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Motivation



Motivation 1: Geometry

Quote (Arnold)

“The relations between symplectic and contact geometries are similar to
those between linear algebra and projective geometry. First, the two related
theories are formally more or less equivalent: every theorem in symplectic
geometry may be formulated as a contact geometry theorem, and any
assertion in contact geometry may be translated into the language of
symplectic geometry. Next, all the calculations look algebraically simpler in
the symplectic case, but geometrically things are usually better understood
when translated into the language of contact geometry. Hence one is advised
to calculate symplectically but to think rather in contact geometry terms”

Goal

Introduce contact geometry and contact Hamiltonian systems



Motivation 2: Physics

Quote (Arnold)

“Every mathematician knows it is impossible to understand an elementary
course in thermodynamics. The reason is that thermodynamics is based—as
Gibbs has explicitly proclaimed—on a rather complicated mathematical
theory, on the contact geometry. Contact geometry is one of the few simple
geometries of the so-called Cartan’s list, but it is still mostly unknown to the
physicist—unlike the Riemannian geometry and the symplectic or Poisson
geometries, whose fundamental role in physics is today generally accepted”

Goal

Introduce contact geometry and contact Hamiltonian systems and their
relevance in physics
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Contact Manifolds



Symplectic Vs Contact
Definitions: Nice Vs Ugly

Symplectic Manifold (General) Contact Manifold
(MZH,Q), (fTQn—H’D)’
d2=0,V=0Q"#0 “D max. non-int.”
Definition

A contact manifold is a

(2n 4+ 1)-dimensional manifold 7,
endowed with a contact structure,
that is, a maximally
non-integrable distribution

D C TT of hyperplanes



Symplectic Vs Contact
Definitions: Nice Vs Nice

Symplectic Manifold (Exact) Contact Manifold

(M, 9), (T2+1,D = ker(n)),

dQ=0,V=0"#0 V=nA(dn)"#0

Theorem (Darboux) Theorem (Darboux)
In the neighborhood of any point In the neighborhood of any point
on a symplectic manifold, it is on a contact manifold, it is always
always possible to find a set of possible to find a set of local
local coordinates such that the coordinates such that the 1-form 1
2-form §) can be written can be written

Q =dp, A dg* n =dw — p,dg®



Symplectic Vs Contact

Examples
Symplectic Manifold Contact Manifold
(M?",Q),d2=0,V=0"#0 (T n), V=nA(dn)" #0
Canonical coordinates: Contact coordinates:
(g.p) Q2 =dpa Adg" (¢;p,w)  n=dw—p.dg®
Examples: Examples:
® R?" 4+ standard symplectic ® R?*! 4 standard contact
(R*,9), @ = dp, A dg” (R* 1), n = dw — padg*
® Cotangent bundle ® 1-jet bundle
(T*M, Q) (J'M,n) = (T*M x R,n)

a =p.dg?, Q=da n=dw—«



Symplectic Vs Contact

Reeb Vector Field
Symplectic Manifold Contact Manifold
(M?",Q),d2=0,V=0"#0 (T n), V=nA(dn)"#0
Canonical coordinates: Contact coordinates:
(¢,p)  Q=dp, Ndg* (¢;p,w)  m=dw—p.dg*

Reeb (Characteristic) vector field:

dn(&,-) =0 n) =1
In contact coordinates:

0

$= ow



Symplectic Vs Contact

Symmetries
Symplectic Manifold Contact Manifold
(M?",Q),d2=0,V=0"#0 (T n), V=nA(dn)"#0
Canonical coordinates: Contact coordinates:
(¢,p)  Q=dp, Ndg* (¢;p,w)  m=dw—p.dg*
Canonical transformations: Contact transformations:
Q = dp,NdG* = dw—p.dg*
= dp, Ndg* = f(dw—padq*)

= 0 = fn



Contact Symmetries
Example: the Legendre transformation

Definition

Consider a disjoint partition I U J of the set of indices {1,...,n}. A
Legendre transformation on 7 is given by the relations

W o= W—pg q[
o= 4,
C}[ = DI,

while leaving the rest of the coordinates unchanged, i.e. ¢/ = ¢’, p; = py.
When I C {1,...,n},itis a partial Legendre transformation (PLT).
When I = {1,...,n},itis a total Legendre transformation (TLT).

Remark
AW — padg® = dw — padg



Symplectic Vs Contact
Submanifolds: Definitions

Lagrange Submanifold Legendre Submanifold

N" C M2n s.t. Q|TN" =0 L C T2n+] st 77‘TE” -0

Theorem (Local characterization)
Consider a disjoint partition I U J of the set of indices {1, ... ,n} and a
function of n variables f(p;, ¢), withi € [ and j € J.
The n + 1 equations
i of _ o of

"o PTag VT TP,

define a Legendre submanifold L" of (T ,n). Conversely, any Legendre
submanifold is locally defined by these equations for at least one of the 2"

possible choices of the partition of the set {1, ... ,n}.



Symplectic Vs Contact

Submanifolds: Examples

Lagrange Submanifold Legendre Submanifold

N'C M*"  st. Q|TN" =0 LTl st T]‘Tgn =0
Examples: Examples:
® R%in (R?" dp, A dg) ® I-graph of f(¢%) inJ'M
N = {qa,pa = Ca} [’f = {qaapu = Oga] , W :f}
® Zero section of T*M ® TLT(L)

In general TLT(Ly) # Ly.

If f(g) is convex, then

® Image of df in T"M TLT(Ly) = L5,
Ny ={(q",Pa) | Pa = Opef in T;M} where A

.]?(pd) = H}]%X[f(qb) — Paq’]

Mo = {(¢*,pa) | pa =0 in T;M}



Contact Hamiltonian Dynamics



Symplectic Vs Contact

Dynamics: Definition

Hamiltonian: Hamiltonian:
H:M*" —R h: T - R
Dynamics: Dynamics:
Q(Xy, ) = —dH nXn) = —h  £x,n1=fin

Using Cartan:

—&(h)n — dn(Xp, ) = —dh



Symplectic Vs Contact

Dynamics: Hamilton’s eqs

Hamiltonian: Hamiltonian:

H:M" - R h: T 5 R
Dynamics: Dynamics:

QXy, ) =—dH —&(h)n —dn(Xy, ) = —dh

Hamilton’s eqs: Hamilton’s eqs:

. OH . on

q9 = - q9 = -

Ipi opi
o R R,
pl — 5q’ pl — Bql pl aW

Oh
——p,—h
3pap



Symplectic Vs Contact

Dynamics: Example

Hamiltonian: Hamiltonian:
2 2)
H="5%+V(q) h=E5+V(g) +yw
Dynamics: Dynamics:
QXy, ) =—dH —&(h)n —dn(Xy, ) = —dh
Hamilton’s eqs: Hamilton’s eqs:
q = pi q¢ = pi
. ov . ov
pi = _8751" pi = _8761"_ / Pi

2
)4
E—V(Q)—VW



H is conserved:
H=XyH =0
Canonical transformations:
£x,2=0
Liouville Theorem:

£," =0

Symplectic Vs Contact

Liouville Theorem

his NOT conserved:

h=Xh=—9"h

Contact transformations:

£, =~ g 1

Contact Liouville Theorem:

£x, (JA~CFn A (dn)") =0

[Bravetti & Tapias, JPA 48, 245001, (2015)]
[Bravetti & Tapias, PhysRevE 93, 022139, (2016)]


http://iopscience.iop.org/article/10.1088/1751-8113/48/24/245001/meta
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.022139

Lagrange-Hamilton (~1800):

T
s = / L(q,q)dt — extr.
0

E-L equations:

d (OL) _
dr \ 8¢

Noether theorem:

v’

oL
oq

=0

Symplectic Vs Contact

Variational Principles

Herglotz (~1930):
w = L(q,q,w) — extr.
Generalized E-L equations:

4 (oL _ 9L _ OLOL _
dr \ 8¢ -

Generalized Noether Theorem:

v’

[Georgieva, Guenther, & Bodurov, JMP 44(9), 3911-3927, (2003)]
[Georgieva, Proceedings of the 12th ICGIQ (2011)]


https://aip.scitation.org/doi/abs/10.1063/1.1597419
https://projecteuclid.org/euclid.pgiq/1436815622

Symplectic Vs Contact

Hamilton—Jacobi

Stationary: Stationary:
H (Q7 811S) =c h (CL aqwa W) =cC
Evolutionary: Evolutionary:
H(q,aqs) = % h (Qa an, W) = %
Characteristic eqs: Characteristic eqs:
. OH )
9 = - q9 = I
Pi Pi
) OH . Oh Oh
pi = — @ pi = — Biq‘ 4 07W
. Oh
w =

——p,—h
3pap



Symplectic Vs Contact

Hamilton—Jacobi

Stationary: Stationary:
H (q,0y45) =c h(q,0gw,w) =c
Evolutionary: Evolutionary:
H(q,055) = 3 h(q, 0w, w) = 7

[Wang, Wang & Yan, Nonlinearity, 30(2):492, (2016)]
[Wang, Wang & Yan, arXiv:1801.05612, (2018)]


http://iopscience.iop.org/article/10.1088/1361-6544/30/2/492/meta
https://arxiv.org/abs/1801.05612

Symplectic Vs Contact

Algebraic Structures

Poisson bracket: Jacobi bracket:
{F7 G} = Q(XF7XG) {fag} = ”l([Xfan])
In coords: In coords:
gt =L _ 08
(F,G} = OF 0G  0G OF ’ 0q* Op,  0g* Op,
’ 9q° Opa  0q° Opa L, (O 98 g of
“\owdp, Owap,
0g of
S ow S ow
Then: Then:
Integrable Systems Contact Integrable Systems

Heisenberg Algebra Contact Heisenberg Algebra



Symplectic Vs Contact

Algebraic Structures

Poisson bracket:

Jacobi bracket:

{F,G} == Q(XF, Xg) {fs 8} = n([Xr, Xel)

In coords: In coords:

_Of og 0Og Of

OF 0G  0G OF {f.8} = 9q“ Opa  Og“ Op
(F,G} = — 2 _ : -
0q° Opa  0q* Opa o <8f dg  0g Of >

OwOpa  Ow dpa

[Arnold & Novikov, Dynamical Systems IV, Springer, (2001)]
[Bravetti, Chung & Tapias, JPA 50(10):105203, (2017)]


https://www.springer.com/la/book/9783540626350
http://iopscience.iop.org/article/10.1088/1751-8121/aa59dd/meta

~ Contact _
Hamiltonian dynamics.

Applications



Symplectic Vs Contact

Applications
Mechanics Mechanics
(of conservative systems) (of dissipative systems)
Equilibrium StatMech Equilibrium StatMech
(microcanonical measure) (any target measure)
Optimal Control Optimal Control

(Pontryagin Min Principle) (PMP in Thermodynamics)



Contact Hamiltonian Mechanics

h=H(q,p) +f(q,p,w)

e 8H+g
= dpi  Opi
. — _9H of _Oof
P = dq'  0q' i o
. OH of
— p—" _H _
W Pag +paapa f

Moral: we can obtain different dissipative systems
[Bravetti, Cruz & Tapias, AnnPhys 376 (2017) 1739]


http://www.sciencedirect.com/science/article/pii/S0003491616302469?

Contact Hamiltonian Mechanics
Example

h=3p"+V(g) +yw

qg =P
oV
p = Bq P
1
w = §P2—V(Q)—7W

Moral: mechanical systems with linear dissipation
[Bravetti, Cruz & Tapias, AnnPhys 376 (2017) 1739]


http://www.sciencedirect.com/science/article/pii/S0003491616302469?

Contact Hamiltonian StatMech

Remind: Contact Liouville Theorem
duy = [~V A (dn)”
Choose:
b= lp(g.p)p(w) Y
Obtain the desired invariant measure:

dun = p(q,p)p(w)dpdgdw

Moral: equilibrium StatMech, sampling distr.


http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.022139

Contact Hamiltonian StatMech

Example

—1/(n+1)
o e‘ﬂH(q”’)p(w)}

d:usys = e_“BH(q’p)dpdq

i A A

-l ;x‘ L

Moral: dynamics for the canonical ensemble


http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.022139

Contact Hamiltonian ThDynamics

Ist Law of TD:
dw — p.dg® =0
[TD Phase Space (TPS) is contact]:
(7> = {g,p,w},n = dw — pdq")
[TD systems are Legendre submanifolds]:
Ls=A{q,p =945, w=S5(q)}
[Conservation of the equilibrium]:

Ls invariant <= h|;, =0


http://www.sciencedirect.com/science/article/pii/003448779190017H

Contact Hamiltonian ThDynamics
Example

Entropy Maximum Principle:
7S dt+ S(q(
max Jo' Sdt+S(q(t))
g' = F'(q,0,S;u) (Balance equations)
q'(0) = g}, (Initial Conditions)
Then [Pontryagin Min Principle]
H(q,p;u) = (ps—0,S) F(q,0,S;u)
H(q",p"u") = minH(q",p";u)
pi(tr) = O0gSlg

Moral: Thermo-dynamics from Optimal Control
[Bravetti & Padilla, arxiv.org/abs/1804.03309]


https://arxiv.org/abs/1804.03309

Further subjects
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Announcements

® Course on Contact Geometry and TD
[Bravetti, JGMMP, 1940003, (2018)]
® Course on Multi-scale models
[Modelos Multiescalas: teoria y aplicaciones]
® Postdoc Positions at CIMAT
[Convocatoria postdocs 2019]


https://www.worldscientific.com/doi/abs/10.1142/S0219887819400036
http://modelosmultiescala.eventos.cimat.mx/
https://www.cimat.mx/node/153

Thank you!



Contact Gravity

PHYSICAL REVIEW D 95, 101501(R) (2017)

Action principle for action-dependent Lagrangians toward nonconservative
gravity: Accelerating universe without dark energy

Matheus J. Lazn,"‘ Juilson Pﬂ.iva,1 Jodio T. S. Amm's\l,1 and Gastiio S. F. Frederico™
Ynstituto de Matemdtica, Estatistica e Fisica—FURG, Rio Grande 96201-900, Rio Grande do Sul, Brazil
Departamento de Matemd Universidade Federal de Santa Catarina,

Floriandpolis 0-900, Santa Catarina, Brazil
*Department of Science and Technology, University of Cape Verde, Praia 7600, Cape Verde
(Received 28 January 2017; published 31 May 2017)

In the present work, we propose an action principle for action-dependent Lagrangians by generalizing
the Herglotz variational problem for several independent variables. This action principle enables us to
formulate Lagrangian densities for nonconservative fields. In particular, from a Lagrangian depending
linearly on the action, we obtain generalized Einstein field equations for nonconservative gravity and
analyze some consequences of their solutions for cosmology and gravitational waves. We show that the
nonconservative part of the field equations depends on a constant cosmological four-vector. Depending on
this four-vector, the theory displays damped/amplified gravitational waves and an accelerating Universe
without dark energy.

DOL: 10.1103/PhysRevD.95




Contact Quantum Mechanics

Available online at www.sciencedirect.com

: ° ANNALS
ScienceDirect of
PHYSICS

www.elsevier.com/locate/aop

Annals of Physics 323 (2008) 768-782

Quantization of contact manifolds
and thermodynamics

S.G. Rajeev
Department af Physics and Astronomy, Ut ity of Rochester, Rochester, NY 14627, USA

Received 2 Apt
Available online 6 May 2007




Contact Quantum Mechanics 2

Physics Letters B 781 (2018) 312-315

Contents lists available at ScienceDirect
Physics Letters B

www.elsevier.com/locate/physletb

Contact geometry and quantum mechanics

Gabriel Herczeg®, Andrew Waldron P*

2 Department of Physics, University of Califoria, Davis, CA 95616, USA
© Center for Quantum Mathematics and Physics (QMAP), Department of Mathematies, University of California, Davis, CA 95616, USA

CONTACT QUANTIZATION:
QUANTUM MECHANICS = PARALLEL TRANSPORT

G. HERCZEG?, E. LATINI® & ANDREW WALDRON*®

ABSTRACT.

Quantization together with quantum dynamics can be simultaneously formulated

as the problem of finding an appropriate flat connection on a Hilbert bundle over a

contact manifold. Contact geometry treats time, generalized positions and momenta

as points on an underlying phase-spacetime and reduces classical mechanics to contact
o .

Y .




Contact Quantum Mechanics 3

Con manifolds and dissipation, classical and quantum
F. M. Ciaglia'®

Mag Planck In for Mathemati y ot clsiras 3 Leipzig, Germany
2 Institut fiir Theoretische Ph  Goethe-U it irt am Main, Maz-von-La 1, D-60438

3 Dipartimento di Fisica e Pancini” e Napoli “Federico I, Complesso Universitario di

Napoli, Italy

5
“personal e-mail:florio.m.ciagli:

Sprado@itp.uni-frankfurt.de
"marmo@ua.infn.it

Abstract

Motivated by a geometric decomposition of the vector field associated with the Gorini-
Kossakowski-Lindblad—Sudarshan (GKLS) equation for fini

In par
a l:v emerges in thc context of Lagrangian Mechanics and in the case of nonlinear
evolutions on the space of pure states of a finite-level quantum sy:
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Contact Shape Dynamics

PHYSICAL REVIEW D 97, 123541 (2018)

Dynamical similarity

David Sloan’

Beecraft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford,
Denys Wilkinson Building, 1 Keble Road, Oxford OX1 3RH, United Kingdom

™ (Received 12 April 2018; published 28 June 2018)

We examine “dynamical similarities” in the Lagrangian framework. These are symmetries of an
intrinsically determined physical system under which observables remain unaffected, but the extraneous
information is changed. We establish three central results in this context: (i) Given a system with such a
symmetry there exists a system of invariants which form a subalgebra of phase space, whose evolution is
autonomous; (i) this subalgebra of autonomous observables evolves as a contact system, in which the
frictionlike term describes evolution along the direction of similarity; (iii) the contact Hamiltonian and one-
form are invariants, and reproduce the dynamics of the invariants. As the subalgebra of invariants is smaller
than phase space, dynamics is determined only in terms of this smaller space. We show how to obtain the
contact system from the symplectic system, and the embedding which inverts the process. These results are
then illustrated in the case of homogeneous Lagrangians, including flat cosmologies minimally coupled to
matter; the n-body problem and homogeneous, anisotropic cosmology.




Contact String Theory

Symmetry, Integrability and Geometry: Methods and Applications SIGMA 7 (2011), 058, 22 pages

Completely Integrable Contact Hamiltonian Systems
and Toric Contact Structures on §% x §%*

Charles P. BOYER

Department of Mathematics and Statistics, University of New Mezico,
Albuguerque, NM 87131, USA

E-mail: choyer@math.unm.edu

URL: http://www.math.unm.edu/~cboyer/

Received January 28, 2011, in final form June 08, 2011; Published online June 15, 2011
doi:10.3842/SIGMA.2011.058

Abstract. I begin by giving a general discussion of completely integrable Hamiltonian
systems in the setting of contact geometry. We then pass to the particular case of toric
contact structures on the manifold §? x §3. In particular we give a complete solution to
the contact equivalence problem for a class of toric contact structures, Y74, discovered by
physicists by showing that Y79 and Y*9" are inequivalent as contact structures if and only
ifp#p.

Key words: complete integrability; toric contact geometry; equivalent contact structures;
orbifold Hirzebruch surface; contact homology; extremal Sasakian structures

2010 Mathematics Subject Classification: 53D42; 53C25




Contact Monte Carlo

Adiabatic Monte Carlo

Michael Betancourt
Department of Statistics, University of Warwick, Coventry CV4 TAL, UK
(Dated: February 4, 2015)

A common strategy for inference in complex models is the relaxation of a simple model into the
more complex target model, for example the prior into the posterior in Bayesian inference. Existing
approaches that attempt to generate such transformations, however, are sensitive to the pathologies
of complex distributions and ean be difficult to implement in practice. Leveraging the geometry of
equilibrium thermodynamics, [ introduce a principled and robust approach to deforming measures
that presents a powerful new tool for inference.

Contact and information geometric description of
an extended Markov Chain Monte Carlo method

Shin-itiro GOTO' and Hideitsu HINO?,
1)Department of Applied Mathematics and Physics, Graduate School of Informatics,
Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
2) The Institute of Statistical Mathematics,
10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan

May 29, 2018




Contact PDEs

Zeitschrift fiir Analysis und ihre Anwendungen (© European Mathematical Society
Journal for Analysis and its Applications

Volume 30 (2011), 253268

DOL: 10.4171/ZAA/1434

Symmetries of the Generalized
Variational Functional of Herglotz
for Several Independent Variables

Bogdana Georgieva

Abstract. This paper provides a method for calculating the symmetry groups of the
functional defined by the generalized variational principle of Herglotz in the case of
several independent variables. Examples of calculating variational symmetry groups
are given, including those for the non-conservative nonlinear Klein-Gordon equation,
and for the equations describing the propagation of electromagnetic fields in a con-
ductive medium.

Keywords. Variational symmeties, Herglotz variational principle, invariant func-
tional, Herglotz

Mathematics Subject Classification (2000). 49




Contact Optimal Control

Contents lists available at ScienceDirect
Automatica

journal homepage: www.elsevier.com/locate/automatic

Technical communique

Contact geometry of the Pontryagin maximum principle*
Tomoki Ohsawa

Department of Mathematical Sciences, The University

of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080-3021, United States

ARTICLE INFO ABSTRACT

Article history ‘This paper gives a brief contact-geometric account of the Pontryagin maximum principle. We show
Received 27 June 2014 that key notions in the Pontryagin maximum principle — such as the separating hyperplanes, cc 3
Re d in revised form. necessary condition, and normal/abnormal minimizers — have natural contact-geometric interpretations.
;::?ul:rv 2015 ‘We then exploit the contact-geometric formulation to give a simple derivation of the transversality
. ’ condition for optimal control with terminal cost.

17 No

2015 Elsevier Ltd. All rights reserved.



Contact Biology

SCIENTIFIC REP?RTS

oFEN An optimal strategy to solve the
Prisoner’s Dilemma

: Alessandro Bravetti' & Pablo Padilla’?

| Cooperation is a central mechanism for evolution. It consists of an individual paying a cost in order

. to benefit another individual. However, natural selection describes ind als as being selfish and in

: competition among themselves. Therefore explaining the origin of cooperation within the context of

: natural selection is a problem that has been puzzling researchers for a long time. In the paradigmatic
case of the Prisoner’s Dilemma (PD), several schemes for the evolution of cooperation have been

: proposed. Here we introduce an extension of the Replicator Equation (RE), called the Optimal

. Replicator Equation (ORE), motivated by the fact that evolution acts not only at the level of individuals
: of apopulation, but also among competing populations, and we show that this new model for natural

: selectiondirectly leads to a simple and natural rule for the emergence of cooperation in the most basic
. version of the PD. Contrary to common belief, our results reveal that cooperation can emerge among

: selfis ividuals because of selfishness itself: if the final reward for being part of a society is sufficiently
: appealing, players spontaneously decide to cooperate.

d: 4 September 2017
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