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Preface 

The aim of this book is to answer the following questions: 

• What is a Markov chain? We start with a naive description of a Markov chain 
as a memoryless random walk, turn to rigorous definitions and develop in the first 
part the essential results for homogeneous chains on finite state spaces. The con­
nections with linear algebra will be particularly emphasized, matrix manipulations, 
eigenvectors and eigenvalues will play an important role. 

One of the main results will be the fact that some chains forget all information 
about 'the starting position and the length of the walk after "sufficiently many" 
steps. Chains where this happens within reasonable time are called rapidly mixing. 

• What methods are available to prove that a chain is rapidly mixing? 
Several techniques have been proposed to deal with this problem: eigenvalue esti­
mation, conductance, couplings, strong uniform timesj in the case of Markov chains 
on groups also representation theory comes into play. These methods are presented 
in part II. 

• Why should it be interesting to know these things? Those readers who are 
interested in applications of Markov chain techniques will find some examples in 
part IIr. Markov chains are mainly used to produce samples from huge spaces in 
accordance with a prescribed probability distribution. To illustrate why this could 
be important we discuss the connections between random generation and counting, 
the problem of sampling from Gibbs fields, the Metropolis sampler and simulated 
annealing. 

The book is written far readers who have never met Markov chains before, but have 
some familiarity with elementary probability theory and linear algebra. Therefore the ma­
terial has been selected in such a way that it covers the relevant ideas, it is complemented 
by many - mostly easy - exercises. 

As far as the presentation is concerned, extensive efforts have been made to motivate 
the new concepts in order to facilitate the understanding of the rigorous definitions. Also, 
our investigations are completely self-contained. E.g., in chapters 15 and 16, we develop 
the foundations of harmonie analysis on finite groups to be able to reduce rapid mixing 
to certain properties of characters or representations. 

The his tory of Markov chains began one hundred years ago, the leading pioneering 
figures of the "classieal" period in the first half of the twentieth century were Markov, 
Doeblin and Kolmogorov. For a long time, however, the theory of Markov chains was 
mainly interesting as a theory for its own sake. Really important applications to other 
fields of mathematics or to other sciences had to wait until- some decades aga - computer 
power became widely available. Nowadays Markov chains are present in all applied parts 
of mathematies, in physics, biology and also in the social sciences. 



vi Preface 

The idea to write this book was born several years ago when I had some seminars 
together with Emo Welzl and his group where we tried to understand certain techniques 
concerned with rapid mixing. Later I continued to discuss these problems with specialists 
from various fields, these efforts led to a course on "Rapidly mixing Markov chains" given 
in the winter term 1997/98 at Free University of Berlin. 

It is a pleasure to acknowledge the help of several colleagues from which I have benefited 
during the preparation and the realization of this book: Stefan Felsner, Peter Mathe, 
Bernd Schmidt, Christian Storbeck, Emo Welzl, and Dirk Werner. I am especially grateful 
to Dirk Werner for giving advice at various stages, for reading the whole manuscript and 
for his patience in explaining all subtleties which are necessary to transform a manuscript 
of a book into a 1l\TEX-file. 

Ehrhard Behrends, Berlin 1999. 
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Part I 

Finite Markov chains 
(the background) 



3 

Part I is devoted to a self-contained development of the relevant aspects of finite Markov 
chains. Chapter 1 provides the fundamental definition: what is a Markov chain? Examples 
are studied in chapter 2, and in chapter 3 it is pointed out how some not ions from linear 
algebra - like matrices and eigenvectors - come into play. In chapter 4 we begin with 
a systematic study by introducing certain definitions which will be indispensable when 
investigating Markov chains: states which communicate, the period of astate, recurrent 
und transient states. The latter are discussed in some detail in chapter 5. Then it is time 
for a digression, in chapter 6 we will prove an analytical lemma which is a necessary 
prerequisite to describe the limit behaviour of recurrent states in chapter 7. 

A summary of the various techniques to analyse a chain can be found in chapter 8. 
This chapter also contains some supplementary material. 

Nobody learns mathematics just by reading a bookj it is crucial to have an experience 
of one's own with the theory under consideration. Therefore it is recommended to solve 
as many as possible of the exercises which can be found at the end of each chapter. 
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1 Markov chains: how to start? 

In order to understand the simple idea which underlies Markov chains we remind the 
reader of the well-known random walks from elementary prob ability. We have in mind a 
walk on a finite interval {I, 2, ... , N} of integers. The walk starts at 2, say, and every 
step is to the left or to the right with equal prob ability 0.5; if the walk is in position 1 
or N, some extra rule has to be applied (e.g., one may prescribe that the next position 
is the starting position). 

There are numerous other possibilities for random walks, he re are two sampies: 

1. Start at zero. Then "walk" on {O, ... ,999} according to the following rule: when­
ever you are in position i, move to 2i + i' mod 1000, where i' E {l, 2, 3, 4, 5, 6} 
is obtained by throwing a fair die. For example, if the die shows successively the 
numbers 2, 1, 1,6, ... , your positions - including the starting position - will be 
0,2,5,11,28, ... 

2. As apreparation throw a fair co in 4 times and count the number of heads. This 
will be your starting point on {O, ... ,999}, then continue with an ordinary random 
walk on {O, ... , 999} modlOOO, i.e., the moves will be from i to i+1 mod 1000 or 
to i-I mod 1000 with equal probability 0.5. 

The common feature is the following. First, there is a prescribed set of possible positions 
(in our case an interval of integers). Second, there is a deterministic or random procedure 
to determine where to start. And finally, with every position there is associated a random 
generator which has to be applied before moving next. 
This observation motivates the following definition: 

Definition 1.1 A finite M arkov chain consists of 

• a non-void finite set S, the state space; the elements of S are called states, they are 
the possible positions of our "random walk"; usually we will identify S with a set 
{I, ... ,N}; 

• a probability vector, i.e., numbers (Pi)iES with Pi 2: ° for all i and LPi = 1; these 
numbers determine the random generator for the starting position, with probability 
Pi the walk starts at position i; 

• a stochastic matrix P = (Pij )i,jES: all Pij are non negative and Lj Pij = 1 for every 
i; the matrix P is not hing but a convenient abbreviation of a description of the 
random generators associated with the states: a walk which is now at i will be at 
j after the next step with probability Pij. 
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Remarks: 
1) Those who get aequainted with this definition for the first time might ask why we have 
extracted from our examples precisely the preeeding properties. Why not an arbitrary 
state spaee? Why did we restrict the rules for the walk in precisely this way? Why, e.g, 
don't we allow path-dependent random generators, that is rules of the form "Use a fair 
die until you have been at the origin for three timesj then switeh to a loaded die"? 

The reason is simply a pragmatie one as in other branehes of mathematics, too. On 
the one hand the chosen properties are sufficiently rieh to allow the development of an 
interesting theory. And at the same time they are so general that numerous applieations 
ean be studied. 
2) Many of our results will have a natural generalization to the ease of countable Markov 
chains (which are defined as above with the only modifieation that the state space S might 
be countable). In view of the applications we have in mind we will restriet ourselves to 
the finite casej remarks coneerning the general situation can be found in the notes and 
remarks at the end of part I (ehapter 8). 

A number of typical examples will be presented in the next section. Here we will 
only restate our second walk on {O, ... , 999}: the probabilities Po, ... ,P999 to start on 
{O, ... , 999} are 1/16, 4/16, 6/16, 4/16, 1/16, 0, ... , 0, and P = (Pij );,j=O, ... ,999 is de­
fined by 

.. = {0.5 : i - j mod 1000 = ±1 
p'} 0: otherwise. 

In all parts of mathematics it is of crucial importance to associate an appropriate 
visualization with an abstract coneept. The reader is invited always to imagine some 
kind of walk when dealing with Markov chains. Of course, the abstract definition will be 
the basis of the investigations to come, but the meaning of the concepts we are going 
to introduce can hardly be understood if a Markov ehain is not hing but a set plus a 
probability vector plus a stochastic matrix. Every reader should be able to manage the 
translation into both directions: given the rules, what are S, the Pi and the Pij? And 
eonversely, given these data, what will a "typical" walk look like? 

Even more important is the following point. We deal with probabilities, we want to 
transform ideas into mathematical definitions and to give rigorous proofs for the results 
to be stated. Thus it will be indispensable to use the maehinery of probability theory, 
and therefore the question is: 

What has the "walk" which we want to associate with S, (Pi), (Pij) 
to be considered in the framework of prob ability spaces, random 
variables etc.? 

The rest of this chapter is devoted to the discussion of this question. We will present and 
explain the relevant notions, and it will be shown how Kolmogorov's theorem comes into 
play. Some readers might be satisfied to know that there is a rigorous foundationj they 
are invited to continue now with chapter 2 and to check the connections with prob ability 
theory later. 
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Probability spaces and random variables 

Here we only want to fix notation. We assume the reader to be familiar with the 
definit on of a probability space (fl, A, lP') and the other basic concepts of probability 
theory like random variables, independence, conditional prob ability and so on. We prefer 
to denote probability measures by "lP''' instead of the more common "P", since this letter 
will be used here for the stochastic matrices under consideration. 

Whereas in many applications real valued random variables occur, here they usually 
will have their values in a finite set S (our state space). Note that a mapping X : fl -7 S 
is a random variable if and only if all preimages X-1(i), i E S, are in A. 

Stochastic processes 

As already stated it is important to know both: the underlying ideas and the mathe­
matical formalization. The idea with stoch?stic processes - more precisely with S-valued 
stochastic processes in discrete time ~ .. is the following. We are given a finite set S, and we 
observe a "walk" at "times" 0,1,2, .... Suppose that we have made this observation very, 
very often. Then we have a more or less precise estimate of the probabilities associated 
with such walks. We roughly know the probability that a walk will start at a certain 
i E S, or the probability that for a walk selected at random the fifth position is i and 
the 111'th position is j, or even more complicated joint probabilities. Thus we can also 
evaluate conditional probabilities by considering quotients: lP'(A I B) = lP'(A n B)/lP'(B). 
To have a mathematical model to deal with this situation we need something where "the 
probability that the walk will start at a certain i ES" and all the other probabilities 
have a mathematical meaning. It is natural to model the position after the k'th move by 
a random variable X k , and in this way we naturally arrive at the following 

Definition 1.2 Let S be finite set. An S -valued stochastic process is a probability space 
(fl, A, lP') together with random variables X k : fl -7 S, k E No := {O, 1, ... }. 

As one knows from elementary probability the fact that A is au-algebra implies that, 
for a given stochastic process, every event E in connection with the X k lies in A and 
thus its probability lP'(E) has a well-defined meaning. We can, e.g., speak of lP'(X4 = i) 
or lP'(X19 = i, X 122 f:. j), where we have used the common short-hand notation for 
lP'({w I X 4 (w) = i}) and lP'({w I X 19 (W) = i, X 122 (w) f:. j}). Also note that similarly one 
abbreviates conditional probabilities. For example, lP'(X5 = i I X 2 = i', X 4 = i") stands 
for lP'(A I B) with A = {w I X 5 (w) = i}, B = {w I X 2 (w) = i', X 4 (w) = i"}. 

This is precisely what is needed to start with a rigorous investigation of the behaviour 
of the process. 

We will see very so on how the existence of aspace (fl, A, lP') with the desired properties 
can be established, Kolmogorov's theorem will provide the desired mathematical model. 
Before we are going to turn to this point we want to introduce a furt her definition which 
concerns certain special stochastic processes. Definition 1.2 is far too general, it covers 
alt, even the most complicatedly defined "walks", and thus it is hardly to be expected 
that there are any interesting results. The situation will change considerably as soon as 
we are going to impose additional conditions, conditions which are not too general (this 
would lead to few interesting results) and not too special (then there would exist only 
few applications). There are several candidates with the desired properties. Here we will 
be concerned with Markov processes. They will be introduced next. 
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~arkov processes 
Consider rules for random walks on {I, ... , N}, say. There are incredibly many of 

them, all need some random mechanism to start, and one has to define rules by which 
one selects the positions at times 1,2, ... We will speak of a Markov process if these rules 
are such that the choice of the next position for a walk which is at i E S after k steps only 
depends on k and i and not on the positions before k (Le., one doesn't need a memory 
to determine the next step). In the remarks after definition 1.1 we have already given an 
example of a rule which obviously doesn't lead to a Markov process. Our other examples 
satisfy the condition, they are even more restrictive in that the rule to proceed always is 
dependent only on i and not on k; such processes will be called homogeneous. 

We now will formulate the rigorous counterpart of the preceding discussion. 

pefinition 1.3 Let X o, Xl, ... be an S-valued stochastic process. It is called a Markov 
process i["for every k and arbitrary io,i l , ... ,ik-l,i,j one has 

IP'(Xk+1 = j I X o = io, Xl = i 1 , ... , X k- l = ik-l, X k = i) = IP'(Xk+1 = j I X k = i). 

If in addition the numbers in this expression do not depend on k we will speak of a 
homogeneous M arkov process. 

Remark: It has to be noted that there is a little technical difficulty with this definition. 
The problem did not occur when we prescribed random walks by stochastic illstructions, 
since there it will not cause confusion if certain rules never have to be applied. For 
example, everybody understands what is meant by: 

Start the walk on {-5, -4, ... ,4, 5} at zero; if you are in position 5, return 
to zero next; if not, stay where you are or move one position to the right with 
equal probability. 

Thus there exists a rule what to do next in position -4, but it is of no interest since 
no walk will ever reach this state. If one uses conditional probabilities as in definition 
1.3, however, this leads to expressions of the form IP'(Xk+1 = i I Xk = -4) which are 
not defined since IP'(Xk = -4) = O. The situation is even worse since oue can easily 
imagine situations where the right hand side of the equation in 1.3 makes sense but not 
the left. Hence the more precise formulation of this definition would be: equality has to 
hold whenever both sides make sense, and "homogeneous" means that there are Pij such 
that all conditional probabilities 

IP'(Xk+1 = j I X o = io, Xl = i l , .. ·, X k- l = ik-l, X k = i), IP'(Xk+1 = j I Xk = i) 

which are defined coincide with this number l . 

Kolmogorov's theorem 
By this theorem one can bridge the gap between the needs of the applications and 

rigorous probability theory. Let us return to the situation described at the beginning of 
our subsection on stochastic processes. There we have considered a (finite) set S, and 
after a sufficiently long observation of a particular class of random walks we knew - at 
least approximately - the probabilities of all events of the type 

1 From now on we will drop such remarks: we agree that equations containing conditional probabilities 
are considered only when they are defined. 
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"the walk starts at i o, then it moves to i l , ... , and after the k'th step it arrives 
at ik" 

which we will abbreviate by qio, ... ,ik' One would like to have a probability space (0, A, lP') 
and random variables Xk : 0 -+ S, k = 0,1, ... such that always 

This can really be achieved under a rat her mild fairness condition (see the next the­
orem). The problem does not arise if the q's are given as in our motivation, but for a 
general assertion one has to take care of this condition. 

The rigorous formulation of the result which we have in mind reads as follows: 

Theorem 1.4 Let S be a finite set. Suppose that for any finite sequence i o, i l , ... ,ik in S 
there is assigned a nonnegative number qio, ... ,ik such that LiEs qi = 1, and LiEs qio ... ik_l i 
= qio ... ik-l for arbitrary io, ... , ik-l in S. 
Then there are a probability space (0, A, lP') and random variables X o, Xl, ... : 0 -+ S 
such that 

holds for all io,···, ik. 

Remark: This is true by Kolmogorov's theorem (see [12, p. 115], [16, p. 483] or any 
other textbook on measure theory for the general formulation). The idea of the proof is 
as follows. We define 0 to be the collection of all sequences io, i l , ... in S, i.e., 0 = SNo. 
For every k, let X k : 0 -+ S be the k'th projection: (io, ... ) t-+ ik. It now "only" remains 
to provide 0 with a O"-algebra A and a measure such that the theorem holds. It is clear 
that, to achieve this aim, all sets 

AiO, ... ,ik:= {(io, ... ,ik,ik+l"") I ik+l, ... arbitrary} 

have to be in A with associated measure qio, ... ,i.' Whereas it is easy to show that this 
definition can be extended to the ring generated by the Aio, ... ,i. by a unique finitely 
additive measure it is rather cumbersome to check that one may apply Caratheodory's 
theorem to have an extension as a (O"-additive) measure to the generated O"-algebra. 

Under the assumption of the existence of the Borel-Lebesgue measure on the real 
line one can give a rather elementary proof of theorem 1.4. Let (f2, A, lP') be the unit 
interval together with the Borel subsets and the Borel-Lebesgue measure. We will 
assurne that S = {1, ... , N}, the random variables Xo, ... will be defined as folIows: 

• Write f2 as the disjoint union of intervals h, ... , IN such that Ii has length 
qi; this is possible since the qi sum up to one. X o : f2 -+ S is defined such that 
the points in Ii are mapped to i. Then lP'(Xo = i) = qi for all i. 

• For every i we now partition Ii into intervals 1;1, ... ,IiN such that lP'(Iij) = qij; 
this can be done.since l:j % = qi. And Xl will be that mapping on f2 which 
maps the Iij to J. 
It is clear that then lP'(Xo = i, Xl = j) = %, and it also should be obvious 
how to proceed in order to define consecutively also X 2 , X 3 , •... 
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Markov chains vs. Markov processes 
We are now able to show that the definitions 1.1 and 1.3 are essentially equivalent. 

Start with a chain as in definition 1.1 by prescribing S, the (Pi)iES and the (PijkjES. 

With the help of Kolmogorov's theorem we want to construct an associated Markov 
process. The random variable Xo, Le., the model for our starting position, should be 
such that lP'(Xo = i) = Pi, and hence we set qi := Pi in theorem 1.4. "The walk starts in 
i and next moves to j" is the event "Xo = i and Xl = j"; by theorem 1.4 it will have 
probability qij, and according to our interpretation of 1.1 it has probability PiPij; here 
we have used the identity lP'(A n B) = lP'(A I B)lP'(B) with A = "the walk starts at i" and 
B = "the position after step 1 is j". Thus we have no choice but to define qij := PiPij, 

and similarly, for general k, we set 

(1.1) 

It is now routine to show that the q's satisfy the assumptions of Kolmogorov's theorem 
and that the X's provided by this theorem, constitute a homogeneous Markov process 
with lP'(Xk+1 = j I X k = i) = Pij whenever the left-hand side is defined. 

Note that, by theorem 1.4, (1.1) implies that 

P(Xo = io, Xl = il, ... , Xk = ik) = PioPioil ... Pi._Ii. (1.2) 

for all io, ... ,ik, this formula is often useful in concrete calculations. 

Now suppose that, conversely, Xo, Xl, ... is a homogeneous S-valued Markov process. 
In order to arrive at definition 1.1 we clearly have to set Pi := lP'(Xo = i); then Pi ~ 0 
and E Pi = 1 since lP' is a probability. The definition of the Pij is not as easy since the 
natural approach Pij := lP'(Xk+l = j I X k = i) might fail: maybe the right-hand side is 
not defined. Thus we proceed as follows: 

• Let i be such that there exists a k' with lP'(Xk, = i) > 0; put 

Pij := lP'(Xk+1 = j I Xk = i) 

for all j, where k is the smallest k' with lP'(Xk, = i) > o . 
• Define the Pij for the other i arbitrarily with Pij ~ 0, Ej Pij = 1. 

This definition will be our candidate to come from definition 1.3 to definition 1.1. It 
follows easily from the assumptions in 1.3 - lP' is a probability measure, the process is 
homogeneous - that the Pij satisfy the conditions in 1.1 and also that the "walk" given 
by the stochastic rules Pi, Pij corresponds with Xo, Xl, .... Also, (1.2) will hold with 
these Pi and Pij· 

Summing up, we arrive at the following conclusion: 

Every chain defined by a prob ability vector and a stochastic matrix as in 
1.1 gives rise to a homogeneous Markov process, and every such process is 
obtained in this way. There might be, however, chains which are formally 
different which generate the same process2 • 

2 As a simple example consider S = {I, 2} with PI = 1, P2 = o. 
Here (~ ~) and (~ ~) determine the same Markov process. 
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Exercises 

1.1: Let N be a fixed integer, we denote by K the collection of all probability vectors of 
length N: 

a) Prove that K is a compact convex subset of mN . 

b) A point x of a convex set L is called an extreme point (of L) if x = (y + z) /2 can hold 
with y, z E L only if y = z = x. 
What are the extreme points of K? 

1.2: Let N be fixed and call K' the set of all stochastic NxN-matrices. 

a) K' is a compact convex sub set of ]RN2
• 

b) Which matrices P are extreme points of K'? 

c) Let K" be the collection of doubly stochastic NxN-matrices. Prove that K" is a 
c10sed subset of K' and identify the extreme points of this set. 

d) A subset F of a convex set L is called a face (of L) if it is convex and if - for y, z E L 
- one has (y + z)/2 E F only ify,z E F. Is K" a face in K'? 

1.3: Let P be a stochastic NxN-matrix. We consider two independent copies of a Markov 
process on {l, ... ,N} with transition probabilities given by P, both are assumed to start 
deterministically at state 1. 

The two processes can be thought of as a single process on {I, ... , Np. Is this a 
Markov process? What does the transition matrix look like? 

1.4: Let S be a finite set and <I> : SxS --* S a fixed function. Further we are given a 
sequence (Ykh=o,l, ... of independent and identically distributed S-valued random vari­
ables. 

Define a process (Xk) by X o := Yo and X k+1 := <I>(Xk, Yk+d for k 2 0. Prove that 
(Xk) is a homogeneous Markov process and calculate the associated transition matrix in 
terms of <I>. 

1.5: Let P be a stochastic matrix, we want to model a homogeneous Markov process 
X o, ... on a suitable prob ability space (D, A, lP'). What precisely are the matrices P such 
that D can be chosen as a finite set? 

1.6: Let (Xk ) be the Markov process associated with the cyc1ic random walk on {O, ... ,9} 
with a deterministic starting position at 5: the probability is 1/2 for a step from i to 
i+l mod 10 resp. to i-I mod 10. Determine the following (conditional) probabilities: 

a) lP'(X3 E {2, 3, 4}). 

b) lP'(X3 = 61 X 5 = 6). 

c) lP'(X5 = 6 I X 7 = 7, Xs = 6). 

1. 7: Is it true that a stochastic matrix P has identical rows iff the following holds: 
regardless of how the starting distribution is chosen, for the associated Markov process 
(Xk) the Xk, k 2 1, are independent and identically distributed random variables? 

1.8: If Xo, Xl, ... denotes a homogeneous Markov process with transition probabilities 
(Pij) and starting distribution (Pi), then 

holds (see (1.2)). Use this to prove or to disprove that 
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a) lP(Xk = ik I X k- 1 = ik-l, X k+1 = ik+l) = lP(Xk = ik I Xk-l = ik-r), 

b) lP(Xk = ik I X k- 1 = ik-l, Xk+l = ik+l, Xk+2 = ik+2) = 
lP(Xk = ik I Xk-l = ik-l, Xk+1 = ik+r), 

c) lP'(X3 = i I X2 = j) = lP(X6 = i I X5 = j). 

11 
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2 Examples of Markov chains 

By definition, a Markov chain is nothing but a probability vector (Pi) together with a 
stochastic matrix P = (pij). Mostly only P is given, and then it is tacitly assumed that 
one is interested in alt starting distributions. Due to the law of total probability it suffices 
to study only the situations where one starts deterministically at a fixed but arbitrary 
point: if E denotes any event associated with the walk (e.g., "it visits four times state i o 
before it visits state Ja"), then the prob ability of E subject to the starting probability 
(Pi) is 2::pilF'i(E), with lF'i(E) := "the probability of E when starting in i". 

Because of the rather general setting examples of Markov chains abound. (Note that 
the identity matrix is also admissible, it gives rise to a particularly dull "random walk" .) 
There are, however, some typical representatives which will be of some use later, mainly 
to motivate the concepts to be introduced and also to prepare our applications in part 
II and part IIr. 

Example 1: The reflecting, the absorbing and the cyclic random walk 
This is essentially arestatement of the walks of the introduction. One moves one step 

to the right or to the left on {I, ... , N} (or stays at the same position) until one arrives 
at 1 or N. There, depending on the type of walk, some extra rule applies: 1 and N 
serve as reflecting walls, or the walk stays there forever at soon as it arrives at one of 
these positions, or {l, ... , N} has to be be considered as a discrete circle, where the 
"neighbours" of 1 (resp. N) are 2 and N (resp. N -1 and 1). 

The reflecting walk 
Let ai, bi , Ci be nonnegative numbers for i = 2, ... , N -1 such that ai + bi + Ci 1. 
Consider 

0 1 0 0 0 0 
a2 b2 C2 0 0 0 
0 a3 b3 0 0 0 

P= 

0 0 0 aN-l bN - 1 CN-l 

0 0 0 0 1 0 

The absorbing walk 
With ai, bi , Ci as above set 

1 0 0 0 0 0 
a2 b2 C2 0 0 0 
0 a3 b3 0 0 0 

P= 

0 0 0 aN-l bN - 1 CN-l 

0 0 0 0 0 1 
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The cyclic walk 
This time the ai, bi , Ci are given with the above properties for i = 1, ... ,N. The stochastic 
matrix is 

bl Cl 0 0 0 al 

a2 b2 C2 0 0 0 
0 a3 b3 0 0 0 

p= 

0 0 0 aN-I bN - I CN-I 

CN 0 0 0 aN bN 

Example 2: "Rules" vs. P 
It is of crucial importance to be able to translate: what is the matrix P if the stochastic 

rules are given and, conversely, what type of walks is determined by a specific P? 

For example, it should be clear that - for a walk on the states 1,2,3,4,5,6 - the rule 

"if you are at 3, throw a fair die to determine the next position; in any other 
case, stay at i or go to i + 1 mod 6 with equal probability" 

leads to 

1/2 1/2 0 0 0 0 
0 1/2 1/2 0 0 0 

P= 1/6 1/6 1/6 1/6 1/6 1/6 
0 0 0 1/2 1/2 0 
0 0 0 0 1/2 1/2 

1/2 0 0 0 0 1/2 

Similarly the reader should try to treat further examples. 

Conversely, one should "see" that 

( 

99/100 1/100 
o 99/100 

P= 0 0 
o 0 
o 0 

o 
1/100 

99/100 
o 
o 

o 
o 

1/100 
99/100 

o 
describes a rather slow walk on {l, 2, 3, 4, 5} from left to right until one arrives at state 
5 (where one then stays forever). 

What is going on when 

(0 0 
1 lq ( 

0 1 0 

JIOO) 
o 0 1 0 0 1 

1/4 1/4 1/4 
or 

0 0 0 
o 0 1/2 1/2 1/100 0 0 

are the relevant stochastic matrices? 
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Example 3: "Yes" or "no"? 
Suppose you want to model a machine which can give the answers "yes" or "no" subject 

to the following rule: having answered "yes" the next reply will be "yes" or "no" with 
equal probability, but a "no" is always followed by a "yes". As so on as we have identified 
the states "yes" and "no" with 1 and 2, respectively, the associated matrix surely is 

( 1/2 1/2) 
1 0 . 

One also could use the more suggestive 

I yes I 
I yes I ( 1/2 
~ 1 

~ 
1/2 ) 
o ' 

in this book this will usually not be necessary. 

Example 4: Markov chains as weighted graphs 
In many cases the matrix P is sparse, i.e., there are few nonzero elements. Then it 

might be appropriate to visualize the chain as a graph: the vertices are the states of the 
chain, and we draw a directed edge (with weight Pij) from i to j whenever Pij > O. 
Here you see an absorbing and a cyclic random walk on {I, 2, 3,4,5, 6}: 

--;/~ 
1/2 1/2 1/2 

j I j I --- --- --0-- - - --0 1/2 ;; ;; ;; 1/2 

1 1 ~-;/-
all P = 1/2 

Example 5: Random permutations 
In this example the state space S might be incredibly large, so large that even the 

most powerful computers are unable to provide an array of length N (= the cardinality 
of S), not to say the possibility to store all coefficients of the matrix P. It will thus not 
be possible to work with P as in our theoretical investigations to come. On the other 
hand it is rather simple to write computer programs which simulate "typical" walks on 
Sand - as it will turn out later - to apply rigorously proved results successfully, even if 
N is that huge. 

Imagine a situation where there are T' books on a bookshelf. Someone uses this library 
in such a way that he or she picks up a book at random and - having had a look to it -
puts it back randomly. How will the arrangement of the books develop? 
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To phrase it in the language of Markov chains we have as our state space the collection of 
the r! permutations of {I, ... , r}. Denote permutations by T = (i1 , ... , i r ) with 1 ~ ik ~ r 
(1 is mapped to i 1 , 2 to i 2 and so on). 

A typical transition is defined by two random decisions: first one chooses the k'th 
book (1 ~ k ~ r) and then it is put back at position I among the remaining k-1 books 
(1 ~ I ~ r); it is assumed that k and I are selected independently according to the 
uniform distribution. Hence a transition from T to itself will occur with probability l/r, 
this happens iff the k'th book is reshelved where it had been before. Also it may happen 
that one passes from (i1 , i2 , ••• , ir ) to (i2 , il, i3 , ••• , ir ) or to any other permutation which 
arises from T by interchanging two adjacent entries. There are two possibilities to arrive at 
such a transition1, hence the associated probability is 2/r2 . There remain r 2 - r- 2(r-l) 
transitions to permutations which only occur with precisely one choice of k, I so that their 
probability is 1/r2 . 

Summing up, there are r 2 - r - 2(r - 1) + 1 + (r - 1) = r 2 - 2r + 2 states which one 
can reach being in state r. One transition, that from T to T, will occur with probability 
l/r, and there are r - 1 resp. r 2 - 3r + 2 states with transition probabilities 2/r2 resp. 
l/r2 . 

Remark: Another way to look at this example is to consider a deck of r cards and 
to "shufHe" it in such a way that a randomly chosen card is restored randomly. This 
is abbreviated as a random-io-random shuffle. It should be clear what is meant by the 
similarly defined iop-io-random shuffle or the random-io-bottom shuffle. 

Example 6: Processes with short memory 

By definition, a Markov process has no memory, the choice of the next position only 
depends on the present state and not on those occupied in the past. 

Here we want to point out that it is sometimes possible to use Markov chain results 
even if the Markov condition is violated. To explain the simple idea consider a "walk" 
on {a, b} defined by 

• The first two positions are a . 

• If you have been at a (resp. b) for the last two consecutive steps, move next to b 
(resp. a) with probability 0.8 and stay where you are with probability 0.2; in all 
other situations stay or move with equal probability 0.5. 

This is surely not a Markov process on {a, b}. However, if we consider as states the 
pairs (a, a), (a, b), (b, a), (b, b) of all possible consecutive positions - which will be iden­
tified with 1,2,3,4 - then the rules give rise to a Markov chain: the chain will start 
deterministically in state 1, and the transition matrix is 

( 
0.2 0.8 0 0) 

p _ 0 0 0.5 0.5 
- 0.5 0.5 0 0 

o 0 0.8 0.2 

(Why, for example, is P23 = 0.5? We are in state 2 = (a, b), i.e., the walk is now at b coming from 
a. Hence the next pair of consecutive positions will be (b, something), and with equal probability 
the states 3 = (b, a) and 4 = (b, b) will occur.) 

1 The transition (i1 , i2, ... ,ir) ..... (i2, i1 , i 3, ... , ir ), for example, occurs if k = 1 and I = 2 or vi ce versa. 
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Similarly, any process on {I, ... , N} for which the transition probabilities possibly 
depend on the last ko steps can be considered as a Markov chain with Nko states. Note 
that quest ions concerning the original process can be answered by considering the first 
component of the walk on {I, ... , N}ko. 

Exarnple 7: A diffusion model 

Imagine two boxes each containing r balls. When we begin, there are only white balls 
in the left box, and the right one contains only red balls. Now a "move" means to choose 
randomly one ball in each box and to exchange their positions. Consider as astate a 
possible distribution of balls. Since the state is uniquely determined once we know the 
number of red balls in the left box, we may and will identify the states with the elements 
of S = {O, 1, ... ,r}. The start is deterministic at state 0, and by elementary probability 
the entries of the transition matrix are 

{ ~ r 2 

- ~ 
Pij - r i 2 

r 2 

o 

j = i 

j=i+1 
j=i-l 
otherwise. 

This chain is called the Bernoulli-Laplace model 0/ diffusion or the Ehrenfest model. 
Formally it is a special example of a reflecting random walk (see page 12). 

Example 8: 0-1-sequences 

Let r be a fixed integer and S = {O, Ir the collection of all 0-I-sequences of length 
r. Transitions from (Cl, ... , Cr) to (171, . .. , 17r) are possible if and only if precisely one of 
the numbers Ci - Ti is different from zero, and each of these r transitions have the same 
probability l/r. 

One can think of S as the set of vertices of an r-dimensional hypercube, and transitions 
are admissible along an edge to a neighbour. 

Example 9: Random feedback 

(This example is due to the young composer Orm Finnendahl who lives and works in 
Berlin. He uses Markov chains to provide sequences of numbers which are transfonped 
to musical events.) 

Let m and r be integers, our state space will be S = {I, ... ,m r. Consider any state 
T = (171, ... ,17r). If 17 := 17r does not occur among the numbers 171, ... ,17r-1, only one 
transition, namely to T, is admissible. Otherwise define I to be the nonvoid set of indices 
i such that 1 ::; i ::; r - 1 and 17i = 17; then choose a random i E I (with respect to the 
uniform distribution) and put 17' := 17i+1. The next state will be (17',171, ... ,17r-d. 

Suppose that, for example, m = 3, r = 12, and T = (213321221311). Sinee TI = 1 
is followed onee by 1, onee by 2 and twiee by 3 we will have TI' = 1,2, or 3 - and 
thus transitions to (121332122131), (221332122131), or (321332122131) - with the 
respeetive probabilities 1/4, 1/4, 2/4. 

The composer was rat her surprised by the phenomenon that the walk usually visits 
only few states: after starting the chain with a randomly chosen Tone arrives rather 
soon at a situation where 17 is not among the 171, ... ,17r-1 so that the chain pro duces no 
new elements. The problem to find an explanation was communicated to the German 
mathematical community in [14J. This, however, did not lead to any convincing solutions. 
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Exercises 

2.1: What will a "typieal" walk look like if the transition matrix is 

-- 1 0 999 ,or -- 0 1 (0 1 999) 1 ( 1 
1000 1 1 998 1000 999 

999 0) 1 (999 0 
1 999 ,or 1000 500 0 
o 1 0 1 

2.2: Let S = {I, ... , 1O}, we consider the following walk: 

17 

5~0 )? 
999 

Start at 1, transitions in the k'th step are according to the following rule: 

- if you are at 10, stay where you are; 

- otherwise, throw a fair die, let the result be d; move d units to the right if 
this is possible, if not, stay where you are. 

What is the stochastie matrix associated with this walk? 

2.3: At the end of chapter 1 we have given a counterexample: it is in general not possible 
to reconstruct P from the Markov process induced by P and a fixed starting position. 
Prove that P can be found if one has access to alt Markov pro ces ses with transition 
matrix P and arbitrary starting distributions. 

2.4: Consider a deck of r cards whieh is in its natural order. A number P E {I, ... ,r} is 
chosen uniformly at random and then one cuts P times a single card from the top of the 
deck to the bottom. If this procedure is thought of as a single "step" of a random walk, 
which positions are possible? What are the transition probabilities? 

2.5: Prove rigorously that the walk introduced in example 6 is not Markov on {a,b}. 

2.6: Consider the following walk on {O, 1, 2}: the first three positions are Xo = 0, Xl = 1, 
X 2 = 2, and - for k 2: 2 - the (k + l)'th position is 

(Xk + X k - l + X k - 2 + d) mod 3, 

where d is found by throwing a fair die. 

a) Prove that (Xk ) is not a Markov process. 

b) S.llOw that it is nevertheless possible to associate with (Xk) a Markov process on a set 
with 27 states; cf. example 6. 

2.7: Verify the formula for the transition probabilities in example 7. 

2.8: Let (Xk) be a homogeneous Markov process on a finite set S with transition matrix 
P. Fix a map <I> : S --+ S', where S' is another finite set. 1s (<I>(Xk» a Markov process on 
S'? If not, what conditions on P and <I> have to be fulfilled in order to arrive at a Markov 
process? 

2.9: Fix astate space S together with a stochastic matrix P. A bijection p : S --+ S is 
called a symmetry if 

Pij = Pp(i)p(j) 

holds for all i, j. 

a) Prove that the collection of all symmetries is a group with respect to composition. We 
will call this group G p in the sequel. 

b) Calculate Gp for the symmetrie, the absorbing and the cyclic random walk (see 
example 1), the ans wer will depend on ai, bi , Ci· 
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c) Determine G p for 

d) Provide an example where G p is trivial (i.e., only the identity is a symmetry). 

e) What can be concluded if alt bijections are symmetries? 

2.10: We will say that two states i, j of a Markov chain are equivalent if there exists a 
symmetry p with p( i) = j; we will write i '" j in this case. 

a) Prove that ""," is an equivalence relation. 

b) Verify that for every disjoint partition S = SI U··· U Sr of a finite set S there exists a 
stochastic matrix P such that the SI, ... , Sr are the equivalence classes with respect to 
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3 How linear algebra comes into play 

Let a Markov chain be given by a prob ability vector (PI, ... ,PN) and a stochastic matrix 
P = (Pij) as in definition 1.1. On page 9 we saw how one may associate a Markov process 
X o, Xl, . .. defined on some space (0, A, lP') with values in S := {I, ... ,N}. 
We now apply the "law of total prob ability" , Le., 

(3.1) 

whenever 0 is the disjoint union of the BI, B2 , •..• We want to use this elementary fact 
to calculate the numbers 

that is the probabilities that the walk occupies position i after k steps; we write the "k" 
in brackets since it is not an exponent here. 

One has p~o) = Pi and, by (3.1), 

p~k+l) = lP'(Xk+1 = i) = L lP'(Xk+1 = i I X k = j)lP'(Xk = j) = LPjiPjk). 
j j 

The crucial observation is that this equation just means that (p~k+l), ... ,p~+l)), the 

row vector associated with the p~k+l), is nothing but the matrix product of the row vector 
(p(k) (k)) ·th . P 1 , ... ,PN Wl our matrIx . 

It has to he stressed that we have to multiply row vectors from the left and not 
column vectors from the right due to our decision to denote transition prohahilities 
hy Pij and not Pji. This is suggestive if one writes from left to right, hut it is nothing 
hut a convention. 

By induction we get immediately 

Pu P12 
P'N r (p(k) (k)) P2l P22 P2N 

I'·· ·,PN = (p" ... ,p,.) ( : 

PNl PN2 PNN 

(3.2) 

and in this way we may hope that it will be possible to calculate probabilities in con­
nection with Markov chains by using matrix algebra. In fact it will turn out that this 
machinery can be applied successfully. We will see why and how eigenvalues, eigenvectors 
and inverse matrices are of importance here. 
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We will use the convention that elements of ]RN are column vectors. It is, however, 
typographically more convenient to deal with row vectors which can easily be achieved 
by passing from an x E ]RN to the transposed vector x T. For example, if we want to define 
a vector e having the entries 1, ... ,1 we can do this by putting e T := (1, ... ,1) (or by 
e:= (1, ... , I)T). 

As an example let us consider the role of certain lejt eigenvectors. Suppose that you 
have found such an eigenvector with associated eigenvalue 1, that is a 71" = (71"1, ••• ,71" N ) T 

with (71"1, ••• ,71" N) = (71"1, ••• , 7I"N )P. Suppose that the entries of 71" can be thought of as 
probabilities, that is 7I"i ~ 0,2: 7I"i = 1. Then, by choosing Pi := 7I"i, it follows from (3.2) 
that 

( (k) (k)) _ ( ) PI ,···,PN - 7I"1,···,7I"N 

for all k, and for this reason such a 71" will be called an equilibrium distribution. 

Let us try to understand the consequences. Imagine, for example, the simplest reflecting 
walk on {I, 2, 3, 4}: 

1 
o 

1/2 
o 

o 
1/2 
o 
1 

(3.3) 

If you know, for example, that the walk starts at 2, that is if (piO) , p~O) ,p~O) ,p~O)) = 
(0,1,0,0), then (3.2) enables you to calculate the (pik) ,p~k) ,p~k) ,p~k)) in a simple way. All 
these vectors are different, and all carry non-trivial information. For example, whenever 
k is even, the walk will not occupy one of the states 1 or 3. 

Now let 71" be defined by 71" T := (1/6, 1/3, 1/3, 1/6). We have 71" T = 71" T P so that, if 
we choose the components of 71" as starting probabilities, our information will not change 
with k. We can, e.g., assert that the walk occupies state 3 with probability 1/3, regardless 
of how huge k iso 

As another illlustration consider 

p~ ( 

o 
1/2 
o 

1/2 

1/2 
o 

1/2 
o 

o 
1/2 
o 

1/2 

the cyclic random walk on {I, 2, 3, 4}. This time (1/4, 1/4, 1/4, 1/4) is a left eigenvector, 
that is the uniform distribution is an equilibrium distribution in this case. Note that this 
always happens if Pis a doubly stochastic matrix, i.e., if 2:iPij = 1 holds for every j. 

There is a related phenomenon. Consider once more the above example (3.3). Suppose 
that you know that the walk was started either deterministically at 1 or deterministically 
at 2. In the first (resp. in the second) case the walk will occupy astate in {I, 3} (resp. in 
{2, 4}) after k steps for every even k. Thus if you know that the 100,000'th position is 4 
you are sure that the walk started at 2. Loosely speaking one could say that, concerning 
its starting position, the walk keeps so me memory. 
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However, if We pass from (3.3) to 

1 
1/3 
1/3 
o 

o 
1/3 
1/3 
1 

21 

then this is not to be expected. Since now the walk can pause at states 2 and 3, there is 
no obvious way to decide, knowing the position after k = 100,000 steps, whether it was 
started at 1 or 2. 

Surprisingly the information concerning the starting position is lost rat her rapidly here. 
To check this, let us calculate some powers of P: 

P'=! C 3 3 0) 5 2 1 
9 1 2 5 1 ' 

0 3 3 3 

e5 

30 30 6) 
p4 = .2.. 10 35 26 10 

81 10 26 35 10 ' 
6 30 30 15 

Cl 2460 2460 780) 
pB __ 1_ 820 2501 2420 820 

- 6561 820 2420 2501 820 . 
780 2460 2460 861 

Thus even after a rather small number of steps it turns out that the entries in the 
first and the second row are pretty elose together. Since these by (3.2) represent the 
probability distribution after 8 steps when starting at 1 or at 2 our calculation justifies 
the intuition. 

In fact, all rows are elose to each other (every starting positions leads after 8 steps to 
roughly the same distribution), and an evaluation of further powers of P would indicate 
that they converge rapidly to (1/8, 3/8, 3/8, 1/8). It is of course not by chance that this 
is a left eigenvector of P with associated eigenvalue 1. A great part of this book will be 
devoted to understand and to apply this loss-of-memory phenomenon1 . 

Exercises 

3.1: Prove that the collection of all stochastic NxN-matrices such that 1 is a simple 
eigenvalue is an open subset of the set K' of exercise 1.2. 

3.2: Let P be a stochastic matrix with associated process XO,X1, ... , and ko an integer. 
Then P := pko is that stochastic matrix which gives rise to the walk X o, X ko ' X 2ko , .... 

Which matrices arise in this way: 

a) Determine all stochastic 2x2-matrices P such that there is a stochastic matrix Q with 
P=Q2. 

1 cf. chapter 7, in particular theorem 7.4. 
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b) Prove that for every N > 1 and ko > 1 there is a stochastic NxN-matrix P such that 
P is not of the form Qko for a stochastic matrix Q. 

3.3: Let a walk start on S = {I, ... , N} in accordance with an initial distribution 
PI, ... ,PN, the transitions in the k'th step are governed by a stochastic matrix Pk. Prove 
that the probability p~k) to find the walk after k steps in state i is the i'th component of 
the vector 

3.4: Prove that - similarly to the case of homogeneous Markov chains - the inhomoge­
neous chain of the preceding exercise can be modelled rigorously by a Markov process 
X o, Xl,'" : 0 --7 S on a suitable probability space (O,A,JID). (More precisely: given 
(PI, ... ,PN) and the Pk there is a Markov process (Xk) with JID(Xo = i) = Pi and 

for k > 0 and all i ES.) 

3.5: Recall that a probability vector (1fI, ... ,1f N) is called an equilibrium distribution of 
a stochastic matrix P provided that (1fI" .. , 1f N ) P = (1fl, ... , 1f N ). 

a) Verify that for a doubly stochastic matrix the uniform distribution (l/N, ... , l/N) is 
an equilibrium distribution. Is it possible that there are other equilibria in this case? 

b) Prove that the collection of all equilibrium distributions of a fixed P is a nonvoid 
compact convex subset K of lRN . 

c) Find an explicit expression of an equilibrium distribution of an arbitrary stochastic 
2 x 2-matrix. 

d) Determine an equilibrium distribution of a stochastic matrix P where all rows are 
identical. Is it unique? 

3.6: Convince yourself of the loss-of-memory phenomenon by considering a stochastic 
matrix P with strictly positive entries and calculating the matrix products P, p 2 , p 4 , 

pB, .... 

3.7: With the notation of exercise 2.9 let p be a symmetry. Prove that (1f p(l), ... ,1f p(N)) 

is an equilibrium for every equilibrium distribution (1fl, ... , 1f N ). 
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4 The fundamental not ions in connection 
with Markov chains 

What is essential? It is one thing to fix a set ofaxioms as the starting point of a hopefully 
interesting new theory. However, it is usually much more difficult to find the relevant 
notions which enable one to study - sometimes even to completely classify - the new 
objects. Examples are very rare where this has been achieved by a single mathematician. 
Generally it takes years or decades where many suggestions are under consideration, 
where it turns out to be necessary to modify the axioms and where many researchers are 
involved. 

The relevant not ions for Markov chains have mostly been found in the first half of 
the twentieth century (cf. also thc historical comments in chapter 8), he re we will be 
concerned with 

• closed sub sets of a Markov chain, 

• states which communicate, 

• the period of astate, and 

• recurrent and transient states. 

It will turn out that the study of a general Markov chain can be split up into the 
investigation of certain special states (transient states) and Markov chains of a particular 
type (irreducible chains). Transient chains will be studied in some detail in chapter 5. 
We then will need a little digression to prove an important analyticallemma (chapter 6). 
This will enable us to continue our study of irreducible chains in chapter 7. Part I ends 
with a summary of our results and some notes and remarks in chapter 8. 

Closed subsets of the state space 

As in chapter 2 we fix a finite set Sand a stochastic matrix P = (Pij) i,jES, a particular 
starting distribution is not prescribed. 

Definition 4.1 

(i) A nonvoid subset C of S is called closed (or invariant) provided that 

Pij = 0 whenever i E C and j tf. C. 

(ii) Byan absorbing state we mean astate i o such that {in} is closed (i.e., one for 
which Pioio = 1 holds). 

(iii) The chain is called irreducible if S itself is the only closed subset. 

Für concrete chains it is usually not hard to identify the closed sets: the cyclic walk 
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p ~ ( l~' 
1/2 0 0 

T) 0 1/2 0 

1/2 0 0 1/2 

on {I, ... , N} is irreducible, for the absorbing walk 

1 0 0 0 0 0 
1/2 0 1/2 0 0 0 

p= 

0 0 0 1/2 0 1/2 
0 0 0 0 0 1 

only {l},{N},{l,N} and {l, ... ,N} are closed, and for 

1 0 0 0 0 
1/2 1/2 0 0 0 

p= 0 1/2 1/2 0 0 ( 4.1) 

0 0 0 1/2 1/2 

precisely the IV sets {I, ... , r}, r = 1, ... , N have this property. 

(Of course, the identification of the closed subsets is not always that simple. For ex­
ample, in order to prove that the random-to random shufHe from chapter 2 (page 15) is 
irreducible one has to remember how permutations can be built up from transpositions.) 

In the presence of closed subsets one might hope to simplify the study of the chain: if 
C is closed, then the "restriction" of P to C can be defined reasonably, and for "small" 
C the reduced chain should be much simpler. Also it is to be expected that an essential 
step in the classification of arbitrary chains will be the understanding of the behaviour of 
irreducible chains. We will see in chapter 6 and chapter 7 how this can be made precise. 

All assertions in the following lemma are easy to check: 

Lemma 4.2 

(i) Unions and nonvoid intersections 01 closed sets are closed. 
(ii) Let Cl, C2 be different closed sets which are minimal with respect to " C ". Then 

Cl n C2 = 0. 
(iii) Every closed set contains a minimal one. 

Remark: For assertion (iii) to hold it is essential that we restrict ourselves to finite state 
spaces. (iii) is not true for arbitrary S, the simplest counterexample seems to be the 
deterministic walk on the integers which is defined by Pi,i+! = 1 for all i. 

Suppose that C is closed in S = {I, ... , N}. If C is the set {I, ... , N'} - which of 
course can easily be achieved by passing to another enumeration of the states -, then P 
will have the form 
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* * 0 o 

* * 0 o 
* * * * 

* ... * * * 

More generally, if Cl, ... , Cr are the minimal closed sets, we mayassume that 

Cl = {I, ... ,Nd, C2 = {Nl + 1, ... ,N2 }, ... , Cr = {Nr - l + 1, ... ,Nr }. 

Then, as a consequence of lemma 4.2(ii), P can be written as 

o 0 0 

* * * 

000 
o 0 0 

o Pr 0 

* * * 

25 

(4.2) 

where Pp is the stochastic matrix which corresponds to the restriction of the chain to 
Cp (p = 1, ... , r). "0" here denotes a matrix with zero entries, and the "*" stand for 
further matrices. (Note that always some Cp will exist, the *-matrices, however, might 
be absent.) 
(4.2) will be referred to as a standard form of the chain. 

For example, a standard form of the absorbing random walk on {1, 2, 3, 4} is 

o 
1 
o 

1/2 

o 
o 
o 

1/2 

where we have renumbered the states 1,2,3,4 as 1,3,4,2. 

It is plain by this example that it is not always natural to pass from the original P 
to the form (4.2). 

States which communicate 

Let C be a proper closed subset of S. Then a walk starting in C will never visit any 
j f/: C. In order to examine more closely what can happen it is convenient to introduce 

Definition 4.3 Let i, j be arbitrary states. 
(i) If the probability is positive that a walk which starts at i will visit j we will 

write i -+ j. This happens precisely if one has p~:) > 0 for some k, where we 

have written the k'th power p k of our matrix Pas p k = (p~:)). In this definition 
k = 0 is admissible (with pO = the identity matrix). Hence i -+ i for all i. 

(ii) We will say that i and j communicate if i -+ j and j -+ i. In this case we will 
write i H j. 
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U sually it is rather easy to decide by inspection whether or not one has i ~ j, in 
particular if the chain is given as a weighted graph as in chapter 2, example 4 (page 14). 
Then "i ~ j" is nothing but "there is a directed path from i to j" . 

Proposition 4.4 

(i) "+-t" is an equivalence relation. 

(ii) Let C be a closed minimal subset oJ S. Then each two states in C communicate. 

(iii) Every minimal closed subset is an equivalence class with respect to " +-t " . 

(iv) A chain is irreducible iff i +-t j Jor all i, j. 

Pmof. (i) It is clear from the definition that i +-t i and that i +-t j yields j +-t i. Transitivity 
is plain if one thinks uf a chain as a walk subject to stochastic rules or as a weighted 
directed graph. 

A formal proof is also easy: let i, j, l be states such that i -+ j and j -+ l. Then there 
(k) (k') (kU) are k k' with p.. p. > 0 and we nccd a k" with p. > O. k" := k + k' has this , 'J ' JI , ,I 

property since pk+k' = pk pk', and thus 

(k+k') 
Pa p;J)p;;') + (something 2: 0) 

(k) (k') 
> Pij Pjl 

> O. 

It follows that " -+ " and consequently also " +-t " are transitive. 

(ii) We know that C = C' whenever C' is a closed subset of C, and this has to suffice to 
prove that i -+ j for arbitrary i,j E C. 

The proof uses a little trick. Fix j E C and define CU] to be the collection of all starting 
positions i E C which never reach j: 

CU] := {i I i E C, piJ) = 0 for all k}. 

We are done on ce we know that C[j] = 0, and this will follow as soon as we have shown 
that CU] is a proper subset of C and that CU] is closed. 

The first part is clear since, by definition, j ~ CU], For the second part, let i E CU], 
j' ~ CU] be given. 

Gase 1: j' ~ C. 
Then Pij' = 0 since C is closed. 

Gase 2: j' E C. 
By the definition of C[j] we know that j' -+ j. Thus necessarily Pij' = 0 since otherwise 
i -+ j' and thus i -+ j, a contradiction. 

(iii) That equivalence classes associated with elements of a closed C are subsets of C 
follows from the definition. And (ii) says that the class of i is at least as large as C if i 
belongs to the minimal closed set C. 

(iv) This is a special case of (iii). 0 
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The period of astate 

As we have noted in chapter 3 the reflecting walk (3.3) on {I, 2, 3, 4} has the property 
that after an odd number of steps astate in {2, 4} will be occupied ifthe walk was started 
at 1, say. In particular, only after an even number of steps the walk can be back at 1 
again. This section is devoted to provide an appropriate definition in order to investigate 
such when-rnight-the-walk-return questions. 

First we rernind the reader of adefinition from elementary number theory. If M is a 
subset of {O, 1, 2, ... } which strictly contains {O}, then the greatest common divisor ofM 
is the nurnber d which satisfies 

• dln for all n E M ("dln" means "d divides n"), 

• if d'ln for all n E M, then d'ld. 

This nurnber always exists and is uniquely deterrnined, it is usually denoted by gcd M. 

Those who know only the greatest common divisor of finite sets of integers might 
argue as folIows: consider the collection !vI of all numbers which are of the form 
gcd {ni, ... , n r }, where r is arbitrary and the nl, . .. ,nr are in M. Since !vI is a 
nonvoid subset of N and N is well-ordered there exists a minimal element d in !vI. 
It is easy to see that d has the claimed properties. 

Definition 4.5 Let i be astate such that p;7) > 0 for sorne k > 0, that is there is a 
positive probability that a walk which starts at i returns. Then the period of i is the 
greatest cornrnon divisor of the set Ni := {k I k:::: 0, p;7) > O}. 
If i has period 1 it will be called aperiodic. 

In the above exarnple of the reflecting walk all states obviously have period 2 since 
Ni = {O, 2,4, ... } for all i. Here is a more interesting chain: 

Let S be the set {-a, -a+ 1, ... , -1,0,1,2, ... ,b}, where a and bare arbitrary 
integers. Define the transition probabilities by 

• Pi,i+l = 1 for i = -a, -a+1, ... , -1, 1,2,3, ... , b-1, 

• Pb,O = 1, 

• PO,1 = PO,-a = 1/2. 

Thus the chain consists of the "cycles" 0 -+ -a -+ -a+ 1 -+ ... -+ -1 -+ 0 
and 0 -+ 1 -+ 2 -+ ... -+ b -+ 0; only at zero a randorn decision is necessary, 
otherwise the walk is deterrninistic. 

Now consider the state O. Since the "cycles" have length a+1 and b+1, the k 
where p~k6 > 0 are precisely the k = r(a + 1) + s(b + 1) with T, s = 0,1, .... 
Therefor~ the period of 0 is gcd( (a+1)No + (b+1)No) = gcd(a+1, b+1). Hence 
- surprisingly - 0 can have a small period or even be aperiodic even for huge 
a, b. 
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Thus an assertion "i has period rf' always should be interpreted very carefuIly. It does 
not mean that a walk starting in i will be back in i after d, 2d, 3d, ... steps with a positive 
probabilitYi it rather implies that it is for sure that the walk does not occupy position 
i again after k steps whenever k is not in {d, 2d, ... } (and also that d is maximal with 
respect to this property). 

Achain can have states with different periods, the absorbing random walk on {I, 2, 3, 4}, 
e.g., contains states with periods 1 and 2. If one checks similar examples it turns out that 
this phenomenon seems never to occur in the situation of irreducible chains. Here is the 
explanation: 

Proposition 4.6 Let i, j be different states such that i t+ j. Then the periods for i and 
j are defined and coincide. Consequently, by lemma 4.4, alt states in a minimal closed 
subset have the same period. 

• • I 11' (k') (k") (k'+k") (k'+k") 
Praof. Choose posltIve k ,k wlth Pij ,Pji > 0. Then Pii , Pjj > ° by the 
argument from the proof of proposition 4.4 so that both i and j have aperiod. 

Denote the period of i (resp. j) by d (resp. dl ). With Ni, N j as in definition 4.5 we 
have k l + k ll E Ni, and this yields dl(k l + k ll ). For arbitrary k E N j we know that 

(k+k' +k") (k') (k) (k") 
Pii ~ Pij Pjj Pji > 0, 

hence k + k l + k ll E Ni and thus dl(k + k l + k ll ) as weIl. Consequently, since d divides all 
k E N j , we have dld l • 

d1ld follows by symmetry, and this shows that d = d l • 0 

We elose this section with a simple observation. Suppose that we have a situation 
where all states have the same period d > ° and that we now pass from the original 
chain to a new one where we have replaced the stochastic matrix P by its d'th power 
Q := pd. (This can be thought of as an abbreviated version of the original walk, we only 
pay attention to the steps 0, d, 2d, . .. ) Denote for arbitrary i the sets Ni of definition 4.5 
by Nt or N[J depending on whether they are calculated with respect to the old or the 
new stochastic matrix. It is elear that Nt = dN[J and hence all states i will be aperiodie 
now. 

This procedure particularly can be applied if the original chain is irreducible. The new 
chain will possibly not have this property, but in the minimal elosed subsets now all 
states are aperiodic. 

The simplest example is provided by 

the associated chain is irreduciblewith period d = 2. The matrix Q is the identity 
matrix, and the Q-chain is aperiodie on its minimal closed sets {I} and {2}. 
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Recurrent and transient states 

Now we want to investigate a quantitative aspect of the notion i -+ j. We will denote, 
für k = 1,2, ... , by fi~) the probability that a wa/k which starts at i visits j for the first 
time in the k 'th step. In the language of chapter 1 this just means that 

(4.3) 

where X O,X1 ,X2 , •.. stands for the Markov process with transition matrix P and a 
deterministic start at i. 

With this notation the number f iJ := L:~=1 fi~k) is the probability that a walk starting 
at i will occupy state j at some later step, and therefore fiJ > 0 implies i -+ j. (Note, 
however, that the converse only holds if i -# j since, by definition, one always has i -+ i.) 

H ow long will it take to come from i to j? With X o = i, Xl, ... : n ---+ S as in (4.3) a 
reasonable measure will be the "expectation" f WijdlP', with Wij : n ---+ [1,00] defined 
by 

Wij(W) := min{k 2: 11 Xk(W) = j} 

(here min0 := 00). In terms of the fg) this integral is easily calculated as 

00 

JLij:= "Lkfg) + (l-fij)oo. ( 4.4) 
k=l 

The JLij don't carry interesting information if fiJ < 1, in many books they are defined 
only if f iJ = 1. Also then it is apriori not clear that JLij is finite (which would allow us 
to consider this number as the expectation of the running time from i to j). In fact this 
will be shown later in proposition 7.2. 

In order to prepare these investigations we introduce the 

Definition 4.7 
(i) Astate i will be called recurrent, if fti = 1. If fti < 1, then we will speak of a 

transient state. 
(ii) A positive recurrent (resp. a null recurrent) state is a recurrent state such that 

JLii < 00 (resp. JLii = 00). 

As an examp/e, defined by the graph notation which we have already met on page 14, 
consider 

1 

CF 1/2 

1/2 

a 
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It is plain that state a is transient since a walk starting there will never return to this 
position. For the other states one has to check the graph t.o determine the probabilities 
for a first return in precisely the k'th step: 

• J~~ = 2/3, J~~ = 0 for k > 1; hence Jbb = 2/3, i.e., b is also transient. 

• J~~) = 0, J~~) = 1/2k- l for k 2: 2, hence c is recurrent. The expectation value of the 
return time is (with the help of the formula L~ kqk-l = 1/{1 - q)2) determined 
as f-Lcc = L~2 k/2k - l = 3, and therefore c is positive recurrent. 

• FinaIly, d is positive recurrent as weIl: J~~ = J~~ = 1/2, hence Jdd = 1 and 
f-Ldd = 3/2. 

We want to characterize recurrent and transient states. To this end, fix astate i and 
model a walk starting at i by a homogeneous Markov process X o = i, Xl, ... defined on 
some prob ability space (f2, A, lP) (see page 9). By homogeneity we have 

lP(Xl = i 1 , ... , X k , = ik' I X o = i) 

In other words: a walk which is at position i at "time" k will behave precisely as 
one which starts deterministically at i. 

This is intuitively dear since the random generators (= the rows of P) are the same 
for all times. The result also can be easily proved rigorously with the help of formula 
(1.2) in chapter 1. 

In chapter 12 we williearn that what is important here is a special case of the strong 
Markov property. 

Hence 

(k') 
Jii = 

il,··.,i"'_t=Fi 

= lP(Xk+1:f. i, ... , Xk+k'-l :f. i, Xk+k' = i I Xk = i), 
and thus the probability that our walk occupies i at times k, k + k' but not at times 
1, ... ,k - 1, k + 1, ... , k + k' - 1 is precisely Ji~k) Ji~k'). It foIlows that the walk returns 

to i at least two tim es with probability Lk k'>l Ji~k) Ji~') = UtJ 2 • Similarly one obtains 
the more general equation lP(Bs ) = Ui:)S', where B s stands for the event "the walk 
returns to i at least s times" . The B s are decreasing, and therefore the probability of 
their intersection (that is the probability of infinitely many returns) is 

These calculations have led us to 

fti < 1 
fti = 1. 

Proposition 4.8 Astate i is recurrent iff a walk starting at i returns injinitely ojten 
with probability one. It is transient iff injinitely many returns for such walks occur only 
with probability zero. 
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Rernark: Note that this 0-1-law for the events Ek := "the walk occupies position i at 
the k'th step" holds although the E k are not independent in general. 

Surely E k has prob ability p~;) (recall that we have written pk as (p~J) )ij and that 

IP'(Ek ) = (0, ... ,0,1,0, ... ,O)pk with the 1 at the i'th position). Ek is the disjoint union 
of the events 

{Xl = X k = i}, 

{Xl -=/:- i,X2 = X k = i}, 

{Xl -=/:-i, ... ,Xk - 1 -=/:-i,Xk =i}. 

Similarly to the calculations leading to proposition 4.8 one gets IP'(Fk- t ,k) = fi~k-t)p~~) 
!' - 0 k 1 ( 11 h (0) -) d h (k) - "k-l j(k-t) (t) lor t - , ... , - reca t at Pii - 1 an t us Pii - 6t=0 ii Pii' 

Now let ko be arbitrary: 

k o 
"" (k) 
~Pii 
k=l 

k o k-l 

L L fi~k-t)p~~) 
k=l t=o 
ko-l k o 

L p~~) L fi(ik- t) 

t=o k=t+l 
ko 

< (LP~~))ji~ 
t=o 

ko 

(1 + LP;;))fi~ 
t=l 

Hence (1 - fi~) 2:~~1 pi;) :S fi~' and we are ready for the prüof of 

Proposition 4.9 Astate i is recurrent iff 2::0 p;~) = 00, and consequently it is tran­
. t'ff ,,00 (t) 

szen z 6t=0 Pii < 00. 

Praof. By the preceding inequality and proposition 4.8 we already know that 2::0 pli) 

must be finite for transient states and that 2::0 pli) = 00 implies that i is recurrent. 

Now the (easy part of) the Borel-Cantelli lemma comes into play. Suppose that 2::0 pli) 
< 00. Then - with the above notation - 2: IP'(Ed < 00 and thus the walk will occupy 
state i infinitely often only with probability zero. Hence, by proposition 4.8, i is transient. 
This completes our proof since the remaining statement "i recurrent :::} 2::0 pli) = 00" 
follows by logical transposition. 0 

Some first rem ar kable consequences of these characterizations are contained in 
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Proposition 4.10 
(i) Let i, j be states such that i is recurrent and i f-t j. Then j is also recurrent. 

(ii) There always exists at least one recurrent state l . 

(iii) All states in a minimal invariant set are recurrent. 

(k') (k") 
Proof. (i) Choose k' , k" such that Pij ,Pji > O. Then, by the calculation from the 

(k+k'+k") (k) (k') (k") (k) 
proof of proposition 4.4(i), we have Pjj 2: Pii Pij Pji and thus Lk Pjj 2: 
(Lk p~;) )p~J') p;:"). This inequality implies the result by our characterization 4.9. 

(ii) Suppose that the chain is irreducible (if this is not the case, pass to a minimal 
closed set and consider the restricted chain). Therefore, by proposition 4.4(iv), all states 
communicate. 

Fix any state i o, we claim that it is recurrent. 
First we note that Lj p~:] = 1 for all k since pk is a stochastic matrix. Therefore 

Lj,k p~:] = 00 and thus there must be a jo with Lk P~:]o = 00; here - for the second 
time - we have used the fact that S is finite. Similarly to the proof of part (i) it follows 
that'" p(k) = 00 (there is a k' such that p(k') > 0 and p(k+k') > p(k) p(k')). Hence bv wk tOlO JO'lO ' tOlO - 1.0)0 Jo1.o ' J 

proposition 4.9, i o is recurrent. 

(iii) This follows from (i), (ii), and proposition 4.4(ii). 0 

Recall that we have denoted by Cl, ... , Cr the minimal closed subsets of our chain (see 
page 25). We will define T := S \ (Cl U··· U Cr), note that T might be empty. Whereas 
the preceding proposition tells us that the i in Cl U ... U Cr are recurrent nothing is 
known up to now for the i E T. The fact that we have decided to denote this set by "T" 
is far from being accidental: 

Proposition 4.11 All i in T are transient. 

Proof. Fix any i E T and consider the set C' := {j I i -+ j}. It is plain that it is closed 
and hence it must meet C := Cl U ... U Cr: if the intersection were empty this would 
contradict proposition 4.2 and the definition of T. 

Denote by p~';] the sum LjEG p~J). That C n C' i= 0 may be rephrased by saying that 

for every i E T there is a k such that P;';] > o. But P;';] ~ p;~+l) since there are no 
transitions from C to T, and this allows us to reverse the quantifiers: we find a ko such 
that p;~o) > 0 for alt i E T. (Note that this argument is only possible since T is finite.) 
Let P be the (positive) minimum of these numbers. 

Fix again an i E T and model a walk starting at i by a homogeneous process (Xk ) 

with X o = i. Since p;~o) 2: p it follows that 

p;~o) := JlD(Xko E T) = LP;Jo) = 1- p;~o) ~ 1- p. 
JET 

The homogeneity of the walk and the fact that there are no transitions from C to T 
imply that 

1 We emphasize onee more that we are dealing only with finite ehains in this book. The result does not 
hold for infinite ehains as is easily seen by eonsidering onee again the deterministie walk to the right 
on the integers (see page 24). 



Chapter 4: The fundamental nations in connection with Markov chains 

(2ko) 
PiT IP'(X2ko E T) 

= LP~;o)IP'(X2ko E T I X ko = j) 
jES 

= L p~;o)IP'(X2ko E T I X ko = j) 
JET 

< LP~;o)(l- p) 
JET 

= p~~o)(1-p) 
< (1- p)2; 

33 

that the conditional probabilities IP'(X2ko E T I X ko = j) are bounded by 1-p since they 
can be treated as the IP'(Xko E T) ab ave can be justified like the corresponding formula 
for IP'(Xk+1 = i l ,···, Xk+k' = ik, I Xk = i) on page 30. 
Similarly one gets p~~ko) ::; (1 - pr for arbitrary r. Ta finish the proof it suffices to note 

that the (p~~h=l, ... are decreasing (since p~~ = 1 - p~~ and the (p~~) are increasing): 
it follows that 

(1) (2) 
Pii + Pii + ... < pW +p~~ ... 

< k (0) + k (ko) + k (2ko) + OPiT OPiT OPiT .. . 

< ko + ko(l - p) + ko(1 _ p)2 + .. . 
< 00, 

and therefore, by proposition 4.9, the proof is complete. o 

The main results of the present section can be summarized as fallows: 
The state space S of a finite Markov chain can always be written as a disjoint union 
S = C1U··· UCrUT, where 

• r ~ 1, the Cp are minimal closed sets, and the restriction of the chain to Cp is 
irreducible; 

• any i in any Cp is recurrent; 

• the i E T are transient (note, however, that T might be empty). 

In particular, the problem to characterize finite Markov chains is reduced to 

1. the answer to the question "What happens with transient states?" and 
2. the study of irreducible chains. 

Transient states will be studied in the next chapter, the more detailed inspection of 
irreducible chains will be postponed until chapter 7: it needs apreparation with which 
we will be concerned in chapter 6. 
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Exercises 

4.1: Consider a deck of r cards such that l' > 3. Determine the closed subsets of all 
permutations of these cards with respect to the 3-to-random shufHe (the name should be 
self-explaining) . 

4.2: A stochastic matrix is ca11ed deterministic if it contains in each row only one nonzero 
entry. Prove that the associated chain cannot be irreducible and aperiodic in this case. 
Can it be irreducible? Is it possible that aperiodic states exist? 

4.3: Provide a canonical form of the matrix 

( 1 

0 0 0 

~ 1 
1 0 4 6 0 

10 ! 10 0 0 
2 2 2 
0 0 0 

4.4: Let S be the symmetrie group Sr, i.e., the group of a11 permutations over {I, ... , r}. 
Transitions are defined as follows: if the chain is now in state (i 1, ... , i r ), choose a p E 
{2, ... , r} uniformly at random and pass to 

Is this chain irreducible and aperiodic? 

4.5: On page 24 it was claimed that the chain defined on the nonnegative integers by 
Pi,i+l = 1 admits no minimal closed subsets. Prove that the following more general result 
holds: if a chain is defined on No by a stochastic matrix P = (pij) such that Pi,iH > 0 
for every i, then there are no minimal closed subsets. Is the converse also true? 

4.6: It has been mentioned that the definitions in this chapter can also be considered for 
countable state spaces, and it has been emphasized that some of our results do not hold 
in this more general setting. 

a) Astate i is called transient if a walk which starts at i will return infinitely often only 
with probability zero. Give an example of a chain on the integers where all i are transient. 
(For finite state spaces this is not possible, cf. proposition 4.10.) 

b) Use results from elementary probability to verify that 0 is a recurrent state for the 
symmetrie random walk on the integers (where "recurrent" in the general setting means 
that the walk returns infinitely often with probability 1). Prove also that 0 is null recur­
rent. (For finite state spaces, a11 recurrent states are positive recurrent; see proposition 
7.2 below.) 

4.7: Assume that the stochastic matrix P admits a strictly positive equilibrium distri­
bution (see exercise 3.5). Prove that there cannot exist any transient states. 

4.8: Let i E C, where C is a closed subset of S having r elements. Prove that d::; r if i 
has period d. 

4.9: Let d and N be integers with d::; N. Under what conditions on d and N does there 
exist a Markov chain on {l, ... ,N} such that a11 states have period d? 

4.10: Fix N and denote by Kaper the co11ection of stochastic NxN-matrices which give 
rise to irreducible and aperiodic chains. Prove that Kaper is a convex, dense and open 
subset of the collection of a11 stochastic matrices. 



Chapter 4: The fundamental notions in connection with Markov chains 35 

4.11: Let i be astate for which the period with respect to a stochastic matrix P is d. 
What is the period of i with respect to pko? 

4.12: For integers N, No, N l , ... , Nd such that N = N o+" ·+Nd there exists a Markov 
chain on {I, ... , N} with the following properties: 

- there are precisely No transient states; 
- there are, for j = 1, ... , d, subsets Cj with Nj elements such that the chain acts 

irreducibly on Cl U ... U Cd and each state in this union has period d; 
- only transitions from Cj to Cj+1 are possible (with d + 1 := 1). 

4.13: Let a Markov chain be given by using the graph notation (c and 6 denote arbitrary 
numbers between 0 and 1): 

1 

(J' c ' U l-e 

e 1/2 1/2 1 - «5 

a 

Depending on c, 6, which of the states a, b, C, dis transient or recurrent, which of the 
recurrent states is positive recurrent, what are the values of the fi~) etc.? 

4.14: In this exercise we consider Markov chains on {I, ... , N} given by a stochastic 
N x N -matrix P. We call a property of such a chain robust if it holds simultaneously for 
all cases where the matrices P have their non-zero entries at the same positions. (As a 
simple illustration consider the property "a transition from 1 to 3 is possible".) Which 
of the following properties are robust? 

a) i -+ j, for fixed states i,j; 

b) i has period d; 

c) the chain is irreducible; 

d) P is doubly stochastic; 

e) there is a transient state; 

f) find further examples which are robust and others which fail to have this property. 

4.15: Let M be a subset of No such that M + Me M. Prove that there are a Markov 
chain and a suitable state i such that the set Ni from definition 4.5 coincides with M. 
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5 Transient states 

As in the preceding chapter we fix a Markov chain on a finite state space S. The notation 
will be as before: Cl, ... , Cr are the minimal closed sets, and T := S \ (Cl U ... U Cr ). 

The i E T are the transient states. We already know that an i is transient iff n; < 1, 

and also iff 2::k p;;) < 00. In particular it follows that Pl;) -t 0, but more is true: 

Proposition 5.1 Let i be a transient state. Then: 

(i) For every state j the probabilities p;~) te nd to zero for k -t 00. 

(ii) Almost surely a walk which starts at i will be in some Cp after jinitely many 
steps. 

(iii) 1f j is also transient, then eij := 2::k>O PlJ) is jinite. eij is, for a walk starting at 
i, j7Lst the expectation of the number of j -visits before entering C := Cl U· .. U Cr . 

Consequently 2:: j eij is the expectation of the total number of steps in T. 

Proof. (i) We start with a slight generalization of the calculations which have preceded 
proposition 4.9. Fix states i and j (i does not need to be transient here) and model a 
walk starting at j by a homogeneous Markov process X o = j, Xl, ... defined on some 
probability space (0, A, IP). Put 

{Xk = i}, 

{Xl = X k = i}, 

{Xl -::J. i, X 2 = X k = i}, 

Fk,k {Xl -::J. i, ... , X k - l -::J. i, Xk = i}. 

Then Ek is the disjoint union of the FI<,k so that IP(Ek) = 2::1< IP(FI<,k). But IP(Fk-t,k) = 
fj;-t)Pl;) by the homogeneity of the chain, and therefore 

( ) _ (k) _ (k) (k-l) (1) (1) (k-l) _ 
IP Ek - Pji - f ji + f ji Pii + ... + f ji Pii ,k - 1,2, ... (5.1) 

holds. 
The end the proof is easy, it will need - of course - the assumption that i is transient. It 
suffices to note that 2::k fj;) ::s 1; then (5.1) together with p;;) -t 0 immediately imply 

that p;~) -t O. 
(ii) This time we need a Markov process X o = i, Xl, ... : 0 -+ S which starts at i. Let 
Fk be the event {Xk E T}. Surely 

IP(Fk) = L IP(Xk = j) = L PlJ)· 
JET JET 

By part (i) - with the roles of i and j interchanged - the PlJ) tend to zero so that 
IP(Fk) -t O. 
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Since S \ T is a closed set we know that XkH ~ T whenever Xk ~ T, and this implies 
Fl ::J F2 ::J .... Therefore the probability of nk Fk , being the limit of the JlD(Fk ), is zero. 
This finishes the proof: n Fk contains precisely the w where the walk never leaves T. 

(iii) We will need the equations (5.1), this time with the roles of i and j reversed: 

Summation leads to 

(1) 
Pij 

(2) 
Pij 

(3) 
Pij 

f (l) 

"J ' 

f (2) + f(l) (1) 
"J "J PJJ ' 

f (3) + f(2) (1) + f(l) (2) 
"J "J PJJ "J PJJ ' 

00 00 00 

LP;~) = (L fg») (1 + LP)~»), 
k=l k=l k=l 

(k) . ~ (k) ~ (k) 
and we may conclude that Lk Pij < 00 (smce L-k f'j ::; 1, L-k Pjj < 00). 

(5.2) 

Now let - with the notation of the preceding part (ii) of this proof - Ek be the event 
{Xk = j} and Yk : n -+ IR its indicator function: 

w E E k 

otherwise. 

Then the function Y : n --* [0,00], Y := Lk Yk, counts the number of the j-visits 
so that J Y dlP' is the number we are interested in. By the monotone convergence theo­
rem (see [12, p. 50], [16, p. 208]) we may interchange summation and integration, i.e., 

J Y dlP' = Lk J YkdlP'. These integrals are easy to evaluate: J YkdlP' = JlD(Ek ) = p;~), and 
this completes the proof. 0 

Fix any transient state i and consider a walk starting there. With Xo = i, Xl, ... : 
n -+ S as in the preceding proof (part (ii)) we put 

w;~) := JlD(X1 , X 2, ... , X k- 1 E T, X k = j), and Wij := L w;~) 
k2: 1 

for every j E C; then part (ii) of proposition 5.1 may be rcphrased by LjEG Wij = 1. 

Note the difference between !ijkJ and w;JJ: in the definition of !ijkJ we ask for the 
probability that the first visit of j occurs in the k'th step whereas in the case of 
w;JJ this first visit has to coincide with a transition from T to C. 

Here is an example. Put 

p= ( 

1 
o 
o 

1/8 

o 
1/2 

1 
1/8 

o 
1/2 
o 

1/2 

o ) o 
o . 

1/4 

(5.3) 
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With respect to thii" transition matrix the Markov chain has Cl = {I} and C2 = {2,3} 
as its minimal irreducible sets, and there is only one transient state: T = {4}. Let a 
walk start at 4. It will stay in T for k - 1 steps and then jump - for example - to state 
2 with prob ability wW = (1/4)k-I(I/8), and conspquently W42 = 1/8 + (1/8)(1/4) + 
(1/8)(1/4)2 + ... = 1/6. Similarly one gets W41 = 1/6 and W43 = 4/6. 

For more complicated situations it is not obvious how to manage the necessary calcu­
lations. We will use linear algebra to reduce them to the evaluation of a certain matrix 
inverse. 

Let us first fix notation. We resurne what has been done in chapter 4, page 25, that 
is we renumber - if necessary - the states such that the Cl,"" C rare of the form 
{1, ... ,Nr},{N1 + 1, ... ,Nz}, ... ,{Nr - 1 + 1, ... ,Nr }. The stochastic matrix P then 
looks as folIows: 

PI 0 0 0 0 0 
0 Pz 0 0 0 0 

0 0 0 Pr - 1 0 0 
(5.4) 

0 0 0 0 Pr 0 
R1 Rz R3 Rr- l Rr Q 

Let N stand, as usual, for the cardinality of S. Then t := N - N r is the number of 
transient states (which will be assumed to be nonzero in this chapter from now on), Q is 
at x t-matrix, and R p is a matrix with t rows and Np - N p- l columns l for p = 1, ... , r. 
The matrix Q will playa particularly important role, as apreparation of the proof of 
the following theorem we show 

Lemma 5.2 Consider the sequence 0/ matrices (Q(k)h := (Id + Q + Q2 + ... + Qkh. I/ 

Q(k) is written as (iiiJ))i,jET, then limk~oo qiJ) exists /or alt i,j E T and equals eij (as 
defined in proposition 5. 1 (iii)). The matrix F:= (eij)i,jET is the inverse 0/ Id - Q: 

(Id - Q)F = F(Id - Q) = Id. 

F is called the fundamental matrix associated with the chain. 

Proof. The first part is obvious since the entries of Qk are just the p;;). Also, by simple 
matrix manipulation, one has (Id - Q)(I d+ Q + Q2 + ... + Qk) = Id - Qk+l. Thus, sinee 
multiplication is continuous and since the entries of Qk tend to zero with k -t 00 we get 
(Id - Q)F = Id. F(Id - Q) = Id is proved similarly. 0 

Remark: The lemma should remind you of the well-known formula 1 + q + q2 + ... = 
1/(I-q) (for Iql < 1) ofthe geometrie series, it states that Id+Q+Q2+ ... = (Id-Q)-l. 
Wh at we have shown is a special case of the following more general fact: whenever Q is an 
element of a Banach algebra (e.g., aspace of eontinuous functions or of linear continuous 
operators on a Banach spaee), then I d + Q + Q2 + ... is an inverse of I d - Q as soon 
as one knows that I d + Q + Q2 + ... converges (here I d denotes the neutral element of 
multiplication which is assumed to exist). I d + Q + Q2 + ... is called the Neumann series 
associated with Q. 

1 with No := O. 
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Once it is guaranteed that (Id - Q)-l exists, all numbers which we have introduced so 
far are easy to evaluate: 

Theorem 5.3 Let F be the fundamental matrix of the ehain. Then 

(i) F has as its entries the numbers eij, i, JET, from proposition 5.1 (iii). Conse­
quently the veetor F(I, 1, ... , l)T eontains at its i'th position the expeetation of 
the number of steps2 of a walk starting at i E l' before it is absorbed in C. 

(ii) fti' the probability that a walk returns to i, equa/s (eii - l)/eii for i E T. 
(iii) The numbers Wij, i E 1', j E C, are the eomponents of the matrix FR, where R 

denotes the t x Nr -matrix (R I R2 ... Rr ). Therefore the probability that i E Twill 
land in some partieu/ar Cp is just the i 'th component of F R(O, 0, ... , 0, 1, ... , 1,0, ... 
where the veetor (0,0, ... ,0,1, ... ,1,0, ... ,0) T eontains a 1 preeisely at the po­
sitions N p- l +1, ... , Np. 

Proof. (i) is part of the assertion of the preceding lemma, and (ii) is a special case of 
(5.2). 

To prove (iii), fix i E T, j E C and consider a process X o = i, Xl, ... : n -+ S as a 
model for a walk starting at i. We want to condition on Xl, we put 

E := {Xl,"" X k- l E 1', Xk = j for some k}, 

and we define EI := {Xl = I} for lET U {j}. 
Then Eis the disjoint union of Ej and the EnE/, lET. Since the chain is homogeneous, 

we know that ]]D(En E/)/]]D(E/) = ]]D(XI , ... , X k- l E T, Xk = j for some k I Xl = I) = 
w/j. Therefore Wij = ]]D( E) = Pij + L/ET Pi/Wlj which is nothing but the matrix equality 
V = R+ QV, where V := (Wij). It follows that (Id - Q)V = Rand thus V = FR as 
cl~m~. 0 

Let us treat some examples to apply our results. 

1) First we consider the chain with the transition matrix (5.3) above. Here Q is the 
1 x I-matrix (1/4) so that F = (1- 1/4)-1 = (4/3). Thus e44 = 4/3, f~4 = 1/4 and 

(W41 W42 W43) = FR = (4/3)(1/8 1/8 1/2) = (1/6 1/64/6) 

as in our previous calculation. 

2) Let P be given in standard form as 

1/3 1/3 1/3 0 0 0 0 
1/3 1/3 1/3 0 0 0 0 
1/3 1/3 1/3 0 0 0 0 

P= 0 0 0 1/2 1/2 0 0 
0 0 0 1/2 1/2 0 0 

1/6 1/6 1/6 0 1/6 0 1/3 
0 1/2 0 0 1/4 1/4 0 

The set of transient states is {6, 7}, and since Q = ( 0 1/3 
) it follows that 

1/4 0 

2 Note that this number includes the starting position: even if the walk jumps immediately from i to 
C it will be one. 
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F = 1\ (132 1;) . A walk starting at 6, for example, will on the average be 12/11 

times at 6 before it leaves T (since here the starting position is included one has to 
subtract 1 if the expectation of returns is of interest); the total number of steps in T for 
such a walk has an average of 12/11 + 4/11 = 16/11. 

. (1/6 1/6 1/6 0 1/6) The matnx R here equals 0 1/2 0 0 1/4 ,and therefore 

The absorption probabilities of state 6 with respect to the invariant sets {I, 2, 3} and 
{4,5} are 4/22 + 8/22 + 4/22 = 8/11 and 0 + 6/22 = 3/11, respectively, and for state 7 
we obtain the values 15/22 and 7/22. 

These examples should suffice to illustrate the usefulness of our preceding results, 
everyone is invited to produce more impressing ones with the help of suitable matrix 
calculation packages. 

Exercises 

5.1: Let P be a stochastic matrix, we suppose that a certain state i o is transient. Now 
let ko be an arbitrary integer. Prove that i o is transient also with respect to the chain 
pko. 

5.2: Let i,j be states such that i -t j. Prove that with j also i is transient. 

5.3: If P is a doubly stochastic matrix, then the associated chain admits no transient 
states. 

5.4: Consider an NxN-matrix Q = (qij) all entries of which are nonnegativ8 such that 
"Ej % < 1 for all i. Prove that 1 d - Q is invertible. 

5.5: In lemma 5.2 we have shown that, under the assumption that the series F := 

1 d + Q + Q2 + ... converges, F is the inverse of 1 d - Q. 

a) Is the converse also true: does 1 d + Q + Q2 + ... converge if (1 d - Q) -1 exists? (Here 
Q denotes an arbitrary NxN-matrix.) 

b) Does the existence of (Id - Q)-l follow from Qk -t O? 

5.6: The following stochastic matrix is already in standard form: 

0 10 0 0 0 0 
5 5 0 0 0 0 

P=~ 0 0 10 0 0 0 
10 1 4 2 2 1 0 

0 0 1 3 3 3 
0 0 0 0 10 0 

Calculate the fundamental matrix Fand the matrix of the (Wij). How long will the 
transient state 5 survive on the average before it enters the union C = {l, 2, 3} of the 
minimal closed subsets? For state 6, is it more likely to be absorbed at state 1 or at state 
2? 
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5.7: Suppose that a chain has precisely two transient states, N -1 and N, say, and that 
the Q-matrix has the form 

Q = (1/2 1~2)' 
What is the expectation of the number A of steps of a walk starting at N -1 before it is 
absorbed in the subset of recurrent states? What values of Aare possible? 

5.8: Consider the chain defined by the stochastic matrix 

What is the probability that a walk starting at state 2 is in position 1 before it is in 
position 3? 
(Hint: Pass to a suitable modification of P which transforms the problem into an absorp­
tion problem.) 

5.9: Which matrices Q can be the Q-matrix of the transient states of a Markov chain; cf. 
(5.4)? Is the collection of these Q convex, is it open in the set of all stochastic matrices? 

5.10: In theorem 5.3 we have derived a formula for the n; in terms of the entries of the 
fundamental matrix. Find, more generally, expressions for the fi'j, where i,j are arbitrary 
transient states. 

5.11: Let i,j be states such that i is transient and i ,....., j (see exercise 2.10). Prove that 
j also is transient. 
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6 An analytical lemma 

Let x = (xo, Xl, ... ) and y = (yo, YI, ... ) be real sequences. Their convolution is defined 
to be the sequence 

k 

X * Y = ((x * Yh) = (xoYo, XOYI + XIYO,···, L XiYk-i,·· .). 
i=O 

In the applications we have in mind the Xi, Yi will stand for certain probabilities, and 
convolutions arise when applying the law of total probability: lP'(E) = Li lP'(E I Ai)lP'(Ai ). 

We will be concerned with sequences x, y which satisfy the convolution equation 

Xk = (x * Yh for k = 1,2, .... (6.1) 

Under mild additional conditions this has far-reaching consequences for the behaviour 
of the sequence x, and this fact will play an important role in our furt her investigations. 

We have already met sequences for which (6.1) is satisfied, for example in the inves­
tigations following proposition 4.8 (with Xk = p~:), Yk = li~k)) or again in the proof of 
proposition 5.1. In fact, these are particularly typical examples, and therefore we prefer 
to switch our notation from Xi, Yi to the more suggestive Pi, j;. 

The fundamental analytical result we have in mind reads as folIows: 

Lemma 6.1 Let P = (PO,pI, ... ) and I = (Jo, Ir, . ..) be sequences 01 nonnegative real 
numbers such that Po = 1,10 = O. Suppose that the lollowing conditions are satisfied: 

(i) Pk = (P * Ih lor k ~ 1; explicitly this means that 

PI = Ir, 
P2 = h + Pllr, 

(ii) Ir + h + ... = 1; 
(iii) the greatest common divisor 01 the indices k such that Ik > 0 is one. 

Then the sequence (Pkh converges to 1/ L kik (with the convention 1/00 := 0). 

The rest of this chapter will be devoted to the proof of this lemma. Since it is rather 
involved we will split it up into several parts. 

As a first step we introduce the numbers rk := Ik+l + 1k+2 + ... for k = 0,1, .... Then 
(i) can be rewritten as 

Pk = PO(rk-1 - rk) + Pl(rk-2 - rk-r) + ... + Pk-l(rO - rr), 
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and this gives rise to 

(Note that, by (ii), ro = 1.) Call the left-hand side of this equation A k . Since the right­
hand side has the same structure (with k replaced by k-1), we know that 

A k = Ak - 1 = ... = Ao = 1, 

and we tlms arrive at 

1 = rOPk + rlPk-l + ... + rkPO for all k. (6.2) 

Since all summands are nonnegative we may conclude that 1 2: rOPk = Pk for all k. (This 
assertion, however, could also have been derived in a simpler way: use induction and note 
that Pk is a convex combination of Po = 1, PI, ... ,Pk-l , 0.) 

The lemma claims that limpk = 1//1, where /1 := ft +212 +3h + ... = ro +rl +r2 + .... 
This will be established as soon as we have proved that 

A := lim sup Pk ~ 1//1 and B := !im inf Pk 2: 1//1. 

These two inequalities will be treated in step 3 and step 4 below, as apreparation we 
need an elementary number theoretical fact which will be essential to understand the 
role of condition (iii). 

Step 2: We claim that every subset M of {O, 1,2, ... } which contains a nonzero element and 
which satisfies M + M C M and gcd M = 1 has the property that there is an integer ko such 
that {ko, ko+1, ko+2, ... } C M; here M+M is the usual abbreviation of {k+ll k, l E M}. 
To prove this fact we first choose kl , ... , kr E M with gcd{k l , ... , kr } = 1 (such k p exist 
by the argument presented on page 27). That the greatest common divisor is 1 may 
be rephrased as kl'1'.. + ... + kr'1'.. = '1'.., and consequently there are al, ... ,ar E '1'.. with 
alk1 +···+arkr = 1. 

Let K E N be any nu mb er which dominates all lapl, we will show that every k such 
that k 2: ko := K k l (k1 + ... + kr ) lies in M. Write k as k = K k l (k1 + ... + kr ) + bk1 + c 
with b, cE No and c< klo Then 

k Kkdkl + ... + kr ) + bkl + c(alkl + ... + arkr ) 

kdKkl + b + cal) + k2(Kkl k2 + ca2) + ... + kr(Kklkr + car), 

where - due to K +ap 2: 0 and c < kl - the factors at k1 , ... , kr are in No. But M+M C M 
together with kl , ... ,kr E M yield kl No + ... + krNo C M, and thus we have proved that 
k E M as claimed. 

Step 3: We are ready to show that A ~ 1//1. Since this is trivially true if A = 0 we may 
assurne that A > O. 
The crucial idea is to apply step 2 to the set M of all numbers ko such that 

lim Pk, -ko = A 8-t00 

whenever (PkJs is a subsequence of (Pk) with !ims-too Pk, = A. 

WHY MAY WE APPLY STEP 2? M + M c M follows easily from the definition, gcd M = 1 
will be shown by verifying that {j Ih > O} C M; here condition (iii) is needed. 
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Let (Pk.) be arbitrary with Pk. -+ A and fix io with ho > o. The idea is to conelude 
from conditions (i) and (ii), 

Pk = !OPk + /tPk-1 + ... + hoPk-io + ... + !kPO, 

that Pk-io is necessarily "large" (= elose to A) if Pk is (since Pk is "nearly" a convex 
combination of Po, ... ,Pk with the positive factor ho at Pk-io 1.) 

This will now be made precise. Fix an arbitrary 8 > 0 and choose 

• k l such that !k'+1 + ... < 8, 

• k ll with Pk ~ A + 8 for k ~ kll. 

If then k ~ kIll := max{kl + k ll ,io} is arbitrary we have 

R:= !k'+!Pk-k'-1 + !k'+2Pk-k'-2 + ... + /kpo ~ 8 

and also Pk,Pk-1, ... ,Pk-k' ~ A + 8. Consequently 

Pk !OPk + ... + hoPk-io + ... + !k'Pk-k' + R 
< hoPk-io + (/0 + ... + !io-1 + ... + ho+! + .. ·)(A + 8) + 8 

= hoPk-io + (1 - ho)A + 20. 

Now consider the particular case when k = ks, and ks satisfies ks ~ kill as weIl as 
Pk. ~ A - o. Then A - 8 ~ !ioPk.-io + (1 - ho)A + 28, hence Pk.-io ~ A - (3/ ho)8. 
In this way we have shown that A - (3/ ho)o ~ Pk.io ~ A + 8 for large s, hence 
lims~oo Pk. - io = A and thus io E M. 

WHY DOES IT HELP? Let k and c > 0 be arbitrary. Step 2 provides a ko with ko, ko+1, 
... , ko + k E M. Fix an arbitrary sequence (Pk.) converging to A and consider the k + 1 
sequences (Pk.-ko)s, (Pk.-ko-ds, ... , (Pk.-ko-k)s. They all converge to A, and thus we 
may choose a sufficiently large s with Pk.-ko' Pk.-1-ko' .. ·' Pk.-k-ko ~ A - c. 

We set k := ks - ko, and we will finish the proof of step 3 with the help of (6.2): 

1 = rOPk + ... + rkPO 

> rOPk + ... + rkPk-k 

> (ro + ... + rk)(A - c). 

This is true for every k and every c, and therefore A ~ 1/ (ro + r1 + ... ) = 1/ J-L as elaimed. 

Step 4: To show that B ~ 1/ J-L we argue similarly. This time we may suppose that J-L < 00, 

and now we consider as our set M the collection of all ko such that the Pk. -ko tend to B 
with s -+ 00 whenever Pk. -+ B. The proof that {i I h > O} lies in M paralleIs the one 
above, and with step 2 we arrive at a k such that Pk, Pk-1, ... , Pk-k ~ B + c, where k 
and c > 0 are prescribed arbitrarily. 

The end of the proof is slightly different. We choose - for given c > 0 - the number k 
such that :Ei>k ri < c. Then 

1 As a more evident example consider unknown x, y E [0,1] such that .xx + (1 - .x)y is elose to one. If 
it is known that .x is "not too smaIl" one may conelude that x itself is elose to one as weIl. 
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1 rOPk + ... + rkPO 

< rOPk + ... + rkPk-k + E 

< (ro+···+rk)(B+E)+E 

< (J-l -:'-" e) (B + E) + c, 

and this can happen only if B 2: 1/ J-l. 

Remarks: 

o 

1. The proof has an essential drawback in that it is not constructive: we know that 
Pk --+ 1/ J-l, but it is hardly possible from an inspection of the preceding argument to find 
a ko for a given E > 0 such that Ipk - 1/ J-li < E for k 2: ko. Only with such an information 
at hand, however, one could decide in concrete applications when a calculation should 
terminate in order to have the result with prescribed accuracy. 

In particular this would be desirable in the case when we are going to apply our 
lemma to prove the convergence of an irreducible and aperiodic Markov chain to its 
equilibrium. Part Ir of this book will contain techniques which provide concrete bounds 
for this situation. Lemma 6.1 is contained here since it is of independent interest. Its 
consequences are very far-reacning, a first application can be found in the following 
remark. 

2. By the equations in lemma 6.1(i) the sequences P and I determine each other. Thus 
it would suffice to start with nonnegative Ir, 12, ... which satisfy (ii) and (iii) und then 
to define Pl,P2, ... recursively by (i). 

This can be used to derive a first probabilistic interpretation 0/ the lemma. Let u 
probability measure JP> on N be given which satisfies gcd{k I JP>({k}) > O} = 1. The 
Ik := JP>({k}) satisfy 6.1(ii) and (iii), but what is the meaning of the associated Pk? 

Imagine a random walk on {O, 1, 2, ... } which starts at 0 and, whenever the position 
in the k'th step is n, passes next to n + m, where m E N is chosen at random with 
prob ability Im. This, of course, corresponds to the Markov chain with state space No 
and the doubly infinite transition matrix 

( 

0 Ir 
o 0 
o 0 

... ) ... 

Choose as a probabilistic model a probability space (n, A, lP') and random variables 
X o = 0, Xl, ... : n --+ No (cf. exercise 6.4). It might be interesting to know whether or 
not a walk visits a particular state n. The probability that this happens is 

lP'{w I there exists k such that Xk(w) = n}, 

a number which will be called Pn for the moment. 
To calculate the Pn we condition on the position just belore going to n. More precisely, 

put 

{w I there exists k > 0 such that Xk(w) = n} 

En,m {w I there exists k > 0 such that Xk-dw) = m,Xk(w) = n} 
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for 0 ~ m < n. Then En is the disjoint union ofthe Em,o, ... ,En,n-I, and the probability 
of En,m is lP'(Em) times the prob ability to pass in one step from m to n, i.e., Pmfn-m. 
Therefore the Pn satisfy the set of equations in lemma 6.1(i): 

PI = JI, 
P2 = h + PIJI, 

Pk = fk + pIfk-1 + ... + Pk-IJI, 

and thus - by uniqueness - they are precisely the Pk of the preceding calculatiolls. In 
particular they converge to 1/ J-t, where J-t = "L- nfn is the expectation of the stepsize of 
our random walk (this assertion is called the renewal theorem). 

As an illustration consider agame where a player starts at zero, and the number of 
units to proceed on No is determined by throwing two dice. The expected value of 
the step size is 7, and.thus the probability that the walk touches a particular "large" 
n is roughly 1/7. As already mentioned, the proof of lemma 6.1 does not provide 
information what "roughly" and "large" here mean precisely. 'vVe will return to this 
question later, concrete estimates will be obtained as a by-product of the results in 
part II (see the end of chapter 10). 

We must resist the temptation to proceed furt her along these lines. What we just 
have developed are the very beginnings of discrete renewal theory (see [33] for a more 
extensive introduction to this field). The name sterns from the fact that it is possible to 
model simple renewal situations in just this way. 

Imagine that one deals with machines/bulbs/transistors/ ... each working for some 
time of which only the prob ability distribution is known (lifetime n days with prob­
ability In). One starts with a new machine/bulb/transistor, and it is replaced as 
soon it is defect. Then one will have to renew an item on a particular day in the fu­
ture with a probability which is roughly 1 divided by the expectation of the lifetime, 
at least if the assumptions of lemma 6.1 are met. 

It is this connection why our lemma is sometimes called the fundamental lemma of 
discrete renewal theory (or the discrete renewal theorem). 

Exercises 

6.1: The main result of the present chapter states that under three assumptions a cer­
tain sequence convergcs. Is each of these assumptions essential? (Try to find suitable 
counterexamples) . 

6.2: For a fixed real sequence (ak) and areal A put 

..M:= {ko llimak.-ko = A wheneverlimaks = A}. 
8 8 

a) Prove that MI: + MI: c MI: . 

b) Give an example where MI: = {O,2,4, ... }. 
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6.3: Let MI be a nOClempty subset of the positive integers such that MI + MI c MI. Prove 
that there are integers d > 0 and ko such that MI contains all kd for k 2: ko. 

6.4: Prove the existence of No-valued random variables Xl, ... on [0, 1J with the Borel­
LeLesgue measure which model the random walk given by the renewal probabiIities 
h, 12, .... (Rint: cf. our second proof of theorem 1.4.) 

6.5: We resume the application to renewal theory, this time we start with a probability 
vector 10, h, .... This means - if 10 > 0 - that we allow a positive prob ability that the 
walk pauses. Try to find an expression for lim Pk in this more general situation. 
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7 Irreducible Markov chains 

The results of the preceding chapter will enable us to complete our picture of finite 
Markov chains. We will proceed as follows: 

• Investigation of the behaviour of the p~;) for "large" k in the case of recurrent 
states i. 

• Proof of the existence of an equilibrium distribution for irreducible aperiodic chains. 

• Discussion of irreducible chains with an arbitrary period. 

• Calculation of the first passage time matrix. 

Long-time behaviour of recurrent and positive recurrent states 

We know that all states in an irreducible chain are recurrent (proposition 4.10) and 
that Ek p~;) = 00 for such i (proposition 4.9). In contrast to the corresponding characta­

rization for transient states (where one might conclude from EkP~;) < 00 that P~:) -+ 0) 

this does not contain much information on the limit behaviour of the p~:). This is provided 
by part (i) of the following proposition: 

Proposition 7.1 Let i be an arbitrary recurrent state. 

(i) Suppose that i has period d. Then P~:') = 0 wher.ever k' is not of the form kd, 

and limk-+oo p~:d) = dJ J.Lii; (recall that J.Lii = Ek kfi~k) denotes the expectationi 

of the number of steps to come from i to i). 
(ii) Let j be another state such that i f-t j. 1f i is positive recurrent, then so is j. 

Proof. (i) Suppose first that d = 1. Put Pk := p~;), fk := fi~k). Since i is recurrent, we 
know that E fk = 1, and we have already shown that the Pk, fk satisfy the recurrence 
relation 6.1(i) (see the calculations after proposition 4.8). Thus it only remains to show 
that condition (iii) of lemma 6.1 holds since then the assertion to be proved is true by 
this lemma. 

Put Gp := gcd{k I Pk -:j:. O} and Gf := gcd{k I fk -:j:. O}. We have to show that Gp = 1 
(our assumption) yields G f = 1. To this end let m be a number such that m-divides all 
k such that fk > O. We claim that m divides all k with Pk > 0 as weIl which would imply 
Gf ~ Gp and thus Gf = 1. 

We proceed by induction. The case k = 1 is clear since Pi = !t. Now let k be any 
number, we assume that mlk' whenever k' is such that k' < k and Pk' > 0 and also that 
Pk > O. We know that 

1 Cf. (4.4) in chapter 4; we will prove in the next proposition that the /-Lii are finite so that they really 
can be thought of as expectations. 
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Pk = fk + pdk-l + ... + Pk-lh, 

and we consider two possibilities. Either fk > 0 in which case mlk trivially holds. Or 
fk = 0, but then there has to exist a k' < k with Pk' > 0, fk-k' > o. m thus divides both 
k' and k - k', hence mlk and the proof of (i) in the case d = 1 is complete. 

Now we consider the case of an arbitrary period d. That only the numbers p~;d) among 

the p~i) ,p~;) ,p~?), ... can have non-zero values follows from the definition of d. Their 
convergence is proved by reduction to the case d = 1 as follows: pass from the original 
chain (with transition matrix P) to the chain with transition matrix P := pd. Whereas in 
the original chain i had period d it now is aperiodie; this is nothing but the elementary 
relation gcd dM = d gcd M. Thus, by the first part of the proof, the p~;) converge to 
1/ Pii, where the '":notation is used to remind us that we are now dealing with the chain 
defined by the transition matrix P. However, the relation between the numbers with or 
without the - is simple, namely 

-(k) = (kd) 
Pii Pii, 
ji~k) fi~kd). 

Therefore Pii = I: kji~k) = J-Lii/d, and this completes the proof of (i). 

(ii) Choose k', k" as in the proof of proposition 4.10: the numbers p~;') ,pj~") are positive, 
and ' 

(kH'H) > (k) (k') (k") 
Pjj - Pu Pij Pji 

for all k. Since the p~;d) tend to d/ J-Lii and this number is strictly positive by assumption, 

it follows that p;~) is larger than dp~;')pj7") /2J-Lii for infinitely many k, i.e., these numbers 
do not converge to zero. But we know from proposition 4.6 and proposition 4.10 that j is 
recurrent and also has period d. Hence the PJ~d) converge to d/ J-Ljj by (i), and it follows 
that J-Ljj < 00. 

o 

Proposition 1.2 All states i which lie in some minimal closed set Cp are positive re­
current. In particular all states in an irreducible chain have this property.2 

Proof. By passing to a minimal closed set we may assume that i communicates with all 
other states. They all are recurrent by proposition 4.10, and by the preceding proposition 
there are only two possibilities: all are null recurrent or all are positive recurrent. 

Suppose that J-Lii = 00 would hold for all i. This would imply not only p~;) -+ 0 (by 

proposition 7.1) but also PJ7) -+ 0 for all i,j (see the proof of proposition 5.1). As a 

consequence the numbers I:j p~;) would tend to zero with k -+ 00 since there are only 

finitely many j. But this is surely a contradiction, since I:j p~;) = 1. 0 

2 It is stressed again here that we deal with finite chains onlYj the result does not hold in the general 
case. 
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The equilibrium distribution 

Chains which are irreducible and where all states are aperiodic will play an important 
role, they will be called irreducible and aperiodic chains for short3 ; occasionally we will 
also speak of an irreducible and aperiodic transition matrix P if the associated chain has 
this property. 

First we prove a simple characterization: 

Lemma 7.3 
(i) A chain is irreducible iff there exists a k such that alt entries of the matrix 

p + p2 + ... + pk are strictly positive. 

(ii) 1t is irreducible and aperiodic iff pk has strictly positive components for a suitable 
integer k. 

Proof. (i) Under the assumption of irreducibility we have i -7 j for all i, j, and therefore 
we find k(i,j) with p~J(i,j)) > O. Then P + p2 + ... + pk will be strictly positive as 

so on as k majorizes all k(i,j). Conversely, if the (i,j)-component of P + p2 + ... + pk 

is greater than zero, there must be a k' ~ k with p;J') > 0 so that i -7 j. 

(ii) Let all components of pk be strictly positive (which we will abbreviate by pk > 0). 
It is dear that then the chain is irreducible. 

From pk > 0 it follows that pHI > 0 since P is a stochastic matrix. Condusion: 
pI;') > 0 for k' 2: k so that all i are aperiodic. 

Conversely, let the chain be irreducible and aperiodic. Since limk-4oo pi;) = 1/ /-Li i > 0 by 

proposition 7.1 and proposition 7.2 we may choose a k' such that p;;') > 0 for all i. Then 
- as can easily be calculated - pk'H" > 0 for any k" wh ich majorizes all k(i,j) (which 
have the same meaning as in the first part of this proof). 0 

We are now able to understand the phenomenon described at the end of chapter 3: 

Theorem 7.4 Consider a Markov chain with state space {I, ... , N} wh ich is assumed 
to be irreducible and aperiodic. 

(i) The powers pk of the transition matrix P converge componentwise to a stochastic 
matrix W in which all rows are equal. 1f we denote a typical row by 7r T = 
(7rI,"" 7rN), then we have 7ri > 0 for all i and Li 7ri = l. 

(ii) 7r is the unique vector such that 7r T P = 7r T and Li 7ri = l. 
(iii) For every i, the i 'th component of 7r is just 1/ /-Lii. 

This unique 7r is called the equilibrium distribution associated with the chain4 . 

Proof. (i) All i are positive recurrent so that pi;) --+ 1/ /-Li i > O. From this and the identity 

pCk) = fCk) + fC~-I)pCI) + ... + f(l)pCk-l) 
J' J' J'" J' " 

it follows immediately that the P)~) also converge and that the limit is fId /-Lii. 

3 Sometimes the word "ergodie" is used instead of "irreducible and aperiodic". 
4 Cf. the following remark 1, there it is explained why this notion is appropriate. 
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We claim that fii = 1. For the proof of this fact fix the smallest k' with p~r) > o. 
Then, since 1 - fii is the prob ability that a walk starting at j will never arrive at i, the 

product p~r) (1- fii) is the prob ability that a walk which starts at i is at j in step number 

k' and is later never seen at its starting position5 • In particular p~r) (1 - fii ) ~ 1 - n;, 
which is the probability of no return to i for a walk starting there. But th-is prob ability 
is zero since i is recurrent, hence fii = 1. 

So far we have shown that p;7) --+ 1/ J.Lii =: 7I"i with k --+ 00. That the 7I"i sum up 
to one follows from the fact that all matrices pk are stochastic and that this property 
is preserved under coordinate-wise limits. The proof of (i) is now complete, and the 
assertion (iii) was established as a by-product. 
(ii) If 71" is as in (i), then 71" T P = 71" T is equivalent with W P = W, and this identity follows 
easily from the continuity of matrix multiplication: 

Conversely, let ii" be given such that ii" T P = ii" T and L ii" i = 1. ii" T is also an eigenvector 
with associated eigenvalue 1 for all pk and thus - by continuity - of W. We consequently 
get 

where the last equality follows from :L ii"i = 1. o 

Equilibrium distributions will be very important in the sequel. Some additional remarks 
concerning the theorem are in order: 

1. The convergence of the numbers p~;) means that for large k it is more and more difficult 

to identify k given the p~;): the chain "forgets" the length of its his tory. The fact that 
the limit does not depend on i implies that - for large k - it is hardly possible to assert 
where the starting position was, even if all p~;) have been estimated rather carefully: the 
chain "forgets" the initial position. 

As we have already mentioned in chapter 3, an interesting phenomenon occurs if we 
take 71" T as the initial distribution: the chain forgets the length of its history completely 
and immediately. This explains why 71" is called the equilibrium distribution. 

2. Whereas there does not seem not to exist any simple way to determine the J.Lii directly 
from the definition, the eigenvector equation 71" T P = 71" T (together with the condition 
:L 7I"i = 1) is rat her simple to solve, in particular since one can guarantee that there 
exists precisely one solution. And once the 7I"i are calculated, the J.Lii = 1/7I"i are also 
known. 

3. The theorem depends essentially on proposition 7.1 which in turn was a corollary to 
the analytical lemma 6.1. Since no explicit information on the rate of convergence was 
provided there it has to be admitted that theorem 7.4 in the present form will be of 
little practical interest. Explicit bounds, however, would be interesting in view of the 
applications we have in mind in part III. Part II of this book will be mainly devoted to 
the development of techniques by which it is possible to remedy this drawback. 

5 Onee more a special ease of the strong Markov property is used here: a walk starting at j behaves 
like one which after k' steps is restarted there. Cf. the diseussion leading to proposition 4.8 and - for 
a more thorough treatment - ehapter 12. 
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The reader is invited to have a look at proposition 10.5 or at proposition 10.8. They 
provide - together with concrete bounds -- two independent possibilities to prove 
convergence directly. 

Here are some examples: 

1. Suppose that our stochastic matrix P is not only irreducible and aperiodic but also 
doubly stochastic: Li Pij = 1 for all j; this is, e.g., the case if P is symmetrie. Then 
1T T := (l/N, ... , l/N) surely is a solution of 1T T P = 1T T with Li 1Ti = 1, and since 
this is unique it follows that the equilibrium distribution is the uniform distribution. 
Proposition 7.4(iii) here means that it takes a walk on the average N steps between a 
visit of and areturn to a particular state i. 

2. Let the transition matrix P be such that all rows coincide (in order to have an ir­
reducible and aperiodic chain we assurne that all entries are strictly positive). Then all 
pk are equal so that W = P in this case. This simple example also shows that every 
probability distribution on a finite set which is strictly positive everywhere can occur as 
an equilibrium distribution of an irreducible and aperiodic chain. 

3. Consider, with positive a, b such that 2a + b = 1, the following reflecting random walk 
on {1,2,3,4}: 

p-oa~~2U 
The equilibrium distribution is easily calculated: 

Tab b a 
1T = (l+b' l+b' l+b' l+b)' 

This is the uniform distribution precisely if a = b (= 1/3). 

Irreducible chains with an arbitrary period 

We consider now an irreducible chain with transition matrix P which is not necessar­
ily aperiodic. By proposition 4.6 we know that all states have the same period, say d 
(sometimes such a chain is called an irreducible chain with period d). Now we pass - as 
in the proof of proposition 7.1 - to the chain with transition matrix pd. This will not be 
irreducible in general. However, on the minimal closed sets G the chain behaves like an 
irreducible aperiodic chain, and this idea gives rise to a complete description: 

Theorem 7.5 Let a Markov chain on a finite state space S be given by an,irreducible 
stochastic matrix and denote by d its period. 

(i) There is a partition 0/ Sinto disjoint non-empty subsets Go, ... , G d - 1 such that: 

• The Go are minimal closed sets with respect to pd; the restriction 0/ the 
chain associated with pd to each Go is irreducible and aperiodic. 
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• For the original chain there are transitions only from Go to Go+! (with the 
convention Gd := Go). For the transition probabilities this means that 

L Pij = 1 
JECHl 

for every i EGo. 

(ii) The Cesaro limit W of the matrix sequence P, p2, ... exists: 

W = lim (P + ... + pk)/k 
k--*oo 

(which, as usual, is meant to hold for every component). W is a stochastic matrix 
in which all rows are identical. This row vector, which we will denote by 'Tr T, is the 
unique solution of the eigenvector equation 'Tr T P = 'Tr T such that Li 'Tri = 1. As 
in theorem 7.4 also here 'Tri = 1/ Pii holds, and again 'Tr T is called the equilibrium 
distribution associated with the chain. 

Proof. (i) Consider the chain with transition matrix pd and denote by 9 the collection 
of its minimal closed subsets. Since all states of the original chain are recurrent, the 
numbers p~:k) converge with k -+ 00 to a non-zero value (7.1(i)) und thus the i are not 
transient with respect to the new chain (by 4.9). This shows that the state space S is 
the disjoint union of the G E g. 

Now fix any element of 9 and call it Go. Define subsets Go of S for 8 = 1, ... , d -1 by 

Go := {j I there are i E Go and k E {8, 8 + d,8 + 2d, ... } such that p~J) > O}. 

(Note that it would be admissible to use this definition also with 8 = 0: the set Go which 
is defined in this way is precisely the set Go we started with. The reason is that all i E Go 
communicate with respect to the new chain. However, it is not clear apriori that the Go 
lie in g.) 

Claim 1: S is the disjoint union of the Go, ... , Gd- l . 

Proof: It is clear that S = Go U ... U Gd- l since i -+ j for all i,j. Now fix two different 
8',8" and arbitrary j' E GO"j" EGo'" There are - for suitable i',i" E Go and integers 
k', k", k, k - transitions with positive probabilities 

from i' to j' in 8' +k'd steps, 
from i" to j" in 8" + k"d steps, 
from i' to i" in kd steps, 
from j' to i' in k steps. 

This follows from the definition of the Go and the fact that the original (resp. the new) 
chain acts irreducibly on S (resp. on Go). 

Now suppose that j' = j" would hold. Then the preceding observations would give 
rise to two possible ways from i' to i' with positive probability, namely one of length 
kl := 8' + k' d + k and another of length k2 := kd + 8" + k" d + k. Since i' has period d, 
both kl and k2 are divisible by d. In particular we would have dl8' - 8", a contradiction. 
This proves that GOI n Go" = 0. 
Claim 2: For any 8 there are only transitions (of the original chain) from Go to Go+! 
(with Gd := Go)· 
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Proo!: This is proved similarly: the existence of other transitions would violate the d­
periodicity of all states. 

Claim 3: 9 is just the collection Go, ... , Gd - l . 

Proof: We claim that - with respect to pd - each Ga is invariant and that each two 
j', j" in Ga communicate. The invariance is clear from the definition. For the second part 
choose i" in Go and k", k 2: 0 such that the probabilities for a transition 

from i" 
and from j' 

to j" 
to i" 

in 6 + k"d 
in d - 6 + dk 

steps, 
steps 

are positive (for the existence of k one has to combine claim 2 with the fact that j' -+ i"). 
This shows that one may pass from j' to j" under pd. 

(ii) Denote the entries of (P + ... + pk) / k by q;;). We consider first the case w here i, j 

lie in the same Ga. Since pd acts as an irreducible and aperiodic chain on Ga we know 

from proposition 7.4 that the p~Jk') tend to d/ J.ljj with k' -+ 00. Since the P)~) vanish for 

k =I- dk' it follows that ql;) -+ 1/ J.ljj. 

Now fix 6 and consider i E GI5,j E GHr for some 1 :::; r < d (with 6 + 1" := (6 + 1") 
d d) Tl (r+dk) " (r) (dk) h h (k) . I Th c (k) rno . len Pij = f...Jj'EGHrPij,Pj'j ,and t e ot er Pij valllSl. erelore qij -+ 

/ . (k) 1/ d h (r) 1 J.ljj smce qj' j -+ J.ljj an t e Pij' sum up to one. 

The rest of the proof paralleis that of theorem 7.4: (P + ... + pk)/k -+ W implies 

W p = lim (p2 + ... + pkH ) / k = lim (P + p2 + ... + pk+ 1) / (k + 1) = ~V, 
k k 

and this means that 7r T P = 7r T if we set 7ri := 1/ J.lii. L: 7ri = 1 is a consequence of the 
fact that ~v is stochastic as the limit of stochastic matrices. 
Conversely: ifT P = ifT yields ifT (P + ... + pk)/k = ifT and thus ifTW = ifT. Hence 
if T = 7r T if the components of if T sum up to one. 0 

Most of the re marks following the proof of theorem 7.4 could be repeated here. Note, 
however, that an irreducible chain with d > 1 does not completely forget the length of 
its history: if the walk starts at astate in Go and you find it for some - arbitrarily large 
- k in G3 you know that k mod d = 3. But this is essentially all that can be said. 
A similar remark applies to a guess of the starting position given the position in the k'th 
step. 

Note that the theorem in particular implies that the transition matrix P has the form 

o * 0 0 
o 0 * 0 

000 * 
* 0 0 0 

if S = {I, ... , N} and the states are labelled such that the first on es belong to Go, the 
next ones to G l etc.; he re the 0 denote matrices with zero entries and the * stand for 
stochastic - not necessarily square - matrices. 
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The first passage time matrix 

Now we will restrict ourselves again to the case of irreducible and aperiodic chains. 
Similarly to the end of chapter 5 where we used linear algebra to calculate certain num­
bers in connection with transient states we now want to apply the same techniques to 
determine the expectations of running times until return. The JLij as a measure of the av­
erage number of steps to pass from i to j have been introduced already in (4.4) of chapter 
4. These numbers, however, have played a role so far only in the case i = j. Under this 
condition we know that they are finite by proposition 7.2, wc alrcady have shown that 
ftj = 1 for all i,j (see the proof of 7.4(i)), but this is not sufficient to guarantee that all 
JLij are finite. A little trick is necessary: 

Lemma 7.6 For an irreducible and aperiodie chain all JLij are finite (so that these num­
bers can be considered as the expectation 0/ the number 0/ steps to come from i to j). 
The matrix M = (JLij )ij is called the first passage time matrix 0/ our chain. 

Proof. To be specific we ass urne that the state space is {I, ... , N}, and we will show that 
JLij < 00 for, e.g., j = 1 and all i =j:. 1. The trick is to declare {I} as a minimal closed set 
by passing from the original transition matrix P = (pij) to 

P- .-.-

1 o o 
P21 P22 P23 

P3I P32 P33 

o 
P2N 

P3N 

PNl PN2 PN3 PNN 

For the chain defined by P the states 2, ... , N are transient: the original chain is irre­
ducible, and consequently j -t 1 for all j. Therefore the number of steps to come from 
state i E {2, ... , N} to 1 (subject to P) is precisely the number of steps which is needed 
for the transient state i to be absorbed in the collection of minimal closed sets - which 
is just {I} - if we argue with respect to P. 
In this way the assertion of the lemma is reduced to proposition 5.1(iii). 0 

By the next theorem the matrix M can be determined by simple matrix calculations. 
The following notation will be used: if R = (rij )ij is any square matrix, then R diag is 
defined to be the matrix (rijC5ij )ij (with c5ij= the Kronecker delta), i.e., Rdiag has the 
same diagonal as R, but all other entries vanish; and the symbol E will stand for an 
N x N-matrix where all entries are 1. 

Theorem 7.7 Consider an irreducible aperiodic chain given by a stochastic matrix P. 
In proposition 7.4 we have shown that W = lim p k exists, and we already know that the 
rows 0/ Ware the normalized solutions 0/ an eigenvalue equation. 

(i) The matrix Id - (P - W) is invertible, its inverse will be called Z. 
(ii) The first passage time matrix can be calculated as 

Explicitly written this means that JLij = (c5ij - Zij + Zjj)/7rj. 
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Note: Part (ii) seems to be circular since Mappears on both si des of the equation. 
However, on the right hand side only J.-Idiag is of importance, and this matrix is known 
since the elements Pii on the diagonal are the inverses of the components 7fi of the 
equilibrium distribution. 
Proo/. (i) We have (Id - Q)(Id + Q + Q2 + ... + Qk) = Id - Qk+l for any square 
matrix Q. Suppose that we know for some reason that Qk ~ o. Then the determinant 
of Id - Qk+l, being a continuous function of the entries, will tend to 1, the determinant 
of I d. In particular this determinant will be nonzero for large k. But then I d - Q and 
also I d + Q + ... + Qk have a nonzero determinant as weIl by the determinant product 
formula, and thus both of them are invertible. If we now let k tend to infinity in the 
equation Id + Q + ... + Qk = (Jd - Q)-l(Id - Qk+l), it follows from Qk ~ 0 that 
I d + Q + Q2 + ... exists and is the inverse of I d - Q. (Note that the argument is a little 
bit more involved than that in the proof of lemma 5.2: there the existence of I d + Q + ... 
could be assumed.) 

To prove the assertion (i) we will apply the preceding argument with Q = P - W. 
From W = !im p k it follows at once - as in the proof of theorem 7.4(ii) above - that 
WP = W = W 2 = PW. Andfrom this weget byinduction that (p-W)k = pk_W ~ 0, 
and hence it is justified to use the preceding argument. 

(ii) First we claim that the first passage time matrix M is the unique matrix R which 
coincides on the diagonal with M and satisfies the matrix equation R = P(R-Rdiag)+E. 

The matrix M is a solution. 
The condition concerning the diagonal is trivially satisfied, and the matrix equation 
means 

Pij = LPilPlj + 1 = LPilPlj + LPil = Pij + LPil(Plj + 1). 
I-j:.i I-j:.i I I-j:.i 

That this holds follows by a calculation involving conditional expectations. 
For any random variable Y on a prob ability space (f!, A, IP') whose expectation JE (Y) 

exists one has JE (Y) = 2:u IP'(Bu )JE (YB .. ), whenever B l , . .. ,Bs is a disjoint partition of 
f!; here YB .. means the restriction of the random variable Y to the probability space 
(Bu , AlB .. , IP'jlP'(Bu )). 

We will apply this fact as folIows. Fix i and j and consider a Markov process X o, Xl, ... , 
defined on some (f!, A, IP'), with transition probabilities given by P, and X o = i. Then, 
with Y := inf{k I X k = j} we have Pij = JE(Y) by definition. f! is the disjoint union 
of the B, := {Xl = l}, and with the notation of the preceding paragraph we know that 
JE (YBJ = 1 and JE (YBI) = Plj + 1 for 1 :f:. j ("+1", since we must not forget the first step 
from i to 1 in our calculation; it should be stressed that here again it is crucial that we 
deal with homogeneous chains). It now suffices to note that IP'(BI) = Pil. 

M is the only solution. 
Let M be another solution, we put R := M - M. The diagonal of R vanishes, and also 
R = P(R - Rdiag) = PR holds. Let z be any column of R. The matrix equation means 
that pz = z. Thus pk z = z for all k and consequently W z = z. But all rows in W equal 
the same vector 7fT, hence all components of z must be identical (with the value 7r Tz). 
Since R has a vanishing diagonal, at least one of these components is zero. Thus z is zero 
and we have shown that R = O. 

With this preparation in mind it remains to show that 

R := (I d - Z + EZdiag)Mdiag 
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satisfies Rdiag = M diag as well as R = P(R - Rdiag ) + E. The first condition can be verified 
by simple calculation, it is a consequence of the fact that every entry on the diagonal of 
Id - Z + EZdiag is one. 

The matrix equation needs further preparationsj we claim that 

The first equation follows from 

Id-Z = W-PZ, 

WMdiag = E, 

PEZdiag 

00 00 

Z = Id+ 2:)p - W)k = Id+ L(pk - W) 
k=l k=l 

since this series expansion together with W = PW show that 

00 

I d - Z = L (W - p k ) = W - P Z. 
k=l 

(7.1) 

(7.2) 

(7.3) 

The second one is clear by theorem 7.4(iii), and for the proof of the third one one only 
has to use the fact that P is stochastic. 

Here is the end of the proof: 

P(R - Rdiag ) + E = P( -Z + EZdiag)Mdiag + E 

= (-PZ + EZdiag)Mdiag + E 

= R + (-Id + Z - PZ)Mdiag + E 

= R-WMdiag+E 
R· , 

the first transformation is justified since Rdiag = M diag , the second is clear by (7.3), in 
the next one only the definition of R is reproduced, and finally (7.1) and (7.2) are used. 

o 

We close this chapter with some examples: 

1) Let P be such that Pij = l/N for all i,jj here as usual N denotes the cardinality 
of the state space. This example has the advantage that we know the result beforehand 
since the number of steps to walk from i to j corresponds to the number of independent 
trials until the first "success" occurs, where "success" means that the random generator 
pro duces just jj the probability ofthis to happen is l/N, and hence the expected number 
of trials should be N. In fact this turns out to be true here: the equilibrium distribution 
is the uniform distribution, and it follows that Z = I d. Consequently, as it was to be 
expected, M is the matrix EZdiagMdiag = NE, that is all entries equal the number N. 

2) The same argument applies in the more general situation where P is a transition 
matrix such that all rows are identical. If we denote the entries of a typical row by 
Pi, ... ,PN, then the formula for M in theorem 7.7 in fact pro duces 
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as it should be. 
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... I/PN ) 

... I/PN 
. , 

I/PN 

3) As an example where one really has to do some calculations consider 

(
81 1 0) 18011 

P=lO 8101 . 
8 1 1 0 

This describes a chain on {I, 2, 3, 4} which obviously is irreducible and aperiodic. Some 
qualitative aspects can be read from the matrix: there is a strong tendency of the walks 
towards state 1, also note that the states 2 and 3 playa eompletely symmetrie role. 

The equilibrium is easily ealculated as the normalized solution of a system of linear 
cquations: 

And this leads to 

and thus to 

T 1 
7r = 55 (44, 5, 5, 1). 

( 

110 
1 0 

Id-(P-W)=-
110 0 

o 

-1 
120 
-1 
-1 

-1 
-1 
120 
-1 

1 
111 
1 
1 

( 
121 

-1 1 0 
Z = (Id - (P - W)) = 121 ~ 

Finally we arrive at 

( 
5 40 40 220) 

M = ~ 5 44 40 200 
4 5 40 44 200 . 

5 40 40 220 

2 ) -9 
-9 
112 

1 
-2 ) 1 9 

111 9 . 
1 119 

Notice the obvious symmetry between states 2 and 3 in all these calculations (see also 
exercise 7.12 below). 

Exercises 

7.1: In example 5 of chapter 2 we have introduced various shufHes. Prove that in all 
these eases the associated chains are irreducible and aperiodic and that the equilibrium 
distribution is the uniform distribution. 

7.2: For achain on astate spaee with N elements which is given by a stochastic matrix 
the following are equivalent: 
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a) the chain is irreducible; 

b) I d + P + ... + pN is strictly positive. 

7.3: Consider once more the product chain of example 1.3. Prove or disprove: if the 
original chain is irreducible (resp. irreducible and aperiodic) then so is the product chain. 

7.4: Let P be an irreducible stochastic matrix such that Pll > o. Prove that all states 
are aperiodic. 

7.5: For a general stochastic NxN-matrix P a prob ability vector (7rI, .•. , 7rN) is called 
an equilibrium distribution if (7rI, ... ,7rN)P = (7rI, ... ,7rN) holds (cf. exercise 3.5). As 
before we will denote the collection of these 7r T by K. 

a) K is always nonempty, and for every extreme point (7rI, ... , 7r n) of K there is a minimal 
closed subset C such that 7ri = 0 for i ~ C. 

b) For every (7rI, ... , 7rN) E K and every transient i the number 7ri vanishes. 

7.6: Suppose that a chain admits more than one minimal closed subset. Then there are 
at least two different equilibria. 

7.7: In theorem 7.5 we have used Cesaro limits. These limits play an important role in 
various fields, those readers who have never met them before are invited to investigate 
some basic properties. 

We will say that a sequence (ak) ofreal numbers is C-convergent if limk (al + .. ·+ak) / k 
exists in IR. This limit will be called the C-limit of (ak) and written C-limak. 

a) If (ak) is convergent, then it is C-convergent. The converse does not hold. 

b) Sums of C-convergent sequences (ak) and (bk) are also C-convergent. In this case one 
has 

c) Does every sequence (ad admit a subsequence wh ich is C-convergent? 

J) Are subsequences of C-convergent sequences also C-convergent? 

e) Are there unbounded C-convergent sequences? 

7.8: Let P be an irreducible matrix. With E= "the matrix where all entries are I" prove 
that I d - P + E is invertible and that the equilibrium distribution 7r T of P is the unique 
solution of 

(7rl, ... ,7rN)(Id-P+E) = (1, ... ,1). 

7.9: In this exercise P is an arbitrary irreducible 2 x 2-matrix. Calculate explicitly the 
matrix of running times. 

7.10: The chain given by 

is irreducible with period 3. Analyse this chain (equilibrium, behaviour of p 3 on the 
irreducible subsets, etc.) 

7.11: Let P be irreducible, 7r the unique equilibrium and i,j states such that i ,..... j 
(cf. exercise 2.10). Prove that 7ri = 7rj. 
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7.12: How can the symmetry between the states 2 and 3 in the last example of the 
present chapter be explained by general properties of the relation "~"? 

7.13: Let P and P' be stochastic N x N -matrices such that P is irreducible and aperiodic. 
Then >.P + (1 - >')PI has the same property for every >. EJO, 1J. 
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8 Notes and remarks 

Part I was intended to introduee Markov ehains, to define the not ions relevant for the 
further investigations and to reveal the strueture of an arbitrary ehain on a finite state 
spaee. Here is a short summary: 

What is a Markov chain? 

Formally a Markov ehain is not hing but a finite set S plus a stoehastic matrix P plus 
a probability veetor p. The latter eneodes the distribution how to start, the rows of 
P eontain the information how to move to the next position. Usually, however, one is 
interested in the behaviour of the chain with respeet to arbitrary starting distributions, 
and therefore the matrix P is mueh more important than the veetor p. 

Rather than to eonsider a ehain as something statie it should be thought of as an 
instruction to per/orm a random walk on S; the parameters of the random generators to 
be used can be found in p and P. 

And finally, there is the model in the framework 0/ probability theory. Using this lan­
guage we have to consider an S-valued stochastic process which is defined on some prob­
ability space, a proeess which is in a eertain sense memoryless and homogeneous. One 
can show that such a model always can be constructed, its existence is necessary to build 
the proofs on the safe ground of prob ability spaces. 

Markov chains can be defined in various ways. Most common is the description by 
defining P and p directly, but sometimes it is more convenient to use weighted directed 
graphs with the elements of S as vertices or even to fix the stochastic transition rules 
verbally. 

The steps to analyse a chain 

A first crucial step is to find the minimal closed subsets Cl,"" Cr; once they are 
known also the set of transient states S \ (Cl U ... U Cr) is identified. In most cases the 
C p are easily determined once one has understood the "dynamics" of the chain. 

If this is not possible for some reason one could proceed as follows. First find the 
nonzero elements in Q := P + p 2 + ... + p N (see exercise 7.2); this can considerably be 
facilitated by replacing in every step of the calculation the nonzero entries by 1. Then 
the nonzero elements in the i'th row of Q are precisely at those positions j where i -+ j. 
The proof of this fact is easy, see exercise 8.1. 

In this way we know the relation "-+" and thus "H" and now it suffiees to recall that 
the Cl,"" Cr ean be found among the equivalence classes with respect to "H" (see 
proposition 4.4 and exercise 8.2). 

The next step will be an investigation of the transient states: calculate the fundamen­
tal matrix (Id - Q)-t, then theorem 5.3 will enable you to determine the absorption 
probabilities and the expected running times until absorption for each transient i. 

And finally the behaviour within the Cp can be studied. To this end, fix any minimal 
invariant C and pass from P to the restriction of the chain to this set (which for simplicity 
we will continue to call P here). Calculate the period d (e.g., by having a look at the 
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nonzero elements of the diagonal of the P, pZ, ... ) and identify thc minimal closed subsets 
of C with respect to pd. There the chain works as an aperiodic and irreducible chain, and 
a thorough analysis now necessitates the determination of the equilibrium distribution 
(theorem 7.4) and the matrix of first passage times (theorem 7.7). 

An example 

As an example we consider a chain on {I, 2, ... ,8} defined by 

1 9 0 0 0 0 0 0 
5 5 0 0 0 0 0 0 
0 0 0 2 8 0 0 0 

p=~ 0 0 10 0 0 0 0 0 
10 0 0 10 0 0 0 0 0 

2 1 1 2 1 1 1 1 
0 0 0 0 0 5 0 5 
1 1 0 0 0 0 0 8 

(In order to save space we have skipped the very first step where one has to identify the 
minimal closed sets. Our chain is already in canonical form.) 

One can see from the matrix that Cl := {1,2} and Cz := {3, 4, 5} are the minimal 
closed sets and that the states 6,7,8 are transient. Now we start with the matrix cal­
culations. 

a) The matrices which govern the behaviour 0/ the transient states 
Here are the matrix Q, the fundamental matrix Fand the matrices Rand FR (notation 
as in theorem 5.3): 

1 eIl) 1 CO 2 
15 ) 

10 5 0 5 '17 10 18 50 , 
o 0 8 0 0 85 

1 C 1 1 2 1) 1 C5 35 204020) 
- 0 0 0 0 0 - 70 60 10 20 10 . 
10 1 1 0 0 0 '170 85 85 000 

By theorem 5.3 these matrices contain the relevant information concerning the transient 
states. E.g.: 

• A walk starting at state 5 will on the average need (20 + 2 + 15)/17 = 37/17 steps 
until it will be absorbed forever in Cl U C2 ; recall that this number includes the 
starting position so that it surely would be more realistic to deal with 37/17 - 1 = 
20/17 . 

• The absorption of such a walk will take place at state 2 with probability 35/170 
(= 7/34), and the probabilities to be absorbed in Cl or in C2 are 

respecti vely. 

55 + 35 
170 

9 20 + 40 + 20 8 
and = 

17 170 17' 
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• The return prob ability for state 8 is 

f * = 85/17 - 1 = 68 
88 85/17 85· 

b) The period 01 Cl 
Since all entries of the restriction of the transition matrix P to Cl are strictly positive, 
the restricted chain is aperiodic (and, of course, irreducible). 

c) The equilibrium distribution 01 Cl 
This necessitates to solve the matrix equation 

( 1/10 9/10) 
(71"1,71"2)=(71"1,71"2) 5/105/10 ,7I"1+7I"2=l. 

One easily finds (71"1,71"2) = (5/14, 9/14) as the unique solution. 

d) The matrix 01 running times lor Cl 
We adopt the notation of proposition 7.7. W is already known, both rows equal5/14, 9/14. 
We obtain consecutively Id- (P- W), its inverse Z and finally the running time matrix 
M by the formula derived in theorem 7.7: 

1 (44 -9) 1 (40 9) 1 (126 50) 
35 -5 40 ' 49 5 44 ' 45 90 70 . 

e) The period 0/ C2 

On C2 the chain oscillates between C21 := {3} and C22 := {4, 5}, and the square of the 
restriction of P to C2 is 

(
100) o 1/5 4/5 . 
o 1/5 4/5 

Hence the period of C2 is 2, and with respect to p 2 the set C2 splits into the minimal 
closed subset C21 and C22 . 

f) The equilibrium distributions 0/ p 2 on C21 and Cn and the associated matrices 0/ 

running times 
These are particularly easy to determine: the associated transition matrices are (1) and 

(~j~ :j~), and we get the unit mass on {3} and the distribution (1/5,4/5) on 

{ 4,5} as equilibrium distributions. The running time matrices are (1) and (~ ~j:), 
respectively. 

(Note that these running times refer to p 2 . For state 4, e.g., one needs 2 . 5 steps to 
return on the average if one counts with respect to the original chain.) 
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We continue with some not es and remarks. First we want to emphasize that all re­
sults presented in part I were found in the early decades of Markov chain theory at the 
beginning of the twentieth century, also the examples are standard (with the exception 
of example 9 and - maybe - example 5: the connection between Markov chains and card 
shuffling is rather recent l ). We omit to try to associate the various results with certain 
mathematicians; those readers who are interested in the general history of this field are 
referred to [28] (chapter XII), the notes and remarks in [50], and [68] (chapter 10). 

The material is selected and presented according to the author's taste, there are numer­
ous monographs where other approaches have been chosen (two recommendable recent 
references are [20] and [60], more advanced introductions are [17] or [22]). 

Whereas the chains considered here give rise to many interesting applications they 
are surely the most elementary representatives of mathematical models for "memory­
less" stochastic phenomena; they are, in asense, the simplest situation after sequences 
of independent identically distributed random variables which can assurne only finitely 
many values. They have the advantage that elementary probability suffices to develop the 
theory rigorously, also nearly all of the abstract existence results can be complemented 
by recipes by which the probabilities or expectations can be determined explicitly with 
the help of easy matrix calculations. We have tried here to give typical examples of this 
interplay between probability and linear algebra. However, what has been shown is far 
from being exhaustive (further results into this direction can be found in chapter XVI of 
[30], [42], [43], or [49]). 

Several generalizations have been studied. One of these has already been mentioned, 
the case of countable state spaces. The theory can still be developed in an elementary 
way, expectedly some of the results fail to be true (cf. exercise 4.6). For a systematic 
development of the countable theory the reader is referred to [20], [50], or [60]. 

Whereas the step from finite to countable state spaces does not lead to conceptual 
difficulties it is not as easy to pass from discrete to continuous time. Let us try to 
understand the underlying idea. We start with a finite state space S, and as before we 
want to fix rules for a "walk" on S. In this book we have done this by prescribing an 
initial distribution and stochastic rules what to do at "times" k = 1,2, .... Now we want 
to refine this, the "position of the walk at time t" shall have a meaning for alt real 
t ~ O. This is essentially done as before, the next position in S is chosen according to a 
probability distribution on S which only depends on the present position. But there is 
a new feature: the walk will pause after the occupation of a new state i for some time 
T before it continues, where T has an exponential distribution the parameter of which 
might depend on i. It should be clear that it is again rather simple to simulate such 
generalized walks. Also, as in the case considered in this book, all that has to be known 
about such a walk is encoded in a single matrix. There is a matrix Q with the following 
property: if a walk is started according to an initial distribution given by a prob ability 
vector (pdiES, then the probability to find the walk at astate i o at time t is just the 
io-component of the vector 

(Pi)etQ ; 

here etQ means the matrix exponential of Q, Le., the matrix Id+ (tQ)/1! + (tQ)2 /2! + .. '. 
1 The reader will find further investigations in the following chapters. Standard references are [1], [3] 

and [24]. For the "deterministic" theory of card shuffiing cf. [59]. 
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It is considerably more difficult than in the case of discrete time to transform this idea 
into a family (Xtko:o of S-valued random variables on a suitable probability space, and 
further severe problems have to be overcome if one passes from finite to countable state 
spaces. We refer the reader to [50] or [60] for details. 

Even more advanced is the theory of Markov processes in continuous time on un­
countable state spaces. A number of nontrivial technical difficulties have to be taken into 
account (measurability of the paths, the definition of conditional probabilities as a special 
case of conditional expectations, ... ), this general approach is beyond the scope of this 
book. See [48] and the literature cited there. 

One of the most surprising properties of Markov chains is the fact that - under the 
mild assumption of irreducibility and aperiodicity of the transition matrix P - they tend 
to forget their his tory. All rows of p k converge to the same vector 7r T, i.e., neither k 
Hor the starting position can be read from the probability to find the walk at state j in 
the k'th step. A positive formulation of this phenomenon could be the statement that 
one knüws all probabilities tü find the walk in the various states i provided that it has 
run for sufficiently many steps. But how often will a special state be visited? The naive 
ans wer would be the following: if the probability to find the walk at j is 7rj, then it is to 
be expected that roughly for 7rj . k times out of k steps the walk will occupy this state. 
That this is in fact true is the ergodie theorem for M arkov chains, here is the rigorous 
formulation: 

Let P be an irreducible stochastic N x N-matrix and XO,X1 , ... a homo­
geneous {I, ... , N}-valued Markov process with the transition probabilities 
given by P (the initial distribution (Pi) might be arbitrary here). Then, if 7r T 

denotes the unique equilibrium, one has with probability one that 

tends to 7ri for every i. 

card{ k' I 0 :s k' :s k, X k , = i} 
k 

(Für a proüf, see chapter 1.10 in [60] or chapter 3.4 in [20].) 

Exercises 

8.1: Prove that the entry at the i-j-position of Id + P + ... + pN is strictly positive iff 
i ~ j. 

8.2: Which of the equivalence classes with respect to "H" correspünd to the minimal 
closed subsets of the chain? 

8.3: Analyse, similarly to the example in this chapter, the chain given by the matrix 

1 9 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 
0 0 0 2 8 0 0 0 

1 0 0 1 2 7 0 0 0 p._-
.- 10 0 0 2 4 4 0 0 0 

2 1 1 2 1 1 1 1 
0 1 0 4 0 0 0 5 
1 1 0 7 0 1 0 0 



Part 11 

Rapidly mixing chains 
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In part I we have developed the basic theory of finite Markov chains. There the usual 
approach was to start with the state space Sand the transition matrix P and then to 
calculate the relevant probabilities, expected running times and so on. 

In the applications we have in mind, however, one is mainly interested in a fixed 
prob ability distribution 'Ir on a finite set S, and Markov chains come into play in order 
to simulate it. 

More precisely: suppose that there are prescribed positive real numbers 'lri for i in a 
finite - but generally huge - set S such that 2:i 'lri = 1. Assurne that one needs a random 
generator which produces elements of S in such a way that each particular i occurs with 
prob ability 'lri. In many cases 'Ir will be the uniform distribution, i.e., 'lri = l/card(S) for 
every i. 

As an example fix an integer ko and two functions 4>,1/; : {O, ... , ko} -+ ;:z with 
4> :::; -1jJ and 4>(0) = 1/;(0). 

Let us say that a mapping w : {O, ... , ko} -+ ;:z is a 4>-IjJ-path if 4> :::; w :::; 1/; and 
[w(k) - w(k + 1)[ = 1 for k = 0, ... , ko-l. The problem is to find a "typical" 4>-
1/;-path. (You can think of agame where one starts to play with w(O) $jDMj. .. 
and where one loses or gains 1 $jDM/ ... at times k = 1, ... , ko; 4>(k) and lj.,(k) are 
certain maximallosses or gains which might depend on k. Another translation of 
this setting can be found in [32] where it is shown that the set 5 of all 4>-1/;-paths 
corresponds to the collection of certain total orders which extend a given order.) 

Clearly 5 is a finite set, it might be incredibly large, and in general the precise 

number of elements will be difficult to determine. Nevertheless it is comparitively 

simple to generate (approximately) uniformly distributed sampies. One only has 
to define a Markov chain on 5 such that it is irreducible and the equilibrium is 

the uniform distribution, as sam pies one can use the position of the chain after 

"sufficiently many" steps. A natural candidate for such a chain declares as admissible 

the transitions w -+ w', where w(k) and w'(k) are different for at most one k. For 

a suitable choice of the transition probabilities from w to the (at most ko + 1) w' 

the transition matrix is doubly stochastic, and thus the equilibrium is the uniform 

distribution as desired. 

The technique sketched in the preceding example is generalized to a strategy to solve 
this problem with Markov chains as follows . 

• Find a transition matrix P such that the associated chain is irreducible and aperi­
odic and has ('lri)iES as its uniquely determined equilibrium distribution . 

• Fix a "I arge" number k. We then know from theorem 7.4 that the probabilities p;f) 
are "elose to" 'lrj for all i, or - to phrase it otherwise - the algorithm 

Start the chain at any i; 

run it for k steps; 

use the final position j as the output for a 'Ir-simulation 

really produces the elements of S with (nearly) the correct probabilities. 
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One might suspect that this procedure is unnecessarily complicated: would it not be 
much simpler rat her than to design a special P to work with a matrix where a11 rows are 
identical with entries (JI"i)? Mathematica11y this is correct, one could even choose k = 1 
in this case. For practical purposes, however, this idea is rat her useless since in order to 
simulate JI" (this has to be achieved) one must be able to do just this if one wants to run 
the chain. 

Thereforc it is necessary to supplement the above description in that one wants to find 
(better: one must find) P such that in addition to the above requirements a random walk 
subject to P is easy to simulate. 

There are some obvious questions in connection with this simulation procedure: 

• Wh at is meant precisely if one states that it is simpler to run the chain than to 
simulate JI"? Unfortunately I cannot provide a satisfactory answer. The meaning of 
"simple" depends on the power of the available computers and the built-in random 
generators. For the examples we have in mind even the fastest computers are unable 
to simulate the desired JI" without using Markov chains. 

• How does one find P? Again there is no simple answer. We will study many exarn­
pies, but there is no general rule for an appropriate choice of P for a new particular 
situation. 

• How Zarge must k (the number of steps) be in order to guarantee the desired pre­
cision? This is just the problem of the rate of convergence in theorem 7.4(i): how 
fast does p k tend to W? 

Part II is devoted mainly to the investigation of techniques which might be used 
to deal with this aspect of the problem. 

• Why should it be interesting to produce randorn elements in a finite set subject to 
prescribed probabilities, i.e., wh at are the applications? 

The answer is postponed to part III where we will study a number of examples. 

Some of the methods we will study in part II have been known for a long time (like 
the estimations which use the second-Iargest eigenvalue of the transition matrix), others 
are more recent. Not a1l results apply to arbitrary Markov chains, for some it is assumed 
that they are defined by graphs, others can only be used for Markov chains on groups. 
(These latter chains will be discussed rat her extensively in the chapters 15 and 16. Wh at 
is proved there can also be considered as an introduction to harmonie analysis on finite 
groups.) 

For more details on wh at will be done see the introductions to the various chapters 
or the extended table of contents at the beginning of this book. Some supplementary 
information can be found in the Notes-and-Remarks chapter 22. 
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9 Perron-Frobenius theory 

In this chapter we aim at understanding why the eigenvalues of the transition matrix 
P of achain playafundamental role for the rate of convergence to the equilibrium 
distribution. Also we will discuss some other far-reaching algebraic consequences of the 
fact that a square matrix is stochasticl . 

We begin with a lemma concerning the eigenvalues of general stochastic matrices: 

Lemma 9.1 Let P = (Pij )i,j=I, ... ,N be a stochastic matrix. Then 1 is an eigenvalue, and 
every eigenvalue A satisfies lAI ~ 1. 

Praof. Since P is a stochastic matrix we know that 

P(I, 1, ... ,1) T = (1,1, ... ,1) T 

so that 1 is an eigenvalue. 

Now let A E C be given such that there is a nontrivial x = (Xl" .. , XN) T with 

P(XI"",XN)T = A(XI"",XN)T. 

Choose an index io such that IXiol = maxj IXjl. This means that all Xj lie in the disk 
with radius IXio I and center in the origin. The eigenvalue equation implies that AXio is a 
convex combination of the Xj, and therefore it is obvious that necessarily lAI ~ 1 holds. 
Here is a more formal proof: 

IAlixiol = ILPiOiXil 
3 

< LPioilxil 
i 

< LPioilxiol 
i 

= IXiol, 

hence lAI ~ 1. 0 

Simple examples show that nonreal eigenvalues of modulus one are possible, even for 
P which correspond to irreducible chains: fix an N'th root of unity, say w, and consider 
the N x N-matrix 

p,~C 
1 0 0 ... 

f} 0 1 0 ... 

0 0 0 

a deterministic cyclic walk; we have 

1 The algebraic theory of such matrices is usually called Perron-Frobenius theory. The present book 
contains only the very beginnings of this theory, for a more extensive study see [69]. 
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P(l N-I)T (1 N-I)T ,W, ... ,W = W ,W, ... ,W 

so that W is an eigenvalue of P. 

Let us now turn to properties of stochastic matrices P with strictly positive p k for 
suitable k, i.e., to rnatrices which correspond to aperiodic and irreducible chains (see 
lemma 7.3). Sueh chains will be of importance in the applications we have in mind. 

Proposition 9.2 Let pk have strictly positive entries /01' a suitable k. 
(i) A = 1 is the only eigenvalue 0/ P with modulus one2 . 

(ii) The geometrie multiplicity 0/ A = 1 is one. The eigenspace associated with A = 1 
is spanned by (1, ... , 1) T. 

(iii) I/ a nontrivial veetor 7r satisfies 7r T P = 7r T, then there are a p E <C with Ipl = 1 
and strictly positive al, ... , aN such that 7r1 = !Lal, ... ,7rN = paN. 

(iv) The algebmie multiplicity 0/ A = 1 is also one: 1 is a simple raot 0/ the charac-
teristic equation det(AId - P) = O. 

Praof. (i) Suppose first that not only pk but P itself has strictly positive components. As 
in the preceding proof we will use a convexity argument. This time it will be important 
that disks in the plane are not only convex, but strictly convex: 

Whenever PI, ... ,PN > 0 with LPi = 1 and ZI,"" ZN E <C with IZII,···, IZNi ~ 
l' and I LiPiZil = rare given, then Zl = ... = ZN. 

A proof of this obvious fact is simple. Without loss of generality suppose that l' = 1 = L,PiZi. 

If, e.g., we had Zt =f. 1, then the real part of Zt would be at most 1 - t for a strictly positive t. 
But then the real part of L, PiZi could be estimated by Pt (1 - t) + (1- Pt) < 1, a contradiction. 

Now let A with lAI = 1 be such that there is a nontrivial vector x with Px = Ax. With the 
notation of the proof of the preceding lemma we know that AXio is a convex combination 
of Xl, ... , XN with strictly positive weights. Since AXio lies on the boundary of the disk 
under consideration it follows that Xl = ... = XN. Hence alw AXio = LPiXi = Xio, and 
therefore - since Xio i= 0 - we have shown that A = 1. 

The general case can be reduced to wh at has already been shown. Px = Ax implies 
that pkx = Akx, and consequently - since pk has strictly positive entries by assumption 
- all Xi coincide and Ak = 1. And with pk also pHI is strictly positive so that AHI = 1 
as weIl. This proves that A = 1. 

(ii) This result has been shown as a by-product in the preceding proof. 

(iii) Since 7r T P = 7r T implies that 7r T pk = 7r T we may assurne that P itself is strictly 
positive. Now recall that in the Cauchy-Schwarz inequality one has equality precisely if 
the vectors under consideration point into the same direction. For the case of complex 
numbers this means that IZI + ... + zNI = IZII + ... + IZNI iff Zi = aiP for a suitable 
p E <C and al,' .. ,aN 2: O. 

This is applied here as folIows: 

2 This result should be compared with the preceding example: this chain has a strictly positive period, 
and only for this reason eigenvalues A with A oJ 1, lAI = 1 are possible. 
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< LLPjil1l"ji 
j 

= LI1I"jlLPji 
j 

L11I"jl. 

j 

Consequently the inequality is in fact an equality, and we have I E j Pji1l"j I = E j IPji1l"j I 
for every i. It follows that the Pji1l"j and thus also the 1I"j point into the same direction. 

As a consequence every 1I"i, being of the form E j Pji1l"j, will be different from zero if 
at least one 1l"j is nontrivial, and this completes the proof of (iii). 
(Note: The result also follows from a combination of lemma 7.3 and theorem 7.4. We 
have preferred, however, to provide an independent algebraic proof.) 

(iv) There seems to be no way to avoid some technicalities in order to prove this fact. 3 

We start with 

Claim 1: Let Q = (qij) be a matrix such that 0 ::; % ::; Pij for all i, j and qij < Pij at 
least on ce (as a short-hand notation we will express this by writing 0::; Q ::; P, Q =f. P). 
Then lAI< 1 for all eigenvalues A of Q. 
Proof of claim 1: Let Y be a nontrivial vector and assurne that Y T Q = AY T; here we 
use the fact that we have the choice to deal with left or right eigenvectors. Denote by 
Z the vector (IY11, ... , IYNI) T. We have IAlz T ::; z T Q ::; Z T P (where "::;" stands for the 
coordinate-wise order), and with 

(9.1) 
j j j 

we arrive at lAI::; 1. 
But we need more, the claim is "<" and not only "::;". To this end we will show that 

lAI = 1 leads to a contradiction. 
Suppose that lAI = 1. The first consequence is that then z T ::; Z T P, but in this 
componentwise inequality there can't be any "<" since otherwise (9.1) would produce 
Eizi < Ej Zj. 

Knowing that Z T = Z T P we can conclude from (iii) that all components of z are 
strictly positive, and this finally leads to the desired contradiction: it implies that z T Q 
is strictly smaller than z T P at least at one component in contrast to z T ::; Z T Q ::; Z T P 
and z T = Z T P. 

Claim 2: Let P be the matrix (Pij )i,j=l, ... ,N -1 (just forget the last row and the last 
column in P). Then the modulus of all eigenvalues of P is strictly less than one. 

Proof of claim 2: Complete P with zero entries to obtain an N x N -matrix and call the 
resulting matrix Q. Then Q and P have the same (nonzero) eigenvalues, 0 ::; Q ::; P 
holds, and Q =f. P is surely also satisfied since Q is not a stochastic matrix. Hence the 
assertion is a consequence of claim 1. 

3 If P is self-adjoint or at least similar to a self-adjoint matrix then the result is eovered by part (ii) 
sinee then the geometrie equals the algebraic multiplicity. The general result is eontained here only 
for the sake of a eomplete deseription of the speetral behaviour of P. It will not be needed in the 
sequel. 
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We now turn to the proof of (iv). Let 1>(>") := det(AId - P) denote the characteristic 
polynomial of P and ,consider any >.. where 1>(>") does not vanish. Then >"1 d - P is 
invertible, but more is true: the inverse can explicitly be described as the product of 
1/1>(/\) with a matrix A(>") where each coefficient is a polynomial in >.. (usually A(>") is 
called the adjugate associated with AI d - P, the possibility of this easy description is an 
immediate consequence of Cramer's rule). Hence for all >.. with 1>(>") i- 0 we have 

(AId - P)A(>") = A(>")(AId - P) = 1>(>")Id. (9.2) 

But all entries of the matrices involved in these equations are polynomials, and since 
there are only finitely many zero es of 1> it follows that (9.2) holds for alt >... In particular 
equality obtains for >.. = 1 and thus, if we put A := A(I), it follows from 1>(1) = 0 that 
A = PA = AP. This has the remarkable consequence that all rows of A are in the left 
eigens pace and all columns are in the right eigenspace of the eigenvalue 1. By (ii) and 
(iii) this yields that either A is identically zero or nonzero at every component. We claim 
that the second alternative necessarily holds: the element a at the end of the last row of 
A is just the determinant of that matrix which arises from I d - P after cancelling the 
last row and the last column; and this determinant is nonzero by our claim 2 since 1 is 
not an eigenvalue of the truncated P. 

We need, however, a little bit more. Call - with the notation of claim 2 - ~(>..) the 
characteristic polynomial of P. The zero es of ~ lie in {j>"1 < I}, and ~(>..) is strictly 
positive for large positive real >... Hence, by continuity, 1> is strictly positive on [1,00[, 
and this implies in particular that a > O. Therefore, by (ii) and (iii) , all components of 
Aare nonzero and positive. 

To finish the proof we differentiate the matrix equation (9.2). With B(>") .- "the 
coordinate-wise derivative of A(>")" we get 

A(>") + (AId - P)B(>") = 1>'(>")Id, 

so that in particular A + (I d- P)B(I) = 1>'(1)1 d holds. We multiply this matrix equation 
from the left by any strictly positive 7r T for which 7r T = 7r T P; such a 7r T exists by lemma 
9.1 and (iii). And now the vector equation 7r TA. = 1>'(I)7r T proves that 1>'(1) i- 0 as 
claimed. 0 

Combining the preceding results with standard matrix theory we arrive at 

Theorem 9.3 Let P be a stochastic N x N -matrix such that p k is strictly positive /or 
a suitable k. Then there is an invertible matrix S such that S-1 PS can be written as 

o o o 

o 
o 
o 

Here J(>", n) stands /or a typical Jordan block, i.e., /or the n x n-matrix 

>.. 1 0 0 0 
0 >.. 1 0 0 

0 0 0 >.. 1 
0 0 0 0 >.. 
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and the symbol "0" denotes matrices of suitable dimension with zero entries. AllIA2I,···, 
I Ar I are strictly less than one. 

1f P is similar to a self-adjoint matrix, then the eigenvalues A are real, the dimensions 
n p of the Jordan blocks are one and the A may be enumerated such that 1 > A2 2: A3 2: 
... 2: AN > -1. 

This theorem will be essential to derive mixing rates which are optimal, at least theo­
retically (see the next chapter). In these investigations the limit behaviour of p k will be 
of interest. That theorem 9.3 can be used when explicit formulas are needed is illustrated 
by the following 

( l-a a ) EXaIIlple: Let a and b be numbers with 0 < a, b < 1. We define P by b 1 _ b . 

As eigenvalues we obtain 1 and 1 - (a + b), hence P will be similar to the diagonal ma­

trix P:= (~ 1 _ (~+ b) ). A transformation matrix S can be calculated by finding 

a nontrivial solution of PS = SP; this set offour linear equations gives (up to a constant) 

S = ( ~ 1) -1 (bj(a + b) 
-bja . Hence S = aj(a + b) 

aj(a+b) ) 
-aj(a + b) . 

Finally, from P = SPS-l, we get p k = SPk S-1 and thus the explicit formula 

pk __ 1_( b+a[l-(a+b)jk 
- a + b b - b[l - (a + b)jk 

a-a[l-(a+b)jk ) 
a+b[l-(a+b)jk . 

All qualitative and quantitative questions concerning the limit behaviour can now be 
answered easily. 

Exercises 

9.1: Let A and f.L be complex numbers such that lAI :S 1f.L1 < 1. Does there exist an 
irreducible stochastic matrix P such that A and f.L are eigenvalues of P? Is it possible 
to find P such that f.L is the eigenvalue with maximal rnodulus among all eigenvalues 
different from I? 

9.2: Suppose that P = (Pij)i,j=1, ... ,N is a stochastic NxN-matrix such that, for a suitable 
r, {I, ... , r} and {r+ 1, ... , N} are closed sets for the associated chain. How are the 
eigenvalues of P related to the eigenvalues of (Pij)i,j=1, ... ,r and (Pij);,j=r+1, ... ,N? 

9.3: Let an irreducible chain be given. Prove that A* (= the maximum ofthe eigenvalues 
different from 1) does not necessarily coincide with the absolute value of the second­
largest eigenvalue. 

9.4: Let P = (Pij )i,j=1, ... ,N be a stochastic matrix. The states are labelled such that 
the i in {l, ... ,r} belong to minimal invariant subsets and the i in {r+1, ... ,N} are 
transient. Now let A be an eigenvalue of P such that lAI = 1. Then, for any (Jr1,"" JrN) 
such that (Jr1, ... , JrN)P = A( Jr1, ... , JrN) it follows that Jrr +! = ... = JrN = O. 

9.5: Let P and A be as in the preceding exercise. Prove that A is a d'th root of unity, 
where 1 :S d :S N. Conversely, if 1 :S d :S N, every d'th root of unity can be an eigenvalue 
of a suitable stochastic NxN-matrix. 



76 Part II: Rapidly mixing chains 

9.6: Let the stochastic matrix P be such that p k is strictly positive for a suitable number 
k. Then all eigenvalues ). of P with 1).1 = 1 satisfy ).k = 1. 
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10 Rapid mixing: a first approach 

Here we start our investigations of rapid mixing for chains which are aperiodic and 
irreducible: how fast do the pk tend to W, the matrix which contains in each row the 
equilibrium distribution? The structure of P has been described in the last chapter, and 
from this description it follows that the rate of convergence to W will depend on the 
number 

A* := max{IAII A is an eigenvalue, A -:j:. I} 

which is known to be sm aller than one. 

The qualitative argument is as folIows. For a suitable S the matrix S-lpS is built 
up from blocks on the diagonal, the first one contains only the number 1, the others 
are matrices J(>", n) with 1>"1 < 1. Therefore the k'th powers of S-1 PS will tend to 
a matrix S' which has a "1" at the top-left position and for which all other entries 
vanish. It remains to remark that the rate of convergence is that of the "worst" 
(J(>..,n))k, i.e., it is determined by >.. •. Also, 

limpk = 
= 

SS-llimpkSS-l 

S(lim S-1 PS)S-1 

SS'S-I, 

and this is a matrix with identical rows. 

We will start our investigations in the second section below by making this precise. 
There we will restrict ourselves to the special case where P and the equilibrium dis­
tribution are in detailed balance - the definition will be introduced shortly -, which in 
particular implies that we have to deal with self-adjoint matrices onlYi in this way we 
avoid the notational difficulties when treating powers of Jordan blocks. Such P are the 
favourite candidates for our purposes, they cover many of the applications we have in 
mind. We provide the definition and collect some properties in the first section. 

The convergence theorems in section 2 are in a sense the best that can be done by using 
eigenvalues. There are, however, two drawbacks. The first one is that the results which 
describe the precise asymptotic order of convergence can be proved only in the case of 
detailed balance. This is less important since the more interesting upper bounds could 
also be obtained for more general P. But it is extremely unsatisfactory that everything 
depends on A * , a number which in most cases cannot be determined explicitly. Therefore 
the theorems in section 2 are not the end of the story, in the following chapters they will 
be complemented by 

• results by which one gets at least reasonable upper estimates for A * and 

• bounds which do not use eigenvalues. 
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In the present chapter - in the third section - we will only point out how an upper 
bound for the rate of convergence can be read off from the entries of P directly. This 
is universally applicable, the provable rate of convergence, however, is rather poor in 
the case of large state spaces. For reasonably large S, however, the direct approach has 
many advantages. We will present a first application to examples /rom renewal theory in 
section 4. 

This chapter will be introductory. Nevertheless the results will suffice to illustrate the 
typical difficulties with which one is faced in this area. For example, an estimate is of little 
practical use if one cannot identify the relevant numbers which are involved (like A*). 
Also we will see that often there are several meaningful choices to define what "is dose 
to" means. Here we are interested in how fast pk approximates W: should alllp~;) -1I"jl 
be small (the absolute error) , or is it more desirable to measure the approximation by the 
size of the numbers Ip~;) -1I"jl/1I"j (the relative error)? Or does it suffice to know this only 
for a particular i and all j (the error with respect to a fixed starting position)? Should 

one demand small Lj Ip~;) -1I"jl?··· 

Having settled this quest ion one aims at proving theorems of the form: whenever 
k ~ ko, then the approximation is bett er than c. However, such a result is rather worthless 
if ko is gigantic. 

This, of course, often happens when one tries to provide rigorous results for algo­
rithms in applied mathematics "which work somehow". Here is a quotation from 
[44], p. 7, a book which deals with the numerical treatment of differential equations: 

"The statement falls into the broad category of statements like 'the distance between 
London and New York is less than 47 light years' which, although manifestly true, 
fai! to contribute significantly to the sum total of human knowledge." 

Hence it will always be desirable to complement the upper by lower estimates. Only 
then one can be sure that - up to a constant which hopefully is of reasonable size - one 
has got the best possible result. 

Detailed balance 
Let P be any stochastic matrix which we will assurne to be irreducible. Suppose that 

there is a probability vector A = (Al, • .• ,AN) T such that 

AiPij = AjPji for all i, j. (10.1) 

This has some remarkable consequences. The first i~ that A necessarily co in eides with the 
equilibrium distribution 11" from theorem 7.5 since (10.1) simply implies that AT P = AT. 
Thus, to avoid confusion, we replace (10.1) with the condition 

1I"iPij = 1I"jPji for alloi, j. (10.2) 

Now imagine that the chain is in equilibrium, either by choosing 11" as the starting 
distribution or by starting arbitrarily and waiting for a very, very long time. For arbitrary 
irreducible and aperiodic chains this means that the probability to find the chain in state 
i is 1I"i, no matter at what step you decide to have a look at the chain. What about the 
probability to observe a certain jump, from i to j, say? This is just the probability to find 
the chain in i times the conditional prob ability to jump from i to j, that is 1I"iPij i this is 
the meaning of the numbers in (10.2). For general chains, however, 1I"iPij will be different 
from 1I"jPji, nobody really expects that jumps from i to j are equally likely as those from 
j to i. 
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As an example consider a deterministic cyclic random walk on {O, ... , N - 1} 
with N 2 3: Pi,iH = 1. If the chain is in equilibrium, that is if all states 
are equally probable, we "expect" a jump from i to i + 1 mod N, jumps 
into the other direction are not possible. Of course this expectation can be 
verified numerically: 1l"iPi,i+l is l/N whereas 1l"i+1Pi+l,i is zero. (By a simple 
modification we also could have an example with an irreducible and aperiodic 
chain: pass from P to (Id + P)/2.) 
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Remarkably this reversal of the order of jumps can always be modelled. Start with an 
irreducible P and an equilibrium distribution 1l" and try to find another stochastic matrix 
P with the same equilibrium and the following property: the prob ability of jumps from 
i to j subject to P is precisely the probability to observe a transition from j to i if the 
chain is driven by P. By the above remarks this means that 

1l"iPij = 1l"j'pji for all i,j (10.3) 

has to hold, and - surprisingly - such a P always exists: one simply has to take (10.3) as 
the definition of P. Then the properties of P and 1l" easily imply that P is a stochastic 
matrix with 1l" T P = 1l" T. Also this new matrix is irreducible (and even aperiodic if P is) 
by lemma 7.3 since its entries are positive multiples of the Pij' 

For obvious reasons the chain associated with P is called the time reversal of the 
original chain. 

It is time for a formal definition: 

Definition 10.1 If an irreducible stochastic matrix P and a probability vector 1l" satisfy 
1l"iPij = 1l"jPji for aB i,j, then one says that P and 1l" are in detailed balance (or that P is 
reversible) . 

For later use we coBect some properties the easy proofs of which are left to the reader: 

Proposition 10.2 Let P be an irreducible matrix with equilibrium 1l". Denote by D the 
matrix for which dii = fo- and for which all other entries vanish. 

(i) P and 1l" are in detailed balance iff DP D- 1 is a symmetrie matrix. In particular 
it follows that there exists a basis of]E.N which consist of eigenvectors of P if 
this condition is satisfied. 

(ii) Denote by H tr the N -dimensional real vector space equipped with the scalar prod­
uct 

«(Xl, ... ,XN)T,(Yl, ... ,YN)T)tr:= L1l"iXiYi, 

and associate with P the linear map Tp : H tr -+ H tr , (Xi)i I-t Px = (Lj PijXj k 
Then P and 1l" are in detailed balance iff Tp satisfies (Tpx, Y)tr = (x, TpY)tr for 
all x, y, i. e., iff T p is a self-adjoint operator on the Hilbert space (H tr, (., .) tr ) . 

(iii) If P and 1l" are in detailed balance, ,then the matrix (1l"iPij )ij is symmetrie. 
Conversely, let (aij );,j=l, ... ,N be a symmetrie matrix with nonnegative aij such 
that Lij aij = 1 and 1l"i := Lj aij is strictly positive for every i. Then, with 
Pij := aij /1l"i, the matrix P := (pij) is a stochastic matrix with equilibrium 
1l" := (1l"l,"" 1l"N) T, and P and 1l" satisfy the detailed balance condition. If, for 
some k, Ak has strictly positive components, then so has p k . Thus there are 
essentially as many P which are in detailed balance with their equilibria as there 
are (sufficiently nontrivial) symmetrie nonnegative matrices. 
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Remark: Let (.,.) be a fixed scalar product on JRN and suppose that the map Tp from 
the preceding proposition is self-adjoint with respect to (., .). Then the eigenvalues of Tp 
are real and there is an orthogonal basis Xl, .•. , XN of eigenvectorsl . If the Xi were also 
orthogonal with respect to (., .).". then it would follow that Tp is (., ·).".-self-adjoint and 
thus P would be reversible. In general, however, much less can be shown: if (without loss 
of generality) Xl is an eigenvector with associated eigenvalue 1, then (Xl, Xi)"" = 0 for 
i =2, ... ,N. 

Denote by S the matrix for which the i'th column is just Xi. Then S-l PS is diagonal 
with the eigenvalues on the diagonal. Hence (S-l PS)k = S-l pkS has the k'th 
power of the eigenvalues on the diagonal. If k tends to infinity this proves that 
S-l WS is the diagonal matrix with 1, 0, ... , 0 on the diagonal. And this yields 

(Xl,Xi)". = «(c,c, ... ,C)T,Xi)'" =C7rT Xi =0 

for i > 1. 

Here is a concrete example of a P with real eigenvalues which is not reversible. Define, 
for a, b 2': 0 with b ~ a, 2a + b = 1, 

( 
a a - b 2b) 

P := a + b b a - b . 
o a+b a 

P is doubly stochastic, hence the equilibrium is the uniform distribution, and we see that 
P is not reversible if b > O. On the other hand, the eigenvalues of P are easily calculated 
if b = 0: we obtain 1, 1/2, -1/2. And thus for small positive b we have a chain which 
is not reversible but nevertheless has three different real eigenvalues and thus a basis of 
eigenvectors. 

An estimate using eigenvalues 
Suppose that an aperiodic and irreducible P is such that for a suitable invertible 

matrix S the product S-lpS is diagonal. As diagonal entries of this matrix we find the 
eigenvalues of P, that is one entry is one and the others are less than one in absolute 
value. Therefore the rate of convergence of the powers (S-lPS)k = S-l pkS is known, 
and this allows one - in principle - to derive estimates for the difference between pk 
and W in this general situation. However, since we want more explicit bounds we confine , 
ourselves to the restricted class of reversible chains. 

Let P be irreducible, aperiodic and reversible with equilibrium 7r T. We define t5(k) to 
be the maximal relative error when approximating the components of 1f by the p~;): 

and we recall that >..* stands for the maximum of the 1>"1, where >.. runs through all 
eigenvalues of P which are different from 1. We then claim: 

1 Note that the converse is also true: if Tp has real eigenvalues and if it is possible to find a ba­
sis Xl, ••• , X N of eigenvectors, then there is a scalar product such that Tp is self-adjoint and the 
Xl, ••• ,X N are orthonormaI. 
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Theorem 10.3 
(i) c5(k)::; (A*)k / mini 1I"i for all k. 

(ii) c5(k) ~ (A*)k for all even k; if all eigenvalues are nonnegative then this inequality 
holds for all k. 

Proof. (i) With the notation of proposition 10.2 we denote by A the symmetric matrix 
DPD-1. Choose an orthogonal matrix S = (Sij)ij such that B := SAS-1 is diagonal. 
Note that this means that the rows eJ, ... , eJr as weIl as the columns 11,···, IN of S are 
orthogonal with respect to the ordinary scalar product on RN : ((ai), (bi)) := l:i aibi . 
Also, S-l = ST holds so that, with Kronecker's c5-notation, eJ /j = c5ij . 

Without loss of generality we may assume that 

with 1 > IA21 ~ ... ~ IANI. 

( 

1 0 0 .. . 
o A2 0 .. . 

B= ... . . . . . . 
000 

~ ), 
AN 

From SA = BS it follows that the eJ are left eigenvectors of A with associated 
eigenvalue Ai. In particular eJ A = eJ and thus (eJ D)P = eJ D hold, and consequently 
there is a number c such that eJ D = C7r T. Hence eJ = C1l" T D-1, and therefore, since eJ 
as weIl as 11" T D-1 are normalized with respect to (., .), we know that c2 = 1. We may 
and will assume that C = 1, Le., eJ = (J7r1, ... , -.(iN). 

The eJ are orthonormal, Le., eJ ej = c5ij . Hence the N x N-matrix eieJ has the 
property that eieJ ej = (eh ei)ei. Thus, by linearity, eieJ x = (x, ei)ei for all x, and we 
get (for arbitrary k) 

Therefore the matrices Ak and l:i AfeieJ coincide, and this provides a useful repre­
sentation of pk: 

p k = (D- 1 AD)k = D-1 A k D = L A~ D-1eieJ D. 
i 

The first summand is easy to evaluate since we know e1; the matrix D-1e1 eJ D is just 
the matrix lim pk = W each row of which coincides with 11" T. 

Written explicitly this means that 

and it follows with the help of the Cauchy-Schwarz inequality that 
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Ip;;l - 1l"j I 
1l"j 

< 

< 

This proves that b (k) ::; (A *) k / minl 1l"[ . 
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1 N 

.j1l"'1l".ILA7SliSljl 
t J l=2 

(A*)k N -.-L ISldlsljl 
mml1l"l l=1 

(~*)k IlfilllliJll 
mml1l"l 
(.-\*)k 

minl1l"l 

(ii) It follows from the above ca1culations that 

b(k) > 

Now suppose that k is even or that all Ai are nonnegative. Then we can continue with 

> 

= 

where we have made use of the fact that A* = IA21 2: IA31 2: .... 
We elaim that maxj S~j/1l"j 2: 1 (which will finish the proof): otherwise S~j < 1l"j would 

hold for all j in contrast to 1 = Lj S~j = L 1l"j. 0 

The proposition shows that, as it was to be expected, the order of convergence is pro­
portional to (A*)k. Note that the more interesting upper bound involves the equilibrium 
distribution, and therefore the result will be rather useless if there exist no estimates for 
the minimum of the 1l"i. 

However, in many applications 1l" is known explicitly, often it will be the uniform 
distribution. In this case the theorem gives the best possible bound, namely an estimate 
of order N (.-\ *) k. Even this looks not promising if the cardinality N of the state space is 
large, but one should have in mind that (A*)k decreases rapidly if A* is not too elose to 
one. 

In order to apply the proposition one needs to know A * or at least some reasonable 
estimates. We will see in the next chapter how this can be achieved by introducing 
the "conductance", a number associated with the chain which sometimes can be easier 
calculated than the eigenvalues but which nevertheless helps to bound A * away from one. 

Here we only will indicate how the problem can be transformed into an optimization 
problem. Suppose that - as before - the chain is reversible and that we know for some 
reason that all eigenvalues are nonnegative. 
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In general this might be difficult to decide. However, if P is irreducible, aperiodic 
and reversible, then P := (Id + P)/2 has the same properties and even the same 
equilibrium distribution; this can be checked easily. The eigenvalues 5. of P are just 
the numbers (1 + >')/2, where >. runs through the eigenvalues of P. Consequently 
all of them are nonnegative. 

Note that the passage from P to P means a "slowing down" of the chain: the chain 
behaves essentially as before, but on the average there are only k real moves among 
2k possible steps. 
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Then >. * is the second-largest eigenvalue, and this number can be determined as follows. 
Let >'1 = 1 > A2 ~ ... ~ AN ~ 0 be the eigenvalues in decreasing order, we are interested 
in A2. Choose an orthonormal basis e1, ... ,eN ofeigenvectors of.A:= DPD-1, where 
JRN is provided with the usual scalar product (-, ')j we will assume that Aei = Aiei for 
i = 1, ... ,N. 

Denote by V the linear span of the vectors e2, ... , e N. V is just the orthogonal com­
plement of jRel, a typical normalized element x of V has the form x = L~2 aiei, where 

the ai are real with Li a; = 1. Consequently (x, Ax) = L~2 Aia;, and we see that this 
number assumes A2 as its maximal value. 
A similar argument holds for arbitrary self-adjoint matrices, and we arrive at 

Proposition 10.4 Let (., -) be any scalar-product on JRN and A a matrix which is self­
adjoint with respect to (., .). If the largest eigenvalue is simple with associated eigenvector 
e, then the second-largest eigenvalue A2 satisfies 

{ (x,Ax) I } 
A2 = max (x, x) x ..1. e, x f:. 0 . 

Estimates which use the entries of P directly 

We start with an arbitrary stochastic matrix P and consider, for k = 1, ... , the mini­
mum and the maximum of the j'th column of p k : 

m;k) := m~np~;), MY):= m~p~;) , , 

A convex combination of some numbers always dominates their minimum, and thus 

= 

> 

= 

Similarly one gets MJk+l) ~ MY) so that 

minp(~+l) 
i 'J 

m(l) < m(2) < ... < M~2) < M~l). 
J-J- -J-J (10.4) 
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Now suppose that P is irreducible and aperiodic. Then the p~7) will tend to 1fi with 

k -+ 00. From (10.4) it follows immediately that with pI:) also 1fi lies in the interval 

[m;k) , MY»), and therefore l1fi - p~7)1 can be bounded by MY) - mJk). We will try to 
find estimates for this "variation in the j'th column of p k " . 

Let 0 be the minimum of the Pii' i,j = 1, ... , N. From Li Pii = 1 it follows that in 
every row there is a j with Pii S l/N and thus 0 can be bounded from above by I/N. 
Hence T := 1 - No lies between 0 and 1, and we claim that 

M~k+l) _ ~k+l) < (M~k) _ ~k»). 
J m) _ T) m), 

this implies that 

~1,~k+l) _ ~k+l) < k(M~l) _ ~1») 
m) m) _ T ) m), 

and we get geometrically fast convergence of p~:) to 1fi if T < l. 
To prove the claim we fix arbitrary io and jo. It will be convenient to denote by /1' 

(resp. /1") the collection of those j in {I, ... , N} where Pioi :2: Pioi (resp. Pioi < Pioi) and 
to abbreviate the clumsy expressions LiE6.' ... and LjE6.11 ... by L' ... and L" .... 

First we observe that 

L' (Pioi - Pioi) + L" (Pioi - Pioj) = L Pioj - Pioi = O. 
i 

Also, from L" Pioj + L' Pioj :2: No and L' Pioi + L" Pioi = 1, we get 

L' (Pioi - Pioi) = 1 - L"Pioi - L'Pioi S 1 - No, 

and these ca1culations imply that, for arbitrary s, 

(k+l) (k+l) "'(P ) (k) 
Pios - Pios = ~ ioi - Pioi Pis 

i 
",' (k) "," (k) = ~ (Pioi - Pioi)Pis + ~ (Pioi - Pioi)Pjs 

< ""(p .. _po ')M(k) + "'''(p . . _po ')m(k) 
~ 10) )0) s ~ 10) Jo) s 

= ""(p .. _ p. ·)M(k) _ ""(p . . _ p .. )m(k) 
~ 10) Jo) s ~ 10J )OJ s 

= [L' (Pioi - Pioi)] (M~k) - mik») 

< T(M~k) - mikl ). 

This holds for arbitrary io,jo, and our claim follows. 

With these preparations at hand we are ready to prove 

Proposition 10.5 Let P be an irreducible and aperiodie stochastic matrix, and let ko be 
such that pko is strictly positive2 • Denote by 0 the minimum of the entries of pko and 
put T := 1 - No; note that 0 S T < l. 

(i) 1f ko = 1, then Ip~:l - 1fil S T k for all states i,j and all k. 

2 Recall that such a ko exists by lemma 7.3. 
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(ii) In the case ko > 1 this inequality has to be modified: 

Ipl~) -1rjl::; (l/T)Tk / ko . 

Therelore the Pl~) approach 1rj for every i geometrically fast. 

Fraof. Part (i) is a direct consequence of the calculations preceding the proposition, one 

only has to note that MP) - mY) ::; T (if MP) = Pioj, then 1 = MP) + L;S#j Pios ~ 
MP) + (N - 1)6 so that MP) - mY) ::; 1 - N6). 

To prove (ii), we need an elementary fact ab out decreasing sequences. Let (Ck) be a 
decreasing sequence of nonnegative numbers such that Ck' ko ::; T k' for some fixed ko, 
T < 1 and all kl. If then k is arbitrary we may write k = klko + s with an s < ko, and 
thus 

c < c, < T k' = (T1/ko)kT-s/ko < (T 1/ kO )k/T . k _ k ko _ _ 

Here, this has to be applied to the sequence 

C .= M Ck ) _ m Ck ) 
k • J J. 

Monotonicity has been shown above, and the estimate follows by passing from P to pko 

and an application of (i). 0 

A comparison of theorem 10.3 with the preceding proposition reveals that they deal 
with different aspects 01 closeness. Whereas the former bounds the relative error the 
latter makes assertions about the absolute difference between the Pl;) and the 1rj. An­
other difference is that theorem 10.3 provides the correct order of convergence whereas 
proposition 10.5 might produce poor bounds3 . 

To illustrate proposition 10.5 consider the simple example 

P:= ~ (~ ~). 
Here we may choose ko = 1 with 6 = 1/4 so that T = 1 - 2/4 = 1/2. The equilibrium is 

1r T = (1/3, 2/3), and thus proposition 10.5 predicts Ipl~) -1/31, Ip;;) - 3/41 ::; 1/2k . An 
explicit calculation shows that 

2 1 (6 10) 4 1 (86 170) P = 16 5 11 ' and therefore P = 256 85 171 . 

Thus, for example, Ipii) - 1r11 = 186/256 - 1/31 = 1/384, but from the proposition we 
only know that the error is ::; 1/16. 

With some care it is sometimes possible to get better estimates. Denote by 6ko the 
minimum ofthe coefficients of pko and put Tko := 1-N6ko. Then the error in the k'th step 
can be bounded (essentially) by (Tko)k/ko, and it might happen that - for two admissible 

k k h b ( )ko ( )kt d·a: H· l . C P ._ (1/10 9/10) 0, 1 - t e num ers Tko ,Tkt l11er. ere lS an examp e. lor .- 5/10 5/10 

2 (23/50 27/50) we have P = 15/50 35/50 . Hence 61 = 1/10, Tl = 4/5 and 62 = 15/50, T2 = 2/5; 

and since 2/5 < (4/5)2 it is better to apply proposition 10.5 with ko = 2 rather than 
with ko = 1. U sually one will try to find a compromise between choosing ko large (= 
good bounds, but many calculations) or small. 

3 If, e.g., P is strictly positive with identical rows, then the p;J) coincide with the"Trj. But T in proposition 

10.5 is zero only if all rows of P correspond to the uniform distribution. 
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We are now going to present a second approach without eigenvalues, it is based on 
contracting maps and Banach 's fixed point theorem. 

Let (M, d) be a non-empty metric space and T : M -t M a map such that d(Tx, Ty) :s 
Ld(x, y) for some L < 1 and all x, y. If Xo is a fixed point of T, i.e., if Txo = xo, then 

(10.5) 

for arbitrary x E M and all k. Therefore the iterations Tkx converge geometrically fast 
to xo, and in particular it follows that there is at most one fixed point. Banach's fixed 
point theorem asserts that a fixed point in fact exists if (lvI, d) is assumed to be complete. 

This will now be applied to investigate the convergence of a Markov chain to its 
equilibrium. We fix an arbitrary stochastic N x N-matrix P. The complete metric space 
M which will be of importance here is the set 

a subset of IRN provided with the ll-norm4 . The map T: M -t M is defined by 

j j 

Lemma 10.6 Denote by R i the i 'th row 01 P, i = 1, ... , N, and put 

(i) The [I-diameter 01 the convex hull K 01 the R i is 2Cp. 

(ii) IITx - TYlil :s Cpllx - Yi/l lor x, y E M. 
(iii) Let Xo be a fixed point 01 T. Then 

IITkx - xolll :s 2(Cp)k 

lor all x and all k. 

Praof. (i) Denote the diarI,leter of K by C'. Then 2C p :s C' holds by definition. Fix any 
R jo . All R j lie in the (convex!) ball B(Rjo ,2Cp) with center R jo and radius 2Cp by the 
definition of Cp. Thus K C B(Rjo ' 2Cp), or IIx - R jo 111 :s 2Cp for all x E K. Now fix 
any Xo E K. By the first part all R j are contained in the ball B(xo, 2Cp ) so that - again 
by convexity - K C B(xo, 2Cp ), i.e., Ilxo - Ylil :s 2Cp for all y E K. 
(For those who have some background in convexity we also include a "one-line-proof": 
the assertion is a consequence of the fact that a convex function (here: (x, y) f-t IIx - ylll, 
from K x K to IR) assurnes its maximum at an extreme point; note that the extreme 
points of K x Kare ofthe form (Ri,R j ).) 

(ii) Let al, ... ,aN be real numbers such that 2: ai = 0, we claim that 

11 L aiRili l :s Cpll(al, ... , aN)Ih­
i 
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Without loss of generality we mayassume that II(al, ... ,aN)lh = 2. Denote by L' (resp. 
L") summation over those indices j where aj > 0 (resp. aj ::; 0). Then L' aj = - L" aj = 
1 so that the vectors x := L' ajRj , y := - L" ajRj, being convex combinations of the 
Rj , lie in K. Hence, by (i), 2Cp 2: Ilx - Ylh = II LajRjll l , and this proves the claim. 

:For the proof of (ii) it only remains to consider, for given x,y E M, the vector 
(al, ... ,aN) :=x-y. 

(iii) This follows from (10.5) and the fact that the diameter of M is two. 0 

Now there are two possibilities to proceed furt her. The first one is to take the existence 
of an equilibrium for granted (theorem 7.4): 

Proposition 10.7 Let P be irreducible and aperiodic with equiliorium "Ir. 
Then Lj Ip~;) - "Irjl ::; 2(Cp )k for all i and all k. 

Proof. This follows from part (iii) of the preceding lemma, one has to apply this assertion 
to Xo = ("Irl, ... , "IrN) and x = (0, ... ,0,1,0, ... , 0) with the "1" at the i'th position. 0 

Also we can apply Banach's theorem to get at the same time the existence of the 
equilibrium and geometrically fast convergence: 

Proposition 10.8 Let P be irreducible and aperiodic, choose ko such that pko is strictly 
positive5 • Denote by C the number Cpko (= 0.5 times the maximaill-distance between 
the rows of pko). Then: 

(i) C< 1; therefore, by lemma 10.6 (ii) and Banach's fixed-point theorem, there is 
a unique fixed point "Ir T = ("Iri, ... , "IrN) of Tko in M, where T : (Xl, ... , XN) ~ 
(Xl, ... ,XN)P. 

(ii) "Ir also satisfies ("Irl, ... ,"IrN)P = ("Irl, ... ,"IrN) so that it is the equilibrium distri­
bution. One has 

"Ip(~) - "Ir·1 < ! Ck/ko 
L....- '1 1 - C 

j 

for alt i and k. 

Proof. (i) This is clear: if two vectors X, y have have strictly positive components, then 
IIx - ylll < Ilxlll + Ilylll. For the case under consideration this means that each two rows 
have an Il-distance which is strictly less than two. 
(ii) From 

TkO(T("Ir T» = Tko+l("Ir T) = T(TkO("Ir T» = T("Ir T) 

it follows that both "Ir T and T("Ir T) are fixed-points ofTko. Thus, by uniqueness, T("Ir T) = 
"Ir T. 

Now let X be the vector (0, ... ,0,1,0, ... ,0) (with 1 at the i'th position) and k an 
arbitrary integer. We write k = rko + k' with 0 ::; k' < ko and r E No. Then 

5 Cf. lemma 7.3. 

,,(k) I L....-Ipij - "Irj 
j 
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II(x - 1r T)prko+k'lh 

= II(x -1r T)prkol1 1 

< erllx - 1r Till 

< 

< 

2 e(k-k'j/ko 

~ e k/ ko 
e ' 

and the proof is complete. o 

An application: bounds in the renewal theorem 
As an application of the preceding results we want to find reasonable bounds for the 

rate of convergence in the renewal theorem. Recall that we have introduced the basic 
definitions at the end of chapter 6: 

• We assume that we are given nonnegative numbers h, fz, ... such that L ii = 1. In 
order to be able to work with matrices and to arrive at an irreducible and aperiodic 
chain we will assume that there is an N such that li = 0 for i > N and li > 0 
for i = 1, ... , N. (It is not too hard to get rid of these restrictions, in the general 
situation, however, there arise some notation al and technical complications.) 

• The ii are used to play the following "game": start at zero, and in every step move 
from n to n + m with probability im. 

• Denote by Pn the prob ability that a player meets position n. Then the Pn satisfy the 
recurrence relations on page 46, and they converge to 1/ /L := l/(lh + ... + N iN). 

How fast do they converge? For example, how elose to 1/7 is the probability that a 
player in the two-dice-game described at the end of chapter 6, page 46, will meet the 
position 101, say? 

To deal with this problem, we will transform it such that the Ipk - 1/ /LI correspond to 

certain Ip17') - 1r j I for a Markoy chain on a finite state space. The idea is to pass from 
an investigation of single Pk to a study of blocks Pk+1, ... , Pk+N : 

Lemma 10.9 Define a matrix P to be the N 'th power of 

0 1 0 0 
0 0 1 0 

Q'-.-
0 0 0 1 

iN fN-l fN-2 h 

Then P is an irreducible and aperiodic stochastic matrix such that 

(10.6) 
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Proof. The recurrence relations for the Pk (page 46) may be rephrased as 

( 
Pk+l ) = Q ( Pt ), 

Pk+N Pk+N-l 

and by applying this relation N times it follows that multiplication by P = QN describes 
the transition from (pk, ... ,Pk+N_l)T to (Pk+N, ... ,Pk+2N-dT . With Q also P is a 
stochastic matrix, and since all fi are strictly positive the same is true for all entries of 
P. Hence this matrix is irreducible and aperiodic. 0 

Let us put Po := 1 and Pi := 0 for negative i. Then (10.6) also holds for k = -N + 1, 
and thus the vector (PrN+l, ... , P(r+l)N) T is the last column of pr (= the product from 
the right of pr by (p-N+l, . .. ,Po) T = (0, ... , 1) T) for every r. And therefore the distance 
of the PrN+l, ... ,P(r+l)N to 7rN (= the N'th component of the equilibrium) is precisely 

the distance of the p~~, ... ,p~~ to that number. In this way we get bounds for the 
convergence of the renewal sequence by using the estimates developed in this chapter. 

E.g., from proposition 10.5 we get the following qualitative version of the discrete renewal 
theorem: 

Proposition 10.10 Let P be the strictly positive matrix of the preceding lemma, by <S 

we denote the minimum 0/ its entries. Then the distance 0/ the PrN+l, ... ,P(r+l)N to 
1/ J-L can be bounded by (1 - N <St. 

Here is an example, we consider the case h = 1/10,12 = 3/10, h = 6/10. Then 

1 (0 
Q = 10 ~ 

10 
o 
3 

o ) 1 (600 300 100) 
10 and thus P = 1000 60 630 310 . 
1 186 153 661 

We have N<S = 81/100, and thus we get the information that after 3r steps the Pk are 
dose to l/Ul + 212 + 3h) = 2/5 with an error of (Sl/100t· 

Similarly one can use proposition 10.8, by this result we can bound the distance by 
2(549/1000Y· 

Exercises 

10.1: Prove what has been daimed ab out the existence of the time-reversal chain: F 
exists for irreducible P, and P and F have the same equilibrium distribution. 

10.2: If P is a doubly stochastic (resp. asymmetrie) irreducible matrix, then so is F. 
10.3: Let P be an arbitrary stochastic 2x2-matrix. Under what conditions on the entries 
is P irreducible? Calculate for these P the unique equilibrium and provide an explicit 
form of the time-reversal chain in terms of the entries of P. 

10.4: Why is it necessary to rest riet the definition of the time-reversal chain to irreducible 
chains? 
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10.5: In proposition 10.2 we have identified P with an operator Tp on the Hilbert space 
H 7T • Wh at is the relation between the adjoint operator Tp and the time revers al of P? 

10.6: Let an irreducible and aperiodic stochastic matrix be such that all rows are 
identical. Does it follow that P is reversible? 

10.7: Identify the reversible chains among the examples of chapter 2. 

10.8: Prove that a strictly positive doubly stochastic matrix is in detailed balance iff it 
is symmetrie. 

10.9: Prove the assertions of proposition 10.2. 

10.10: Consider the irreducible stochastic matrix 

P= 10(~ ~ ~). 
1 5 5 0 

Use the results of this chapter to decide how fast the rows of p k tend to the equilibrium. 

10.11: Let a renewal process be defined by 

h = h = 1/100, h = 98/100. 

What can be said about the rate of convergence of the Pk? 
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11 Conductance 

The origin of the technique we are going to describe now lies in graph theory ([7], [8]) 
where the relation between the second-largest eigenvalue and certain structural properties 
of the graph under consideration was investigated first. This was extended to the Markov 
chain setting in [2]. 

The idea is to associate a constant - the conductance - with a Markov chain which mea­
sures the "strength of mixing" . The definition is rather natural, it is, however, surprisingly 
difficult to prove rigorously that and how the conductance is related to the convergence 
of the chain to its equilibrium distribution. It will be shown that the knowledge of the 
conductance is essentially as good as information about the size of the second-Iargest 
eigenvalue. In view of proposition 10.3 this is not precisely what is needed since the 
second-largest eigenvalue ).2 will not necessarily coincide with ).*, the maximal modulus 
of the eigenvalues which are different from 1. However, this difficulty is easy to remedy 
since ).. = ).2 will hold if all eigenvalues are positive, and this can be achieved by passing 
from P to (Id + P)/2. 

But there remains another problem, namely to determine the conductance for a given 
chain numerically. A tremendously large nu mb er of calculations has to be done - about 
2N if the state space has N elements -, and therefore a naive approach will usually 
not be successful. But one may find at least reasonable bounds for the conductance by 
a technique which was discovered by Sinclair (see [70], chapter 3.1), the method of the 
canonical paths. 

These introductory remarks are also thought of as a schedule for the present chapter, we 
start with 

Definition 11.1 Let P = (Pij )i,j=l, ... N be an irreducible, aperiodic and reversible stochas­
tic matrix with equilibrium (7rI, ... , 7rN) T. For T C S := {I, ... , N} we define 

CT := L 7ri and FT:= L 7riPij; 

iET iET,jrf-T 

these numbers are called the capacity of T and the ergodie fiow from T to S \ T, re­
spectively. <PT denotes the quotient FT/CT , and the conductance of P (or the associated 
chain) is 

<P:= minmax{<PT,<PS\T}' 
TCS 

In order to see why this quantity can serve as a measure of mixing it is helpful to 
understand the probabilistic meaning of CT, FT and <PT. Fix T, start the chain anywhere 
and wait for some time. Then the chain will be elose to its equilibrium, that is the 
probability to find it in a certain state i is (approximately) 7ri, and consequently CT 
is the probability that the chain occupies some position in T. Since we have already 
convinced ourseives l that 7riPij is the prob ability to observe a jump from i to j it is elear 

1 See the discussion following (10.2). 
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that with probability FT one sees a transition from T to its complement. And therefore 
<PT is a conditional probability: how likely is it that the chain leaves T in the next step 
under the condition that it is in fact in T now? Hence a small <PT means that T is 
something like a trap for the chain, and therefore it is to be expected that a good mixing 
rate will be related with a big conductance. 

Note, however, that both T and S \ T are involved. Thus a high conductance <P is 
compatible with a small <PTo for some Ta provided that this is balanced by a big 

<PT\To· 

Since P is reversible, the numbers FT and FS\T coincide. Therefore <PT will be bigger 
than <PS\T iff CT is sm aller than CS\T. But CT+CS\T = 1, and therefore the conductance 
could have alternatively been defined as 

<P:= min{<pT I TC 5,0 < CT ~ 1/2}. 

Let us consider some examples. Suppose first that P is such that all rows are identi­
cal, they then necessarily will coincide with the equilibrium 'Tr T. In this case we have 
FT = CTCS\T so that <PT equals CS\T' and therefore the conductance <P is given by 
min{L:i~T 'Tri I T C S such that 0 < L:iET 'Tri ~ 1/2}. Note that even in this particularly 
simple situation an exact calculation of <P can be cumbersome if 5 is large. 

As a second example consider P:= ( 1 ~ a 1 ~ b ) for a, b strict1y between 0 and 1. 

The equilibrium is (b/(a + b),a/(a + b)), and it follows easily that the conductance is 
max{a,b}. 

And finally let P be the chain associated with the cydic random walk on {l, ... ,N}: 

1- 2p p 0 0 o p 

P 1- 2p p 0 o 0 
p.- 0 p 1- 2]) p o 0 

p 0 0 0 p 1- 2p 

where 0 < P < 1/2. The equilibrium is the uniform distribution, and thus we have to 
consider the T such that r := card(T) is at most N /2. For the T with fixed r ~ N /2 
the ergodic flow <PT will depend on how "scattered" T is, the minimum will obviously be 
attained precisely when T is of the form {k, k + 1, ... , k + r - 1}( modN). Since in this 
case FT = 2p/N and thus <PT = 2p/r hold it follows that <P = 2p/r', where r' := [N/2] 
denotes the largest integer less than or equal to N /2. Therefore the conductance is only 
ofthe order I/N. 

For general Markov chains - even in the case of moderate N - it will be difficult to 
determine <P exact1y, often it will only be possible to derive estimates. A rather intricate 
method which provides such results which was designed for a special dass of chains will 
be presented below (proposition 11.7). Here we will only show a much weaker inequality: 

Lemma 11.2 Let the chain be irreducible, aperiodic and reversible. 1/, > 0 is a number 
such that 'Trj ~ ,Pij holds tor alt i, j, then 

1 
<P > -. 

- 2, 
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Proof. Let Tc S be a subset with GT ~ 1/2. Then GS\T ~ 1/2, and it follows that 

GT /2 < GTG s\T 

(L 7ri) (L 7rj) 

iET j~T 

L 7ri7rj 

iET,NT 

< L "(7riPij 

iET,NT 

"(FT · 

Hence FT/GT ~ 1/2,,(, and this pro,,:,es that <1> ~ 1/2"(. 

Here is the main result which relates the conductance with the eigenvalues: 

D 

Theorem 11.3 Let P be aperiodic, irreducible and reversible. Write the (necessarily 
real) eigenvalues of P as Al = 1 > A2 ~ ... ~ AN > -1. Then 

(i) A2 ~ 1 - <1>2/2, and 
(ii) A2 ~ 1 - 2<1>. 

Proof. (i) Let A be any eigenvalue different from 1 and x T = (Xl, ... , XN) an associated 
left eigenvector with real components: 

(Xl, ... ,XN)P = A(Xl, ... ,XN). 

We aim at proving that 1 - A ~ <1>2/2. 

First we observe that .E Xj = 0 which is immediate from A.E Xj = .Eij PijXi = .E Xi' 

Let T C {I, ... , N} be the collection of indices where Xi > O. Then, without loss of 
generality, 

• GT , the capacity of T, is ~ 1/2 (otherwise pass to (-Xl" .. , -XN )); 

• T is the set {I, ... , r} for a suitable r, and the (nonnegative) numbers Xl/7rl,"" x r /7rr 

are decreasing (obvious). 

We now put Wij := 7riPij, 

y .. - { , .- i E T 
otherwise ' 

and we define D to be the number 

L Wij (Yi 2 - Y/) / L 7riYi2. 

i<j i 

By definition, D is positive, we claim that 

D > <1>, and 

1- A > D2 /2. 

(11.1) 

(11.2) 

Both inequalities together imply the desired 1 - A ~ <1>2/2, we now turn to their proofs. 
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Pro%/ (11.1): Denote, for k = 1, ... , r, by Tk the set {l, ... , k}. From the definition of 
~ it follows that FTk 2: ~CTk' and this will be used to prove that 

L Wij (Yi 2 - Y/) 2: ~ L 'TriYi 2 • 

i<j i 

The idea is to use summation by parts, a discrete variant of the more common integra­
tion by parts: 

L Wij(Y; - Y;) = LWij L (y~ - YZH) 
i<j i<j i:::k<j 

r 

= L(YZ - YZH)( L Wij) 
k=l i9<j 

r 

= L(Y~ - Y~H)FTk (11.3) 
k=l 

r 

> ~ L(YZ - YZ+l)CTk (11.4) 
k=l 

r 

= L 2 .) ~ (Yk - YkH) L 'Tri 

k=l 1:::i:::k 
r r 

= ~ L 'Tri L(YZ - YZH) 
i=1 k=i 

r 

= ~ L 'TriY;j 

i=1 

in (11.3) the definition of the FT. was inserted, and in (11.4) it was important to know 
that the YZ - Y~H are nonnegative. 

Pro%/ {11.2}: The proof of this inequality is even harder. We set 

E:= LWij(Yi -Yj)2/ L 'TriY;, 
i<j i 

and it will be shown that E 2: D 2 /2 (= claim 1) as well as 1 - A 2: E (= claim 2). 

Proo/ 0/ claim 1: From (a + b)2 ::; 2(a2 + b2) and "L.j,#i Wij ::; 'Tri for all i it follows that 

L Wij(Yi + Yj)2 < 2 L Wij(Y; + yJ) 
i<j i<j 

< 2 L 'TriY;j (11.5) 

here we have used once more the fact the Wij = Wji. 

This is combined with a rather tricky application of the Cauchy-Schwarz inequality: 
we put aij := ..jWij(Yi - Yj) and ßij := ..jWij(Yi + Yj) for i < j. Then ("L.i<j aijßij)2 ::; 
"L.i<j aij "L.i<j ß;j leads to D2 ::; E "L.i<j Wij (Yi + Yj)2 / "L.i 'TriY;, and with the help of 
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(11.5) this can further be estimated by 2E. 

Proo/ 0/ claim 2: We evaluate (Xl, ... ,xN)(Id - P)(Yl,'" ,YN)T in two ways. On the 
one hand this matrix product is 

(1- A)(XI, ... ,XN)(YI, ... ,YN)T = (1- A) LXiYi = (1- A) L 7riyr 
i i 

On the other hand this number equals Lij(Id-P)jixjYi which we may first simplify as 
LiET,j(Id - P)jiXjYi since the Yi vanish outside T. Further, for i in T and j not in T 
the coefficient (Id - P)ji is ~ 0 and also Xj ~ 0 holds, and thus Lij(Id - P)jiXjYi is 
bounded from below by Li,jET(Id - P)jiYiXj. We also note that (Id - P)ji equals -Pji 
for i "I- j and 1 - Pii = LI,I,eiPil if i = j, and therefore we may continue with 

L (Id - P)jiYiXj = L -PjiYiXj + L LPilYiXi 
i,jET i,jET, i,ej iET l,ei 

L -WjiYiYj + L L WilY; 
i,jET, i,ej iET l,ei 

= L -WijYiYj + L L WilY; 
i,jET,i,ej iET l,ei 

> L -WijYiYj + L WilY; 
i,jET, i,ej i,IET,i,e1 

-2 L WijYiYj + L Wij(Y; + Y;) 
i<j i<j 

= L Wij(Yi - Yj)2; 
i<j 

in (11.6) we have used that Wij = Wji. 

(11.6) 

We thus have established that (1 - A) L 7riyl ~ Li<j Wij(Yi - Yj)2, i.e., E ~ 1 - A. 

(ii) We have to show that 1 - A2 ~ 2<I>T for all T C S such that CT ~ 1/2. 
Let such aT be given. The idea is to combine proposition 1O.2(ii) with proposition 10.4: 
(1,1, ... , l)T is an eigenvector with associated (simple) eigenvalue 1 of P, and thus 

whenever X = (Xi) is such that L 7riXi = O. 
To make use of this fact we define the Xi by 

{ l/CT : for i E T 
Xi= -l/Cs\T : foriES\T. 

(11. 7) 

Then, by the definition of CT, CS\T, we have L 7riXi = 0, and in order to proceed we 
will have to evaluate the scalar products in (11.7). 

The left-hand side is simply A2(1/CT + 1jCS\T) , again by the definition of the capac­
ities. For the investigation of the right-hand side we write P as Id - (Id - P). First we 
note that the entries on the diagonal of Id - P are the numbers (Lj,#iPij)i and that 
we may replace 7riPij by 7rjpji: 
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(x, (Id - P)x}rr 

Part II: Rapidly mixing ehains 

L 7l"i X i L(Id - P)ijXj 

j 

- L L 7l"i X iPijXj + L L 7l"i X iPij X i 

i j,j#i j,j#i 

L L 7l"iPij(X; - XiXj) 

i j,j#i 

L 7l"iPij(Xi - Xj)2. 

i<j 

Sinee the Xi are eonstant on T and on S \ T, there are eontributions to this sum only 
when i lies in T and j in S \ T or viee versa, and therefore the value is 

( 1 1)2 ( 1 1)2 C + C-- L 7l"iPij = FT C + C-- . 
T S\T iET, NT T S\T 

To finish the proof we evaluate (11.7): 

( 1 1) A? -+--
- CT CS\T 

> (x, PX)rr 

(X,X)rr - (x, (Id - P)x)rr 

= (~ + _1_) _ FT(~ + _1_)2 
CT CS\T CT CS\T . 

This yields 1 - A2 ~ FT(l/CT + l/Cs\T), and sinee CS\T ~ CT , this ean furt her be 
estimated by ~ 2FT /CT = 2<PT. D 

It has already been emphasized that it might be a diffieult task to ealculate the eondue­
tanee of a given ehain. Therefore we want to eomplement our investigations by deseribing 
a teehnique whieh provides reasonable estimates for a special ease. Wh at we have in mind 
are chains which are defined by graphs. There is given a finite set V (the vertices) together 
with a subset E C V x V (the edges). We will assurne that Eis symmetrie: (i,j) belongs 
to E iff (j, i) does. Then G := (V, E) will be ealled an undirected graph (or simply a graph 
sinee we will not diseuss direeted graphs). Graphs ean easily be visualized if we let the 
vertiees eorrespond to points in the plane and if we draw a li ne segment between two of 
these points i, j iff (i, j) E E. 

Graphs give rise to Markov ehains as follows: 

Definition 11.4 Let G = (V, E) be any graph. Denote by d the maximal number of 
edges connecting any vertex with the others: 

we will assurne that d > O. 

d:= maxeard{j I j -:j: i, (i,j) E E}; 
iEV 

Now let ß be a number, 0 < ß ~ 1. We define a Markov ehain by declaring V to be the 
set of states and by fixing the transition probabilities aeeording to the following rule: if 
there are di edges from "state" i to other vertices (i.e., di = eard{j I j -:j: i, (i,j) E E}), 
then pass from i to any of the j with j -:j: i, (i, j) E E, with equal probability ß / d and 
stay at i with probability 1 - diß / d. 
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It should be clear t.hat the graphs 

--

• • • • • • •• 4~ 

--
give rise to a reftecting and a cyclic random walk, respectively (cf. the pictures on page 
14). 

Some readers might wonder why we do not work with the more natural "pass to the 
next admissible vertex" (that is one for which there is a connecting edge) in such a way 
that - if there are di edges - each transition has prob ability 1/ di . The reason is that only 
definition 11.4 leads to "nice" chains: 

Lemma 11.5 The chain defined in 11.4 is symmetrie so that the uniform distribution is 
an equilibrium distribution. If the graph is connected 2 , then the chain is irreducible. If in 
addition ß is strictly less than one, then we are dealing with an aperiodic and irreducible 
chain which is in detailed balance. 

(These facts are obvious, a proof is omitted.) 

The following definition is the graph theoretical variant of "conductance" . 

Definition 11.6 Let (V, E) be a graph. Define f.L to be the minimum of the numbers 

card( {( i, j) I i E T, j rt T, (i, j) E E}) 
card(T) 

where T runs through all sets of vertices such that card(T) ::; card(V)/2. 
f.L is called the edge magnification of the graph. 

Thus f.L counts the outbound edges in relation with the size of a collection of vertices, 
and therefore it is to be expected that in the following examples the first one has a small 
f.L (because of the "bottleneck" in the middle) whereas the second one - a complete graph 
- leads to a maximal value among all graphs with four vertices: 

2 Trus means: für i, j there are i 1 , ..• , in such that i 1 = i, in = j and (i k , i k +1 ) E E für k = 1, ... , n-1. 
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In fact, if we consider T= "the six points on the left-hand side" in the first graph, then 
the relevant quotient is 1/6, and no other subset behaves worse. For the second graph we 
have to investigate subsets with 1 and 2 elements. For such subsets the quotient is 3/1 
resp. 4/2, anel this means that f.l = 2. 

Here is anoiher example. Let N be an even number, we consider the cyclic graph with 
vertices {O, ... , N -I} for which there are edges precisely between i and i + 1 (modulo 
N). For a fixed k a subset T with k elements will have a minimum number of edges 
joining it with the complement iff it is a cyclic segment. In this case there are 2 such 
edges. It follows that the edge magnification is 2/[N/2] = 4/N. 

We note in passing that the edge magnification is related with the conductance of the 
underlying Markov chain according to definition 11.4 in a simple way: 

cI> = ßf.l/d. 

This is obvious, more interesting is the question whether f.l can be calculated more simply 
than the conductance. An interesting technique which provides reasonable bounds is due 
to Sinclair (see [70]). This meihod of canonical paths will be presented now. 

Let (V, E) be a graph which we assurne to be connected. For i, j EVa (directed) path 
from i to j is not hing but a sequence i 1 , ... , in in V such that i1 = i, in = j, and (ik, ik+d 
is an edge for k = 1, ... , n - 1. For e E E we say that the paih meeis e if there is a k 
such that (ik, ik+d = e. 

Assurne that, for every ordered pair of different vertices, a path from i to j is prescribed; 
its length might depend on i and j. 

Of course a formal definition which uses "there is given a map such that ... " instead 
of "there is prescribed ... " is also possible. It would be rather clumsy, and therefore 
we prefer to give an illustration instead: imagine a city where there are certain 
points of interest (= the vertices) and certain streets joining them (= the edges). 
Then we assurne that directions are given how to drive from i to j. 

Usually there will be a gigantic number of such lists of "canonical paths". It is intuitively 
clear that there should be a connection between the edge magnification f.l and the "over­
Jap" of the canonical paths: in the case of a small f.l it is to be expected that there are 
edges which are used by many paths. This is in fact true: 
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Proposition 11. 7 Let a family of canonical paths be prescribed and suppose that a is 
an integer such that the following holds: whenever e is an edge, then there are at most a 
pairs (i, j) of different vertices such that the canonical path i 1 , ... , in from i to j meets 
e. Then J-l 2: card(V)/2a. 

Praof. We will use the following simple argument: whenever 4J : A -> B is a map be­
tween finite sets such that every preimage 4J-l({b}) contains at most a elements, then 
a card(B) 2: card(A). 

Now let T C V be arbitrary such that card(T) :S card(V)/2. Denote by el, ... , er 
the edges which join T to its complement. For i E T and j tJ. T the canonical path 
from i to j necessarily will meet some e,\, and this fact can be used to define a map 4J 
from {(i, j) I i E T, j tJ. T} to {I, ... , I}: the path from i to j meets 4J( i, j)3. From our 
assumption we know that each preimage contains at most a elements, and in this way 
we arrive at the inequality 

al 2: card(T)( card(V) - card(T)). 

But card(V) - card(T) 2: card(V)/2 so that l/card(T) 2: card(V)/2a. The proof is now 
complete since J-l is the minimum of the numbers on the left-hand side of the inequality. 

o 

Here are two examples how to apply canonical paths: 

1. Consider the cyclic graph wi th N vertices (see page 98). First we consider the following 
family of canonical paths: 

Go from i to j in the clockwise direction, that is the canonical path is i, 
i + 1, ... , (i + k) mod N, where k > 0 is the smallest number such that 
i+k=jmodN. 

(Thus, for example, one needs a path of length 10 to come from 11 to 9 in the case 
N = 12.) 
Now fix any edge, say e = {O, I}. If i = 0, then there are N -1 vertices j (namely 
j = 1,2, ... , N -1) where the canonical path from i to j meets e; for i = 1 (resp. 
2, resp. 3, ... ) there are 0 (resp. 1, resp. 2, ... ) candidates, hence we get a total of 
0+ 1 + 2 + ... + N -1 = N(N -1)/2 paths which meet e. Therefore we might put 
a = N(N-1)/2 in the preceding proposition, and we get J-l 2: N/[N(N-1)] = 1/(N-1). 
Note that this is of the same order as the correct J-l = 4/ N and that, with the present 
value, we get the estimate <l> = ßJ-l/d 2: ß/2(N -1) for the conductance ofthe associated 
chain. 
As a variant we fix the canonical paths according to 

M ove from i to j on the shortest way, clockwise or counterclockwise. If both 
paths have the same length, i. e., if N is even and j = i + N /2 mod N, then 
choose the clockwise direction. 

To find the best a now we repeat the preceding analysis (let us assume for simplicity 
that N is even). For e = {O, I}, for example, this edge will be met by N/2 (resp. N /2 -1, 
N/2 -1, N/2 - 2, N/2 - 2, ... ) paths ifwe start at 0 (resp. at 1,N-1,2,N-2, ... and 
move according to the rules to the other points, and therefore the choice 

3 Note that 1> is in general not uniquely determined, there might be several possibilities to associate a 
pair (i,j) with an edge. 
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a = (N/2) + 2(1 + 2 + ... + (N/2-1)) = N 2 /4 

is admissible. Note that, expectedly, this is much bett er than before. 

2. Let r be a fixed integer, and V = {O, 1 r. We define a graph by prescribing edges 
between points (i 1 , ... , ir) and (j1, ... , jr) for which for precisely one K, the co ordinate 
il< is different from jl<; this graph can be considered as an r-dimensional hypercube (cf. 
example 8 in chapter 2). 

In order to estimate p, we use canonical paths: a canonical path from u = (i 1, ... , ir ) 

to v = (j1, . .. , jr) is defined by flipping the coordinates which are different one after the 
other from left to right. 

As an example consider r = 7, u = (0100101) and v = (0010111). The canonical 
path is 

(0100101) -t (0000101) -t (0010101) -t (0010111). 

Now let e be an arbitrary edge, from state (i 1 , ... , i s - 1 , 0, i.+1, ... , ir ) to state (i 1 , ... , i.- 1 , 

1,i.+1 , ... ,ir ), say. By definition a canonical path from u to v will meet e precisely if 
u (resp. v) is of the form (*,···,*,0,i s+1, ... ,ir ) (resp. (i1, ... ,is - 1,1,*,···,*)) with 
arbitrary * in {O, 1}. This means that the;e are 2r - 1 possibilities for such pairs (u,v) so 
that a in proposition 11.7 can be chosen as this number. We get 

p, ?: card(V)/(2a) = 2r /(2· 2r - 1 ) = 1, 

and the rate of rapid mixing could now be further discussed with the help of the estimate 
ip = ßp,/d?: ß/r. 

How powerful is the method of canonical paths? There seem to be no general results 
which assert that one can always determine p, (at least up to a constant) by this technique. 
Thus we are in a situation which is different from the preceding ones. In theorem 10.3, 
propositions 10.5 and 10.8, and also in theorem 11.3 we had to calculate something and 
this gave rise to a convergence result. Now things have changed. We have to be creative 
to find an appropriate as possible definition of "canonical paths", adefinition which 
provides the smallest possible a in order to find the best estimate for p, and thus for ip. It 
should be clear that this will necessitate to take into account the particular structure of 
the graph and that one will have a chance to find satisfactory solutions only after so me 
experience with this method. 

We have presented the method of canonical paths only for the case of chains which 
are induced by graphs. Here is a more general version, it can be considered as a 
refinement of lemma 11.2. 

Consider, as always in this chapter, an irreducible, aperiodic and reversible chain. 
By a prescription of canonical paths we mean a rule which for arbitrary different 
states s,t associates (il, ... ,in ) with s = il and t = in. Fix states i,j such that 
i i= j. We say that a path (il, ... ,in) meets (i, j) if there is a k such that ik = i and 
ik+l = j. Now let a be a number such that, for all i,j, 

where the sum runs over all pairs (s, t) such that the canonical path from s to t 
meets (i,j). Then we have 
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Proposition 11.8 ~ ~ 1/20. 

The proof is left to the reader, it is eanonical onee one has understood the proofs 
of lemma 11.2 and proposition 11.7. 

It should be emphasized that proposition 11.8 generalizes both results: lemma 11.2 
follows if one ehooses as a eanonical path always the shortest one: i 1 = S, i2 = t; and 
proposition 11.7 is eontained in 11.8 if one eonsiders ehains which are determined 
by graphs as in definition 11.4. 

Exercises 

11.1: Calculate the conductance of the chain given by 

p=~ 102 . ( 
1 1 1) 

120 

101 

11.2: Consider the cyclie walk on {I, ... , N}, where, with the notation of example 1 
of chapter 2, ai = Ci = I: and bi = 1 - 21: for an i (with 0 < I: < 1/2.) What is the 
conductance of this chain? 

11.3: For what 1] > 0 does there exist a reversible chain such that the conductance is 
precisely 1]? 

11.4: Determine the conductance of an arbitrary reversible chain provided that there 
are only two states. 

11.5: What is the edge magnification J.L of the complete graph with N vertices? 

11.6: Calculate the edge magnification of a graph with vertices a, b, al, ... , ar , b!, ... , bs , 

where edges are between a and b, between a and an ai, and between band all bi (this 
graph is depicted in the case r = s = 5 as the left pieture after definition 11.6). 

11.7: Let N vertices be given. Try to find edges in such a way that the resulting graph 
is connected and the edge magnification is 

a) as large as possible, 

b) as small as possible. 

11.8: Suppose that a graph has N vertiees and r edges, that there are prescribed canon­
ical paths and that it is known that the total length of an paths is L. What can be said 
about the edge magnification J.L? 

11.9: Let the vertiees of a graph be the elements ofthe symmetrie group Sr und suppose 
that there are edges between two permutations Hf one can pass from one to the other by 
applying a transposition. Find a family of canonieal paths for this graph and bound the 
edge magnification. 

11.10: Prove lemma 11.5. 

11.11: Prove proposition 11.8. 
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12 Stapping times and the strang Markav 
praperty 

This chapter prepares our investigations of how coupling methods can be used to bound 
mixing rates, it also will be of importance in chapter 14. 
To understand these approaches one needs to know wh at stopping times are. Whereas 
the underlying idea is simple, the formal definition is rather involved. 
We will use the opportunity to complement our discussion of the Markov property from 
chapter 1: it will be shown that the Markov processes discussed in this book have in fact 
the strang M arkov propertyl . 

Stopping times 

Let us return to the situation from the very beginning: we are given a finite set 5, 
probabilities (Pi)iES which determine where to start the walk and some stochastic rules to 
move in the k'th step from astate i to another position. You can think of a homogelleous 
Markov chain where the rules are encoded in a single stochastic matrix P, but this is not 
necessary here: the transition procedure can be prescribed as complicated as you wish2 . 

E.g.: Start at any point of 5 := {O, 1, 2, ... , 9} with equal probability. To 
determine where to move in the k'th step, generate an integer j according 
to the Poisson distribution with parameter k (i.e., P(j) = ki e- k jj!); if the 
present position is i E 5 and if this state has been occupied by the walk 
for an odd number of times, then move to (i + j) mod 10, otherwise go to 
(i + k) mod 10. 

Let, for example, start the walk at 7, and suppose that the Poisson random 
generator pro duces the numbers 0,0,1,2,5,2,3, ... , Then the walk will begin 
with 7,7,9,0,2,7,9,6, ... 

Now we want to define a rule by which the walk can be stopped: someone has to shout 
"STOP!" which will then result in terminating the walk immediately. Simple ex am pIes 
- they refer to the preceding walk - of such rules are: 

1. stop after the 444'th step; 

2. stop immediately after the starting position has been occupied; 

3. stop as soon as state 2 has been occupied for the 5'th time; 

4. stop after the first transition of the form i -+ i; 

1 This second part of the present chapter is not essential for the investigations to come. Some read­
ers, however, might consider it interesting to learn how carefully one has to deal with the notion 
"memoryless" . 

2 This means that arbitrary S-valued stochastic processes are admitted. 
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5. have a careful look at the Poisson random generator and announce "STOP!" as 
so on as it has produced - for so me k - in the k'th step the number 7 and in the 
(k + l)'th step the number 17. 

We note in passing that it is also possible to prescribe "rules" which cannot reasonably 
be obeyed, like "stop three steps before 5 will be occupied for the second time" . 

This is similar to the situation when you need help in a town where you are for the 
first time: rules like "turn to the left at the first intersection with a traffic light" are 
reasonable, but the advice "turn to the right three streets before you see the petrol 
station on the left-hand side" will be of limited use. 

We are now going to be a little bit more formal. We start with an arbitrary stochastic 
process X O,X1 , ••. : 0 -t S, where (O,A,lP') is any prob ability space. A "rule to stop" 
surely has to be formalized as a map 1I' : 0 -t {O, 1, ... , CXl}. 1I'(w) is the time when the 
process has to be stopped, where 1I'(w) = CXl just means that it runs forever. But how is 
it possible to single out "reasonable" rules? 

To this end, let us have another look at the above examples. If you investigate these 
rules more carefully, you will note a difference: whether or not they can reasonably be 
applied by an observer depends on the information about the walk he or she has. Rules 
1 and 2 are deterministic and thus in a sense trivial: no information is needed. For rule 
3 one needs at least partial information, it would suffice to observe state 2 and to notice 
how often it has been occupied. For rule 4 instead one needs to know the whole walk in 
order to be able to stop correctly, and rule 5 is the most demanding: one in fact has to 
have full information, not only about the positions of the walk but also how they have 
been produced, Le., the values of the Poisson random generator. 

Therefore we need something which formalizes "the information after the k'th step" , 
then we will be able to say that a "reasonable" rule is one which uses only this information 
in order to decide whether to stop after this k'th step or not. 

It was aremarkable idea in probability theory to relate partial inform'ltion with sub­
a-algebras. It is now generally accepted that partial information concerning a probability 
space (0, A, lP') is nothing but a a-algebra B which is a subset of A. 

This looks strange when one is confronted with this fact for the first time, let's try 
to motivate it. 

Regard a probability space (fl, A, lP') simply as some kind of machine which produces 
points w in such a way that the results are "unforeseeable", but - on the long run -
occur with a known frequency: one will find an w in a prescribed set A E A roughly in 
lP'(A)k of krandom experiments if k is "sufficiently large". Then partial information 
about this probability space means that one knows something in advance, the most 
general variant seems to be the following: there is a collection 5 of measurable 
subsets such that, for any B E 5, one knows in advance whether the w wh ich 
will be the result of the next experiment lies in B or not. Common examples are 
5 = {B} (which gives rise to the not ion of conditional prob ability lP'(A I B)) or 5 
= the a-algebra generated by a fixed random variable. 

Now a moment's reflection shows that, if the above property holds for 5, it holds 
for the cr-algebra generated by 5 as weil, and therefore one might assume from the 
beginning that 5 is already a cr-algebra. 

Using a-algebras we are now able to make precise what is meant by "the information of 
the process after the k'th step": 
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Definition 12.1 Let XO,Xl , ... be a stochastic process defined on some probability 
space (0, A, lP'). 

(i) By a filtration we mean a sequence (Fk)k=O,l, ... of a-algebras such that Fo C 
F l C ... cA. 

(ii) A particularly important example is the natural filtration associated with the 
process: this filtration (Fk&'h=o,l, ... is defined by Fka, := the smallest a-algebra 
such that Xo, ... ,Xk are measurable. 

(iii) The process Xo, Xl, ... will be called adapted to a given filtration (Fkh=o,l, ... , 
if Xk is Fk-measurable for every k. 

This looks, admittedly, rather technical. It should be stressed, however, that the defi­
nition is natural on ce we have accepted to think of information as of sub-a-algebras, here 
Fk is the information we have at our disposal after the k'th step. Then the first part of 
the definition only means that we don't forget, the information after k + 1 moves is not 
worse than that after k moves. The natural filtration, which is in a sense the smallest 
among the reasonable ones, contains the information given by the positions of the walk, 
and "the process is adapted" asserts nothing but the fact that the available information 
comprises the knowledge of all positions: we are allowed to observe the walk. In particular 
it is - trivially - true that the process is adapted to the natural filtration. 

Now it is also dear how to explain the difference between the examples 1 through 
4 and example 5: in the first four cases one only needs information which corresponds 
to any filtration such that the process is adapted, whereas in example 5 the filtration 
must contain information on the Poisson generator (cf. the discussion after the following 
definition) . 

Finally we can define stopping tim es as rules which use not hing but the information 
contained in a fixed (adapted) filtration. The definition is natural on ce we adopt the 
translation "having the information ß (a subalgebra of A) is nothing but the fact that 
all questions of the form 'does w lie in B?' can be answered unambiguously for B E ß" . 

Definition 12.2 Let Xo, Xl, ... be as in the preceding definition, and Fo C F l C ... c 
A a filtration such that Xo, Xl, ... is adapted. A map '][' : 0 -+ {O, 1, ... ,00} is called a 
stopping time with respect to (Fk)k provided that T-l({k}) lies in Fk for every k. 

Often it will suffice to replace the preceding formal definiton by the following rule of 
thumb: let a stopping rule be given which can be expressed as "Stop after step k provided 
that Ek holds", where Ek is an expression which contains (maybe) Xo, ... , X k but not 
Xk+l, ... j then this is a stopping time with respect to the natural filtration. 

Here is a sketch what our examples 1 to 5 would look like if we were asked to treat 
them formaIly. 

Consider any probabiIity space (n, A, Ir) such that it is possible to define inde­
pendent random variables U, Yl , Y2 , ••• such that U : n -t {O, ... ,9} is uniformly 
distributed and, for k = 1, ... , the random variable Yk : n -t {O, 1,2, ... } has a Pois­
son distribution with parameter k. Use these U, Yl, ... to define random variables 
Xo, Xl, ... : n -t {O, ... , 9} according to the above definition (Xk := the position 
after k steps, with Xo := U etc.j an expIicit definition of the Xk in terms of the Y's 
surely would look rather ugly). Put Fk := the a-aIgebra generated by U, Yl , ... , Yk. 
Then it is easy to show that 

• the process Xo, Xl, ... is adapted to the filtration (Fkh=o,l, ... j 
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• the above rules 1 to 4, but not rule 5, are stopping times with respect to the 
natural filtration; 

• rule 5 is a stopping time with respect to (Fkh=o, .... 

The strong Markov property 3 

105 

Now we will restrict ourselves again to the case of a homogeneous Markov chain on a 
finite set 5 which is defined by a stochastic matrix P and an initial distribution (Pi)iES, 

We have seen already in the first chapter that the appropriate mathematical model is 
an 5-valued Markov process, i.e., a sequence of random variables XO,XI , ... : 0 --t 5 
defined on some probability space (0, A, lP') such that lP'(Xo = i) = Pi and 

lP'(Xk+l = i I X o = iO,XI = i l ,··· ,Xk-l = ik-I,Xk = i) = lP'(Xk+l = i I Xk = i) = Pij 

for all i,i. 
If you think of such a Markov chain as a collection of stochastic rules how to move on 

5, then the following holds: 

Suppose your walk is at "time" ko in state i o. If you now set all counters to 
zero but continue your walk, then it will be impossible to distinguish what 
you see from a walk which starts deterministically at i o. 

This is more than obvious since we work with the same random generators as before, the 
fact has been used several times in part I of this book. It is, however, a little bit more 
complicated to check this fact in the mathematical model. There it reads as follows: 

Lemma 12.3 Let X o, Xl,' .. : 0 --t 5 be a homogeneous Markov process as above. Let 
i o E 5 and ko be given and suppose that Xko = i o happens with positive probability. 
Put 0' := {Xko = i o}, provide this set with the restricted a-algebra and the measure 
lP" := lPjlP'(O'), and define Yo, Y1, ... : 0' --t 5 by Yk(w) := Xko+k(w), Then the Yo, YI , ... 
are a homogeneous M arkov process which starts deterministically at io and which has the 
same transition probabilities as the X o, Xl, .... 

Proof. The Markov property of the Yk is reduced to that of the Xk once one knows that 

lP(Xk+1 = ik+l I X r = ir, Xr+l = ir+l,"" Xk = ik) = lP(Xk+l = ik+l I X k = ik) 

for all 0 ~ r < kj the original Markov property from definition 1.3 corresponds to r = O. 
But this equality follows immediately from 

lP(Xr = ir, Xr+l = ir+l, ... ,Xk+l = ik+l) = lP(Xr = ir )Pjrjr+l ... Pjkjk+l' 

an equality which follows easily from (1.2) in chapter 1. o 
It should be noted that, conversely, a process which has the property described in the 

lemma will be a homogeneous Markov process so that it can be used interchangeably 
with the original definition. 

Let's now turn to a more involved construction, we start with the "obvious" part where 
the walk is defined by a collection of random generators: 

3 This subsection is also rather technical. What we present will not be a necessary prerequisite to 
understand couplings. 
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Let i o be fixed and suppose that a reasonable rule to stop thc process is given; 
let it be stopped, e.g., three steps after astate jo (which might be different 
from io) has been occupied for the second time. Now start the process and 
suppose that it is stopped just at i o. Then set all counters to zero and continue 
the walk. It is to be expected that one will observe something which looks 
like an ordinary walk wh ich started at io. 

That this "obvious" property is in fact true is the so-called strong Markov property 
which has been introduced by Hunt in [41]. For some time it has been tacitly assumed 
that it is shared by every homogeneous Markov process. The full truth, however, is more 
complicated: in our elementary situation (finite state space) the intuition is justified, 
but there are Markov processes which fail to have the strong Markov property (for an 
example cf. exercise 8.20 in [17]). 

In order to work in the mathematical model we have to be more formal. In view of 
our discussion of stopping times we know wh at "reasonable stopping rules" are. It is also 
not too difficult to formalize what is meant by "start again after the process has been 
stopped": 

Theorem 12.4 Let X 0, X I, . .. be a homogeneous S -valued M arkov process. Further let 
1I' : 0 -+ {O, 1, ... ,CXl} be a stopping time with respect to the natural filtration and suppose 
that 1I' is finite almost surely; for simplicity we will even assume that {1I' = CXl} = 0. Then 
it is possible to define the stopped process Xr : 0 -+ S by Xy(w) := XY(w) (w). We claim 
that X y is a random variable. 
Now let io be fixed and suppose that 0' := {Xy = io} has positive pmbability. 0' will be 
considerd as a pmbability space similarly to the preceding lemma, and a pmcess Yo, YI , ... 

will be defined on this space by Yk(w) := XY(w)+k(w). Then the Yo, YI , ... form a homo­
geneous M arkov pmcess with the same transition pmbabilities as the X 0, X I, ... , and the 
Y -pmcess starts deterministically at i o. 

Praof. The measurability of Xy is easy to show: {Xy = i} coincides with 

({1I' = O} n {Xo = i}) U ({1I' = I} n {Xl = i}) U ... , 

and this set obviously lies in A. 
Now let k be arbitrary, we consider the event B := {1I' = k}. By assumption B lies in 

the a-algebra generated by X o, ... , X k . 

It can easily be described explicitly, it consists of all sets which are unions of sets of the 
form Cjo, ... ,ik = {Xo = jo, ... ,Xk = jk}. (Proof: All Cjo, ... ,ik must be contained in any 
a-algebra for which the X o, ... ,Xk are measurable, and the union of the C's obviously 
is such a a-algebra.) 
For any fixed C = Cio, ... ,jk one has 

IP'(Cn{Xk+l =il , ... , X r =ir}) = IP'(Xo =jo,···, X k =jk,Xk+l =i1 ,··., Xk+r =ir ) 

If in particular it happens that jk = i o then it follows that 

IP'( C n {Xk+l = i l , ... ,Xk+r = i r }) = IP'( C)Pioi1Pi1 i2 •.. Pir-l i r • 

Now observe that the set B n {Xk = io} can be written as the disjoint union of such 
Cjo, ... ,jk with jk = io, and in this way we arrive at 
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IP(B n {Xk = io, X k +1 = i l , ... ,Xk+r = ir }) = IP(B n {Xk = io} )PiOitPiti2 ... Pir_t i r. 

If we sum up these equations for k = 0,1, ... this gives 

IP(Xr = io, X'f+1 = i l ,·.·, X'f+r = ir ) = IP(Xr = iO)pioitPiti2 ... Pir_tir' 

and it follows immediately that the Yo, ... are a Markov process with (pij) as transition 
probabilities. 
That the Y -process starts deterministically at io is trivially true. 0 

Remarks: 1. The result can be considered as a generalization of lemma 12.3 which 
corresponds to the case of a deterministic stopping time 1l' = ko. 
2. It was essential for the proof that we have dealt with a stopping time with respect to 
the natural filtration: the stopping rule must not depend on information which cannot 
be read off from the positions of the walk. The theorem does not hold in the case of 
arbitrary stopping times and adapted processes (see exercise 12.6 below). 

Exercises 

12.1: For 0 := {0,1}N and i = 1, ... we denote by Xi : 0 -+ {0,1} the natural i'th 
projection (XI,X2, ... ) I-t Xi. Let FN be the cr-algebragenerated by XI, ... ,XN. Which 
of the following subsets F of 0 are in F1000? 

a) F:= {(Xl' ... ) I Xl "I- X44 - X55 + 3X999}. 

b) F:= {(Xl, ... ) I X1001 ~ X4 = xt}. 
c) F := {(Xl' ... ) I (X1003 - 1)X1003 = O}. 
12.2: Suppose that (0, A, IP) is an arbitrary measure space and T : 0 -+ No a measurable 
map. Prove that there is a filtration (Fk) such that T is a stopping time with respect 
to this filtration. Is there a filtration with this property such that each Fk is as small as 
possible? 

12.3: Fix a measure space (O,A,IP) together with a filtration F = (Fk). 1l', 1l'1 and 1l'2 
are assumed to be stopping times with respect to F. 
a) What are the integers r such that r1l' is a stopping time? 

b) Which ofthe random variables 1l'1 +1l'2, 1l'1 ·1l'2, max{1l'I, 1l'2}, min{1l'I, 1l'2} is a stopping 
time? 

12.4: Provide a probability space with 0 = N together with random variables Xo, Xl, ... 
such that 

"Stop at step ko - 2, where ko denotes the first time when the walk is in state 
44." 

is a stopping time with respect to the natural filtration. 

12.5: To motivate stopping times we have discussed five examples at the beginning 
of this chapter. Find in all these cases a minimal filtration F such that the stopping 
procedure is a stopping time with respect to F. 
12.6: In the main theorem ofthis chapter, in theorem 12.4, it was important in the proof 
that we have dealt with stopping times with respect to the natural filtration. 

a) Prove that there are cases where the theorem holds for stopping times with respect to 
a strictly larger filtration. 

b) Give an example to show that one cannot replace the natural filtration by an arbitrary 
filtration in the theorem. 
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13 Coupling methods 

Coupling methods have applications in many areas of probability theory. They were 
introduced by Doeblin ([29]) in the thirties, the reader will find a survey and a sketch of 
the history in [54]. Since the seventies they have been successfully used to estimate the 
mixing rate of Markov chains (see, e.g., [39] or [62]). 

Stopping times are a necessary prerequisite to understand how one can bound mixing 
times by using coupled Markov chains, they were introduced in the last chapter. Our 
investigations of couplings begin with a motivation and the formal definition. Next we 
define the total variation distance between two probability measures, a distance which 
already was important in chapter 10. Then we show how the coupling inequality relates 
the variation distance with couplings, it will play an important role later. 

Then we turn to Markov chains, we complement our study of the how-fast-is-the­
convergence-to-the-equilibrium-problem by defining some appropriate quantities and by 
studying some of their properties. Next coupled Markov chains are defined. The main 
results can be found in theorem 13.9, they are applied in a number of illustrating exam­
pies. The final part of this chapter - which can be skipped at first reading - is addressed 
to the question: how powerful are coupling methods? 

Couplings 

The underlying idea of couplings is simple: you perform only one random experiment, 
and the result is used to determine the next step of more than one random walk. Consider 
for example the state space S = {O, ... , 9}, we want to perform two cyclic random walks 
by using a single fair die. Both walks start deterministically somewhere, for the choice of 
the respective next positions one throws the die. 

Walk 1 now steps one unit (modulo 10) to the right resp. to the left depending on 
whether the die shows an even resp. an odd number. Walk 2 instead moves one step 
to the right resp. to the left if the die shows 1,2,3 resp. 4,5,6. The remarkable fact is 
that both walks are perfect cyclic random walks, with equal prob ability they move one 
step clockwise or counter-clockwise. However, there is some dependency between the two 
walks: if walk 1 steps to the right (since the die shows 2, 4 or 6) it is more likely that 
walk 2 moves to the left than to the right (the probabilities are 2/3 and 1/3). This is 
different from a situation where they move independently, e.g., if one uses two fair coins. 

Consider as a variant the following rule for walk 2: move to the right resp. to the 
left in case of a result in {I, 3, 5} resp. in {2, 4, 6}; this is precisely the opposite rule 
as for walk 1. Again both walks are perfeet cyclic random walks, but now any step 
of walk 2 depends deterministically on what walk 1 does. 

This will now be formalized: 

Definition 13.1 Let f.l and v be two prob ability measures on S := {I, ... , N}. 
By a coupling of f.l and v we mean any prob ability measure lP on S x S with marginals 
f.l and v, that is f.l(A) = lP(A x S) and v(A) = lP(S x A) for A C S. 
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It is sometimes ccnvenient to think of I" and v as of families of nonnegative numbers 
(I"i) and (Vi) with ~ I"i = ~ Vi = 1 and of Jii> as an N x N-matrix [pij) with Pij ~ 0, 
~ij Pij = 1. Then the coupling condition is (obviously) equivalent with ~i Pij = I"j, 
~j Pij = Vi for all i,j. 

For example, let I" and V be the measures on {I, 2, 3, 4} which are defined 
by (2/8, 2/8, 2/8, 2/8) and (3/8, 3/8, 1/8, 1/8), respectively. Here are the 
p-matrices of two possible couplingsl : 

As another example, let I" = V be the uniform distribution on {L, R}. The 
four couplings 

1[10] 1[01] 1[1 
2 ° 1 '2 1 ° '4 1 

1] 1[21] 
1 '6 1 2 . 

could be used to control the next step of two random walks on {O, ... , 9}: I" 
corresponds to the first, V to the second walk, where "L" and "R" yield "step 
to the left" resp. "step to the right". Do you recognize the above examples? 

Even in the preceding very elementary case there are numerous couplings for two given 
measures 1", v. The collection of all Jii> is a compact convex set, it is a nontrivial task to 
describe its structure completely, e.g., by identifying the extreme points. However, this 
is not our concern here, we refer the reader to [61) and the literature cited there. 

It is simple to convince oneselfthat for arbitrary 1", v a coupting exists: put Pij := l"iVj, 
this coupling corresponds to the product measure, the associated random variables are 
independent in this case. 

Couplings are contained in this book since we will use them to provide bounds for the 
mixing rate. The preceding 1", v will correspond to the distributions of two random walks 
after a "Iarge" number of steps, and couplings will come into play when we investigate the 
distance between I" and v. The appropriate definition of "distance between two measures" 
here is 

Definition 13.2 Let I" and v be two prob ability measures on S = {I, ... , N}. Then the 
total variation distance between I" and v is defined by 

111" - vII := sup II"(~) - v(~)I· 
t:.cs 

This is very natural, the total variation distance is just the distance with respect to 
the sup-norm if we think of a measure on S as of a function from the power set to the 
reals. Surprisingly a simple description is possible, the reader cannot fai! to be reminded 
of the tl-norm difference we have met in proposition 10.7: 

1 We will use square brackets when dealing with coupling matrices in order not to confuse them with 
stochastic matrices. 
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Lemma 13.3 Let JJ /md 1/ be identified with probability vectors (JJi) and (I/i). Then 

1 
IIJJ - 1/11 = 2" L IJJi - I/il· 

i 

Froo! Write 5 as the disjoint union of subsets 51, 52, where the elements o[ 51 (resp. 
52) are precisely the i with JJi > I/i (resp. JJi :s I/i). As a consequence of L JJi = LI/i it 
follows that 

Now let 6. C 5 be arbitrary, we suppose that, without loss of generality, 

L IJJi - I/i I 2: L IJJi - I/J 
iESjn6 iES2n6 

Then we get 

IJJ(6.) - 1/(6.)1 

1 
2" L IJJi - I/il, 

iES 

and this proves that IIJJ - 1/11 :s Li IJJi - l/il/2. 
The reverse inequality is easily proved: with 6. := 51 we have JJ(6.) - 1/(6.) = 

Li IJJi - I/i 1/2, and thus "2:" has to hold in the lemma. 0 

Remark: Note that, by the last step of the proof, it is not necessary to pass to absolute 
values in the definition of the total variation distance: 

IIp - 1/11 = sup (p(6.) - 1/(6.)). 
6CS 

Here is the main result, the following coupling inequality relates couplings with the vari­
ation distance: 

Proposition 13.4 Let JJ and 1/ be probability measures on 5 = {I, ... , N} and JPl a 
probability measure on 5 x 5 which is a coupling for JJ, 1/. Then 

11 JJ - 1/ 11 :s JPl( { ( i, j) I i i= j}). 

Also there exists a coupling JPlI such that in fact "=" holds in this inequality_ 
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Proof. For any i, we may write J.Li = Lj Pji and Vi = Lj Pij. Now let Ll C 8 be given. 
If we express J.L(Ll) - v(Ll) by the Pij, then the summands whieh eorrespond to points of 
Ll x Ll will eaneel, only the (i, j) in Ll' x Ll and in Ll x Ll' survive, where Ll' := 8 \ Ll: 

J.L(Ll) - v(Ll) = L Pij - L Pij· 
t.'xt. t.xt.' 

Sinee Ll' x Ll and Ll x Ll' are disjoint subsets of {(i , j) 1 i 1= j} we ean eontinue with 
the inequality ~ P( {(i , j) I i 1= j}), and this - by the remark preeeding the proposition -
proves the first part. 

For the proof of the seeond part put Ci := min{J.Li, Vi}. The Ci will serve as entries on 
the diagonal of a eoupling P' which will provide "=" in the eoupling inequality. 

More preeisely, P' will be defined by preseribing numbers P~j' and we start with the 
definition P:i := Ci· 

How ean this be extended to give a eoupling? Suppose, e.g., that i E 82 (the notation 
is as in the proof of the preeeding lemma). Then Ci = p.i, and it follows that all Pli for 
j 1= i will have to vanish in order to aehieve Lj Pli = J.Li. Similarly the P~j have to be 
zero if i E 81 and i 1= j. 

Thus it remains to fix the P:j with i E 8 2,j E 81 properly. We set T := Li(J.Li - Ci). 
Note that T ~ 0 and that T = Li(Vi - Ci) (sinee Li p.i = Li Vi). Also, T will vanish only 
if J.L and V eoincide, a ease in whieh the assertion is obvious: let all the P:j which remain 
to be found vanish. Therefore we mayassume that T is strictly positive. We define the 
remaining entries of P' as 

P:j := (J.Lj - Cj)(Vi - ci)/T for i E 82 , jE 81 . 

Then P' is a eoupling for 1', v, this follows at onee from 

T = L(J.Li - Ci) 

= L (J.Li - Ci) 

L(Vj - Cj) 

j 

L (Vj - Cj). 

jES2 

Also it is clear from the eonstruetion that 

P/({(i,j) li 1= j}) = I 
Pij 

= IIJ.L -vii, 
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and this completes the proof of our proposition. o 
Sometimes it will be convenient to use a slight reformulation of couplings and the 

coupling inequality. Let S be as before and X, Y : 11 -+ S be two random variables 
defined on some prob ability space (11, A, lP'); the measure lP' is then called a coupling of X 
and Y. If we pass to the induced measures - i.e., to Pi := lP'(X = i), Vi := lP'(Y = i) - and 
consider the coupling in the sense of definition 13.1 defined by lP(i, j) := lP'(X = i, Y = j) 
then the coupling inequality reads as folIows: 

Proposition 13.5 IIp- vii::; lP'(X =I- V). 

Coupled Markov chains and an estimate of the mixing rate 

We now return to our main concern, the mixing rate of a chain. We will work with 
couplings, and - in view of the coupling inequality of proposition 13.4 - it will be necessary 
to start with some not ions and facts concerning the variation distance of the measures 
we are interested in. 

Definition 13.6 Let P = (Pij )i,j=I, ... ,N be an irreducible and aperiodic stochastic ma­
trix and 7r T the associated equilibrium distribution. 

(i) For any i E S := {l, ... ,N} and any integer k 2: 0 we denote by di(k) the 
variation distance between the i'th row of pk and 7r T : 

(ii) d(k):= maxi di(k). 
(iii) For k 2: 0 consider the N measures which correspond to the rows of pk. By p(k) 

we will denote the variation diameter of this collectiGn: 

(Note that we have already met the di(k) in chapter 10; see proposition 10.7.) 

Lemma 13.7 
(i) p(k) 2: p(k + 1), 

(ii) d(k) 2: d(k + 1), 
(iii) d( k) ::; p(k) ::; 2d( k), 
(iv) p(k + l) ::; p(k)p(l). 

Praof. (i) Denote by ßk the convex huH of the N measures of part (iii) of definition 
13.6. We have shown in lemma 10.6 that p(k) is the diameter of this set. Also, since 
pk+l = P pk, the rows of pHI are convex combinations of the rows of pk, and therefore 
the (p~;+I))j=I, ... ,N lie in ßk. This proves that ßk+l C ßk, and in particular (i) folIows. 
(ii) We start with the observation that 7r T lies in all ßk: these sets are closed and 
decreasing, and if 7r T failed to lie in some ßk we would obtain a contradiction to the fact 
that the rows of pk converge to 7r T . 
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By definition, d(k' is the radius of the smallest ball (with respect to the total variation 

distance) with center 7r T which contains (p~7))j=1, ... ,N for all i or, equivalently, which 
contains ßk. (ii) follows now from ßk+1 C ßk. 

(iii) The first inequality is an immediate consequence of what just has been shown, the 
second one follows from the tri angle inequality. 
(iv) In this proof we will use for the first time the coupling inequality. 
Let k, land i1, i2 be arbitrary and denote the i 1 'th and i2 'th row of pHI by f..L and 1/, 
respectively. We have to show that 11f..L - 1/11 :::; p(k)p(l), and the idea is to construct a 
coupling Jii> on S x S of f..L and 1/ such that Jii>( {( i, j) I i :;f j}) :::; p( k) p(l); an application of 
(the easy part of) proposition 13.4 then will complete the proof of (iv). 

Jii> will be constructed with the help of the hard part of 13.4. First we consider the i 1 'th 
resp. the i 2 'th_ row in pk which we will denote by a resp. ß. By proposition 13.4, there 

is a coupling Jii> for these two measures, i.e., we find nonnegative numbers aij such that 
Li aij = aj, Lj aij = ßi and Li#] aij = Ila - ßII· 

Similarly we treat the l-step transitions. For - not necessarily distinct - jl, j2 we 
choose, again with the help of proposition 13.4, an optimal coupling for the measures 
which correspond to the jl'th and h'th row of pl = (PlY). In this way we get a{jh 2: 0 
such that 

1 ~ (l) (l) I 2" L..; Ipjti - Phj . 
j 

(The case ir = J2 can be treated directly; simply put a{Ih ;= P)~)i and a{jh ;= 0 for 
i :;f j.) 

With these preparations at hand we now define the coupling Jii> = (Pij )i,jES by Pij ;= 
Ls,t astaj~. This is in fact a coupling for f..L and 1/; 

LPij 
j 

similarly it follows that Li Pij = P~~t) . 

s,t 

s 

(k+l). 
Pi2i , 

In order to estimate Jii>( {(i, j) I i :;f j}) we note that the sums Li,j,i#j a{ji2 vanish for 
jl = hand can be estimated by p(l) in general; 
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JP>({(i,j) I i i:j}) = I:Pij 
#j 

This completes the proof. 

= I: I: astaj~ 
i#-i B,t 

= I: (I: am ast 
B,t, i#-j 

< p(l) I: ast 

= p(l)lIJ.t - vII 
< p(k)p(l). 

o 

Now we are ready to put things together, we will introduce coupled Markov chains. 
Here is the idea, a formal definition will be given shortly. 
As usual we start with a transition matrix P on a finite set S where we fix two arbitrary 
states io,jo with io i: jo· 

We want to let two walks start at the same time, one at ia, the other at ja. We will 
speak of a coupled Markov chain if the following two conditions are satisfied: 

• If one observes only one of the two walks, then it is an ordinary random walk with 
transition probabilities given by the matrix P . 

• Suppose that, for a certain k, both walks occupy the same state i in the k'th step. 
Then they stay together for all future steps. 

Here are some examples to illustrate what is meant: 

1. With S = {1,2} let P be the matrix (~j~ ij~). 
The walks start at 1 and 2, in each step they move according to the following rule: 

Throw a fair die. If it shows 1 or 2, both random walkers stay where they are, 
otherwise they exchange their positions. 

Obviously both conditions are met, the second one in a trivial sense (since the walks will 
never be at the same state.) 

2. With Sand P as in the preceding example, we change the rule (the starting positions, 
however, are as before ) : 

Throw a fair die, let the result be d. If d = 1 or d = 2, then walk 1 stays 
where it is, otherwise it changes to the (unique) other state. Walk 2 instead 
holds the present position if d = 5 or d = 6 and moves if d = 1,2,3,4. 
This rule applies until the walks have met for the first time. Then both con­
tinue to move according to the previous rule for walk 1. 

Now there is a chance that the walks meet: if they have not occupied the same position 
until the k'th step they will do so in the k + 1'th step with probability 2/3 (namely if 
d = 1,2,5 or 6). Or: only with prob ability 1/3 - if d = 3 or d = 4 - they will exchange 
their positions and therefore again fai! to meet. Thus the number of steps until the first 
coincidence is just the waiting time until the first "success" (d = 1,2,5,6), and therefore 
the expexted number of steps is 3/2. 
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3. Here we define a coupled random walk for the following chain, a variant of example 8 
in chapter 2: the states are the 0-1-sequences of length r, transitions are possible if they 
are of the form i --t i or between states which differ at just one component; the former 
have probability 1/2, the latter probability 1/2r. 

The chain pauses with a positive prob ability, and therefore it is aperiodic. It is also clear 
that every two states communicate, and hence the chain will converge to its equilibrium. 
Since P is doubly stochastic, the equilibrium is the uniform distribution: all states are 
(roughly) equally likely if the chain has run for a "long" time. 

Let i o, jo be fixed starting positions of two random walks. Here is the rule how to 
proceed if walk 1 resp. walk 2 occupies state i = (Cl, ... , Cr) resp. j = (Tl, ... , Tr ): 

Choose a co ordinate p E {I, ... ,r} and a number w E {O, I}, both according 
to the equidistribution. 

First case: i and j coincide at the p 'th bit: C p = Tp • 

Then, if w = 0, let the walks move to i' resp. j', where these states arise from 
i resp. j by switching the p'th bit; if w = 1, both walks stay where they are. 

Second case: cp =I- Tp . 

Now, if w = 0, switch the p'th bit of i; this gives rise to astate which will be 
the new position of the first walk. The second walk stays at j. If it happens 
that w = 1, then walk 1 stays at i and walk 2 switches its p'th bit. 

A moment's reflection shows that both walks really move with the desired transition 
probabilities: the probability is 1/2 for keeping the position and - for arbitrary p - 1/2r 
for switching the p'th bit. It is also clear that they will move forever together after they 
have met at the same position. 

How long will it take them to meet? Suppose that io and jo have different bits precisely 
at the components lying in Ä C {I, ... , r}. By our rule, regardless of which p has been 
randomly chosen in the k'th step, the p'th bit of the positions in the k + l'th step will be 
the same for both walks. Therefore the walks will meet precisely as soon as the random 
generator producing the p has provided all elements 01 Ä. 

It's time for a formal definition: 

Definition 13.8 Let P = (Pij)i,j=l ..... N be a stochastic matrix. We put S := {I, ... , N}, 
and we fix i o, jo E S with i o =I- jo. By a coupled Markov chain associated with P, i o, jo 
we mean two Markov processes Xo, Xl,." : n --t Sand Yo, Yl , ... : n --t S defined on 
the same probability space (n, A, IP') such that 

(i) both processes have transition probabilities according to P; 
(ii) Xo = i o, Yo = jo; 

(iii) Xk(W) = Yk(w) implies that Xk+l(W) = Yk+l(W) (all k and w). 

With every coupled Markov chain there is associated a stopping time 11:'. It is defined by 

where we adopt the usual convention that the minimum of the empty set is 00. This -
obviously - is in fact a stopping time with respect to the filtration (Fk), where Fk is the 
a-algebra generated by Xo, ... , Xk, Yo, ... , Yk 2 . 

2 To phrase it less formally: it suffices to observe the walks in order to be able to stop correctly. 
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We have already started to investigate 1I' in our previous examples: 
1. Here 1I' is the constant function 00. 

2. We have mentioned already that lP'(1I' > k) = (1/3)k and that the expectation JE(1I') of 
1I' is 3/2. 
3. In order to treat this example one has to recall some elementary facts from elementary 
probability. 
Let Ul , U2 , • .. be independent, equidistributed {I, ... , r }-valued random variables (they 
generate our p). It has been noted above that 1I' is the waiting time until the Ul , ... have 
exhausted all p in ~. This will depend on how large ~ iso In the worst case one has to 
wait until all 1, ... , r have been provided at least once3 . It is known that the expected 
value of this time is 1 +r/(r -1) + r/(r - 2) + ... +r/l, a number which can be bounded 
from above by r(1 + logr). 

Here is the main result, stopping times and couplings meet to make possible a new rapid 
mixing inequality: 

Theorem 13.9 Let P = (pij)i,i=l ..... N be (an arbitrary) stochastic matrix and io,jo E 
{I, ... , N}. Further, let (Xk ), (Yk ) be a coupled Markov chain associated with P, i o, jo 
as in the preceding definition; by 1I' we denote the waiting time until the walks meet. 
1J k is arbitrary, then IIp - vii::; lP'(1I' > k), where p, v stand Jor the measures associated 
with the i o 'th resp. the jo 'th row oJ p k . 

Proof. p and v are just the image measures of X k and Yk , respectively. Hence, by the 
coupling inequality in proposition 13.5, IIp - vii::; lP'(Xk i- Yk). But {Xk i- Yd is a 
sub set of {1I' > k} since coupled Markov chains walk together as so on as they have met, 
and thus the proof is already complete. 0 

Here are the most important consequences: 

• Suppose that you can treat all possible io,jo in a unified way. Then you obtain an 
estimate of the maximum over the possible IIp - vII, i.e., of p(k). 

• Onee you know that p(ko) is "smali" for a suitable ko you can use lemma 13.7: 
p(rko) ::; p(kor. With this lemma one also gets bounds for d(k), the maximal total 
variation distance of the (p~:L ... , pl:~) to the equilibrium. 

• If only the expeetation of 1I' is known but possibly not the explicit values of the 
lP'(1I' > k), one can still apply the theorem: 

simply use the obvious inequality (k + 1 )lP'(1I' > k) ::; JE (1I'). 

• It is apriori by no means clear how to choose an appropriate coupling in order to 
get good estimates for the mixing rate with the help of the theorem. In this respect 
the situation is similar to that of chapter 11 where the strength of what can be 
shown by using conductance methods was limited by our ability to invent skillfully 
designed canonical paths. 
We will return to this question at the end of this chapter. 

3 Some readers will have recognized that the problem we are dealing with is the coupon collector's 
problem from elementary probability in disguisej in Feller's book [30) one finds a thorough discussion. 
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Typical applications of the theorem are illustrated by the following examples: 

1. In the above example 1 (page 114) 1I' is finite for no w. Therefore our theorem only 
yields the poor estimate IIJL - vii:::; 1 (and thus p(k) :::; 1). 

2. The coupling of example 2 for the same chain works better: we get 

p(k) :::; 1P'(1I' > k) = (1/3)k. 

If it were only known that JE (1I') = 3/2 we could only conclude that 

(k + 1)1P'(1I' > k) :::; 3/2, 

that is, 

p(k) :::; 2(k ~ 1) 

3. We already know the expected value of the stopping time associated with example 3, 
and this gives the estimate p(k) :::; (r/r + r/(r - 1) + r/(r - 2) + ... + r/1)/(k + 1), i.e., 
a convergence w hich is roughly of order r log r / k. 

To get a better result we recall that 1I' > k just means that kindependent and equidis­
tributed choices out of {I, ... , r} have not produced all elements. If i o E {I, ... , r} is 
fixed, then this state will not have been chosen in k trials with probability (1 - l/r)k. 
Consequently, if we sum over all io, we get r(1 - l/r)k as abound for the probability 
that anyelement is not present after k choices. Hence 1P'(1I' > k) :::; r(l - l/r)k, and we 
arrive at p(k) :::; r(1 - l/r)k. 

To discuss this a little bit furt her we recall that 1-x :::; e-x so that (1- l/r)k :::; e-k/ r . 

Consequently, if we want to have p(k) bounded by e-c for an arbitrary e, it suffices to 
take k of order r log r + er. It follows that - not surprisingly - a doubling of r essentially 
necessitates a doubling of the number of simulation steps to achieve a similarly small 
p(k), i.e., a similar precision of approximation. 

4. Let P be a strictly positive stochastic matrix, we will apply the preceding theorem to 
give another proof of the fact that (pk ) converges to a matrix with identical rows. 

It will suffice to show that (p(k)h tends to zero, and this will be proved by considering 
suitable couplings. We fix i o and jo as the starting positions of two walks, and we prescribe 
transitions as follows: 

Suppose that the walks have not yet met. Then the next step is for both as 
prescribed by P, and the two new positions are generated independently. 
From the first meeting on they move together, only one random choiee (ac­
cording to the appropriate P-probabilities) is necessary. 

It is plain that this rule meets the requirements of coupled Markov chains. To apply 
theorem 13.9 we have to analyse the associated stopping time 1I'. 

Let p be the positive number minij Pij and suppose that at step k the two walks still 
occupy different positions, i' and j' say. Since we choose the next position independently, 
we can assure that - for arbitrary i, j - they will be next at i (walk 1) resp. j (walk 2) 
with prob ability Pi' iPj' j. Therefore the probability that they meet is L:i Pi' iPj' i, a number 
which is bounded from below by N p2 • And thus only with probability (1 - N p2 )k a 
meeting will not have taken place in k steps: 
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This really implies that p(k) ~ 0; the rate of convergence, however, is much worse than 
that we have obtained by other methods (see proposition 10.5) . 

. 5. We are now going to analyse the random-to-top-shuffie (cf. also example 5 in chapter 2). 
There is given a deck of r cards, they are - from top to bottom -labelled 1, ... ,r. Shuffiing 
is defined by selecting a card at random and putting it to the top. How often will it be 
necessary to shuffie this way until the cards in the resulting deck lie such that all of the 
r! permutations are (approximately) equally probable4? 

In order to prescribe a coupling rule we start with two fixed permutations of the cards 
(that is, with two points of our state space), we think of them as two decks of r cards 
which are labelled as above and which are in some fixed order at the beginning. Here is 
the rule: 

Select p E {1, ... ,r} uniformly at random. pis used to perform the transitions 
in the two decks: in deck 1, the p'th card - counted from above - is put on 
top. Let this card have the label l, say, then in deck 2 also the label-l-card 
will move to the top, regardlcss of where it is found5 . 

By this rule, after any move the uppermost cards in both decks coincide. It is also clear 
that both decks "move" together as soon as their cards are in the same order and that 
they transform according to the correct transition probabilities: every individual carel. has 
the same chance to be the card on top next, the reason is that the uniform distribution 
is invariant with respect to permutations. 

The problem to estimate '[' for this coupling leads to similar questions as in the above 
example 3. Both decks will coincide as soon as every number in {1, ... ,r} has been chosen 
as a p. We omit to repeat the above discussion. 

How powerful is the coupling method? 
Any coupling can be used to get bounds for the p( k), but the discussion of the examples 

has shown that it is not a simple task to get "good" inequalities in this way. What are the 
theoreticallimits of this method, is it always possible to get the best possible estimates? 
Does there exist, for arbitrary 5, P, i o, io, a coupling such that equality holds for every 
kin the inequality of theorem 13.9? The answer is yes, the proof is due to Griffeath ([39], 
[40]), for different approaches see [62], [38], and [71]. 

The construction of this optimal coupling, however, is extremely involved, it is far 
beyond the scope of this book. Let us try to understand the difficulties. 
We consider 5 = {1, 2, 3, 4} together with the stochastic matrix 

(
2222) 1 3 3 1 1 

8 2 2 2 2 ' 
3 3 1 1 

and we want to study couplings for walks which start at io = 1 and io = 2. Our very 
modest task will be to find a coupled Markov chain for P, io, io such that theorem 13.9 
gives the best possible result for the first two steps of the chain. 

4 Note that also in this example the equilibrium is the uniform distribution, see exercise 7.l. 
5 If, e.g., T = 6 and the two decks are Dj = (124653), D2 = (653214), then the choice p = 3 would lead 

to Dj = (412653), D2 = (465321). 
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As apreparation we calculate p 2 : 

( 
5 5 3 

D 1 5 5 3 
-
16 5 5 3 

5 5 3 

and we define measures 

f.l = (2/8, 2/8, 2/8, 2/8), v = (3/8, 3/8, 1/8, 1/8) 

(= the first two rows of P) and 

f.l' = v' = (5/16, 5/16, 3/16, 3/16) 

(= the first two rows of p 2 ). We need a stochastic rule which controls the two walks such 
that: 

1. After the first step the prob ability that they occupy different positions is 11f.l- vii = 
1/4; the various states of S have to be chosen in accordance with f.l and v for the 
two walks. 

2. Also in the second step they move as prescribed by P (and they move in the same 
way if they have met in the first step). Also it is necessary that they now occupy the 
same position with probability one (in order to have 1If.l' - v'lI = 0 = IP(X2 :/; Y2)). 

To satisfy "1." we need a coupling for f.l and v. Two of them have been presented af­
ter definition 13.1, but both fail to fulfill "1.". With a glance at the construction in 
proposition 13.4 we can be more successful, we see that every coupling of the form 

l 2 0 
~ 0 2 
800 

o 0 

Pl3 
P23 
1 
o 

P14] P24 
o 
1 

- with a doubly stochastic matrix [P13 P14] - gives the desired result. To satisfy 
P23 P24 

"2." one has to choose these Pij carefully. Consider, e.g., p23/8. This is the probability 
that after the first move walk 1 resp. walk 2 occupies state 2 resp. 3. The next step 
has to be according to P, that is as described by the measures which correspond to the 
rows 2 and 3 of this matrix. The variation distance of them is different from zero, and 
thus there is no hope to find a coupling with zero entries off the diagonal. Therefore we 
cannot succeed to fulfill requirement "2." if it happens that P23 is different from zero. By 
a similar reasoning we convince ourselves that P14 will have to vanish, and consequently 
the only coupling für the first step with which we might hope to be successful is 
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In fact this works! If we continue to couple carefully we can ar.hieve our goal that the 
walks move together after the second step. If it happens, for example, that they are at 
states 1 and 3 we let them both choose the next position according to the probability 
law (1/4, 1/4, 1/4, 1/4). This is the first and the third row of P, thus they move in 
accordance with the prescribed transition probabilities, also they are at the same place 
after this move. Similarly one deals with the case "walk 1 at 2, walk 2 at 4", then for 
both the law (3/8, 3/8, 1/8, 1/8) is relevant. 

The moral of the story is that in choosing even the first coupling rule one has to 
take into account how the future moves are governed by P. This makes the construction 
extremely difficult, even an optimal rule for ko steps for moderate ko will be an extremely 
demanding task. And therefore the fact that coupling methods are able to provide the 
best possible bounds for the mixing rate is mainly of theoretical interest. 

Exercises 

13.1: Let (J..Ll, ..• ,J..LN) and (Vl, ..• ,VN) be fixed probability distributions and CJ.1.,V the 
collection of all couplings for J..L and v. Prove that CJ.1.,V is a nonvoid compact convex set 
(in IRN2 , if we identify couplings with suitable matrices). 

13.2: Let J..L = (I/N, ... , I/N) be the uniform distribution and v = (1,0, ... ,0) the point 
mass at 1. Determine all extreme points of CJ.1.,v. 

13.3: Couplings can be defined more generally. If, e.g., J..L and v are probability measures 
on [0,1], then a coupling of J..L and v is a measure r on the square with marginals J..L and 
v. Prove the easy part of the coupling inequality in this more general setting: 

suplJ..L(A) - v(A)I::; r({(x,y) I x i= y}), 

where the supremum is taken over all measurable A C [0,1]. 

13.4: Denote by C~,v the collection of maximal couplings for J..L and v (the notation 
is as in exercise 13.1; a coupling is called maximal if it provides "=" in r,he coupling 
inequality). Prove that this set is a nonvoid closed face in CJ.1.,/I (cf. exercise 1.2). 

13.5: Let J..L be a fixed probability measure on {I, ... , N}. Characterize the prohability 
measures v such that there is precisely one maximal coupling for J..L and v. 

13.6: Let J..L be the uniform distribution on {I, ... , N}. For what probability measures v 
is the total variation distance from J..L to v as large as possible? 

13.7: What are the probability distributions (J..Ll, ... , J..LN) and (VI, ... , VN) such that 
there exists a coupling with 

r({(x,y) I x i= y}) = I? 

13.8: Consider an arbitrary Markov chain on a finite state space. Does there exist, for 
different states i o, jo, a coupled Markov chain (Xk), (Yk) associated with P, i o, jo such 
that the X k never meet the Yk ? 

13.9: Choose any stochastic 2x2-matrix P which is not the identity matrix. Find best 
possible couplings for the first two steps of the chain similarly to our example from the 
end of the chapter. 
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14 Strong uniform times 

The technique we are going to describe now was introduced in the eighties by Aldous and 
Diaconis (see [24], [3], [4]). As in the previous chapter stopping times play an important 
role, the reader can find the necessary prerequisites in chapter 12. 

The notation will be as before, in order to have a unique equilibrium 1f it is assumed 
that the matrix P under consideration is irreducible. Let X o, Xl, . .. : 0 -+ S be any 
Markov pracess with transition probabilites prescribed by a stochastic matrix P, the 
starting distribution might be arbitrary. Sometimes it is possible to stop the process in 
such a way that the states where one decides to stop are distributed in accordance with 
1f. To apply such a stopping ruIe it might be necessary to have more information than 
just the knowIedge about the walk up to the present positions, and therefore we cannot 
restrict ourselves to stopping times with respect to the natural filtration. 

The stopping times we have in mind must have the special praperty that the necessary 
information to stop correctly does not spoil the Markov property. To be more precise, 
denote by Fft' c Fra' c ... the natural filtration 1 . In the proof of theorem 12.4 we have 
shown that 

for every B E Fka'. Summation over all i 1 , ... ,ir - 1 leads to 

P(B n {Xk = i o, Xk+r = ir}) = lP'(B n {Xk = i o} )pl:ir 
lP'(B n {Xk = i o} )lP'(Xk = i o I Xk+r = ir), 

that is to lP'(Xk+r = i r I X k = i o) = lP'(Xk+r = i r I Xk = i o, B). 
This can be rephrased by saying that the additional information given by such a B does 

not influence the transition prababilities. We are interested in filtrations which behave 
similarly: 

Definition 14.1 Let X o, Xl, ... be as before and Fo C F 1 C ... be a filtration on 
(0, A, lP') such that Fka, C Fk for all k (so that (Xk ) is adapted). A stopping time 
1I' : 0 -+ {O, 1, ... , (Xl} with respect to this filtration will be said to be compatible with 
the Markov property of (Xk) if 

lP'(Xk+r = i r I X k = i o) = lP'(Xk+r = i r I Xk = i o, B) 

holds for every B E Fk and all io, i r in the state space2 . 

We have just convinced ourselves that the natural filtration has this property, furt her 
examples will be given later. 
Of particular importance will be stopping times 1I' such that the stopped pracess is 
distributed like 1f: 

1 cf. definition 12.l. 
2 Note that this property only depends on the filtration and not on the stopping time. Therefore it is 

a slight abuse of language to speak of a time which is compatible with the Markov property. 
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Definition 14.2 Let 'f be a stopping time as in the preceding definition. We say that 'f 
is a strang uniform time if 

(i) 'f is finite with probability one, and 
(ii) lP'(Xk = i I 'f = k) = 7ri far every k and every i. 

(This means that, regardless of when the chain is stopped, the states where this happens 
are distributed exactly in accordance with the equilibrium.) 

As a simple illustration consider a chain where P is such that pko has identical rows 
for a suitable ko (as it happened with ko = 2 and 

at the end of the previous chapter). Then all these rows are identical with 7r T, and 
consequently the deterministic time 'f = ko will be a strong uniform time with respect 
to the natural filtration. 

We aim to apply this new concept to estimate the mixing rate: 

Proposition 14.3 Let P be an irreducible stochastic matrix with equilibr'ium 7r and 
(Xkh=o,l,oo. a Markov process governed by P. 
If we denote, for fixed k, by v the distribution of X k (i.e., Vi := lP'(Xk = i)), then the 
variation distance 117r - vii is bounded by lP'('f > k) for any strang uniform time. 

Praof. Fix k 2:: 0, i,j E Sand consider any k' :::; k. The set {'f = k'} lies in Fk' so that 

lP'(Xk = i I X k, = j, 'f = k') = lP'(Xk = i I X k, = j). 

This together with the strong uniform time property of 'f yields 

lP'(Xk = i, 'f = k', X k, = j) lP'(Xk = i I 'f = k', X k , = j)lP'('f = k', X k, = j) 

= lP'(Xk = i I X k, = j)lP'('f = k', X k, = j) 

lP'(Xk = i I X k , = j)lP'(Xk, = j I 'f = k')lP'('f = k') 

p;7-k')7r j lP'('f = k'). 

Now it is of importance that 7r satisfies 7r T P = 7r T (and thus also 7r T p k - k ' = 7r T). It 
follows that the sum over the preceding equations with different j is just 7ri lP'('f = k'). 
Hence 

lP'(Xk = i) > lP'(Xk = i, 'f :::; k) 

L lP'(Xk = i, X k, = j, 'f = k') 
k' s,k, jES 

L 7ri lP'('f = k') 

= 7ri lP'('f:::; k) 

7ri(l - lP'('f > k)). 

Now let A c S be arbitrary. By our inequalities we have 



Chapter 14: Strong uniform times 

v(A) JlD(Xk E A) 

LJlD(Xk=i) 
iEA 

iEA 

7r(A)(l - JlD(1f > k)), 

123 

and it follows that v(A) - 7r(A) :S 7r(A)JlD(1f > k) :S JlD(1f > k). By the remark after the 
proof of lemma 13.3 this proves that Ilv - 7r11 :S JlD(1f > k). 0 

Some comments are in order. First, the end of the proof (where we have estimated 
7r(A) :S 1) shows that we could have proved a sharper estimate. We refer the reader 
to [4] where a distance different from our variation distance is introduced to obtain 
the best possible bound by using 1f. There it is also sketched how one can "construct" 
strong uniform times which prüvide sharp estimates for every k. (This, however, makes 
it necessary to extend the not ion of stopping times, one has to deal with randomized 
stopping tim es. Also the construction necessitates to know explicitly all p~~) , and therefore 
it seems to be only of theoretical interest.) Also, all remarks corresponding to those after 
theorem 13.9 can also be made here, in particular an approach which is independent of 
the starting position will provide bounds für the p(k). 

We are now going to study some examples. Note that one is faced with two problems. 
The first is to invent a stopping rule 1f which uses "not too much" information and 
nevertheless provides the equilibrium distribution, the second is to estimate the numbers 
JlD(1f> k) in order to get bounds for the mixing time. 

1. In the rat her trivial example after definition 14.2 the theorem gives the obviously true 
estimate Ilv - pli = 0 = JlD(1f > k) whenever k 2': ko· 

2. Let, for the state space {I, 2, 3, 4}, the transition matrix be defined by 

(

Pu 

P = P21 

P31 

1/4 

P12 

P22 

P32 

1/4 

P13 1/4) 
P23 1/4 
P33 1/4 ' 
1/4 1/4 

where the Pij are strictly positive such that Li Pij = Lj Pij = 3/4 for all i, j. Since P is 
doubly stochastic, the equilibrium distribution is the uniform distribution. 

We consider a randüm walk which starts at state i o = 1 (the cases i o = 2,3,4 can be 
treated similarly, for the case i o = 4 it is surely optimal tü stop deterministically after 
the first step). We consider the following stopping rule which will be called 1f: 

Stop one step after the walk has been in position 4 for the first time. 

One can stop in accordance with this rule by just observing the walk, and therefore 1f 
is a stopping time with respect to the natural filtration. 1f is in fact a strong uniform 
time: it is compatible with the Markov property of the process, it is almost surely finite 
(since the prob ability to jump from {I, 2, 3} to 4 in the next step is 1/4), and since the 
last row of P is the uniform distribution, all states are equally likely to be the position 
of the walk at time 1f. The theorem asserts now that the variation distance between the 
first row of p k and the equilibrium is at most JlD(1f > k) = (3/4)k. 
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3. We now investigate the top-to-random-shu[fie. Our r cards are labelled 1, ... , r, and 
at the beginning the deck is in canonical order with card number r at the bottom. How 
often is it necessary to "shuffle" in the top-to-random way to be able to guarantee that 
all possible permutations of the cards are (nearly) eqllally likely? 

As in the case of the random-to-top shu[fie (see example 5 after theorem 13.9) it is 
necessary to observe that the chain has the uniform distribution as its equilibriumj this 
is left to the reader. We will provide bounds of the mixing time by investigating suitable 
uniform times. 
The stopping time we have in mind is defined as follows: 

Stop one step after the card with label r has reached the top position. 

Here is an example with r = 4, we start with the permutation (1234). Suppose that a random 
generator pro duces equidistributed elements in {1, 2, 3, 4} as folIows: 

1,2,4,4,3,4 ... 

Then the deck "walks" as follows (the starting position is included): 

(1234) -+ (1234) -+ (2134) -+ (1342) -+ (3421) -+ (4231) -+ (2314), 

and here we stop. 

This is a stopping time with respect to the natural filtration, hence wc only have to 
check whether it is almost surely finite and whether the stopped positions are equidis­
tributed. 

To this end, we analyse the behaviour of the last card, the label-r-card. It will move 
from its original position to the r-l 'th position precisely when our random generator has 
provided the nu mb er r. This has a probability l/r and therefore the expected waiting 
time for this to happen is r. The next move upwards of the r-card happens when an 
element of {r-l, r} is chosen. This results in an expected waiting time of r /2 since the 
probability of "success" is 2/r. Note that we find at the positions r-l,r two cards C1,C2 

from {I, ... , r-l} where both relative orders have the same prob ability. 
Continuing this way we observe sooner or later that our card arrives at the top. For 

the last step we only have had an expected waiting time of r / (r-l), and in the positions 
2 to r we find any ofthe permutations of {l, ... ,r-l}, all being equally likely. Finally, 
the last step pro duces a perfectly random permutation of {l, ... , r}. 

The expected waiting time to arrive at this point is the number r + r/2 + ... + r/r 
which is ~ (r+ 1) logr. Hence 'lI', having a finite expectation, must be finite almost surely. 
That Xl!' is equidistributed has also been shown, and thus 'lI' is a strong uniform time. 

To get bounds for p(k) we have two choices. The first one is to use the fact that always 
lP'('lI' > k) ~ JE ('lI')/(k+ 1) which in our case provides d(k) ~ (r+ 1)(1 +logr)/(k+ 1). Also 
one could try to bound {'lI' > k} directly. Denote the waiting times we have considered 
in the above analysis by 'lI'1, 'lI'2, ... , 'lI'r: 'lI'1 (resp. 'lI'2 resp .... ) is the moment when the 
bottom card moves for the first (resp. second resp .... ) time. Then 'lI' = 'lI'1 + ... + 'lI'r, 
and therefore 'lI' will be greater than k only if at least one of the 'lI'p is greater than kir. 
It follows that 

lP'('lI' > k) < lP'('lI'1 > kir) + ... + lP'('lI'r > kir) 
= (1- l/r)k/r + (1 - 2/r)k/r + ... + (1- r/r)k/r 

< r(l - l/r)k/r 

< r exp (-k/r2 ). 
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4. We treat once more the collection S of 0-1-sequences of length r. Transitions are 
possible if they are of the form i ~ i (prob ability 1/2) or between states which are 
different at precisely one component (probability 1/2r); see page 114. Note that, since 
the associated transition matrix is doubly stochastic, the equilibrium distribution is the 
uniform distribution. 

A realization of this chain could be defined by the following rule (the chain is assumed 
to start, e.g., at (0, ... ,0)): 

Choose a random position p in {I, ... , r} and throw a fair coin. If it shows 
head, then don't move, otherwise switch the p'th component. 

This rule obviously pro duces the desired transition probabilities, a more formal real­
ization can also ea.':lily be given. 

One only has to choose a prob ability space (n, A, lP') together with independent ran­
dom variables UI, U2, ... , VI, V2, ... such that the Uk (resp. the Vk) are identically 
distributed, and lP'(Uk = p) = 1/r for p = 1, ... ,r and lP'(Vk = c:) = 1/2 for c: = 0,1. 
Then the Uk, Vk give rise to an appropriate Markov process Xo, Xl, ... : n ~ S: 
Xo := (0, ... ,0), and the choice of Xk+l given Xk depends on the values of Vk, Uk 
according to the above rule. 
H, e.g., r = 4 and the first pairs (Uk, Vk) happen to be (4,0), (3,0), (2,1), (3,0), ... , 
then the Xo, Xl, ... are (0,0,0, 0) ~ (0,0,0, 0) ~ (0,0,0, 0) ~ (0,1,0, 0) ~ 
(0,1,0,0). 

Our candidate for a strong uniform time for this process is defined as follows: 

Stop as soon as the U1 , U2 , • •• have covered all of {I, ... ,r}, that is 

'['(w) := min{k I {Uk'(W) 11 ~ k' ~ k} = {I, ... ,r}}. 

It has to be emphasized that this is not a stopping time with respect to the natural 
filtration, and therefore we have to check more carefully whether proposition 14.3 can be 
applied. It is clear that we will have to deal with the filtration (Fk) defined by Fk := the 
C1-algebra generated by UI , ... , Uk, VI, ... , Vk. Surely this is an appropriate filtration to 
make '[' a stopping time, and the process will also be adapted. 
Claim 1: '[' is almost surely finite. 
This is clear, see the discussion of the examples at the end of chapter 13. 
Claim 2: '[' is compatible with the Markov property. 
Naively this is obvious, the next state only depends on the present position and not 
on the special way it has been produced by the first U's and V's. For the sake of easy 
reference we include a general argument in the next lemma which covers the case under 
consideration. 
Claim 3: '[' is a strong uniform time. Let p be an element of {I, ... , r}. Then the p'th 
component of Xk is 0 or 1 with equal prability, regardless of for how many k' ~ k we have 
had Uk' = p (provided there is at least one such k'); this follows from the independence 
of the UI , ... , VI, .... Hence, if we stop after all p's have occurred - immediately or later 
- we necessarily are at astate for which at every component both values 0 and 1 are 
equally likely, and these values are independent for different p. To phrase it otherwise: 
the distribution of Kr is the r-fold product of the uniform distribution on {O, I}, i.e., the 
equidistribution on S. 
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In the last example we have claimed that the way how we have generated the process 
and defined '[' has given rise to a stopping time which respects the Markov property. This 
is true in many similar situations, an appropriate generalization reads as follows: 

Lemma 14.4 Let S be a finite set and (0, A, IP') a probability space together with equidis­
tributed independent random variables Wl , W2 , .•• which are defined on 0 and have values 
in an arbitrary measurable space (0' , A'). Suppose that there is given a measurable junc­
tion ! : S x 0 ' -+ S which we use to define a process X o, Xl, ... : 0 -+ S as follows: 
X o is the constant junction i o (where i o is a fixed state), Xk(w) := !(Xk-l(W), Wk(W)) 
for k ~ 1. Then: 

(i) (Xk) is a Markov process with transition probabilities Pij = 1P'(f(i, W l ) = j). 
(ii) 1f Fo denotes the trivial a-algebra and, for k ~ 1, Fk the a-algebra generated by 

Wl , . .. , Wk, then X o, Xl is adapted and every stopping time with respect to this 
filtration respects the Markov property. 

Proof. First one has to check that the X k are measurable, but this follows easily by 
induction on k from the formula 

{Xk = i} = U( {Xk- l = j} n {t(j, Wk) = i}). 
j 

That the (Xk ) are a Markov process with the Pij as transition properties is left to the 
reader (see exercise 14.6). Clearly the X k are adapted to (Fk), it remains to show that 

for Bin Fk. 
We denote by gr : S x (O't -+ S the r-fold "composition" of ! with itself: gl := !, 

and 

gr(i, w~, ... , w~) := !(gr-l(W~, ... , W~_l)' w~). 

Then, by definition, Xk+r = gr(Xk, (Wk+l, ... , Wk+r)). Now consider the set B' .­
{gr(i, (Wk+l, ... , Wk+r)) = j}. This set is independent of the B E Fk, and therefore it 
follows that 

IP'(B', X k = i, B) = IP'(B')IP'(Xk = i, B) 

as weIl as 

IP'(B', X k = i) = IP'(B')IP'(Xk = i). 
But {Xk+r = j, Xk = i} = B' n {Xk = i}, and we conclude that 

IP'(Xk+r = j, X k = i, B)IP'(Xk = i) = IP'((B', X k = i, B)IP'(Xk = i) 

= IP'(B')IP'(Xk = i, B)IP'(Xk = i) 
IP'(Xk = i, B)IP'(B', Xk = i) 

= IP'(Xk = i, B)IP'(Xk+r = j, X k = i). 
This is precisely the formula for the conditional probabilities we have to show, and 

hence the proof of the lemma is complete. 0 

Remark: Did you recognize the construction of the previous example? There 0' 
{I, ... , r} x {O, I}, W corresponds to (U, V), and ! is the function 
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Exercises 

14.1: Characterize the stochastic matrices P such that the constant time 1f = ko is a 
strong uniform time. 

14.2: Let 1f be a strong uniform time. Is 1f + 1 also a strong uniform time? Or 21f? 

14.3: Is it possible to find a strong uniform time for an arbitrary homogeneous Markov 
chain? 

14.4: Construct a filtration together with a stopping time 1f such that 1f is not compatible 
with the Markov property. 

14.5: Prove that the time 1f of example 4 before lemma 14.4 is not a stopping time with 
respect to the natural filtration. 

14.6: In lemma 14.4 we have defined a process (Xk ) from random variables (Wk ). Prove 
that (Xk ) is a Markov process. 
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15 Markov chains on finite groups I 
(commutative groups) 

We now turn to state spaces which have the additional structure of a group; implicitly 
we have already met them, e.g., when prescribing rules like "with equal probability go 
to i + 1 mod N or to i-I mod N" (on {O, ... , N -I}). In a group it is possible to move 
from astate i to a new position by composing i with the elements j of the group, where 
j is chosen in accordance with a certain probability law which is independent of i (in the 
preceding example + 1 and -1 have been chosen each with prob ability 1/2). 

Let (C, 0) be any finite group, we will denote the elements by 9, h, .... Every probability 
measure lP'o on C gives rise to a Markov chain with state space C if we define the transition 
probabilities by 

Pg,hog := lP'o( {h}) (or Pg,h := lP'o( {h 0 g-l})) for g, hE C. 

To state it otherwise: if the chain is now in position g, we choose an h in accordance 
with the probability law lP'o; the next position will then be ho g. 
(Note that we multiply the random element h from the Zeft; multiplication from the right 
leads to similar results.) 

Here are two examples: 

1. Denote by C the group {O, IV (addition is component-wise modulo 2). A 
probability measure lP'o on C is defined by 

lP'o(O, ... ,0) .- 1/2 

lP'o(l, 0, ... ,0) .- 1/2r 

lP'o(O, 1,0, ... ,0) .- 1/2r 

lP'o(O, ... ,0,1) . - 1/2r . 

The associated chain is equivalent with the random walk on the hypercube 
which we have already met several times (cf. example 3 on page 114). 

2. Let C = Sr be the group of permutations of r elements. Denote, for k = 
1, ... ,r, by IIk the following permutation: 

IIk := (1 2 . .. k - 1 k k + 1 . .. r) 
k 1 ... k-2 k-l k+l ... r 

(II1 is the identical permutation). We define lP'o such that all IIk have the same 
prob ability l/r. Do you recognize the top-to-random-shuffle chain (chapter 
14, page 124)? 

Lemma 15.1 With the preceding definition of the transition probabilities the following 
assertions are true: 
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(i) The Pg,hor; are the entries of a stochastic matrix; in fact this matrix is doubly 
stochastic so that the uniform distribution is the equilibrium distribution. 

(ii) Let H be the subgroup generated by supp lP'0 := {h llP'o(h) > O}, the support of lP'0. 
The irreducible subsets of the chain are precisely the sets of the form H 0 9 with 
9 E C, that is, the left conjugacy classes. In particular the chain is irreducible iff 
supp lP'0 generates C. 

(iii) The chain is aperiodic and irreducible iff there is a k such that every element 0/ 
C can be written as the product 0/ k elements, each lying in supp lP'0. 

Proof. (i) It should be obvious that the sum over each row of the transition matrix is 
one. For the second part fix any go, we have to calculate the sum over all probabilities 
to jump from an arbitrary 9 to go. Since there is precisely one h which gives rise to this 
transition, namely gOg-1, we have to evaluate the sum L: lP'O(gOg-l). But the collection 

9 

of all gOg-l coincides with C, hence this sum is the total mass of lP'0. 
(ii) Let go be arbitrary. If the chain starts there, one may arrive with a positive probability 
at all states of the form gr 0 ... 0 gl 0 go with arbitrary rand gl, ... ,gr in the support of 
lP'0. Therefore the claim is that H coincides with 

Hf := {gr 0···0 gl IrE N, gl, ... ,gr E supplP'o}. 

Hf is clearly a subset of H, it remains to show that Hf is a group. Let 9 be an arbitrary 
element of the support. Since the group is finite there is a k with gk = e (= the neutral 
element), and therefore Hf contains the inverse gk-1 of g. It follows that inverse elements 
of arbitrary elements of Hf are also in this set: (gr 0 ···0 gl)-l = g1 1 0 ···0 g;l. That 
Hf is closed with respect to multiplication is clear. 
(iii) The property described in (iii) is nothing but the statement that the k'th power of 
the transition matrix is strictly positive. Therefore the assertion follows from part (ii) of 
lemma 7.3. 0 

Given C and lP'0, what are the properties of the associated chain? In particular, what 
are the relevant objects to investigate rapid mixing? It will turn out that an answer can 
be given which depends on harmonie analysis. 

In the present chapter we discuss the case of commutative finite groups, in this partic­
ularly simple setting it is easier to understand the underlying ideas: characters, Fourier 
transform of functions and measures, convolutions and the role of the Plancherel theorem 
to bound the variation distance between measures. The investigation of arbitrary finite 
groups is postponed to the next chapter. The strategy is essentially the same, the tech­
nicalities, however, are considerably more demanding. 

In this chapter (C, +) will be a finite commutative group, the "group multiplication" 
is written "+", the neutral element will be denoted by "0". Whereas it is known what 
such groups look like explicitly we prefer to regard (C, +) as an abstract object. We are 
mainly interested in the following questions: 

• How is it possible to relate the abstract group C with mure concrete objects like 
numbers? 
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• If lP'o is a probability measure on G, how can one describe explicitly the measures 
which correspond to the k-step transitions of the Markov chain associated with G 
and lP'o? 

• What quantities have to be known in order to decide how fast this chains converges 
to its equilibrium? 

Note that the distance to the equilibrium 7r T does not depend on the starting 
distribution since 7r T is the uniform distribution: walks which start at astate 90 

are equivalent with a translation by 90 of walks starting at 0; and the uniform 
distribution is invariant with respect to translation. 

Characters 

The crucial idea to tackle the first problem successfully is to consider appropriate maps 
from G to the complex numbers: 

Definition 15.2 Denote by (f,·) the multiplicative group of all complex numbers of 
modulus one. Then a chamcter on G is a group homomorphism X from G to f: 

X(g + h) = X(g)X(h) 

for all g, h E G. 

It is not difficult to check that characters have the following properties: 

With X, Xl, Xz also X (= the map which assigns to g the complex conjugate 
X(g) of X(g)) and XIXZ are characters on G; X is the inverse 1/x of X; the 
constant map g 1-+ 1 is a character (the trivial chamcter X',iv on G); the 
collection 0 of all characters forms a commutative group with respect to 
pointwise multiplication (0 is called the chamcter group of G); if G has N 
elements, then the range of any character on G is contained in the set of the 
N'th roots of unity, Le., in 

{exp (27rijjN) I j = 0, ... , N -I}; 

in this and in the following chapter i will denote the complcx number A. 
(The proofs are simple; the last property, for example, is a consequence of the fact that 
g + g + ... + g, a sum with N summands, is the neutral element 0 and that 0 is mapped 
to 1 by every character.) 

Here are some examples 01 chamcters. 

1. Consider first ZN = (ZjNZ, +), the group {O, 1, ... ,N - I} of residues modulo N 
with addition modulo N. A moment's reflection shows that Xj : a 1-+ exp (27rijaj N) 
defines a character for every j. Conversely, if X is an arbitrary character of this group, 
then - since G has N elements - X(l) must be of the form exp (27rij j N) for a suitable 
j. This means that X and Xj roincide at I, and since this element generates G and since 
both X and Xj are characters it follows that X = Xj· 

Therefore j 1-+ Xj is an onto mapping from G to O. Obviously it is also one-to-one and 

a group homomorphism, and thus (G, +) and (0,·) are isomorphie. 
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2. Let G = {O, 1Y, with component-wise addition modulo 2. How is it possible to assign 
complex numbers to the 9 E G such that sums are mapped to products? 

Since 9 + 9 = ° for every 9 the range of any character will be in {-I, + 1 }. Also i t is 
clear that a character is determined by its values on the "unit vectors" el := (1,0, ... ,0), 
e2 := (0,1,0, ... ,0), ... , er := (0, ... ,0,1) since these elements generate G. Therefore it 
is natural to try adefinition which assigns an arbitrary number Ck in {-I, +1} to ek: 

. (' . ) i, i2 i r XC, ... Cr· tl,··· ,tr t-+ Cl C2 .. 'cr 

for (Cl, ... ,Cr) E {-l,+lY and (il, ... ,ir ) E G. It is clear that all these maps are 
characters, that all of them are different and that every character has this form. Thus 
the map (Cl, ... ,Cr) t-+ XC, ... Cr is a bijection between {-l,+lY and G, and it is also a 
group isomorphism if { -1, + 1 Y is provided with component-wise multiplication. This 
group is isomorphie with G so that - as in in the preceding example - G and its character 
group are isomorphie. 

This is a general fact, G and Gare always the same groups if Gis finite and commutative: 

Lemma 15.3 Let (G, +) be a commutative graup with N elements. The N -dimensional 
veetor spaee of all mappings fram G to C will be denoted by Xc, and this spaee will be 
provided with the sealar praduet (!l, h)c := L.: g h (g)h(g) IN. 

(i) Let X be a eharacter whieh is not the trivial eharaeter Xt'iv' Then L.: J X(g) = 0. 
(ii) In the Hilbert spaee (Xc, (., ')c) the family of eharaeters forms an orthonormal 

system. 
(iii) Any eolleetion of eharaeters is linearly independent. 

(iv) G has at most N elements. 

(v) In fact there exist N different eharaeters so that G is an orthonormal basis of 
Xc. Also (G,+) is isomorphie with (G,·). 

Proof. (i) Fix an arbitrary go and calculate L.:g X(gO + g). On the one hand - since X is 
multiplicative - this sum equals X(go) L.:g X(g). On the other hand the go + 9 run through 
every group element precisely once if 9 runs through G, and consequently we have 

X(go)(L X(g)) = L X(g)· 
g g 

Thus L.:g X(g) = ° provided that we can find some go with X(go) :f:. 1. 
(ii) That two different characters Xl, X2 are orthogonal follows from (i) since the scalar 
product (Xl,X2)C is (up to the factor 11N) the sum L.:X(g) with the character X = 
XlX;l = XlX2. They are also normalized due to the factor 11N in the scalar product. 
(iii), (iv) These assertions follow immediately from (ii) (note that Xc is N-dimensional). 
(v) Whereas the preceding proofs have been self-contained this part needs the result that 
commutative finite groups are products of cyclic groupsl (see [46], theorem 3.13). With 
the help of this fact the proof is simple, it even provides another verification of part (iv). 

The assertion is true if G is a cyclic group ZN, this is just what we have shown in 
example 1 above. Also, the characters of a product group GI x G2 are precisely the maps 
(gi, g2) t-+ Xl (gdX2(g2) with Xl E GI and X2 E G2 (this is an easy exercise), a fact which 
can be rephrased by saying that 

1 We will give a self-contained (and rather lengthy) proof of the corresponding statement for arbitrary 
finite groups in the next chapter. 
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is a bijection from GI x G2 to C;:;C2 . This map is even a group isomorphism, and thus 
(v) is true for a product if it holds for the factors. 
Since G can be built up this way from cyclic groups the result follows. 0 

By the lemma the set of characters G is an orthonormal basis of the Hilbert space 
(Xa, (., ')a)' This has some remarkable consequences: 

Corollary 15.4 
(i) Let 1 be any element 0/ Xa. Then 1 can be written as a linear combination 0/ 

the X E G as /ollows: 

1 = 2:U,X)aX, 
x 

(ii) FOT" different g, hE G there is a character X such that X(g) f= X(h). 

Prao/. (i) is an explicit restatement of the fact that the X form an orthonormal basis, 
and (ii) follows easily from (i): it suffices to consider an 1 with I(g) f= I(h). 0 

Fourier transform of functions 

Now we introduce the Fourier trans/orm 0/ /unctions on G; this is apreparation to 
treat the Fourier trans/orm 0/ prabability measures which will be of crucial importance 
in the sequel. 

Definition 15.5 Let 1 : G -+ <C be any function. We define the Fourier trans/orm j 0/ 
1 by 

, ~ 1 " I: G -+ <C, X t-+ N L... I(g)x(g)· 
9 

The following properties are easy consequences of the definition or of lemma 15.3: 

• 1 t-+ j is a linear map from the complex-valued functions on G to the complex­
valued functions on G. 

• The Fourier transform of a character X is the indicator function of the set {X}: 
x(X' ) vanishes for X' f= X and is one at X' = X· 

• There are N different X and therefore the range of the Fourier transform is N­
dimensional. Consequently - as an onto linear map between N -dimensional vector 
spaces - it is also one-to-one. 

An explicit description of the inverse map is easy: 

Lemma 15.6 (Inverse Fourier transform ) 
Any / E Xa can be reconstructed from j by the lormula 

I(g) = 2: j(X)x(g) fOT" gE G. 
x 
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P1'00f. We already know that 1 f-t ! is a bijection, and therefore it suffices to check 
the formula for the elements of C, they are a basis of Xa. But for 1 = XO E C the 
Fourier transform is zero resp. one for X i=- Xo resp. X = Xo so that the sum reduces to 

xo(g) = Xo(g). 0 
The Fourier transform is not only a bijection between the spaces of complex-valued 

functions on G and C, respectively. It even is an isometry if we measure the size of a 
function by its (suitably normalized) L 2-norm: 

Proposition 15.7 (The Plancherel formula) 
Let Ir, h be lunctions on G. Then 

(Ir, h)a = L h(x)];(x). 
x 

In particular, 

~ L I/(g)12 = L 1!(x)12 

9 X 

holds lor alt I. 

P1'00f. Suppose first that Ir = Xl and h = X2 are characters. Then, by lemma 15.3, the 
left-hand side is zero resp. one depending on whether Xl, X2 are different or equal. The 
Fourier transforms are the indicator functions of the sets {xd and {X2}, and therefore 
the sum on the right-hand side also is zero for different Xl, X2 and one otherwise. This 
proves the assertion for this special situation. 

The general case follows since arbitrary Ir, h can be written as linear combinations of 
characters. 0 

Fourier trans form of measures. 

As we have already noted we will need in particular the Fourier translorm 01 measures 
lP'o, it is defined by 

Fa: C -+ C, X f-t LX(g)lP'o({g})j 
9 

we note in passing that this is just the integral of X with respect ot the measure space 
(G, lP'o). 

Note that JID;; is not the Fourier transform of the function 9 ~ lP'o( {g}), for functions 
one has to multiply the sum by 1/N. 

The reason for the different treatment of functions and measures lies in the role of 
the uniform distribution on C, it is the only probability measure lP'o which respects 
the group structure in that it is translation invariant 2 : lP'o(A+g) = lP'o(A) for every 
A C C. And every lP'o has a density ff'o with respect to the uniform distribution, 
namely ff'o : 9 ~ NIP' 0 ( {g } ). Therefore the Fourier transform of the measure IP' 0 is 
nothing but the (ordinary) Fourier transform of this density. 

2 In harmonie analysis it is called the Haar meaSUTe of G. 
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By lemma 15.6 all information contained in lP'0 is contained in its Fourier transform. 
The reason why this "translation" is important will become clear immediately, first let's 
calculate some examples: 

1. We start with the Bernoulli prob ability space: here G is Z2 = {O, I}, and the measure 
Po assigns to 1 resp. to 0 the probability P resp. 1 - p. The character group of G consists 
of the trivial character and of X : 9 I-t (-l)g. Then lP'0 maps Xtdv to 1· (1 - p) + 1 . P = 1 
and X to 1 . (1 - p) - 1 . p = 1 - 2p. 

2. More generally, let Po, ... ,PN-I be nonnegative numbers with L,Pj = 1. They give 
rise to a probability measure lP'0 on ZN, and we will calculate its Fourier transform. The 
typical character is Xj : a I-t exp (2TiijaIN) , it is mapped by lP'0 to 

N-I 
L Po. exp (2TiijaIN) , 
0.=0 

that is to a certain convex combination of N'th roots of unity. 

3. Now we investigate the very first example where we have introduced a measure lP'0 on 
the hypercube. Let XCI ... C" be any character (see page 131). Its image under UD;; is 

1 0 0 1~0 0 10 0 1 1 
2" (SI "'Sr) + 2r L...,SI "'Sp_lSpSp+l "'Sr = 2" + 2r(SI + '" +Sr). 

p=1 

Consider in particular in the preceding example 2 the special case when lP'0 is the 
uniform distribution. Then UD;; at Xj is L,o. exp (2Tiiaj IN) IN, and this number is 1 for 
j = 0 and 0 for j = 2, ... , N - l. 

Proof: With'; := exp (2Jrij/N) this sum is (1 +'; + ... + .;N-l)/N, and for j = 
1, ... ,N - 1 we have .; i= 1 so that it can be evaluated as (1 - .;N)/[N(l - ~)l = O. 

This is a special case of part (i) of the following 

Lemma 15.8 Let lP'0, lP'1, lP'2 be probability measures on the finite commutative group G; 
by U we denote the uniform distribution. 

(i) lP'0 = U iff UD;;(x) is one for the trivial character and zero for the other X. 

(ii) The variation distance 11lP'1 -lP'211 can be estimated by (L,x 1lP'r(x) -lP'2(XW) 1/2/2; 

in particular 11lP'1 - UII is less than or equal to (L,X*Xt,;v 1lP'I(X)12)1/2/2, where 
the summation runs over all nontrivial characters X. 

(iii) Conversely, the distance of lP'1 and lP'2 with respect to the maximum norm is 
bounded by 211lP'1 -lP'211. 

Proof. (i) D"(x) = L,g U( {g})X(g) = L,g X(g)IN, and this sum is one resp. zero if X = Xt,;v 

resp. X :j:. Xtdv by lemma 15.3. Since lP'0 I-t lP'0 is one-to-one this happens only for the 
uniform distribution. 
(ii) For measures lP'1, lP'2 the Plancherel formula has the special form 
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where J1.y := IP'l ({9}), vg := 1P'2( {9}). Thus it is only necessary to relate the LI-norm with 
the L2-norm: 

4111P'l -1P'211 2 = CL lJ1.g - vgl)2 
9 

< N'LIJ1.g _vgl2 
9 

= 'L 1ITD;(x) - i!D;(xW; 
x 

here we have used the inequality Cz=.f=l aj)2 :5 N L a; for real aj, it is just the Cauchy­
Schwarz inequality for the Hilbert space JRN applied to the two vectors (1, ... ,1) and 
(al, ... ,aN). 

The second part of (ii) follows from the observation that the Fourier transform of any 
probability measure at the trivial character is 1 (so that the corresponding term in the 
sum is zero) and that f) vanishes at the nontrivial characters. 
(iii) Let X be arbitrary. Then 

Ii;(x) - i!D;(x) I 
9 

9 

D 

This lemma allows one to transform the question "how elose is a distribution 1P'0 to the 
uniform distribution?" to the investigation of "how small are the Po(X) for the nontrivial 
characters X?". In order to apply it to the present situation it remains to have a eloser 
look at the measures which correspond to the k-step transitions. 

Convolutions 

Our starting point was a probability 1P'0 on Gwhich was used to define the one-step 
transitions: if we start at an arbitrary 90 we will be next at 90 + h with prob ability 
1P'0 ( {h} ). From 90 + h we continue to go to (90 + h) + h' where h' again is chosen in 
accordance with 1P'0. Also - this was tacitly assumed throughout - the choices of hand h' 
(and also the choices for the moves to come) are independent. Hence the position which 
is occupied after the second step will be a certain 90 + ho, where ho has the form h + h'. 
Therefore the probability of the transition 90 -t 90 + ho is Lh+h'=ho 1P'0( {h} )1P'0( {h'}). 

To argue a little bit more formally start with a sequence W1 , ••• of G-valued random 
variables which are independent and have distribution 1P'0. Then the positions of 
the walk are 90,90 + Wl, 90 + Wl + W2, .... We are interested in the distribution of 
Wl + W2. This can easily be calculated if we condition on Wl and use the fact that 
W1 , W2 are independent: 



] 36 Part II: Rapidly mixing chains 

h 

h 

h 

h+h'=hO 

L lP'o({h})lPo({h'}). 
h+h'=ho 

Some readers will be reminded of a result from elementary probability where one derives 
a similar formula for the distribution of the sum of two independent Z- or lR.-valued 
random variables. The present investigations are the appropriate version for arbitrary 
commutative (finite) groups, later we will also discuss the non-commutative case. 

We can summarize the preceding discussion by saying that the two-step transitions 
90 H 90 + ho of our chain are governed by a prob ability measure which assigns to ho the 
number Lh lP'0( {h} )lP'0( {ho - h}). This motivates 

Definition 15.9 Let lP'l, lP'2 be prob ability measures on C. 
(i) We define the convolution lP'2 * lP'l of lP'l, lP'2 by 

(lP'2 * lP'd({ho}):= LlP'l({h})lP'2({ho - h}). 
h 

(ii) In the special case lP'l = lP'2 = lP'0 we put lP'~2*) := lP'0 * lP'0. This is extended to a 
definition for arbitrary integer exponents by lP'~(k+l)*) := lP'~k*) * lP'0. 

(It is left to the reader to show that the convolution is again a probability measure.) 

With this definition we know: 

If the one-step transitions are governed by lP'0. then one will ob­
serve k-step transitions of the form 90 H 90 + ho with probability 
lP'~h)({ho}). Consequently the problem of how fast the chain con­
verges to its equilibrium is equivalent with the question of how fast 
the lP'~h) tend to the uniform distribution. 

Since we have proved that the variation distance can be calculated with the help of the 
Fourier transform it will be necessary to relate the Fourier transform of a convolution 
with the Fourier transforms of the factors. There is a surprisingly simple connection, a 
fact which makes the Fourier transform an extremely useful tool: 

Proposition 15.10 For probability measures lP'I, lP'2 on (C, +) the Fourier trans/orm 0/ 

lP'2 * lP'l is just the (pointwise) product 0/ the /unctions i; and r;. In. particular it /ollows 

that, tor any probability lP'0, the Fourier trans/orm o/lP'~h) is the k 'th power 0/ the Fourier 
trans/orm 0/lP'0. 

Proof. Let X be arbitrary. Then 
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90 

:L X(go) :L lP\ ({g} )lP'2( {go - g}) 
90 9 

90,9 

90,9 

:L X(g)X(g')lP'l( {g} )lP'2( {g'}) 
9' ,9 

9 9' 

o 

Therefore we arrive at the remarkable result that for a chain on Gwhich is defined by 
a probability lP'o the rate of convergence to the equilibrium solely depends on the size of 
the numbers lP'o(X) for the nontrivial characters X. They are always convex combinations 
of the X(g), that is of complex numbers of modulus one. Therefore they lie in the unit 
disk, but only if they are "not too dose" to the boundary their powers will converge 
sufficiently fast to zero; this convergence will be studied in more detail later. 

Before we turn to applications to the mixing rate we prove an interesting consequence of 
the preceding proposition, it is an extension of lemma 15.1: 

Proposition 15.11 Let lP'o be a probability measure on a finite commutative group (G, +), 
its support will be denoted by 6. Then the following assertions are equivalent: 

(i) The associated chain is irreducible and aperiodic. 
(ii) 6 - 6 (:= {g - h I g,h E 6}) generates G. 

(iii) There are no proper subgroup H of G and go E G such that 6 lies in go + H. 
(iv) There is a k such that every g E G can be written as a sum g = gl + ... + gk 

with gl,'" ,gk E 6. 
(v) IPo(x)1 < 1 for every nontrivial character X. 

(vi) The measures lP'bk*l converge to the uniform distribution on G with respect to the 
total variation norm. 

Proof. By lemma 15.1, (i) and (iv) are equivalent. Hence, under the assumption of (iv), 
the k-step transitions converge in variation norm to the equilibrium (lemma 7.4) which 
is the uniform distribution (lemma 15.1(i)), and this establishes "(iv)=>(vi)". From (vi) 
the assertion (v) follows easily with the help of lemma 15.8 and proposition 15.10: the 

lP'bhl tend to U iff the numbers (lP'o(X))k tend to zero for all nontrivial X. 
(v)=>(ii): Let Hli'o be the subgroup generated by 6 - 6, suppose that H'Ii'o is a proper 
subgroup of G. Then the quotient G / H'Ii'o contains a nontrivial element so that there is 
a nontrivial character 'ljJ on G / H'Ii'o (recall that commutative groups always have "many" 
characters: for any g i 0 there is - by corollary 15.4 - a character which maps g not 
to 1). Then X := "the natural quotient map composed with 'ljJ" is a nontrivial character 
which is identically 1 on H'Ii'o' In particular, X(gO - g) = 1 holds for aB go,g E 6. 
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Therefore, if we fix go, it follows that iP;;(X) is the convex combination of certain X(g) 
aB of which are identical with X(go). Thus iP;;(X) = X(go) which is of modulus one. This 
proves that (v) implies (ii). 
(ii)=>(iii): Suppose that (iii) does not hold. Then, with a proper subgoup Hand a suitable 
go, we have ß ego + H, i.e., ß - ß ego - go + H - H = H. Consequently Hlf'o' being 
a subset of H, would be properly contained in G. 
(iii)=>(ii): Fix any go E ß. Then ß-go C Hlf'o holds so that ß C 90+Hlf'o. By assumption 
this implies Hlf'o = G. 
(ii)=>(iv): Let 9 E G be arbitrary. We already noted in the proof of lemma 15.1 that the 
subgroup which is generated by a certain subset is just the collection of finite sums from 
elements of this subset. Thus, in our case, there are 91, ... ,9ro h 1 , •.. ,hr E ß such that 
9 = 91 - h1 + ... + 9r - hr . Now we observe that (N - l)h(= h + ... + h with N - 1 
summands) equals -h if N denotes the cardinality of G; this follows from Nh = 0, the 
order of an element divides the order of the group. Hence 9 can be written as a sum of 
kg := r + (N - l)r elements of ß. This is also true for 0: 

0= h1 + (N - l)h 1 + ... + hr + (N - l)hr . 

And therefore (iv) holds with k := L:g kg • o 

In order to check whether the conditions of the preceding proposition are satisfied we 
have to calculate the 1 iP;; (X) I· Let's review the examples from page 134: 
1. In the case of the Bernoulli probability space there is only one nontrivial character. 
The associated iP;;-value is 1 - 2p, and this number has modulus less than one precisely 
if p lies properly between 0 and 1. 
2. For an arbitrary probability on ZN we have to consider the characters with labels 
j = 1, ... , N - 1. A convex combination of the numbers exp (2-rrija.jN) can lie on the 
boundary of the unit circleORly if all weights are concentrated on the same number. 
And this happens only if the support of the measure is contained in a set of the form 
{a + kb I k = 0, ... , N - I} with gcd {b, N} > 1. 
3. In the hypercube example the nontrivial characters correspond to the Xel ... er with 
(cl .. . cr) ::J (1, ... ,1). The associated value of iP;; is 1/2 + (cl + ... + cr)/2r, and this 
number is smaller than one since at least one of the cp is -1. 

Rapid mixing 

To derive resuIts on rapid mixing we only have to combine the preceding results. If an 
arbitrary lP'0 on the commutative group G is given, then the distribution after k steps of 
a walk which starts at 0 corresponds to lP'o(h). (A starting position at any other 90 only 
means a translation of the walks; this is unimportant if we are interested in the distance 
to the uniform distribution, see the note on page 130.) A combination of lemma 15.8 
with proposition 15.10 leads to 

Proposition 15.12 

IIlP'o(k*) - Ull 2 ::; ~ L 1iP;;(x)12k • 

X,eXtdv 
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Here are some exarnples to illustrate the result: 

1. Consider on (/ZN, +) a Wo which is supported by {O, 1}. What is the optimal choice 
of p := JlI'o( {I}) to have a mixing rate as fast as possible? It is to be expected that very 
small or large p are not favourable: in the former case the chain stays too long elose to 
its starting position, and in the latter it behaves nearly like a deterministic chain. 

With the preceding theorem one can analyse the problem as folIows. We have to discuss 
the numbers Wa(Xj) = p exp (27rij / N) + (1 - p) for j = 1, ... , N - 1 whi-::h are certain 
points on the line segment between one and exp (27rij / N). Their absolute values decrease 
for p between ° and 1/2 and increase for p between 1/2 and 1. Therefore the minimum 
value is - regardless of j - attained at p = 1/2: this is the optimal choice. 

2. This time we consider on (/ZN,+) the measure JlI'a which is defined by JlI'o({-1}) = 
JlI'o({+l}) = 1/2; n0te that JlI'o gives rise to the cyelic random walk on {O, ... , N - I}. 

To avoid periodicity we assurne that N is an odd number. The computation of the 
JlI'a(Xj) is easy: 

- 1 JlI'o(Xj) = 2 (exp (27rij/N) +exp(-27rij/N)) = cos(27rj/N). 

Therefore, by our proposition, it follows that 

N-l 

IIJlI'~h) - Ul1 2 :S ~ L (cos(27rj/N))2k. 
j=l 

In the present form this estimate is of little use, we will try to simplify it. First we recall 
that cos( -x) = cos( x) and cos( 7r - x) = - cos x for all x. Thus the numbers 

cos(27rj/N), j = 1, ... , N - 1 

are identical with the two times repeated sequences 

cos(7rj/N), j=2,4, ... ,1( 

and 

-cos(7rj/N), j = 1,3, ... ,1(', 

where 1( (resp. 1(') denotes the maximum of the even (resp. odd) numbers which are 
:S (N - 1)/2. Therefore - since only even powers occur - we may rewrite the above sum 
as 

(N-l)/2 

~ L (cos(7rj/N))2k. 
j=l 

We continue by applying the inequality cos x :S e- x2 / 2 for ° :s x :s 7r /2. 

One observes first· that x cos x :::: sin x for these x: the inequality holds at 0 and the 
derivative of the left-hand side is not greater than that of the right-hand side. 

With this preparation at hand one considers h( x) := log( ex2 / 2 cos x). h vanishes at 

zerc, and its derivative (= x - tan x) is not greater than zero by the first step. This 

proves that h :::: 0, hence the result. 
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It follows that 

1 (N-l)/2 

2 L exp(-7r2 j 2 k/N2 ) 

j=l 

1 00 

< 2 exp (_7r2k/N2 ) Lexp(-7r2(j2 -1)k/N2 ) 

j=l 

1 00 

< 2 exp (-7r2 k/N2 ) Lexp(-37r2 jk/N2 ) 

j=O 

1 exp( -7r2k/N2 ) 

= 21 - exp( -37r2 k/N2); 

in the last inequality we have used the fact that p - 1 ;::: 3(j - 1), the final expression 
has resulted from the formula for the geometrie series. 

The denominator is ;::: 2(1 - exp (-37r2 )) ;::: 1 for k ;::: N 2 , and thus we finally arrive at 
the bound 

111P'~h) _ U1I 2 :::; exp(-7r2k/N2 ). 

This means that one has to run the chain k = O(N2 ) steps in order to be sure that the 
distribution is elose to the uniform distribution. 

3. We modify the hypercube example from the beginning of this chapter: Gis {O, 1 Y with 
component-wise addition modulo 2, and 1P'0 assigns equal mass l/(r + 1) to the points 

(0, ... ,0), (1,0, ... ,0), (0,1,0, ... ,0), ... , (0, ... ,0,1). 

The characters have been identified on page 131, the associated values of iP;; are 

- 1 IP' (X ) r + 1 " C'l·! ... c'r·~ o e! ... e~ = ~ 

i!+··+i~:5l 

1 = r + 1 (1 + Cl + ... + cr) 

= 1- 2w(cl, ... ,cr)/(r + 1), 

where W(cl, ... ,cr) denotes the number of -l's in the sequence cl, ... ,cr. 
We have to take into account all (cI, ... ,cr) =I- (1, ... ,1). For s = 1, ... ,r there 

are precisely (:) such vectors with W(CI, ... ,cr) = s, and therefore the estimate from 
proposition 15.12 implies that 

The summand with s = 1 is the relevant one if convergence for k -+ 00 is studied. It 
follows that 

111P'~k*) - UII:::; C(l- r: l)k, 
with C depending on r but not on k. 
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Exercises 

15.1: Whieh measure on the symmetrie group Sr corresponds to the random-to-random 
shuffie, which one to the random-to-bottom shuffie? 

15.2: In example 2 of chapter 2 we have introduced certain random walks. Whieh of 
these can be thought of as a random walk induced by a measure on the cyclie group ZN? 
(Your answer might depend on certain properties of the numbers ai, bi , Ci by whieh the 
walks are defined.) 

15.3: Consider the collection of all prob ability measures lP'o on a (not necessarily com­
mutative) finite group (G, 0) whieh give rise to an irreducible chain. Is this set convex, 
is it open as a sub set of all probability measures on G? 

15.4: A chain is called deterministic if for every i there is a j with Pij = 1. What precisely 
are the measures lP'o on a finite group which give rise to deterministic chains? 

(11 not stated otherwise, (G, +) denotes a commutative finite group in the sequel.) 

15.5: Let lP'o be a probability measure on G. If lP'o( {O}) > 0, then the associated chain is 
aperiodic. Is the reverse implication also true? 

15.6: Let U be a subgroup of G. Prove that there is a prob ability measure lP'o on G such 
that the closed subsets of the associated Markov chain are precisely the residue classes 
{u + gl u EU}, where 9 runs through G. 

15.7: Let 0::; a < b < N, we consider the measure lP'o on the cyclie group ZN which has 
mass 1/2 on a and b. Characterize the numbers a, b, N such that the associated chain is 
irreducible (resp. irreducible and aperiodic). 

15.8: Prove that, for commutative groups Gi and G2 , the map 

is a bijection between fJ;. x G; and G-;;G2. 

15.9: Let lP'o be a probability measure on G such that, for some k, the convolution 
product lP'o(h) is the uniform distribution U. Then also:Po = U holds. 

15.10: For a prob ability measure lP'o on G, prove that lP'o( {g}) = lP'o( {-g}) implies that 
all !p;;(x) are real. Is the converse also true? 

15.11: All characters on G are real valued iff 9 + 9 = 0 for all g. 

15.12: !t * h = h *!t holds for arbitrary complex-valued functions on G. 

15.13: More generally than in the present context one can define characters on arbitrary 
commutative groups (G, +) with a topology: a character X is a continuous group homo­
morphism from G to r. (Clearly the collection G of all characters is a group with respect 
to pointwise multiplication also in this more general setting.) 
Identify G for the groups (71." +), (IR, +), and (r, .), where each of these spaces is provided 
with its natural topology. 
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16 Markov chains on finite groups 11 
(arbitrary groups) 

In this chapter we are going to generalize the preceding considerations to the case of an 
arbitrary finite group (G, 0), the approach will be similar: relate the abstract group with 
something more concrete and solve problems for G by transforming them into problems 
concerning numbers. However, it is not to be expected that the not ions introduced up to 
now will suffice, the reason is simple: 

Whenever a group homomorphism, say 41, on G has a commutative range, 
then 

41(g 0 h) = 41(g)41(h) = 41(h)41(g) = 41(h 0 g) 

for all g, h. Therefore there is no hope that such 41 distinguish between dif­
ferent elements of a non-commutative group. In particular, homomorphisms 
from G to r will not suffice. 

The idea is to pass from characters to representations, i. e., to certain matrix-valued 
maps. They will be introduced and studied in the first section, of particular importance 
will be the "essential" (the irreducible) representations. The furt her structure is similar to 
wh at has been done in the last chapter: Fourier transform of functions, Fourier transform 
of measures, the Plancherel theorem, convolutions, connections with rapid mixing. At the 
end of the chapter we will discuss so me examples. 

Representations 

Before we introduce the relevant definition we recall that, for a complex d x d-matrix 
M = (ajk)j,k=l, ... ,d, one defines the adjoint matrix M* by M* = (akj )j,k=l, ... ,d) (note that 
one not only passes to the complex conjugates of the entries, but that also a reflection at 
the main diagonal is necessary). M is called unitary provided that M M* is the identity 
matrix I d; then M* M = I d also holds. 

It is easy to see that the collection Ud of unitary d x d-matrices is a group with respect 
to matrix multiplication, this is our candidate to serve as an appropriate range space. 

A d-dimensional representation1 p of (G, 0) is not hing but a group homomorphism from 
G to Ud. 

Examples 

1. In the commutative case every character is a (one-dimensional) representation if we 
identify numbers with 1 x I-matrices. Similarly, every map X : G -t r with X(91 0 g2) = 
X(gl)x(g2) on an arbitrary (G, 0) is a one-dimensional representation. In particular, every 
group admits the trivial representation P'';v which corresponds to the constant map 9 I-t 1. 

1 What we introduce are in fact unitary representations. Since these are the only representations we 
will consider in this book no confusion should arise. 
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But often there exist other one-dimensional p. A simple cxample is the map which 
assigns the sign to apermutation, that is +1 (resp. -1) if the permutation can be 
written as an even (resp. odd) number of transpositions. This in duces a one-dimensional 
representation on every symmetrie group Sn (= the permutations of {I, ... , n } ). 

2. It is easy to get new representations from known ones. A first technique is to start 
with a d-dimensional P and to fix an M in Ud. It is plain that then PM : 9 H M p(g)M-1 

is a (d-dimensional) representation as well2 • 

Also, if PI, P2 are representations whieh are d1- and d2-dimensional, respectively, then 

9 H ( PI0(9) 0 ) 
P2(g) 

obviously defines a (d1 + d2 )-dimensional representation. It is called the product 0/ PI, P2 
and written PI EB P2· 

3. We define the Hilbert space Xa as in the commutative case as the space of C-valued 
mappings on G together with the scalar product (!t, h)a := 2::g!t (g)h(g)/N; as before, 
N denotes the cardinality of G. 
Every 9 E Ginduces a map Tg : Xa -+ Xa by 

f H (g' H f(g-1 0 g')). 

The Tg are obviously linear, and they satisfy Tglog2 = Tgl 0 Tg2 (this is due to the 
rat her artificial definition). They are also isometrie: 

(Tg(!t), Tg(h))a = ~ 2: !t(g-1 0 g')h(g 1 0 g') 
g' 

= ~ 2:!t (g")h(g") 
g" 

= (!t,h)a· 

Thus they are unitary linear operators on the Hilbert space Xa so that, if we fix an 
orthonormal basis, every Tg correponds to a unitary matrix }.t[g, and we end up with an 
N-dimensional representation 9 H Mg. 

1fT: Xc --+ Xc is any linear map and /t, ... , IN any orthonormal basis, then - as is 
well-known - T is described by the matrix A = (akj), where akj = (T Ii, /k)e (not in 
the reverse order). With this definition T corresponds to the map (al, ... , aN) T f-+ 

A(al, .. . , aN) T from CN to CN if this space is identified with Xc via the map 

(al, ... ,aN)T f-+ "'L.ai/j. 

It is called the left-regular representation 0/ G, ·we will denote it by Pregu!ar. 

I Irreducible representations I 
Since we will use representations to describe G it is surely desirable to try to identify 

the "essential" ones: 

2 If the p(g) are regarded as unitary operators on the d-dimensional Hilbert space, then the transition 
from p to PM corresponds to the transition to a new orthonormal base. 
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Can one find a dass C of representations 

• which is sufficiently rich to reconstruct the structure of G 

• and which is at the same time as small as possible among dasses C of 
representations with the first property? 

We will see that such a dass in fact always does exist. To motivate the approach we 
first observe that a possible candidate for C must not contain representations which are 
of the form P = PI EB P2 since such P can be built up as soon as one has access to the 
"atoms" PI and P2· 

Also, since equivalent representations contain essentially the same information, C should 
contain at most one representative from each equivalence dass. 
Therefore it is natural to start with 

Definition 16.1 Let p, PI and P2 be representations of (G,o). 
(i) PI and P2 are said to be equivalent provided that they have the same dimension 

(say d) and there exists an M E Ud such that P2 (g) = M PI (g) M -1 for all g. 
(ii) P is called irreducible if it is not equivalent with a representation of the form 

PI EB P2· 

Examples will be given later, here we only note that one-dimensional representations 
trivially are irreducible. Also let's remark that possible candidates for the above dass C 
necessarily are collections of irreducible representations two of which are not equivalent. 
That every such candidate behaves as desired will be the main content of the Peter-Weyl 
theorem below. It needs some preparations. 

I Schur's lemma and so me consequences I 

Lemma 16.2 (Schur's lemma) 
Let P be a d-dimensional representation 0/ (G,o). Then the /ollowing conditions are 
equivalent: 

(i) P is irreducible. 
(ii) I/ A is any d x d-matrix such that Ap(g) = p(g)A /or alt g, then A is a multiple 

0/ the identity matrix. 
(iii) Let Vbe a subspace 0/ Cd such that p(g)x lies in V whenever gE G and x E V 

(V is said to reduce P i/ this is the case3 ). Then V = {O} or V = Cd. 

Proof. (i)=>(ii): For the proof we remind the reader of some facts from linear algebra: 

• A matrix A is called self-adjoint if A = A' . If this is the case, then there is a unitary 
matrix M such that M AM- I is a diagonal matrix . 

• If B = (b jk ) is a diagonal d x d-matrix, Q(x) = ao + aIX + ... + arxr is a polynomial 
and C = Q(B) := aold + alB + a2B2 + ... + arBr, then C is also diagonal and 
the entries on the diagonal of C are the Q-images of the corresponding B-entries. 
In particular, if bl1 = b22 = ... = bd'd' and bl1 :j:. bjj for some 1 :S d' < d and 
all j = d' + 1, ... , d, then one may choose Q in such a way that the associated 
C = (Cjk) satisfies Cu = ... = Cd'd' = 1 and Cjk = 0 for the other j, k. 

3 Sometimes reducing subspaces are also caIIed subspaces which are invariant with respect to the p(g). 
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Now let .'1 be a d x d-matrix which is not in CId and which commutes with all p(g). We 
will show that P is reducible. 

As a first step we show that .'1 may be chosen such that it is self-adjoint. To this end 
we observe that with .'1 also .'1* commutes with the p(g). This is a consequence of the 
fact that M* = M- l for unitary matrices M so that (p(g))* = p(g-l) : 

(p(g)A*)* = A(p(g))* = Ap(g-l) = p(g-l)A = (p(g))* .'1 = (.'1* p(g))*, 

hence p(g)A * = .'1* p(g). 
Therefore the p(g) commute with the two selfadjoint matrices 

.'1+.'1* .'1-.'1* 
Al = and .'12 = ---

2 2i 

and since .'1 = Al + iA2, one of these will not be in CI d. 
Thus, let .'1 be self-adjoint. Choose an M E Ud such that B := M AM-l is diagonal; 

we mayassume that the entries Al, ... on the diagonal are such that Al = ... = Ad' and 
Aj i- Al for a suitable d' < d and all j > d'. 

B obviously commutes with all Mp(g)M- l (= pM(g)), and so does every polynomial 
Q(B) of B. Thus, with a proper choice of Q, we find a matrix C = Q(B) = (Cjk) with 

• Cll = ... = Cd'd' = 1 and Cjk = ° for the other entries; 

• CpM(g) = pM(g)C for all g. 

But this means that pM(g) has a non zero entry at position j, k only if 1 ::; j, k ::; d' or 
if d' + 1 ::; j, k ::; d, and thus PM is of the form PI EB P2 with two representations PI and 
P2 (of dimension d' and d - d', respectively). It follows that p = (PI EB P2)M-l so that p 
is reducible. 

(ii)=:}(iii): We will prove that the existence of a nontrivial reducing subspace enables us 
to find a matrix not lying in CI d which commutes with all p(g). 

Let V be a reducing subspace, we assume for the moment that V is of the form 

Vd,:= {(Xl, ... ,Xd"O, ... ,O)T I Xl,···,Xd' E C} 

with 1 ::; d' < d. Then, since V reduces p, the entries of the p(g) at the positions j, k 
with j = d' + 1, ... , d, k = 1, ... , d' must vanish. Since p(g) = (p(g-l))*, this holds also 
true with the roles of j and k reversed. This implies that the p(g) commute with the 
matrix C from the preceding part of the proof. 

The general case can be reduced to the preceding argument: for any V which is neither 
{O} or Cd there is a unitary matrix M such that x E V is equivalent with Mx E Vd , for a 
suitably chosen d', 1 ::; d' < d. The result follows if we now argue with the representation 
PM instead of p. 
(iii)=:}(i): If p = (PI EB P2)M holds, then V := {X I Mx E Vd,} defines a nontrivial reducing 
subspace; here d' stands for the dimension of PI. 0 

Schur's lemma has a number of interesting consequences: 

Corollary 16.3 If G is a commutative group, then every irreducible representation is 
one-dimensional. Therefore the collection of irreducible representations can be identified 
with the character group G in this case. 
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Proof. Let P be irreducible. Under the assumption of commutativity every fixed p(go) 
commutes with all p(g) and thus is of the form agOId. If the dimension were larger than 
one there would exist an abundance of matrices A not lying in CI d commuting with the 
p(g) (or an abundance of nontrivial reducing subspar.es), a contradiction. 0 

Corollary 16.4 Let PI and P2 be irredueible representations 0/ G with dimension dl and 
dz , respectively. We will say that a d2 x dl -matrix A connects PI and P2 i/ 

/or every 9 (notc that this definition is not symmetrie in PI,P2)' 

(i) I/ A eonneets PI and P2, then either A = 0 or dl = dz in which ease A is a 
nonnegative multiple 0/ a unitary matrix. 

(ii) PI is equivalent with P2 iff there is a nonzero A whieh conneets PI and P2. 

Proof. (i) Let V C Cd, be the collection of the vectors x such that Ax = O. From 
Apdg) = P2(g)A it follows that PI (g)x E V provided that x E V. Consequently V is 
either the zero space or all of Cd,. If we argue similarly with W = {Ax I x E Cd, } and pz 
it follows that W is {O} or Cd2. Therefore, if Ais not the zero matrix, it has independent 
rows, and the column rank is d2 . This is possible only if dl = d2 and if Ais invertible. 

The equation ApI(g-l) = P2(g-I)A (for all g) implies that pdg)A* = A*P2(g) holds; 
this follows as usual by taking adjoints. Therefore A*A commutes with all Pl(g), and 
Schur's lemma provides an a E C with A * A = aI d. This number a is necessarily real and 
strictly positive since we have, in the Hilbert space Cd, , 

0:::; (Ax,Ax) = (A*Ax,x) = a(x,x), 

and at least for some x strict positivity obtains. 
It remains to note that M := A/ Va satisfies M* M = I d so that it is unitary. 
(ii) One implication is trivial: in the case of equivalence we have MpI(g)M- 1 = pz(g) 
with a suitable unitary M so that M connects PI with pz. The converse follows from the 
first part of the proof. (Note that with A also A/ Va connects PI with P2 and that A' A 
is nonzero for nonzero A; this follows easily from the equation (A' Ax, x) = (Ax, Ax) = 
I/Axl/ 2.) 0 

In order to apply the preceding facts it is useful to know how one can find connecting 
matrices: 

Lemma 16.5 Lct PI and P2 be irredueible representation8 0/ G with dimensions d1 and 
d2. Then, /or any d2 x dl-matrix A, the matrix 

A:= ~ L::>2(g-I)Apt{g) 
g 

eonneets PI and P2· 
Consequently A is zero i/ PI and P2 are not equivalent, and A is a positive multiple 

0/ a unitary operator otherwise. In the ease PI = P2 the matrix A is a multiple 0/ the 
identity matrix. The eonstant is the traee4 tr(A) 0/ A, divided by the dimension 0/ PI. 

4 The trace of a square matrix is the sum over the diagonal elements. 



Chapter 16: Markov diains on finite groups II (arbitrary groups) 147 

Proof. Fix any go. Then 

is equivalent with 

9 9 

That this equation holds can easily be seen by a change of summation: with g' := 9 0 go 
the first sum is L g P2(gO 0 (g')-1 )Apl (g'). 

Now suppose that P := PI = P2. Since Ä commutes with all p(g), Sehur's lemma 
provides an a such that Ä = aI d. Since the trace of AB is the same as the traee of 
BA for arbitrary square matrices it follows that the trace of A equals the trace of all 
PI (g-l )Apl (g) and thus the trace of Ä. This completes the proof. 0 

I Duals of G and the Peter- Weyl theorem I 
Now we are going to investigate the properties of the coordinate functions of repre­

sentations as funetions on G. More precisely, let P be an irreducible representation of 
dimension d. For 1 ~ j, k ~ d we define the functions ffk : G -+ <C by ffk(g) := the 
entry in the j'th row and the k'th eolumn of p(g). The preeeding preparations enable us 
to study the ffk as elements of the Hilbert space Xc. 

Lemma 16.6 The coordinate functions satisfy the following orthogonality properties as 
elements of Xc: 

(i) If PI and P2 are irreducible representations which are not equivalent, then 
Uf~, f(;:'>c = 0 for arbitrary indices j, k, l, m. 

(ii) Let P be irreducible. Then each two different functions ffk are orthogonal, and 
Ufk,/fk>C = l/dp (with dp= the dimension of p). 

Proof. (i) Denote by d1 and d2 the dimensions of PI and P2, respectivcly. Fix j, k, l, m 
and define a d2 x d1-matrix A = (ast) by 

alj = 1, and the other ast vanish. 

Then, with x = the k'th unit veetor of <Cd! resp. E the m'th unit vector in <Cd2 , the 
<cd2 -scalar produet (Apl (g)x, P2(g)y) equals ff~(9)ff;:'(g). Sinee (P2(g))* = P2(g-I), the 
sealar produet is just (p2(g-1)Apr(g)x,y) so that summation over 9 leads to 

(Äx, y) = Uf~, f(;:'>c, 

with Ä as in lemma 16.5. But Ä is the zero matrix by this lemma, henee the result. 
(ii) We apply onee more the preeeding argument, now with P = PI = P2. If j =f. I, then 
the trace of A is zero and therefore Ä is the zero matrix in this ease. In the ease j = I 
the traee is one, and this time Ä is (l/dp )Id. It follows that - with the above notation-

Ufk' ffm)c = : (x, y). 
p 
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Since (x, y) = 15km (with Kronecker's delta) the proof is complete. o 

Now we know that there are "not too many" irreducible representations: if we select 
precisely one representative p from every equivalence class, then 2: a;, is bounded by the 
dimension of Xc which is just the cardinality of G. We will show that the co ordinate 
functions are in fact an orthogonal basis of Xc so that there are also "sufficiently many" 
such p. 

Definition 16.7 Any finite collection of representations which contains precisely one 
representative from each equivalence class of irreducible representations is called a dual 
of G. In general there are many duals, nevertheless one uses the symbol C. (Only in the 
commutative case there is only one C, it can be identified with the character group.) 

Any dual G of G suffices to describe the structure of G completely. This is the main 
content of the Peter- Weyl theorem, more precisely it states that the (normalized) coordi­
nate functions which are associated with a dual C are an orthonormal basis of Xc. (Note 
that the theorem can be thought of as a generalization of lemma 15.3.) Once this result 
is established everything which is needed to study rapid mixing can easily be obtained. 

In the proof of the Peter-Weyl theorem we will use some special properties of rep­
resentations, in particular some facts concerning the left regular representation. It is 
convenient to prepare the proof by dealing with these facts separately. 

Preparations I: some general properties of representations 

For commutative groups we know that the complex conjugate of a character is again 
a character. There is an analogue for representations of arbitrary groups: 

Lemma 16.8 Let !vI = (mjk) be unitary and p a representation of G. 
(i) Denote by M the matrix (mjk), that is the component-wise complex conjugate. 

Then M is unitary. 

(ii) Let p be d-dimensional. If we define p : G --+ Ud by 9 ~ p(g), then p is also a 
d-dimensional representation. 

(iii) With p also p is irreducible. 

Proof. (i) and (ii) are obvious, and (iii) is easy with the help of Schur's lemma: if a matrix 
A commutes with aIl p(g), then - if pis irreducible - A lies in eId since it commutes 
with the p(g); therefore A is a constant multiple of the identity as weIl. 0 

Every representation "contains" an irreducible one: 

Lemma 16.9 Any representation is irreducible or is equivalent with a representation 
PI ffi P2 with an irreducible PI· 

Proof. We argue by induction on the dimension dp of p. 
In the case dp = 1 not hing has to be shown. Suppose that dp > 1, that p is reducible 

and that for representations with smaIler dimensions the statement has been verified. 
By assumption there are a unitary M and pI, pli such that Mp(g)M- I = pl(g)tf;p"(g). If 

pI is irreducible, we are done, otherwise we find by our induction hypothesis an irreducible 
PI such that plJÜ = PI tf; P2 with suitable !VI and P2. It should be clear that 
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where M = (M EI:) Id)M. o 

Prepamtions 11: some properties of the lejt-regular representation 

Let W be a nonzero subspace of Xc which is invariant with respect to the left-regular 
representation: 

f E W => TgO f E W 

for all go; recall that TgO f : 9 r-t f (go log). 
Since TgO is unitary not only on Xc but on every reducing subspace such a situtation 

gives rise to a representation of G: fix any orthonormal basis h, . .. , fd of Wand define 
p(go) as the matrix 

( 

(Tgoh, h)c 
(Tgoh,12)c 

(Tgoh, fd)C 

(Tgoh, h)c 
(Tgoh h)c 

... (Tgofd' h)c ) 

... (Tgofd,12)c 
. . 

(Tgofd' fd)C 

As in the case of the left-regular representation (which corresponds to the case W = Xc) 
9 r-t p(g) is a representation of G. How are the co ordinate functions go r-t (Tgofk' /j)c 
of p related with the functions fj? In the case of irreducibility the answer is at folIows, 
it will be crucial for the proof of the Peter-Weyl theorem: 

Lemma 16.10 Suppose that the preceding p is irreducible. Further, let p' be an irre­
ducible representation which is equivalent with p. Then it is not true that alt coordinate 

functions of p' are orthogonal with alt h, ... ,fd (i. e., not alt fj~ lie in W 1. ). 

Prooj. Suppose that the fj~ lie in W 1.. Then the fJk - by assumption they are linear 

combinations of the fj~ - also lie in this space: 

(f/, fJk)C = 0 for j, k, l = 1, ... , d. 

By the definition of p and the scalar product this me ans that 

go 

go 

= 'LJ1(90)(Tgoik, /j)c' 
go 

On the other hand, we know that 

Tgofk = ~(Tgofk,fj)c/j 
j 

(16.1) 

since the h, ... , f d are an ort ho normal basis. We evaluate this equation at 9 = go: 
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(Tgo fk)(gO) = h(gol 0 go) = fk(e) = L (Tgofk' !i)c!i(go). 
j 

This holds for all go and thus, if we sum up all these equations with various go, we get 

N fk(e) = L !i (go) (TgO h, !i)c' 
go,] 

But we have shown above that this expression is zero, and therefore all h vanish at zero. 
Then - by an evaluation of (16.1) at 9 = e - it follows that the fk are zero at goI for 
arbitrary go, that is they all vanish identically. This is impossible for an orthonormal 
family, and we can conclude our proof with this contradiction. 0 

Now we are ready for 

Theorem 16.11 (The Peter-Weyl theorem) 
Let C be a dual of the finite group G (we continue to denote the dimension of a p E C 
by dp). Then the family 

{Vd";ffk I p E C, j,k = 1, ... ,dp} 

is an orthonormal basis of Xc. 
It follows that 

(i) LpEGd~ = N (= the cardinality ofG), 

(ii) f = Lp,j,k dp(f, ffk)cffk for every f E Xc· 

(iii) For every 9 -::f e there is an irreducible representation p E C such that p(g) lS 

not the identity matrix. 
(iv) G is commutative iff alt irreducible p are one-dimensional. 

Praof. Let V be the linear span of the ffk' Since the orthogonality properties are already 
established we only have to show that V is all of Xc or, equivalently, that the orthogonal 
complement W := V.L of V vanishes. We assurne the contrary, and we will derive a 
contradiction. 
Claim 1: V is an invariant subspace for P,egula.' 

Let p E C be arbitrary. For fixed go we know that p(go 1 0 g) = p(go 1) p(g) holds for 
arbitrary g. Therefore every translate Tgoffk of every coordinate function ffk is a certain 
linear combination of the ffm and thus lies in V. It follows that TgO V C V, i.e., V is 
invariant for P,egula,' 

Claim 2: W is invariant as welt. 
It is a general fact that orthogonal complements of invariant subspaces are also invariant. 
For a proof let h E W be given, we have to show that TgO h E W. To this end, let 12 E V 
be arbitrary, the claim is that (Tgoh, 12)c = O. 

Since V is invariant, we know that h := T -112 belongs to V so that (h,h)c = o. go 
Now the unitarity of the TgO comes into play, it leads to 

0= (h, h)c = (Tgoh, Tgoh)c = (Tgoh, 12)c' 

It's time to apply the above preparations. First we consider the representation which is 
induced by the left-regular representation on W. It will not be irreducible in general, but 
nevertheless we find orthonormal h, . .. , f d in W such that the linear span is invariant 
and the induced representation is irreducible. This is what has been shown in lemma 
16.9. 



Chapter 16: Markov chains on finite groups 11 (arbitrary groups) 151 

Summing up, we are precisely in the situation oflemma 16.10: we have /1, ... , /d which 
give rise to an irreducible representation p. On the one hand, G contains a p' which is 
equivalent with p, and all coordinate functions /j~ lie in V = W.L. On the other hand, 
lemma 16.10 just states that such a situation never occurs. 
This contradiction proves that necessarily W = {O}, or V = XG as claimed. 

The consequences (i), (ii), (iii) are obvious. One implication in (iv) has already been 
shown in corollary 16.3, the other follows from (iii): if all P are one-dimensional, then 
p(g 0 h) = p(h 0 g) so that - by (iii) - 9 0 h = ho 9 for arbitrary g, h. 0 

It will be important in the sequel to know - for a given G - a dual G. The construction 
of such a dual can be an extremely demanding problem, it cannot be our aim here to 
provide a complete list of available techniques. We will confine ourselves to a discussion 
of some examples. The following observation is very helpful: 

Proposition 16.12 Let C be a finite collection 0/ representations 0/ G such that the 
/amily 

{ß:,/jk!PEC, j,k=l, ... ,dp } 

is an orthonormal basis 0/ X G; the /jk are defined as in the Peter- Weyl theorem. 
Then C contains precisely one representative from every class 0/ irreducible representa­
tions, i. e., C is a dual 0/ G. 

Proof. Let P be a d-dimensional representation such that the co ordinate functions are 
orthogonal and have norm l/Vd; also let M = (mjk) E Ud be given. How are the 
co ordinate functions of P related with those of PM? If we denote the former by /jk and 
the latter by ljk, then 

ljk = L mjnmkdnl 

by the definition of PM. Therefore 

l,n 

l,n,l',nJ 

1 
d (L mklmkll) (L mjnmjln) 

I n 

1 -8kk ,8· .,. 
d 31' 

here we have used the orthogonality relations for the /jk and the equations LI mjlmkl = 
8jk (which are arestatement of MM* = Jd). 

Now let P E C with dimension d be arbitrary, we claim that P is irreducible. If this 
were not the case there would be PI, P2 (with dimensions d1 , d2 > 0, d1 + d2 = d) such 
that PI is irreducible, and PM = PI ffi P2 for a suitable unitary M. Then, by the preceding 
considerations, the coordinate functions of PI would have norm l/Vd. On the other hand, 
by lemma 16.6, they have norm 1/J([; :f. l/Vd. 
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Thus C solely consists 01 irreducible representations. We claim that every two Pi, P2 
are not equivalent: by assumption the co ordinate functions of Pi are orthogonal to the 
coordinate functions of P2; in the case P2 = (pd M, however, the co ordinate functions 
of P2 are linear combinations of the coordinate functions of Pi, and thus orthogonality 
would not be possible. 

It remains to show that C contains a representative for each irreducible p'. In fact, if 
an irreducible p' existed which were not equivalent with any P E C, then the co ordinate 
functions of p' would be orthogonal to the coordinate functions associated with the P E C 
(lemma 16.6), which by assumption are an orthogonal basis of Xc. Therefore all I;~ would 
vanish simultaneously, and this is surely not possible for entries of unitary matrices. 0 

I Some examples 01 duals I 
By the preceding proposition it suffices to pro du ce irreducible representations until the 

coordinate functions exhaust Xc: finally aG is found. 

Example 1: The permutation group S3 
We abbreviate the six elements of S3 as follows: 

0= (~~~), 1= (~~~), 2= G~~), 3= C~~), 4= (~~~), 5= (~~~), 
and multiplication is defined such that the permutation on the left-hand side is applied 
first (e.g., 1· 3 = 5). 

Since the group is not commutative, there must be an irreducible representation with 
a dimension strictly larger than one. By theorem 16.1l(i) this is only possible if there 
are one irreducible representation of dimension two and two one-dimensional ones. 

The latter are easily identified as the trivial representation Pt,iv and the sign represen­
tation P.ign which we will regard as mappings Xtdv and X.ign from S3 to C (cf. page 143). 
To find the remaining two-dimensional candidate it is useful to remember that motions 
in the plane which fix the origin correspond to unitary matrices. Therefore one could try 
to model permutations by such motions. This in fact works: if we label the vertices of 
an equilateral triangle by 1,2,3, then the motions which leave the triangle invariant give 
rise to permutations of the vertices and thus to certain elements of S3. This induces a 
representation p. 

The unitary matrices which are associated with the group elements 0,1,2,3,4,5 are 

(1 0) ( -1/2 
o 1 ' -V3/4 

V3/4) ( -1/2 
-1/2 ' V3/4 

-V3/4 ) 
-1/2 ' 

( ~1 0) ( 1/2 
1 ' -V3/4 

--/3/4) ( 1/2 
-1/2 ' V3/4 V3/4 ). 

-1/2 

In the following table we have collected the values of all coordinate functions: 

g: 0 1 2 3 4 5 

Xtriv 1 1 1 1 1 1 

X.ign 1 1 1 -1 -1 -1 

ffi 1 -1/2 -1/2 -1 1/2 1/2 

If2 0 V3/4 -V3/4 0 -V3/4 V3/4 
Ifi 0 --/3/4 V3/4 0 -V3/4 -/3/4 

If2 1 -1/2 -1/2 1 -1/2 -1/2. 
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It is routine to check that p is a representation, that the six coordinate functions are 
orthogonal and that the Jjk have norm 1/ V2. Therefore 

is a dual of S3. 

Example 2: The quaternion group Q 

This group consists of certain distinguished elements of the skew-field of quaternions, 
namely of the eight elements 

±1, ±i, ±1., ±.&i 

those who don't know the quaternions might think of an arbitrary set of eight elements 
which are called +1, -1, .... 

The group operation "0" is written multiplicatively, usually the dot is omitted. It is 
defined by the following rules: 

• 19=9l=gi 

• e = l = .&2 = -1; 

• i1. = .&,1..& = i,.&i = 1.,1.i = -.&,.&1. = -i,g = -1.i 

• the remaining 40 definitions of the group multiplication are evident if one applies 
the usual rules for calculations with ±1 and ± (e.g., (±1) 9 = 9 (±1) = ±g for all 
g, where +g := 9i .& (-i) = -ki = -1., ... ) 

It is straigthforward to show that this multiplication gives rise to a group, we want to 
find a dual. 

Q is not commutative, at least one irreducible representation of dimension greater than 
one is to be expected. Since the squares of the dimensions sum up to eight and since there 
is at least one one-dimensional candidate - the trivial representation - we can conclude: 

Q admits one two-dimensional and Jour one-dimensional irreducible repre­
sentations. 

The one-dimensional representations are easy to be found, for simplicity we write them 
as mappings X = Q -+ r (that is we identify a one-dimensional representation with its 
coordinate function). Such a X necessarily maps 1 to 1 and -1 to -1 or +1. The value 
-1, however, is not possible: in this case i, j, .& would be mapped to i (the complex 
number!) or -i, and this is not compatible with the equation ij = .&. 

Similarly it turns out that there are not many choices for the x-values of i, j, ls,., finally 
one arrives at three possibilities for multiplicative mappings from Q to r-:- They are 
denoted Xi.' Xi' X.6;., the definitions are as folIows: 

Xi.: ±1, ±i r+ 1, ±1., ±.& r+ -1, 

Xi : ±1, ±1. r+ 1, ±i, ±.& r+ -1, 

X.6;.: ±1, ±.& r+ 1, ±i, ±1. r+ -1. 

To find a two-dimensional representation p means to model the group Q by unitary 
2 x 2-matrices. This is considerably more difficult than to determine the above one­
dimensional representations, we only give the result: 
Define p by 
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±11--t ±E, ±i I--t ±1, ±i I--t ±J, ±l!;. I--t ±K, 

where E, I, J, K denote the following unitary matrices: 

( 10) 1 (i i ) ( 0 1) 1 (-i i) E= 01 ,1=V2 i-i ,J= -10 ,K=V2 ii . 

This is in fact a unitary representation, the collection 

g: 1 -1 1 -i j -j l!;. -l!;. 

Xtriv 1 1 1 1 1 1 1 1 

Xi 1 1 1 1 -1 -1 -1 -1 

Xi.. 1 1 -1 -1 1 1 -1 -1 

X~ 1 1 -1 -1 -1 -1 1 1 

fil 1 -1 ijV2 -ijV2 0 0 -ijV2 ijV2 

fi2 0 0 ijV2 -ijV2 1 -1 ijV2 -ijV2 

ffl 0 0 ijV2 -ijV2 -1 1 ijV2 -ijV2 

ff2 1 -1 -ijV2 ijV2 0 0 ijV2 -ij.J2 

of coordinate functions satisfies the conditions of proposition 16.12, and thus 

Q := {Xtdv, Xi, Xi..' X~, p} 

is a dual of Q. 

The Fourier transform of functions and measures 

From now on we fix a group (G,o) having N elements together with a dual G. 
The definitions and results which folIoware generalizations of what has been done in the 
preceding chapter for the commutative case. Everything - naturally - is technically more 
involved. For example, in the commutative case the Fourier transform of a function is 
also a function, here the appropriate definition is 

Definition 16.13 Let f : G -t C be any function. The Fourier transform j of f is a 
family of matrices (}(p)) PEG' where j(p) is defined by 

j(p),~ ! ~f(g)p(g) = ((! ~f(9)f:'(9)t~"'d.)· 
Similarly, for any measure lP'o on G, Po is the family (Po(P))PEG' with 

lP'o(p) := LlP'o({g})p(g). 
9 
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Thus, formally, j and Fo are elements of 

where Md denotes the space of complex d x d-matrices. Note that this product is an 
N -dimensional linear space in a natural way, it can be considered as a certain space of 
"mappings" defined on G, where the range possibly varies for different p. 

As exalllpies consider 

(123) f : S3 ~ C, abc H a, 

and lP'o defined on Q by 

lP'o( {l}) = lP'o( {i}) = lP'o( {D) = lP'o( {M) = 1/4. 

Then, with respect to the above duals, 

A 1 
f(X.;gn) = 6(1 + 3 + 2 - 1 - 3 - 2) = 0, 

and 

- 1 
lP'o(Xi) = 4(1 + 1 - 1 - 1) = 0, 

- 1 
lP'o(X~) = 4(1 - 1 - 1 + 1) = 0, 

It is obvious that f H j is a linear map, and therefore it is natural to try to identify 
the Fourier transform of a suitable basis. This is surprisingly simple for the co ordinate 
functions: 
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Lemma 16.14 
(i) Let f;~ be the co~x conjugate of a coordinate junction f;~ a~iated with 

any Po E G. Then f;~(p) is the zero matrix whenever P =I- Po, and f;~(po) is the 

following matrix E;~ := (almkm=l, ... ,dpo : ajk = l/dpo ' and the other alm vanish. 
(ii) The Fourier transform of the uniform distribution U on G vanishes at any p =I­

Ptriv. At Ptriv it has the value 1. 

Proof. This is nothing but arestatement of lemma 16.6. o 
By the definition of the scalar product we have to work with fH instead of ff~. If it happens 

that pis in G for some p =1= po, then the Fourier transform of ff~ will vanish there. However, in 

general only a representation which is equivalent with p will be in Gj this is, for example, the 
case for the above dual of Q. 

By this observation it is - with the help of the Pet er-Weyl theorem - not too hard 
to invert the Fourier transform. One only has to find an expression with the following 
properties: 

• it assigns to any family in TI c~ Md an element of Xc in a linear way; pE p 

• for a suitably chosen basis h, ... of Xc it is true that jj is mapped to fj. 

Since the f;k are a basis of Xc the f;k are a basis as weIl; this is more than obvious. 

Therefore ~ only have to try to find a "linear" definition which produces f;k when 

applied to f;k. After some trial and error this leads to 

Proposition 16.15 (The Fourier inversion formula) 

(i) Let fEXe be arbitrary. Then, for gE G, 

f(g) = L dptr(p(g-l)j(p)); 

PEG 

recall that tr(M) denotes the trace of M for any square matrix. 

(ii) f t-t j is a bijection between Xc and TIpEG Mdp. 

(iii) If 'Po is any measure on G, then 

for all g. 

Proof. (i) Let f = f;~ be given. Since p(g-l) = (p(g))* it foIlows that p(g-l)j(p) is the 
zero matrix for p =I- Po and the matrix 

d~ U 
.. . 0 !Jl..(g) 0 ... 

D 
... 0 f;~(g) 0 . .. 

0 f;Jp (g) 0 
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for p = Po (the f's are in the k'th column). The trace of this matrix is liZ(g)/dpo , and 

this proves that the assertion holds for lir By the Enearity of 1 f-t j and (Mp)p f-t 

'E-pdptr(p(g-l)Mp) it holds for alt 1 E XG. 

(ii) By the first part 1 f-t j is one-to-one. That this mapping is onto follows from a 
dimension argument: both XG and TIpEGMd p have dimension N = 'E- p d~. 

(iii) With l'iPo (g) .- NlPo ({g}) we have lPo = j, and the claim follows from (i) with 
1 = l'iPo· 0 

Similarly one can derive a general version of the Plancherel formula (proposition 15.7): 

Proposition 16.16 (The "non-commutative" Plancherel formula) 
Let h, 12 E XG be arbitmry. Then 

(h,h)G = L dptr[.h(p)(.fz(p))*]. 

pEG 

In particular we have 

~ L 11(g)12 = L dptr[j(p) (j(p))*] 
9 p 

for every function 1, and 

" 1" - -L-(lPO({g}))2 = N L-dptr[lPo(p)(lPo(p))*] 
9 p 

for every measure lPo. 

Proof. 1 f-t j is a linear map, and both (h, 12) f-t (h, 12) G and 

((Mp)p, (Np)p) f-t L dptr(MpN;) 
p 

are linear in the first and conjugate linear in the second argument. Therefore it suffices 
to prove the claim for h, 12 running through a basis of X G· 

As· in the proof of the inversion formula we work with the complex conjugates of the 
coordinate functions, that is we start with 

with pi, pli E G. Then the left-hand side of the Plancherel formula is zero unless pi = pli, 
j = l, k = m in which case it is l/dp'. For the evaluation of the right-hand side we recall 

that .h(p) is zero for the p =J. pi and equals Ej~ at p = pi (see lemma 16.14). Therefore 
the resulting sum is different from zero precisely when pi = pli, j = l, k = m, and then 
it equals 1/ dp'. As we have already noted this proves the result for all h,12. 

The Plancherel formula for measures follows as in the preceding proof by considering 
the special case f = l'iPo. 0 
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As an illustration consider the measure lP'o on the quaternion group on page 155. 
For this example we have 

~)lP'O({g}))2 = 4Gf = ~. 
9 

The right-hand side coincides with this number: 

1 [2 2 2 2 (1 ( 1 1 + iv'2 ) 1 ( 1 8" 1 +0 +0 +0 +2tr 4" -1+iv'2 1 4" l-iv'2 

= ~ ( 1 + 2 . 1~ . 8) = ~. 

With the results proved so far we can describe in terms of Fourier transforms how elose 
measures are to the uniform distribution. The following lemma should be compared with 
lemma 15.8: 

Lemma 16.17 For probability measures lP'o, lP'1, lP'2, ... on G the following assertions 
hold: 

(i) lP'o coincides with the uniform distribution iff iP;; is one at the trivial representa­
tion and vanishes at the other p E G. 

(ii) 

L)lP'o({g}) - ~)2 =~ L dptr[iP;;(p)(iP;;(p))*]. 
9 P","P'dv 

(iii) The variation distance lIlP'o - UII can be estimated by 

(iv) The lP'k tend to U in variation norm iJJ the lP'dp)(ff\(p))* tend to zem for all 
pE 8 with p f. P'dv· 

Proof. (i) That fJ(p'riv) = 1 and that fJ vanishes at the other p has already been noted 
in lemma 16.14 (ii). The other implication is then clear: lP'o t-+ iP;; is one-to-one. 
(ii) This follows from (i) and the Plancherel formula5 . 

(iii) One only has to relate the L2-distance (part (ii)) with the variation distance as in 
the proof of lemma 15.8 (ii). 
(iv) This is a consequence of (iii): the ff\(p)(ff\(p))* are self-adjoint and nonnegative, 
and therefore, if the traces tend to zero, the matrices will converge to zero as weIl (cf. 
exercise 16.22). 0 

5 Strictly speaking the statement we need here has not been proved in proposition 16.16 since lP'o - U is 
not a probability measure. It is only a signed measure, and one has to check our proof to verify that 
it covers also this slightly more general situation. 
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Convolutions 

Let JID1 and JID2 be probability measures on C. As in the preceding chapter we want 
to calculate the distribution of the final position of a two-step walk which starts at the 
neutral element e and for which the two (independent) steps e f--t hand h f--t h' ° h are 
in accordance with the probability laws JID1 and JID2 , respectively. The final position will 
be ho with probability 

L JID1({h})JID2 ({h'}) = L JID1({h})JID2 ({ho ° h-1 }). 

{h'lh'oh=ho} h 

This leads to 

Definition 16.18 The convolution JID2 * lP'1 of lP'1, lP'2 is defined to be the measure 

JID2 * lP'l({ho}) := LJID1({h})lP'2({ho ° h-1 }). 

h 

As in the case of commutative groups we define lP'~k*) by induction: lP'~h) = lP'0, and 
lP'((k+1)*) - lP'(k*) lP' 

o - 0 * o· 

Note that we have to write the measures JID!, JID2 from the right to the left in lP'~ * lP'! 
if we want to model transitions where lP'! is used first, this is similar to the case of 
mappings. In contrast to the commutative case the order might be relevant. 

We can now repeat what has been said in chapter 15: 

Ifthe one-step transitions are governed by lP'0, then one will observe 
k-step transitions ofthe form go f--t hoogo with probability lP'~h) ({ho}). 
Consequently the problem of how fast the chain converges to its 
equilibrium is equivalent with the quest ion of how fast the JID~h) 
tend to the uniform distribution. 

One of the main reasons to study Fourier transforms is the fact that convolution is 
transformed to multiplication. The following proposition generalizes a similar assertion 
for commutative groups (see proposition 15.10): 

Proposition 16.19 Let 11\, JID2 be prabability measures on (C, 0). Then the Fourier trans­
form of lP'2 * JID1 is component-wise the (matrix-)praduct of the Fourier transforms of JID2 
and JID1: 

for every p E G. 
Consequently, for any prabability lP'0 and any p, ~ (p) is the k 'th power o(Po (p). 

Praof. The proof is similar to that of proposition 15.10: 

90 

= L p(go) L lP'1( {g})lP'2({gO ° g-l}) 
90 9 
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= L p(go 0 g-1 0 g)lJD1({g})lP2({gO 0 g-I}) 
go,g 

= LP(gO og-l)p(g)lP1({g})lJD2({gO og-I}) 
go,g 

= L p(g')p(g )lP1 ({g} )lP2 ( {g'}) 
g',g 

CL p(g')lP2( {g'})) (L p(g)lP1 ({g})) 
g' 9 

= iP; (p)iP; (p) 

holds for arbitrary p. 0 

So far our approach to generalize the techniques which worked so successfully in the 
commutative case looks rather promising. There is, however, a fundamental difference 
between the commutative and the general situation. 

In both cases we want to study how fast the lP~k*) tend to the uniform distribution. 
For commutative groups this has been transformed to the question: 

How fast do the (lPo(X))k tend to zero for the nontrivial characters? 

The answer is simple, one only has to check the absolute value of Po(X). 
For arbitrary groups, however, we are faced with the following much more difficult 

problem, it will be resumed in the next section: 

Consider, for all nontrivial p E G, the matrix A 
Ak(A*)k tend to zero, and if so, how fast? 

lPo(p). Does 

Now we study a general version of proposition 15.11, the characterization of irre­
ducibility by means of the support of the measure under consideration. As apreparation 
we introduce adefinition: whenever 6. is a nonvoid sub set of G, then GA denotes the 
set of all 9 E G such that there are an even number gl, ... , g2r of elements of G with 
9 = gl o .. . og2r such that r of the gi'S lie in 6. and the others lie in 6. -1 (= {g-1 I 9 E 6.})j 
thus, for example, if gl,g2,g3,g4 are elements of 6., then gl 0 g2 0 g;1 0 g4 1 lies in GA, 
but g2 0 g;1 0 g4 1 is possibly not contained in this set. GA has the following properties: 

Lemma 16.20 
(i) GA is a subgroup of G, it lies between the subgroup and the normal subgroup 

which are generated by 

6. 0 6.-1 (= {go h-1 I g,h E 6.}). 

Both inclusions might be proper. 
(ii) 1f 6. contains the neutral element e, then GA is the subgroup generated by 6.. 

(iii) GA is all of G iff there is a k such that every 9 can be written as a product of k 
elements each lying in 6.. 
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Proof. (i) It is clear that with g, h also go h lies in Ge:.. This already implies that Ge:. 
is a subgroup since G is finite . .6. 0 .6. -1 - and thus the subgroup generated by this set 
- surely is contained in Ge:. so that it remains to show that Ge:. C Ne:. (:= the normal 
subgroup generated by .6. 0 .6. -1). 
We first note that .6.-1 0 .6. C Ne:., this fo11ows from the identity 

h-1 0 9 = g-l 0 9 0 h-1 0 g. 

For arbitrary gE Ge:. we proceed by induction on r (with r as in the above definition). 
The case r = 1 has just been settled, now suppose that r > 1 and that the claim is 
proved for a11 smaller r'. Let ag = gl 0 ... 0 g2r be given were r of the gi are in .6. and 
the others come from .6.-1 . 

Gase 1: gl, g2r 1ie in .6.. 
Then there is an 1 < r such that both g' = gl 0 ... 0 g21 and g" = g21+1 0 ... 0 g2r contain 
the same number of factors from .6. and .6.-1 . 

For a proof of this assertion define Ci := +1 (resp. -1) if gi E .6. (resp. E .6.-1 ) for 
i = 1, ... , 2r. Then Cl = c2r = 1 and 2: Ci = 0. Thus there must be an l' < 2r with 

2:~~1 Ci = 0, and l' is necessarily an even number. 
By the induction hypothesis g' and g" lie in Ne:., and therefore 9 E Ne:. as weIl. 

Gase 2: gl, g2,. 1ie in .6. -1. 

This case can be is treated in a similar way. 

Gase 3: gl, g:;/ E .6. or g11, g2r E .6.. 
Then g' := g2 0 ···0 g2r-1 lies in Ge:. (and thus in Ne:.), and it suffices to note that 

9 = (gI 0 g' 0 g1 1) 0 (gI 0 g2r) 

with gl 0 g' 0 g1 1 E Ne:. and gl 0 g2r E (.6. 0.6. -1) U (.6. -1 0 .6.) C Ne:.. 
It can happen that Ge:. is strictly larger than the group generated by .6. 0.6. -1: consider 

in S3 the set .6. = {1,5} (the notation is as on page 152); then .6. 0 .6.-1 = {0,4}, and 
this is a subgroup which does not contain 3 = 5-1 01 E Ge:.. 

In order to prove that the second inclusion also might be strict it suffices to choose .6. 
as a subgroup which is not normal. 

(ii) The group generated by .6. is the co11ection of the gl 0 ... 0 gl with gi E .6., and every 
such product can be written as gl 0 ... 0 gl 0 e-1 0 ... 0 e-1 . 

(iii) Suppose that Ge:. = G. We fix any go, and we write go as gl 0·· .og2r, where r ofthe gi 
are in .6. and r are elements of .6.-1 ; note that r will depend on go. Replace those gi = hi1 
which lie in .6. -1 by hf-I, where - as usual- N stands for the order of G. The hi lie in.6., 
and this shows that go can be written as a product of kgO := r + (N -1)r = rN elements 
of .6.. The element e can also be written in this way, e.g., as grN with an arbitrary 9 E .6.. 
It fo11ows that G = .6. 0 ... 0 .6., where .6. occurs k = 2:90 kgO times. 

If, conversely, G = .6. o· . ·0.6. with k factors, then we can write any given 9 as gl o· . ·0 gk 
and also e as e = h1 0 ... 0 hk • Thus 

h- 1 h-1 9 = gl 0 ... 0 gk 0 k 0··· 0 1 

lies in Ge:.. o 

Proposition 16.21 Let 1P'0 be a probability measure on the finite group (G,o) with sup­
port .6. = {g 11P'0( {g}) > O}. The following conditions are equivalent: 
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(i) GD. = G. 
(ii) There is a k such that every 9 E G can be written as a product 9 = gl 0 •.. 09k 

with gl, ... ,gk E 6.. 

(iii) For every irreducible representation p -# Ptdv the matrix A := JP;;(p) satisfies 
IIAk(A*)kll ~ 0 for any matrix norm 11·11. 

(iv) The measures lP~k*) converge to the uniform distribution on G with respect to the 
variation norm. 

Proof. (i) is equivalent with (ii) by the preceding lemma, and (ii) is arestatement of the 
fact that the associated chain is irreducible and aperiodic; this proves the equivalence 
with (iv). That (iii) and (iv) are equivalent follows immediately from lemma 16.17 and 
proposition 16.19. 0 

Rapid mixing 

A combination of lemma 16.17 with proposition 16.19 also gives rise to a quantitative 
version of the preceding equivalence (iii) <::>(iv): 

Lemma 16.22 (The upper-bound lemma) 

IllPo(ko) - Ul1 2 ~ ~ L dptr[(lPo(p))k((lPo(p))*)kJ. 
P#-Ptdv 

In order to apply this lemma one needs to know whether, for a given square matrix A 
which is a convex combination of unitary matrices, one has Ak(A*)k ~ O. We provide 
three techniques to deal with this question. 

I Matrix norms I 
Let 11· 11 be a matrix norm on the space of d x d-matrices; this means that IIABII ~ 

IIAIIIIBIl holds for arbitrary A, B. As an example one can regard A as a linear map on 
Cd, the operator norm IIAllop of this map has the desired properties. 

11 A 11 op is defined as the maximum of the numbers 11 Ax 11 (= the euclidean norm 
ofAx) with Ilxll = 1. It can be shown that IIAllop is the square root of the 
maximum of the numbers lAI, where A runs through the eigenvalues of AA*. 

Then IIAk(A*)kll ~ IIAllkIIA*llk, and one might hope to apply lemma 16.22 successfully 
with this estimate. 

Unfortunately it can happen that this gives very weak results. Consider for example 
the following convex combination of unitary matrices: 

The matrix A has operator norm one, but nevertheless Ak tends to zero remarkably fast 
(already A 2 vanishes). 
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I Sel]adjoint matrices I 
Let us reeall some definitions and faets from linear algebra: 

• A square matrix A is called normal if AA * = A * A; note that self-adjoint matriees 
are trivially normal. 

• AA * is always a self-adjoint matrix. 

• If A is normal, then IIAllop is the supremum of the numbers lAI, where A runs 
through the eigenvalues of A. 

Therefore, if it happens that A = Fo"(p) is normal, then IIAk(A*)kll op = a k, where a is 
the square of the maximum of the moduli of the eigenvalues of A. Thus the convergence 
we want to investigate solely depends on the size of a. 

There seems to be no simple charaeterization of the lP'o for which alllF'o(p) are normal. 
A sufficient criterion for self-adjointness, however, can easily be found: 

Lemma 16.23 Let lP'o be asymmetrie measure: lF'o( {g}) = lF'o( {g-l}) ]or alt g. Then alt 
lP'o(p), pE G, are self-adjoint. 

Prooj. This follows from (p(g))* = p(g-l), that is from the unitarity of the p(g): 

(lP'o(p))* CL lF'o( {g} )p(g))' 
9 

L lP'o( {g} )p(g-l) 
9 

L lP'o( {g-l} )p(g-l) 
9 

= L lP'o( {g} )p(g) 
9 

= Fo"(p) . 

0 

I Class ]unctions I 
Sometimes it happens that lF'o is such that 

lF'o({goh}) = lF'o({hog}) 

for all g, h E G. This means that lF'o( {g}) = lF'o( {h 0 g 0 h- 1 }), i.e., lF'o is constant on 
conjugacy classes. We will speak of a class measure if this is the ease. 

Class measures share many features with measures on commutative groups. Their 
Fourier transforms are particularly simple to determine: 

Lemma 16.24 Let lF'o be a class measure. Then lF'o(p) is a multiple 0] the identity]or 
every p E G. More precisely: 

Fo"(p) = [: LlP'o({g})xp(g)]Id. 
p 9 

Here xp stands ]or the character assoeiated with p, it is defined by Xp(g) := the trace 0] 
p(g). 
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Proof Let h E G be arbitrary. Then 

p(h)ir;(p) = p(h) I)'o({g})p(g) 
9 

LlP'o({g})p(hog) 
9 

L lP'o( {h- 1 0 g'} )p(g') 
9' 

L lP'o( {g' 0 h- 1 } )p(g') 
9' 

L lPo( {g} )p(g 0 h) 
9 

(L lPo( {g})p(g))p(h) 
9 

lP'o(p)p(h). 

Hence the first part of the assertion follows from Schur's lemma 16.2. 
Now write lP'o(p) as ald. Then, on the one hand, the trace of this matrix is adp ; on 

the other hand it equals L 9 lP'o({g})Xp(g), and this completes the prooE. 0 

Remarks: 

1. Note that in the case of commutative groups "character" means a group homomor­
phism from G to the complex numbers of modulus one. For general groups the characters 
are the traces of the irreducible representations. This extends the previous definition since 
in the commutative case all irreducible representations are one-dimensional. 

One could argue that the definition might depend on the particularly chosen dual (so 
that one should speak of "a character with respect to 8"). This is not the case: if p is 
an irreducible d-dimensional representation and ME Ud, then p(g) and Mp(g)l\1I- 1 have 
the same trace, and therefore p and PM give rise to the same character. 

2. Characters play an important role in harmonie analysis, they are sufficient to describe 
the "commutative" aspect of G in that they are the most general dass functions: 

• Every XP satisfies Xp(g 0 h) = Xp(h 0 g); this follows at once from tr(AB) = tr(BA) 
for d x d-matrices A, B. As a consequence all linear combinations f of characters 
are dass functions, Le., they satisfy f(g 0 h) = f(h 0 g) for all g, h. 

• Conversely, let f be any dass function. Then it follows as in the preceding proof that 
j(p) is the identity matrix multiplied by Lh f(h)Xp(h)jNdp. The inverse Fourier 
transform (proposition 16.15) then provides the formula 

1 
f(g) = N L f(h)Xp(h)Xp(g-l), 

p,h 

and if one not es that Xp(g-l) = Xp(g) with p as in lemma 16.8, then it follows that 
f lies in the linear span of the XP 6 . 

6 In fact one has to argue a little bit more subtly since p needs not be an element of G. However, there 
is a p' in this dual which is equivalent with p, and both p and p' give riRe to the same character. 
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Sometimes conjugacy dasses are rather big. In the case ofthe symmetrie group Sr, for 
example, the collection of all transpositions (= the permutations which only exchange 
two elements i, j with i :j:. j) is a conjugacy dass. To make use of this fact let us 
consider a deck of r cards, we want to analyse the random-transposition shuffie. This 
shuffie is slightly different from the random-to-random shuffie we have met in example 
5 of chapter 2. In the language of the present chapter the random-to-random shuffie 
corresponds to a IPo which assigns mass l/r to the identity, 2/r2 to the transpositions 
which exchange adjacent elements, and 1/r2 to the remaining transpositions. This IPo is 
not a dass measure. In the case of the random-transposition shuffie we use a different 
rule: 

Select j, k in {I, ... , r} independently according to the uniform distribution 
and exchange the j'th and the k'th card. 

The associated measure (which we continue to call IPo) has mass l/r on the identity and 
mass 2/r2 on each of the r(r - 1)/2 transpositions so that it is a dass measure. 

In order to discuss this example furt her it would be necessary to provide a dual for 
Sr. In fact, he re much less is essential. Since we are dealing with a particularly simple 
dass measure we only need to know, for every irreducible p, the value of XP at the trivial 
permutation and at any transposition T (the value will be independent of T). The first 
number is dp , the trace of the dp x dp-identity matrix, let us denote the second by X;. 

Since there are r(r - 1)/2 transpositions and each one has weight 2/r2 it follows from 
lemma 16.24 that 

Pa(p) = (~+ r -1. X;)Id. 
r r dp 

Therefore the mixing rate of the associated chain is determined by the number 

1
1 r - 1 X; 1 M r := max - + -- . - . 

p,P#Pt,iv r r dp 

Since the X; are traces of unitary matrices it follows that their absclute values are 
bounded by dp , but this observation only provides the poor bound M r S 1. Better results 
necessitate to put into action the machinery of advanced group theory. In the literat ure 
on this subject one finds tables of the numbers X;. For example, if r = 10, page 354 of 
[47] contains the information that there are precisely 42 irreducible representations with 
dimensions ranging from 1 (for the trivial and the sign representation) to 768. On this 
page also the X; can be found so that it is possible to derive M lO explicitly7. 

It is considerably more difficult to provide results concerning this shuffie for arbitrary 
r. Diaconis proves in theorem 5 of [24] the following assertion. The proof depends on 
deep properties of characters of the symmetric group which enable one to estimate the 
M r and thus to apply the upper-bound lemma 16.22. 

Theorem 16.25 There is a eonstant a > 0 sueh that for any e > 0 one has 

\\IPo(k*l - U\\ S ae-2c , 

provided that k ~ (r log r) /2 + er. 

7 The worst case happens for a representation where dp = 9 and X; = 7; this leads to 

1 9 7 4 
MlO=-+-'-=-' 

10 10 9 5 
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This roughly means that a k of order r log r suffiees to guarantee that after k random­
transposition shufHes all permutations of the eards are (approximately) equally likely. 

Exercises 

(( G, 0) will be a finite group in the following exercises.) 

16.1: There exists a G whichdoes not admit any non-trivial one-dimensional represen­
tation. (Hint: eonsider a suitable subgroup of the symmetrie group Sr, where r is not too 
small.) 

16.2: Let lF'0 be a probability measure on G sueh that 

lF'o(A) = lF'o({g 0 go I 9 E A}) 

for all A c G and all goi such measures are called translation invariant. Prove that the 
uniform distribution is the only translation invariant probability measure on G. 

16.3: Let d be an integer, d > 1. Prove that every d-dimensional representation p such 
that all p(g) are diagonal can be written as a product of one-dimensional representations. 

16.4: Let tSg and tSh be Dirae measures associated with two elements 9 and h of G. 
Calculate the convolution tSg * tSh . 

16.5: G is eommutative iff lF'I * lF'2 = lF'2 * lF'I holds for arbitrary probability measures 
lF'I, lF'2 on G. 

16.6: Let GI and G2 be finite groups and PI and P2 representations of GI und G2 , 

respeetively. Prove that 

defines a representation of the product group GI xG2 . 

16.7: Let go be a fixed element of G and tSgO the Dirae measure associated with go. Can 
you give, for an arbitrary prob ability measure lF'0 on G, an explicit deseription of tSgO * lF'0? 

16.8: Prove that the eonvolution is an assoeiative operation. 

16.9: Let X : G --r r be multiplieative on G and p a d-dimensional representation. Define 
XP by 

9 f-+ X(g)p(g)· 

a) Prove that XP is a d-dimensional representatioIl of G. 

b) Is XP irreducible if pis? 

e) What problems arise if one wants to define, for given d-dimensional representations 
Pl,P2, a new one by 

16.10: The Peter-Weyl theorem implies that pis equivalent with some p' E G for every 
p in a dual G of G. Verify this faet for the above two-dimensional representation p of Q. 

16.11: Can there be a d-dimensional irreducible representation on a group with d2 ele­
ments? 
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16.12: Let H be anormal subgroup of G and go an element whieh does not belong to 
H. Prove that there exists an irreducible representation p such that p(g) is the identity 
matrix for all gEH, but p(go) =I- I d. 

16.13: Let a measure lP'0 on the quaternion group Q be defined by 

lP'0( {l}) = lP'0( {i}) = 1/3, lP'0( {,Ü) = lP'0( {k}) = 1/6. 

Calculate lP'0 and reconstruct lP'0 from lP'0 with the help of the Fourier inversion formula. 

16.14: For a probability measure lP'0 on G define a new measure lP'ü by 

a) lP'ü is a probability measure. 

b) If lP'0 * lP'ü = U, the uniform distribution, then lP'0 = U. 

It is important to consider lP'o * lP'o and not lP'o * lP'o here since there are groups for 
which measures lP'o different from U exist which nevertheless satisfy lP'o * lP'o = U. 
(See [15], a complete discussion of this problem can be found in [27] and [72].) This 
is in marked contrast to the commutative case, cf. exercise 15.9. 

16.15: Let U, V be distinct unitary dxd-matrices. Prove that I/(U + V)/2I/op is strietly 
less than one if d = 1, but that for d > 1 there are examples such that II(U + V)/21Iop = 1 
holds. 

16.16: Let 1 be a complex valued function on a group G with N elements. Define j by 

Prove that j is a dass function and that 1 M j is a linear projection on the space Xc. 

16.17: Prove that the not ion "equivalence" for representations of a group has the prop­
erties of an equivalence relation: it is reflexive, symmetrie and transitive. 

16.18: Let p be a d-dimensional representation of G. Prove that p is irreducible iff the 
subspace spanned by the p(g) is d2-dimensional. 

16.19: How is the Fourier transform of a function 1 related with that of the functions 
gM l(g-l) and 9 M l(go 0 g)? 

16.20: We have introduced characters resp. representations such that the X(g) resp. the 
p(g) are complex numbers resp. unitary matriees. Where was this important, wh at goes 
wrong if one restriets oneself to real numbers and matrices? 

16.21: Characterize the probability measures lP'0 such that the associated chain on G is 
reversible. 

16.22: Let A k be a self-adjoint N x N-matrix with nonnegative eigenvalues for k = 1, .... 
Prove that the A k tend to zero (component-wise) iff limk tr(Ak ) = O. 
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17 Notes and remarks 

The results presented in chapter 9 have been known since the "classical" period of Markov 
chain theory, the approach presented here emphasizes the use of convexity arguments. 
The proof of proposition 9.2(iv) is from [69], readers who want to learn more on the 
algebraic theory of stochastic matrices are referred to this book. 

Also all results in chapter 10 are folklore. The structure of our proof of theorem 10.3 
follows chapter 2.2 in [70]. The simple idea to treat certain renewal problems as presented 
in the text seems to have no counterpart in the literature. 

The material of chapter 11 is mainly from [70], there one also finds extensive comments 
on the development of conductance techniques. Our proof of theorem 11.3 is similar to the 
approach in chapter 2.2 of [70]. (Despite considerable effort there seems to be at present 
no really elegant and simple proof of this result. For competing or similar variants see 
[18] or [74].) The observation which we have called proposition 11.8 seems to be new. 

Chapter 12 covers standard material, in the present context (finite state space, discrete 
time) the proofs remain rather simple. 

As already noted in the text, the couplings in chapter 13 have a long history (see [54]). 
Aldous ([1]) seems to be the first who has applied couplings systematically to get bounds 
of rapid mixing, most of our results are from this paper. 

The standard reference for chapter 14 is [4], further results can be found in [3] and [24]. 
Our contribution is only to emphasize the property which we have called "1[' respects the 
Markov property". 

Who is responsible for the results in chapter 15 and chapter 16'1 The development 
of harmonie analysis on finite groups was the work of many mathematicians, it was 
completed at the beginning of the twentieth century. Here I have tried to find an approach 
which is self-contained and elementary. My way to the Peter-Weyl theorem is based on 
lemma 16.10, more common is an application of the Stone-Weierstraß theorem at this 
point. 

I did not find any remark in the literature who used harmonie analysis for thc first time 
to investigate mixing properties of chains on groups. At present the standard reference is 
[24], it contains an abundance of applications of group theory to prob ability and statistics. 
Most of our theorems - in particular the last one - can be found there (as an exception I 
mention the properties of G ~ and proposition 16.21 which seem to be due to the author). 
The results of this chapter can only be applied if one has mastered the problem to exhibit 
sufficiently many irreducible representations of a given group. For this [19], [34] and [47] 
might be helpful. 

It should be noted that the same technique has been applied similarly successfully to 
certain infinite groups: the approach is the same, the concrete calculations, however, are 
much more involved (see, e.g., [65]). 

This Notes-and-Remarks chapter closes with some supplements. The first one con­
cerns couplings. The idea with coupled Markov chains is to observe two copies of a random 
walk until they meet. A variant has been proposed in [63]. There one simulates a chain 
backwards, more precisely, one tries to find a time step -ko in such a way that now, 
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at time 0, a11 walks which have been started at time -ko have met at the same state, 
say i. The surprising feature is that a particular state i is found in this way precisely 
with probability 'Tri. This "coupling from the past" has been applied successfu11y to treat 
various problems, see [32] or [64]. Other methods which also provide exact simulation -
and not only outputs with a distribution arbitrarily elose to the equilibrium - can be 
found in [75]. 

Next we want to mention a phenomenon wh ich has attracted the attention of several 
mathematicians. Imagine an irreducible and aperiodic chain with equilibrium 'Tr T and 
suppose that it starts deterministica11y. Then often the fo11owing happens: for a certain 
number of steps the probabilities to find the walk at some state i are "far away" from 'Tri, 

and then - not much later - they approximate 'Tri very weIl. This "cut-off phenomenon" 
has been studied in a number of papers (see, e.g., [1], [3], [24], [55], or [65]), it can be 
observed at many concrete chains. A theoretical understanding, however, which covers 
arbitrary chains has not yet been proposed. 

And fina11y it has to be remarked that only a selection of known mixing methods has 
been treated here. For example, we have completely omitted the so-ca11ed L 2 -methods 
where Hilbert space methods come systematica11y into playl; see the artiele of L. Saloff­
Coste in [37]. For a survey of other methods cf. [55], and in this connection it is also 
necessary to mention [5] (which hopefu11y sooner or later will manage the transformation 
fmm mere electronic existence into areal book). 

1 In section 21, however, in the proof of proposition 21.3, we will make use of such techniques. 
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In part II we have developed a number of techniques which enable us to determine how 
fast a given chain converges to its equilibrium. In particular we are now in a position 
to generate random elements from a finite set according to a prescribed distribution 
provided it can be thought of as the equilibrium of a chain to which our mcthods apply. 

Part III will contain some examples to demonstrate how one can profit from this idea. 
In chapter 18 we describe the connection between approximate counting and random 
generation: for a certain dass of of sets, the solution sets of self-reducible problems, it is 
essentially equivalent to be able to count up to a prescribed accuracy or to have access to 
a (nearly) uniform random generator. Next, in chapter 19 we introduce Markov random 
fields which can be thought of as a natural generalization of Markov chains. It will be 
shown how it is possible to generate samples from such a field by using the Markov 
chain techniques developed ·earlier in this book. For a special dass of random fields, the 
dass of Gibbs fields, the probability measure is defined by certain functions, the potential 
functions. Gibbs fields are studied in chapter 20, we prove that they are Markov random 
fields. A celebrated example of a Gibbs field, the Ising model, is investigated more dosely. 
At the end of this chapter we show how one can obtain samples from a Gibbs field, to 
this end we provide concrete bounds for the mixing rate of the Gibbs sampler. 

There is a variant of the Gibbs sampler: also with the Metropolis sampler it is possible 
to sample from a finite space for which the probability distribution is given by an energy 
function. This is studied at the beginning of chapter 21. The second half of this chapter 
is devoted to simulated annealing, a stochastic optimization technique which has found 
numerous applications in various areas of applied mathematics. Finally, the last chapter 
of this book (chapter 22) contains some Notes and remarks. 
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18 Random generation and counting 

Sometimes it happens that one is dealing with a set S for which it is easy to check that 
it is finite but for which there seems to be no simple way to determine the number of 
elements within reasonable time. There are even situations where this problem is N P­
hard so that exact counting is in a sense impossible. However, by using Markov chains 
one can treat the weaker problem of approximate counting, a connection which has been 
systematically studied by Sindair and others (see [70] and the literat ure cited there). 

We start our discussion with some sampIe problems in section 1. It will then be im­
portant to note that some of these are of a particular type: they can be reduced to "few" 
simpler ones which in turn give rise to others which are even more tractable and so on. 
They will be called self-reducible, it is this dass of problems to which Markov chain tech­
niques apply. Next, in section 2, we indicate how the possibility of exact counting gives 
rise to the possibility of exact uniform simulation. More interesting is the converse: if we 
have uniform random generators at our disposal we can count the number of solutions 
of self-reducible problems approximately. This will be presented in section 3. 
Finally, in section 4, we complement the investigations of section 2 in that we describe an 
approximately uniform random generator over the solutions of a self-reducible problem 
without the assumption of knowing the numbers associated with the reduced problems. 

Self-reducible problems 

Most of the ideas we are dealing with in this chapter can be illustrated with the 
"problem" of determining the number N(r) of all permutations over r elements. Usually 
one argues as follows: the collection of alt permutations is the disjoint union of r subsets 
the p'th of which contains the permutations which send 1 to p (p = 1, ... , r); each of the 
subsets has N(r-1) elements, this gives rise to the recursion N(r) = rN(r-1), and with 
N(l) = 1 one gets N(r) = rL The crucial point in the argument is to split the problem 
into a "small" number of simpler ones. Before we try to be more formal we consider 
further 

Examples: 

1. Let n > 0 be an integer. What is the number of partitions of n, that is how many 
families nl 2': ... 2':nk 2': 1 exist such that n = nl + ... + nk? (The number 5, e.g., admits 
the 7 partitions 5, 4 + 1, 3 + 2,3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.) 

2. Let F( Ul, ... , ur) be a Boolean formula in the Boolean variables Ul, ... , Ur, that is 
a well-defined logical expression which contains the u's and which is buHt up nsing the 
logical operations /\ (= "and"), V (= "or") and .., (= "not"). 

Here are examples in the three variables u, v, w: 

(u V v) 1\ (""w), ((u V v) 1\ (u V w)) V (...,v), ... 
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There are 2r possibilities to give the variables the values "true" or "false". How many 
of these give rise to the value "true" for the expression F? For example, for the case 
(u V v) /\ (...,w), it is easy to check that there are precisely 3 possibilities, but how can 
the number be determined for larger r? Also it could be important to have an answer to 
the more modest question whether or not there exist any truth values for the u's which 
make F a true expression 1 . 

3. Let 6. be a collection of r points in the d-dimensional euclidean space ~d; we assurne 
that r ~ d + 2. Then CaratModory's theorem asserts that for every x in the convex 
hull of 6. there are elements Xo, . .. , Xd of 6. such that x lies already in the convex hull 

of these d + 1 elements. There are (d: 1 ) possibilities to choose these elements, for 

how many choices will x be in the convex hull? 

4. Let n be an integer, one wants to know the number of nontrivial divisors m of n. A 
particular instance is the problem whether there exist any such m, that is whether or 
not n is prime. 

5. Let (V, E) be a graph (see page 96). A per/ect matching 0/ size n is a subset M of the 
edges E such that M has n elements and each two different el, e2 in M have no vertex 
in common. Denote by Mn the collection of these NI, how many elements does this set 
have? 

A particular case has attracted the attention of many mathematicians. Assurne that 
(V, E) is of the special form that V is the disjoint union of two subsets Vl , V2 each 
containing r elements and that there are only edges which join vertices of Vl to those of 
V2 (a bipartite graph). Obviously there are precisely as many such graphs as there are 
r x r-matrices A = (aij) with aij E {O, I}, one simply has to translate a "I" at position 
i,j into an edge joining i to j and vice versa. Then a matching of size r for the graph 
corresponds to the choice of r positions i,j in the matrix with aij = 1 in such a way 
that every row and every column contains precisely one of these specified positions. The 
number of such choices can be written more compactly as 

r 

per(A):= LII aiO"(i), 

0" i=l 

where the summation runs over all permutations a of {I, ... , r}. One cannot faH to 
observe the similarity of this expression with that of the determinant of A, surprisingly 
the calculation of per (A), which is called the permanent 0/ A, is much harder than that 
of the determinant2 . 

We want to emphasize here that some of these enumeration problems share with our 
introducing example of the permutations the possibility that counting can be reduced to 
the counting problem for simpler situations. For example: 

• Suppose that you know, for all m < n, the number 7r(m, k) of partitions of m such 
that all summands are bounded by k. (For example, 71"(4,2) = 3, since we have to 
take into account the three partitions 2 + 2,2 + 1 + 1, 1 + 1 + 1 + 1). A moment's 
reflection shows that 7r(n, n) - this is the number we are interested in - is just the 
sum 

1 For more comments on this satisfiability problem and its connections to the P = NP circle of ideas 
see chapter 22. 

2 A standard reference concerning the permanent is [58]. 
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1 + 7r(I,n -1) + 7r(2,n - 2) + ... + 7r(n - 1,1). (18.1 ) 

• In the last example fix an edge e of the bipartite graph under investigation joining 
a fixed vertex Xo to another vertex Yo and consider the graph which is obtained 
from the original one by erasing e, the vertices xo, Yo and all edges starting at Xo 
or Yo. Suppose that you know the number Pe of perfect matchings of size r - 1 of 
this reduced graph for every such e. Then the number of matchings of size r is just 
the sum over the Pe. 

To phrase it in the language of the permanent: the permanent of an r x r-matrix A with 
0-1-entries is the sum of the permanents of the S; r matrices which are derived from A 
by erasing a fixed line and a column where this line contains a "1". This corresponds to 
a similar technique for determinants. 

For the other problems it is not obvious how to choose an appropriate reduction. For 
problem 4, the number of divisors, it is at present even unknown whether a similar 
simplification is possible. 

Now we are going to argue a little bit more /ormally. However, in order to avoid 
the danger of hiding the relevant ideas behind technicalities our approach will not be 
perfectly rigorous3 . We are given a problem which can be posed by prescribing a certain 
mathematical object x. One knows in advance that there exists a finite set R(x) of 
solutions to this problem, and we are interested in the cardinality of R(x). In the very 
first example, e.g., x is the number rand R( x) is the set of all permutations of r elements. 

We suppose that we can associate with every such situation a non negative integer 
l(x) which can be thought of as a measure 0/ difficulty to treat the problem; in the 
permutation example surely l(x) = r is a natural choice. And the precise meaning of 
"the problem can be reduced to 'few' simpler problems" then is that it is possible to find 
subproblems Xl, ... ,xs of a similar kind such that 

• l(Xi) < l(x) for i = 1, ... ,s; 

• the cardinality of R(x) is the sum of the cardinalities of the R(Xi) (or, more gen­
erally, R(x) can simply be counted if all R(Xi) are known); 

• the number S of sub problems is not too large: there is a polynomial Q such that 
s :S Q(l(x)). 

Also it is assumed that problems with l(x) = 0 have a unique solution which can be 
found in constant time. 

Readers who are not familiar with theoretical investigations of complexity might won­
der why polynomials occur here. The reason is that it is now a generally accepted idea 
to regard only those problems as tractable for which the amount of work to solve them 
can be bounded by a polynomial in the number of bytes which are necessary to pose 
the problem. E.g., as everybody knows, the calculation of the product of two numbers is 
tractable, but there are many problems for which this is unlikely (a well-known example 
is the travelling salesman problem). 

3 Cf. [70], chapter 1, for a more extended presentation. 
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In view of these remarks we hasten to complement our assumptions: it is tacitly un­
derstood that the calculation of l(x) and the determination of the XI, ... ,Xs have a 
polynomially bounded running time, also l(x) must be bounded by a polynomial in the 
number of bytes which are necessary to describe x. If these conditions are met we will 
speak of a self-reducing problem. 

It should be clear how the above examples fit into this framework, we omit to identify 
the l(x) and the Xl, ... ,xs in these special cases. Rather we want to recommend the 
following visualization of self-reducible problems. We associate with each such problem a 
tree with root R(x), it is depicted at levell = l(x). The R(Xi) are connected by edges 
with R(x), they occupy certain levels which are smaller than l (for simplicity we have 
placed all of them at levell-l in our picture). The individual R(Xi) give rise to new sub­
subproblems at even lower levels, and so on until we reach the level zero. There we find 
the "leaves" of our tree, certain R(y) which can rapidly be determined. This information 
then gives rise - by working backwards - to the number of elements in R(x). 

R(x) l(x) = l 1 

Il(x)=l-11 

R(Xll) R(X12) ..... ·Il (x) = l - 21 

/\ /\ 
(xll ... d R(Xll ... 2) and the other R(x ... ) for X ... with l = 0 l(x) = 0 

The solution tree of a self-reducing problem 
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Counting plus self-reducibility implies simulation 

We resume our permutation example. Suppose that we want to provide a random 
permutation 7 = (71, ... , 7100) of {I, ... , 100}. There are 

100! = 9332621544394415268169923885626670049071 

5968264381621468592963895217599993229915 

6089414639761565182862536979208272237582 

51185210916864000000000000000000000000 

of them, a finite though rather big number. Therefore there is no hope to approach the 
problem by enumerating all candidates and then to generate a random number between 
1 and 100!. It is much more natural to start with a random choice in {I, ... , 100} to 
obtain the first element 71, then to select uniformly 72 among the remaining 99 numbers 
and so on. In this way we can get a uniformly distributed 7 from all permutations of n 
elements after n random choices among at most n elements. It should be obvious that 
this method reduces the complexity of the problem drastically (otherwise it would not 
even be tractable). 

The reason why the resulting permutation is in fact uniformly distributed is simple, 
one only has to apply repeatedly the following argument4 : 

Suppose a finite set M is written as a disjoint union of sets !vh, ... , !vIs each 
having t elements. If one chooses a E {I, ... , s} uniformly at random and then 
x in M er independently and also uniformly, then x will be equidistributed in 
M. 

Only a little modification of this idea is necessary to treat arbitrary self-reducing 
problems in a similar way: 

Proposition 18.1 Let R(x) be the solution set associated with a self-reducing problem. 
Suppose that this dass 0/ problems is such that it is eas'!/' to determine the cardinality 0/ 
R(y) /or all y. 
Then one can generate a uni/ormly distributed z in R(x) as /ollows: 

• Denote by n,n1, ... ,ns the cardinalities 0/ R(x), R(xd, ... , R(xs), respectively; 
here Xl, ... , Xs are the subproblems associated with x (note that n = n1 + ... + 
n s by the definition 0/ sel/-reducibility). Choose a E {I, ... , s} according to the 
probabilities nl/n, . .. , ns/n and continue to work with x er • 

• Pass similarly from X er to a sub-subproblem, from there to a sub-sub-subproblem 
and so on until you arrive at a problem y 0/ level 1 = O. 

• Find the unique z' in the leave R(y) and use this - by working backwards - to get 
a z in R(x). This z is the output 0/ our generator. 

Proo/. The justification is easy: if U1 , • •• , Us denote the uniform distributions on sets 
M1 , ••• , M s which are a disjoint partition of a set M, then 

4 In technical terms it is the trivial statement that the product of two uniform distributions is also 
uniform. 

5 "Easy", of course, means "in polynomial time". 
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card(Md U card(Md U 
card(M) 1 + ... + -c-ar-cd-':-(M:-::'-) S 
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is uniform on M. This is applied here to M(x) which - up to isomorphism - is the disjoint 
union of the R(Xi). 0 

As a variant oJ this idea suppose that we don't know the R(x) exactly but that it is 
possible to get approximations as elose as we wish within reasonable time. More rigorously 
this can be expressed by saying that we have an algorithm at our disposal with the 
following two properties: 

• For given c > 0 and x the algorithm provides a number l' such that 

Ir - card(R(x)) I '------'-,--'-,-'-'-'. ::; c 
card(R(x)) 

with a prob ability of at least 1 - c . 

• The running time to get l' is bounded by a polynomial in l/c and the number of 
bytes to describe x. 

Then we can modify the simulation procedure in proposition 18.1 to get a random gen­
erator for the z E R(x) which has distribution c-elose to the uniform distribution and a 
polynomially bounded running time (with a polynomial in l/c and the "length" of x). 

The proof is not difficult, one only has to glue together the various polynomials. Never­
theless, a rigorous argument is technically cumbersome, the reader is referred to chapter 
1.2 in [70]. 

Simulation offers the possibility of counting 

Surprisingly, it is possible to reverse the idea. To motivate the approach let's consider 
again the permutations P = (PI, ... , Pr) of {I, ... , l' }. We pretend not to have the slightest 
idea of how big the number N(r) of the P might be. However, we suppose that we are 
elever enough to simulate them with respect to the uniform distribution. With the help 
of such a generator we will observe after some time that roughly a l/r-fraction of the 
samples satify PI = i for i = 1, ... , r. We repeat the experiments with permutations over 
{I, ... , r - I}, and also this time the first entry is uniformly distributed. In this way we 
proceed until we arrive at a level which can be treated directly, say r = 3. Then we argue 
as follows: N(3) = 6, and among the permutations of Jour elements it is (roughly) equally 
likely to get "1 followed by apermutation of {2, 3, 4}" or "2 followed by apermutation 
of {1,3,4}" or .... Thus N(4) should be elose to 4N(3) = 24. 

Note that this is a variant of the following elementary fact: if an um contains 
an unknown number m of balls precisely k of which are white, then you can 
estimate m provided that k and the probability of drawing a white ball are 
known. 

Working backwards we really arrive at the estimate N(r) ~ r!, a guess which of course 
should be complemented by an error analysis. 
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This can be made precise for arbitrary self-reducing problems: the number of elements 
in the set R(x) can be counted approximately in polynomially bounded time if one 
has access to a generator which provides these elements nearly uniformly distributed 
in polynomial time. A rigorous formulation and the details of the canonical proof are 
omitted here, we refer the reader to chapter 1.4 in [70]. 

A celebrated example where this counting method plays an important role is the 
permanent which we have met at the beginning of this chapter: we are given a ma­
trix A containing solely l's and O's, and the problem is to determine per (A), the number 
of permutations a such that all aio-( i), i = 1, ... , r, are one. It has been shown by Valiant 
([73]) that the calculation of per (A) is "difficult": this calculation is # P-complete, a 
not ion from the zoo of complexity definitions which essentially states that there is no 
hope for a polynomially bounded algorithm. On the other hand, the permanent can be 
calculated approximately in polynomial time, and thus we have an example of a situation 
where Monte-Carlo techniques are provably superior to exact methods. 

The idea is to combine the following facts: 

1. The permanent of a matrix is just the the number Mn of perfect matchings of size 
n of a suitable bipartite graph (V, E) with 2n venices. 

2. The determination of the permanent is a self-reducing problem. 

3. It is possible to generate a random perfect matching of size n in polynomial time6 • 

This has first been sketched by Broder in [21], the result is described in full detail in 
chapter 3 of [70]. 

Simulation without counting 

Let us finally remark that one can always simulate elements of R( x) in the case of 
self-reducing problems. It has to be admitted, however, that the method performs rather 
poorly. 

The idea is to apply the Markov chain techniques for chains which are defined by 
graphs from chapter 11 to the graph which is associated with the problem (see page 
177). 

We want to produce elements of R(x), or, equivalently, vertices at the level 1 = 0 (these 
are the leaves of our tree)j they all should have (approximately) the same prob ability. 

On the other hand, we know how to produce a random vertex of the whole graph, this 
has been described in the second half of chapter 11. From the results we have proved 
there we even can derive concrete bounds for the mixing rate, it will depend on the edge 
magnification J.L of the concrete graph under consideration. 

Andto bridge the gap between our "we want" and the "we know" one simply pro duces a 
random vertex of the whole graph with the restriction that it will be used as the output 
of our random generator only if it is at level I = O. Then the outputs will clearly be 
(nearly) equidistributed in this subset. 

6 More precisely: the sam pIes are nearly uniformly distributed, and the distance e between the uniform 
and the real distribution contributes with a polynomial in log c to the running time. 



Chapter 18: Random generation and counting 181 

Let us analyse what happens if we are going to produce random permutations T of 
{I, ... , r} in this way. The various levels 1 = r, r-1, ... , 0 can be thought of as the 
number of components of T which remain to be specified. It is reasonable to identify a 
vertex with the sequence of components we already know, and thus the root of our tree 
is the empty set 0, let us start there. 

We proceed as described in chapter 11 (cf. definition 11.4; for simplicity we will work 
with ß = 1). The maximal number d of edges in our graph is r+1, and thus we stay at 
o or we will move to 1, to 2, ... , or to r each with probability 1/(r+1). Suppose that 
we arrive at 2. Then, with equal probability, we will return to 0 or continue to one of 
21, 23, ... , or 2r. In this way we perform a walk on the possible selections of 0, 1, ... , 
or r numbers (without repetition) out of {I, ... ,r}, a walk which will from time to time 
be in 11:= the selection of r numbers = the set of permutations. We stop the walk after 
some time, and only if we are at astate in 11 this is used as an output. 

Two natural quest ions arise. The first is the question of ejJiciency, how often will it 
happen that we stop at astate in II? The graph has gr := 1 + r + r(r-1) + ... + r! 
elements r! of which are favourable. The quotient is elose to l/e;::::J 0.38, and this ratio is 
surely not too bad: the random walk will produce roughly 38 outputs out of 100 runs. 

And what ab out the running time? Unfortunately, the graph under consideration is 
particularly unsuitable for rapid mixing because of the bottleneck at the root; to pass 
from one leave (= apermutation) to another one with a different first component one 
has to elimb up to the very top of the graph. Let us assurne for simplicity that r is even, 
by T we denote the vcrtices which belong to the left half of the graph (not ineluding the 
root). The capacity CT is very elose to 1/2, the ergodic flow FT, however, is rather small. 
There are r /2 edges from T to its complement each with transition prob ability 1/ (r+ 1), 
and therefore FT = r/[2(r+1)grl. It follows that <1>T and thus also the conductance <1> 
of our chain is as tiny as 1/ gr, and since the mixing rate is bounded by 1 - 2<1> it is 
impossible to guarantee a good mixing rate within reasonable time. 

Moral 0/ the story: Simulation without counting is - at least in the case where one works 
with the solution tree of a self-reducing problem - mainly interesting for theoretical 
reasons, this method can be used only for very restricted examples. 

Exercises 

18.1: Let (M,~) be a finite ordered space. Prove that the problem of finding all totally 
ordered subsets of M is self-reducing. 

18.2: Let A be an NxN-matrix with integer coefficients. Verify that the problem of 
calculating the determinant of Ais self-reducing. 

18.3: Prove formula (18.1). 

18.4: Calculate the permanent of 

and sketch the associate bipartite graph. 

18.5: Let Al and A2 be square matrices. Give a formula of the permanent of 
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( AOI 0) 
A2 

in terms of the permanents of Al and A2 . What does this resuIt mean for the associated 
bipartite graphs if Al and A2 have 0-1-entries? 

18.6: Let N be an integer with r digits. 

a) Prove that the number of elementary calculations to determine N 2 is bounded by a 
polynomial of degree 2 in r. 

b) What degree belongs to the caIculation of N 3? 

c) Suppose that N is a square, N = M 2 . Is the number of calculations which are necessary 
to determine M bounded by a polynomial in r? 

18.7: Let A be a finite set which is written as the disjoint union of subsets Al, ... ,Ar. 
Suppose that one has the information that the number of elements in Ap is n p for 
p = 1, ... ,r. However, this is known to be true in each of the r cases only with probability 
1- c (where "true" or "false" are independent for the various p). Also n p is possibly not 
precisely the cardinaIity of Ap , there might be a relative error eS: 

What can be said about the number of elements in A? 
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19 Markov random fields 

Imagine a set S of people, the inhabitants of your home town, say. For every 8 E S there 
is a subset N s of S: the people whom 8 knows, his or her neighbours, friends or colleagues. 
It happens that some people are infected by a dangerous disease D, the probability that 
a particular person 8 has D will naturally depend on the number of t E Ns with D. What 
can be said about the distribution of infected people? Will D eventually disappear or 
will everybody be infected sooner or later? 

It is easy to find similar situations, "8 has D" can be replaced by "8 has heard of 
the rumour R" or by "8 is in favour of the political party P". Of great interest are 
also ex am pIes from physics. It is known, for example, that the orient at ion of a magnetic 
dipole d depends stochastically on the orientation of its neighbours: if they all have the 
same orientation 0 then there is a strong tendency that 0 is also assumed by d. 

In the present chapter we introduce a model to deal with such probabilities which 
are (solely) influenced by the "neighbours". For many years it has been used in various 
areas, ranging from physics over sociology, medicine and biology to applications in image 
reconstruction. 

The appropriate setting will be Markov random jields. Such a field is a family (Xs)s 
of random variables indexed by a set S, where the term "Markov" refers to the fact that 
"little" information (namely the values of X t for the "neighbours" t of s) is as good as the 
knowledge of alt Xt, t ::p 8 if one wants to predict X s . We start with rigorous definitions: 
random fields, neighbourhood systems, Markov random fields, local characteristics. The 
connection between a local and aglobai view is discussed in some detail in the second 
section, there Markov chains and their equilibrium distributions will play an important 
role. 

Markov random fields: definitions and examples 

Let us first fix notation. We need a finite set S, the sites, and a finite set A of states. 
To avoid trivialities we will assume throughout that A has at least two elements. Usually 
A is small, but even then the collection A S of all mappings from S to A can be incredibly 
large, this is the space we are interested in 1 . 

To illustrate these abstract not ions we consider some 

Examples: 1. Let S be as at the beginning of this chapter. With A := {O, 1}, a mapping 
x : S -t A can be thought of as a description of the distribution of the disease D at a 
fixed moment: one only has to translate X(8) = 1 (resp. = 0) into "8 has D" (resp. not). 

2. Let Tl, ... ,Tr be the football teams (political parties, preferred restaurants, ... ) of a 
town. We put A = {O, 1, ... ,r}, and we describe the football preferences at a particular 
moment by a function x : S -t A; X(8) = P of course means that Tp is the favourite team 
of 8, with the interpretation "8 has no favourite team" in case X(8) = O. 

1 The x : S ~ Aare sometimes called configurations. 
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3. Now we turn to pictures. With S = {I, ... , 256} x {I, ... , 256} and A = {O, I} a 
black-and-white picture in a 256 x 256-resolution corresponds to a map x : " -+ A. It is 
easy to introduce colours by passing to a bigger A. 
Note that even in the black-and-white case and even with this moderate number of pixels 
we have to deal with aspace A S containing 2256.256 ~ 1019,660 elements. 

This was the set theoretical part, we now turn to probability considerations. By a ran­
dom field we mean aspace A S together with a probability measure lP'; if it is necessary 
to emphasize the roles of Sand A it is more precise to speak of a random field on S with 
state space A. As before Sand A are finite, and it is usually assumed that lP' is strict1y 
positive at every point; we will follow this convention. 

By X s : AS -+ A, sES, we will denote the evaluation maps x I-t x(s). If (As,lP') is a 
random field, then the X. are random variables, we are mainly interested in stochastic 
dependencies between them. With the sES there are associated the conditional prob­
abilities lP'(X. I Xt, t i- s). For our purposes it will be convenient to work with the 
numbers 

lP'(Xs = A I X t = At for t E S, ti- s), 

where A and the At are arbitrary elements of A. (Or, equivalently, with the 

lP'(X. = x(s) I X t = x(t) for t E S, ti- s), 

for xE AS.) 

Suppose that you know at a given moment the state of health of all persons who 
are different from a fixed person s. What is the probability that s has the disease 
D? 

(19.1) 

These quantities can always be defined. In many cases, however, it is not necessary to 
have access to all X t with t i- s in order to deal with the probabilities in (19.1) since 
already the t in a "small" subset of S contain the relevant information. 

If our person s lives alone with his family then it might be sufficient to know whether 
or not his wife or his children have D. 

This leads to the following fundamental definition, the starting point of the investigations 
to corne: 

Definition 19.1 Let S be as above. By a neighbourhood system we rnean a farnily N = 
(N.).Es such that 

(i) for sES, N. is a (possibly ernpty) subset of S which does not contain s. 
(ii) t E N. yields s E Nt for all s, t. 

Now let (X.). be a randorn field with state space A. It is called a Markov random field 
with respect to the neighbourhood system N provided that 

lP'(X. = AI X t = At for t E S, ti- s) = lP'(X. = A I X t = At for t E Ns ) 

for arbitrary sES , A, At E A. 
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Some remarks are in order. First we emphasize that all conditional probabilities are 
defined since we are dealing with a strictly positive lP'j note that, if Ns = 0, the conditional 
probability on the left-hand side is just lP'(Xs = >.). And we also want to stress that it is 
important always to have in mind the dependency of the Markov property on N: if Nmax 

denotes the maximal neighbourhood system - where the neighbours of s are all t with 
t =I s - then every random field is Markov with respect to Nmax • The other extreme is 
the case where all Ns are empty. Now "Markov random field" translates into "the (Xs)s 
are independent random variables" (cf. exercise 19.6). 

How are the Markov processes which we have studied throughout related to random 
fields? To explain the connection we fix a (strictly positive) initial distribution (Pi) i=1 , ... ,N 

and a strictly positive N x N-matrix P. 

Maybe you have noted that we are considering a chain on {1, ... , N} and not on 
a general state space 8 as often before. The reason is that the letter 8 now has a 
different meaning than before. For most of the book "8" was used for the states, 
and we have investigated which states are occupied at time steps k = 0,1, .... In 
this chapter, however, "8" abbreviates site, the states are now the elements of A. 
Hopefully you are not too much confused by these different notational preferences 
of the Markov chain versus the random field community. 

Let ko be a fixed integer: in order to arrive at a finite probability space we will have 
to restriet ourselves to a fixed number of steps. The sites of our random field are the 
numbers k = 0,1, ... , ko, with every site k we associate the random variable Xk = "the 
position of the walk at step number k " . So far this is not new, we have a random field with 
S = {O, ... , ko} and A = {I, ... , N}, and we also know how to calculate all probabilities 
in connection with this field: a particular element of A s, that is a path i o, i 1 , ... , iko, will 
be observed with prob ability 

(19.2) 

this has been observed in (1.2) in chapter 1. 
Now some care is needed. From the very beginning of this book until the previous 

chapter the Markov property of a process X o, Xl, ... was synonymous with the fact that, 
in order to predict Xk, the information X o = io, ... , Xk-1 = ik-1 is precisely as good as 
Xk-l = ik-1· 

With (Xkh=o, ... ,ko' considered as a random field, the situation is different, there we 
are faced with the following problem: 

For a k between 0 and ko, what are the subsets .ö. C {O, ... , k-l, k+l, ... , ko} 
such that 

for all io, ... , i ko j w hat is the smallest such .ö.? 

In view of the preceding remarks it is tempting to try .ö. = {k-l}. This, however, 
is not successful, since sometimes the knowledge of all X, with 1 =I k is strictly better 
than that of X k - 1 alone. (lf, for example, an ordinary random walk on {O, ... , 9} is at 
position 5 at time k-l = 7, it might be at 4 or 6 with equal probability at k = 8j the 
additional information, however, that Xk+1 = 3 implies that Xk = 4 with probability 
one.) A better choice is to use both "neighbours" of k instead: 
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Lemma 19.2 With the preceding notation we define N k := {k-1, k+1} for k = 1, ... , 
ko -1, No := {1}, N ko := {ko-1}. With respect to this neighbourhood system the Markov 
chain (Xkh=o, ... ,ko is a Markov random field. 

Proof. Fix k as weIl as states i o, ... ,ik, we assurne that k lies strictly between 0 and ko 
(the cases k = 0 and k = ko can be treated sirnilarly). Consider the events 

A 

B 

C 

.-

.-

.-

{Xk = id, 
{Xo = io, Xl =ir, ... , X k- l = ik-l, X k+1 = ik+l,"" X ko = iko}' 

{Xk - l = ik-l, X kH = iHr}· 

By (19.2), the respective probabilities are 

IP'(A n B) 

IP'(B) 

IP'(A n C) 

IP'( C) = 

and it follows that 

PioPioilPi l i2 ... PikO -I iko ' 

LPioPioilPili2 ... Pik_li~Pi~i/o+1 ... Piko-likO' 

i~ 

.", ., 
1. 0 ,1. 1 ,···,lk_2 

IP'(A I B) 
IP'(A n B) 

IP'(B) 
Pik_IikPiki/O+1 

Li~ Pi/o_li~Pi~ik+1 

= 
IP'(A n C) 

IP'(C) 
= IP'(A I C). 

This is just the Markov condition for the neighbourhoods under consideration. 0 

The global versus the local approach 

Now fix S, A, and a neighbourhood system N = (Nsk There are two possible ap­
proaches to deal with the randorn fields which possibly have the Markov property with 
respect to N. The first one is to prescribe a strictly positive rneasure IP' and then to check 
whethcr or not the Markov property is satisfied; this will be called the global approach 
here. 

If we have defined a Markov randorn field with respect to N, then surely the nurnbers 
IP'(Xs = A I X t = At for t E N s) will play an irnportant role, they are called the family of 
local characteristics associated with IP'. 

Now we turn to the second approach, the local one. Our starting point is introduced in 
the following 



Chapter 19: Markov random fields 187 

Definition 19.3 With S, A and N as before a family of loeal charaeteristies is a family 
(II(s; A; y)s,A,y) of strictly positive numbers; here s runs through S, A is an arbitrary 
state and Y denotes a map from Ns to A. We assurne that 

2: II(s; A; y) = 1 
AEA 

for all sand all y. 

The significance of these numbers is the following: II(s; A; y) is a candidate of a con­
ditional probability, namely of the prob ability that the site s is in state A under the 
assumption that the neighbours are in states given by y. Note that it will depend on the 
size of the N s whether there are many or few local characteristics. 

It is clear that, given a Markov random field with respect to N by a measure lP' 
on A 5 , the family of local characteristics associated with lP' is in fact a family of local 
characteristics. It is not obvious, however, wh ether such families always arise in this way. 

But this is an extremely important problem since, in view of the examples we have 
introduced at the beginning of this chapter, it is surely very natural to start with loeal 
probability assumptions. 

For example, we do not know how large the probability of a particular dis­
tribution of the disease D is (and in most cases this is not even of interest). 
However, it is not too hard to invent models which specify how likely it is 
that a person s has Dunder the assumption that a certain percentage of the 
neighbours is infected. This observation applies similarly to the other exam­
pIes: the preference of a football team, the orientation of a magnetic dipole 
and so on. 

To phrase it more formally, we want to know: 

Let a family (II(s; A; Y)s,A,y) of local characteristics be given. Does there exist 
a probability lP' on AS which gives rise to a Markov random field such that 
the II(s;A;Y) satisfy 

II(s;A;Y) = lP'(Xs = AI X t = y(t) for t E Ns ) 

for all s, A, y? 

If lP' does exist, is it uniquely determined? 

In order to investigate this problem we will work with M arkov ehains on A s . To 
understand the underlying idea we resurne once more the very first example. How will 
the disease D be distributed? 

We can think of a mechanism which works as follows. A person s is selected at random, 
and then his or her neighbours are inspected whether or not they have D; let the result of 
this inspection be a function y : Ns -+ A = {O, I}. Now the family of local characteristics 
is consulted, of interest are the numbers II(s; A; y), A E A, for this site sand this function 
y. They sum up to one, and therefore we can regard them as probabilities according to 
which we select A E A. This is the new state of s. The procedure can be applied "very 
often" , every second, say. Each single step is some kind of update of the distribution of 
D, and it is natural to ass urne that "in the limit" our model reflects somehow the real 
situation. 
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After this heuristic consideration we are going to be more rigorous. Let S, A, N and 
(II(sj Aj Y)s,>.,y) be given. We fix a strictly positive probability q = (qs)s on S, and we 
define a Markoy chain by the following rules: 

• The state space of our chain is 5 : = A 5 j one must not confuse the elements of 5 
with those of A which also are called states. 

• The chain starts deterministically at a fixed Xo E 5. This configuration can be 
defined arbitrarily, for example as a constant function. 

• Let x E 5 be the actual state of the walk. To find the next position, first select an 
sES in accordance with the distribution q. Then put y := "the restriction of x 
to N s " and choose A by using the distribution II(sj Aj V), A E Aj the qs- and the 
A-choice are assumed to be independent. Then the new position will be the state 
z E 5, where z is defined by 

z(t) := { x(tl if t =1 S 

if t = s. 

Theorem 19.4 The previously defined chain has the following properties: 

(i) It is irreducible and aperiodic so that there is a unique equilibrium distribution 
7r = (7rx )xEAS on A5. 

(ii) For sES and x E A 5 let 7r(Xj S\ {s}) be the sum over all 7r z, where z runs 
through the elements of A 5 which coincide with x on S \ {s}. Then 

7rX = LqsII(Sjx(s)jY)7r(XjS\{s}), 

with y = the restriction of x to N s . 
(iii) Suppose that the local characteristics are such that the equilibrium 7r is indepen­

dent of (qs). Then A5, provided with the measure associated with 7r, is a Markov 
random field with respect to N for which the local characteristics are just the 
II(sj Aj V). 
Also, the chain is reversible. 

Proof. (i) This follows from the assumption that all qs and all II(sj Aj y) are strictly 
positive: with some luck one can pass from any x to any z in card(S) many steps, and 
there is also a positive probability to pause. 
(ii) The assertion is a reformulation of the equilibrium condition. 
(iii) Denote by lP'1I" the measure associated with 7r, i.e., lP'1I"(A) := I:xEA 7rx . (Of course 
one could identify 7r with lP' 11", but we have introduced 7r as a vector. Also, the measure 
notation is more convenient for our purposes.) The claim is that 

lP'1I"(Xs = x(s) I X t = x(t) for t =1 s) lP'1I"(Xs = x(s) I X t = x(t) for t E Ns) 

= II(sjx(s)jxl.,vJ 

for all xE A5 and all s. 
We start our investigations with the observation that 

7rX = II(Sjx(s)jxlN"J7r(xjS\{s}) (19.3) 
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for all x and all s; this equation follows immediately from thc fact that by assumption 
the cquation in (ii) holds for all choices of the (Q8)' 

Now let us fix x and s. If we divide (19.3) by 1T(X;S\{s}), we get 

Jr7r (X8 = x(s) I X(t) = x(t) for t f. s) = II(s; x(s); XINJ. 

To prove the second half of the claim we introduce the following notation: for Z E A S the 
function Zl will be defined by 

Zl(t) := { z(t) : 
x(s) : 

if t f. s 
if t = s. 

Let z be arbitrary such that z coincides with x on N 8 • From (19.3) we conclude that 

1Tz II(s; z(s); ZINJ1T(Z; S\{s}) 

II(s; z( s); XINJ1T(Z; S\ {s}) 

II(s; z(s); XINJ1T(Z'; S\ {s}), 

and summation over these probabilities for all z leads us to 

Jr7r (X(t) = x(t) for t E N8 ) = L 1Tz 

ZIN.=xIN. 

L L 1T(Z) 
'\EA ZIN. =XIN. ,Z(8)='\ 

= L L II(s;'\'; XIN. )1T(Z'; S\ {s}) 
'\EA ZIN.=xIN. ,':::(8)='\ 

= L II(s;'\'; XIN.) L 1T(Z';S\{S}) 
'\EA ZIN. =XIN. ,Z(8)='\ 

= L II(s;'\'; XIN.) L 1T(Z;S\{s}) 
'\EA ZIN.U{.} =XIN. u{.} 

= L 1T(Z;S\{s}) LII(s;'\';xLvJ 
ZIN.u{.}=xIN. u{.} '\EA 

L 1T(Z;S\{s}); 
ZIN. U{.} =XIN. u{.} 

in the last step the normalization from definition 19.3 has come into play. 

Also we have, by (19.3), 

Jr7r (X(t) = x(t) for t E N 8 U {s}) 

L II(s;x(s);xINJ1T(Z;S\{s}), 
ZIN. u{.} =XIN. u{.} 

and together with the preceding calculations this implies 

Jr7r (Xs = x(s) I X(t) = x(t) for t E N8 ) = II(s;x(s);xINJ 

as claimed. 
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It remains to verify that the ehain is reversible, here onee more equation (19.3) is 
helpful. Let x, z be arbitrary elements of AS such that a transition from x to z or vice 
vcrsa is possible. We may assurne that x =I- z, and henee there is a unique s such that x 
and z eoineide on S \ {s}. By the definition of the chain the prob ability Pxz (resp. Pzx) 
for ajump from x to z (resp. from z to x) is qsll(s;z(s);xINJ (resp. qsll(s;x(s);xINJ). 
Thus, by (19.3) and since 7l"(x; S\ {s}) = 7l"(z; S\ {s}), it follows that 

7l"xPxz ll(s; x(s); XIN.)7l"(X; S\ {s} )qsll(s; z(s); XINJ 

= ll(s; z(s); ZINJ7l"(Z; S\ {s} )qsll(s; x(s); XINJ 

7l"zpzx· 

This completes the proof. o 

The space A S, provided with the the equilibrillm 7l", will in general not be a Markov 
random field with respeet to N, eondition (ii) of the theorem is mueh weaker than the 
Markov property. Let 's analyse an 

Example: Consider S = {a, b, c} and A = {O, I}. The elements of A S will be denoted 
by 000, 001, 010, Oll, ... , 111, the element 101, e.g., is the element whieh maps a to 1, 
b to 0 and c to 1. In the deseription of the transition matrix which we will give shortly 
they will oeeur in exactly this order (000 E A S eorresponds to state 1 and so on). 

A neighbourhood system N is defined by Na := {b}, Nb := {a,c}, and Ne := {b}. 
With c = "a small positive number" we define the loeal eharaeteristics as follows: 

• For a, we have to preseribe the ll(a; A; y) for A E A and y : Na -+ A. We ean 
identify y with 0 or 1, here is the definition: 

ll(a; 0; 0) := ll(a; 1; 0) := ll(a; 0; 1) := ll(a; 1; 1) := 1/2; 

this means that - regardless of the state of b -, the state of a will be set to 0 or 1 
with equal probability. 

• The neighbourhood of b has the two elements a and c. If the function y is 0 on both 
a and c, then we put 

ll(b; 1, y) := 1 - c, ll(b; 0, y) := c. 

For the other three possible y the definition is 

ll(b; 1, y) := c, ll(b; 0, y) := 1 - c. 

• As in the case of a also for c the function y (= the state of b) is 0 or 1. We set 

ll(e; 0; 0) := 1 - c, ll(c; 1; 0) := c, ll(c; 0; 1) := c, ll(c; 1; 1) := 1 - c. 

These probabilities are designed such that: 

• For x := 000 and z := 100 one has pxz = pzx . 

• By the definition of the II's one tries to let the chain run in such a way that 
it is more often in z than in position Xj this is done by the choice of the local 
characteristics at b and c. 
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• If one really succeeds with this idea then 1I"x < 1I"z will hold. Therefore the 
chain is not reversible and thus A 5 cannot be a Markov random field by the 
next theorem. 

The number c is only included to meet the condition of strictly positive 11(8; A; y). 

191 

It remains to fix the (qs), we choose the uniform distribution. Then it is easy to 
calculate the transition matrix, for the special case c = 1/100 it has the form 

150 1 99 0 50 0 0 0 
99 52 0 99 0 50 0 0 
1 0 150 99 0 0 50 0 

p=_I_ 0 99 1 150 0 0 0 50 
300 50 0 0 0 248 1 1 0 

0 50 0 0 99 150 0 1 
0 0 50 0 99 0 52 99 
0 0 0 50 0 99 1 150 

Why, for example, does the transition 010 -+ 010 have the probability 1/2? 

With probability 1/3 the state of a is (possibly) changed. The (conditional) prob­
ability that a keeps its state is 1/2, and thus this possibility contributes with 1/6. 
If, however, the state of bis concerned (this also will happen with probability 1/3), 
then one has to look at the states of a and c: both are 0, and thus with (conditional) 
probability 99/100 the state 1 survives at b; therefore the second contribution for 
the transition 010 -+ 010 is 99/300. Finally, ifthe (qs)-sampler chooses c, the chance 
that state 0 is chosen again at c is only 1/100, that is we have to add 1/300 to the 
already determined 1/6 + 99/300. In this way 1/2 has been obtained, and similarly 
all other transition probabilities can be derived. 

With the help of a computer the equilibrium 7r is easily calculated as the positive 
normalized solution of 7r T P = 7r T, here is the result: 

7r T = (0.162, 0.074, 0.117, 0.148, 0.338, 0.070, 0.025, 0.066). 

In particular, we see that really 7rOOO = 0.162 < 0.338 = 7rlOO so that the chain is not 
reversible. Consequently, by the following theorem, (A S , 7r) is not a Markov random field. 

This, of course, can also be calculated directly. We have, e.g., 

lP' 11"000 0.162 
".(Xa = 0 I Xb = Xc = 0) = = = 0.324, 

11"000 + 11"100 0.162 + 0.338 

this is the conditional probability under complete information on the complement 
of a. If, however, the states are only known on Na we have to calculate 

P".(Xa = 0 I Xb = 0) = 11"000 + 11"001 = 0.366. 
11"000 + 11"100 + 11"001 + 11"101 

What happens if we consider a chain on A S which is defined not by arbitrary local 
characteristics but rather by those associated with a Markov random field? 

The following assertion is not too surprising: 



192 Part III: Rapidly mixing ehains: applieations 

Theorem 19.5 With 5, A and N as above let lP' be a measure on AS which gives rise 
to a M arkov random field. 
Denote by IIIP (Sj .xj y) the associated local characteristics, that is 

IIp (Sj.xj y) := lP'(Xs = .x I X t = y(t) for tE Ns ). 

If the Markov chain which we have defined preceding theorem 19.4 is run with arbitrary 
qs > 0 and with the II( Sj .xj y) := IIp (Sj .xj Y), then the equilibrium of this chain co in eides 
with lP'. Also, the chain is reversible. 

Proof. Rather than to compare lP' and the unique equilibrium direetly we prefer to start 
with the detailed balance eondition. If x and z are different elements of A S such that 
transitions are possible - so that they are different at a unique S -, then the probability 
to eome from x to z is qsIIIP (Sj z(s)j XIN.). Also, in view of the Markov eondition, lP'( {x}) 
ean be replaeed by 

IIIP (Sj x(s)j XINJ ·lP'(Xt = x(t) for t f s). 

Consequently the produet "probability of x" times "probability for a jump x -+ z" is 
the same as "probability of z" times "probability for a jump z -+ x": both numbers equal 

qsIIp (Sj x(s)j XIN.}IIp (Sj z(s)j XIN.}lP'(Xt = x(t) for t f s). 

We have already remarked in ehapter 10 (see (10.2)) that then 1f' = (lP'{x}L:EAS must be 
the equilibrium. The remaining assertions now ean be read from theorem 19.4. 0 

Corollary 19.6 If (II(sj.xj y)S,A,y) is a family of local characteristics, then there is at 
most one measure lP' on A S such that 

(i) AS, together with lP', is a Markov random field with respect to N; 
(ii) the local characteristics associated with lP' are just the II( Sj .xj y). 

Proof. This follows at onee from the preeeding theorem and the uniqueness of the equi­
librium distribution. 

o 

Corollary 19.7 Under the assumptions of theorem 19.5 one can produce samples from 
A S with probabilities given by lP' up to arbitrary precision; it is only necessary to run the 
above chain on A S for "sufficiently many" steps and to use the position obtained in this 
way as an output. 

Proof. This follows from theorem 19.4(i), theorem 7.4 and theorem 19.5. (In order to 
apply this eorollary a more detailed analysis of the mixing rate will be neeessaryj see, 
e.g., the diseussion of the Gibbs sampier at the end of the next ehapter.) 0 

As an illustration we resume the Markov random field indueed by a Markov ehain whieh 
we have studied in lemma 19.2. In the proof of this lemma we have already ealeulated 
the loeal eharaeteristics: if k is in 5 and the states of k - 1 and k + 1 are ik-l and ik+1, 
respectively, then k will be in state ik with probability 

Pik-l ikPikik+l 

l:i~ Pik_li~Pi~iHl . 
(19.4) 
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This provides a second possibility to simulate ordinary Markov chains. If a samp1e of 
the chain is needed for the time steps k = 0,1, ... , ko, start with an arbitrary sequence 
io,i1, ... ,iko. Then update this element of AS "very often" by choosing a k at random 
and changing the state i at k in accordance with the probabilities in (19.4). It is plain 
that this is much 1ess effective than the usua1 procedure where one chooses io according 
to (Pi) then i1 by using the io'th row of the transition matrix and so on. This sampling 
method is extremely fast er and provides the output even with the exact probabilities. 

Exercises 

19.1: Let (AS, lP') be a Markov random field and sES. 

a) Prove that there is a minimal subset .6. of S \ {s} such that 

lP'(Xs = x(s) I X t = x(t) for t E .6.) = lP'(Xs = x(s) I X t = x(t) for t E S, ti s). 

b) Give an examp1e to show that in general .6. is not unique. 

c) It can happen that the minimal set .6. coincides with S \ {s} for all s. 
19.2: Let (S, d) be a finite metric space. 

a) Fix R > ° and put Nsd,R = {t I ° < d(s, t) ~ R} for sES. Prove that Nd,R 
(Nsd,R)SES defines a neighbourhood system. 

b) Let N be an arbitrary neighbourhood system on a finite set S. Prove that there is 
a metric d on S such that, for a suitable R, N is of the form Nd,R. In particular the 
minimal and the maximal neighbourhood systems N min and N max can be represented in 
this way. 

c) Let R s > 0, SES, be arbitrary numbers, we put 

Ns := {t I ° < d(s,t) ~ R s }. 

Is (Ns)s a neighbourhood system? 

19.3: Consider an ordinary cyclic random walk on {O, ... , 9} which starts deterministi­
cally at 5, we observe this wa1k at "times" k = 0, ... ,100. Now we regard this random 
walk as a Markov random field. What are the local characteristics at k = 15? 

19.4: Similarly to the case of ordinary Markov chains one can treat processes with a 
short memory. To be specific, we consider the stochastic process of example 6 in chapter 
2, we observe this process for the steps k = 0, ... ,ko. As in the present chapter this gives 
rise to a random field: there are two states (a and b), and the set of sites is {O, ... , ko}. 
Find natural candidates for neighbourhoods in order to have a Markov random field and 
determine the local characteristics. 

19.5: Neighbourhood systems have been introduced in definition 19.1. By the second 
condition they have a certain kind of symmetry: t E Ns is equivalent with s E Nt. In 
which of the arguments of the present chapter was this property of importance? 

19.6: Prove that a random field (AS, lP') is Markov with respect to the minimal neighbour­
hood systems (= empty neighbourhoods) iff (Xs)sES is a family of independent random 
variables. 

19.7: Provide - with arbitrary finite sets S and A - the set AS with the uniform distri­
bution. Determine all neighbourhood systems such that this random field is Markov. 
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19.8: Let N be a neighbourhood system for S. Is it possible to find a probability IP on 
A S such that the random field (A s, IP) is Markov with respect to N? 
19.9: Let a Markov random field (As,IP) be given (Markov with resped to N). Now let 
.N be a second neighbourhood system such that N s c Ns for every s. Is (A s, IP) also 
Markov with respect to N? 
19.10: Let a family of local characteristics be given such that II(s; A; y) = r>. for all s, 
A and y and suitable r>. > 0 with 2::>. r>. = 1. Prove that the equilibrium of the chain of 
theorem 19.4 gives rise to a Markov random field on A s. 

19.11: In the example preceding theorem 19.5, calculate the numbers 

IP".(Xa = 0 1 X b = Xc) and IP".(Xc = 11 X a = 1). 

19.12: In lemma 19.2 we have considered a A-valued Markov process as a random field, 
and it turned out that this field is Markov with respect to the neighbourhood system 
N defined in this lemma. Prove the following more general assertion: if an arbitrary A­
valued stochastic process X o, Xl, ... is considered as a random field, then the Markov 
property of this field with respect to N is equivalent with the Markov property of the 
process (Xk ). 
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20 Potentials, Gibbs fields, and the Ising 
model 
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Let the set of sites S, the state space A and a neighbourhood system N oe given as in 
the preceding chapter l . Sometimes a probability measure on A S is given in closed form 
by a potential, this will lead us to the Gibbs fields. We will show that such fields are 
Markov random fields, the celebrated Ising model will serve as a simple example. In the 
final section we describe the Gibbs sampler, a method by which one can produce samples 
from Gibbs fields with (approximately) correct probabilities. 

The energy function and potentials 

We begin with an elementary observation: if lP' is any strictly positive probability 
measure on an arbitrary finite set 5, then there is a real-valued function H such that 

1P'({x}) = e-H(x) 

holds for every x. Conversely, if H : 5 --+ IR is arbitrary, then 

e-H(x) 
IP'H({X}):= -z-

will be a strictly positive probability on 5 if we define Z by 

Z := L e-H(y). 

yES 

(20.1) 

Since Hand Z have their origin in statistical physics they are usually called the en­
er gy function and the partition function, respectively (see [51] or [66] for the physical 
background). Note that two energy functions Hand H' induce the same lP' iff H -H' is 
constant. 

In the applications we have in mind the probabilities IP'H are usually introduced by 
(20.1) with a more or less easy-to-calculate energy function H. At first glance this seems 
to be as good as to work with an explicitly defined lP'H, but this is far from being true. 
The reason is that in most cases the set 5 is that huge that it is hopeless to calculate Z. 
This has a remarkable consequence: 

If a probability lP' is defined by an energy function, then the lP'( {x}) are in 
many cases practically unknown. Easy to determine, however, is usually the 
ratio IP'( {x}) 1lP'( {z}) - which is just e-H(x)+H(z) - for arbitrary x, z. Similarly 
simple is the calculation of conditional probabilities lP'(A I B) for "small" sets 
A and B. 

1 The definitions wh ich are not explained in the present chapter can also be found there. 
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One should have this in mind when discussing whether definitions or methods are merely 
of theoretical interest or useful for real applications. 

Now we turn to the case S = AS. The energy functions we are going to study will be 
defined such that for the calculation of 1-l (x) the neighbourhood system N plays a crucial 
role2 . We have already seen by the example in the preceding chapter that some care is 
necessary: for the Markov condition to hold it is not sufficient to work with definitions 
which solely use properties of neighbourhoods. Something more is needed, here it is some 
kind of symmetry which is implicitly introduced in the following 

Definition 20.1 Let 5, A and N be as above. 
(i) A nonempty sub set C of 5 is called a clique if it is a singleton or if - for different 

s, tEe - one has s E Nt and t E Ns . 

The collection of all cliques will be denoted by Ci note that the definition depends 
on N so that it would be more precise to write CN. 

(ii) By a Gibbs potential we mean a family V = (Vc )cEC, where each Vc is a map 
Vc : AC -+ JE.. 

(iii) Let V = (Vc )cEC be a Gibbs potential, the induced energy function 1-lv is defined 
by 

1-lv(x) := L VC(x/c). 
c 

(iv) Let the measure IP'v be induced by 1-lv as in (20.1), it is called the Gibbs measure. 
AS, together with IP'v, is the Gibbs field associated with V. 

To illustrate these not ions let us consider some examples. 

1. Let Nmax be the system of maximal neighbourhoods: N s := S \ {s} for every s. Then 
every nonempty subset of 5 is a clique. The other extreme case, Nmin, occurs when all 
N s are empty: now only the singletons are cliques. 

2. In the Markov chain example which has been introduced in lemma 19.2 the cliques are 
precisely the one-point sets and the {k, k + I}, where k = 0, ... , ko - 1. 

This is the special case r = 1 of the more general situation where S is the set 
{O, ... , ko}m and Ns consists of those t for which the ll-distance3 to s is precisely one: 
here the cliques which are not singletons are sets of the form 

with p= 1, ... ,m, il, ... ,ip-l,ip+l, ... ,im E {O, ... ,ko}, and k = O, ... ,ko-1. 

3. More generally, one can start with an 5 together with any metric: for s E 5, the 
neighbourhood of s is defined to be the set of all t for which the distance to s lies 
in ]0, R], where R is a fixed positive number. It is illustrative to identify the cliques for 
various metrics, the reader is invited to check the case of the euclidean and the maximum 
metric. 

4. Let Nmax be the maximal neighbourhood system from example 1. Then 5 is a clique, 
and therefore every function 1-l : AS -+ JE. is of the form 1-lv: simply define Vs := 1-l and 
let all other Vc vanish. 

2 Of course this is to be expected if one wants to arrive at a Markov random field with respect to N. 
3 Cf. page 86. 
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This implies that every measure on A S can be considered as a Gibbs measure for a 
system of suitably large neighbourhoods. 

5. Now suppose that all neighbourhoods are empty. A potential for this situation can be 
identified with a family of mappings Vs : A -+ IR, S E 5, and the energy function then 
has the particularly simple form 

Hv(x) = L Vs(x(s)). 

It follows rather easily that the evaluation maps from A S to A are independent random 
variables with respect to the measure lP'v which is induced by H v; also A S is a Markov 
random field for JVm;n. 

Note that, conversely, every Markov random field relative to Nm;n is a Gibbs field, an 
appropriate definition of the potential functions is Vs(A) := -loglP'(Xs = A) for A E A 
and s E 5. 
6. In example 2 above we have identified the cliques of the random field associated with 
an ordinary Markov chain. Is it a Gibbs field? 

One has to solve the following problem: an x = (io, ... ,iko) E AS has the probability 
lP'( {x}) = PioPioil ... PikO-dkO' and one must find functions 

Vk : A -+ IR and Vk,k+l : A x A -+ IR 
I 

such that lP'( {x}) is - possibly up to a constant - the number 

ko ko-l 

exp(- LVk(ik) - L Vk,k+r(ik,ik+l))' 
k=O k=O 

A moment's reflection shows that this is achieved by the following definition: 

• Vk vanishes for k = 1, ... , ka, and Vo(i) := -lOgPi; 

• Vk,k+l (i, j) := -lOgPij for k = 0, ... , ko - 1. 

Gibbs fields are Markov random fields 

Let 5, A and N be as before, and again C will denote the collection of cliques. We fix a 
Gibbs potential V = (Vc)c, and for the sake of notational eonvenienee we agree to write 

• H resp. lP' instead of Hv resp. lP'v, and 

• Vc(x) instead of the more correct Vc(xlc). 

We then claim: 

Theorem 20.2 The Gibbs field indueed by V is a Markov random field, and the assoei­
ated loeal eharaeteristies have the form 

exp( - 2:C,sEC Vc(x)) 
lP'(Xs = x(s) I X t = x(t) for tE Ns) = "" (_"" TT ( s;,\)) 

W'\EA exp wC,sEC vc X 

for s E 5 and x E A s; here x s;,\ stands for that junetion from 5 to A whieh has the value 
A at sand eoineides with x at the other points of 5. 
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Proof. The only difficulty of the proof is to avoid notational confusion. 
Let sand x be given, we have to show that both IP'(Xs = x(s) I X t = x(t) for t E Ns ) 

and IP'(Xs = x(s) I X t = x(t) for t E S, t"f:. s) coincide with 

sand x will be fixed from now on. 
It will be convenient to split the energy into two sums, where the first one measures 

the contribution of the Vc with SEC; this term is usually called the loeal energy at the 
si te s. 
More precisely, we define 

1is(z):= 2:: Vc(z), 1i;(z):= 2:: Vc(z) 
CEC,sEC CEC, srtC 

for z E AS. 
Trivially 1i(z) = 1is(z) + 1i;(z) holds, we will need some further facts. The first is the 

identity 

(20.2) 

for the z wh ich are identical with x at all t, t "f:. s (obvious); further, 

(20.3) 

holds for all z which coincide with x on Ns u {s} (this is true since - by the definition of 
"clique" - every C E C such that sEC is a subset of Ns u {s}); and finally, (20.3) has a 
variant which will also be important: 

1is (zs;>,) = 1is(xs;>,), 

for all z such that x(t) = z(t) for t E Ns. 

Now the calculations are straightforward (Z will denote the partition function): 

ZIP'({x}) = e-1i·(x)-1i:(x) 

= e-1i .(x) e-1i:(x), 

and also, with the help of (20.2), 

ZIP'({z I z(t) = x(t) for t"f:. s}) 

This proves that 

Z 2:: lP'(x s;>.) 
>'EA 

2:: e-1i·(x·;A)-1i;(x·;A) 

>. 

= 2:: e-1i·(x·;A)-1i;(x) 

>. 

= e-1i:(x) 2:: e-1i·(x·;A). 

>. 

(20.4) 
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e-1i.·(x) 
P(Xs = x(s) ! X t = x(t) for t E S, ti- s) = LA e-1i.,(x"") ' 

the first half of the assertion. 

Similarly we calculate, with (20.3), 

ZP({z! z(t) = x(t) for t E N s u {s}}) Z P({z}) 

L e-1i.,(z)-1i.;(z) 

x IN, u{,} =ZIN, u{,} 

L e-1i.·(x)-1i.;(z) 

XIN. u{, }=z IN. u{,} 

and with (20.2) and (20.4) we obtain 

ZP({z! z(t) = x(t) for t E N s }) Z L P({z}) 
XIN,=zIN, 

= 
XIN,u{,}=zIN,u{,} A 

= L L e-1i.,(z';")-1i.;(z';") 

XIN,u{,}==IN,u{,} A 

L L e-1i.,(x,;A)-1i.;(z) 

XIN,u{,}=zIN,U{,} A 

= L e-1i.,(x,;A) L e-1i.;(z). 

A XIN,u{,}=zIN,u{,} 

By taking the quotient of these two expressions we arrive at 

e-1i.,(x) 
P(Xs = x(s) ! X t = x(t) for t E Ns ) = LA e-1i.,(x"A) ' 

and this completes the proof. 

199 

o 

Let us try to understand why it was important to work with cliques. To phrase it 
otherwise: 

Let V be any system of subsets of Sand suppose that VD is a function from 
AD to lR for every D E V. Similarly as before we pass from the family (VD) 
to H D, defined by 

1LD(X) :=L VD(X!D), 
D 

and further to the induced probability measure PD. Under what conditions 
on V can we mimic the proof of the preceding theorem, when will the random 
field have the Markov property? 
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Of course, in the line of the above arguments, one would first introduce the (1iv)s 
and the (1iv); as before. Then one would note that equation (20.2) is valid without any 
restriction on V. For (20.3) and (20.4) to hold, however, it is essential to know that D is 
a sub set of Ns u {s } whenever s E D and D E V. This implies that an D E V are cliques, 
and we conclude that our approach necessitates to work with this type of subsets. 

What ab out the converse 01 the preceding theorem? Is every Markov random field a 
Gibbs field for a suitable potential? In view of the above examples there is some evidence 
for this to hold since for an random fields with the Markov property studied above we 
have been able to provide a V with lP' = lP'v. In fact, this is generally true: a random 
field is a Markov random field iff it is a Gibbs field. This is the celebrated theorem of 
Hammersley and Clifford from 1968, for a proof we refer the reader to [76], theorem 3.3.2, 
or to [20], theorem 7.2.2. 

The Ising mode14 

This model was introduced by Ising ([45]) in 1925 to model the phenomenon of phase 
transition in ferromagnetic materials. It is a particularly simple example of a Gibbs field, 
it has applications in physics (theory of matter), medicine (distribution of epidemies), 
biology and sociology. 

We will only discuss the two-dimensional situation, the modifications which are neces­
sary to generalize the definitions to arbitrarily many dimensions are canonical. It would 
be desirable to work with Z x Z as the set of sites, S. This set, however, is infinite so 
that one restricts oneself to S := {O, ... ,r - I} x {O, ... ,r - I} with a sufficiently large 
r. But now there is another drawback: different sites might have a different number of 
neighbours. To remedy this one uses the wrap-around trick: in the set {O, ... , r - I} one 
declares the elements 0 and r - 1 to be neighbours, similarly to constructions in previ­
ous chapters when we have studied Markov chains on the cyclic group ZjrZ. Then S is 
something like a discrete torus, an s = (i, j) E S have the same neighbourhood structure 
if we define the neighbourhood Ns of s by 

Ns := {(i-I,j), (i+I,j), (i,j-I), (i,j+I)} 

(with i ± 1 and j ± 1 modulo r). 
Every site s can have one of the two states in A = {-I, + I}. In Ising's model "state" 

was meant to be the orient at ion of a magnetic dipole, but you can think of any other 
situation where a site has to choose its state among two possibilities. It remains to define 
a Gibbs potential in order to arrive at a Markov random field. The special feature of the 
Ising model is that, for a clique S, the potential Vc is a particularly simple function of 
the x(s), sEC. 

To motivate the definition of the Vc we first note that there are two types 01 cliques, 
namely the singletons and the four two-point sets 

{(i,j), (i-I,j)}, {(i,j), (i+l,j)}, {(i,j), (i,j-I)}, {(i,j), (i,j+I)}. 

4 Those who want to pronounce the name "Ising" correctly should know that it is a German name; 
therefore the vowel "I" is spoken like the "ea" in "eagle" and not like the "i" in "icecream". 
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Next we recall that the probability of a configuration x E AS will be proportional to 
exp( -1-lv(x)), and therefore the x with a high probability will be those with a small value 
oj the energy junction. These probabilities can be controlled by assigning appropriate 
potentials to the cliques, in the Ising model the two different types are treated as folIows. 

The singletons: Consider a clique C = {s}. Then Vc could be any function from A to 
the reals. Since Vc(x) is just Vc(x(s)) , the definition of Vc controls the x(s)-entry. By 
the values of Vc(±l) we can prescribe how likely the state x(s) = ±1 is: if Vc(+l) is 
smaller than Vc( -1), then x(s) = +1 is more likely than x(s) = -1. 

Such a "tendency to have the value -1 or +1" can be a desirable feature of the 
model. In Ising's original approach this part of the potential stood for an external 
magnetic field, in other situations it can be an inherent tendency to have a certain 
opinion, or the disposition to catch a certain disease. 

In the Ising model the potentials for the singletons are defined by 

V{s}(x) := -hx(s), 

where h is areal number (the same for all s). By the size of hit is possible to quantify, e.g., 
the strength of a magnetic field or the disposition to have political opinions. Usually h 
will be positive so that state + 1 is favoured, but negative values might also be reasonable. 

The two-point cliques: This is the more interesting part, it describes the interactions. 
The underlying idea can be phrased as 

D.o in Rome what the Romans do. 

More seriously: if all neighbours of s are in state + 1 resp. all are in -1, then there is a 
more or less strong tendency for s - it will be quantified by a parameter K - also to be 
in state + 1 resp. -1; and if some neighbours are in state + 1 and others are in state -1, 
then both x(s) = +1 and x(s) = -1 might be equally likely. Now note that, for a clique 
C = {s, t}, the number x(s)x(t) is +1 resp. -1 if x(s) = x(t) resp. x(s) "# x(t). Hence 
the definition 

V{s,t} (x) := -Kx(s)x(t) 

favours x(s) = x(t) if K is positive; note that then x(s) = x(t) leads to a smaller energy 
than x(s) "# x(t). For a negative K, however, the model enforces x(s) to be different from 
x(t). 

Now we are ready for the definition of the Ising model: 

Definition 20.3 Let r be an integer and hand K real numbers. The two-dimensional 
toric Ising model consists of 

(i) the set of sites S = {O, ... , r-1} x {O, ... , r-1}, 
(ii) the state space A = {-1,+1}, 

(iii) the neighbourhoods Ns := {(i-1,j), (i+1,j), (i,j-1), (i,j+1)} for s (i,j) 
(where i ± 1 and j ± 1 are calulated modulo r), 

(iv) the Gibbs potential V = (Vc)c which is defined by 

V{s}(x) = -hx(s) and V{s,t}(x) = -Kx(s)x(t) 

for the one- and two-dimensional cliques, respectively. 
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It is not hard to visualize this model, one only has to apply corollary 19.7. In order to 
get a "typical sampIe" , one has to proceed as folIows: 

• Start with any configuration Xo, often this is chosen by flipping coins at every site 
s to determine xo(s). 

• Then let a Markov chain run on A s . If the present position is the configuration 
x, then the next one is obtained as folIows: choose an s at random; calculate, for 
c = ±1, the number 

a(c) := hc + Kc x(t); 
t, {s,t} is a clique 

select 1] = + 1 resp. -1 according to the probabilities 

ea(+l) ea(-l) 
resp . 

ea(+l) + ea(-l) . ea(+l) + ea(-l)' 

the next position of the walk is then the configuration which is identical with x on 
S \ {s} and for which the state at s is 1]. 

• Let the chain run for "a long time" in this way and use the configuration which 
is occupied then as an output. These sampies are distributed approximately in 
accordance with IP'v so that you will observe something typical. 

Similarly one can treat the case S = {O, ... , r -1 } x {O, ... , l-l} wi th possi bly different 
rand l; e.g., the neighbours of (0,0) are (1,0), (0,1), (r - 1,0) and (0, l - 1). Here are 
some sampIes with r = 30 and l = 20, the states ±1 are visualized by little white and 
black squares in a 30 x 20-grid: 
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a b 

... i.· • • - •• -• • • • - •• --• 
• I • -• •• .. ~ -. -.- .. 
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c d 

Picture "a" is a starting position, the states at the sites are chosen at random with equal 
probability. 

Picture "b" shows the state of the random walk after 10,000 steps; the parameters are h = 
o and K = 0.3. Since K is rather small, there is weak interaction and the configuration 
has a lot of structure. 

In picture "c" one sees the position of the walk after 10,000 furt her iterations. All these 
new iterations, however, are with K = 0.8 (and h = 0 as before). Note that now there is 
more interaction, the state at a site is now influenced more strongly by the states of the 
neighbours than before. Not surprisingly, this results in a picture of a different character, 
there are much fewer black or white "islands" . 

Finally, to prepare picture "d", we have produced another 10,000 steps of the walk, this 
time with K = -0.8 (and h = 0). As it was to be expected, the character of the picture 
has changed on ce more: the state of a site tends to be "as opposite as possible" to the 
states of the neighbours, and thus we see something like acheckerboard pattern. 

We elose this section on the Ising model with the calculation 0/ a partition /unction, 
one of the main results in Ising's doctoral thesis. It has been stressed above that it is in 
most cases impossible to determine Z = I:x e-'H.(x). For a particular case of the Ising 
model, the one-dimensional situation, one can provide this number explicitly. 

Fix an integer N. The one-dimensional toric Ising model is defined similarly 
as above, that is the neighbours of a site i E S = {0, ... ,N-1} are i ± 1 
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modulo N. Therefore the cliques are the sets {i} and {i, i + I}, and the 
energy funetion has the conerete form 

N-l N-l 

1lv(x) = -h L x(i) - K L x(i)x(i + 1). 
i=O i=O 

By definition, the partition function Z = ZN is the number 

ZN = L e-'1iv(x) 

xEAs 
N-l N-l 

= Lexp(hLx(i)+KLx(i)X(i+1)) 
x i=O i=O 

N-l 
= LexP(L ~(X(i)+X(i+1))+Kx(i)X(i+1)). 

x i=O 

The evaluation needs some preparations, we introduee the numbers Z~, R±l,±l and the 
transfer matrix R: 

• Z~ := 2:xEAS,x(O)=±l exp(h 2:f:~1 x(i) + K 2:f:~1 x(i)x(i + 1)); 

• RE,TI := exp(h(e: + 'f/)/2 + Ke:'f/), for e:, 'f/ = ±1; 

• _ (R+1.+1 R+1'-1) _ (e h+K e-K ) 
R - R-l,+1 R-1,-1 - e-K e-h+K . 

Then it is plain that ZN = zt + ZN' and also - sinee 

holds - that 

z+ = R+1,+1 z+ + R+1,-l Z- Z- = R-1,+1 z+ + R-1,-1 Z- . 
n N-l N-l' n N-l N-l 

This means that 

( ;~ ) = R ( ;~ =~ ) , 
and by induetion on N it follows immediately that zt resp. ZN is the top left resp. the 
bottom right element of RN (the ease N = 2 has to be ealculated direetly). Therefore 
ZN is just the traee of RN. 

To arrive at our final result it remains to reeall that the traee of a self-adjoint matrix 
is the sum of the eigenvalues and that the eigenvalues of RN are the N'th powers of the 
eigenvalues of R: 

Proposition 20.4 Let.A and J.I. be the eigenvalues of the transfer matrix R. Then ZN, 
the partition funetion of the one-dimensional torie Ising model on {O, ... , N - I}, has 
the value 
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The Gibbs sampier 

We return to the situation of a general Gibbs field which is given by sets 5 and A, a 
neighbourhood system N and a Gibbs potential V. We continue to write 1i instead of 
the more correct 1i v. 

The local characteristics have been determined in theorem 20.2, and in corollary 19.7 
we have shown how samples can be produced by running a suitable Markov chain. In 
this section we want to replace the vague "let the chain run for a sufficiently long time" 
by concrete bounds. 

For these calculations it will be convenient to change the definitions of the associated 
Markov chain slightly. Originally - cf. page 188 - the choice of the next configuration was 
started with the selection of a site s in accordance with certain probabilities (qs). Now we 
fix once and for all an enumeration of 5, that is we identify this set with {I, ... , N}. And 
the sites where one possibly changes the state by using the probabilities prescribed by 
the local characteristics are no longer chosen at random. Instead we work systematically: 
in the first step - the step after the arbitrarily chosen starting position - we work with 
s = 1, then with s = 2 and so on until we arrive at s = N. Then, in step N + 1, we 
start again at s = 1, next we consider s = 2, .... Usually the enumeration of 5 is called 
a visiting scheme, and a sweep with respect to this scheme is the result of N consecutive 
steps (beginning with a - possible - change at s = 1). 

The Markov chain we are going to analyse has A 5 as its state space, the starting 
position is arbitrary but fixed, and the next step is the configuration which is produced 
after a sweep. The technique to produce samples from a Gibbs field with this chain is 
called the Gibbs sampler, the "output" is the position of the chain after "many" sweeps. 

To fix notation, let Ps be the transition matrix which is associated with a (possible) 
change at s. Then Q := P1P2 ... PN is the matrix which governs the transitions of the 
new chain. 

Lemma 20.5 
(i) The entries of Q are strictly positive so that the chain is irreducible and aperiodic. 

(ii) The equil-ibrium 'Tr of Q is the Gibbs distribution: 

e-1I.(x) 

'Trx = -Z--

Proof. (i) is obvious: since all local characteristics are strictly positive, one may pass in 
one step5 from any x to any z. 
(ii) Fix s E 5 and x E A s . By Ts,x we will denote the set of configurations z' such 
that a transition from z' to x with respect to the transition matrix Ps is possible; Ts,x 
thus contains the z' which coincide with x on 5 \ {s}. By definition, a transition from a 
z E Ts,x to x has probability 

5 Note that a step for Q is a complete sweep. 
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Thus, with 7rx := e-1-l(x) /Z, it follows that 7r T Ps = 7r T, and this implies that 7r T Q = 7r T. 

This completes the proof since there is precisely one equilibrium. 0 

We will estirnate the rate of convergence of the Q-chain by using theorem 10.5. To apply 
this result it is necessary to bound the number 8, the fninimal nonzero probability lor a 
transition between two arbitrary configurations. Let us introduce some further notation: 

• the nu mb er L will stand for the cardinality of A; 

• for sES and x E A S, ms,x resp. Ms,x mean the minimum resp. the maximum of 
the {H(z) I z E Ts,x} (for the definition of Ts,x see the preceding proof); 

• V s := max{Ms,x - ms,x I x E AS}, for sES; 

Now let x and z be arbitrary such that transitions are possible. The probability for a 
jump from x to z according to Q can be estimated as folIows. 

Consider first PI. The probability that x and z will coincide at state 1 after one step 
of the PI -chain is 

where x'(l) = z(l) and x'(s) = x(s) for the other s. This number can be estimated by 

> '"' e-1-l(z')+ml,. 
uz'ET1 .• 

> 
e-V1 

L· 
The transitions at s = 2, ... , N can be treated similarly, and therefore the probability of 
a transition x -t z after a complete sweep is at least 

this is a lower bound for the number 8 from theorem 10.5. It remains to apply this result6 : 

Proposition 20.6 The convergence rate 01 the Gibbs sampler can be estimated as 10Z­
Zows. 11 the starting position is arbitrary then a configuration x will be observed as the 
position 01 the waZk after k sweeps with a probabiZity p which satisfies 

As an illustration of this result lets consider the Ising model on an r x r-square (con­
sidered as above as a discrete torus). For s = (i,j), the local energy is 

6 Note that "N" has two different meanings in theorem 10.5 and in the present investigations. There it 
was the cardinality of the state space, now it is the number of sites, and therefore we have to replace 
N in 10.5 by LN. 
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1ls (x) = hx(s) + K( L x(t)x(s)). 
tEN. 

We will assurne that h and K are positive. Then 

'H.(z) = hz(s) + K( L x(t)x(s)) + 'H.;(x) 
tEN. 

for fixed sand the z E Ts,x; therefore 

ms,x = -h - 4K + 'H.;(x), Ms,x = h + 4K + 'H.;(x) 

and consequently 

Vs,x = Vs = ß = 2h + 8K. 

It has to be admitted that only for small values of T, hand K the resulting error bound 

~ (1- e-(2h+BK )r2 )k 

will lead to satisfactory results, some readers will be reminded of the citation on page 
78. 

Exercises 

20.1: Let (8, d) be a finite metric space, the neighbourhood system Nd,R is defined as 
in exercise 19.2. Prove that the cliques are precisely the subsets of 8 of diameter at most 
R. 
20.2: Is it possible to reconstruct the neighbourhood system from the collection of 
cliques? (More precisely: if N and N are neighbourhood systems on the same set which 
give rise to the same cliques, does it follow that N = N?) 

20.3: Let 8 together with a neighbourhood system be given. Suppose that one knows 
which of the subsets containing precisely two elements are cliques. Is it then possible to 
find all cliques? 

20.4: Let 8 be a finite set. Characterize the collections C of subsets which are the cliques 
for a suitable neighbourhood system. 

20.5: Let V be a potential and 1lv the associated energy function. Prove or disprove: 

a) in the case of the minimal neighbourhood system (i.e., all neighbourhoods are empty) 
it is possible to reconstruct V from 1l; 

b) in general, this is not possible. 

20.6: Suppose that the neighbourhood system on 8 is such that every energy function 
1l can be written as 1lv for a suitable potential V. Prove that then 8 is a clique. 

20.7: Let V = (Vc )cEC be a potential. Define, for a fixed real number T, another potential 
V by Vc := Vc - T. Prove that V and V give rise to the same Gibbs field. 

20.8: We consider the two-dimensional (or, more generally, the T-dimensional) toric Ising 
model with h = 0 and a site s all neighbours of which are in state -l. 

a) Suppose that K = 0.8. What is the probability that s is also in state -I? 
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b) Let p E [0, 1] be arbitrary. Is it possible to choose K such that s is in state 1 with 
probahility p? 

20.9: Let a, b, e be real numbers such that Ibl + lei ~ a. Use the method of the transfer 
matrix to evaluate the expression 

L ReQ,e 1 Re1,e2 ••• ReN-1,eQ, 

eQ, ... ,eN_l=±l 

where Re,O := Va + bc + e8. 

20.10: Denote by A and I-" the eigenvalues of the transfer matrix as in proposition 20.4. 
Determine the collection of all (A,I-") which arise in this way for various hand K. Can it 
happen, e.g., that A = I-"? Or that A or I-" vanishes? 

20.11: Consider the Gibbs field induced by a potential V. Denote, for TC S, by NT the 
collection of all elements in the union of the Ns , sET, which are not in T. (For obvious 
reasons, NT is called the neighbourhood 0/ T.) 

a) Calculate NT for some T in our standard examples. 

b) Prove that the Markov property of Gibbs fields (theorem 20.2) admits the following 
generalization: whenever T C S, then IP'(Xs = x(s) for sET I X t = x(t) for t ~ T) = 
IP'(Xs = x(s) for sET I X t = x(t) for t E NT). 
(Note that theorem 20.2 corresponds to the case T = {s }.) 

20.12: Let (A s, IP'v) be a Gibbs field given by a potential V and r an integer such that 
every s lies in at most r cliques. We consider the Markov chain on A S induced by the local 
characteristics of IP'v. How many calculations (= evaluations of potentials) are necessary 
to simulate one step of the chain? 
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21 The Metropolis sampIer and simulated 
annealing 

The setting is as at the beginning of the previous chapter: we are given a finite set Sand 
a function1 1l : S -+ IR, and this function gives rise to a prob ability measure lP'1i on S by 

e-1i (x) 
lP'1i({x}):= -Z-, with Z:= Le-1i(z). 

z 

Since from now on no sites and configurations will be considered, it will cause no confusion 
if we write S instead of S. 

The aim of the present chapter is twofold. In the first section we present the Metropolis 
sampier, a method to provide sampies from S which are distributed like lP'1i. This variant 
of the Gibbs sampier also works without an explicit use of the (generally) unknown 
number Z. Then, in the second section, we present an introduction to simulated annealing 
which is based on the Metropolis sampier. This is a stochastic optimization technique 
which since many years has found applications in various fields. 

The Metropolis sampIer 

As in chapter 20 we don't know lP'1i ( {x}) explicitly, but nevertheless sampies are 
required with this distribution. In the preceding chapter the relevant not ion was that 
of neighbourhoods: (hopefully) only few neighbours influence the state of a given site. 
Here the situation is similar in that the set S has an additional structure. It is helpful to 
visualize S as the set of the vertices of a graph such that 

• every vertex is connected with "few" other vertices, and 

• there are sufficiently many edges to get from any vertex to any other in "not too 
many" steps. 

(Typical examples are the graphs which we met in chapter 19 or the lattices {O,l}m; 
there edges connect two m-tuples iff they differ at precisely one component.) 

The approach will be a little bit more general, we will assume that a Markov chain on 
S is prescribed by a transition matrix Q = (qXy)x,yES. This matrix Q will be called the 
proposal matrix, the reason for this notion should be clear by the following 

Definition 21.1 Let the state space S, the energy function 1l and the proposal matrix 
Q be given. We suppose that Q is symmetrie (Le., qxy = qyx) and that the chain defined 
by Q on S is irreducible and aperiodic. 

By the Metropolis chain we mean the Markov chain on S which is defined by the 
following transitions (the starting position is fixed but arbitrary): 

• Suppose that the walk is now at position x. Choose a y according to the proposal 
matrix Q, that is, y is selected with probability qxy. 

1 For historical reasons 11. is called the "energy function" , even in this general approach. 
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• If 1l(y) ~ 1l(x), then the next position of the walk will be y . 

• If, however, 1l(y) > 1l(x), an additional Bernoulli experiment is needed: it should 
provide 1 resp. 0 with probability exp(1l(x) -1l(y» resp. 1 - exp(1l(x) -1l(y». 
If the experiment produees a 1, then go to y, otherwise stay at x. 

To phrase it otherwise: by the Q-matrix astate y is "proposed" as the possible next 
position. Only if this does not result in an increase of the energy, the proposal is 
accepted immediately. If 11. increases, there is nevertheless a chance to go to y, the 
probability of this transition depends on the difference between 1I.(x) and 1I.(y). If 
1I.(y) is much greater than 1I.(y), then a jump to y is not to be expected. 

By this definition it is likely that the ehain has a tendeney to oeeupy positions where 
1l is low. Even more is true, in the long run the prob ability to oeeupy position x tends 
to 1P'1i (x): 

Proposition 21.2 The previously defined chain is irreducible, aperiodie and reversible, 
the equilibrium distribution 7r co in eides with 1P'1i. 

Proof. A transition x -t y has a positive probability with respeet to the Metropolis ehain 
iff this is true with respect to the Q-chain. Therefore irreducibility and aperiodicity follow 
from the assumptions on Q. 

Now let 7r:z; := e-1i (:z;) /Z for x E S. If the P:z;y denote the Metropolis transition proba­
biIities, then we have to show that 

(21.1) 

for arbitrary x, y; then (7r:z;):z; will be the equilibrium, and the proof will be complete. 

For the proof of (21.1) we mayassume that x :f: y. If 1l(y) > 1l(x), then 

Z7r:z;P:z;y = e-1i(:Z;)q:z;ye1i(:Z;)-1i(y) 

= q:z;ye-1i(y) 

= qy:z;e-1i(y) 

= Z1ryPyx. 

The proof for the case 1l(x) ~ 1l(y) is similar. o 
Sinee the probabilities associated with the k-step transitions of an irreducible and 

aperiodic chain tend to the equilibrium, one ean use the preceding result to produce 
sampies from S which are distributed like 1P'1i ; it is only necessary to run the Metropolis 
chain for "sufficiently many" steps. This is called the Metropolis sampier. 

But how many steps are "sufficiently many"? A moment's reflection shows that the 
mixing rate of the Metropolis ehain will depend on the mixing rate of the Q-chain - this 
is obvious - and also on the variation of the function 1l: if great differences 1l(x) -1l(y) 
are possible, then the chain can be trapped at loeal minima of 1l. 

We will present a result due to P. Mathe ([56]) by which this observation is quantified: 

Proposition 21.3 Let Sand 1l be as above, we continue to denote by 7r the equilibrium 
0/ the Metropolis ehain. As a measure 0/ the variation 0/1l we define 

a:= min 7r:z;/ max7r:z;. :z; :z; 
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To quantify the mixing rate we use the second largest eigenvalue2 • By the results of chapter 
10 the distance of this eigenvalue to 1 contains all relevant informations, it is called the 
spectral gap. Let Af resp. A~ stand for the second largest eigenvalue of the Metropolis 
chain and the proposal chain, respectively, and denote by J],p := 1 - Af and J],Q := 1 - Af 
the corresponding spectral gaps. Then 

a2 2 
2:J],Q ~ J],p ~ a2J],Q· 

Proof. First we have to develop the Hilbert space techniques with whieh we have already 
been concerned in chapter 10 a little bit further. We consider an arbitrary irreducible, 
aperiodic and reversible chain on a set S with N elements, given by a stochastie matrix 
P and with equilibrium 1r. The Hilbert space H7r has been introduced in proposition 10.2 
as the space IRN together with the scalar product (., ')7r induced by 7r: 

(f,g)7r := L f(x)g(x)7r x ' 

xES 

As in this proposition we identify P with a map on H 7r . Since our chain is reversible by 
assumption the operator P is self-adjoint, and therefore we may apply proposition 10.4: 
Af, the second-largest eigenvalue of P, is the maximum of the numbers (f, P !)7r/ (f, f)7r' 
where the ! run through all nonzero vectors in H 7r which are orthogonal to (1, ... ,1). 
Consequently, the spectral gap 1 - Af equals 

. {(f, (Id - P)f)7r I ()} mm (f, f)7r ! i:- 0, !.l 1, ... ,1 . 

We have already met the expression in the numerator, it has played an important role in 
the proof of theorem 11.3. It is usually called the Dirichlet form associated with P and 
written 

Let 9 be an arbitrary element of H 7r whieh does not lie in the linear span of e .­
(1, ... ,1). Then 9 = (e,g)7re + ! with an ! whieh is orthogonal to e. Since Id - P 
annihilates e, the Dirichlet form has the same value at 9 as at f, and therefore we may 
rewrite the formula for the spectral gap as 

1 - Af = min{ ~;:'(:~ I Var7r (g) > o}, (21.2) 

where Varp(g) := Iig - (g, e)7rell;. This number is called the variation of g, note that it is 
just the ordinary variance of 9 if 9 is considered as a random variable from S - provided 
with 7r as the probability measure - to IR. 

Now we turn to the proof. The equilibrium distributions of the proposal chain resp. the 
Metropolis chain will be denoted by (1Jx) resp. (7rx), the corresponding Diriehlet forms, 
second-largest eigenvalues and variations by cp resp. cQ, Af resp. A~ and Varp resp. 
VarQ; note that 1Jx = l/N for every x since Q is symmetrie by assumption. 

The number a is defined such that 

2 Cf. theorem 10.3. Note that A2 is useful to bound the mixing rate only if it coincides with A*, the 
maximum of the eigenvalues which are different from 1. Recall that this can always be achieved by 
passing from the transition matrix P to (Id + P)/2. 
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a-rr x :S a max 7r y = min 7r y :S 7r x 
Y Y 

holds far every x. Summation leads to 

a:S aNmax7ry = Nmin7ry :S 1, 
y y 

and thus 

for all x. 

With these preparations at hand we investigate the above formula (21.2) for 1- A2. To 
deal with Varp and VarQ we recall from elementary probability theory that the variance 
of a random variable X is the minimum of the expectations of (X - C)2, with c E IR 
(the minimum is assumed at the expectation of X). For our setting this yields, for an 
arbitrary 9 E }{~, 

Varp(g) 
x 

x 

= a VarQ(g). 

To treat the Dirichlet form we first note that [p(g,g) = :Lx,y(g(x) - g(y))2pxy7rx/2: 
this is easy to verify. From this expression one deduces that 

[p(g,g):S L (g(x) - g(y))2pXy7rx. 
1r1l~1T2I 

(Here ":s" cannot be replaced by "=" in general; this is due to the x, y with 7rx = 7ry.) 
Now the special structure of our chains comes into play: if 7ry 2: 7rx , then Pxy = qxy by 

definition. We are thus led to 

[p(g,g) < L (g(x) - g(y))2pxy7rx 
1T y ?,1T 2I 

< 

< 

= 
2 
- [Q(g, g). 
a 

It remains to put both inequalities together to arrive at 

[p(g,g) < ~ [Q(g,g) 
Varp(g) - a2 VarQ(g)' 

and - by (21.2) - this shows that 
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That a2 ILQ /2 :::; ILp also holds is proved similarly. o 

Simulated annealing 

As before, let 11. be areal valued function on a finite set S. The measure which assigns 
the prob ability 1P'1l ({x}) = exp(-1I.(x))/Z to x E S is large where 11. is small. Thus 
there should be a good chance to get an x with 1I.(x) elose to min 11. if one produces a 
sampIe from S with distribution 1P'1l. Now let ß be a positive real parameter, for historical 
reasons3 it is called the inverse temperature. 

The idea is to pass from 11. to ß1I., the associated partition function and the measure 
will be denoted by Zß and IP'ß. What is to be expected? Suppose first that ß is elose to 
zero ("high temperature"). Then ß1I. is essentially constant so that IP'ß is elose to the 
uniform distribution: all x E S are (nearly) equally likely to be sampled. Now let ß be 
large ("low temperature"). Then, for an x where 1I.(x) is larger than min 11., the number 
exp( -ß1I.(x)) will be tiny compared with the exp( -ß1I.(y)) for the y with 1I.(y) = min 11., 
and thus it is hardly to be expected that a sampIe with distribution IP'ß will produce x. 

The preceding observations motivate a stochastic optimization technique which is 
called simulated annealing: 

• A function 11. on a finite set S is given. One wants to find an Xo such that 1I.(xo) = 
min1l.. 

• Fix numbers 0 < ßl < ß2 < "', the cooling schedule. 

• Let - with an arbitrary starting position - a suitable Markov chain run on S which 
has lP' ßl as its equilibrium. Let it run so many steps such that the chain oe cu pies a 
position, Xl, say, which is approximately distributed in accordance with lP' ßl . 

• Now repeat this procedure with Xl as the new starting position and a chain with 
lP' ß2 as its equilibrium. Stop after "sufficiently many" steps in state X2' 

• Continue this way with IP'ß3' IP'ß4 and so on. Then, for large m, the Xm should be 
such that 1I.(xm ) is elose to min 11.. 

Simulated annealing can be compared with someone who seeks the deepest point 
in a valley on a foggy day. He starts somewhere, and then he walks around without 
taking much care about where he is (high temperature 1/ ßd. Next - with parameter 
ß2 - he favours a little, but not too much, to go downwards. For large ßm, at later 
stages of his search, going upwards is practically not taken into account: he prefers 
to stay at a (Iocal or global) minimum. 

It should be c1ear that the chance that he will arrive at the global minimum (= the 
deepest point of the valley) will be infiuenced by many facts. The geometry of the 
valley will play an important role, and also it is surely not desirable to choose large 
values of ßm early: the walk would be trapped in a local minimum. 

3 In statistical physics the Gibbs distribution takes the form exp(-lI.(x)/kT)/Z, with the Boltzmann 
constant k and the absolute temperature Tj thus ß corresponds to l/kT. 
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The underlying idea of simulated annealing is in fact very appealing. Once it is possible 
to sampie from S with prescribed distributions lP'ß it remains to choose the cooling 
schedule. This, of course, has to be done carefully. If the (ßm) tend to infinity too fast 
then it is likely that the procedure only pro duces a local minimum. On the other hand, 
if they increase only slowly, then it costs too much time to arrive at an X m with ll(xm ) 

dose to min 11.. 
Unfortunately, rigorous results which provide reasonable bounds are rare. This is bal­

anced by the fact that simulated annealing can be applied in various situations where 
constructive methods are not available. Implementation is easy, even large optimization 
problems can be treated. 

We are now going to study an example of a cooling schedule, the Markov chains 
which will come into play will be Metropolis chains. Our main result will be theorem 21.5 
below, we need a number of preparations. 

First we agree to modify our procedure a little bit. Instead of using the Metropolis 
sampier associated with ßlll for "sufficiently many" steps, then that for ß21l for some 
further steps and so on it will be more convenient to walk only one step with the inverse 
temperature ßI, one with ß2, and similarly for the other ßn. This can easily be achieved 
by passing from the original ß-sequence ßI, ß2, ... to ßl, ... , ßI, ß2, ... ,ß2, .... 

Suppose that the procedure starts at some x. Then the prob ability to arrive after step 
number k at astate y can be found in the x-y-position4 of the product matrix 

P.k .- F,ß F,ß ... F,ß . 
• - 1 2 '" 

this is clear by an argument similar to that from the beginning of chapter 3 which has 
led to (3.2). 

Note that therefore, for the first time in this book, we have to deal with inhomogeneous 
Markov chains. We will prepare the proof of theorem 21.5 by studying some general facts 
concerning such chains. Let an arbitrary state space S = {I, ... , N} and a sequence 
PI, P2 , .•• of stochastic matrices be given. (PI, ... ,p N) will denote a starting distribution, 
and Fk will stand for the matrix PI··· Pk. We are interested in the product (PI, ... ,Pn)Fk, 
this vector contains at its j'th component the probability to find the walk at j after the 
k'th step. In view of the application to simulated annealing we have in mind we have to 
show that under suitable conditions on the Pk these probabilities converge. 

The norms which are of importance here have already been used in earlier chapters. 
We recall that - for a vector x = (Xl, ... ,XN) or x = (Xl, ... ,XN)T - the lI-norm of xis 
denoted by IIxllI = L: lXi I and that the total variation distance IIfL - vII of two probability 
vectors fL and v is just IIfL - vllt/2 (see lemma 13.3). With these two norm:> the Lipschitz 
property of the operators associated with stochastic matrices can easily be expressed: if 
P is any such matrix and if C p stands for the maximum of the total variation distances 
between the rows of P, then 

(21.3) 

for all probability vectors x, y; this has been shown in chapter 10 (lemma 10.6). 
We need another notion in connection with the Lipschitz property: Lp will denote 

the best possible Lipschitz constant of the map (Xl, ... , X N) t-t (Xl, ... , X N ) P, Le., the 
minimum of the numbers L such that 

4 Those who find this notation confusing should identify S with {l, ... , N}. Then the entry in the 
"x, y-position" in the transition matrix is - for x, y E S - the element at the y'th place in the x'th 
row. 
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holds for all probabilities x and y. It is clear that Lp ~ Cp, and also that L pt ... p, < 
L PI •.. L P, for stochastic matrices PI, ... , Pr. 

Proposition 21.4 Suppose that 

• each 01 the stochastic matrices Pk , k = 1, ... is irreducible and aperiodic, the unique 
equilibria will be denoted by (-rrCk»)T = (7r~k),7r~k), ... ,7r~»); 

• l:k II7r Ck) - 7rCk+l) 111 < 00; 

• Lpk,Pk'H",Pk'+k tends to zero with k ~ 00 lor every k'. 

This implies: 
(i) the sequence (7rCk) h=l, ... is convergent to a vector 7r T = (7rl, ... , 7rN), and 

(ii) (PI, ... ,PN)Pk tends to 7r T lor k ~ 00. 

Proof. (i) Fix any io. Then 

17r~:+r) - 7r~:) I < I17r Ck+r) - 7r Ck) Ih 

= 1I(7rCk+r) _ 7rCk+r-l») + ... + (7rCk+ 1) - 7r Ck»)lIl 
k+r-l 

< L I17r CI+l) - 7r CI) Ih, 
l=k 

and therefore, by the second assumption, the sequence (7ri:)h is Cauchy. 
(ii) As apreparation we prove that sUPk 117r T -7r T Pk,Pk'+l··· Pk'+klh tends to zero with 
k' ~ 00. The idea is to write the difference under consideration as a telescoping series, 
for typographical convenience we will use the notation 7r and 7rk instead of the correct 
but more clumsy 7r T and (7rCk»)T in the following argument: 

7r Pk' Pk, +1 ... Pk' +k - 7r = (7r - 7rk' )Pk' ... Pk, +k + 

k 

+ L(7rk'-l+l - 7rk'+I)Pk'+I·· ·Pk'+k + 
1=1 

+ (7rk'+k - 7r) ; 

this is due to the fact that 7rkPk = Pk . Since all L p are bounded by 1 it follows that 

I17rPk,Pk'+1··· Pk'+k- 7r 1l1 < Lpk,,·,Pk'+kll7r-7rk,1I1+ 

k 

+ L Lpk,+,,··Pk'+k l1 7rk'-l+l - 7rk,+dI1 + 
1=1 

+ l1 7rk'+k - 7rlh 

< 2 sup 117r - 7rd11 + L 11 7r1 - 7rI+l1l1. 
l?k' l?k' 

The first summand is small for large k' by (i), the second as a consequence of 

L l1 7rk - 7rk+l1l1 < 00. 

k 
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Now let (PI, ... , PN) be any starting distribution. Then we have, for arbitrary k', 

- T T 
I/(PI,···,PN)Pk -1f Ih II(Pl,···,PN)Pl ",Pk -1f 111 

11((Pl, ... ,PN )Pl ... Pk'-l - 1f T)Pk, ... Pk + 
+1fT pk , "'Pk -1fT lh 

< L pk""Pkll(Pl, ... ,PN)Pl",Pk'-l-1fT lll + 
+ 111fT Pk, ... Pk - 1f Tlh 

< 2Lpk""Pk + 111fT Pk, ... Pk -1f Tlh. 
If now € is any positive number we can choose a k' with 111fT Pk , ... Pk - 1f T 111 ::; € for all 
k 2 k'; for large k, we also have Lpk""Pk ::; € by assumption, hence 

for these k, and this completes the proof. o 

It remains to choose the inverse temperatures ßk such that the conditions of the pre­
ceding proposition are met. We will use the following notation: 

• .6. := max{1-l(x) -1-l(y) I x, y E S, qxy > O}; this is the maximal local increase of 
1-l. 

• For x, y E S we denote by a (x, y) the minimal length of a path from x to y, that is 
the minimum of the integers r such that there exist Xo, Xl , ... ,Xr such that Xo = x, 
Xr = y, and qXQX1"'" qX._1X. > O. Note that all a(x, y) are finite since the Q-chain 
is irreducible. 

• 7:= maxx,y a(x, y). 

• {) := min{qxy I qxy > O}. 

The main result of this section is the following theorem. In the proof we will assume 
that the proposal matrix Q has the property that all qxx are strictly positive, this will 
facilitate the argument slightly. 

Theorem 21.5 Let the cooling schedule ßl ::; ß2 ::; ... be such that ßk -+ 00, and 

1 
ßk ::; 7.6. logk. 

Then, if M is the set where 1-l attains its minimum, simulated annealing converges to 
the uniform distribution on M. More precisely: if (Px)xES is any initial distribution and 
if p~k) denotes the probability that the walk is in state x after k steps, then p~k) tends to 
zero (resp. to l/card(M)) for x t/:. M (resp. for xE M) with k -+ 00. 

Proof. We want to apply the preceding proposition, with Pk := Pßk = the Metropolis 
matrix associated with ßk. We know that each Pk is irreducible and aperiodic with 
equilibrium given by (1fk(X))XES = (exp(-ßk1-l(X))/Zßk)XES, and the theorem will be 
proved as so on as we have shown that 

1. I:k 111f(k) - 1f(k+l) 111 < 00; 
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3. thc x-component of 7rk tends to 0 resp. to l/card(M) for x ~ M resp. for xE M. 

As is to be expected, the proof uses the concrete form of the equilibrium. We put 
a(x, ß) := exp( -ß1-l(x))/Zß, our claim is that for every x there exists a ßx such that 
ß M a(x, ß) is monotone (i.e., increasing or decreasing) for ß 2: ßx· 

First, we suppose that x E M. Then 

1 
a(x,ß) = L ( ß( () ))' m + yrf.M exp - 1-l y - c 

where m := card (M) and c := min 1-l. Thus a(x,·) increases on all of IR, and the limit is 
l/m. 

For x ~ M the argument is a little bit subtier. Let, for y E S, ay be the number 
1-l(y) - c. Then the inequality a(x,ß) 2: a(x,ß + t) is equivalent with 

j(t) .- eta, (m + L e-(ß+t)ay ) 

yrf.M 

> m+ L e-ßay 

yrf.M 

b. 

Clearly j(O) 2: b holds, we claim that the derivative of j is positive for t 2: 0 provided 
that ß is sufficiently large. In fact, up to the factor eta, this derivative is 

axm + L (ax - ay)e-(ß+t)a y , 

yrf.M 

where axm is strictly positive and the second summand can be made arbitrarily small 
uniformly in t 2: 0 for large ß (note that all a y under consideration are greater than 
zero). This proves the claim. 

That "3." holds follows easily from the concrete form ofthe a(x,ß), the assertion "1." 
will be proved next. Fix any x and and choose kx so large that ßk 2: ßx for k 2: kx . 
Then the sum Lk>kz la(x,ßk) - a(x,ßk+dl is in fact a telescoping series since a(x,·) 
is monotone, and fherefore it equals la(x, ßkJ - limk a(x, ßk)l. In particular, the sum 
Lk la(x, ßk) - a(x, ßk+dl is finite, and this is essentially the statement "1.". 

It remains to prove "2.". Fix any k' and consider the Lipschitz constants lk := 

Lpk'+l", Pk'+k for k 2: 0 (it will be more convenient to work with these numbers than 
with the Lpk""Pk'+k)' The sequence (lk) is decreasing since all L p are bounded by one, 
and therefore it suffices to prove that a subsequence tends to zero. The claim is that the 
subsequence (Zr, l2n"') has this property. 

To prove this claim we first analyse lr. This number is the best possible Lipschitz 
constant of the map induced by the stochastic matrix R := Pßk' +1 ... Pßk, +T' In R we 
find the transition probabilities rxy to get from any x to any y in r steps, where Metropolis 
sampiers with inverse temperatures ßk' +1, ßk' +2, ... ,ßk' +r are used. The probability of a 
single Metropolis step from x to y under a general ß is 2: {}e-ß~ if a transition is possible 
at all; this is due to the definition5 . It follows that 

5 Here it is important that we have assumed that qxx > 0, otherwise we would have difficulties to deal 
with the case x = y. 
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r xy > 19Texp(-~(ßk'+l+···+ßk'+T)) 

> 19T exp( -Tßk'+Tt::..) 
_0 6, 

Le., R is a matrix the entries of which are strictly bounded from below by 8. Proposition 
10.5 implies that eR :::; 1 - N8, and this leads us to 

with N := card(S). 
A similar argument provides estimates for the Lpk'+T+l···Pk'+2T' Lpk'+2T+l", Pk'+3T , ... , 

and putting these together we obtain 

r 

< II (1- N19T exp( -Tßk'+jTt::..)). 
j=l 

To complete the proof it will suffice to show that the right hand side tends to zero with 
r -+ 00. 

When does a sequence I1;=1 (1- aj) converge to zero, where the aj lie in [0, 1[? Here it 
is useful to know that log(l- a) :::; -a for a < 1, this fact implies that I1;=1 (1- aj) -+ ° 
provided that a1 + a2 + ... = 00. In the present case we have to check the series 

19 T (exp( -Tßk'+Tt::..) + exp( -Tßk'+2T t::..) + exp( -Tßk'+3T t::..) + ... ), 

now the assumption of logarithmic increase comes into play. Since we know that ßk < 
(log k) / T t::.. we can estimate a typical summand by 

1 
exp( -Tßk'+jTt::..) 2: -k'--.-· 

+JT 

And since the harmonie series diverges we have in fact shown that the above products 
tend to zero with r -+ 00. Now the proof is complete. 0 

Exercises 

21.1: Prove that, under the assumptions of definition 21.1, the Metropolis chain coincides 
with the Q-chain iff the energy is constant. 

21.2: In the definition of the Metropolis chain we have assumed that the proposal chain 
is symmetrie. With this assumption it was possible to show that the Metropolis chain is 
reversible. Is the assumption really necessary? Is it sufficient to start with a reversible 
Q-chain to arrive at a reversible Metropolis chain? 

21.3: Let 1i be an arbitrary energy function and (ßn) a sequence of positive numbers 
with ßn -+ O. Prove that the measures lP' ßn converge to the uniform distribution. 

21.4: Consider in proposition 21.3 the special case where the proposal matrix Q has 
in each row the uniform distribution. What can be said about the spectral gap of the 
Metropolis chain as a function of the number a from this proposition? 
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21.5: Here we consider a simple example of an inhomogeneous Markov chain. Let two 
stochastic N x N -matrices Ql and Q2 be given, we suppose that they have strictly positive 
entries. They give rise to a Markov chain on {I, ... , N} if we prescribe that transitions 
in the k'th step are governed by Ql resp. Q2 if k is even resp. odd. For example, if 
(PI, ... , PN) denotes the initial distribution, then the probabilities to find the walk in the 
various states after the fifth step can be read off from 

a) Does there exist a distribution (7rl, ... , 7r N) such that the probability to find the walk 
after k steps in state i tends to 7ri with k ~ 00 for every i? 

b) Prove that this is true provided that there is a probability (7rl, ... , 7r N) with 

(7rl, ... ,7rN)Ql = (7rl, ... ,7rN) = (7rl, ... ,7rN)Q2. 

21.6: Let Ül < Ü2 < ... be any real sequence which tends to infinity. Prove that there 
are suitable integers rl, r2, ... such that the sequence ßl, ß2, ... , defined by 

Ül, ... , Ül, Ü2, ... , Ü2, ... 

(with rl repetitions of Ül, r2 repetitions of Ü2, ... ) satisfies the assumptions of theo­
rem 21.5. This means that one can decrease the temperature arbitrarily provided that 
one stays for "sufficiently many" steps at the various levels. 

21. 7: In the proof of proposition 21.3 we have omitted two steps which should be proved 
now: 

a) The Dirichlet form f:(g,g) can be rewritten as I:x,y(g(x) - g(y))2pxy7rx/2. 

b) Let a random variable X : S ~ IR on a finite prob ability space be given. The expec­
tat ion of X is the unique number c such that the expectation of (X - c)2 is minimal. 

21.8: The assertion (i) of proposition 21.4 is a special case of the following general fact: 
whenever Xl,'" is a sequence in a Banach space such that Ilxlll + IIx211 + ... < 00, then 
the series Xl + X2 + ... converges. Prove this fact. 

21.9: In the final step of the proof of theorem 21.5 we have demonstrated that al + a2 + 
" . = 00 implies that n;=l (1- aj) converges to zero. Show that the converse also holds. 
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22 Notes and remarks 

The material of chapter 18 is mainly from [70], there one can find the tedious caIculations 
which have only been sketched in our text. One point should be emphasized again: there 
are situations which are provable untractable if exact solutions are needed but which 
nevertheless can be solved up to arbitrary precision with the help of Markov chains in 
polynomial time. 

Of course, in order to deal with such assertions rigorously it would be necessary to 
develop the basic definitions of algorithmic complexity. This is not our concern here; 
readers who want to learn more of this should first read [35] and then consult [70] again. 
A particularly important role play problems which are of type P resp. of type NP. The 
former are problems which are characterized by the property that the time to solve them is 
bounded by a polynomial in the number of bytes by which they are formulated, the latter 
are problems which - with positive probability - can be reduced to on es of type P. At. 
present nobody knows a problem which is NP but not P. Can one prove nonexistence, 
is it possible to find an example? This is considered as one of the outstanding open 
questions of our time. Here the satisfiability problem has its place: it is typical in that it 
is NP and that alt NP problems would be P once the problem of satisfiability could be 
proven to be of elass P. 

Chapter 19 mainly contains the basic standard definitions for random fields. Supple­
mentary material can be found in chapter 7 of [20] and - together with some historical 
comments - in part II of [76]. What has been stated in theorem 19.4(ii) and (iii) seems to 
be new: usually the Markov chain defined by the local characteristics is only considered 
in the case of Gibbs fields. 

Because of their importance in so many areas the Gibbs fields from chapter 20 have 
attracted the attention of many mathematicians. For some references, see again [20] 
and [76], a more ambitious treatment can be found in [53]. Our presentation mainly 
follows [20], the proof of proposition 20.6 is inspired by that in [76]. Readers who want 
to learn more on the Ising model should consult [23], there one also finds an extensive 
bibliography. 

As far as chapter 21 is concerned I have profited much from discussions with P. Mathe. 
The Metropolis sampier has been presented in [57], since then it has played an important 
role whenever it is necessary to sampie from aspace where one only knows the relative 
probabilities 7ri/7rj (for a survey see [67]). Standard references for simulated annealing 
are [9] and [52], further interesting material can be found in part II of [76] and in [2]. That 
simulated annealing is not only an appealing idea but can be stated as a mathematical 
theorem is due to S. and D. Geman ([36]). This is our theorem 21.5, the proof - which 
is based on Dobrushin's theorem (proposition 21.4) - follows [76]. 

In part III we have tried to present some typical examples where Markov chain methods 
are of importance. We elose this book with a brief sketch of some others. 

A elassical application of random methods is Monte-Carlo integration. Let a bounded 
measurable function f : D -7 [0, oo[ be given, where D is a bounded measurable subset of 
jRn with Lebesgue measure one. Then the integral of f can be thought of as its expectation 
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if f is considered as a random variable on D. On the other hand, by the law of large 
numbers, the expectation can be approximated by 

r 
(22.1) 

if r is sufficiently large and the Xl, ... , X r are independent and uniformly distributed 
sampies from D. (The complete truth is a little bit more complicated: for every c > 0 
and every 8 > 0 there is an r such that (22.1) is c-close to the expectation with a 
prob ability at least 1 - 8.) 

This so-called Monte-Carlo integration necessitates to find uniformly distributed sam­
pIes in D. To this end D is replaced by a sufficiently fine finite grid, and on this grid 
points are sampled with prescribed probabilities using Markov chain methods. We refer 
the reader to [56] and the literature cited there. 

Another field of research which should be mentioned here is volume estimation. More 
precisely, one is given a convex horly K in a high-dimensional euclidean space ]Rn, and 
the problem is to find reasonable approximations of the euclidean volume V(K) of K. It 
is in general hopeless to evaluate V(K) by analytical methods, here also Markov chain 
techniques have been applied successfully. 

The idea is as follows. As apreparation the problem is reduced to the approximate 
evaluation of the quotient V(L)/V(K) of two volumina, where K and L are convex 
bodies with LeK such that V(L)/V(K) lies between 1/2 and 1. This ratio is evaluated 
by approximating K by a fine grid G. Then a Markov chain is run on Gwhich has the 
uniform distribution as its equilibrium. It is stopped after "sufficiently many" steps at 
some state i, and one observes whether i lies in L or not. Then the proportion of successes 
after many such experiments serves as an approximation of V(L)/V(K). It can be shown 
that in this way one can get good approximations with a high probability in a number of 
steps which is bounded by a polynomial in the input complexity (for details the reader is 
referred to [18]). On the other hand, deterministic methods give good results only after 
exponentially many steps, and therefore we have here - as in the case of the permanent 
- another example where stochastic approaches are provably superior to exact ones. 

Finally another field of applications should be mentioned. Markov chain methods have 
proven to be extremely useful in image analysis. How can a computer recognize the 
essential features of a picture given by a grid of black-and-white pixels? How can a 
picture be reconstructed if some of the pixels are destroyed? Readers who have mastered 
the theory presented in this book should have thc necessary prerequisites to understand 
the answers to these quest ions given in [76]. 
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