
HIGH PRECISION AT  
HADRON MACHINES

Roger J. Hernández Pinto
Facultad de Ciencias Físico-Matemáticas

Universidad Autónoma de Sinaloa

based on: arXiv:1410.6027, arXiv:1506.04617, arXiv:1604.06699.

Seminario del Cuerpo Académico de Partículas, Campos y Relatividad General
FCFM - BUAP
May 26th, 2016

http://arxiv.org/abs/arXiv:1410.6027
http://arxiv.org/abs/arXiv:1506.04617


OUTLINE

• Introduction to high accuracy at the LHC

• High precision at fixed order

• Perturbative calculations

• Non-perturbative determinations

• Conclusions



• LHC experiments are delivering more and more data 
to the HEP community.

• More data sets improve the accuracy of all observables.

• And, when the physics is hidden in small effects, 
accuracy is crucial to claim discovery.

• The new 750 GeV resonance !
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—Physics at the LHC —



• LO do not even provides the 
order of magnitude of the 
cross section.

• Virtual corrections could 
have an enormous impact 
for the LHC physics 
program.

• High precision requires the 
computation of new 
Feynman diagrams.

—High Precision —
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• In 2012 at CERN, ATLAS and CMS 
announced a 5sigma evidence of a 
resonance around 125 GeV.

• The claim was that the bosonic 
particle is the SM-Higgs.

• Determination of properties of new 
particles and New Physics requires 
precision measurements.

—Higgs discovery —
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• Hadron machines 
are dominated by 
gluon densities 
(QCD).

• Fundamental 
particles are only 
detected indirectly.

—Hadron machines —
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• New Physics has to be disentangled from Standard Model 
physics.  High precision in SM calculations.

• Hadron machines are dominated by QCD effects. Exact 
solutions of QCD are not known, then pQCD helps to 
compute scattering amplitudes.

• However, high accuracy on LHC observables requires 
higher orders in pQCD.

• Besides, high level of accuracy is reached when the 
perturbative and non-perturbative pieces are under 
control at fixed order in pQCD.
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• How to translate theoretical predictions to experimental measurements ?
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—Setup at hadron machines —
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• Precision measurements use accurate theoretical predictions.

• Experimental results needs Monte Carlo simulations in order to 
compare with nature.

—Theory meets experiment —
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• Precision measurements use accurate theoretical predictions.

• Experimental results needs Monte Carlo simulations in order to 
compare with nature.

—Theory meets experiment —
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• Moreover, future observables need accurate Monte Carlo simulations.

• Relevant contributions will only be explained when NNLO Monte Carlo 
simulations are implemented.

—and for the next run(s) —
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PERTURBATIVE TOOLS



• DREG promotes 4-dimensional integrals to d-dimensonal integrals   
(                  ). 

• Divergences appear like poles in the dimensional parameter   .

• Loop integrals generate UV and IR poles. 

• UV (High energy region) poles are cured with proper counterterms. 

• IR (Low energy region) poles are cured by adding real emission 
processes.

✏

d = 4� 2✏

—Dimensional regularisation (DREG) —
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• The total cross section is computed as,

• where

• and divergences are everywhere.
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• Integrands are usually lengthy.

• The number of Feynman diagrams increase enormously when high 
accuracy is required.

• Monte Carlo simulations first compute the poles and shows the exact 
cancellation at integral-level. Then, it computes the number of integrals 
separately (2 at NLO, 3 at NNLO, etc.).

• New Physics searches have to be done at the highest posible accuracy.

• New methods for higher order calculations are extremely important.

—Theoretical issues —
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• Massive one-loop scalar integrals are,

• where the +i0 prescription establishes that particles are 
going forward in time. 
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—Loop-Tree duality —
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• The solution of the integrals are known by the 
Cauchy residues theorem.

• However, by using advanced propagators, 
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• LTD at one loop establishes then

• where Feynman propagators are transformed to dual propagators.

•                                                and sets internal lines on-shell and 
in the positive energy mode.

• LTD modify the +i0 prescription, instead of having multiple cuts like 
in the Feynman Tree Theorem.

•      is a future-like vector, for simplicity we take                   . In fact, 
the only relevance is the sign in the prescription.
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—Numerical implementation —
• Faster computations are needed for the Montecarlo simulations for the LHC 

observables.
• Using LTD the standard methods become time consuming 
• (S. Buchta, et al. , arXiv:1510.00187)
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• This results shows have been implemented for several data points for tensor 
pentagons and hexagons.

• Integrals considering massive internal lines were computed numerically.

• The results using LTD are, in some cases, four order of magnitudes faster than 
SecDec.

• What about in a physical process ?
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• In this well known process, the Feynman diagrams are

• where the process add more structure to the integrals. In general, virtual and 
real corrections have numerators.

• In this case, for the virtual correction is given by,
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• and for the real correction is,

• Using DREG, the result is,

• Then,
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• IR behaviour is quite similar to the scalar case, therefore the same 
mapping is performed.

• There is no need of tensor reduction, no need of Gram 
determinants.

• Two point function of massless particles are usually ignored 
because is scaleless. 

• In fact, this integral is zero because IR and UV poles cancels.

• In the LTD, there is an identification of IR and UV regions, therefore 
it has to be consider at the integrand level.

Remarks:
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• Following the procedure described, it is possible to find 4-
dimensional representations for the cross sections, resulting:
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• Then, this integrals in 4D are solvable analytically, resulting:

• Thus:

• Computation of multi-legs and NNLO corrections are 
doable within the LTD.
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NON PERTURBATIVE DISTRIBUTIONS



—Motivation of FFs—

• Input for helicities PDFs and 
transverse momentum PDFs.

• Necessary for a complete 
understanding of hadron 
production in presence of 
nuclear medium. 

• Heavy Ion programs: RHIC 
and LHC.
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—Theory & Uncertainties—
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Basic idea of hadronization: Cascade fragmentation

rank = 1 : “valence”, e.g. 
u � �+

rank > 2 : “sea”, e.g. 
u � ��

• Theory framework: “independent fragmentation”.
• QCD approach based on factorization.
• e+e-: first data used for extracting FFs with LEP data (BKK 

’95 and KRE ’00).
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The fitters

• AKK08: e+e- and pp data / Isospin symmetry for pions.

• HKNS: e+e- data only / Hessian method for uncertainties. 27



• DSS fit arrived to a data-driven separation of 
individual parton-to-pion fragmentations.

• Large charge symmetry violation between u- and d-
quarks FFs (~10%).

• Gluon FFs was constrained for the first time with 
BNL-RHIC data.

• Lagrange multiplier technique was used for 
estimating uncertainties.

DSS results
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ê2
q

⇥
2Fh

1 (z,Q
2) + Fh

L

(z,Q2)
⇤

2Fh
1 (z,Q

2) =
X

q
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FFs in data: e+e- SIA

@NLO

• Not possible to separate charge and flavour only with SIA.

• Only have information of the singlet.

• The distribution is given terms of the structure functions,
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• Distributions for SIDIS are given by,
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FFs in data: SIDIS

@LO:

@NLO, all coefficients are known:

• Charge and flavour separation is achieved by including SIDIS.
• However, gluon FF is not well constrained by SIA and SIDIS data.

Altarelli et al. ’79, Furmanski, Petronzio ’82, de Florian, Stratmann, Vogelsang ‘98
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• Therefore, transverse momentum distribution is given by:

FFs in data: Hadron collisions
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• It also allows charge and flavour separation.
• It contains large contributions from gluons.

• The general picture is:
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• Number of parameters: 23 parameters > 28 parameters.

• HERMES data are replaced and added deuteron target data sets.

• Different treatment for the normalization of the experiments.

• PDFs: MSTW2008.

• Relaxing  some of the FFs assumptions.
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ū
�c,b 6= 0

DSS vs the new fit

D⇡+

i (z,Q0) =
Niz↵i(1� z)�i [1 + �i(1� z)�i ]

B[2 + ↵i,�i + 1] + �iB[2 + ↵i,�i + �i + 1]

32



Uncertanties

HESSIAN METHOD

D⇡+

i (z,Q0) =
Niz↵i(1� z)�i [1 + �i(1� z)�i ]

B[2 + ↵i,�i + 1] + �iB[2 + ↵i,�i + �i + 1]

Goal: Provide Hessian sets to propagate FFs uncertainties.

• Idea: Explore the vicinity of the best fit in quadratic 
approximation.

• Caveat: Quadratic approximation is not exactly what 
is used for the global fits, i.e. PDFs too.

• However, it is a good test of the convergence of the 
fitting procedure.
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—New data to fit—
• New data from PHENIX and STAR (Phys.Rev.C81(2010)064904; 

PRL 108(2012)072302;…).
• Data from the LHC (Phys.Lett.B717(2012)162;1307.1093;…).
• e+e- data from BELLE(1301.6183) and BaBar (1306.2895).
• SIDIS multiplicities from COMPASS (1307.3407).
• Final SIDIS multiplicities from HERMES (1212.5407).
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• BELLE and BaBar results can be 
fitted extremely well within the 
68 and 90 % C.L.

• There is a drop on the large z 
regime for BELLE but it is 
consistent with the 
uncertainties.

• Large logarithmic corrections 
are expected at large values of 
z.

• Sensitive to a partial flavour 
separation

BELLE & BaBar

35



• DSS cannot fit the 
new HERMES data for 
the smallest bin of z.

• In this new analysis, 
HERMES data have no 
problems to be fitted 
within the 68 and 90% 
C.L. for all bins of z.

HERMES
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• DSS also has some 
tensions with COMPASS 
data sets.

• For all values of z, 
COMPASS is well fitted.

• It is been shown also in 
the chi^2 ~ 1.01.

COMPASS
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PDF 
uncertainties 
where 
computed with 
90%CL MSTW 
and they are 
less significant 
than the scale 
ambiguities.

PHENIX & STAR
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• In the range of small pT, RHIC and LHC data 
showed a tension during the fitting.

• By introducing the cut on the pT, we achieved 
a reasonable agreement between both data 
sets.

• Nevertheless, we lost some data sets such as 
ALICE 900GeV which only stands with one 
point.

• Contribution of uncertainties due to PDF are 
again not relevant enough; the main 
contribution is coming from the scale variation.

ALICE
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eigenvector directions
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•Deviations from DSS is 
found on the gluon and 
charm FF.

•c-FF has a more flexible 
parametrisation (5 
instead of 3 parameters).

•g-FF uncertainties is 
about 20% at 90%CL up 
to z > 0.5 and they 
increase towards larger 
values (Q = 10 GeV).

parton-to-pion FFs
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DSS NOW

Global

LEP-SLAC

BELLE & BABAR
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How good is the fit ?
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• New methods for computing higher order corrections are needed for 
upcoming LHC observables.

• Mapping of momenta between real and virtual corrections permits to 
cancel soft and final-state collinear singularities.

• Fully local cancellation of IR and UV divergences through the LTD.

• LTD allows to build an algorithm for computing 4-dimensional 
representations of NLO cross sections.

• Extension of the LTD at NNLO and multi-leg processes is on the way. 

—Conclusions—

43



• The numerical results shown that the breaking of the charge asymmetry 
parameter is very close to one.

• Tension between RHIC & LHC data have been avoided when a lower cut is 
introduced in the proton-proton collisions.

• The new data do not favor any symmetry violation.

• Uncertainties have been estimated using the standard iterative Hessian 
method.

• The analysis implemented strongly supports factorization and universality for 
the parton-to-pion FFs. 

—Conclusions—
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THANKS…


