful 3 years of operation
- \blacktriangleright The CMS experiment has succesfully analyzed $\sim 25\,{\rm pb}^{-1}$ of data
- A new boson has been detected by ATLAS and CMS with spin and parity very consistent with the Standard Model Higgs boson

Thanks to ...

Conclusions

- ► The LHC has had a tremendeously succesful 3 years of operation
- \blacktriangleright The CMS experiment has succesfully analyzed $\sim 25\,{\rm pb}^{-1}$ of data
- A new boson has been detected by ATLAS and CMS with spin and parity very consistent with the Standard Model Higgs boson

Thanks to ...

▶ the colleagues of LHC for operating such a wonderful machine

Conclusions

- ► The LHC has had a tremendeously succesful 3 years of operation
- \blacktriangleright The CMS experiment has succesfully analyzed $\sim 25\,{\rm pb}^{-1}$ of data
- A new boson has been detected by ATLAS and CMS with spin and parity very consistent with the Standard Model Higgs boson

Thanks to ...

- ▶ the colleagues of LHC for operating such a wonderful machine
- the colleagues of CMS for making CMS such a wonderful experiment

Conclusions

- ► The LHC has had a tremendeously succesful 3 years of operation
- \blacktriangleright The CMS experiment has succesfully analyzed $\sim 25\,{\rm pb}^{-1}$ of data
- A new boson has been detected by ATLAS and CMS with spin and parity very consistent with the Standard Model Higgs boson

Thanks to ...

- ▶ the colleagues of LHC for operating such a wonderful machine
- the colleagues of CMS for making CMS such a wonderful experiment
- the colleagues I stole some slides from

Conclusions

- ► The LHC has had a tremendeously succesful 3 years of operation
- \blacktriangleright The CMS experiment has succesfully analyzed $\sim 25\,{\rm pb}^{-1}$ of data
- A new boson has been detected by ATLAS and CMS with spin and parity very consistent with the Standard Model Higgs boson

Thanks to ...

- ▶ the colleagues of LHC for operating such a wonderful machine
- the colleagues of CMS for making CMS such a wonderful experiment
- the colleagues I stole some slides from
- the CMS team in BUAP for inviting me

Conclusions

- ► The LHC has had a tremendeously succesful 3 years of operation
- \blacktriangleright The CMS experiment has succesfully analyzed $\sim 25\,{\rm pb}^{-1}$ of data
- A new boson has been detected by ATLAS and CMS with spin and parity very consistent with the Standard Model Higgs boson

Thanks to ...

- ▶ the colleagues of LHC for operating such a wonderful machine
- the colleagues of CMS for making CMS such a wonderful experiment
- the colleagues I stole some slides from
- the CMS team in BUAP for inviting me
- you for all attention

Sources

CMS Results ::

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

- $\blacktriangleright \ H \to 4\ell :: \ {\tt https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13002TWiki}$
- ▶ $H \rightarrow \tau \tau$:: https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13004TWiki
- Moriond EWK ::

https://indico.in2p3.fr/conferenceOtherViews.py?view=standard&confId=7411

Moriond QCD ::

http://moriond.in2p3.fr/QCD/2013/MorQCD13Prog.html

Presentations

- M. Chamizo Llatas Aspen 2013 The CMS Detector
- ▶ V. Dutta Moriond 2013 $H \rightarrow \tau \tau$
- C. Ochando Moriond 2013 $H \rightarrow \gamma \gamma$

31 / 31

Appendix

LHC Consolidation Works 2013-2014

ity Assurance tests

to be replaced

replaced

sure relief devices to bring the total to 1344 13 kA circuits in the 16 main electrical feedhoxes

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

- · Extrapolation to signal region:
 - SS/OS factor from MC, cross-checked with data
 - lepton mis-identified probability (corrected for difference in composition of converted photon between CR & sample to extract misID probability)
 - Validation: samples with relaxed charged and/or flavor requireme
 - Final estimate: combination of the two methods (yields in control regions & part of the uncertainties un-correlated)

110 < m4l < 160 GeV

Channel	4e	4μ	2e2µ	Γ
ZZ background	6.6 ±0.8	13.8 ± 1.0	18.1 ± 1.3	3
Z+X	2.5 ± 1.0	1.6 ± 0.6	4.0 ± 1.6	
All background expected	9.1 ± 1.3	15.4 ± 1.2	22.0 ± 2.0	4
$m_{H} = 125 \text{ GeV}$	3.5 ± 0.5	6.8 ±0.8	8.9 ±1.0	1
$m_H = 126 \text{ GeV}$	3.9 ± 0.6	7.4 ±0.9	9.8 ± 1.1	2
Observed	16	23	32	

List of reconstructed particles: can be used like a list of stable particles from a generator

Valentina Dutta, MIT

Moriond EW, March 2013

Also use these particles to reconstruct tau decays, lepton and photon isolation

Valentina Dutta, MIT

Moriond EW, March 2013