

Outline

- Top Quark PhysicsMotivation
- o ATLAS Detector
- Object and Event Selection
- Backgrounds
- Systematic Uncertainties
- Limit Calculation
- Conclusions

August 16, 2012

Outline

- Top Quark Physics Motivation
- o ATLAS Detector
- o Object and Event Selection
- o Backgrounds
- o Systematic Uncertainties
- o Limit Calculation
- o Conclusions

Top Quark

The top quark is the heaviest elementary particle known:

$$m_t = 173.2 \pm 0.9 \text{ GeV}$$

Because of its large mass it has a **strong coupling to the electroweak symmetry breaking sector**, providing an interesting probe of the SM.

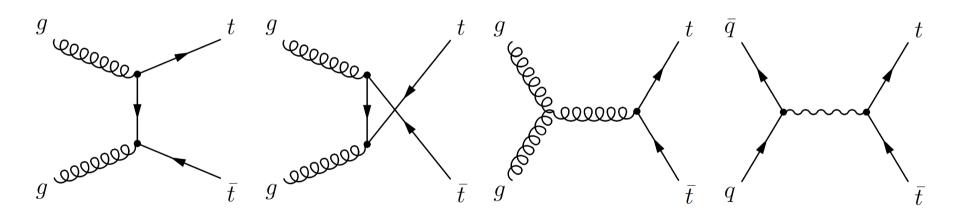
Top Quark

The top quark is the heaviest elementary particle known:

$$m_t = 173.2 \pm 0.9 \text{ GeV}$$

Because of its large mass it has a **strong coupling to the electroweak symmetry breaking sector**, providing an interesting probe of the SM.

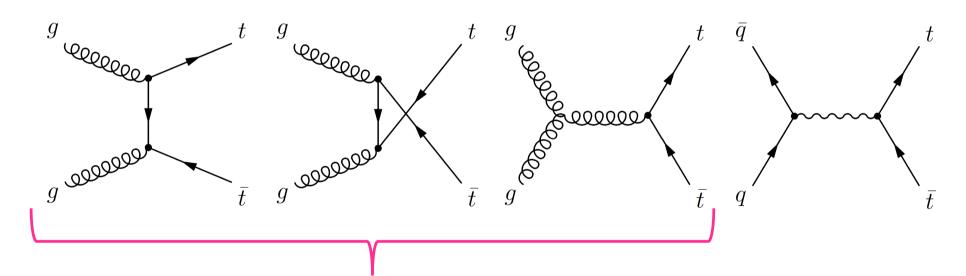
Deviations from the **decay** and **production** predictions from the SM give a model-independent test for physics beyond SM.



LHC is a Top Quark **Factory**

Top Quark Pair Production

Top quark pairs are produced via:

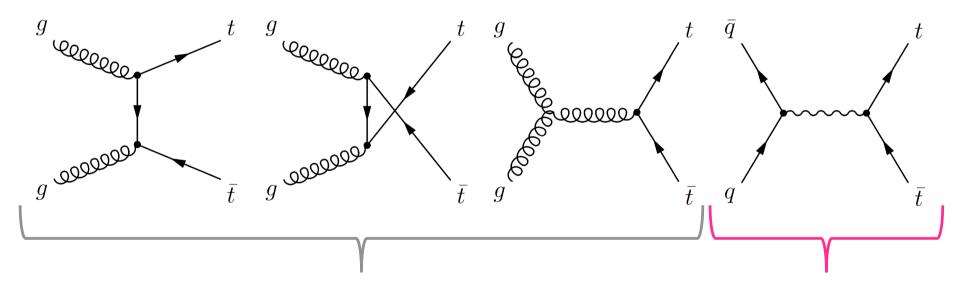


LHC is a Top Quark **Factory**

Top Quark Pair Production

Top quark pairs are produced via:

Gluon Fusion ~90% of the time in the LHC



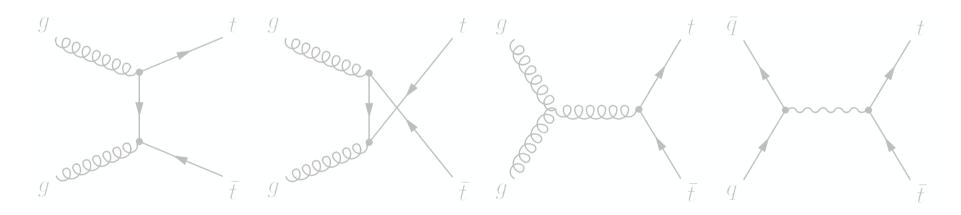
LHC is a Top Quark **Factory**

Top Quark Pair Production

Top quark pairs are produced via:

Gluon Fusion
~90% of the time
in the LHC

Particles and Fields Seminar BUAP Quark Annihilation ~85% of the time in the Tevatron

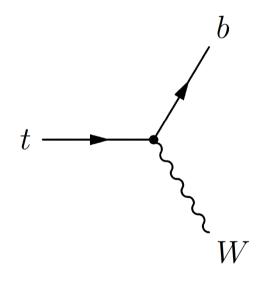


LHC is a Top Quark **Factory**

Top Quark Pair Production

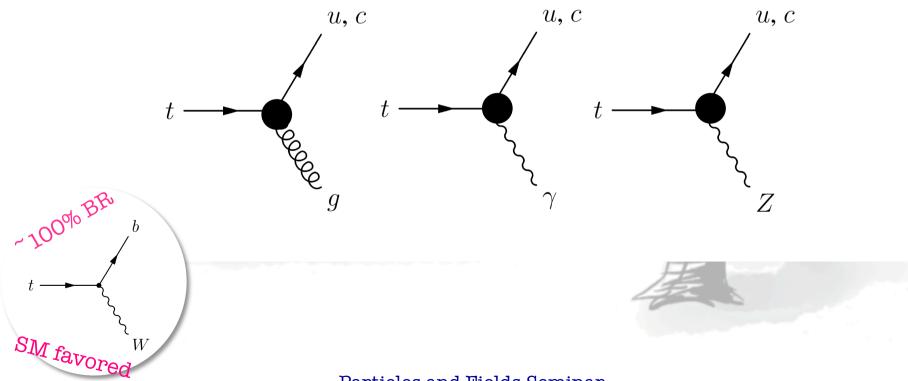
Top quark pairs are produced via:

Top Quarks can also be produced via single-top quark production mechanisms.



Top Quark Decay

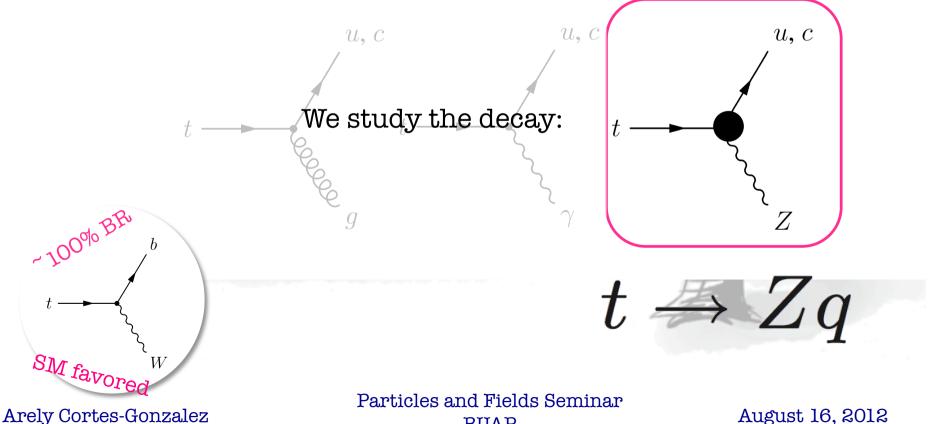
SM favored decay:


Arely Cortes-Gonzalez

Top Quark Physics

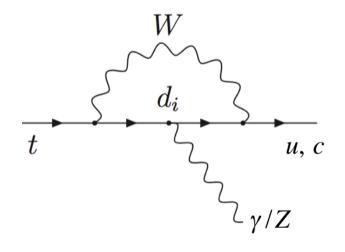
Top Quark Decay

Other decays are possible via flavor changing neutral currents


August 16, 2012

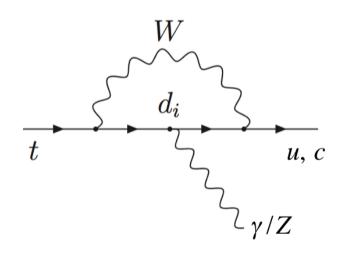
Top Quark Decay

Other decays are possible via flavor changing neutral currents



FCNC do not exist at tree level in the SM.

Higher order electroweak interactions do allow FCNC:

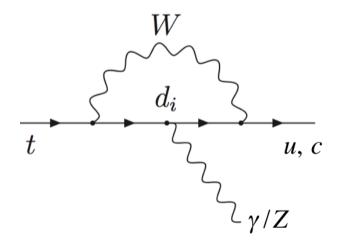


Flavor Changing Neutral Currents

FCNC do not exist at tree level in the SM.


Higher order electroweak interactions do allow FCNC:

However, the GIM mechanism highly suppresses the contribution from these diagrams...



However, the GIM mechanism highly suppresses the contribution from these diagrams...

Flavor Changing Neutral Currents

FCNC do not exist at tree level in the SM.

Higher order electroweak interactions do allow FCNC:

Beyond SM FCNC

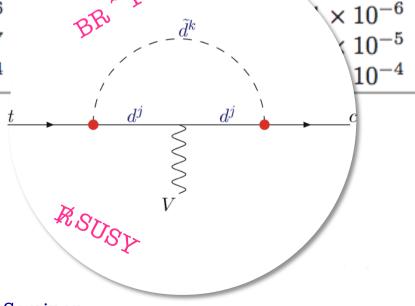
SM extensions predict higher branching ratios for top quark FCNC decays:

Process	SM	QS	2HDM	FC 2HDM	MSSM	∦ SUSY
$t \rightarrow u \gamma$	3.7×10^{-16}	$7.5 imes 10^{-9}$	_	_	2×10^{-6}	1×10^{-6}
	8×10^{-17}		_		2×10^{-6}	$3 imes 10^{-5}$
$t \to ug$	3.7×10^{-14}	1.5×10^{-7}	_	_	8×10^{-5}	2×10^{-4}
$t \to c \gamma$	4.6×10^{-14}	7.5×10^{-9}	$\sim 10^{-6}$	$\sim 10^{-9}$	2×10^{-6}	1×10^{-6}
$t \to cZ$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$	$\sim 10^{-10}$	2×10^{-6}	3×10^{-5}
$t \rightarrow cg$	4.6×10^{-12}	1.5×10^{-7}	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	2×10^{-4}

SUSY

 1×10^{-6}

 3×10^{-5}


 2×10^{-4}

Beyond SM FCNC

SM extensions predict higher branching ratios for top quark FCNC decays:

Process	\mathbf{SM}	$_{ m QS}$	2HDM	FC 2HDM	MSSM	4
$t \rightarrow u \gamma$	3.7×10^{-16}	$7.5 imes 10^{-9}$	_	_	2×10^{-6}	
$t \to uZ$	8×10^{-17}	1.1×10^{-4}	_	_	$0 \sim 10^{-6}$	
$t \to ug$	3.7×10^{-14}	1.5×10^{-7}	_	~ _ 10.5	~	
$t \rightarrow c \gamma$	4.6×10^{-14}	7.5×10^{-9}	$\sim 10^{-6}$	BR BR	$\tilde{\jmath}k$	
$t \to cZ$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$		$-a^{-1}$	
$t \to cg$	4.6×10^{-12}	1.5×10^{-7}	$\sim 10^{-4}$,	`\	
				1	-: \	

E. g. in some R-parity violating SUSY models, the BR can be enhanced up to $^{\sim}10^{-5}$

Current Experimental Limits

	LEP	HERA	Tevatron	LHC
$BR(t \to q\gamma)$	2.4% [41 45]	$0.64\% \; (tu\gamma) [47]$	3.2% [51]	_
$BR(t \to qZ)$	7.8% [41 – 45]	$49\% \; (tuZ) [48]$	3.2% $[52]$	0.73% [2]
$\mathrm{BR}(t o qg)$	17% [46]	13% [48–50]	$2.0 \times 10^{-4} \ (tug)$ $3.9 \times 10^{-3} \ (tcg)$ [54]	$5.7 \times 10^{-5} \ (tug)$ $2.7 \times 10^{-4} \ (tcg)$ [55]

Current Experimental Limits

	LEP	HERA	Tevatron	LHC
$BR(t \to q\gamma)$	2.4% [41 45]	$0.64\% \; (tu\gamma) [47]$	3.2% $[51]$	
$BR(t \to qZ)$	7.8% [41 – 45]	$49\% \; (tuZ) [48]$	3.2% [52]	0.73% [2]
$BR(t \to qg)$	17% [46]	13% [48–50]	$2.0 \times 10^{-4} \ (tug)$ $3.9 \times 10^{-3} \ (tcg)$ [54]	$5.7 \times 10^{-5} \ (tug)$ $2.7 \times 10^{-4} \ (tcg)$ [55]

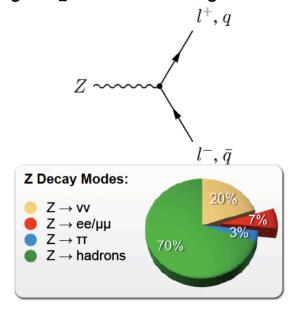
Before the LHC searches, best limit from DO Collaboration:

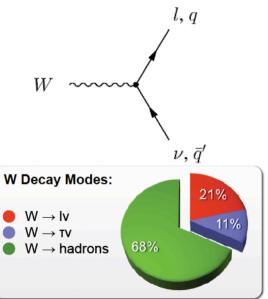
$$BR(t \to Zq) < 3.2\%$$

using top quark pairs, with W- and Zbosons decay leptonically.

Search for FCNC in top quark decays:

In top quark pair production events: with one top quark decaying through $t\rightarrow qZ$, and the other through the SM dominant mode $t\rightarrow bW$.

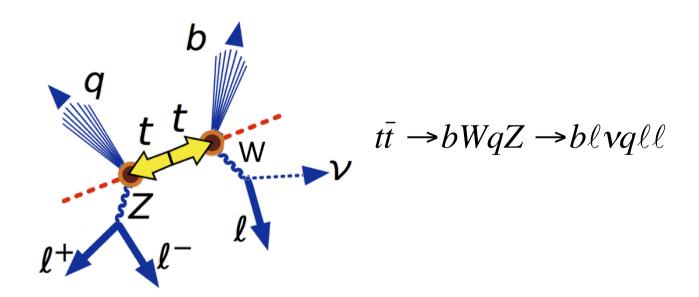




I search for FCNC in top quark decays:

In top quark pair production events: with one top quark decaying through $t \rightarrow qZ$, and the other through the SM dominant mode $t \rightarrow bW$.

Only leptonic decays of the W- and Z-bosons are used as signal



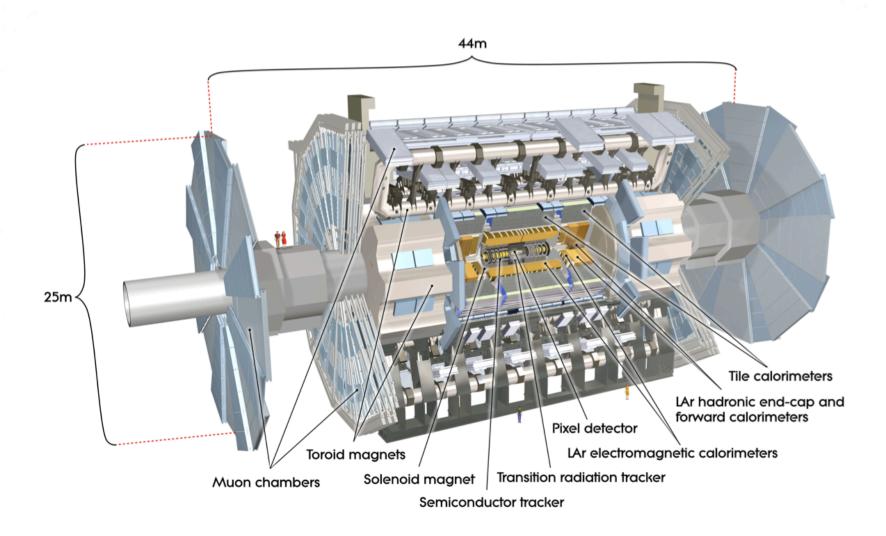
I search for FCNC in top quark decays:

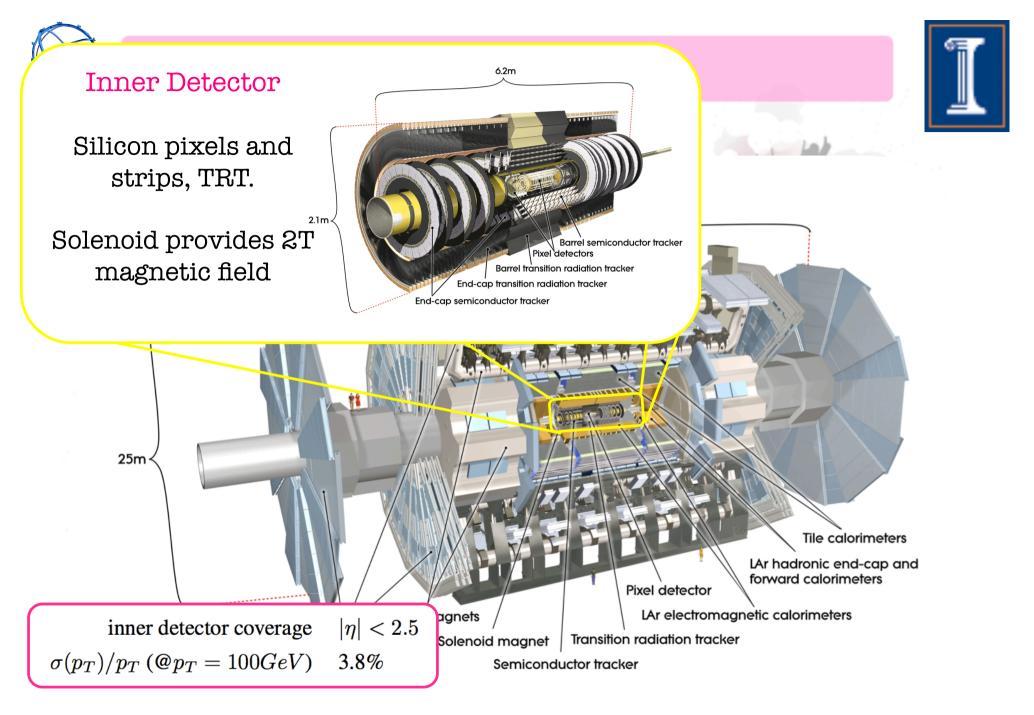
In top quark pair production events: with one top quark decaying through $t\rightarrow qZ$, and the other through the SM dominant mode $t\rightarrow bW$.

Outline

- Top Quark PhysicsMotivation
- o ATLAS Detector
- o Object and Event Selection
- o Backgrounds
- o Systematic Uncertainties
- o Limit Calculation
- o Conclusions

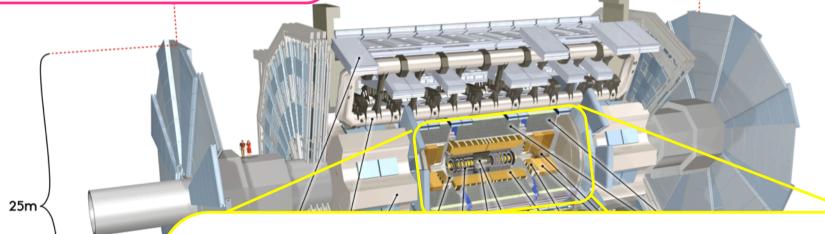
Arely Cortes-Gonzalez


BUAP


August 16, 2012

ATLAS Detector

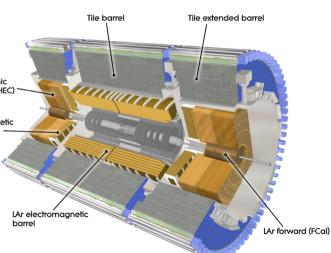
ATLAS Detector


EM calorimeter coverage $|\eta| < 3.2$

 $\sigma(E)/E$: 10% $/\sqrt{E}$ + 0.7 %

HAD calorimeter coverage $|\eta| < 3.2$

 $\sigma(E)/E_{ ext{EM and HAD comb.}}:$ 50% $/\sqrt{E}$ + 3 %

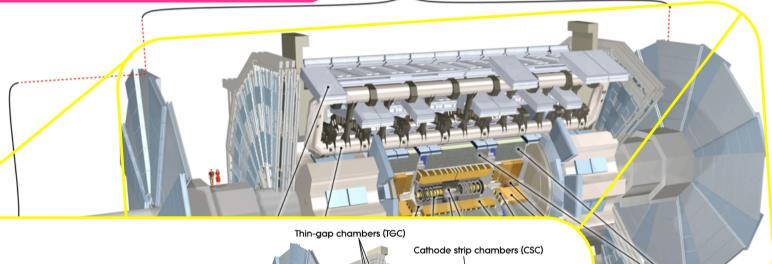

44m

Calorimeters

LAr/Lead EM calorimeter, LAr hadronic to identify electrons/

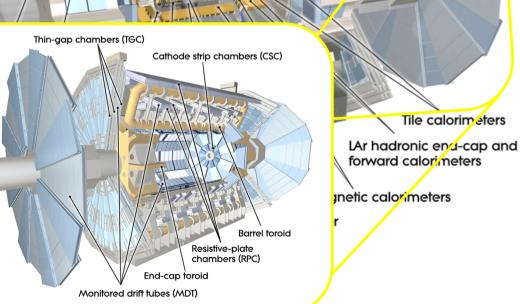
Scintillation-tile (plastic/steel)
hadronic calorimeter

Arely Cortes-Gonzalez


ATLAS Detector

muon spectrometer coverage $|\eta| < 2.7$

$$\sigma(p_T)/p_T$$
 (@ $p_T=1~{
m TeV}$) $_{
m stand-alone}$: 12% $_{|\eta|<1.5}$


44m

Muon Spectrometer

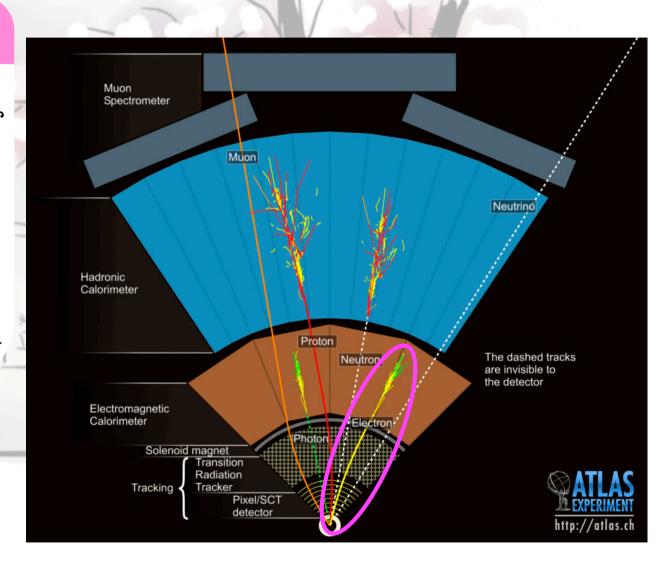
With trigger and highprecision chambers

Toroidal magnetic field

Outline

- Top Quark PhysicsMotivation
- o ATLAS Detector
- Object and Event Selection
- o Backgrounds
- o Systematic Uncertainties
- o Limit Calculation
- o Conclusions

Object Selection


ID electrons

Isolated Electromagnetic clusters associated to Inner Detector track.

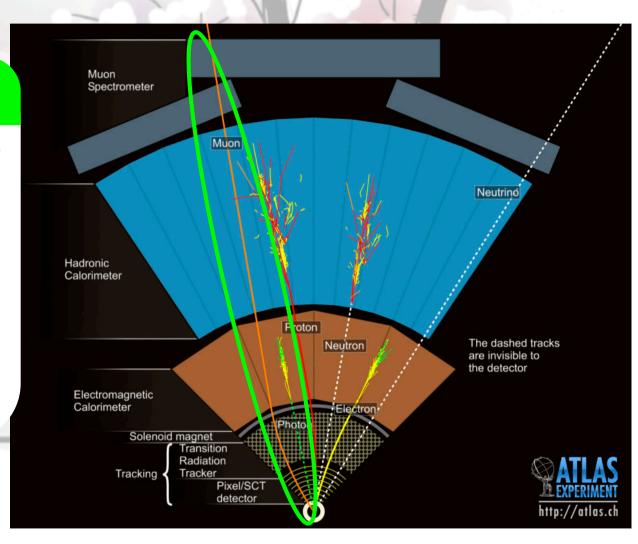
 $p_T > 20 \text{ GeV}, |\eta| < 2.47$

Exclude transition region between Barrel and End-Cap

Calo-iso($\Delta R < 0.2$) < 3.5GeV

Object Selection

ID electrons


ID muons

Tracks segments from MS matched to tracks from Inner Detector, & refitted.

$$p_{T} > 20 \text{ GeV}, |\eta| < 2.5$$

Calo-iso(Δ R < 0.3) < 4 GeV Trk-iso(Δ R < 0.3) < 4 GeV

 $|d_0| < 0.5 \text{ mm}$

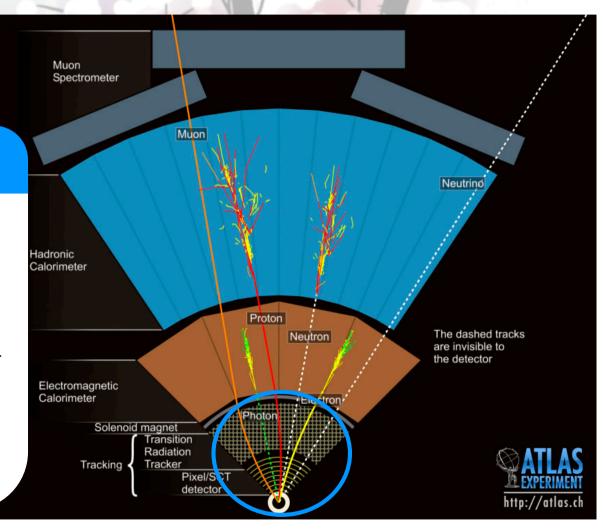
In

T

Object Selection

ID electrons

ID muons


track-leptons (TL)

High quality inner detector tracks

 $_{\text{C}\xi}$ $p_{\text{T}} > 25 \text{ GeV}, |\eta| < 2.4$

Trk-Iso($\Delta R < 0.3$) < 2GeV

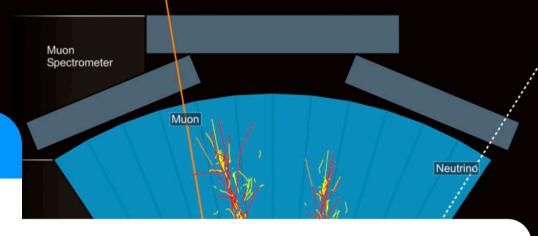
Inner detector hit requirements

In

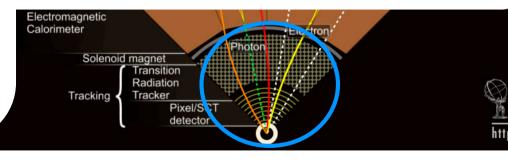
Object Selection

ID electrons

ID muons

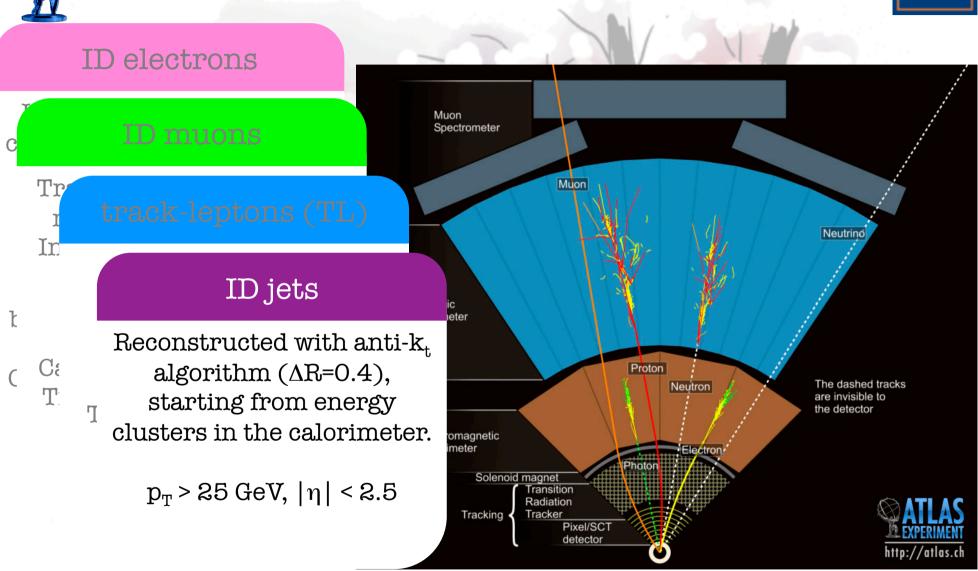

track-leptons (TL)

High quality inner detector tracks


 $p_T > 25 \text{ GeV}, |\eta| < 2.4$

Trk-Iso($\Delta R < 0.3$) < 2GeV

Inner detector hit requirements


Recovers areas of inefficiency in the standard lepton identification algorithms, and selects a fraction of hadronic tau decays.

Object Selection

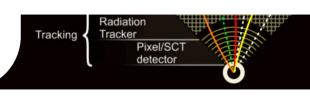
In

Object Selection

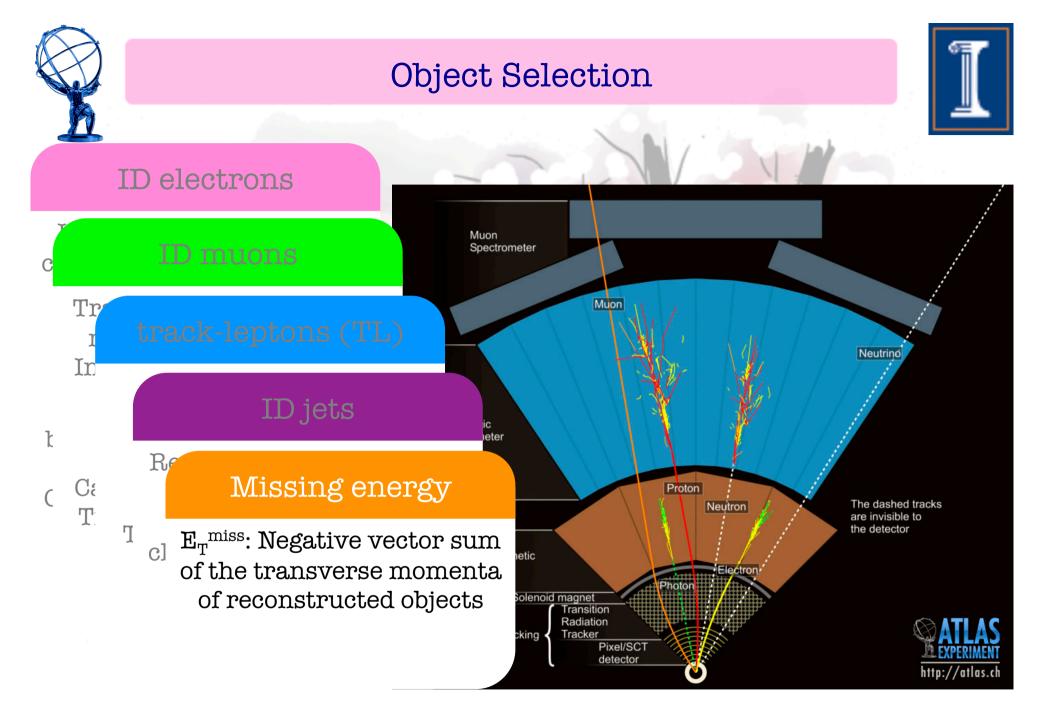
Spectrometer

ID electrons

ID muons

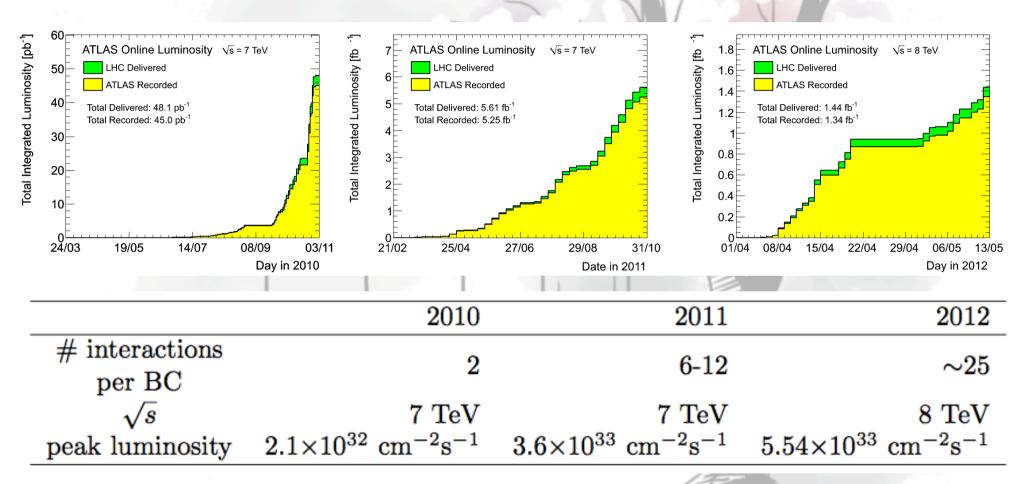

track-leptons (TL)

ID jets

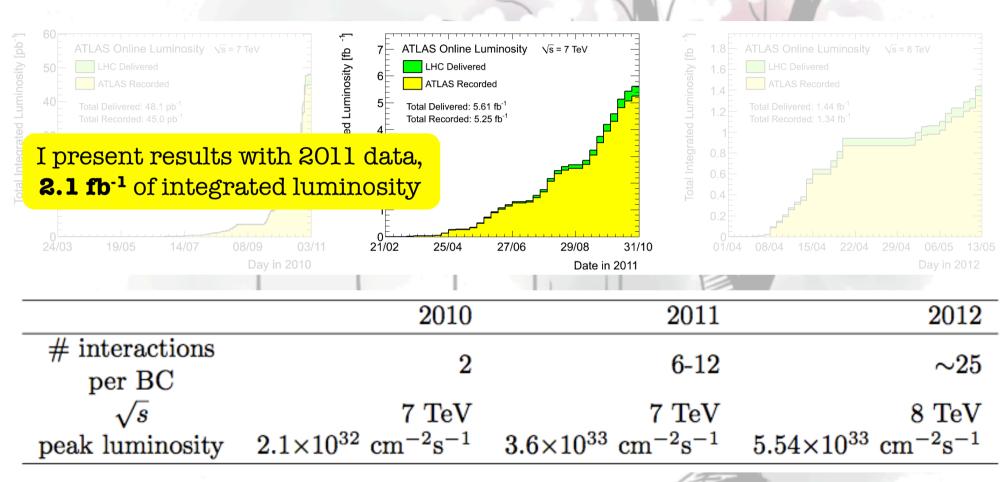

Reconstructed with anti- k_t algorithm (ΔR =0.4), starting from energy clusters in the calorimeter.

 $p_{T} > 25 \text{ GeV}, |\eta| < 2.5$

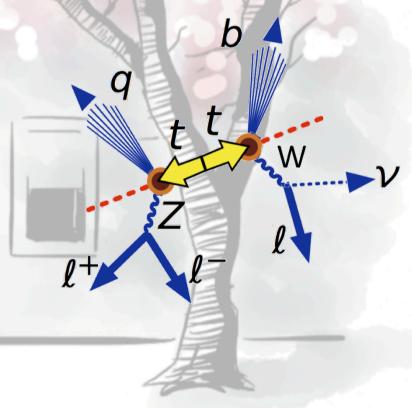
Jets can be 'b-tagged' if they are consistent with originating from a b-quark (association with a secondary vertex, impact parameter of tracks associated to the jets, etc)



Data Sample

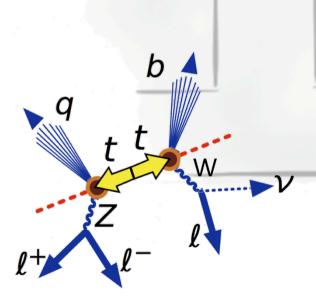


Data Sample



The final state is characterized by three isolated leptons, two of them reconstructing a Z-boson, missing energy, and at least two jets.

There are two orthogonal channels used for the final result:

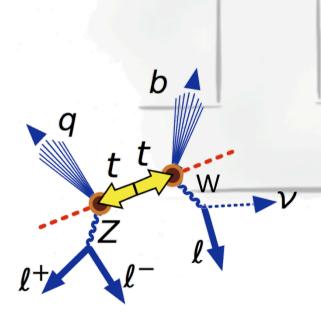

2ID+TL

2 leptons are fully identified, and the third one is allowed to be a

high quality inner detector track.

3 ID

Selects 3 fully identified leptons (e, μ).



There are two orthogonal channels used for the final result:

2 ID + TL

2 leptons are fully identified, and the third one is allowed to be a high quality inner detector track. 3 ID

Selects 3 fully identified leptons (e, µ).

Track-leptons (**TL**) are exclusive of any electrons or muons (**ID** Leptons) selected by the 3ID analysis.

Preselection

- o Basic Cuts, Trigger
- Exactly three leptons
 - o all matched to the same Primary Vertex

Two ID leptons + one TL

$$P_T^{TL} > 25 \text{ GeV}, P_T^{e, \mu} > 20 \text{ GeV}$$

3ID

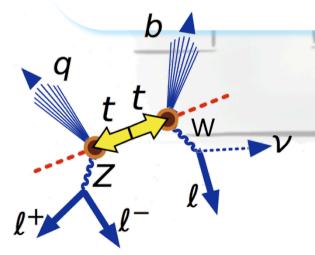
Three ID leptons $P_T^{lead} > 25 \text{ GeV}, P_T^{sublead} > 20 \text{ GeV}$

Two leptons of the same flavor and opposite charge

Preselection

- o Basic Cuts, Trigger
- Exactly three leptons
 - o all matched to the same Primary Vertex

Two ID leptons + one TL


$$P_T^{TL} > 25 \text{ GeV}, P_T^{e, \mu} > 20 \text{ GeV}$$

3ID

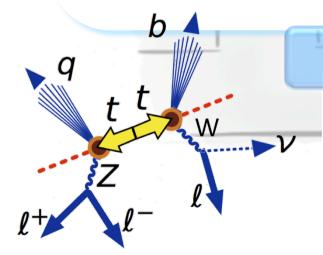
Three ID leptons $P_T^{lead} > 25 \text{ GeV}, P_T^{sublead} > 20 \text{ GeV}$

- Two leptons of the same flavor and opposite charge
- $_{\circ}$ $E_{T}^{miss} > 20 \text{ GeV}$
- Two or more ID jets

At least one jet b-tagged

Preselection

- o Basic Cuts, Trigger
- Exactly three leptons
 - o all matched to the same Primary Vertex


Two ID leptons + one TL
$$P_{\pi}^{TL} > 25 \text{ GeV}, P_{\pi}^{e, \mu} > 20 \text{ GeV}$$

3ID

Three ID leptons $P_T^{lead} > 25 \text{ GeV}, P_T^{sublead} > 20 \text{ GeV}$

- o Two leptons of the same flavor and opposite charge
- $_{\text{T}}^{\text{miss}} > 20 \text{ GeV}$
- Two or more ID jets

At least one jet b-tagged

Final Selection

• Event Reconstruction

$$\chi^{2} = \frac{\left(m_{j_{a}\ell_{a}\ell_{b}}^{\text{reco}} - m_{t}\right)^{2}}{\sigma_{t}^{2}} + \frac{\left(m_{j_{b}\ell_{c}\nu}^{\text{reco}} - m_{t}\right)^{2}}{\sigma_{t}^{2}} + \frac{\left(m_{\ell_{c}\nu}^{\text{reco}} - m_{W}\right)^{2}}{\sigma_{W}^{2}} + \frac{\left(m_{\ell_{a}\ell_{b}}^{\text{reco}} - m_{Z}\right)^{2}}{\sigma_{Z}^{2}}$$

Final Selection

Event Reconstruction

To reconstruct the mass of the two top quarks and W- and Z-bosons , χ^2 is minimized:

$$\chi^2 = \frac{\left(m_{j_a\ell_a\ell_b}^{\text{reco}} - m_t\right)^2}{\sigma_t^2} + \frac{\left(m_{j_b\ell_c\nu}^{\text{reco}} - m_t\right)^2}{\sigma_t^2} + \frac{\left(m_{\ell_c\nu}^{\text{reco}} - m_W\right)^2}{\sigma_W^2} + \frac{\left(m_{\ell_a\ell_b}^{\text{reco}} - m_Z\right)^2}{\sigma_Z^2}$$

Final Selection

Event Reconstruction

To reconstruct the mass of the two top quarks and W- and Z-bosons, χ^2 is minimized:

$$\chi^2 = \frac{\left(m_{j_a\ell_a\ell_b}^{\text{reco}} - m_t\right)^2}{\sigma_t^2} + \frac{\left(m_{j_b\ell_c\nu}^{\text{reco}} - m_t\right)^2}{\sigma_t^2} + \frac{\left(m_{\ell_c\nu}^{\text{reco}} - m_W\right)^2}{\sigma_W^2} + \frac{\left(m_{\ell_a\ell_b}^{\text{reco}} - m_Z\right)^2}{\sigma_Z^2}$$

 \circ j_a , j_b loops over the two leading ID jets

$$m_t = 172.5 \; {
m GeV} \qquad \sigma_t = 14 \; {
m GeV} \ m_W = \; 80.4 \; {
m GeV} \qquad \sigma_W = 10 \; {
m GeV} \ m_Z = \; 91.2 \; {
m GeV} \qquad \sigma_Z = \; 3 \; {
m GeV} \$$

Final Selection

Event Reconstruction

To reconstruct the mass of the two top quarks and W- and Z-bosons, χ^2 is minimized:

$$\chi^2 = \frac{\left(m_{j_a\ell_a\ell_b}^{\text{reco}} - m_t\right)^2}{\sigma_t^2} + \frac{\left(m_{j_b\ell_c\nu}^{\text{reco}} - m_t\right)^2}{\sigma_t^2} + \frac{\left(m_{\ell_c\nu}^{\text{reco}} - m_W\right)^2}{\sigma_W^2} + \frac{\left(m_{\ell_a\ell_b}^{\text{reco}} - m_Z\right)^2}{\sigma_Z^2}$$

o j_a, j_b loops over the two leading ID jets

 $\circ \ell_e, Z \rightarrow \ell_a^+ \ell_b^-$: loop over the three leptons

$$m_t = 172.5 \text{ GeV}$$
 $\sigma_t = 14 \text{ GeV}$
 $m_W = 80.4 \text{ GeV}$ $\sigma_W = 10 \text{ GeV}$
 $m_Z = 91.2 \text{ GeV}$ $\sigma_Z = 3 \text{ GeV}$

Final Selection

Event Reconstruction

To reconstruct the mass of the two top quarks and W- and Z-bosons, χ^2 is minimized:

$$\chi^2 = \frac{\left(m_{j_a\ell_a\ell_b}^{\text{reco}} - m_t\right)^2}{\sigma_t^2} + \frac{\left(m_{j_b\ell_c\nu}^{\text{reco}} - m_t\right)^2}{\sigma_t^2} + \frac{\left(m_{\ell_c\nu}^{\text{reco}} - m_W\right)^2}{\sigma_W^2} + \frac{\left(m_{\ell_a\ell_b}^{\text{reco}} - m_Z\right)^2}{\sigma_Z^2}$$

o j_a, j_b loops over the two leading ID jets

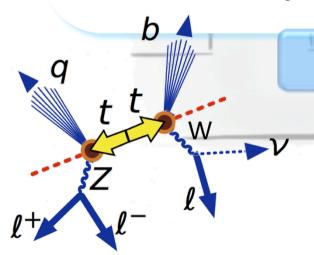
 $\circ \ell_c$, $Z \rightarrow \ell_a^+ \ell_b^-$: loop over the three leptons

$$m_t = 172.5 \; {
m GeV} \qquad \sigma_t = 14 \; {
m GeV} \ m_W = \; 80.4 \; {
m GeV} \qquad \sigma_W = 10 \; {
m GeV} \ m_Z = \; 91.2 \; {
m GeV} \qquad \sigma_Z = \; 3 \; {
m GeV} \$$

- \circ E_T^{miss} is taken to be the transverse component of the neutrino p_T^{v} .
- o p_Z^{ν} is the determined by the minimal χ^2

Preselection

- o Basic Cuts, Trigger
- Exactly three leptons
 - o all matched to the same Primary Vertex


Two ID leptons + one TL
$$P_{\pi}^{TL} > 25 \text{ GeV}, P_{\pi}^{e, \mu} > 20 \text{ GeV}$$

3ID

Three ID leptons $P_T^{lead} > 25 \text{ GeV}, P_T^{sublead} > 20 \text{ GeV}$

- Two leptons of the same flavor and opposite charge
- $_{\text{T}}^{\text{miss}} > 20 \text{ GeV}$
- Two or more ID jets

At least one jet b-tagged

Final Selection

• Event Reconstruction

$$\circ |m_z - m_z^{reco}| < 15 \text{ GeV}$$

$$\circ |m_W - m_W^{reco}| < 30 \text{ GeV}$$

$$\circ |m_t - m_t^{reco}| < 40 \text{ GeV}$$

2ID + TL Gain

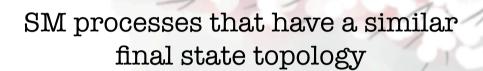
The 2ID+TL gives a 22% gain wrt the 3ID channel alone.

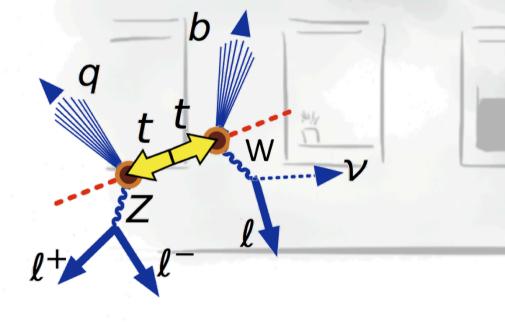
Gain

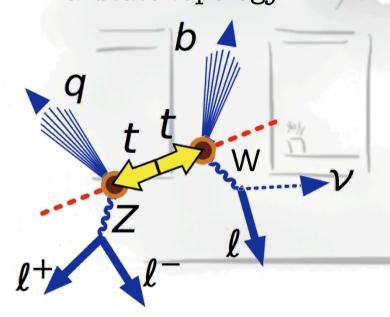
This gain comes mainly from e and μ in the transition regions and gaps in detector coverage.

There is also a partial recovery of efficiency losses in the e and μ selection and additional acceptance from hadronic taus.

Outline




- Top Quark PhysicsMotivation
- o ATLAS Detector
- Object and Event Selection
- o Backgrounds
- o Systematic Uncertainties
- o Limit Calculation
- o Conclusions



SM processes that have a similar final state topology

Three Real Leptons

Dibosons WZ, ZZ t-tbar+W, t-tbar+Z

at least one Fake Lepton

t-tbar, Z+jets, W+jets, WW, single top

Three real leptons

Dibosons WZ, ZZ t-tbar+W, t-tbar+Z

Determined using MC samples.

Contributes to ~15% of the 2ID + TL background.

Main background for the 3ID selection

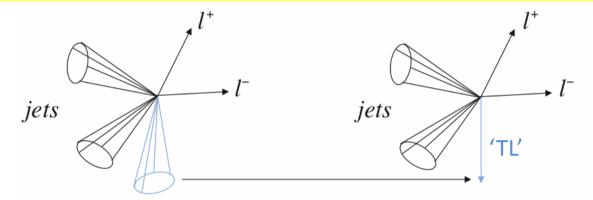
Fake Leptons

t-tbar, Z+jets, W+jets, WW, single top

Events with at least one fake \rightarrow any object identified as a lepton that does not come from a W- or Z-boson.

Evaluated with a data-driven (and MC) methods.

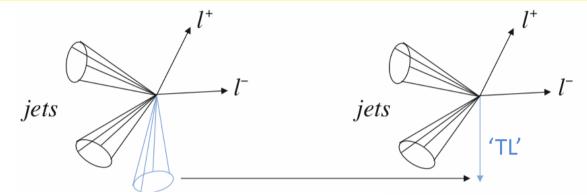
Dominant background source of the 2ID + TL.

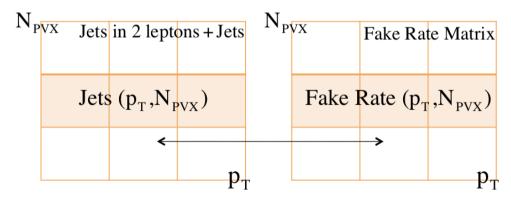


2ID+TL

Strategy

We measure the probability that a jet fakes a track, 'fake rate' Measure the fake rates in γ +jets events


$$\text{Fake Rate}\left(p_T, N_{\text{PVX}}\right) \ = \ \frac{\left(p_T, N_{\text{PVX}}\right) \text{ of all selected track leptons}}{\left(p_T, N_{\text{PVX}}\right) \text{ of all ID jets \& jet - elements}}$$



2ID+TL

Estimation

Finally, to account for the mass cuts after the χ^2 minimization, the fake prediction is scaled by (31.2±10.2)%

Prediction =
$$\sum_{(p_T, N_{PVX})} \text{Jets}_{(p_T, N_{PVX})} \times \text{Fake Rate}_{(p_T, N_{PVX})}$$

3ID

Strategy

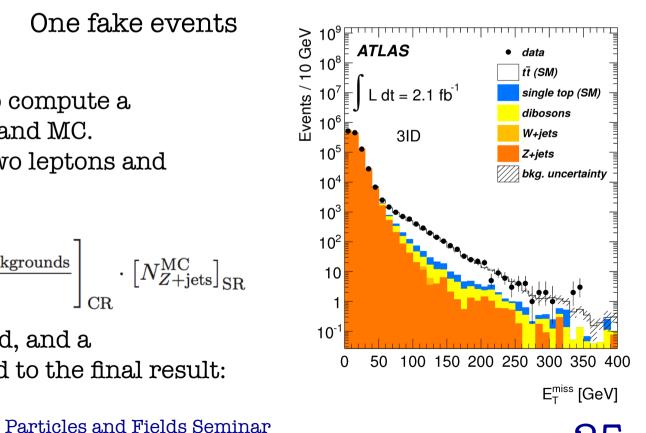
The background from fake leptons is estimated for events with one fake leptons, and events with 2 or 3 fake leptons.

3ID

Strategy

The background from fake leptons is estimated for events with one fake leptons, and events with 2 or 3 fake leptons.

One fake events


BUAP

Z+jets

We use a control region to compute a **normalization** between data and MC. Control region: Events with two leptons and $|m_{\rho\rho}^{reco} - 91.2 \text{ GeV}| < 15 \text{ GeV}.$

$$[N_{Z+\mathrm{jets}}^{\mathrm{Data}}]_{\mathrm{SR}} = \left[\frac{N^{\mathrm{Data}} - N_{\mathrm{Other\ backgrounds}}^{\mathrm{MC}}}{N_{Z+\mathrm{jets}}^{\mathrm{MC}}}\right]_{\mathrm{CR}} \cdot \left[N_{Z+\mathrm{jets}}^{\mathrm{MC}}\right]_{\mathrm{SR}}$$

A loose lepton selection is used, and a multiplicative factor is applied to the final result: (loose \rightarrow tight) 0.063 ± 0.013

August 16, 2012

3ID

Strategy

The background from fake leptons is estimated for events with one fake leptons, and events with 2 or 3 fake leptons.

One fake events

Z+jets

We use a control region to compute a **normalization** between data and MC. A loose lepton selection is used, and a multiplicative factor is applied to the final result: $(loose \rightarrow tight) 0.063 \pm 0.013$

Dileptonic t-tbar, single top (Wt), WW.
 Measured in MC with the loose lepton
 selection, and scaled down by the same factor.

3ID

Strategy

The background from fake leptons is estimated for events with one fake leptons, and events with 2 or 3 fake leptons.

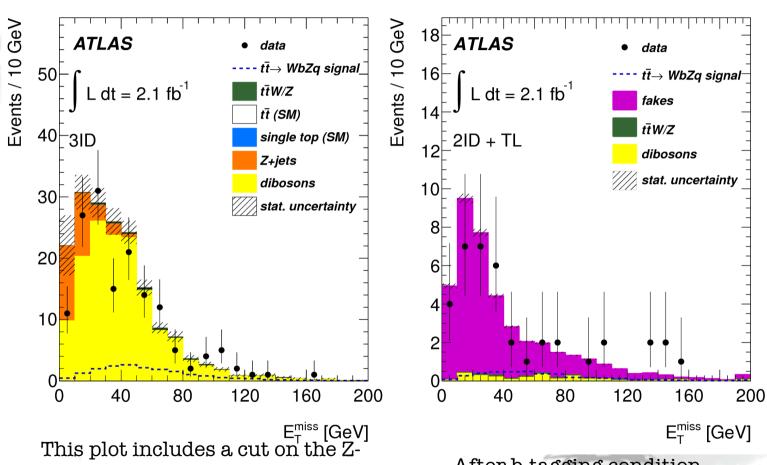
2+3 fakes events

o QCD, W+jets, single top, single lepton t-tbar

Due to the requirements of two leptons with same charge and opposite sign (36 combinations), this background is extrapolated from the data events with 3 leptons of any flavor, but same charge (16 combination).

$$f = 36/16 = 2.25$$

August 16, 2012

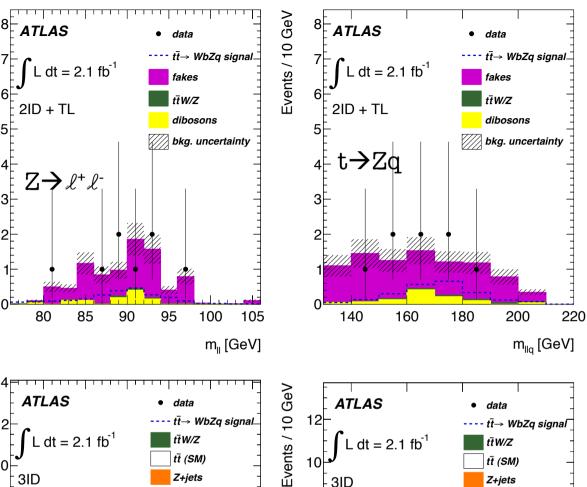


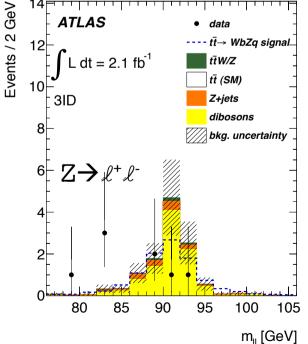
E_Tmiss Plots at pre-selection level

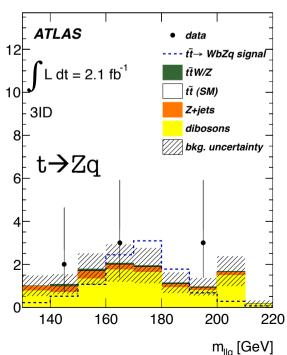
2 ID + TL

This plot includes a cut on the Z-boson candidate invariant mass $|m_Z-91.2|<15 \text{ GeV}$

After b-tagging condition




2ID + TL Final Selection					
ZZ and WZ	$1.0 \begin{array}{c} + 0.5 \\ - 0.6 \end{array}$				
t ar t W and $t ar t Z$	0.25 ± 0.05				
fakes	7.6 ± 2.2				
expected background	8.9 ± 2.3				
data	8				


Events / 2 GeV

Final Selection

3ID Final Selection					
ZZ and WZ	9.5 ± 4.4				
$t\bar{t}W$ and $t\bar{t}Z$	0.51 ± 0.14				
$ t\bar{t},WW $	0.07 ± 0.02				
Z+jets	$1.7 \hspace{0.2in} \pm \hspace{0.2in} 0.7$				
Single top	0.01 ± 0.01				
2+3 fake leptons	$0.0 \pm {0.2 \atop 0.0}$				
expected background	11.8 ± 4.4				
data	8				

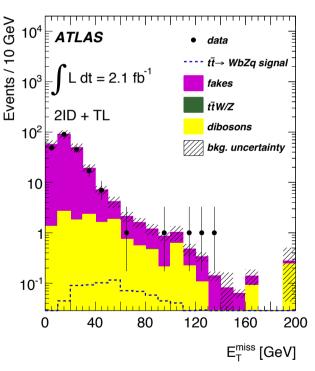
Outline

- Top Quark PhysicsMotivation
- o ATLAS Detector
- Object and Event Selection
- Backgrounds
- o Systematic Uncertainties
- o Limit Calculation
- o Conclusions

Systematic Uncertainties

Systematic uncertainties can influence the expected number of signal and/or background events:

Systematic Uncertainties


Systematic uncertainties can influence the expected number of signal and/or background events:

Fake TL Prediction

To estimate the systematic uncertainty on the of 104 prediction, the fake matrix is tested in control regions (orthogonal to signal regions) enriched with fake leptons.

Check two regions of E_T^{miss} for events with: two leptons + fake and one jet events.

Events with lepton+fake, done in the context of the cross section measurement.

A 20% systematic uncertainty is used for the fake leptons prediction.

Systematic Uncertainties

Systematic uncertainties can influence the expected number of signal and/or background events:

WZ, ZZ Background

- Cross Section
 Include the 5% theoretical uncertainty.
- HF content (when b-agging is used)
 Estimate by comparing different MC generators.

o MC modelling

Using the Berend-Giele scaling with a 24% uncertainty per jet, added in quadrature (4% is used for the 0-jet bin).

	3ID		$_{ m 2ID+TL}$		
Source	Background	Signal	Background	Signal	
Luminosity	4%	4%	<1%	4%	
Electron trigger	4%	1%	<1%	<1%	
Electron reconstruction modelling	10%	3%	<1%	2%	
Muon trigger	3%	1%	<1%	<1%	
Muon reconstruction modelling	7%	1%	<1%	1%	
TL reconstruction modelling	_	_	2%	1%	
Jet energy scale	11%	1%	1%	1%	
Jet reconstruction efficiency	5%	2%	<1%	<1%	
Jet energy resolution	1%	3%	1%	4%	
$E_{ m T}^{ m miss}$ modelling	4%	1%	<1%	<1%	
LAr readout problem	3%	1%	<1%	1%	
Pile-up	4%	<1%	<1%	<1%	
b-tagging	_	_	1%	6%	
Top quark mass	<1%	2%	_	3%	
$\sigma_{tar{t}}$	<1%	8%	_	8%	
ISR/FSR	<1%	3%	_	6%	
PDFs	_	3%	_	3%	
ZZ and WZ shape	33%	_	5%	_	
ZZ and WZ cross section	4%	_	<1%	_	
ZZ and WZ heavy-flavour content		_	<1%	_	
Fake leptons	1%	_	17%	_	
Total	38%	12%	18%	15%	

Relative changes on the expected number of total background events and signal yield from different sources of systematic uncertainty.

Outline

- Top Quark PhysicsMotivation
- o ATLAS Detector
- Object and Event Selection
- Backgrounds
- Systematic Uncertainties
- o Limit Calculation
- o Conclusions

Why compute a Limit?

Final Selection

	3ID			2ID+TL		
ZZ and WZ	9.5	\pm	4.4	1.0	±	0.5 0.6
$tar{t}W$ and $tar{t}Z$	0.51	\pm	0.14	0.25	\pm	0.05
$t\bar{t},WW$	0.07	\pm	0.02			
Z+jets	1.7	\pm	0.7	76	\pm	2.2
Single top	0.01	\pm	0.01	7.0	±	2.2
2+3 fake leptons	0.0	\pm	0.2 0.0			
Expected background	11.8	±	4.4	8.9	±	2.3
Data	8			8		
Signal efficiency	(0.205	±	0.024)%	(0.045	±	0.007)%

Why compute a Limit?

Final Selection

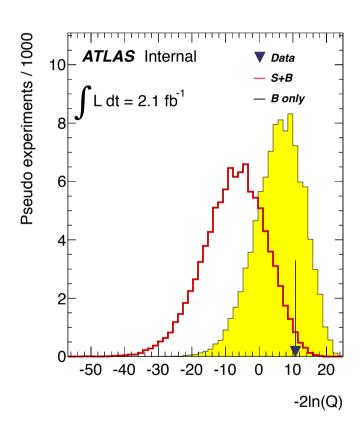
	3ID			2ID+TL		
ZZ and WZ	9.5	\pm	4.4	1.0	±	0.5 0.6
$tar{t}W$ and $tar{t}Z$	0.51	\pm	0.14	0.25	\pm	0.05
$tar{t},WW$	0.07	\pm	0.02			
Z+jets	1.7	\pm	0.7	7.6	\pm	0.0
Single top	0.01	\pm	0.01	7.0	工	2.2
2+3 fake leptons	0.0	\pm	$0.2 \\ 0.0$			
Expected background	11.8	±	4.4	8.9	±	2.3
Data	8			8		
Signal efficiency	(0.205	±	0.024)%	(0.045	±	0.007)%

Good agreement between data observation and expected Standard Model background.

No evidence for flavor changing neutral currents is found.

Limit Calculation

- We derive 95% CL limits on the BR for this FCNC decay using the modified frequentist (CL_s) likelihood method.
 - o CL_s is used for small signals.
- o Statistical and Systematic uncertainties are taken into account (Gaussian distributions).
- o For the combination: systematic uncertainties of the MC-backgrounds and signal samples are taken to be fully correlated between 3ID and 2ID+TL. Other sources (statistical and systematic) are considered uncorrelated.



Limit Calculation

- o 10⁵ pseudo experiments are performed to compare the *background-only* and the *signal+background* hypotheses to the data.
 - The statistical fluctuations of the pseudo –experiments are implemented using Poisson distributions.
- o This gives a limit on the number of signal events.
 - o Converted into upper limits on the corresponding BRs using the approximate NNLO calculation of the cross section: $\sigma_{t\bar{t}} = 165^{+11}_{-16} \; \mathrm{pb}$

Limit

Limit Calculation

Limit

channel	observed	(-1σ)	expected	$(+1\sigma)$
3ID	0.81%	0.63%	0.95%	1.42%
2ID+TL	3.18%	2.15%	3.31%	4.86%
Combination	0.73%	0.61%	0.93%	1.36%

Observed in data

Expected sensitivity, assuming that the data are described correctly by the SM

- Top Quark PhysicsMotivation
- o ATLAS Detector
- Object and Event Selection
- o Backgrounds
- Systematic Uncertainties
- Limit Calculation
- o Conclusions

FCNC in Top Quark Decays

- A search for flavor changing neutral currents in top quark decays has been presented.
- The search was performed in 2.1 fb⁻¹ of 2011 *pp* collision data.

FCNC in Top Quark Decays

- A search for flavor changing neutral currents in top quark decays has been presented.
- o The search was performed in 2.1 fb⁻¹ of 2011 *pp* collision data.
- o Two orthogonal channels were introduced: 2ID+TL and 3ID, and their results combined.
 - A publication has been submitted to JHEP.

2.1 fb⁻¹ arxiv: 1206.0257

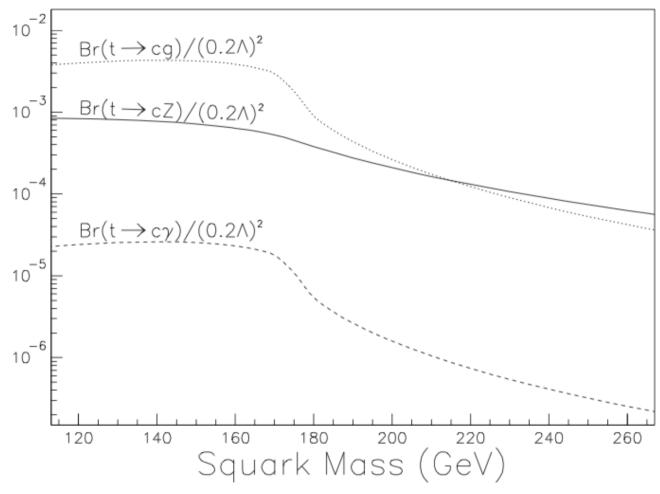
FCNC in Top Quark Decays

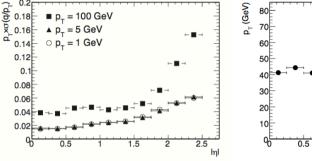
- A search for flavor changing neutral currents in top quark decays has been presented.
- o The search was performed in 2.1 fb⁻¹ of 2011 *pp* collision data.
- o Two orthogonal channels were introduced: 2ID+TL and 3ID, and their results combined.
- o No evidence for FCNC signal has been found, and an upper limit on the $t \rightarrow Zq$ branching ration of

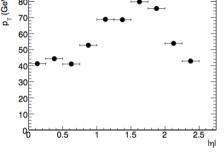
BR < 0.73%

is set at 95% CL. This observed limit is in agreement with the expected limit of BR < 0.93%

FCNC in R-parity violating SUSY




FIG. 3. The plot of $Br(t \to cV)/(0.2\Lambda)^2$ as a function of squark mass.


 Λ being the product of the baryon number violating couplings. $\Lambda = 1$, and masses as high as 170 GeV, for the values quoted before

Track inefficiencies

Figure 198. Relative transverse momentum resolution (left) as a function of $|\eta|$ for muons with $p_T = 1$ GeV (open circles), 5 GeV (full triangles) and 100 GeV (full squares). Transverse momentum, at which the multiple-scattering contribution equals the intrinsic resolution, as a function of $|\eta|$ (right).

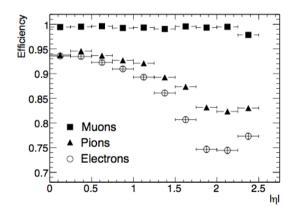


Figure 202. Track reconstruction efficiencies as a function of $|\eta|$ for muons, pions and electrons with $p_T = 5$ GeV. The inefficiencies for pions and electrons reflect the shape of the amount of material in the inner detector as a function of $|\eta|$.

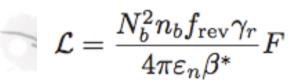
Figure 203. Track reconstruction efficiencies as a function of $|\eta|$ for pions with $p_T = 1$, 5 and 100 GeV.

Fake Lepton Systematic Uncertainty

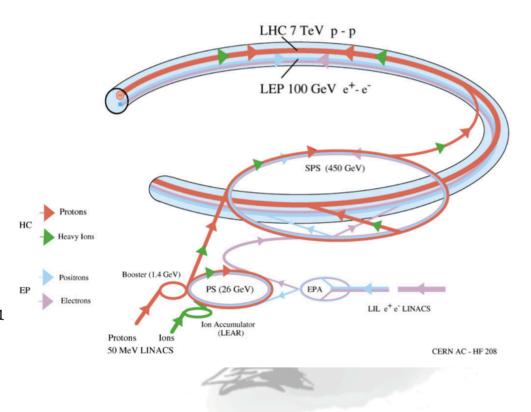
Systematic uncertainties can influence the expected number of signal and/or background events:

			eTL				$\mu extbf{TL}$	
#jets	0	В	P	(B-O)/P [%]	O	В	P	(B-O)/P [%]
0 (OS)	411	$436.3^{+38.4}_{-36.8}$	199.1 ± 9.3		460	441.1+52.9	321.9 ± 48.4	
1 (OS)	201	$436.3_{-36.8}^{+38.4} \\ 207.1_{-27.3}^{+16.9}$	99.0 ± 4.2		247	$\begin{array}{c} 441.1^{+52.9}_{-52.0} \\ 270.5^{+17.2}_{-16.5} \end{array}$	142.5 ± 6.0	
2 (SS)	10	10.7 ± 0.8	7.6 ± 0.7		14	13.9 ± 1.0	11.1 ± 0.9	
3 (SS)	7	6.2 ± 0.5	5.4 ± 0.5		9	8.3 ± 0.7	7.0 ± 0.6	
4 (SS)	4	4.1 ± 0.4	3.8 ± 0.4		1	3.2 ± 0.4	3.1 ± 0.4	
≥ 5 (SS)	2	1.9 ± 0.1	1.8 ± 0.1		0	1.5 ± 0.2	1.4 ± 0.2	
Total	635	666.4 ^{+41.9} _{-45.8}	316.6 ± 10.3	$9.9^{+15.6}_{-16.5}$	731	738.5 ^{+55.6} _{-54.6}	487.0 ± 48.8	$1.5^{+12.7}_{-12.5}$

Background: includes the contribution from other sources $(Z/g^*, diboson, single top)$ Prediction: contribution from fakes prediction only.


By comparing the agreement between background prediction and observation, we estimate a **20% systematic uncertainty** on the fake prediction

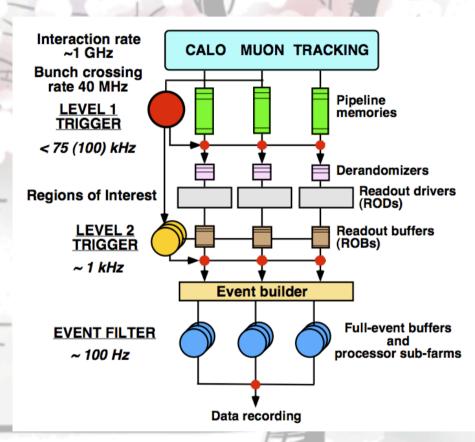
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2011-03


LHC

	injection	collision	
Proton energy [GeV]	450	7000	
Relativistic gamma	479.6	7461	
Number of particles per bunch	1.15×10^{11}		
Number of bunches	2808		
Bunch spacing [ns]	24.95		
Longitudinal emittance (4σ) [eVs]	1.0	2.5	
Transverse normalized emittance [μ m rad]	3.5	3.75	
Circulating beam current [A]	0.584		
Stored energy per beam [MJ]	23.3	362	
Geometric luminosity reduction factor	-	0.836	

Assuming a peak luminosity of 10³⁴ cm⁻²s⁻¹

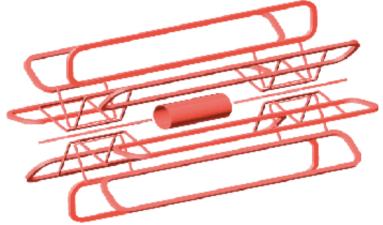
trigger.

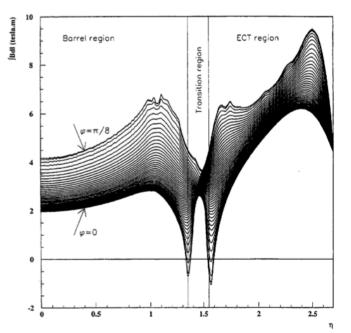

Trigger

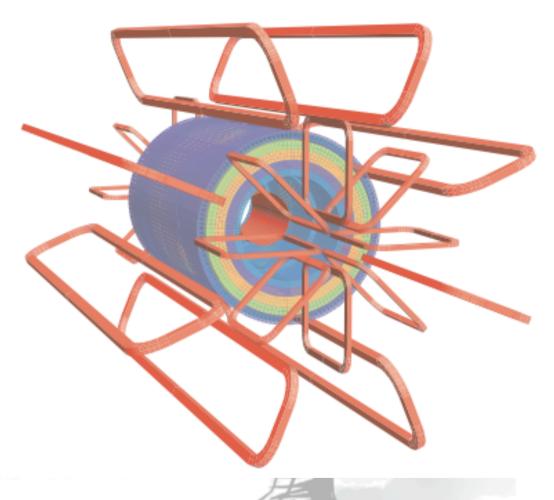
The level-1 (LVL1) trigger makes an initial selection using reduced granularity information from a subset of detectors, and based on combinations of objects required in coincidence or veto.

The level-2 trigger makes use of "region of interest" information provided by the LVL1

The event filter (EF) uses the full event data, together with the latest available calibration and alignment information to make the final selection of events to be recorded.




At the EF level, the lepton triggers require $p_T > 20$ GeV/c and $E_T < 6$ GeV in a cone of ΔR =0.2 around the lepton.



Magnets

8 barrel toroid coils, with the end-cap coils interleaved. The solenoid winding lies inside the calorimeter volume.

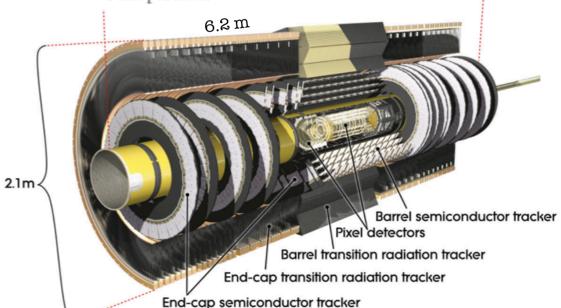
Charge particle tracking system built on two technologies R = 1082 mm TRT TRT R = 554 mm R = 514 mm $R = 443 \, \text{mm}$ SCT · $R = 371 \, \text{mm}$ R = 299 mn SCT R = 122.5 mm Pixels (R = 88.5 mm R = 50.5 mm

Drift tubes:

~300,000 straw tubes resolution 130 μ m (R ϕ) XeCO₂O₂ 36 hits per track

Silicon:

~ 3M Si strips resolution: 23 μm (RΦ) 580 mm (Z)


4-9 hits per track.

~ 80M Si pixels resolution: 14 μm (Rφ) $115 \, \mu m \, (Z)$

3 hits per track

System	position	area [m ²]	resolution σ [μ m]	channels (10^6)	η coverage
	1 removable barrel layer	0.2	$R\phi = 10, z = 115$	16	± 2.5
	2 barrel layers	1.4	$R\phi=10,z=115$	81	± 1.7
	4 end-cap disks	0.7	$R\phi = 10, R = 115$	43	1.7 - 2.5
	on each side	0.7	$n\varphi = 10, \ n = 115$	40	1.7 - 2.5
	4 barrel layers	34.4	$R\phi = 17, z = 580$	3.2	±1.4
SCT	9 end-cap wheels	26.7	$R\phi = 17, R = 580$	3.0	1.4 - 2.5
	on each side	20.1	$n\psi = m$, $n = 500$	5.0	1.4 - 2.0
	axial barrel straws		130 (per straw)	0.10	±0.7
	radial and can strome				

130 (per straw)

0.7 - 2.5

0.32

36 straws per track

TRT

R = 0 mm

EM calorimeter	barrel	end-cap	
coverage	$ \eta < 1.465$	$1.375 < \eta < 3.2$	
longitudinal segmentation	3 samplings	3 sampling	$1.5 < \eta < 2.5$
		2 sampling	$1.375 < \eta < 1.5$
			$2.5 < \eta < 3.2$
granularity $(\Delta \eta \times \Delta \phi)$			
sampling 1	0.003×0.1	0.025×0.1	$1.375 < \eta < 1.5$
		0.003×0.1	$1.5 < \eta < 1.8$
		0.003×0.1	$1.8 < \eta < 2.0$
		0.003×0.1	$2.0 < \eta < 2.5$
		0.1×0.1	$2.5 < \eta < 3.2$
sampling 2	0.025×0.025	0.025×0.025	$1.375 < \eta < 2.5$
		0.1×0.1	$2.5 < \eta < 3.2$
sampling 3	0.050×0.025	0.05×0.025	1.5 $< \eta < 2.5$
Presampler	barrel	end-cap	
coverage	$ \eta < 1.52$	$1.5 < \eta < 1.8$	
longitudinal segmentation	1 sampling	1 sampling	
granularity $(\Delta \eta \times \Delta \phi)$	0.025×0.1	0.025×0.1	
Hadronic tile	barrel	end-cap	
coverage	$ \eta < 1.0$	$0.8 < \eta < 1.7$	
longitudinal segmentation	3 sampling	3 sampling	
granularity $(\Delta \eta \times \Delta \phi)$			
samplings 1 and 2	0.1×0.1	0.1×0.1	
samplings 3	0.2×0.1	0.2×0.1	
Hadronic LAr		end-cap	
acrema ac		$1.5 < \eta < 3.2$	
coverage			
longitudinal segmentation		3 samplings	
		3 samplings 0.1×0.1	$1.5 < \eta < 2.5$
longitudinal segmentation			$1.5 < \eta < 2.5$ $2.5 < \eta < 3.2$
longitudinal segmentation		0.1 × 0.1	
longitudinal segmentation granularity $(\Delta \eta \times \Delta \phi)$		0.1×0.1 0.2×0.2	
longitudinal segmentation granularity $(\Delta \eta \times \Delta \phi)$ Forward calorimeter		0.1×0.1 0.2×0.2 end-cap	

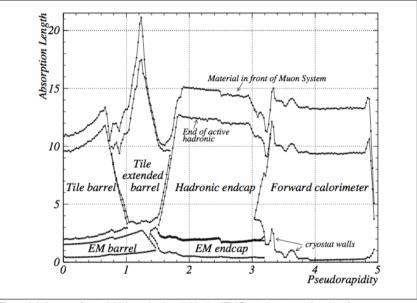
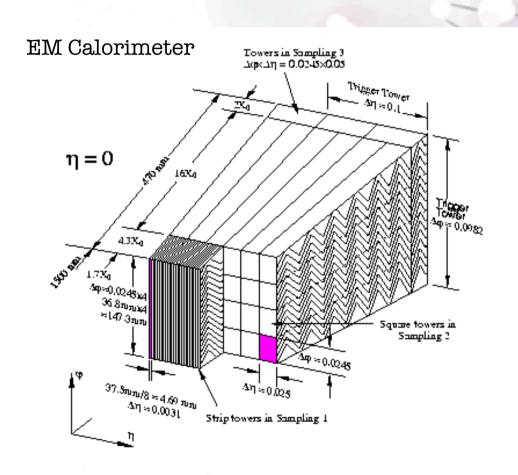
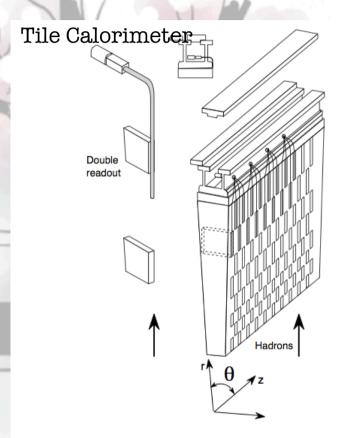
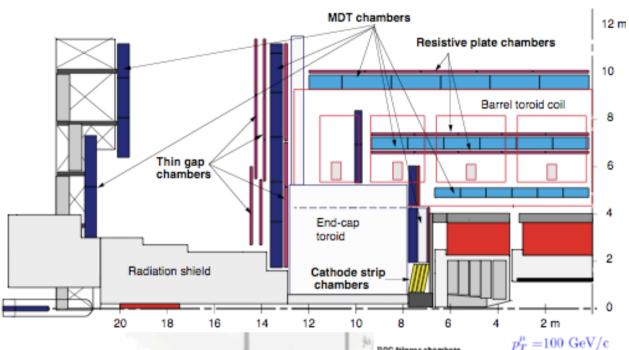


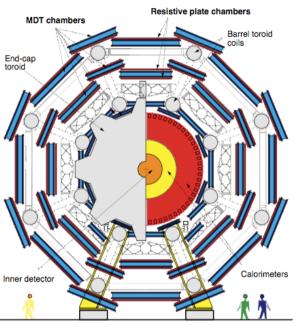
Figure 1-4 Amount of material (absorption lengths) in the ATLAS calorimetry as a function of η .


eminar


August 16, 2012

Calorimeter


Figure 2-1 The principle of the Tile Calorimeter design.



Muon Spectrometer

 $p_T^{\mu} = 4 \text{ GeV/c}$

Precision chambers

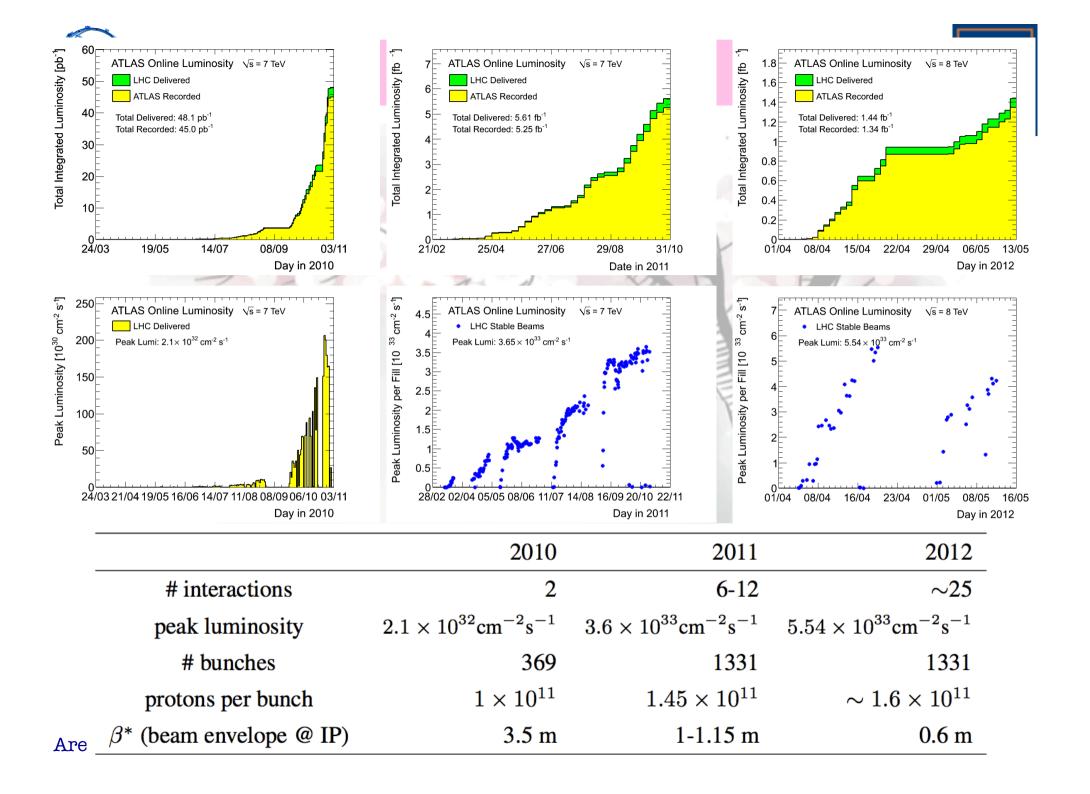
- •MDT (Monitored Drift Tube)
 - o Barrel ($|\eta|$ <1.0)
 - \circ EndCap (1.0< $|\eta|$ <2.7)
- •CSC (Cathode Strip Chambers)
 - EndCap

Trigger Detectors

- oRPC (Resistive Plate Chambers)
- oTGC (Thin Gap Chambers)

Arely Cortes-Gonzalez

$p_T > 6 \text{ GeV/c}$


Muons hit all spectrometer layers.

- ⇒ Can trigger on these muons.
- $\Rightarrow p^{\mu}$ measured in the muon spectrometer and inner detector.

$p_T \lesssim 6 \text{ GeV/c}$

Muons hit only inner layers.

- ⇒ Cannot trigger on these muons.
- $\Rightarrow p^{\mu}$ measured only in the inner detector.

Systematic Uncertainties

Systematic uncertainties can influence the expected number of signal and/or background events:

Miscellaneous

- LuminosityEstimated to be 3.7%.
- b-tagging
 MC modelling of the b-tagging efficiency.
- o ISR/FSR, Top quark mass, PDF used for signal generation, t-tbar cross section.

Systematic Uncertainties

Systematic uncertainties can influence the expected number of signal and/or background events:

Object Specific

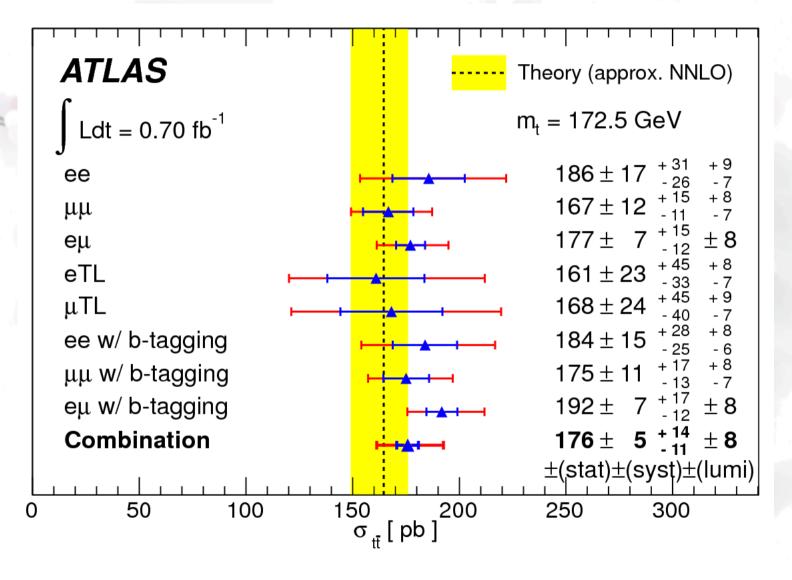
- \circ Muons, Electrons, TL MC modelling of Trigger (e, μ), reconstruction and identification efficiencies and of the energy/momentum scale and resolution.
- o Jets Energy scale of light-quark jets and b-jets (including pile-up). MC modelling of jet energy resolution. Jet reconstruction efficiency.
- \circ $E_T^{\rm miss}$ Corrections on the leptons and jets are propagated to the $E_T^{\rm miss}.$ Effect of energy in calorimeter not associated to reconstructed

objects, low momentum jets, and MC modelling of pile-up.

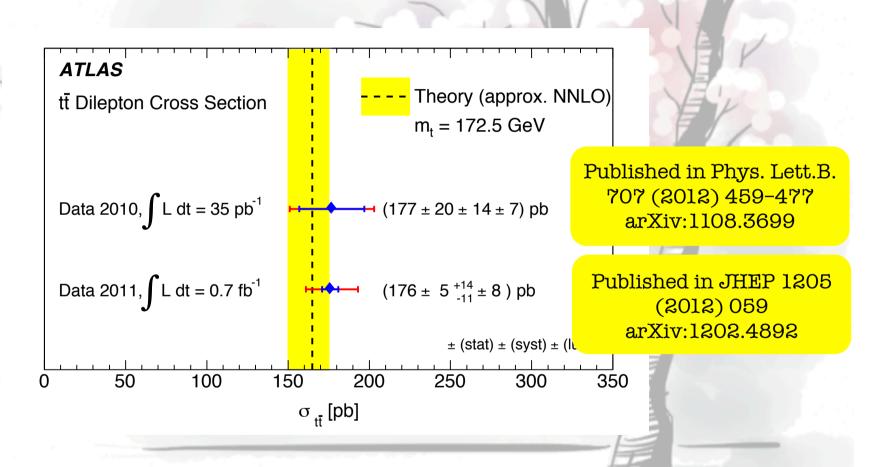
Simulated Samples

All MC samples are processed with the GEANT4 simulation of the ATLAS detector.

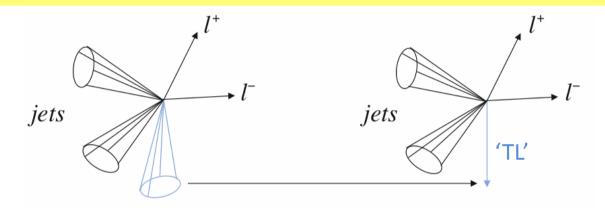
Process	Generator	PDF	other	
$t\bar{t}$, single top-quark	MC@NLO	CTEQ6.6	$m_t=172.5~{ m GeV}$	
Z/γ^* +jets	ALPGEN	CTEQ6L1	Normalized to NNLO with kFactor = 1.25	
WW,WZ,ZZ	ALPGEN	CTEQ6.1	Normalized to NLO with	
			kFactor = 1.26 (WW), 1.28 (WZ), 1.30 (ZZ)	
W+jets	background evaluated from data			


All MC simulated events are hadronized using the Herwig shower model supplemented by the Jimmy underlying event model

t-tbar Cross Section Dilepton Channel



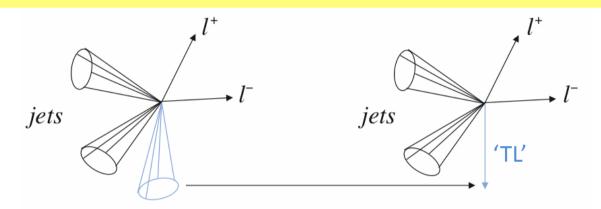
t-tbar Cross Section Dilepton Channel



Fake Leptons

Strategy

Parent sample
Events with two
leptons (passing other
event selection cuts)


Used to predict events with two leptons + one fake

Fake Leptons

Strategy

Parent sample
Events with two
leptons (passing other
event selection cuts)

Used to predict events with two leptons + one fake

Since we remove ID jets within ΔR <0.4 of a TL

two leptons events with N jets

Two lepton events + fakes with (N-1) jets