Teoría de cuerdas en búsqueda del MSSM

Saúl Ramos-Sánchez

IFUNAM

Fac. de Ciencias Físico Matemáticas, BUAP Junio 8, 2011

En colaboración con

H.P. Nilles, S. Raby, M. Ratz, P. Vaudrevange: (2006-2008) O. Lebedev: arxiv:0912.0477

S. Parameswaran, I. Zavala:

arxiv:1009.3931

Cuerdas

Cuerdas

1970's: partículas \rightarrow cuerdas

80-90's: 5 teorías de supercuerdas (+branas)

consistencia cuántica (no anomalías, "fantasmas", taquiones):

 \rightarrow

- * gravitón incluido
- * bosones de norma
- * supersimetría
- * 10 dimensiones

Phenomenología. A dónde vamos ?

 $SM = QCD (SU(3)) + EW (SU(2) \times U(1)_Y)$

Relatividad general (RG): Cosmología

(:)

Por qué teoría de cuerdas ?

- ☺ predice SUSY ✓
- \bigcirc incluye gravedad \rightarrow unificación \checkmark
- \odot es una teoría cuántica ightarrow gravedad cuántica \checkmark
- 🙂 🛛 incluye grupos de norma naturalmente 🗸
- \bigcirc puede reproducir el espectro exacto del MSSM \checkmark
- \bigcirc describe mecanismos de SUSY $\rightarrow EW \checkmark$
- \bigcirc tiene muchas simetrías internas ightarrow sabor, estabilidad,... \checkmark

Por qué teoría de cuerdas ?

- ☺ predice SUSY ✓
- \bigcirc incluye gravedad \rightarrow unificación \checkmark
- \odot es una teoría cuántica ightarrow gravedad cuántica \checkmark
- 🙂 incluye grupos de norma naturalmente 🗸
- \bigcirc puede reproducir el espectro exacto del MSSM \checkmark
- \bigcirc describe mecanismos de SUSY \rightarrow EW \checkmark
- \bigcirc predice D = 10
- \bigcirc tiene simetrías de norma muy grandes (e.g. SO(32))
- genera QFTs con muchos parámetros libres
- 😟 ha sido cuantizada sólo en fondos particulares
- ningún resultado verificable!

$$\bigcirc$$
 $D = 10 \xrightarrow{\text{cómo?}} D = 4$

$$\bigcirc \quad D = 10 \stackrel{\text{cómo?}}{\longrightarrow} D = 4$$

• mundos brana:

$$\textcircled{O} \quad D = 10 \stackrel{\text{cómo?}}{\longrightarrow} D = 4$$

• mundos brana:

• compactificaciones: CY u orbifolds

$$\textcircled{O} \quad D = 10 \stackrel{\text{cómo?}}{\longrightarrow} D = 4$$

• mundos brana:

• compactificaciones: CY u orbifolds

Orbifolds

Dixon, Harvey, Vafa, Witten (1985-86) Ibáñez, Nilles, Quevedo (1987) Casas, de la Macorra, Mondragón, Muñoz (1989-1990) Katsuki, Kawamura, Kobayashi, Ohtsubo, Ono, Tanioka (1990) Erler, Klemm (1993) Förste, Nilles, Vaudrevange, Wingerter (2004) Buchmüller, Hamaguchi, Lebedev, Ratz (2004-06) Kobayashi, Nilles, Plöger, Raby, Ratz (2006) Förste, Kobayashi, Ohki, Takahashi (2006) Kim, Kyae (2006-07) Choi, Kim (2006-08)

...

Compactificaciones en Orbifolds

Espacio singular muy pequeño $R \ll 1mm \rightarrow$ no lo vemos!!

Kaluza, Klein (1920s)

La cuerda heterótica

• 10 D

- SUSY (de hecho, SUGRA) $\mathcal{N}=1
 ightarrow {
 m quiralidad}$ 🗸
- bosones de norma

 $E_8 \times E_8 \supset E_6, SO(10), SU(5), SU(4) \times SU(2)_L \times SU(2)_R, \mathcal{G}_{SM} \checkmark$

- sólo cuerdas cerradas (no D-branas)
 - \rightarrow interacciones calculables exactamente \checkmark
- dualidades con

heterótica SO(32), tipo IIB, teoría F,...

Orbifold de 6D con simetría \mathbb{Z}_2 en 10D

Orbifolds heteróticos: cuerdas y estados

Orbifolds heteróticos: cuerdas y estados

 $\mathcal{G}_{4D} = \cap$ grupos de norma locales

Orbifolds heteróticos: cuerdas y estados

 $\rightarrow W, K, \mathcal{L}, \Lambda, \dots$

$\mathbf{16} ightarrow$ familia completa de quarks y leptones

 \rightarrow primer reto: 3 familias de quarks y leptones

 \rightarrow primer reto: 3 familias de quarks y leptones \rightarrow segundo reto: ${\cal G}_{4D}={\cal G}_{SM}$

→ primer reto: 3 familias de quarks y leptones → segundo reto: $G_{4D} = G_{SM}$ → tercer reto: quark top pesado

 \rightarrow posible en cuerdas?

Minilandscape: \mathbb{Z}_6 –II

- Construir todos los orbifolds Z₆–II aceptables (no anomalías)
- Elegir los que tengan grupos locales SO(10)
- ullet Elegir los que tengan spinores $oldsymbol{16}$ locales
- Elegir los que tengan \mathcal{G}_{SM} in 4D
- Elegir los que tengan 3 familias
- Elegir los que tengan dobletes de Higgs
- Elegir los que tengan top pesado
- Elegir los que no tengan materia exótica

Elle Edit View Go Bookmarks Tools Help Image: Second Seco
🖕 + 🖕 - 🎒 🔕 🗞 🌆 http://www.th.physik.uni-bonn.de/nilles/orbifolds/ 💌 🕲 Go 💽
iii The c++ orbifolder
orbifolder on-line download program download source code hetp / about The C++ Orbifolder version: ßeta (release) platform: tinux Saul Ramoe-Sänchez, Partice K-S. Vaulerevange & Akin Wingerfer

Minilandscape: resultados

- \bigcirc 10⁷ orbifolds \mathbb{Z}_6 –II aceptables \rightarrow "parches fértiles"
 - ~ 300 "MSSM"
 - sin partículas exóticas
 - unificación $\mathcal{G}_{SM} \subset SO(10)$
 - top pesado
 - $m_{3/2} \sim {\rm TeV}$
 - seesaw
 - "texturas" no triviales
 - paridad R
 - doublet-triplet splitting
 - axion QCD

Minilandscape: resultados

 \odot 10^7 orbifolds \mathbb{Z}_6 -II aceptables \rightarrow "parches fértiles"

- $\bullet \sim 300$ "MSSM"
- sin partículas exóticas unificación $\mathcal{G}_{SM} \subset SO(10)$ requerido
- top pesado
- $m_{3/2} \sim \text{TeV}$

seesaw

- "texturas" no triviales
- paridad R
- o doublet-triplet splitting
- axion QCD

Minilandscape: resultados

Saúl Ramos-Sánchez Teoría de cuerdas en búsqueda del MSSM

Input:

• Shift $V^{\text{SO}(10),1}$

• líneas de Wilson W_2 , W_3 $W_2 = \left(\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \left(1, -1, -\frac{5}{2}, -\frac{3}{2}, -\frac{1}{2}, -\frac{5}{2}, -\frac{3}{2}, \frac{3}{2}\right)$ $W_3 = \left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right) \left(\frac{10}{3}, 0, -6, -\frac{7}{3}, -\frac{4}{3}, -5, -3, 3\right)$

"reglas de selección" para los acoplamientos

Output:

• $\mathcal{G}_{4D} = \mathcal{G}_{SM} \times \mathrm{U}(1)_{B-L} \times [\mathrm{SO}(8) \times \mathrm{SU}(2) \times \mathrm{U}(1)^6]$

3 familias (número neto)									
3	$(3,2;1,1)_{(1/6,1/3)}$	q_i							
3	$(\overline{3},1;1,1)_{(-2/3,-1/3)}$	\bar{u}_i							
3	$(1,1;1,1)_{(1,1)}$	\bar{e}_i							
3 + 1	$(\overline{3},1;1,1)_{(1/3,-1/3)}$	\bar{d}_i	1	$(3,1;1,1)_{(-1/3,1/3)}$	d_i				
3 + 1	$(1,2;1,1)_{(-1/2,-1)}$	ℓ_i	1	$({f 1},{f 2};{f 1},{f 1})_{(1/2,1)}$	$\bar{\ell}_i$				
Higgses									
1	$({f 1},{f 2};{f 1},{f 1})_{(-1/2,0)}$	h_d	1	$({f 1},{f 2};{f 1},{f 1})_{(1/2,0)}$	h_u				
Singuletes del SM									
2	$({f 1},{f 1};{f 1},{f 1})_{(0,\pm2)}$	χ_i	18	$(1,1;1,1)_{(0,0)}$	s_i^0				
20	$(1,1;1,2)_{(0,0)}$	h_i	5	$(1,1;8,1)_{(0,0)}$	w_i				
15	$(1,1;1,1)_{(0,1)}$	\bar{n}_i	12	$(1,1;1,1)_{(0,-1)}$	n_i				
3	$(1,1;1,2)_{(0,1)}$	$\bar{\eta}_i$	3	$(1,1;1,2)_{(0,-1)}$	η_i				
Exóticos									
2	$(1, 2; 1, 2)_{(0,0)}$	y_i	4	$(1,2;1,1)_{(0,*)}$	m_i				
2	$(1,1;1,2)_{(1/2,1)}$	x_i^+	2	$(1,1;1,2)_{(-1/2,-1)}$	x_i^-				
3	$(\overline{3},1;1,1)_{(1/3,2/3)}$	$ar{\delta}_i$	3	$(3,1;1,1)_{(-1/3,-2/3)}$	δ_i				
4	$(\overline{3},1;1,1)_{(-1/6,*)}^{(1/0,2/0)}$	\overline{v}_i	4	$(3,1;1,1)_{(1/6,*)}$	v_i				
20	$(1,1;1,1)_{(1/2,*)}$	s_i^+	20	$(1,1;1,1)_{(-1/2,*)}$	s_i^-				
2	$(1,1;8,1)_{(0,-1/2)}$	f_i	2	$(1,1;8,1)_{(0,1/2)}$	$\bar{f_i}$				

Lebedev, Nilles, Raby, S.R-S., Ratz, Vaudrevange, Wingerter (2007)

3 familias (número neto)									
3	$(3,2;1,1)_{(1/6,1/3)}$	q_i							
3	$(\overline{3},1;1,1)_{(-2/3,-1/3)}$	\bar{u}_i							
3	$(1,1;1,1)_{(1,1)}$	\bar{e}_i							
3+1	$(\overline{3},1;1,1)_{(1/3,-1/3)}$	\bar{d}_i	1	$(3,1;1,1)_{(-1/3,1/3)}$	d_i				
3+1	$({f 1},{f 2};{f 1},{f 1})_{(-1/2,-1)}$	ℓ_i	1	$(1,2;1,1)_{(1/2,1)}$	$\bar{\ell}_i$				
Higgses									
1	$(1, 2; 1, 1)_{(-1/2, 0)}$	h_d	1	$(1,2;1,1)_{(1/2,0)}$	h_u				
Singuletes del SM									
2	$(1, 1, 1, 1)_{(0, \pm 2)}$	χ_i	18	$(1,1;1,1)_{(0,0)}$	s_i^0				
20	$(1,1;1,2)_{(0,0)}$	h_i	5	$(1,1;8,1)_{(0,0)}$	w_i				
15	$(1,1;1,1)_{(0,1)}$	\bar{n}_i	12	$(1,1;1,1)_{(0,-1)}$	n_i				
3	$(1,1;1,2)_{(0,1)}$	$\bar{\eta}_i$	3	$({f 1},{f 1};{f 1},{f 2})_{(0,-1)}$	η_i				
Exóțicos									
2	$(1, 2; 1, 2)_{(0,0)}$	y_i	4	$(1,2;1,1)_{(0,*)}$	m_i				
2	$(1,1;1,2)_{(1/2,1)}$	x_i^+	2	$(1,1;1,2)_{(-1/2,-1)}$	x_i^-				
3	$(\overline{3},1;1,1)_{(1/3,2/3)}$	ā.	3	$(3,1;1,1)_{(-1/3,-2/3)}$	δ_i				
4	$(\overline{3},1;1,1)_{(-1/6,*)}^{(-1/6,*)}$	\bar{v}_i		$(3,1;1,1)_{(1/6,*)}$	v_i				
20	$(1,1;1,1)_{(1/2,*)}$	s_i^+	X, \bar{X}	$(1,1;1,1)_{(-1/2,*)}$	s_i^-				
2	$(1,1;8,1)_{(0,-1/2)}$	f_i	2	$(1,1;8,1)_{(0,1/2)}$	$\bar{f_i}$				

Lebedev, Nilles, Raby, S.R-S., Ratz, Vaudrevange, Wingerter (2007)

Saúl Ramos-Sánchez Teoría de cuerdas en búsqueda del MSSM

Lebedev, Nilles, Raby, S.R-S., Ratz, Vaudrevange, Wingerter (2007)

• En SO(10) GUT: $\overline{\nu} \in \mathbf{16}$ $\overline{\nu}$: $(\mathbf{1}, \mathbf{1})_{0,+1}$ de $\mathcal{G}_{SM} \times \mathbf{U}(\mathbf{1})_{B-L} \subset SO(10)$

- En SO(10) GUT: $\overline{\nu} \in \mathbf{16}$ $\overline{\nu}$: $(\mathbf{1}, \mathbf{1})_{0,+1}$ de $\mathcal{G}_{SM} \times \mathbf{U}(\mathbf{1})_{B-L} \subset \mathrm{SO}(10)$
- B-L identificada al restringir:

$$\ \, \mathbf{0} \ \, \frac{q_{B-L}}{(\mathsf{SM})} \stackrel{!}{=} \mathsf{estándar}$$

2 materia $\stackrel{!}{=} 3$ gen. con grupo $\mathcal{G}_{SM} \times U(1)_{B-L}$

En SO(10) GUT: v ∈ 16 v : (1, 1)_{0,+1} de G_{SM}×U(1)_{B-L} ⊂ SO(10)
B-L identificada al restringir: q_{B-L}(SM) [!]= estándar
materia [!]= 3 gen. con grupo G_{SM}×U(1)_{B-L}
Romper B-L espont. (s) ≠ 0 con 3q_{B-L}(s) = 2n ⇒ Z₂^{Lebedev, Nilles, Raby, R-S., Ratz, Vaudrevange, Wingerter (2006)}

• En SO(10) GUT: $\overline{\nu} \in \mathbf{16}$ $\overline{\nu}$: (1, 1)_{0,+1} de $\mathcal{G}_{SM} \times \mathrm{U}(1)_{B-L} \subset \mathrm{SO}(10)$ • B-L identificada al restringir: $\bigcirc q_{B-L}(SM) \stackrel{!}{=} \text{estándar}$ 2 materia $\stackrel{!}{=} 3$ gen. con grupo $\mathcal{G}_{SM} \times U(1)_{B-L}$ Lebedev, Nilles, Raby, R-S., Ratz, Vaudrevange, Wingerter (2006) En el ML • $\langle s_{q_{B-I}=+2} \rangle \neq 0$ \Rightarrow $U(1)_{B-L} \rightarrow \mathbb{Z}_2^R$ "Paridad de materia" $(-1)^{3q_{B-L}}$

masas de Majorana: $\bar{\nu} \, \bar{\nu} \, (\text{singuletes})$

En un modelo específico $21 \ \bar{\nu}^{+1} + 18 \ \bar{\nu}^{-1}$ $W_{\text{see-saw}} = M^{ij} \ \bar{\nu}_i \ \bar{\nu}_j + Y_{\nu}^{ij} \ \phi_u \ \ell_i \ \bar{\nu}_j$

Otras texturas en un ejemplo

Acoplamientos de Yukawa pueden ser calculados explícitamente:

$$egin{array}{rll} Y_u &=& \left(egin{array}{ccc} 0 & 0 & s^8 \ 0 & 0 & s^8 \ s^5 & s^5 & 1 \end{array}
ight) \ Y_d &=& \left(egin{array}{ccc} 1 & s^3 & 0 \ 1 & s^3 & 0 \ s & s^4 & s^6 \end{array}
ight) \ Y_e &=& \left(egin{array}{ccc} 1 & 1 & s \ s & s & s^2 \ 0 & 0 & s^6 \end{array}
ight) \end{array}$$

No viables exp., pero es un inicio!

- fenomenología de cuerdas se acerca (lentamente) a preguntas interesantes ⁽²⁾
- primeros modelos con propiedades prometedoras (MSSM y NMSSM)⁽²⁾
- simetría $\mathbb{Z}_2^R o$ protón estable, seesaw, LSP,... \bigcirc
- acoplamientos calculables
- simetrías R + . . . provienen de cuerdas (no *ad hoc*) 🙂

(:)

Lo que falta...

- parámetros "libres" \rightarrow moduli stabilization (en proceso)
- explicación vacío de Sitter (en proceso)
- inflación (en proceso)
- simetrías de sabor (en proceso)
- singularidades en espacio compacto → inconsistencias grav.??

```
:
```

• predicciones para el LHC

EI NMSSM

Por qué el NMSSM ?

• El problema μ

$$\mu H_u H_d \subset W$$
$$\lambda S H_u H_d \subset W_{\mathsf{NMSSM}} \quad \rightarrow \quad \mu = \lambda \langle S \rangle$$

• El problema μ

$$\mu H_u H_d \subset W$$
$$\lambda S H_u H_d \subset W_{\mathsf{NMSSM}} \quad \rightarrow \quad \mu = \lambda \langle S \rangle$$

- El problema de fine-tuning / pequeña jerarquía: Predicción SUSY (tree level) $m_h \leq m_Z$ vs. límite LEP
 - $(\mathsf{MS})\mathsf{SM} \qquad m_h > 114 \; \mathsf{GeV} \qquad \to \widetilde{q} \; \mathrm{muy} \; \mathrm{masivos} \\ \mathrm{gran} \; \mathrm{fine-tuning} \; \textcircled{\textcircled{\sc op}}$

EI NMSSM

MSSM + singulete S, tal que

$$W = W_{MSSM} + \lambda S H_u H_d + \frac{1}{3} \kappa S^3$$

E.g. en el límite PQ (ligeramente) roto ($\kappa \ll 1$)

NMSSM: el límite PQ

La simetría $U(1)_{PQ}$

 $W_{NMSSM} = \lambda S H_u H_d \quad \Rightarrow \quad H_{u,d} \to e^{i\alpha} H_{u,d}, \ S \to e^{-2i\alpha} S$

El rompimiento espontaneo de $U(1)_{PQ} \rightarrow$ escalar CP-impar:

 $\rightarrow \qquad a_{\rm PQ} = \sin 2\beta (a \, {\rm Im} \, H_u + b \, {\rm Im} \, H_d) + c \, {\rm Im} \, S$

Más importante

$$Br(h
ightarrow 2 \; a_{
m PQ}) \gg Br(h
ightarrow b ar{b})$$
 Dobrescu, Landsberg, Matchev (2001)

LEP menos sensible a $h \rightarrow 2 \ a_{PQ}$ \Rightarrow límite se reduce: $m_h > 90 \text{ GeV } \checkmark$

NMSSM: el límite PQ

En el (MS)SM:

límite LEP: $m_h > 114 \text{ GeV}$

NMSSM: el límite PQ

En el NMSSM:

límite LEP: $m_h > 105~{\rm GeV}$ para τ 's $m_h > 90~{\rm GeV}$ para quarks ligeros

NMSSMs heteróticos en el ML

En órbifolds heteróticos

- SM singulete S sin masa
- $\lambda S H_u H_d$, con $\lambda \sim \mathcal{O}(1)$
- término μ "normal" altamente suprimido
- S cargado bajo otros grupos ("ocultos")

$$\Rightarrow \quad \lambda = 1 + \mathcal{O}(0.1)^n \sim \mathcal{O}(1), \qquad \kappa = \mathcal{O}(0.1)^m \ll 1$$

NMSSMs heteróticos en el ML

En órbifolds heteróticos

- SM singulete S sin masa
- $\lambda S H_u H_d$, con $\lambda \sim \mathcal{O}(1)$
- término μ "normal" altamente suprimido
- S cargado bajo otros grupos ("ocultos")

$$\Rightarrow \quad \lambda = 1 + \mathcal{O}(0.1)^n \sim \mathcal{O}(1), \qquad \kappa = \mathcal{O}(0.1)^m \ll 1$$

En ML, típicamente límite PQ

$$\langle s \rangle \sim \mathcal{O}(0.1)$$
 fijo demandando $D = 0$
 $\lambda \sim 1, \ \kappa \sim 10^{-6} \ \rightarrow \ \text{límite con } m_{a_{PQ}} \sim 10^2 \text{ MeV} - \text{GeV}$

 $\rightarrow\,$ resuelve el problema de fine-tuning & problema μ en el ML $\rightarrow\,$ evade/se ajusta a límite de LEP