This presentation was created based on the slides by Vitor de Souza

http://cosmicraysschool.ufabc.edu.br/pres/Vitor.odp from his talk at the

4th School on Cosmic Rays and Astrophysics UFABC - Santo André - São Paulo - Brazil August 25 to September 03 – 2010 http://cosmicraysschool.ufabc.edu.br

The multimessenger approach to astroparticle physics

Célio A. Moura Universidade Federal do ABC UFABC Seminario – Facultad de Ciencias Físico Matemáticas – BUAP October 27, 2010

Energy Spectrum

Via Láctea: Rádio (408 MHz) C. Haslam et al., MPIfR, SkyView

Via Láctea: Rádio (1420 MHz) Dickey et.al. UMn. NRAO SkyView

Via Láctea: Infravermelho Dirbe Team, COBE, NASA

Via Láctea: Vísivel por Axel Melinger

Via Láctea: Ultravioleta J. Bonnell et.al.(GSFC, NASA)

Via Láctea: Ráios X Digel et. al. GSFC, ROSAT, NASA

Via Láctea: Ráios Gama > 100 MeV (CGRO, NASA)

Point Sources Gamma Rays > 10¹² eV Cerenkov Telescopes, by Jim Hinton

Other messengers

$\begin{array}{l} \mathsf{KASCADE} \\ \mathsf{E} \sim 10^{1 \ 6} \ \mathsf{eV} \end{array}$

AGASA $E > 10^{1.8} eV$

Auger E > 5.7 x 10^{1 9} eV

Astroparticle Physics

Second ASPERA* Astroparticle physics is a new multidisciplinary field of research that deals with the study of particles coming from the Universe.

*It is an European network of national government agencies responsible for coordinating and funding national research efforts in Astroparticle Physics.

Astroparticle Physics

The study of the physics phenomena occurring in astronomical objects by measuring the high energy particles they produce.

Astrophysics

Particle Physics

Cosmology

HOW DO WE DO ASTROPARTICLE PHYSICS ?

Astroparticle Physics

WHAT CAN WE LEARN FROM NATURE BY UNSCRAMBLING THIS PUZZLE ?

Source Skymap

Source type identification

Energy Spectrum

Acceleration

$$\frac{\langle \Delta E \rangle}{E} \sim \beta^2$$

 $\frac{\langle \Delta E \rangle}{E} \sim \beta$

(Original) Fermi acceleration mechanism (second ordem).

First order acceleration Fermi mechanism.

Keep the particle inside the acceleration region

 $E_{ev} < 10^{15} \times Z \times B_{\mu G} \times R_{S, pc}$

Energy spectrum

Magnetic field Intensity Structure Shock wave speed Size of the region Particle charge **Injection speed** Scape probability

25

Composition

 $E_{ev} < 10^{15} \times Z \times B_{\mu G} \times R_{S, pc}$

20 years ago...

 $E_{ev} < 10^{15} \times Z \times B_{\mu G} \times R_{S, pc}$

Magnetic Field

M. Hillas

Interesting points:

There are only a few sources able to accelerate particles beyond 10¹⁹ eV

Propagation

Y (Mpc)

J. Cronin

Interesting points:

There are only a few sources able to accelerate particles beyond 10¹⁹ eV

- Particle propagate straight from the source to Earth

Universe is not empty

J. Cronin

Interesting points:

There are only a few sources able to accelerate particles beyond 10¹⁹ eV

- Particle propagate straight from the source to the Earth

Sources are not far away (D < 100 Mpc)

1 pc = 3 x 10¹ ⁶ m

Cluster

50.Mpc

rpowel

Slide: Silvia Mollerach

1 pc = 3 x 10¹ ⁶ m

Interesting points:

There are only a few sources able to accelerate particles beyond 10¹⁹ eV

- Particle propagate straight from the source to the Earth

Sources are not far away (D < 100 Mpc)

The Universe is anisotropic and has voids inside 100 Mpc

Characteristics

Energy Spectrum

Composition

Source Skymap

UHECR Detector Techniques

Ground Arrays

Fluorescence Telescopes

Extensive Air Shower

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Telescope view

Telescopes measure the intensity and arrival time of the fluorescence light

Camera view

Telescopes measure the intensity and arrival time of the fluorescence light

Longitudinal Profile

The intensity as a function of elevation can be transformed into the energy deposited in the atmosphere as a function of depth³

Fitting the Longitudinal Profile

The total calorimetric energy of the shower is proportional to the integral of the energy deposited ⁵⁴

Arrival Direction

Camera view

Telescopes measure the intensity and arrival time of the fluorescence light

Hybrid Angular Resolution

Figure 4: Hybrid angular resolution as a function of the true energy.

Figure 1: The 69 arrival directions of CRs with energy $E \ge 55$ EeV detected by the Pierre Auger Observatory up to 31 December 2009 are plotted as black dots in an Aitoff-Hammer projection of the sky in galactic coordinates. The solid line represents the field of view of the Southern Observatory for zenith angles smaller than 60°. Blue circles of radius 3.1° are centred at the positions of the 318 AGNs in the VCV catalog that lie within 75 Mpc and that are within the field of view of the Observatory. Darker blue indicates larger relative exposure. The exposure-weighted fraction of the sky covered by the blue circles is 21%.

AGN Correlation

Figure 2: The most likely value of the degree of correlation $p_{data} = k/N$ is plotted with black dots as a function of the total number of time-ordered events (excluding those in period I). The 68%, 95% and 99.7% confidence level intervals around the most likely value are shaded. The horizontal dashed line shows the isotropic value $p_{iso} = 0.21$. The current estimate of the signal is $(0.38^{+0.07}_{-0.06})$.

time=-160µs

Ferro

Próton

time=-106µs

Próton

time=-43µs

No photons detected

Fig. 8. The upper limits on the integral flux of photons derived in this work (black arrows) along with predictions from top-down models (SHDM, TD and ZB from Ref. [21], SHDM' from Ref. [12]) and with predictions of the GZK photon flux [21]. A flux limit derived indirectly by AGASA ("A") is shown for comparison [29].

No neutrinos detected

FIG. 3: Limits at 90% C.L. for a diffuse flux of ν_{τ} from the Pierre Auger Observatory. Limits from other experiments [36–43] are converted to a single flavour assuming a 1 : 1 : 1 ratio of the 3 neutrino flavours and scaled to 90% C.L. where needed. Two different formats are used: differential (squares) and integrated (constant lines). The shaded curve shows the range of expected fluxes of GZK neutrinos from Ref. [10, 11], although predictions almost 1 order of magnitude lower and higher exist.
Double Bangs in the Atmosphere

M. M. Guzzo and C. A. Moura, Astropart. Phys. 25, 277 (2006) [arXiv:hep-ph/0504270].

Composition

UHECR Puzzle

UHECR Puzzle

Is the suppression above 5x10¹⁹ eV due to interaction with the CMB or is it due to the source limit ?

How to reconcile the AGN correlation with A > 1?

Very low magnetic fields ?

Nearby source with enhanced flux and power?

Are AGNs the sources

or are they only tracers ?

Is the composition change astrophysical or do we need new particle physics for $E_{Iab} > 10^{1.8} \text{ eV} \sim E_{c.m.} > 5 \times 10^{1.4} \text{ eV}$?

Is there something we do not understand in the shower development ?

Is there any relation of all this with DM and DE?

Answers may come from

Auger, Auger North, JEM-EUSO: nuclei, gammas, neutrinos; IceCube, KM3Net (ANTARES, NEMO, **NESTOR**): neutrinos: Fermi, HESS, Magic: gammas. Pamela, Fermi, CDMS, Xenon, DAMA, etc. DM WMAP and similars-> DE

20 years ago...

Astroparticle Physicist

Astroparticle Physics Puzzle

Today

Astroparticle Physicist

Astroparticle Physics Puzzle