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the gluon

The gluon - facts & mysteries
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the gluon

gluon ≡ carrier of strong force & building block of Standard Model
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the gluon

1979: Discovery of the gluon @ PETRA/DESY

2 jet events:

3 jet events:

+ confirmation of spin 1 nature of gluon

[TASSO-collaboration, Phys. Lett. B 86, 243 (1979)]
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the gluon

Asymptotic freedom: the role of glue

David Gross David Politzer Frank Wilczek
2004

The self-interaction (of color charged)  gluons is fundamentally responsible for 
the asymptotic freedom of quarks and gluons in Quantum Chromodynamics (QCD)
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the gluon

The gluonic field and confinement ...
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the gluon

Sort of a paradox .....

I gluon is massless, yet responsible for nearly all the mass of visible
matter

I Higgs-mechanism provides (through quarks) only 1% of the proton’s
mass
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the gluon

The puzzle:

I (Nearly) all visible matter is made up of quarks and gluons

I But quarks & gluons are not visible

I 98% of the visible mass is generated from quarks & gluons

I but gluons are massless and quarks are so to a good approximation
Strongly interacting matter is consequence of many-body quark-gluon

dynamics

From the EIC white paper arXiv:1212.1701: “ ... The current consensus is that the gluons

are responsible for both the quark confinement and much of the hadronic mass. The

gluons, which bind quarks together into mesons (...) and baryons (...), significantly

contribute to the masses of hadrons. At the same time, gluons are significantly less well-

understood than quarks .. ”

Understanding the glue ≡ Understanding the origin of matter need to
develop a deep and manifold knowledge of dynamics of strong interactions

Martin Hentschinski (ICN-UNAM) The glue that binds us all April 22, 2015 9 / 66



QCD

Quantum Chromodynamics & the proton -
what we know and what we don’t know
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QCD

The Deeply Inelastic Scattering (DIS) femtoscope

Deep Inelastic Scattering - �tot for �⇤+nucleon/-us! X

e� + p[A] ! e� + X = �⇤ + p ! X (up to QED corrections)
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QCD

The deeply inelastic scattering (DIS) 
femtoscope

From SLAC fixed target
DIS… (late 1960s)

Discovery of quasi-free point-like quarks!

(1990)
Friedman Kendall Taylor
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QCD

The deeply inelastic scattering (DIS) femtoscope

HERA collider at DESY (1992-2007)

SLAC

Find: proton at high energies (≡ small x) dominated by gluon &
sea-quarks
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QCD

Successes of perturbative QCD

I parton distribution functions extracted from HERA data give
(together with corresponding partonic coefficients, calculated in
perturbation theory) excellent description of hard events in pp and pp̄
scattering (≡ events with scale Q� ΛQCD ∼ 1/fm)

I pQCD as a tool to determine production cross-sections and
backgrounds in the search for new physics
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QCD

Looks great! - Aren’t we done?

Meson exchange
Soliton model
Chiral Perturtabtion
Theory

Reggeons
PomeronE

n
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rg

y

Hard scale Q/resolutionΛQCD

unitarity
boundary

perturbative
QCD

I pQCD describes only a
small fraction of total
cross-section

I Lattice QCD of limited
use for scattering
processes
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QCD

What does the proton look like ?
Static pictures Glue dominated 

boosted proton
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QCD

The proton spin puzzle

I 1987: fixed target DIS experiments quarks carry only 30% of
proton spin

I spin crisis: failure of quark-model picture of proton as 3 constituent
quarks
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QCD

The proton spin puzzle

I RHIC polarized proton-proton data:
strong indication for gluon polarizaiton

[de Florian, Sassot, Stratmann, Vogelsang, PRL 113 (2014) 1 012001]

I ∼ 20% by glue, where is the rest?
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QCD

What is the confined motion of quarks & gluons in nucleons?

Requires to extend the 1-D picture to 1 + 2 dimensions

f(x, µ2)→ f(x,kT , µ
2)

Allows to study of correlations between transverse momentum, parton spin
& nucleon spin
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QCD

What is the transverse position of quarks & gluons inside the
nucleon?
Requires spatial imaging of confined quarks & gluons Extend the 1-D
picture to 1 + 2 dimensions

f(x, µ2)→ f(x, bT , µ
2)

I Allow to study spin-orbit correlations of quarks & gluons

I Determination of total angular momentum carried by quarks & gluons
(Ji’s sum rule)
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QCD

Quark & gluon distribution in the nucleus

EMC@CERN: Quark distribution strong affected by binding into nucleus
Not simply superpositions of distribution functions of individual nuclei

What about gluons? What the spatial distributions of quarks & gluons in
the nucleus?
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QCD

Fragmentation in and out of a medium

How does a quark/gluon turn into a
hadron?

How does color neutralization occur?
The key to the formation of hadrons
– still not understood within QCD

How does this happen inside the
nuclear medium?
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QCD

Initial state of heavy ion collisions
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To understand heavy ion collisions and observed phenomena in detail, we
need a profound understanding of the properties of their initial state
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QCD

The proton at high center of mass energies

many new
smaller partons
are produced

Proton
(x, Q2)

Proton
(x0, Q2)

x0 >> x

Low Energy High Energy

parton

“Color Glass Condensate” 

I QCD: proton made up of
quanta that fluctuate in and
out of existence

I At small x: Parton
fluctuations time dilated on
strong interaction times scales
....

I .... long lived gluons radiate
further small x gluons

I power-like rise of gluon and
sea-quark distribution &
therefore cross-section

I the small x proton an eternal
popcorn machine?
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QCD
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QCD

The proton at high energies: saturation
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Questions:

I How does this happen? What
are the right degrees of
freedom?

I How do correlation function
evolve in this regime?

I Is there a universal fix point?

I Does the coupling run with
Qs?

I How does saturation
transition to chiral symmetry
breaking & confinement
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QCD

Saturation in nuclei: McLerran-Venugopalan model

Boost Q2
s ∼ # gluons per unit

transverse area ∼ A1/3
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EIC

The Electron Ion Collider: the
ultimative(?) QCD machine

I the world’s first polarized electron-polarized proton collider

I the world’s first electron-heavy ion collider

I luminosity 100-1000 × HERA luminosity

I considerably extends kinematic range for eA, spin, imaging, ...

I timeline: want to start 2025 ...

related projects:

I ENC@GSI, EIC@HIAF: time line uncertain; seem not to extend
considerably kinematic range

I LHeC/FCC-he@CERN: realiztion unclear (> 2030); unpredecented
kin. reach
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EIC

Accelerator designs

eRHIC (BNL)
I Add ERL+FFAG recirculating e Rings

to RHIC facility

I Electrons 15.9 & 21.2 GeV

I Ions (Au) up to 100 GeV/u

I
√
s ' 18− 93GeV

I L ' 1.7 · 1033 cm−2s−1

A
at
√
s = 80GeV

MEIC (JLab)
I Ring-Ring Collider, use of CEBAF

I Electrons 3-12 GeV

I Ions 12-40 GeV/u

I
√
s ' 11− 45GeV

I L ' 2.4 · 1034 cm−2s−1

A
at
√
s = 22GeV

Warm Large Booster
(3 to 25 GeV)

Warm Electron
Collider Ring
(3 to 12 GeV)

Electron Injector

12 GeV CEBAF

Cold Ion Collider Ring
(25 to 100 GeV)

Prebooster SRF Linac

Ion
Source

IP IP
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EIC

Key measurements

Imaging

Nuclear
Enviroment

Electroweak

Gluon
Saturation

Spin
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EIC

Resolving the proton’s spin puzzle: polarized DIS
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EIC

Resolving the proton’s spin puzzle: helicity
distributions
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I Increase dramatically our knowledge about valence quark, sea quark
and gluon contribution to the proton spin

I Allows to quantify remaining orbital contribution
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EIC

Tomography of the nucleon using DVCS

Imaging: from t to spatial distributions
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EIC

Tomography of the nucleon using DVCS
Imaging: from t to spatial distributions
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measure in exclusive reactions

x + ξ x − ξ

p p′

x + ξ x − ξ

p p′

γ∗ γ∗γ V

Deeply Virtual Compton Scattering (DVCS) & Exclusive Vector Meson
Production
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EIC

Tomography of the nucleon using DVCS

experimental challenge:
need almost hermetic detectors
+ high luminosity

measure in exclusive reactions

x + ξ x − ξ

p p′

x + ξ x − ξ

p p′

γ∗ γ∗γ V

Deeply Virtual Compton Scattering (DVCS) & Exclusive Vector Meson
Production
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EIC

Tomography of the nucleon using DVCS

theory framework:
constrain so-called Generalized Parton Distribution Functions (GPDs):
combine ordinary pdfs & form factors etc.
+ further constrained from lattice QCD

measure in exclusive reactions
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γ∗ γ∗γ V

Deeply Virtual Compton Scattering (DVCS) & Exclusive Vector Meson
Production
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EIC

Tomography of the nucleon using DVCS

theory framework:
constrain so-called Generalized Parton Distribution Functions (GPDs):
combine ordinary pdfs & form factors etc.
+ further constrained from lattice QCD
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EIC

Gluons & sea quarks in nuclei

F2 World Data (A≥Fe)
CTEQ10+EPS09
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Measurements with A ≥ 56 (Fe):

 eA/μA DIS (E-139, E-665, EMC, NMC)

 νA DIS (CCFR, CDHSW, CHORUS, NuTeV)

 DY (E772, E866)

perturbative

non-perturbative

constrain nuclear sea quark and gluon distribution + search for saturation
effects in large nuclei

d2σeA→eX

dxdQ2
=

2πα2

xQ4

[
(1 + (1− y)2)F2(x,Q

2)− y2FL(x,Q2)
]
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EIC

Searching for saturation effects: Dihadron-decorrelation
Saturation ≡ high gluon densities multiple scatterings

γ∗

→

γ∗

x→ 0: a single interaction with a strong & Lorentz

contracted gluon field

γ∗

dilute regime: 1 gluon

with small kT

expect difference in angular distribution of detected di-hadrons
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EIC

Diffraction

diffraction in optics

k

k'

p'
p

q

gap

Mx

diffraction in DIS
a) coherent: proton/nucleus intact
b) incoherent: break up; rapidity gap
definition
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EIC

Searching for saturation effects: Diffraction

γ∗

vs.

γ∗

I näıve expecation before HERA: hard
diffraction exponentially suppressed

I HERA: 15% of all events diffractivee

I at the saturated fix-point s→∞:
σdiff
σtot

= 1
2

I expect higher rate for nuclei at EIC W (GeV)
σ

di
ff/σ

to
t 
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0.5
black disk limit

eAu  Q2 = 1 GeV2

ep  Q2 = 1 GeV2
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ep  Q2 = 10 GeV2
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EIC

Searching for Saturation in diffractive VM-production

|t | (GeV2) |t | (GeV2)
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∫Ldt = 10 fb-1/A
1 < Q2 < 10 GeV2

x < 0.01
|η(edecay)| < 4
p(edecay) > 1 GeV/c
δt/t = 5%

∫Ldt = 10 fb-1/A
1 < Q2 < 10 GeV2

x < 0.01
|η(Kdecay)| < 4
p(Kdecay) > 1 GeV/c
δt/t = 5%
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incoherent - no saturation
coherent - saturation (bSat)
incoherent - saturation (bSat)

J/Ψ: (non-)saturation models very similar perturbative scale/small
size;
φ (large size object): both models differ significantly

Martin Hentschinski (ICN-UNAM) The glue that binds us all April 22, 2015 37 / 66



EIC

Electroweak
Neutrino oscillation → lepton flavor not conserved

I is there charged lepton flavor violation? through lepto-quarks?
I weakest limits on e−τ− transitions; possible to surpass HERA limits
I potentially competitive with B-factories, but requires further studies

Weak mixing angle: sin θW

APV (Cs)

E158

SLAC

LEP

Moller (Jlab)

QWEAK (Jlab)

SOLID (Jlab)

EIC

(statistical errors only)

ν-DIS
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s
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e
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Q
)

I points aren’t hugely precise

I but can scan over a wide range of
Q2
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Current work

Some (theoretical) challenges on which I
am working

I Background to DVCS - the Bethe Heitler process

I Scheme invariant evolution of structure functions

I NLO corrections for DIS cross-sections in presence of high gluon
densities
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Current work Bethe-Heitler at NLO

Background to DVCS - the Bethe-Heiler
process

in collaboration with Elke C. Aschenauer (BNL), Marco Stratmann
(U. Tübingen) & Hubert Spiesberger (U. Mainz)
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Current work Bethe-Heitler at NLO

Deeply Virtual Compton Scattering & GPDs
GPDs (= Generalized Parton Distributions) essential (theoretical)
ingredient for imaging/tomography of nucleon

a key process to constrain them: DVCS (Deeply Virtual Compton
Scattering)

γ∗ γ γ∗ γ∗ γγ

= + + ...

p p pp′
p′ p′

GPDs GPDs

x + ξ x − ξx + ξ x − ξ

Their Fourier-transform yields spatial distributions etc.
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Current work Bethe-Heitler at NLO

Complete Cross-section: DVCS + Bethe Heitler

k q2

DV CS

q1

k
0

p p� p p� p p�

BH BH

k k

k
0

k
0

q2

q2

t t

I important background: photon emission from initial/final state
electron (=Bethe-Heitler)

I interference term DVCS/BH: important tool to constrain certain
asymmetric GPDs

I precision measurement of DVCS: need excellent control of BH

Martin Hentschinski (ICN-UNAM) The glue that binds us all April 22, 2015 42 / 66



Current work Bethe-Heitler at NLO

Ratio of BH to total cross-section

I Simulation by S. Fazio,
E. Aschenauer using corrected
version of Milou Monte-Carlo
event generator [Perez, Schoeffel,

Favart, hep-ph/0411389]

I larger y: BH dominates

I solution: can find phase-space
cut’s which reduce BH
contribution significantly
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Current work Bethe-Heitler at NLO

Radiative corrections

p p′

k

k′

q2

q3

2nd undetected photon can lead to a shift in the
measured Q2 & x need to correct for such
effects using Monte-Carlos

in adddition:

Cuts allow to reduce contamination due to BH-process substantially, but
also lose fraction of available data

wish high accuracy for BH process to reduce necessary cuts to a minimum
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Current work Bethe-Heitler at NLO

BH at next-to-leading order

Ongoing project:
determination of BH
process at NLO
[MH, Spiessberger, Stratmann (soon)]
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I not the first e.g. Akushevich, Ilyichev;1201.4065], [Vanderhaegen et. al.; PRC 62 025501], but
attempt to be the most complete one ...

I full mass dependence of lepton: small, but not always negligble
I soft- & collinear singularities: dipole-subtraction for collinear non-safe

observables for maximal exclusive result [Dittmaier, Kabelschacht, Kasprzik; 0802.1405],

[Dittmaier, NPB 565 (2000) 69]

I provide full Monte-Carlo realization, which can be directly used for
simulations etc.

Work in progress
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Current work physical anomalous dimensions

Scheme invariant evolution of structure
functions

in collaboration with Marco Stratmann (U. Tübingen)
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Current work physical anomalous dimensions

Collinear factorization in a nut-shell
Observables as convolutions of process-dependent coefficients (calculated
order by order in perturabation theory) & universal parton distribution
functions

F2(x,Q
2) =

∑

k=q,g

C2,k ⊗ fk

parton distribution functions fk non-perturbative

I cannot be calculated in perturbation theory fit to data

I BUT: can calculate their evolution w.r.t. the factorization scale
µ2f ∼ Q2

d

d lnµ2f
fk(x, µ

2
f ) =

∑

l=q,g

Pkl ⊗ fl(x, µ2f )

need only to fit initial conditions at µf,0 & evolve them to higher µf
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Current work physical anomalous dimensions

Basis: factorization in the limit Q2 →∞

I Starting point: factorization into bare pdfs & coefficents

F2(x,Q
2) =

∑

k=q,g

Ĉ2,k ⊗ f̂k – both are divergent!

I Divergences cancel, but leads to dependence on factorization scale &
scheme

RG-equation ≡ DGLAP evolution equation
pdfs not physical, but a theory definition

I factorization scheme & -scale dependence cancels at each order in
perturbation theory (coefficents & splitting kernels), but spurious
higher order terms remain

if enhanced by e.g. small/large x ln 1/x, ln(1− x) this can imply
an substantial uncertainty
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Current work physical anomalous dimensions

Physical DGLAP Evolution
physical evolution equations

idea: don’t care about pdfs

evolve observable itself
[Furmanski, Petronzio, ZP C 11, 293(1982)], [Catani,

ZP C 75, 665 (1997)], [Blümlein, Ravindran, van

Neerven, NPB 586, 349 (2000)]

“Q2 d
dQ2 F (x, Q2) = K ⌦ F (x, Q2)”

observable itself!

evolution kernels K

physical

no factorization scheme ambiguity;
only renormalization scale

equivalent to [Catani, ZP C 75, 665 (1997)]

R =
�(e+e� ! hadrons)

�(e+e� ! µ+µ�)

Martin Hentschinski RIKEN/BNL Lunch Time Talk

lose universality of pdfs, but gain precision
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Current work physical anomalous dimensions

Possible applications

Determination of αs from DIS data (unlike pdf determination no
factorization scale ambiguities)

Search for breakdown of linear DGLAP evolution due to higher twist
effects signal for saturation
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Current work physical anomalous dimensions

Technical Aspects

I work in conjugate Mellin space
⊗ → ·

I Decompose pdfs into flavor
singlet & non-singlets

On the Practical Application of Physical Anomalous Dimensions

Martin Hentschinski⇤ and Marco Stratmann†

Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

We revive the idea of using physical anomalous dimensions in the QCD scale evolution of deep-
inelastic structure functions and their scaling violations and present a detailed phenomenological
study of its applicability. Di↵erences with results obtained in the conventional framework of scale-
dependent quark and gluon densities are discussed and traced back to the truncation of the pertur-
bative series at a given order in the strong coupling.

PACS numbers: 12.38.Bx,12.38.-t,13.60.Hb

I. INTRODUCTION AND MOTIVATION

⌃ =

nfX

k

(qk + q̄k)

q3 = u + ū �
�
d + d̄

�

q8 = u + ū + d + d̄ � 2 (s + s̄)

Measurements of deep-inelastic scattering (DIS) cross
sections are routinely analyzed in terms of scale-
dependent quark and gluon distribution functions
fi(x, Q2), i = q, q̄, g in global QCD fits [1]. In particular,
the very accurate DIS data from the DESY-HERA ex-
periments [2] provide the backbone of such type of QCD
analyses, also thanks to their vast coverage in the relevant
kinematic variables x and Q2, denoting the momentum
fraction carried by the struck parton and the resolution
scale set by the momentum transfer squared, respectively.

The conventional theoretical framework for DIS is
based on the factorization theorem [3], which allows
one to organize the computation of DIS structure func-
tions F2,L(x, Q2) as a convolution of perturbatively cal-
culable Wilson coe�cients [4–7] and parton distribu-
tion functions (PDFs) capturing the long-distance, non-
perturbative physics [8]. Similar ideas are successfully
applied to more complicated hard-scattering processes
studied at hadron-hadron colliders, which provide fur-
ther, invaluable constraints on PDFs in global QCD anal-
yses [1].

To make the separation between long- and short-
distance physics manifest, one needs to introduce some
arbitrary factorization scale µf , apart from the scale µr

appearing in the renormalization of the strong coupling
↵s. The independence of physical observables such as
F2,L on µf can be used to derive powerful renormaliza-
tion group equations (RGEs) governing the scale depen-
dence of PDFs in each order of perturbation theory. The
corresponding kernels are the anomalous dimensions or
splitting functions associated with collinear two-parton

⇤Electronic address: hentsch@bnl.gov
†Electronic address: marco@bnl.gov

configurations [9–11]. Since factorization can be carried
out in infinitely many di↵erent ways, one is left with an
additional choice of the factorization scheme for which
one usually adopts the MS prescription. Likewise, the
RGE governing the running of ↵s with µr can be de-
duced from taking the derivative of F2,L with respect to
µr. Upon properly combining PDFs and Wilson coef-
ficients in the same factorization scheme, any residual
dependence on µf is suppressed by an additional power
of ↵s, i.e., is formally one order higher in the perturbative
expansion but not necessarily numerically small.

Alternatively, it is possible to formulate QCD scale
evolution equations directly for physical observables
without resorting to auxiliary, convention-dependent
quantities such as PDFs. This circumvents the intro-
duction of a factorization scheme and µf and, hence, any
dependence of the results on their actual choice. The
concept of physical anomalous dimensions is not at all
a new idea and has been proposed quite some time ago
[4, 12, 13] but its practical aspects have never been stud-
ied in detail. The framework is suited best for theoretical
analyses based on DIS data with the scale µr in the strong
coupling being the only theoretical ambiguity. In addi-
tion, F2,L or their scaling violations can be parametrized
much more economically than a full set of quark and
gluon PDFs, which greatly simplifies any fitting proce-
dure and phenomenological analysis. The determination
of ↵s from fits to DIS structure functions is the most
obvious application, as theoretical scheme and scale un-
certainties are reduced to a minimum. We note that,
physical anomalous dimension were used, however, also
as a calculational tool to study, e.g., all-order aspects of
the perturbative series for splitting and coe�cient func-
tions in the limit of large momentum fractions x [14].

Recently, the interest in DIS has been revived in a se-
ries of detailed studies of a physics case for a future high-
luminosity electron-ion collider, such as the proposed
EIC [15] and LHeC [16] projects. One of the driving
physics goals is a detailed mapping of the transition into
a non-linear kinematic regime dominated by high, or sat-
urated, gluon densities by measuring, for instance, F2,L

and their scaling violations very precisely at small x both
in electron-proton and in electron-heavy ion collisions.
A signature for the onset of saturation e↵ects would be
the observation of deviations from the linear, Dokshitzer-

I relate to observables with
coefficents:

(
F

(S)
A

F
(S)
B

)
=

(
CAq CAg
CBq CBg

)
·
(

Σ
g

)

I matrix valued DGLAP evolution
decouples:
scalar evolution for non-singlets
+ flavor singlet vector (Σ, g)

dlnµ2

(
Σ
g

)
=

(
Pqq nf · Pqg
Pgq Pgg

)
·
(

Σ
g

)

I suitable pairs of observables:
flavor singlet part of (F2, FL)
and (F2, FD ∼ dF2/d lnQ2)

From now on: concentrate on singlet; non-singlets e.g. [van Neerven, Vogt, NPB 568:263 (2000)]
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Current work physical anomalous dimensionsPhysical evolution kernels – master formula

For a suitable doublet of observables determine (with as = ↵s
4⇡

):

dln Q2

✓
FA

FB

◆
= dln Q2


C ·

✓
⌃

g

◆�

=


�

dC

das
+ C · P

�
·
✓
⌃

g

◆

=


�

dC

das
+ C · P

�
C�1

✓
FA

FB

◆
⌘ K ·

✓
FA

FB

◆

master formula

K =


�

dC

das
+ C · P

�
C�1 = asK(0) + a2

sK(1) + a3
sK(2) + ...

kernel K independent of factorization scheme & scale order by order in
perturbation theory
[Blümlein, Ravindran, van Neerven, NPB 586, 349 (2000)]

finite order: dependence on renormalization scale & scheme remains use for
↵s determination

Martin Hentschinski RIKEN/BNL Lunch Time Talk
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Current work physical anomalous dimensions

Numerics with toy input - comparison to pdfs

input calculated from realistic toy pdfs (Pegasus default input) & compare LO, NLO &

NNLO results resp. - for (F2, FL) and (F2, FD ∼ dF2
d lnQ2 )
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Difference pdf/physical anomalous dimensions due to spurious higher order
terms; can exclude them in toy input precise agreement
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Current work physical anomalous dimensions

Numerics with toy input - K-factors
evolve same (LO input) with LO, NLO, NNLO ' real experimental data
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3-loop correction to FL coefficent very large (esp. at small x) observe
instability also reported in pure pdf studies; requires probably resummation

pair (F2, dF2/d lnQ2) more stable αs extraction
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Current work physical anomalous dimensions

1st application: evolution of saturation model input
Saturation physics ≡ high gluon densities multiple scatterings

γ∗

→ γ∗ x→ 0: a single interaction with

strong & Lorentz contracted gluon

field

σγ
∗A
L,T (x,Q2) = 2

∑

f

∫
d2bd2r

1∫

0

dz
∣∣∣ψ(f)
L,T (r, z;Q2)

∣∣∣
2
N (x, r, b)

dipole amplitude N : interaction of color dipole with target;

(a) solution to BK/JIMWLK evolution equation with fitted input

(b) model it (b)CGC-model [Iancu, Itakura, Munier; PLB 590 (2004)]

N (x, r, b) =





N0

(
rQs

2

)2γeff
rQs ≤ 2 Q2

s(x) =
(
x0
x

)λ
GeV2

1− e−A ln2(BrQs) rQs > 2 γeff = γs + 1
κλY ln 2

rQs

Martin Hentschinski (ICN-UNAM) The glue that binds us all April 22, 2015 55 / 66



Current work physical anomalous dimensions

Recently fitted to combined HERA data .....
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FIG. 5: Results for the structure function F2(x, Q2) as function of x, for various values of Q2, in the b-CGC (solid line)

and the IP-Sat (dashed line) dipole models. In order to separate data for each Q2 from the others, the data and model

results represented by the lines are multiplied by a factor 2n, with n given on the right side of the plot. We used the

parameter set of the b-CGC (in table II) and the IP-Sat models with mc = 1.27 GeV. The experimental data are from

H1 and ZEUS collaborations [33].

bear in mind that in the b-CGC model, because of impact-parameter dependence, we intrinsically incorporate

non-perturbative physics that is not present in the BFKL dynamics.

The saturation scale is a momentum at which the forward dipole-target scattering amplitude N rapidly raises

with decreasing x and the amplitude N becomes sizable, such that non-linear gluon recombination effects start

to become as important as the gluon radiation. Following Refs. [13, 14, 17], we define the saturation scale

Q2
S = 2/r2

S, where rS is the saturation radius, as a scale where the dipole scattering amplitude has the value

N (x, rS =
√

2/QS, b) = 1 − exp(−1/2) = 0.4. (15)

Notice that in both the CGC and the b-CGC models, the saturation scale QS , defined via Eq. (15), differs

from the scale parameter Qs (with lower subscript s) given in Eqs. (6,8), although they are closely related.

It is important to note that the saturation scale does not have a unique definition, and in literature different

definitions for extracting QS can be found. Nevertheless, the definition in Eq. (15) gives a useful baseline to

compare relative magnitude of saturation scale in different models.

In Fig. 2, we compare the saturation scales extracted from the b-CGC model using the old parameters of

Ref. [13] and with the new parameters obtained in this paper, as a function of 1/x at various impact parameters

b. It is clear that the saturation scales extracted from the old and the new combined data from HERA are

different, and this difference becomes more sizable at very small x. This is mainly due to the different power-law

I fit [Rezaeian, Schmidt, PRD 88 (2013)]
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Current work physical anomalous dimensions

The idea ...
I simulate DIS on gold nucleus through Q2

s → Q2
sA

1/3 strong(?)
saturation effects at EIC kinematic reach

A  1

A  197

10-6 10-5 10-4 0.001 0.010 0.100 1

0

5

10

15

x

Q
S2
(A
,x
)
[G
eV

2
]

I fit x-shape of bCGC at Q2 = 2GeV2

I evolve this input with DGLAP

I compare at higher values of Q2

deviations ≡ presence of saturation effects
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Current work physical anomalous dimensions

Results for physical evolution of (F2, FL)
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Current work physical anomalous dimensions

Results for physical evolution of (F2, FL)
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Current work physical anomalous dimensions

Results for physical evolution of (F2, FL)
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Current work physical anomalous dimensions

Comments

I Combination (F2,
dF2

d lnQ2 ) more stable, but also less sensitive to
saturation effects

I not a failure of physical anomalous dimensions; only reveals instability
of DGLAP evolution at very small x – not at all unexpected

I Resummation of small x logarithms achieved by BFKL; application to
pdf exists; to be worked out for physical anomalous dimensions

I realistic phenomenology still requires heavy quarks
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Current work virtual photon @ NLO

Next-to-leading order (NLO) corrections for DIS
cross-sections in presence of high gluon densities

in collaboration with Alejandro Ayala (UNAM), Jamal Jalilian-Marian
(Baruch, New York City) & Maria Elena Tejeda Yeomans (Sonora)
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Current work virtual photon @ NLO

Search for saturation requires precision on both sides

1

10
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Q
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2
)

0.1

EIC
 √s =

 90 G
eV, 0

.01 ≤ y 
≤ 0.95

EIC
 √s =

 45 G
eV, 0

.01 ≤ y 
≤ 0.95

Measurements with A ≥ 56 (Fe):

 eA/μA DIS (E-139, E-665, EMC, NMC)

 νA DIS (CCFR, CDHSW, CHORUS, NuTeV)

 DY (E772, E866)

perturbative

non-perturbative

geom
etric scaling

ln x

non-perturbative region

ln
 Q

2

Q
2
s(x)

saturation

JIMWLK
BK

DGLAP

BFKL

αs <<  1

αs ~ 1

need:

I high precision for DGLAP
evolution deviations

I high precision of saturated
nucleus/DIS in presence of
high & saturated gluon
densities

Color Glass Condensate formalism (CGC) e.g. [McLerran, Venugopalan; PRD 49, 2233

(1994)], ...:
γ∗

→ γ∗ x→ 0: a single interaction with

strong & Lorentz contracted gluon

field

σγ
∗A
L,T (x,Q2) = 2

∑

f

∫
d2bd2r

1∫

0

dz
∣∣∣ψ(f)
L,T (r, z;Q2)

∣∣∣
2
N (x, r, b)
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Current work virtual photon @ NLO

Current state of the art
I Evolution of color dipole N known up to NLO instabilities [Balitsky,

Chirilli; PRD 88 (2013) 111501, PRD 77 (2008) 014019]; [Kovner,Lublinsky, Mulian; PRD 89 (2014) 6, 061704]

I Instabilities getting addressed [Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos; PLB 744

(2015) 293]

I photon wave function
∣∣∣ψ(f)
L,T (r, z;Q2)

∣∣∣
2

at LO; NLO either not

suitable for phenomenology [Balitsky, Chirilli; PRD 87 (2013) 1, 014013] or only real
corrections [Beuf; PRD 85 (2012) 034039]

I important for essentially the entire EIC saturation program:

F2 World Data (A≥Fe)
CTEQ10+EPS09
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Current work virtual photon @ NLO

Task: calculate photon wave function in background field
need to calculate:

γ∗ γ∗ γ∗

use propagators in strong background field e.g. [Balitsky, Belitsky; NPB 629 (2002) 290],

q p
= (2π)dδ(d)(p− q)S̃(0)

F (p) + S̃
(0)
F (p)τf (p, q)S̃

(0)
F (q)

S̃
(0)
F (p) =

ip�+m

p2 −m2 + i0
τf (p, q) = 2πδ(p−−q−)n�−

∫
dd−2ze−iz·(p−q) [V (z)− 1]

Wilson line resums interaction with target V (z) ≡ Pexp ig

∞∫
−∞

dx−A+(x−,z)

Work in progress ...
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Summary & Conclusion

Conclusion

I EIC will be the next generation QCD facility

I Theory: Feasability of EIC program is established; but still work
to be done to make use of the full potential of such a machine

I Presented key measurements of the EIC programme whose ability
to extract novel physics is beyond question (modulo electroweak)

I In general: Wide-range physics program

Was never measured before &
will be never measured without an EIC
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Summary & Conclusion

Further reading

Electron Ion Collider:
The Next QCD Frontier
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Summary & Conclusion

Gracias
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