Resultados Recientes del Experimento ATLAS del LHC en el CERN

Isabel Pedraza (University of Wisconsin)

Facultad de Ciencias Físico-Matemáticas BUAP

30 de Agosto de 2010

1

Organizació de la Plática

- Motivación
- Descripción del detector
- Estatus del LHC
- Contribuciones en las conferencias de verano con datos
 - W, Z, Z+jets y W'
 - Física con Jets
 - SUSY
- Un poco del trabajo en el CERN

Motivación

•*8/30/10*

·Isabel Pedraza - FCFM 2010

Motivación

 ¿Cuál es el mecanismo responsable de la masa de las partículas?

- ¿Por qué no es tan fácil incluir la gravedad?
- ¿Cuántas dimensiones existen?
- ¿Por qué tres familias?
- ¿Qué es la materia oscura?

HIGGS BOSON

He's the one everyone wants to meet, but for now he's playing hard to get. You'd be smiling too if everyone was looking to interview *you*.

GRAVITON

Still unobserved, yet theoretically everywhere, he's got big legs for jumping branes.

DARK MATTER The mysterious missing mass. Difficult to see because he's so dark.

Motivación

¿Cómo encontramos esas respuestas? Proponiendo modelos y probándolos.

¿Por qué un acelerdor más grande?

Porque mientras más energía y/o más colisiones por unidad de tiempo más probabilidad de encontrar física más allá del Modelo Estándar

Descripción del Detector

Estatus del LHC

Estatus del LHC

- Primeras colisiones a 7 TeV el 30 de Marzo, 2010
- · La luminosidad ha aumentado por 3 órdenes de magnitud en 5 meses.
- 36 bunches in the LHC

•*8/30/10*

Física en ATLAS con colisiones desde Marzo de 2010

Candidato del W

W, Z Observation

$$m_{\rm T} = \sqrt{2p_{\rm T}^\ell p_{\rm T}^\nu (1 - \cos(\phi^\ell - \phi^\nu))}$$

Primera observación de W y Z en ATLAS (6.7 nb⁻¹)

- W \rightarrow lv : 57 eventos
- $Z \rightarrow || : 3 \text{ eventos}$

Sección transversal de la W

$$m_{\rm T} = \sqrt{2p_{\rm T}^\ell p_{\rm T}^\nu (1 - \cos(\phi^\ell - \phi^\nu))}$$

Asimetría (resultados ICHEP 17 nb⁻¹)

$$A = \frac{\sigma(W \to \ell^+ \nu) - \sigma(W \to \ell^- \nu)}{\sigma(W \to \ell^+ \nu) + \sigma(W \to \ell^- \nu)}$$

•
$$A(W \rightarrow ev) = 0.21 \pm 0.18 \pm 0.01$$
(syst)

•
$$A(W \rightarrow \mu v) = 0.33 \pm 0.12 \pm 0.01$$
 (syst)

(NNLO prediction: A=0.2)

$$P = uud$$
$$W^+ = u\overline{d}$$
$$W^- = d\overline{u}$$

Resultados ICHEP (17 nb⁻¹) $\sigma(W \rightarrow I_V) = 9.3 \pm 0.9(\text{stat}) \pm 0.6(\text{syst}) \pm 1.0(\text{lumi}) \text{ nb}$ 119 eventos:
47 W \rightarrow ev
72 W \rightarrow $\mu\nu$

σ(W→ev) = 8.5 ± 1.3(stat) ± 0.7(syst) ± 0.9(lumi) nb σ(W→µv) = 10.3 ± 1.3(stat) ± 0.8(syst) ± 1.1(lumi) nb NNLO: 10.46 nb

Estados finales en dos leptones

Z cross section

Resultados ICHEP 225 nb⁻¹

σ(Z→II) = 0.83 ± 0.07(stat) **± 0.06**(syst) **± 0.09**(lumi) **nb**

NNLO: 0.99 nb por familia para m_{II}>60GeV

 $\sigma(Z \rightarrow ee) = 0.72 \pm 0.11(stat) \pm 0.10(syst) \pm 0.08(lumi) \text{ nb}$ $\sigma(Z \rightarrow \mu\mu) = 0.89 \pm 0.10(stat) \pm 0.07(syst) \pm 0.10(lumi) \text{ nb}$ 125 events: 46 Z→ ee 79 Z→ μμ

Secciones transversales de la W y la Z

Candidato a Z + Jets

Búsqueda de la W'

- Búsqueda de un Bosón Cargado Pesado en el contexto del Sequential Standard Model, hasta ahora se han obtenido los límites para cross section×BR como función de m_W
- 95% C.L. exclusion: **m**_w > **460 GeV**
 - Límite Tevatron: m_{w'} > 1 TeV
- ATLAS puede competir con los resultados del Tevatron with ~ 5 pb⁻¹

Física con jets

Evento de dos jets más masivo reportado en ICHEP $m_{jj}=2.55$ TeV. $p_T^{j1}=420$ GeV, $p_T^{j2}=320$ GeV

Run Number: 158548, Event Number: 5917927 Date: 2010-07-04 07:24:40 CEST

Búsqueda de resonancias con Dijets

Estado final de un quark excitado:

Aceptanción : Desde ~36% for $m_{q^*} = 400 \text{ GeV}$ $(\sigma_{mjj}/m_{jj} \sim 11\%)$ hasta ~49% for $m_{q^*} = 1.5 \text{ TeV}$ $(\sigma_{mjj}/m_{jj} \sim 7\%)$

Modelo de referencia: Excited quark q* • U. Baur, I. Hinchliffe, and D. Zeppenfeld, Int. J. Mod. Phys., A2, 1285 (1987) • U. Baur, M. Spira, and P. M. Zerwas, Phys.

• O. Baur, M. Spira, and P. M. Zerwas, Phy Rev., D42, 815 (1990)

Dijet resonance search

Limites para la prducción de q*

Excluido a 95% CL:

Con MRST PDF: (Martin, Roberts, Stirling, Thorne)

400<m_{q*}<**1260 GeV** con 315 nb⁻¹

Limite Actual: 260<m_{q*}<870 GeV con 1.1fb-1 CDF Collaboration, Phys.Rev.D 79(2009)112002

Distribución angular de Dijets

• Búsqueda de desviaciones en la distribución angular de DiJets respecto a la predicción de QCD.

Observable (a alta m_{ii})

Limite en "quark contact interaction" : $\Lambda > 875 \text{ GeV}$ (61 nb-1) para ICHEP 2010

Último límite publicado (DØ Collaboration) : Λ >2.8 TeV (0.7 fb⁻¹) Phys.Rev.Lett.103:191803,2009

Estado final con componentes múltiples

Motivación : Búsqueda de eventos con gran multiplicidad, alta energía transversal y grandes valores de masa invariante.

Inspirado en : Black Hole and String Ball signatures. Region de control: $\Sigma |p_T| > 300 GeV$

Region de la señal: $\Sigma |p_T| > 700 \text{GeV}$

Observados = 193 eventos Esperados = 253 ±18 ±84

- 95%CL upper limit of 0.34 nb limites en la sección transversal para estados finales con al menos 3 objetos, masa invariante arriba de 800GeV y $\Sigma |p_T|$ >700GeV
- Este resultado es relevante para modelos de low-scale gravity y weakly-coupled string theory.
- Es la primera búsqueda de este tipo •8/30/10 •Isabel Pe

SUSY

Resultados ICHE

- Analisis con cortes ligeros: 1 lepton aislado,
 2 jets con 30 GeV, E_T^{miss}>30 GeV y M_T>100 GeV
- Typical low-mass SUSY point included in the plots as a reference ("SU4": point with squark and gluino masses around 410 GeV)

Mi participación

Como ilustración y a petición del Dr. Arturo Fernández

- Lepton+MET final states
 - •*W y W*'

• Experto a cargo del Monitorieo de la Calidad de Energía perdida.

•SCT, Tier0 and Data Quality OnLine Monitoring Shifter

W'

- W' in the Sequential Standard Model:
 - W' is an additional heavy gauge boson
 - W' has the same couplings as W to left-handed fermions;
 no interaction with other heavy gauge bosons (W, Z, Z')
 - Lower bound on W' mass (direct searches): ~1TeV
- Standard Model backgrounds:
 - $W \rightarrow Iv (I: e, \mu, \tau)$
 - QCD (dijets processes)
 - ttbar

- W' signature:
 - High energy lepton accompanied by missing energy coming from the undetected neutrino.

W'

- I. No cuts.
- 2. Good Run List.
- 3. L1_EM2 trigger.
- 4. PV with at least 3 tracks.
- 5. |PVz| < 150.</p>
- 6. MET Cleaning.
- 7. el author 1 or 3.
- 8. |eta^{cluster}| < 2.47.</p>
- 9. 1.37 < |eta^{cluster}| < 1.52.</p>
- IO. isEMMedium.
- 11. ClusterPt > 20GeV.
- 12. OTX cleaning.
- 13. d0vtx < 1 mm.</p>
- 14. z0vtx < 5 mm. (Up to here: Quality Cuts)</p>
- 15. Just one Lepton.
- 16. Normalized Isolation (EtCone30).
- IT. MET > 25 GeV.

Discovery Potential for W'

Monitoreo de Energía Perdida y Jets

6 RUNS:160387,160472,160479, 160530,160613,160736

Run	Links	#LB	Start and endtime (CEST)	#Events	Project tag	JETB GHETOFU	JETEA SHIFTOFU	JETEC SHETOFU	JETFA SHIFTOFLI	JETFC SHIFTOFLI	METCALO SHIFTOFU	METMUON (SRIFTOFL)
160736 (in calib leep)	DS, RS, RS, ANI, DQ, ELOG, DCS:SoR/ EoR	268 (117 s)	Tue Aug 03 2010 22:02:39 — Wed Aug 04, 06:46:33	2,245,454 (T1.4 Hz)	data10_7TeV	G	G	G	G	G	G	G
160613 tin calib leopt	DS, RS, BS, ANI, DO, ELOG, DCS-S+R/ E+R	327 (117 a)	Mon Aug 02 2010 21:07:37 — Tue Aug 03, 07:45:25	6,050,579 (158,1 Rz)	data10_7TeV	G	G	G	G	G	G	G
160530	DS, RS, BS, ANI, DO, NEMO, ELOG, DCS;SoR/ EaR	628 (118 s)	Sun Aug 01 2010 15:58:01 - Mon Aug 02. 12:41:26	15.036.667 (201.5 Hz)	data10_7TeV	6	6	6	6	6	6	6
160479	DS, MS, BS, AMI, DQ, NEMO, ELDO, DCS:Soft EaR	328 (115 m)	Sat jul 31 2010 18:32:48 - Sun Aug 01, 05:03:12	979,142 (25.9 Hz)	data10_7TeV	G	G	G	G	G	G	G
160472	DS, RS, BS, ANI, DQ, NEND, ELDG, DCS:SoR/ Doll	533 (117 s)	Fri Jul 30 2010 18:52:35 — Sat Jul 31, 12:20:39	11,833,774 (188.2 Hz)	data10_7TeV	G	G	G	G	G	G	G
160387	DS, RS, BS, ANI, DO, NEMO, ELOG, DCS:SoR ^J EaR	401 (115 s)	Thu Jul 29 2010 18:43:50 — Fri Jul 30, 07:38:36	8,375,715 (180.2 Hz)	data10_7TeV	G	G	G	G	G	6	6

COMMENTS

New Missing Energy reference plots working. No mayor problems for these runs.

Participación en Notas Recientes

- 1. Observation of W->Iv and Z->II production in proton-proton collisions at √s=7 TeV with the ATLAS detector (ICHEP)
- Measurement of W→Iv production cross section and observation of Z →II production in proton-proton collisions at √s=7 TeV with the ATLAS Detector (ICHEP)
- 3. Search for high-mass states with lepton plus missing transverse energy using the ATLAS Detector at \sqrt{s} =7 TeV (ICHEP)
- ATLAS sensitivity prospects to W' and Z' in the decay channels W'->Iv and Z'->I+I- at √s=7 TeV ATL-PHYS-PUB-2010-007, Jul 2010

Resumen y Conclusiones

- ATLAS esta listo para la física de TeV's.
- Muy pronto tendremos resultados de nueva física y nuestro entendimiento de la naturaleza cambiará ahora y para siempre.
- Es un tiempo magnífico para que nuevos estudiantes se unan al esfuerzo con nuevas ideas y entusiasmo.

Diapositivas de Respaldo

Parámetros del Diseño del LHC

$$L = \frac{N_b^2 n_b f_{rev} \gamma_r}{4\pi \varepsilon_n \beta *} F$$

$$N_b = number of proton per bunch$$

$$n_b = number of bunches$$

$$f_{rev} = rotation frequency (~ 11Hz)$$

$$F = crossing angle factor$$

$$Rms transverse beam size = \sqrt{\varepsilon}\beta/\gamma$$

$$\varepsilon_n = renorm. transverse emittance$$

$$\beta^* = optics at beam crossing (m)$$

$$\gamma_r = relativistic factor$$

IP1: Atlas Cost 3 G€ IP5: CMS IP2: Alice IP8: LHCb

Nominal settings									
Beam energy (TeV)	7.0								
Number of particles per bunch	1.15 10 ¹¹								
Number of bunches per beam	2808								
Crossing angle (μrad)	285								
Norm transverse emittance (μm rad)	3.75								
Bunch length (cm)	7.55								
Beta function at IP 1, 2, 5, 8 (m)	0.55,10,0.55,10								
3.2 x 10 ¹⁴ p/ 25 ns between									

beamcrossingDerived parametersLuminosity in IP 1 & 5 (cm⁻² s⁻¹)Luminosity in IP 2 & 8 (cm⁻² s⁻¹)*~5 10³²Transverse beam size at IP 1 & 5 (μm)Transverse beam size at IP 2 & 8 (μm)70.9Stored energy per beam (MJ)