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Motivations from Quantum Gravity

The formulation of a quantum theory of gravity leads to technical as well as conceptual
difficulties

Quantization problems
Incompatibility between the foundational principles of GR and QT:

Standard quantization prescriptions require a fixed, non-dynamical background metric
GR: spacetime is a physical and dynamical system + diff invariance

Failure of standard quantization technique for QFT: non-renormalizable field theory

⇒ Background independent quantum field theory

Interpretational problems
The problem of time. (frozen picture, no time)

What is an observable in QG? (locality/non locality issue)
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Problems (I)

The problem of time arises from the different role time plays in QM and GR:

In Quantum Theory
Absolute notion of time.
Time is an external parameter, i.e., independent of the state of the system.
Evolution is described w.r.t. this external time.
In QFT evolution requires a fixed background metric independent of the fields.
Probability is conserved in time.

In General Relativity
Dynamical time.
The metric is dynamically coupled with matter fields.
No background time at all.
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Problems (II)

The problem of locality originates from the symmetries of GR:

In quantum field theory in Minkowski spacetime, causally separated systems are
independent; cluster decomposition of the S-matrix: S = S1S2

We can separate the system from the rest of the universe.

The notion of causal separation relies on the background metric. In a background
independent context there is no way to isolate the system from the rest of the
universe.
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Conclusion
The standard formulation of QT has limitations that obstruct its application in a general
relativistic context.

Question
Can we sufficiently extend the standard formulation of QT in order to render it
compatible with the symmetries of GR?

no explicit reference to a background (space)time

description of physics in a manifestly local way

YES, using:

The mathematical framework of topological quantum field theory.

A generalization of the Born rule.
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Standard QFT

Standard Minkowski-based QFT

States defined at instants of time, flat
spacelike hypersurfaces

Evolution in time implemented by a unitary
operator

Probability is conserved in time

This structure is dictated by canonical quantiza-
tion prescriptions and the standard picture of dy-
namics.

QFT on curved spacetime

States defined on spacelike
Cauchy surfaces

Evolution between Cauchy
surfaces non-unitary in general
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The General Boundary Formulation

General boundary formulation of QFT

States and space states defined on
general spacetime boundary
hypersurfaces

Evolution defined inside the region
enclosed by the boundary

Generalization of the notion of transition
amplitude (for connected boundary there
is no distinction between initial and final
states)

There are aspects of the GBF that cannot be described within standard QT.
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Advantages of the GBF

The general boundary formulation of QFT appears to be interesting for several
reasons,

1 offer a new perspective on QFT and a better understanding of its geometrical
aspects (clarification of the holographic principle, boundaries, horizons);

2 can treat situations where standard QFT fails:
QFT in presence of a static black hole: rigorous treatment implementable with the
hypercylinder geometry,
S-matrix in Anti-de Sitter spacetime;

3 may solve the interpretation problems of background independent QFT: a
quantum semiclassical gravitational state ("peacked" at a classical metric) on the
boundary hypersurface will provide all the relevant spaciotemporal informations,
and solve the problem of time and localization;

4 GBF and quantum gravity:
three dimensional quantum gravity is already formulated as a TQFT and fits
"automatically" into the GBF;
the GBF is already used in spin foam approaches to quantum gravity (Rovelli’s group in
Marseille);
other approaches to quantum gravity can be adapted to the GBF (Group Field Theory).
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The General Boundary Formulation and Quantum Gravity

Main statement:
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Basic structures

The GBF associates algebraic structures to geometrical entities satisfying a set of
axioms (as TQFT).

To each oriented hypersurface Σ associate a Hilbert space HΣ of states such that:

Changing the orientation of Σ⇒ dualization of the state space: HΣ = H∗Σ.
(Decomposition rule) If Σ = Σ1 ∪ Σ2 is the disjoint union of two disconnected
hypersurfaces, then HΣ = HΣ1 ⊗HΣ2 .

To each spacetime region M with boundary ∂M associate a linear amplitude map
ρM : H∂M → C, such that:

If ∂M = Σ1 ∪ Σ2, the map ρM gives rise to an isomorphism of state spaces
ρ̃M = HΣ1 →HΣ2 .
(Gluing rule) If M and N are adjacent regions, then ρM∪N = ρM ◦ ρN . The
composition ◦ involves a sum over a complete basis on the boundary hypersurface Σ
shared by M and N .

ρ̃M∪N : HΣM
→ H∗ΣN

Standard transition amplitudes of QFT can be recover from the GBF:
ρ[t1,t2](ψt1 ⊗ ηt2) = 〈η|U(t1, t2)|ψ〉.
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Generalized probability interpretation

In quantum theory, probabilities are generally conditional probabilities: probability to
observe a specific state given that some other specific state was prepared. Then
probability depends on two type of data: preparation and observation.

In the GBF, both type of data encoded through closed subspaces of the state space
H∂M :

S ⊂ H∂M representing preparation

A ⊂ H∂M representing observation

The probability that the system is described by A given that it is described by S is:

P (A|S) =
|ρM ◦ PS ◦ PA|2

|ρM ◦ PS |2
(1)

PS and PA are the orthogonal projectors onto the subspaces.
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Recovering of standard transition probability

The expression (1) of the generalized probability reduces to a standard transition
probability for a standard transition amplitude.

Spacetime region: M = [t1, t2]× R3

Boundary: ∂M = Σt1 ∪ Σt2
State space: H∂M = Ht1 ⊗H∗t2
The preparation corresponds to the subspace S = ψ ⊗Ht2 ⊂ H∂M .
The observation corresponds to the subspace A = Ht1 ⊗ η ⊂ H∂M .

Then formula (1) yields

P (A|S) =
|ρM ◦ PS ◦ PA|2

|ρM ◦ PS |2
=
|ρM (ψ ⊗ η)|2

1
= |〈η|U(t1, t2)|ψ〉|2.
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Probability conservation

Probability conservation in time is generalized to probability conservation in spacetime.
Consider a region M and an adjacent region N "deforming" M to M ′ = M ∪N :

Suppose that the amplitude map ρN : H∂N → C associated with N induces a
unitary map ρ̃ : H∂M → H∂M′ .
Let S ⊂ H∂M and A ⊂ H∂M . Define the subspaces S ′ := ρ̃(S) ⊂ H∂M′ and
A′ := ρ̃(A) ⊂ H∂M′ .
Then, probability is conserved, P (A|S) = P (A′|S ′), i.e. the probability for
observing A given S on ∂M is the same as that for observing A′ given S ′ on ∂M ′.
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Observables and expectation values

As in AQFT, observables are associated to spacetime regions.

An observable O in a region M is a linear map ρOM : H∂M → C, called observable
map.

Observables can be composed in the same way as amplitudes.
Consider a region M and an adjacent region N :

An observable map ρOM in M gives rise in the region M ∪N to an observable map
ρOM∪N : H∂M∪N → C given by ρOM∪N = ρOM ◦ ρN .

An observable O in M can be composed with an observable P in N into a product
observable O · P in M ∪N represented by ρO·PM∪N = ρOM ◦ ρPN .

The expectation value of the observable O in a region M for the system being
prepared in the subspace S ⊂ H∂M is

〈O〉S =
〈ρM ◦ PS , ρOM ◦ PS〉
|ρM ◦ PS |2

,

(the inner product 〈·, ·〉 is in the dual Hilbert space H∗∂M )
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Recovery of standard observables

In the standard formulation of QT observables are associated to instants of time
(equal-time hypersurfaces).
To recover these we consider empty regions, i.e. the limiting case t2 = t1 = t.
An observable O in this empty region is a linear map ρO[t,t] : Ht ⊗H∗t → C.
A standard operator Ô : Ht → Ht is recoverd as

ρO[t,t](ψ1 ⊗ ψ∗2) = 〈ψ2, Ôψ1〉 ∀ψ1, ψ2 ∈ Ht.

Consider a state ψ ∈ Ht encoding a preparation. In the GBF we set

S = ψ ⊗H∗t .

We recover in this case the conventional expectation value of Ô with respect to ψ:

〈O〉S =
〈ρS[t,t], ρO[t,t]〉
|ρS[t,t]|2

=
ρO[t,t](ψ ⊗ ψ∗)

1
= 〈ψ, Ôψ〉.
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GBF and QFT

Conjecture
Standard QFT can be formulated within the GBF

2 quantization schemes have been studied, that transform a classical field theory into a
general boundary quantum field theory:

Schrödinger-Feynman quantization (non-rigorous but can treat interacting QFT
perturbatively);

holomorphic quantization (more rigorous but works only for linear theory, so far)
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General Boundary Formulation of QFT:
Schrödinger-Feynman quantization

Schrödinger representation + Feynman path integral quantization
The state space HΣ for a hypersurface Σ is the space of functions on field
configurations KΣ on Σ.
We write the inner product there as

〈ψ2|ψ1〉 =

ˆ
KΣ

Dϕψ1(ϕ)ψ2(ϕ).

The amplitude for a region M and a state ψ in the state space H∂M associated to
the boundary ∂M of M is

ρM (ψ) =

ˆ
K∂M

Dϕψ(ϕ)

ˆ
KM ,φ|∂M =ϕ

Dφ eiSM (φ).

The inner integral, called field propagator, is over the space KM of space-time
field configurations φ in the interior of M which agree with ϕ on the boundary ∂M .
A classical observable F in M is modeled as a function on KM . The quantization
of F is the linear map ρFM : H∂M → C defined as

ρFM (ψ) =

ˆ
K∂M

Dϕψ(ϕ)

ˆ
KM ,φ|∂M =ϕ

DφF (φ)eiSM (φ).
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General Boundary Formulation of QFT:
Holomorphic quantization (I)

Linear field theory: LΣ is the vector space of solutions near the hypersurface Σ.

For a region M , LM̃ is the space of solutions in the interior of M ; LM̃ ⊆ L∂M .

LΣ carries a non-degenerate symplectic structure ωΣ and a complex structure
JΣ : LΣ → LΣ compatible with the symplectic structure:

J2
Σ = −idΣ and ωΣ(JΣ(·), JΣ(·)) = ωΣ(·, ·).

JΣ and ωΣ combine to a real inner product gΣ(·, ·) = 2ωΣ(·, JΣ·) and to a complex
inner product {·, ·}Σ = gΣ(·, ·) + 2iωΣ(·, ·) which makes LΣ into a complex Hilbert
space.

The Hilbert space HΣ associated with Σ is the space of holomorphic functions on
LΣ with the inner product

〈ψ,ψ′〉Σ =

ˆ
LΣ

ψ(φ)ψ′(φ) exp

(
−1

2
gΣ(φ, φ)

)
dµ(φ),

where µ is a (fictitious) translation-invariant measure on LΣ.
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General Boundary Formulation of QFT:
Holomorphic quantization (II)

The amplitude map ρM : H∂M → C associated with the spacetime region M for a
state ψ ∈ H∂M is given by

ρM (ψ) =

ˆ
LΣ

ψ(φ) exp

(
−1

4
g∂M (φ, φ)

)
dµM̃ (φ),

where µM̃ is a (fictitious) translation-invariant measure on LM̃ .

The observable map associated to a classical observable F in a region M is

ρFM (ψ) =

ˆ
LΣ

ψ(φ)F (φ) exp

(
−1

4
g∂M (φ, φ)

)
dµM̃ (φ).
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S-matrix in the standard setting

Usually, interacting QFT is described via the S-matrix:

Assume interaction is relevant only after
the initial time t1 and before the final time
t2. The S-matrix is the asymptotic limit of
the amplitude between free states at early
and at late time:

〈ψ2|S|ψ1〉 = lim
t1→−∞
t2→+∞

〈ψ2|Uint(t1, t2)|ψ1〉
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Spatially asymptotic S-matrix

Similarly, we can describe interacting QFT
via a spatially asymptotic amplitude. As-
sume interaction is relevant only within a ra-
dius R from the origin in space (but at all
times). Consider then the asymptotic limit
of the amplitude of a free state on the hy-
percylinder when the radius goes to infinity:

S(ψ) = lim
R→∞

ρR(ψ)

Result
The S-matrices are equivalent when both are valid.
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Some applications of the GBF to QFT

Description of quantum states on timelike hypersurfaces. This permits the
quantization of evanescent waves that are ”invisible” in traditional quantization
prescriptions.
Description of general interacting QFT in Minkowski spacetime.
Description of new types of asymptotic amplitudes, generalizing the S-matrix
framework.
Description of a Euclidean theory in a bounded region of spacetime: local
description of dynamics.
Application to de Sitter spacetime
New representation of the Feynman propagator in de Sitter spacetime and the
S-matrix. Derivation of the Polyakov propagator.
General structure of the vacuum state in a wide class of curved spaces.
General structure of the complex structure used in the Schrödinger representation
of QFT.
Unitary evolution in curved spacetime.
General structure of the S-matrix and the Feynman propagator in a wide class of
curved spaces.
Pairing between the holomorphic and the Schrödinger representation.
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Conclusions and Outlook

Conclusions
The GBF provides a viable description of the dynamics of quantized fields

It represents an extension of standard QFT, and offers a new perspective on QFT
(geometrical aspects, holography)

It is suitable to formulate background independent QFT.

Results have been obtained.

It may provide a new approach to the problem of quantum gravity (solves the
problem of time and the problem of locality)

Outlook
The GBF is still work in progress

Application to more general spacetimes and regions: compact region, S-matrix in
AdS,...

Study of physical effects: Unruh, Hawking

Develop suitable quantization prescriptions for interacting QFT

Application to quantum gravity
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