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Preface

The aim of this book is to answer the following questions:

e What is a Markov chain? We start with a naive description of a Markov chain
as a memoryless random walk, turn to rigorous definitions and develop in the first
part the essential results for homogeneous chains on finite state spaces. The con-
nections with linear algebra will be particularly emphasized, matrix manipulations,
eigenvectors and eigenvalues will play an important role.

One of the main results will be the fact that some chains forget all information
about the starting position and the length of the walk after “sufficiently many”
steps. Chains where this happens within reasonable time are called rapidly mizing.

e What methods are available to prove that a chain is rapidly mixing?
Several techniques have been proposed to deal with this problem: eigenvalue esti-
mation, conductance, couplings, strong uniform times; in the case of Markov chains
on groups also representation theory comes into play. These methods are presented
in part II.

e Why should it be interesting to know these things? Those readers who are
interested in applications of Markov chain techniques will find some examples in
part III. Markov chains are mainly used to produce samples from huge spaces in
accordance with a prescribed probability distribution. To illustrate why this could
be important we discuss the connections between random generation and counting,
the problem of sampling from Gibbs fields, the Metropolis sampler and simulated
annealing.

The book is written for readers who have never met Markov chains before, but have
some familiarity with elementary probability theory and linear algebra. Therefore the ma-
terial has been selected in such a way that it covers the relevant ideas, it is complemented
by many — mostly easy — exercises.

As far as the presentation is concerned, extensive efforts have been made to motivate
the new concepts in order to facilitate the understanding of the rigorous definitions. Also,
our investigations are completely self-contained. E.g., in chapters 15 and 16, we develop
the foundations of harmonic analysis on finite groups to be able to reduce rapid mixing
to certain properties of characters or representations.

The history of Markov chains began one hundred years ago, the leading pioneering
figures of the “classical” period in the first half of the twentieth century were Markov,
Doeblin and Kolmogorov. For a long time, however, the theory of Markov chains was
mainly interesting as a theory for its own sake. Really important applications to other
fields of mathematics or to other sciences had to wait until - some decades ago — computer
power became widely available. Nowadays Markov chains are present in all applied parts
of mathematics, in physics, biology and also in the social sciences.



vi Preface

The idea to write this book was born several years ago when I had some seminars
together with Emo Welzl and his group where we tried to understand certain techniques
concerned with rapid mixing. Later I continued to discuss these problems with specialists
from various fields, these efforts led to a course on “Rapidly mixing Markov chains” given
in the winter term 1997/98 at Free University of Berlin.

It is a pleasure to acknowledge the help of several colleagues from which I have benefited
during the preparation and the realization of this book: Stefan Felsner, Peter Mathé,
Bernd Schmidt, Christian Storbeck, Emo Welzl, and Dirk Werner. I am especially grateful
to Dirk Werner for giving advice at various stages, for reading the whole manuscript and
for his patience in explaining all subtleties which are necessary to transform a manuscript
of a book into a IATgX-file.

Ehrhard Behrends, Berlin 1999.
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Part 1

Finite Markov chains
(the background)



Part I is devoted to a self-contained development of the relevant aspects of finite Markov
chains. Chapter 1 provides the fundamental definition: what is a Markov chain? Examples
are studied in chapter 2, and in chapter 3 it is pointed out how some notions from linear
algebra — like matrices and eigenvectors — come into play. In chapter 4 we begin with
a systematic study by introducing certain definitions which will be indispensable when
investigating Markov chains: states which communicate, the period of a state, recurrent
und transient states. The latter are discussed in some detail in chapter 5. Then it is time
for a digression, in chapter 6 we will prove an analytical lemma which is a necessary
prerequisite to describe the limit behaviour of recurrent states in chapter 7.

A summary of the various techniques to analyse a chain can be found in chapter 8.
This chapter also contains some supplementary material.

Nobody learns mathematics just by reading a book; it is crucial to have an experience
of one’s own with the theory under consideration. Therefore it is recommended to solve
as many as possible of the ezercises which can be found at the end of each chapter.
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1 Markov chains: how to start?

In order to understand the simple idea which underlies Markov chains we remind the
reader of the well-known random walks from elementary probability. We have in mind a
walk on a finite interval {1,2,..., N} of integers. The walk starts at 2, say, and every
step is to the left or to the right with equal probability 0.5; if the walk is in position 1
or N, some extra rule has to be applied (e.g., one may prescribe that the next position
is the starting position).

There are numerous other possibilities for random walks, here are two samples:

1. Start at zero. Then “walk” on {0,...,999} according to the following rule: when-
ever you are in position i, move to 2i + ¢’ mod 1000, where ¢’ € {1,2,3,4,5,6}
is obtained by throwing a fair die. For example, if the die shows successively the
numbers 2,1,1,6,..., your positions — including the starting position — will be
0,2,5,11,28,...

2. As a preparation throw a fair coin 4 times and count the number of heads. This
will be your starting point on {0,...,999}, then continue with an ordinary random
walk on {0,...,999} mod1000, i.e., the moves will be from ¢ to ¢+1 mod 1000 or
to 7—1 mod 1000 with equal probability 0.5.

The common feature is the following. First, there is a prescribed set of possible positions
(in our case an interval of integers). Second, there is a deterministic or random procedure
to determine where to start. And finally, with every position there is associated a random
generator which has to be applied before moving next.

This observation motivates the following definition:

Definition 1.1 A finite Markov chain consists of

e a non-void finite set .S, the state space; the elements of S are called states, they are
the possible positions of our “random walk”; usually we will identify S with a set
{1,...,N};

e a probability vector, i.e., numbers (p;);cs with p; > 0 for all i and }_ p; = 1; these

numbers determine the random generator for the starting position, with probability
p; the walk starts at position ¢;

e a stochastic matriz P = (p;j); jes: all p;; are nonnegative and 3. p;; = 1 for every
1; the matrix P is nothing but a convenient abbreviation of a description of the
random generators associated with the states: a walk which is now at ¢ will be at
Jj after the next step with probability p;;.
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Remarks:

1) Those who get acquainted with this definition for the first time might ask why we have
extracted from our examples precisely the preceding properties. Why not an arbitrary
state space? Why did we restrict the rules for the walk in precisely this way? Why, e.g,
don’t we allow path-dependent random generators, that is rules of the form “Use a fair
die until you have been at the origin for three times; then switch to a loaded die”?

The reason is simply a pragmatic one as in other branches of mathematics, too. On

the one hand the chosen properties are sufficiently rich to allow the development of an
interesting theory. And at the same time they are so general that numerous applications
can be studied.
2) Many of our results will have a natural generalization to the case of countable Markov
chains (which are defined as above with the only modification that the state space S might
be countable). In view of the applications we have in mind we will restrict ourselves to
the finite case; remarks concerning the general situation can be found in the notes and
remarks at the end of part I (chapter 8).

A number of typical examples will be presented in the next section. Here we will
only restate our second walk on {0,...,999}: the probabilities py, ..., pggs to start on
{O, ey 999} are 1/16, 4/16, 6/16, 4/16, 1/16, 0, ceey 0, and P = (pij)i’jzoym’ggg is de-
fined by

{05 : i-jmod1000=+1
Py = 0 : otherwise.

In all parts of mathematics it is of crucial importance to associate an appropriate
visualization with an abstract concept. The reader is invited always to imagine some
kind of walk when dealing with Markov chains. Of course, the abstract definition will be
the basis of the investigations to come, but the meaning of the concepts we are going
to introduce can hardly be understood if a Markov chain is nothing but a set plus a
probability vector plus a stochastic matriz. Every reader should be able to manage the
translation into both directions: given the rules, what are S, the p; and the p;;? And
conversely, given these data, what will a “typical” walk look like?

Even more important is the following point. We deal with probabilities, we want to
transform ideas into mathematical definitions and to give rigorous proofs for the results
to be stated. Thus it will be indispensable to use the machinery of probability theory,
and therefore the question is:

What has the “walk” which we want to associate with S, (p;), (pi;)
to be considered in the framework of probability spaces, random
variables etc.?

The rest of this chapter is devoted to the discussion of this question. We will present and
explain the relevant notions, and it will be shown how Kolmogorov’s theorem comes into
play. Some readers might be satisfied to know that there is a rigorous foundation; they
are invited to continue now with chapter 2 and to check the connections with probability
theory later.
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Probability spaces and random variables

Here we only want to fix notation. We assume the reader to be familiar with the
definiton of a probability space (2,.4,P) and the other basic concepts of probability
theory like random variables, independence, conditional probability and so on. We prefer
to denote probability measures by “P” instead of the more common “P”, since this letter
will be used here for the stochastic matrices under consideration.

Whereas in many applications real valued random variables occur, here they usually
will have their values in a finite set S (our state space). Note that a mapping X : Q@ —» S
is a random variable if and only if all preimages X ~1(i), i € S, are in A.

Stochastic processes

As already stated it is important to know both: the underlying ideas and the mathe-
matical formalization. The idea with stochastic processes — more precisely with S-valued
stochastic processes in discrete time — is the following. We are given a finite set .S, and we
observe a “walk” at “times” 0,1,2,.... Suppose that we have made this observation very,
very often. Then we have a more or less precise estimate of the probabilities associated
with such walks. We roughly know the probability that a walk will start at a certain
t € S, or the probability that for a walk selected at random the fifth position is 7z and
the 111°th position is j, or even more complicated joint probabilities. Thus we can also
evaluate conditional probabilities by considering quotients: P(4 | B) = P(A N B)/P(B).
To have a mathematical model to deal with this situation we need something where “the
probability that the walk will start at a certain ¢ € S” and all the other probabilities
have a mathematical meaning. It is natural to model the position after the k’th move by
a random variable X, and in this way we naturally arrive at the following

Definition 1.2 Let S be finite set. An S-valued stochastic process is a probability space
(2, A, P) together with random variables X : @ - S, k € Ny := {0,1,...}.

~ As one knows from elementary probability the fact that A is a o-algebra implies that,
for a given stochastic process, every event E in connection with the Xj lies in A and
thus its probability P(E) has a well-defined meaning. We can, e.g., speak of P(X,; = 1)
or P(X19 = ¢, X122 # j), where we have used the common short-hand notation for
P({w | X4(w) =i}) and P({w | X19(w) =1, X122(w) # 7}). Also note that similarly one
abbreviates conditional probabilities. For example, P(X5 =i | X2 =i/, X4 =1") stands
for P(A | B) with A = {w | X5(w) =i}, B = {w | X2(w) =1, X4(w) =1"}.

This is precisely what is needed to start with a rigorous investigation of the behaviour
of the process.

We will see very soon how the ezistence of a space (2, A, P) with the desired properties
can be established, Kolmogorov’s theorem will provide the desired mathematical model.
Before we are going to turn to this point we want to introduce a further definition which
concerns certain special stochastic processes. Definition 1.2 is far too general, it covers
all, even the most complicatedly defined “walks”, and thus it is hardly to be expected
that there are any interesting results. The situation will change considerably as soon as
we are going to impose additional conditions, conditions which are not too general (this
would lead to few interesting results) and not too special (then there would exist only
few applications). There are several candidates with the desired properties. Here we will
be concerned with Markov processes. They will be introduced next.
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Markov processes

Consider rules for random walks on {1,...,N}, say. There are incredibly many of
them, all need some random mechanism to start, and one has to define rules by which
one selects the positions at times 1,2, ... We will speak of a Markov process if these rules
are such that the choice of the next position for a walk which is at 7 € S after & steps only
depends on k and 7 and not on the positions before & (i.e., one doesn’t need a memory
to determine the next step). In the remarks after definition 1.1 we have already given an
example of a rule which obviously doesn’t lead to a Markov process. Our other examples
satisfy the condition, they are even more restrictive in that the rule to proceed always is
dependent only on i and not on k; such processes will be called homogeneous.

We now will formulate the rigorous counterpart of the preceding discussion.

Definition 1.3 Let Xo, X1, ... be an S-valued stochastic process. It is called a Markov
process if for every k and arbitrary g, 4,...,%k—1,%,7 one has

P(Xkt1 =7 | Xo =10, X1 =t1,..., Xp—1 = tg—1, Xp = 1) = P(Xpq1 = J | Xk =1).

If in addition the numbers in this expression do not depend on k we will speak of a
homogeneous Markov process.

Remark: It has to be noted that there is a little technical difficulty with this definition.
The problem did not occur when we prescribed random walks by stochastic instructions,
since there it will not cause confusion if certain rules never have to be applied. For
example, everybody understands what is meant by:

Start the walk on {-5,—4,...,4,5} at zero; if you are in position 5, return
to zero next; if not, stay where you are or move one position to the right with
equal probability.

Thus there ezists a rule what to do next in position —4, but it is of no interest since
no walk will ever reach this state. If one uses conditional probabilities as in definition
1.3, however, this leads to expressions of the form P(Xy4; = ¢ | Xy = —4) which are
not defined since P(X; = —4) = 0. The situation is even worse since one can easily
imagine situations where the right hand side of the equation in 1.3 makes sense but not
the left. Hence the more precise formulation of this definition would be: equality has to
hold whenever both sides make sense, and “homogeneous” means that there are p;; such
that all conditional probabilities

P(Xky1 =7 | Xo =10, X1 =1t1,..., Xp—1 = k-1, Xg = 1), P(Xpg1 = | X =)

which are defined coincide with this number?!.

Kolmogorov’s theorem

By this theorem one can bridge the gap between the needs of the applications and
rigorous probability theory. Let us return to the situation described at the beginning of
our subsection on stochastic processes. There we have considered a (finite) set S, and
after a sufficiently long observation of a particular class of random walks we knew - at
least approximately — the probabilities of all events of the type

! From now on we will drop such remarks: we agree that equations containing conditional probabilities
are considered only when they are defined.
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“the walk starts at ig, then it moves to 11,. .., and after the k’th step it arrives
at 1"
which we will abbreviate by g;,,... ;.. One would like to have a probability space (22, A, P)
and random variables X; : @ — S, k£ =0,1,... such that always
]P(xYo = io, Xl = il, ey Xk = ik) = Qig,...,ij-

This can really be achieved under a rather mild fairness condition (see the next the-
orem). The problem does not arise if the g¢’s are given as in our motivation, but for a
general assertion one has to take care of this condition.

The rigorous formulation of the result which we have in mind reads as follows:

Theorem 1.4 Let S be a finite set. Suppose that for any finite sequence ig, 1y, .. .,i% in S
there is assigned a nonnegative number g;,, .. ;, such that ZiES ¢ =1, and Zies Qig...ip—1d

= Qiy...ir_, Jor arbitrary ip,...,ik—1 in S.
Then there are a probability space (2, A,P) and random variables Xo, X1,...: 2 = S
such that

P(XO = iO; Xl = i],. DR Xk = Zk) = Qip,...,ix
holds for all ig, ..., 1.

Remark: This is true by Kolmogorov’s theorem (see [12, p. 115], [16, p. 483] or any
other textbook on measure theory for the general formulation). The idea of the proof is
as follows. We define Q2 to be the collection of all sequences ig, i1, ... in S, i.e., @ = SNo,
For every k, let X : @ — S be the k’th projection: (ip,...) — . It now “only” remains
to provide 2 with a o-algebra 4 and a measure such that the theorem holds. It is clear
that, to achieve this aim, all sets

Aig,.. i 1= {(io, RO YRR TR SR I [ PR T arbitrary}

have to be in A with associated measure g;,,.. ;,. Whereas it is easy to show that this
definition can be extended to the ring generated by the A;, . ; by a unique finitely
additive measure it is rather cumbersome to check that one may apply Carathéodory’s
theorem to have an extension as a (o-additive) measure to the generated o-algebra.

Under the assumption of the existence of the Borel-Lebesgue measure on the real
line one can give a rather elementary proof of theorem 1.4. Let (Q2, A, P) be the unit
interval together with the Borel subsets and the Borel-Lebesgue measure. We will
assume that S = {1,..., N}, the random variables Xy, ... will be defined as follows:

e Write §2 as the disjoint union of intervals Ii,...,In such that I; has length
¢i; this is possible since the ¢; sum up to one. Xo : 2 — S is defined such that
the points in I; are mapped to i. Then P(Xo = ¢) = ¢; for all 3.

e For every ¢ we now partition I; into intervals I, ..., I;n such that P(I;;) = gij;
this can be done since ) ; @7 = ¢i- And X will be that mapping on  which
maps the I;; to j.

It is clear that then P(X, = i, X1 = j) = ¢ij, and it also should be obvious
how to proceed in order to define consecutively also X2, X3, ....



Chapter 1: Markov chains: how to start? 9

Markov chains vs. Markov processes

We are now able to show that the definitions 1.1 and 1.3 are essentially equivalent.
Start with a chain as in definition 1.1 by prescribing S, the (p;)ics and the (pij)i,jes-
With the help of Kolmogorov’s theorem we want to construct an associated Markov
process. The random variable X, i.e., the model for our starting position, should be
such that P(Xo = ¢) = p;, and hence we set g; := p; in theorem 1.4. “The walk starts in
i and next moves to j” is the event “Xo = ¢ and X; = j”; by theorem 1.4 it will have
probability g;;, and according to our interpretation of 1.1 it has probability p;p;;; here
we have used the identity P(ANB) = P(A | B)P(B) with A = “the walk starts at 4" and
B = “the position after step 1 is 5”. Thus we have no choice but to define g;; := p;ip;;,
and similarly, for general k, we set

Qig...ix. = PigDigir * " Pir—rix- (1.1)

It is now routine to show that the ¢’s satisfy the assumptions of Kolmogorov’s theorem
and that the X’s provided by this theorem constitute a homogeneous Markov process
with P(Xk4+1 = j | Xk = 1) = p;; whenever the left-hand side is defined.

Note that, by theorem 1.4, (1.1) implies that
P(Xo =40, X1 =i1,..., Xk =ik) = PioPioir * ** Pik_1ix (1.2)

for all 4o,..., 1k, this formula is often useful in concrete calculations.

Now suppose that, conversely, Xo, X1, ... is a homogeneous S-valued Markov process.
In order to arrive at definition 1.1 we clearly have to set p; := P(Xo = i); then p; > 0
and Y p; = 1 since P is a probability. The definition of the p;; is not as easy since the
natural approach p;; := P(Xg41 = j | Xk = 1) might fail: maybe the right-hand side is
not defined. Thus we proceed as follows:

e Let i be such that there exists a k' with P(Xx =14) > 0; put
pij = P(Xp1 =7 | X =1)
for all j, where k is the smallest k' with P(Xp = 1) > 0.
e Define the p;; for the other i arbitrarily with p;; > 0,3 pij = 1.

This definition will be our candidate to come from definition 1.3 to definition 1.1. It
follows easily from the assumptions in 1.3 — P is a probability measure, the process is
homogeneous — that the p;; satisfy the conditions in 1.1 and also that the “walk” given
by the stochastic rules p;, p;; corresponds with Xo, X1, .... Also, (1.2) will hold with
these p; and p;;.

Summing up, we arrive at the following conclusion:

Every chain defined by a probability vector and a stochastic matrix as in
1.1 gives rise to a homogeneous Markov process, and every such process is
obtained in this way. There might be, however, chains which are formally
different which generate the same process?.

2 As a simple example consider S = {1,2} with p1 =1, p2 = 0.

Here ( (1) (1) )and ( i 8 ) determine the same Markov process.
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Exercises
1.1: Let N be a fixed integer, we denote by K the collection of all probability vectors of
length N:

K= {(PI:,PN) l Di ZO, Zpl = 1}

a) Prove that K is a compact convex subset of RV .

b) A point z of a convex set L is called an extreme point (of L) if x = (y +2)/2 can hold
with y,z € Lonlyify =2 =1z.

What are the extreme points of K7

1.2: Let N be fixed and call K’ the set of all stochastic N x N-matrices.

a) K' is a compact convex subset of RV .

b) Which matrices P are extreme points of K'?

c) Let K" be the collection of doubly stochastic N xN-matrices. Prove that K" is a
closed subset of K’ and identify the extreme points of this set.

d) A subset F' of a convex set L is called a face (of L) if it is convex and if - for y,z € L
—~one has (y+2)/2€ Fonlyify,z€ F.Is K" aface in K'?

1.3: Let P be a stochastic /V x N-matrix. We consider two independent copies of a Markov

process on {1, ..., N} with transition probabilities given by P, both are assumed to start
deterministically at state 1.
The two processes can be thought of as a single process on {1,...,N}2. Is this a

Markov process? What does the transition matrix look like?

1.4: Let S be a finite set and & : xS — S a fixed function. Further we are given a
sequence (Y)k=o,1,.. of independent and identically distributed S-valued random vari-
ables.

Define a process (Xi) by Xp := Yy and Xg41 := ®(Xk, Yi+1) for & > 0. Prove that
(Xk) is a homogeneous Markov process and calculate the associated transition matrix in
terms of ®.

1.5: Let P be a stochastic matrix, we want to model a homogeneous Markov process
Xo, - .. on a suitable probability space (2, A, P). What precisely are the matrices P such
that © can be chosen as a finite set?

1.6: Let (X&) be the Markov process associated with the cyclic random walk on {0, ...,9}
with a deterministic starting position at 5: the probability is 1/2 for a step from i to
i+1 mod 10 resp. to i—1 mod 10. Determine the following (conditional) probabilities:

a‘) P(X3 € {2’31 4})

b) ]P(X;; =6 I X5 = 6)

C) ]P(X5=6’X7=7, X3=6).

1.7: Is it true that a stochastic matrix P has identical rows iff the following holds:
regardless of how the starting distribution is chosen, for the associated Markov process
(Xk) the Xk, k > 1, are independent and identically distributed random variables?

1.8: If Xo, X3,... denotes a homogeneous Markov process with transition probabilities
(pi;) and starting distribution (p;), then

P(Xo =10, X1 =11,..., Xk = k) = DioPioir * * * Pin_1in

holds (see (1.2)). Use this to prove or to disprove that
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a) P(Xk =ik | Xi—1 = k-1, Xip1 = tpq1) = P(Xp = ik | Xgo1 = ik-1),

b) P(Xx =tk | Xk-1 = tk—1, Xkt1 = ka1, Xbyo = ikg2) =
P(Xk =ik | Xk—1 = k-1, Xkt1 = Gks1),

) PXz=1|Xo=j)=P(Xe =1i| X5 = 7).
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2  Examples of Markov chains

By definition, a Markov chain is nothing but a probability vector (p;) together with a
stochastic matrix P = (p;;). Mostly only P is given, and then it is tacitly assumed that
one is interested in all starting distributions. Due to the law of total probability it suffices
to study only the situations where one starts deterministically at a fixed but arbitrary
point: if F denotes any event associated with the walk (e.g., “it visits four times state %o
before it visits state jo”), then the probability of E subject to the starting probability
(ps) is 3. piPi(E), with P;(E) := “the probability of E when starting in 3”.

Because of the rather general setting examples of Markov chains abound. (Note that
the identity matrix is also admissible, it gives rise to a particularly dull “random walk”.)
There are, however, some typical representatives which will be of some use later, mainly
to motivate the concepts to be introduced and also to prepare our applications in part
IT and part III.

Example 1: The reflecting, the absorbing and the cyclic random walk

This is essentially a restatement of the walks of the introduction. One moves one step
to the right or to the left on {1,..., N} (or stays at the same position) until one arrives
at 1 or N. There, depending on the type of walk, some extra rule applies: 1 and N
serve as reflecting walls, or the walk stays there forever at soon as it arrives at one of
these positions, or {1,...,N} has to be be considered as a discrete circle, where the
“neighbours” of 1 (resp. N) are 2 and N (resp. N—1 and 1).

The reflecting walk

Let a;, b;,c; be nonnegative numbers for ¢ = 2,..., N—1 such that a; + b; +¢; = 1.
Consider

0 1 0 0 0 0

az by c 0 0 0

0 as b3 0 0 0

P = . .
0 0 O an-1 byn-1 eon-1
0 0 O 0 1 0

The absorbing walk
With a;, b;, c; as above set

1 0 O 0 0 0

as b2 Cy - 0 0 0

0 as b3 L 0 0 0
P = L. . . .

0 0 0 an-1 bv-1 cNo1
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The cyclic walk

This time the a;, b;, ¢; are given with the above properties fori = 1,..., N. The stochastic
matrix is
bl C1 0 s 0 0 ax
ag bz Cy - 0 0 0
0 asg bg s 0 0 0
P= . . ) i
0 0 0 - an-1 by-1 cNa1
ey 0 O --- 0 an bn

Example 2: “Rules” vs. P
It is of crucial importance to be able to translate: what is the matrix P if the stochastic
rules are given and, conversely, what type of walks is determined by a specific P?

For example, it should be clear that — for a walk on the states 1,2,3,4,5,6 — the rule

“if you are at 3, throw a fair die to determine the next position; in any other
case, stay at ¢ or go to ¢ + 1 mod 6 with equal probability”

leads to

1/2 1/2 0 0 0 0
0 1/2 1/2 0 0 0
1/6 1/6 1/6 1/6 1/6 1/6
0 0 0 1/2 1/2 0
0 0 0 0 1/2 1/2
/2 0 0 0 0 1/2

P =

Similarly the reader should try to treat further examples.

Conversely, one should “see” that

99/100 1/100 0 0 0

0  99/100 1/100 0 0

P= 0 0  99/100 1/100 0
0 0 0 99/100 1/100

0 0 0 0 1

describes a rather slow walk on {1,2,3,4,5} from left to right until one arrives at state
5 (where one then stays forever).

What is going on when

0 0 1 0 0 10 0
0 0 1 0 0 01 0
1/4 1/4 1/4 1/4 or o 00 1
0 0 1/2 1/2 1/100 0 0 99/100

are the relevant stochastic matrices?
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Example 3: “Yes” or “no”?

Suppose you want to model a machine which can give the answers “yes” or “no” subject
to the following rule: having answered “yes” the next reply will be “yes” or “no” with
equal probability, but a “no” is always followed by a “yes”. As soon as we have identified
the states “yes” and “no” with 1 and 2, respectively, the associated matrix surely is

( 1{2 162 )

One also could use the more suggestive

1/2 1/2
10 )

in this book this will usually not be necessary.

Example 4: Markov chains as weighted graphs

In many cases the matrix P is sparse, i.e., there are few nonzero elements. Then it
might be appropriate to visualize the chain as a graph: the vertices are the states of the
chain, and we draw a directed edge (with weight p;;) from i to j whenever p;; > 0.
Here you see an absorbing and a cyclic random walk on {1,2,3,4,5,6}:

/2 1/2  1/2

\

et

allp=1/2

Example 5: Random permutations

In this example the state space S might be incredibly large, so large that even the
most powerful computers are unable to provide an array of length N (= the cardinality
of S), not to say the possibility to store all coefficients of the matrix P. It will thus not
be possible to work with P as in our theoretical investigations to come. On the other
hand it is rather simple to write computer programs which simulate “typical” walks on
S and - as it will turn out later — to apply rigorously proved results successfully, even if
N is that huge.

Imagine a situation where there are r books on a bookshelf. Someone uses this library
in such a way that he or she picks up a book at random and - having had a look to it -
puts it back randomly. How will the arrangement of the books develop?
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To phrase it in the language of Markov chains we have as our state space the collection of
the r! permutations of {1,...,r}. Denote permutations by 7 = (i1, ...,4,) with 1 <4 < r
(1 is mapped to 41, 2 to i3 and so on).

A typical transition is defined by two random decisions: first one chooses the k’th
book (1 < k < r) and then it is put back at position | among the remaining k—1 books
(1 <1 < r);it is assumed that k and [ are selected independently according to the
uniform distribution. Hence a transition from 7 to itself will occur with probability 1/r,
this happens iff the k’th book is reshelved where it had been before. Also it may happen
that one passes from (4;, 1, ..., %) to (i, 41,13, ..., ) or to any other permutation which
arises from 7 by interchanging two adjacent entries. There are two possibilities to arrive at
such a transition!, hence the associated probability is 2/r?. There remain r2 — r—2(r—1)
transitions to permutations which only occur with precisely one choice of k, I so that their
probability is 1/r2.

Summing up, there are 2 — r — 2(r — 1) + 1 4 (r — 1) = 72 — 2r + 2 states which one

can reach being in state 7. One transition, that from 7 to 7, will occur with probability
1/r, and there are 7 — 1 resp. r?> — 3r + 2 states with transition probabilities 2/r? resp.
1/r2.
Remark: Another way to look at this example is to consider a deck of r cards and
to “shuffle” it in such a way that a randomly chosen card is restored randomly. This
is abbreviated as a random-to-random shuffle. It should be clear what is meant by the
similarly defined top-to-random shuffle or the random-to-bottom shuffle.

Example 6: Processes with short memory

By definition, a Markov process has no memory, the choice of the next position only
depends on the present state and not on those occupied in the past.

Here we want to point out that it is sometimes possible to use Markov chain results
even if the Markov condition is violated. To explain the simple idea consider a “walk”
on {a, b} defined by

e The first two positions are a.

o If you have been at a (resp. b) for the last two consecutive steps, move next to b
(resp. a) with probability 0.8 and stay where you are with probability 0.2; in all
other situations stay or move with equal probability 0.5.

This is surely not a Markov process on {a,b}. However, if we consider as states the
pairs (a, a), (a,b), (b,a), (b,b) of all possible consecutive positions — which will be iden-
tified with 1,2,3,4 — then the rules give rise to a Markov chain: the chain will start
deterministically in state 1, and the transition matrix is

02 08 0 0

[ 0o o 05 05
P=1495 05 0 0
0 0 08 02

(Why, for example, is p23 = 0.57 We are in state 2 = (a, b), i.e., the walk is now at b coming from
a. Hence the next pair of consecutive positions will be (b, something), and with equal probability
the states 3 = (b,a) and 4 = (b, b) will occur.)

1 The transition (¢1,72,...,%r) — (42,71,%3,...,ir), for example, occursif k = 1 and [ = 2 or vice versa.
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Similarly, any process on {1,...,N} for which the transition probabilities possibly
depend on the last ko steps can be considered as a Markov chain with N*°o states. Note
that questions concerning the original process can be answered by considering the first
component of the walk on {1,..., N}*o.

Example 7: A diffusion model

Imagine two boxes each containing r balls. When we begin, there are only white balls
in the left box, and the right one contains only red balls. Now a “move” means to choose
randomly one ball in each box and to exchange their positions. Consider as a state a
possible distribution of balls. Since the state is uniquely determined once we know the
number of red balls in the left box, we may and will identify the states with the elements
of S ={0,1,...,r}. The start is deterministic at state 0, and by elementary probability
the entries of the transition matrix are

Bz oy

52

Ui s j=1+1
pij = T 32 ] 'L +
7z =1 — 1
0 otherwise.

This chain is called the Bernoulli-Laplace model of diffusion or the Fhrenfest model.
Formally it is a special example of a reflecting random walk (see page 12).

Example 8: 0-1-sequences

Let r be a fixed integer and S = {0,1}" the collection of all 0-1-sequences of length
r. Transitions from (gq,...,&;) to (m,...,n,) are possible if and only if precisely one of
the numbers ¢; — 7; is different from zero, and each of these r transitions have the same
probability 1/r.

One can think of S as the set of vertices of an r-dimensional hypercube, and transitions
are admissible along an edge to a neighbour.

Example 9: Random feedback

(This example is due to the young composer Orm Finnendahl who lives and works in
Berlin. He uses Markov chains to provide sequences of numbers which are transformed
to musical events.)

Let m and r be integers, our state space will be S = {1,...,m}". Consider any state
= (n1,-.-,07). If n := 7, does not occur among the numbers 7, ...,7n,--1, only one
transition, namely to 7, is admissible. Otherwise define I to be the nonvoid set of indices
i such that 1 <4 <r —1 and n; = n; then choose a random ¢ € I (with respect to the
uniform distribution) and put 7’ := n;4;. The next state will be (', m1,...,7.—1).

Suppose that, for example, m = 3,r = 12, and 7 = (213321221311). Since = 1
is followed once by 1, once by 2 and twice by 3 we will have n’ = 1,2, or 3 - and
thus transitions to (121332122131),(221332122131), or (321332122131) — with the
respective probabilities 1/4, 1/4, 2/4.

The composer was rather surprised by the phenomenon that the walk usually visits
only few states: after starting the chain with a randomly chosen T one arrives rather
soon at a situation where 7 is not among the n;,...,7n,-1 so that the chain produces no
new elements. The problem to find an explanation was communicated to the German
mathematical community in [14]. This, however, did not lead to any convincing solutions.
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Exercises
2.1: What will a “typical” walk look like if the transition matrix is
1 0 1 999 1 999 0 999 0 1
— 1 1 0 999 |, or —— 0 1 999 |,or——| 500 0 500 |7
1000\ 1 1 ggg 1000 \ 999 o 1 1000 \ "5 1 999

2.2: Let S = {1,...,10}, we consider the following walk:

Start at 1, transitions in the k’th step are according to the following rule:
— if you are at 10, stay where you are;

— otherwise, throw a fair die, let the result be d; move d units to the right if
this is possible, if not, stay where you are.

What is the stochastic matrix associated with this walk?

2.3: At the end of chapter 1 we have given a counterexample: it is in general not possible
to reconstruct P from the Markov process induced by P and a fixed starting position.
Prove that P can be found if one has access to all Markov processes with transition
matrix P and arbitrary starting distributions.

2.4: Consider a deck of r cards which is in its natural order. A number p € {1,...,r} is
chosen uniformly at random and then one cuts p times a single card from the top of the
deck to the bottom. If this procedure is thought of as a single “step” of a random walk,
which positions are possible? What are the transition probabilities?

2.5: Prove rigorously that the walk introduced in example 6 is not Markov on {a, b}.
2.6: Consider the following walk on {0, 1, 2}: the first three positions are Xy = 0, X; = 1,
X2 =2, and - for k > 2 - the (k + 1)’th position is

(Xk + Xp—1 + X2+ d) mod 3,

where d is found by throwing a fair die.

a) Prove that (X}) is not a Markov process.

b) Show that it is nevertheless possible to associate with (Xj) a Markov process on a set
with 27 states; cf. example 6.

2.7: Verify the formula for the transition probabilities in example 7.

2.8: Let (Xx) be a homogeneous Markov process on a finite set S with transition matrix
P.Fix amap ®: S — 9, where S’ is another finite set. Is (#(X})) a Markov process on
S'? If not, what conditions on P and ® have to be fulfilled in order to arrive at a Markov
process?

2.9: Fix a state space S together with a stochastic matrix P. A bijection p: S — S is
called a symmetry if

Pij = Po(i)p(4)

holds for all 2, j.

a) Prove that the collection of all symmetries is a group with respect to composition. We
will call this group Gp in the sequel.

b) Calculate Gp for the symmetric, the absorbing and the cyclic random walk (see
example 1), the answer will depend on a;, b;, ¢;.
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c¢) Determine Gp for

1

PZE

co 0o 0o o
e i =
O = =
O = =O

d) Provide an example where Gp is trivial (i.e., only the identity is a symmetry).

e) What can be concluded if all bijections are symmetries?

2.10: We will say that two states i, j of a Markov chain are equivalent if there exists a
symmetry p with p(i) = j; we will write ¢ ~ j in this case.

a) Prove that “~” is an equivalence relation.

b) Verify that for every disjoint partition § = S;U---US, of a finite set S there exists a
stochastic matrix P such that the Sy,...,S, are the equivalence classes with respect to

“ »
~,
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3 How linear algebra comes into play

Let a Markov chain be given by a probability vector (p1,...,pnx) and a stochastic matrix
P = (p;;) as in definition 1.1. On page 9 we saw how one may associate a Markov process
Xo, X1, .. defined on some space (2, 4, P) with valuesin S := {1,...,N}.

We now apply the “law of total probability”, i.e

Z]P’A]B (By), (3.1)

whenever (2 is the disjoint union of the By, Bz,.... We want to use this elementary fact
to calculate the numbers

ng) = P(Xg = 1),

that is the probabilities that the walk occupies position 7 after k steps; we write the “k”
in brackets since it is not an exponent here.

One has p§°) = p; and, by (3.1),

P = P(Xr = 1) = 3 P(Xir = i | Xi = §)P(Xx = J) ZP;:P““)-
J

The crucial observation is that this equation just means that (p (k+1), ,pN+1)), the

row vector associated with the p(k‘H) is nothing but the matrix product of the row vector

(pgk) . psv)) with our matrix P.
It has to be stressed that we have to multiply row vectors from the left and not
column vectors from the right due to our decision to denote transition probabilities
by p:; and not pj;. This is suggestive if one writes from left to right, but it is nothing
but a convention.

By induction we get immediately

k
P11 P12 -+ DIN
P21 D22 - D2N
k k
(p(l )a :pgv)) = (pla ce- :pn) . . . , (32)
PN1 DPN2 ' PNN

and in this way we may hope that it will be possible to calculate probabilities in con-
nection with Markov chains by using matrix algebra. In fact it will turn out that this
machinery can be applied successfully. We will see why and how eigenvalues, eigenvectors
and inverse matrices are of importance here.
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We will use the convention that elements of RV are column vectors. It is, however,
typographically more convenient to deal with row vectors which can easily be achieved
by passing from an z € RY to the transposed vector T . For example, if we want to define
a vector e havWi_ng the entries 1,...,1 we can do this by putting e := (1,...,1) (or by
e:=(1,...,1)").

As an example let us consider the role of certain left eigenvectors. Suppose that you
have found such an eigenvector with associated eigenvalue 1, that isa 7 = (m,...,7n) "
with (71,...,7n) = (m1,...,7~)P. Suppose that the entries of m can be thought of as
probabilities, that is m; > 0, m; = 1. Then, by choosing p; := m;, it follows from (3.2)
that

", o)) =

PN (71, TN)

for all &k, and for this reason such a 7 will be called an equilibrium distribution.

Let us try to understand the consequences. Imagine, for example, the simplest reflecting
walk on {1,2,3,4}:

0 1 0 O
{12 0 172 o0
P=1"09 12 0 12 (3.3)
0 0 1 0

If you know, for example, that the walk starts at 2, that 1s if (p1 , pg"),pg"),pf{’)) =

(0,1,0,0), then (3.2) enables you to calculate the ( , pgk), [2 pgk) ) in a simple way. All
these vectors are different, and all carry non-tr1v1al information. For example, whenever
k is even, the walk will not occupy one of the states 1 or 3.

Now let 7 be defined by 7' := (1/6, 1/3,1/3,1/6). We have 7' = «' P so that, if
we choose the components of 7 as starting probabilities, our information will not change
with k. We can, e.g., assert that the walk occupies state 3 with probability 1/3, regardless
of how huge k is.

As another illlustration consider

0 1/2 0 1/2
12 0 1/2 0
0 1/2 0 1/2 |’
/2 0 1/2 0

P =

the cyclic random walk on {1,2, 3,4}. This time (1/4, 1/4, 1/4, 1/4) is a left eigenvector,
that is the uniform distribution is an equilibrium distribution in this case. Note that this
always happens if P is a doubly stochastic matriz, i.e., if 3, p;; = 1 holds for every j.

There is a related phenomenon. Consider once more the above example (3.3). Suppose
that you know that the walk was started either deterministically at 1 or deterministically
at 2. In the first (resp. in the second) case the walk will occupy a state in {1,3} (resp. in
{2,4}) after k steps for every even k. Thus if you know that the 100,000’th position is 4
you are sure that the walk started at 2. Loosely speaking one could say that, concerning
its starting position, the walk keeps some memory.
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However, if we pass from (3.3) to

0 1 0 0
1/3 1/3 1/3 0
0 1/3 1/3 1/3 |’
0 0 1 0

P =

then this is not to be expected. Since now the walk can pause at states 2 and 3, there is
no obvious way to decide, knowing the position after ¥ = 100,000 steps, whether it was
started at 1 or 2.

Surprisingly the information concerning the starting position is lost rather rapidly here.
To check this, let us calculate some powers of P: .

3 3

©o

O =
W N Ut
W ot W
W= = O

15 30 30 6
1 {10 35 26 10
~81| 10 26 35 10 |’
6 30 30 15

861 2460 2460 780

s 1 820 2501 2420 820
T 6561 | 820 2420 2501 820
780 2460 2460 861

Thus even after a rather small number of steps it turns out that the entries in the
first and the second row are pretty close together. Since these by (3.2) represent the
probability distribution after 8 steps when starting at 1 or at 2 our calculation justifies
the intuition.

In fact, all rows are close to each other (every starting positions leads after 8 steps to
roughly the same distribution), and an evaluation of further powers of P would indicate
that they converge rapidly to (1/8, 3/8, 3/8, 1/8). It is of course not by chance that this
is a left eigenvector of P with associated eigenvalue 1. A great part of this book will be
devoted to understand and to apply this loss-of-memory phenomenon®.

Exercises

3.1: Prove that the collection of all stochastic N x/N-matrices such that 1 is a simple
eigenvalue is an open subset of the set K’ of exercise 1.2.

3.2: Let P be a stochastic matrix with associated process Xo, X1, ..., and ko an integer.
Then P := P*o is that stochastic matrix which gives rise to the walk Xo, Xko> Xokgy - - -
Which matrices arise in this way:

a) Dete2rmine all stochastic 2x2-matrices P such that there is a stochastic matrix @ with
P =Q"°.

1 ¢f. chapter 7, in particular theorem 7.4.
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b) Prove that for every N > 1 and ko > 1 there is a stochastic N x N-matrix P such that
P is not of the form Q*° for a stochastic matrix Q.

3.3: Let a walk start on S = {1,...,N} in accordance with an initial distribution
Di,---,PN, the transitions in the k’th step are governed by a stochastic matrix Py. Prove
that the probability pgk) to find the walk after k steps in state i is the i’th component of
the vector

(p17"'apN)Pl"'Pk-

3.4: Prove that — similarly to the case of homogeneous Markov chains — the inhomoge-
neous chain of the preceding exercise can be modelled rigorously by a Markov process
Xo, X1,-.. : © = S on a suitable probability space (22, A,P). (More precisely: given
(p1,...,pN) and the Py there is a Markov process (X) with P(Xg = i) = p; and

P(Xx =7 | Xk—1 =1) = (Pr)sj

fork>0andallie S.)

3.5: Recall that a probability vector (71, ..., 7n) is called an equilibrium distribution of
a stochastic matrix P provided that (7y,...,7n)P = (71,...,7N)-

a) Verify that for a doubly stochastic matrix the uniform distribution (1/N, ...,1/N)is
an equilibrium distribution. Is it possible that there are other equilibria in this case?

b) Prove that the collection of all equilibrium distributions of a fixed P is a nonvoid
compact convex subset K of RV.

c¢) Find an explicit expression of an equilibrium distribution of an arbitrary stochastic
2x2-matrix.

d) Determine an equilibrium distribution of a stochastic matrix P where all rows are
identical. Is it unique?

3.6: Convince yourself of the loss-of-memory phenomenon by considering a stochastic
matrix P with strictly positive entries and calculating the matrix products P, P? P?,
pPe. ...

3.7: With the notation of exercise 2.9 let p be a symmetry. Prove that (m,(1),...,Ty(n))
is an equilibrium for every equilibrium distribution (71,...,7N).
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4 The fundamental notions in connection
with Markov chains

What is essential? It is one thing to fix a set of axioms as the starting point of a hopefully
interesting new theory. However, it is usually much more difficult to find the relevant
notions which enable one to study — sometimes even to completely classify — the new
objects. Examples are very rare where this has been achieved by a single mathematician.
Generally it takes years or decades where many suggestions are under consideration,
where it turns out to be necessary to modify the axioms and where many researchers are
involved.

The relevant notions for Markov chains have mostly been found in the first half of
the twentieth century (cf. also the historical comments in chapter 8), here we will be
concerned with

e closed subsets of a Markov chain,
e states which communicate,

e the period of a state, and

e recurrent and transient states.

It will turn out that the study of a general Markov chain can be split up into the
investigation of certain special states (transient states) and Markov chains of a particular
type (irreducible chains). Transient chains will be studied in some detail in chapter 5.
We then will need a little digression to prove an important analytical lemma (chapter 6).
This will enable us to continue our study of irreducible chains in chapter 7. Part I ends
with a summary of our results and some notes and remarks in chapter 8.

Closed subsets of the state space

As in chapter 2 we fix a finite set S and a stochastic matrix P = (p;;); jes, a particular
starting distribution is not prescribed.

Definition 4.1
(i) A nonvoid subset C of S is called closed (or invariant) provided that

pij =0 whenever i € C and j ¢ C.

(ii) By an absorbing state we mean a state 7o such that {io} is closed (i.e., one for
which p;;i, = 1 holds).
(iii) The chain is called irreducible if S itself is the only closed subset.

For concrete chains it is usually not hard to identify the closed sets: the cyclic walk
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0 1/2 0 - 0 1/2
/2 0 1/2 -~ 0 0
/2 0 0 --- 1/2 0

on {1,..., N} is irreducible, for the absorbing walk

1 0 0 -~ 0 0 0
1/2 0 1/2 -~ 0 0 0
P=| i @ IR
0 0 0 - 1/2 0 1/2
0o 0 0 --- 0 0 1

only {1},{N},{1,N} and {1,..., N} are closed, and for

1 0 0 -~ 0 0
/2 1/2 ¢ - 0 0
p=| 0 1212 .- 0 0 (4.1)
0 0 0 - 1/2 1/2

precisely the N sets {1,...,7},7 =1,..., N have this property.

(Of course, the identification of the closed subsets is not always that simple. For ex-
ample, in order to prove that the random-to random shuffle from chapter 2 (page 15) is
irreducible one has to remember how permutations can be built up from transpositions.)

In the presence of closed subsets one might hope to simplify the study of the chain: if
C is closed, then the “restriction” of P to C can be defined reasonably, and for “small”
C the reduced chain should be much simpler. Also it is to be expected that an essential
step in the classification of arbitrary chains will be the understanding of the behaviour of
irreducible chains. We will see in chapter 6 and chapter 7 how this can be made precise.

All assertions in the following lemma are easy to check:

Lemma 4.2

(i) Unions and nonvoid intersections of closed sets are closed.
(ii) Let Cy,Cy be different closed sets which are minimal with respect to “ C”. Then
CinCy=40.

(iif) Ewery closed set contains a minimal one.

Remark: For assertion (iii) to hold it is essential that we restrict ourselves to finite state
spaces. (iii) is not true for arbitrary S, the simplest counterexample seems to be the
deterministic walk on the integers which is defined by p; ;41 = 1 for all <.

Suppose that C is closed in S = {1,...,N}. If C is the set {1,...,N'} — which of
course can easily be achieved by passing to another enumeration of the states —, then P
will have the form



Chapter 4: The fundamental notions in connection with Markov chains 25

* * 0 0
* [ * * e %
More generally, if Cy,...,C, are the minimal closed sets, we may assume that

C],:{].,..-,Nl}, Cz={N1+1,...,N2},..., Cr={Nr_1+1,...,Nr}.

Then, as a consequence of lemma 4.2(ii), P can be written as

P 0 O 0 0 O

0 P~ 0 0 0 O

R R K (4.2)
o 0 0 ---0 P O

% * % R * * %

where P, is the stochastic matrix which corresponds to the restriction of the chain to
C, (p=1,...,r). “0” here denotes a matrix with zero entries, and the “*” stand for
further matrices. (Note that always some C, will exist, the *-matrices, however, might
be absent.)

(4.2) will be referred to as a standard form of the chain.

For example, a standard form of the absorbing random walk on {1,2,3,4} is

1 0 0 0
0 1 0 0
/2 o o 1/2 |’
0 1/2 1/2 0

where we have renumbered the states 1,2,3,4 as 1, 3,4, 2.

It is plain by this example that it is not always natural to pass from the original P
to the form (4.2).

States which communicate

Let C be a proper closed subset of S. Then a walk starting in C' will never visit any
j ¢ C. In order to examine more closely what can happen it is convenient to introduce

Definition 4.3 Let 7,7 be arbitrary states.
(i) If the probability is positive that a walk which starts at ¢ will visit j we will

©
have written the k’th power P* of our matrix P as P* = (pg)) In this definition
k = 0 is admissible (with P° = the identity matrix). Hence ¢ — ¢ for all ¢.

(ii) We will say that ¢ and j communicate if ¢ — j and j — <. In this case we will
write ¢ ¢ j.

write 1 — j. This happens precisely if one has p;;” > 0 for some k, where we
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Usually it is rather easy to decide by inspection whether or not one has ¢ — j, in
particular if the chain is given as a weighted graph as in chapter 2, example 4 (page 14).
Then “i — j” is nothing but “there is a directed path from ¢ to j”.

Proposition 4.4
(i) “ 7 is an equivalence relation.
(ii) Let C be a closed minimal subset of S. Then each two states in C communicate.
(ili) Every minimal closed subset is an equivalence class with respect to “ <> 7.
(iv) A chain is irreducible iff i & j for alli,j.
Proof. (i) It is clear from the definition that 7 +» 7 and that i & j yields j > i. Transitivity
is plain if one thinks of a chain as a walk subject to stochastic rules or as a weighted
directed graph.
A formal proof is also easy: let i, 7, [ be states such that i — j and 7 — [. Then there
are k, k' with pgf),pj(-f/) > 0, and we nced a k" with pglk”) > 0. k" := k + k' has this
property since P¥+¥ = P¥ Pk and thus

szk = pgf)p§fl)+ (something > 0)
k) (k'
> pPply)
> 0.

”»

It follows that “ — ” and consequently also “ <+ ” are transitive.

(if) We know that C = C’ whenever C’ is a closed subset of C, and this has to suffice to
prove that ¢ — j for arbitrary i, € C.

The proof uses a little trick. Fix j € C and define C[;) to be the collection of all starting
positions ¢ € C which never reach j:

Cpyy={ilieC, p\¥ =0 for all k}.

We are done once we know that C;; = §, and this will follow as soon as we have shown
that Cj;) is a proper subset of C and that Cj; is closed.

The first part is clear since, by definition, j ¢ C(;). For the second part, let i € Cy;,
j' ¢ C[j] be given.
Case 1:j' ¢ C.
Then p;; = 0 since C is closed.
Case 2:j' € C.
By the definition of C[;; we know that j' — j. Thus necessarily p;;; = 0 since otherwise
i — j' and thus i — j, a contradiction.
(iii) That equivalence classes associated with elements of a closed C are subsets of C
follows from the definition. And (ii) says that the class of ¢ is at least as large as C if ¢
belongs to the minimal closed set C.

(iv) This is a special case of (iii). ]
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The period of a state

As we have noted in chapter 3 the reflecting walk (3.3) on {1,2,3,4} has the property
that after an odd number of steps a state in {2,4} will be occupied if the walk was started
at 1, say. In particular, only after an even number of steps the walk can be back at 1
again. This section is devoted to provide an appropriate definition in order to investigate
such when-might-the-walk-return questions.

First we remind the reader of a definition from elementary number theory. If M is a
subset of {0,1,2,...} which strictly contains {0}, then the greatest common divisor of M
is the number d which satisfies

e d|n for all n € M (“d|n” means “d divides n”),
e if d'|n for all n € M, then d'|d.
This number always exists and is uniquely determined, it is usually denoted by gcd M.

Those who know only the greatest common divisor of finite sets of integers might
argue as follows: consider the collection M of all numbers which are of the form
ged{ni,...,n,}, where r is arbitrary and the ni,...,n, are in M. Since M is a
nonvoid subset of N and N is well-ordered there exists a minimal element d in M.
It is easy to see that d has the claimed properties.

Definition 4.5 Let 7 be a state such that pgf) > 0 for some k > 0, that is there is a
positive probability that a walk which starts at ¢ returns. Then the period of i is the
greatest common divisor of the set N; :={k| k>0, pgik) > 0}.

If ¢ has period 1 it will be called aperiodic.

In the above example of the reflecting walk all states obviously have period 2 since
N; ={0,2,4, ...} for all i. Here is a more interesting chain:

Let S be the set {—a, —a+1,...,-1,0,1,2,...,b}, where a and b are arbitrary
integers. Define the transition probabilities by

e piiy1 =1fori=—a,—a+1,...,-1,1,2,3,...,b6—1,

® Dbho = 1)

® Do,1 =Po,—a = 1/2.

Thus the chain consists of the “cycles” 0 = —a - —a+1 = --- =+ -1 = 0
and0 - 1—2— ---— b— 0; only at zero a random decision is necessary,
otherwise the walk is deterministic.

Now consider the state 0. Since the “cycles” have length a+1 and 6+1, the k&
where pg'fg > 0 are precisely the k = r(a + 1) + s(b+ 1) with r,s = 0,1,....
Therefore the period of 0 is ged((a+1)Np + (b+1)Ng) = ged(a+1, b+1). Hence
— surprisingly — 0 can have a small period or even be aperiodic even for huge
a,b.
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Thus an assertion “i has period d” always should be interpreted very carefully. It does
not mean that a walk starting in ¢ will be back in 7 after d, 2d, 3d, . .. steps with a positive
probability; it rather implies that it is for sure that the walk does not occupy position
i again after k steps whenever k is not in {d,2d, ...} (and also that d is maximal with
respect to this property).

A chain can have states with different periods, the absorbing random walk on {1, 2, 3,4},
e.g., contains states with periods 1 and 2. If one checks similar examples it turns out that
this phenomenon seems never to occur in the situation of irreducible chains. Here is the
explanation:

Proposition 4.6 Let i,j be different states such that i > j. Then the periods for i and
J are defined and coincide. Consequently, by lemma 4.4, all states in a minimal closed
subset have the same period.
Proof. Choose positive k', k" with pgf'), pg-’f”) > 0. Then pgfl“”), p;’;q'k") > 0 by the
argument from the proof of proposition 4.4 so that both i and j have a period.
Denote the period of i (resp. j) by d (resp. d’'). With N;, N; as in definition 4.5 we

have k' + k" € N;, and this yields d|(k’ + k"'). For arbitrary k € N; we know that

k+k' k" k') (k) (k"

{ V> pIp®plE) S o,
hence k + k' + k" € N; and thus d|(k + k' + k") as well. Consequently, since d divides all
k € N;, we have d|d'.
d'|d follows by symmetry, and this shows that d = d'. m]

We close this section with a simple observation. Suppose that we have a situation
where all states have the same period d > 0 and that we now pass from the original
chain to a new one where we have replaced the stochastic matrix P by its d’th power
Q := P?. (This can be thought of as an abbreviated version of the original walk, we only
pay attention to the steps 0, d, 2d, .. .) Denote for arbitrary i the sets N; of definition 4.5
by NF or NiQ depending on whether they are calculated with respect to the old or the
new stochastic matrix. It is clear that Nf = dN,-Q and hence all states ¢ will be aperiodic
now.

This procedure particularly can be applied if the original chain is irreducible. The new
chain will possibly not have this property, but in the minimal closed subsets now all
states are aperiodic.

The simplest example is provided by
0 1
P=(10)

the associated chain is irreducible with period d = 2. The matrix @ is the identity
matrix, and the @Q-chain is aperiodic on its minimal closed sets {1} and {2}.
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Recurrent and transient states

Now we want to investigate a gquantitative aspect of the notion ¢ — j. We will denote,

fork=1,2,..., by fi(jk) the probability that a walk which starts at i visits j for the first
time in the k’th step. In the language of chapter 1 this just means that

O =P(X #5,..., Xeer #3, Xe =3), (43)

where Xp, X1, Xo, ... stands for the Markov process with transition matrix P and a
deterministic start at 1.

With this notation the number f5 := Y7o S ) is the probability that a walk starting
at 7 will occupy state j at some later step, and therefore fi; > 0 implies  — j. (Note,
however, that the converse only holds if ¢ # j since, by definition, one always has i — 3.)

How long will it take to come from 7 to j7 With X = ¢, X;,...: Q@ — S asin (4.3) a
reasonable measure will be the “expectation” [ W;;d P, with Wi; : Q — [1, co] defined
by

Wij(w) :=min{k > 1| X3(w) = j}

(here min® := 00). In terms of the fi(;c) this integral is easily calculated as

pij = Z kFE) + (1= fi)00. (4.4)

The ;1,] don’t carry interesting information if f; <1, in many books they are defined
only if fj; = 1. Also then it is a priorl not clear that i is finite (which would allow us
to con51der this number as the expectation of the running time from ¢ to j). In fact this
will be shown later in proposition 7.2.

In order to prepare these investigations we introduce the

Definition 4.7
(i) A state i will be called recurrent, if f; = 1. If f; < 1, then we will speak of a
transient state.
(i) A positive recurrent (resp. a null recurrent) state is a recurrent state such that
Li; < 00 (resp. pi; = 00).

As an ezample, defined by the graph notation which we have already met on page 14,
consider

1/2 2/3
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It is plain that state a is transient since a walk starting there will never return to this
position. For the other states one has to check the graph to determine the probabilities
for a first return in precisely the k’th step:

S,) =2/3, ft(,'g =0 for k£ > 1; hence f3, =2/3, i.e., b is also transient.

. fcc =0, fc (’cc) = 1/2*=1 for k > 2, hence c is recurrent. The expectation value of the
return time is (with the help of the formula ) " kg*~! = 1/(1 — ¢)?) determined
as flec = Z;‘;z k/2%=1 = 3, and therefore c is positive recurrent.

e Finally, d is positive recurrent as well: f((ig = ((fi) = 1/2, hence f34 = 1 and
Hdd = 3/2.

We want to characterize recurrent and transient states. To this end, fix a state ¢ and
model a walk starting at ¢ by a homogeneous Markov process Xo =%, X1, ... defined on
some probability space (2, 4,P) (see page 9). By homogeneity we have

P(Xk+1=i1;~'-7Xk+k'=ik"Xk=i) = P(Xlzila-..kalz’iklIXOZi)
= DiiyPiriz " " Pigg_y pr -

In other words: a walk which is at position ¢ at “time” k will behave precisely as
one which starts deterministically at 4.

This is intuitively clear since the random generators (= the rows of P) are the same
for all times. The result also can be easily proved rigorously with the help of formula
(1.2) in chapter 1.

In chapter 12 we will learn that what is important here is a special case of the strong
Markou property.

Hence

fi(ik) = Z P(Xl =i1,...,Xkl_1 =ik'—1an' =Z|X0=Z)
[ U WIRE 1)

P(Xkr1 # 4y ees Xk -1 # 8, Xpgwr =1 | Xgp = 1),

and thus the probability that our walk occupies i at times k, k + k' but not at times
1,...,k—1,k+1,....,k+ k" — 1 is precisely f f(k) It follows that the walk returns
to i at least two times with probability 3\ /5, f(k) = (f2)?. Similarly one obtains

l

the more general equation P(B,) = ( ;)s’ where B; stands for the event “the walk
returns to 7 at least s times”. The B, are decreasing, and therefore the probability of

their intersection (that is the probability of infinitely many returns) is

Y 0 : fi<l1
lim (£) :{1 Do fhi=1

These calculations have led us to

Proposition 4.8 A state i is recurrent iff a walk starting at i returns infinitely often
with probability one. It is transient iff infinitely many returns for such walks occur only
with probability zero.
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Remark: Note that this 0-1-law for the events Ej := “the walk occupies position 7 at
the k’th step” holds although the Ej are not independent in general.

Surely Ej has probability pff ) (recall that we have written P* as (pg-c))ij and that
P(Ex) = (0,...,0,1,0,...,0) P* with the 1 at the i’th position). Ej is the disjoint union
of the events

Fl’,(; = {X1 = Xk = Z},
Fop {X1#14, Xy =X =1},

Fk,k = {Xl ;ﬁ i,...,Xk_l ;ﬁ i,)('k = Z}

Similarly to the calculations leading to proposition 4 8 one gets P(Fr-tx) = fi(ik_t)pgf)

fort =0,...,k — 1 (recall that pl = 1) and thus p” =y k 9 Ef)

Now let ko be arbitrary:

ko . ko k-1 .

v —t t
Yol = S
k=1 k=1 t=0

ko—1 ko
= > > Y
t=0 k=t+1
ko
< s
t=0
ko
= (142
t=1

Hence (1 — f%) f" 1 p < £, and we are ready for the proof of

Proposition 4.9 A state i is recurrent iff 3 ;o pg) = 00, and consequently it is tran-
sient iff 352, plY) < oo

Proof. By the preceding inequality and proposition 4.8 we already know that Zf_f_o pgf)
()

must be finite for transient states and that 3 ;- p;;

,; = oo implies that 7 is recurrent.

Now the (easy part of) the Borel-Cantelli lemma comes into play. Suppose that > ;o pgf )

< 0. Then - with the above notation — Y P(Eg) < co and thus the walk will occupy
state 7 infinitely often only with probability zero. Hence, by proposition 4.8, 7 is transient.
This completes our proof since the remaining statement “; recurrent = Y oo pgf) =o0”
follows by logical transposition. a

Some first remarkable consequences of these characterizations are contained in
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Proposition 4.10
(i) Leti,j be states such that i is recurrent and i +> j. Then j is also recurrent.
(ii) There always exists at least one recurrent state'.
(iii) All states in a minimal invariant set are recurrent.

Proof. (i) Choose k', k" such that pgfl), pgf/,) > 0. Then, by the calculation from the

proof of proposition 4.4(i), we have p(k'Hc k0 pflk)pfj )p(’f” and thus . p;?) 2

> pu pz]/ P;t ). This inequality implies the result by our characterization 4.9.

(if) Suppose that the chain is irreducible (if this is not the case, pass to a minimal
closed set and consider the restricted chain). Therefore, by proposition 4.4(iv), all states
communicate.
Fix any state 79, we claim that it is recurrent.
First we note that 3, pm 1 for all k since P* is a stochastic matrix. Therefore

(k)

p(k) = oo and thus there must be a j, with p;. i = o0; here — for the second
3.k Figj k Figjo

time — we have used the fact that S is finite. Similarly to the proof of part (1) it follows
. K k+k' k

that 3, pl 10 =00 ‘(there is a k' such that pg.o ig > 0, and pgo;: ) > > pfo ])0 p]m) Hence, by

proposition 4.9, iy is recurrent.

(iii) This follows from (i), (ii), and proposition 4.4(ii). a0

Recall that we have denoted by C4, ..., C; the minimal closed subsets of our chain (see
page 25). We will define T := S\ (C} U---UC}), note that T might be empty. Whereas
the preceding proposition tells us that the ¢ in C; U ---U C, are recurrent nothing is
known up to now for the ¢ € T'. The fact that we have decided to denote this set by “T"”
is far from being accidental:

Proposition 4.11 Alli in T are transient.

Proof. Fix any ¢ € T and consider the set C' := {j | ¢« = j}. It is plain that it is closed
and hence it must meet C := Cy U --- U C,: if the intersection were empty this would
contradict proposition 4.2 and the definition of T'.

Denote by pﬁg) the sum jec pgf) That C N C' # § may be rephrased by saying that
for every ¢ € T there is a k such that pEC) > 0. But p(k) Eg"l) since there are no
transitions from C to T, and this allows us to reverse the quantiﬁers: we find a k¢ such
that p(k") > 0 for all i € T. (Note that this argument is only possible since T is finite.)
Let p be the (positive) minimum of these numbers.

Fix again an ¢ € T and model a walk starting at ¢ by a homogeneous process (X)
with Xy = . Since p(c) > p it follows that

pfg").—]PXkoeT Zp(k")-—l pg ) <1-p.
JET

The homogeneity of the walk and the fact that there are no transitions from C to T'
imply that

! We emphasize once more that we are dealing only with finite chains in this book. The result does not
hold for infinite chains as is easily seen by considering once again the deterministic walk to the right
on the integers (see page 24).
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P = P(Xak, €T)
= S P(Xak, € T | Xiy = )
JjES

= Zp(ko X2ko ETleo =.7)
JET

Zpko)
(2

JET

IN

(ki
= p,TO)(

< (1-p)3%

-Dp)

that the conditional probabilities P(Xak, € T | Xk, = j) are bounded by 1 — p since they
can be treated as the P(Xy, € T') above can be justified like the corresponding formula
for P(Xk_H = il, ey Xk+kf = ikl l Xk = l) on page 30.

Similarly one gets pggk") < (1 —p)" for arbitrary r. To finish the proof it suffices to note
that the (1/)(T));c 1,... are decreasing (since pﬁ? =1- pgé.) and the (pgé)) are increasing):
it follows that

) (1) (2)

Pi; +pu S Pir +pzT
< koplP + koply?) + kopls™ +
< ko +ko(1—p)+ko(l—p)° +---
< o0,
and therefore, by proposition 4.9, the proof is complete. O

The main results of the present section can be summarized as follows:
The state space S of a finite Markov chain can always be written as a disjoint union
S =CU---UC,UT, where

e r > 1, the C, are minimal closed sets, and the restriction of the chain to C, is
irreducible;

e any ¢ in any C, is recurrent;
e the 1 € T are transient (note, however, that T might be empty).

In particular, the problem to characterize finite Markov chains is reduced to

1. the answer to the question “What happens with transient states?” and

2. the study of irreducible chains.

Transient states will be studied in the next chapter, the more detailed inspection of
irreducible chains will be postponed until chapter 7: it needs a preparation with which
we will be concerned in chapter 6.
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Exercises

4.1: Consider a deck of r cards such that > 3. Determine the closed subsets of all
permutations of these cards with respect to the 3-to-random shuffle (the name should be
self-explaining).

4.2: A stochastic matrix is called deterministic if it contains in each row only one nonzero
entry. Prove that the associated chain cannot be irreducible and aperiodic in this case.
Can it be irreducible? Is it possible that aperiodic states exist?

4.3: Provide a canonical form of the matrix

1 0 0 0 9
1 0 4 6 00
) 0 10 0 0 O
2 2 2 2 2
8 0 0 0 2
4.4: Let S be the symmetric group Sy, i.e., the group of all permutations over {1,...,7}.
Transitions are defined as follows: if the chain is now in state (¢y,...,%,), choose a p €
{2,...,7} uniformly at random and pass to
(B0, 3 8p=2y0p, =1, bptly - -« IN)-

Is this chain irreducible and aperiodic?

4.5: On page 24 it was claimed that the chain defined on the nonnegative integers by
pi,i+1 = 1 admits no minimal closed subsets. Prove that the following more general result
holds: if a chain is defined on Ny by a stochastic matrix P = (p;;) such that p; i1 > 0
for every 4, then there are no minimal closed subsets. Is the converse also true?

4.6: It has been mentioned that the definitions in this chapter can also be considered for
countable state spaces, and it has been emphasized that some of our results do not hold
in this more general setting.

a) A state 7 is called transient if a walk which starts at ¢ will return infinitely often only
with probability zero. Give an example of a chain on the integers where all ¢ are transient.
(For finite state spaces this is not possible, cf. proposition 4.10.)

b) Use results from elementary probability to verify that 0 is a recurrent state for the
symmetric random walk on the integers (where “recurrent” in the general setting means
that the walk returns infinitely often with probability 1). Prove also that 0 is null recur-
rent. (For finite state spaces, all recurrent states are positive recurrent; see proposition
7.2 below.)

4.7: Assume that the stochastic matrix P admits a strictly positive equilibrium distri-
bution (see exercise 3.5). Prove that there cannot exist any transient states.

4.8: Let i € C, where C is a closed subset of S having r elements. Prove that d < r if ¢
has period d.

4.9: Let d and N be integers with d < N. Under what conditions on d and N does there
exist a Markov chain on {1,..., N} such that all states have period d?

4.10: Fix N and denote by Ky, the collection of stochastic NV x/N-matrices which give
rise to irreducible and aperiodic chains. Prove that K,per is a convex, dense and open
subset of the collection of all stochastic matrices.
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4.11: Let i be a state for which the period with respect to a stochastic matrix P is d.
What is the period of ¢ with respect to PFo?
4.12: For integers N, Ng, Ny, ..., Ngsuch that N = Ng+-- -+ Ny there exists a Markov
chain on {1, ..., N} with the following properties:

— there are precisely Ny transient states;

— there are, for j = 1,...,d, subsets C; with N; elements such that the chain acts
irreducibly on C; U ---U Cy and each state in this union has period d;

— only transitions from Cj to Cj4; are possible (with d41:=1).
4.13: Let a Markov chain be given by using the graph notation (¢ and é denote arbitrary
numbers between 0 and 1):

1 )
d c b
(O™ )
€ 1/2 1/2 1-6
a

Depending on ¢, §, which of the states a, b, ¢, d is transient or recurrent, which of the
recurrent states is positive recurrent, what are the values of the fy,;) etc.?

4.14: In this exercise we consider Markov chains on {1,..., N} given by a stochastic
N x N-matrix P. We call a property of such a chain robust if it holds simultaneously for
all cases where the matrices P have their non-zero entries at the same positions. (As a
simple illustration consider the property “a transition from 1 to 3 is possible”.) Which
of the following properties are robust?

a) ¢ — j, for fixed states ¢, j;

b) ¢ has period d;

¢) the chain is irreducible;

d) P is doubly stochastic;

e) there is a transient state;

f) find further examples which are robust and others which fail to have this property.

4.15: Let M be a subset of Ng such that M+ M C M. Prove that there are a Markov
chain and a suitable state 7 such that the set N; from definition 4.5 coincides with M.
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5 Transient states

As in the preceding chapter we fix a Markov chain on a finite state space S. The notation
will be as before: Cy,...,C, are the minimal closed sets, and T := S\ (C; U---UC,).
The ¢ € T are the transient states. We already know that an i is transient iff f; <1,

and also iff 3~ pEf ) < 00. In particular it follows that pﬁf ) 0, but more is true:

Proposition 5.1 Let i be a transient state. Then:

;.f) tend to zero for k — oo.

(i) For every state j the probabilities p
(ii) Almost surely a walk which starts at ¢ will be in some C, after finitely many
steps.
(iii) If j is also transient, then e;; == 3 45, pEJ is finite. e;; is, for a walk starting at
i, just the expectation of the number of j-visits before entering C := C,U---UCy.

Consequently E] e;j 15 the expectation of the total number of steps in T'.

Proof. (1) We start with a slight generalization of the calculations which have preceded
proposition 4.9. Fix states ¢ and j (¢ does not need to be transient here) and model a

walk starting at j by a homogeneous Markov process Xy = j, Xi,... defined on some
probability space (2, A, P). Put
Ek = {Xk = i},
Fl,k = {Xl = k = 7'}1
Fr = {Xl #1, Xo = X}, =i},
Frr = {X1 Fiy.oo, Xp1 #14, X =i}
Then Ej, is the disjoint union of the Fj x so that P(E;) = )., P(Fy ). But P(Fp_¢x) =

fj(f t)pgl) by the homogeneity of the chain, and therefore

P(E) =p\8 = £ + £ 00 + 4+ F PP k= 1,2, (5.1)

holds.
The end the proof is easy, 1t will need — of course — the assumption that ¢ is transient. It

suffices to note that >, f; ) < 1; then (5.1) together with pfz) — 0 immediately imply
that pgf) — 0.

(i) This time we need a Markov process Xo = i, X1,...: 2 — S which starts at ¢. Let
F}, be the event {X € T'}. Surely

P(F) =Y P(Xe=j) = p.

JET JET
By part (i) — with the roles of ¢ and j interchanged — the pgf)
P(F) — 0.

tend to zero so that
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Since S\ T is a closed set we know that X;,; ¢ T whenever X ¢ T, and this implies
Fy D F3 D - --. Therefore the probability of (), Fi, being the limit of the P(F}), is zero.
This finishes the proof: [} Fj contains precisely the w where the walk never leaves T

(iii) We will need the equations (5.1), this time with the roles of ¢ and j reversed:

1 1
2
pﬁf) = f +f(2)p§§) + 159,

Summation leads to

}:pu = (> 1+Zpu ) (5.2)

k=1

and we may conclude that ), pij < oo (since Y, f‘ k) <1, >k p(k) 00).
Now let — with the notation of the preceding part (11) of this proof Ey be the event
{Xk =7} and Y} : @ — R its indicator function:

{1 : w€ By

Yi(w) = 0 : otherwise.

Then the function ¥ : Q@ — [0,00], Y := Y, Y&, counts the number of the j-visits
so that [ YdP is the number we are interested in. By the monotone convergence theo-
rem (see [12, p. 50], [16, p. 208]) we may interchange summation and integration, i.e.,
JYdP =3, [ YidP. These integrals are easy to evaluate: [ YidP = P(E}) = pgf), ang

this completes the proof.

Fix any transient state 7 and consider a walk starting there. With Xo = ¢, X1,... :
) — S as in the preceding proof (part (ii)) we put

wik) = P(X1, Xa, ..., Xk-1 € T, Xi = 5), and wyj := 3 wi¥
k>1

for every j € C; then part (ii) of proposition 5.1 may be rcphrased by 3 jecwij = 1.

Note the difference between fi(f) and wfjk : in the definition of f(k) we ask for the
probability that the first visit of j occurs in the k’th step whereas in the case of
(k) this first visit has to coincide with a transition from T to C.

Here is an ezample. Put

1 0 0 0
0 1/2 1/2 0
0 1 0 0

1/8 1/8 1/2 1/4

P= (5.3)
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With respect to this transition matrix the Markov chain has C; = {1} and C; = {2,3}
as its minimal irreducible sets, and there is only one transient state: T = {4}. Let a
walk start at 4. It will stay in T for k — 1 steps and then jump - for example — to state
2 with probability wgg) = (1/4)%¥-1(1/8), and consequently wy, = 1/8 + (1/8)(1/4) +
(1/8)(1/4)*> + --- = 1/6. Similarly one gets wq; = 1/6 and ws3 = 4/6.

For more complicated situations it is not obvious how to manage the necessary calcu-
lations. We will use linear algebra to reduce them to the evaluation of a certain matrix
inverse.

Let us first fix notation. We resume what has been done in chapter 4, page 25, that
is we renumber — if necessary — the states such that the Ci,...,C, are of the form
{1,..., N1}, {Ny + 1,..., N2}, .. {Nr—1 + 1,..., N, }. The stochastic matrix P then
looks as follows:

R 0 0 -- 0 0 0

0o P 0 - 0 0 0

: : : : . : , (54)
o 0 0 --- Py 0 O

o o o0 --- 0 P 0
R Ry Ry -+ R-1 R: Q

Let N stand, as usual, for the cardinality of S. Then ¢t := N — N, is the number of
transient states (which will be assumed to be nonzero in this chapter from now on), @ is
a t X t-matrix, and R, is a matrix with ¢ rows and N, — N, columns! for p =1,...,r.
The matrix @ will play a particularly important role, as a preparation of the proof of
the following theorem we show

Lemma 5.2 Consider the sequence of matrices (Q®)), := (Id+Q+ Q>+ -- - + Q%) If
Q™) is written as (q,(j’“))i,jeT, then limg_, o (jg-c) ezists for all i,j € T and equals e;; (as
defined in proposition 5.1(ii1)). The matriz F := (e;;)i jerT s the inverse of Id — Q:

(Id-Q)F = F(Id - Q) = Id.
F is called the fundamental matrix associated with the chain.

Proof. The first part is obvious since the entries of Q¥ are just the pg”f). Also, by simple
matrix manipulation, one has (Id—Q)(Id+Q + Q% +-- -+ QF) = Id— Q**!. Thus, since
multiplication is continuous and since the entries of Q* tend to zero with k — co we get
Id = Q)F = Id. F(Id — Q) = Id is proved similarly. O

Remark: The lemma should remind you of the well-known formula 1 +¢q + ¢+ -+ =
1/(1—gq) (for |g| < 1) of the geometric series, it states that Id+Q+Q*+--- = (Id—Q) L.
What we have shown is a special case of the following more general fact: whenever @ is an
element of a Banach algebra (e.g., a space of continuous functions or of linear continuous
operators on a Banach space), then Id + Q + Q? + --- is an inverse of Id — Q) as soon
as one knows that Id + Q + @2 + - - - converges (here Id denotes the neutral element of
multiplication which is assumed to exist). Id + Q + Q* + - - - is called the Neumann series
associated with Q.

1 with Ng := 0.
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Once it is guaranteed that (Id — Q)~! exists, all numbers which we have introduced so
far are easy to evaluate:

Theorem 5.3 Let F' be the fundamental matriz of the chain. Then
(i) F has as its entries the numbers e;j, 1,j € T, from proposition 5.1(ii). Conse-
quently the vector F(1,1,...,1)7 contains at its i’th position the expectation of
the number of steps® of a walk starting at i € T before it is absorbed in C.

(1) f};, the probability that a walk returns to i, equals (e;; — 1) /ey for i e T.

(ii1) The numbers w;j, 1 € T, j € C, are the components of the matriz F R, where R
denotes the t x N.-matriz (R1 Ry ... R,). Therefore the probability that i € T will
land in some particular C, us just the i’th component of FR(0,0,...,0,1,...,1,0,...
where the vector (0,0,...,0,1,...,1,0,...,0)T contains a 1 precisely at the po-
sitions N,_1+1,..., N,.

Proof. (1) is part of the assertion of the preceding lemma, and (ii) is a special case of
(5.2).

To prove (iil), fix ¢ € T,j € C and consider a process Xg = 4, X;,...: Q@ — Sasa
model for a walk starting at i. We want to condition on X, we put

E:={Xy,..., X1 €T, Xt = j for some k},

and we define E; := {X; =} for l € T U {j}.

Then E is the disjoint union of £} and the ENE;, ! € T. Since the chain is homogeneous,
we know that P(EN E))/P(E) = P(Xy,...,Xk-1 €T, Xy = jforsomek | X; =) =
wyj. Therefore wy; = P(E) = pi; + ZIET piawy; which is nothing but the matrix equality
V = R+ QV, where V := (w;;). It follows that (Id — Q)V = R and thus V = F'R as
claimed. m]

Let us treat some ezamples to apply our results.

1) First we consider the chain with the transition matrix (5.3) above. Here @ is the
1 x 1-matrix (1/4) so that F = (1 — 1/4)~! = (4/3). Thus e44 = 4/3, f3, = 1/4 and

(w41 W42 w43) =FR= (4/3)(1/8 1/8 1/2) = (1/6 1/6 4/6)

as in our previous calculation.

2) Let P be given in standard form as

1/3 1/3 1/3 0 0 0 0
1/3 1/3 1/3 0 0 0 0
1/3 1/3 1/3 0 0 0 0
pP=| 0 0 0 1/2 1/2 0 0
0 0 0 1/2 1/2 0 0
1/6 1/6 1/6 0 1/6 0 1/3
0 1/2 0 0 1/4 1/4 0

The set of transient states is {6, 7}, and since @ = < 194 163 > it follows that

2 Note that this number includes the starting position: even if the walk jumps immediately from i to
C it will be one.
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F = '111' ( 132 142 ) A walk starting at 6, for example, will on the average be 12/11

times at 6 before it leaves T (since here the starting position is included one has to
subtract 1 if the expectation of returns is of interest); the total number of steps in T for
such a walk has an average of 12/11 + 4/11 = 16/11.

1/6 1/6 1/6 0 1/6

The matrix R here equals ( 0 12 0 0 1/4

> , and therefore

1 /4 8 40 6
(wij)i=6,7,j=1,...,5=FR:2_2(1 13 10 7>'

The absorption probabilities of state 6 with respect to the invariant sets {1, 2,3} and
{4,5} are 4/22 + 8/22+4/22 = 8/11 and 0 + 6/22 = 3/11, respectively, and for state 7
we obtain the values 15/22 and 7/22.

These examples should suffice to illustrate the usefulness of our preceding results,
everyone is invited to produce more impressing ones with the help of suitable matrix
calculation packages.

Exercises

5.1: Let P be a stochastic matrix, we suppose that a certain state io is transient. Now
let ko be an arbitrary integer. Prove that io is transient also with respect to the chain
Pko,

5.2: Let 2,7 be states such that ¢ — j. Prove that with j also ¢ is transient.

5.3: If P is a doubly stochastic matrix, then the associated chain admits no transient
states.

5.4: Consider an N xN-matrix @ = (g;;) all entries of which are nonnegative such that
2 % < 1for all i. Prove that Id — @ is invertible.

5.5: In lemma 5.2 we have shown that, under the assumption that the series F' :=
Id+ Q + Q%+ --- converges, F is the inverse of Id — Q.

a) Is the converse also true: does Id + Q + Q% + - - - converge if (Id — Q)™ exists? (Here
@ denotes an arbitrary N x N-matrix.)

b) Does the existence of (Id — Q)~! follow from Q* — 0?
5.6: The following stochastic matrix is already in standard form:

010 0 0 0 0
55 00 0 0
p_Ll|0 0 100 00
0|14 2 2 10
00 1 3 3 3
00 0 0100

Calculate the fundamental matrix F' and the matrix of the (w;;). How long will the
transient state 5 survive on the average before it enters the union C' = {1,2,3} of the
minimal closed subsets? For state 6, is it more likely to be absorbed at state 1 or at state
2?7
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5.7: Suppose that a chain has precisely two transient states, N—1 and N, say, and that
the Q-matrix has the form
a b
Q= ( 172 1/2 > :

What is the expectation of the number A of steps of a walk starting at N—1 before it is
absorbed in the subset of recurrent states? What values of A are possible?

5.8: Consider the chain defined by the stochastic matrix

P =

=W NN

5
1
2
3

W LN o

1
1 3
8| 0

1

What is the probability that a walk starting at state 2 is in position 1 before it is in
position 3?7

(Hint: Pass to a suitable modification of P which transforms the problem into an absorp-
tion problem.)

5.9: Which matrices @) can be the Q-matrix of the transient states of a Markov chain; cf.
(5.4)7 Is the collection of these @ convex, is it open in the set of all stochastic matrices?

5.10: In theorem 5.3 we have derived a formula for the f}; in terms of the entries of the
fundamental matrix. Find, more generally, expressions for the f;;, where i, j are arbitrary
transient states.

5.11: Let ¢,j be states such that ¢ is transient and ¢ ~ j (see exercise 2.10). Prove that
7 also is transient.
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6  An analytical lemma

Let z = (zo,21,...) and y = (yo,¥1,.-.) be real sequences. Their convolution is defined
to be the sequence

k
zxy = ((z*y)r) = (zoyo, Toy1 +$1yo,--.,zxiyk—i, )
1=0

In the applications we have in mind the z;, y; will stand for certain probabilities, and
convolutions arise when applying the law of total probability: P(E) = 3", P(E | A;)P(A4;).
We will be concerned with sequences z,y which satisfy the convolution equation

= (z*xy)s for k=1,2,.... (6.1)

Under mild additional conditions this has far-reaching consequences for the behaviour
of the sequence z, and this fact will play an important role in our further investigations.

We have already met sequences for which (6.1) is satisfied, for example in the inves-
tigations following proposition 4.8 (with z; = pff ),yk = fi(ik)) or again in the proof of
proposition 5.1. In fact, these are particularly typical examples, and therefore we prefer
to switch our notation from z;, y; to the more suggestive p;, f;.

The fundamental analytical result we have in mind reads as follows:

Lemma 6.1 Let p = (po,p1,...) and f = (fo, f1,..) be sequences of nonnegative real
numbers such that po =1, fo = 0. Suppose that the following conditions are satisfied:
(i) pr = (p* f)x for k > 1; explicitly this means that

= fi,
P2 = fa24+pif1,
e = fe+pife—1+ -+ pe-1fi,

(i) itfot--=1
(iii) the greatest common divisor of the indices k such that fi > 0 is one.
Then the sequence (px)r converges to 1/ kfy (with the convention 1/0o0 :=0).

The rest of this chapter will be devoted to the proof of this lemma. Since it is rather
involved we will split it up into several parts.

As a first step we introduce the numbers 7y := fr11 + fxyo+---for k=0,1,.... Then
(i) can be rewritten as

Pk = Po(Tk—-1 —Tk) + P1(Th—2 — Tk=1) + - + Pr—1(T0 — T1),
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and this gives rise to
ToPk + T1Dk—1 + - + TkPo = ToPk—1 + T1Pk—2 + -+ + Tk—1Do-

(Note that, by (i), ro = 1.) Call the left-hand side of this equation Ay. Since the right-
hand side has the same structure (with k replaced by k—1), we know that

A =Agp1 = =4 =1,
and we thus arrive at
1 =1ropr +7r1Dk—1 + - + ripo for all k. (6.2)

Since all summands are nonnegative we may conclude that 1 > ropy = py, for all k. (This
assertion, however, could also have been derived in a simpler way: use induction and note
that pg is a convex combination of pp = 1,p1,...,pk-1,0.)

The lemma claims that limpy = 1/, where p:= fi+2fa+3f3+ - =ro+ri+ra+---.
This will be established as soon as we have proved that

A :=limsuppy < 1/p and B := liminf py > 1/p.

These two inequalities will be treated in step 3 and step 4 below, as a preparation we

need an elementary number theoretical fact which will be essential to understand the
role of condition (iii).
Step 2: We claim that every subset M of {0, 1,2, ...} which contains a nonzero element and
which satisfies M+M C M and gcd M = 1 has the property that there is an integer ko such
that {ko, ko+1,ko+2,...} C M; here M+M is the usual abbreviation of {k+! | k,! € M}.
To prove this fact we first choose k1, ..., k. € M with gcd{k;,...,k.} =1 (such k, exist
by the argument presented on page 27). That the greatest common divisor is 1 may
be rephrased as k1Z + --- + k.Z = Z, and consequently there are ay,...,a, € Z with
ark; +---+azk, =1.

Let K € N be any number which dominates all |a,|, we will show that every k such
that k Z ko = Kkl(kl +"'+kr) lies in M. Write k as k = Kkl(kl +“‘+kr) +bk1 +c
with b,¢ € Ng and ¢ < k;. Then

k = Kki(ki+---+k.)+bki +clarks + -+ arky)
= ki (Kki +b+cay) + ka(Kkika + caz) + - - + k. (Kki1 k. + ca,),

where — due to K+a, > 0 and ¢ < k; - the factorsat ky, ..., k, arein Nyg. But M+M C M
together with ki,...,k. € M yield k;Ng +-- -+ k.Ng C M, and thus we have proved that
k € M as claimed.

Step 8: We are ready to show that A < 1/u. Since this is trivially true if A = 0 we may

assume that A > 0.
The crucial idea is to apply step 2 to the set M of all numbers kg such that

lim DPky—ko = A
§—00

whenever (pg,)s is a subsequence of (pg) with lim,_,o pi, = A.

WHY MAY WE APPLY STEP 27 M+ M C M follows easily from the definition, gcdM =1
will be shown by verifying that {j | f; > 0} C M; here condition (iii) is needed.
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Let (px,) be arbitrary with py, = A and fix jo with f;, > 0. The idea is to conclude
from conditions (i) and (i),

Pk = fopk + fipk—1 + -+ + fioDk—jo + -+ + fxDPo,

that pr—j, is necessarily “large” (= close to A) if py is (since pi is “nearly” a convex
combination of po, ..., px with the positive factor fj, at pe—j,'.)
This will now be made precise. Fix an arbitrary é > 0 and choose

e k' such that frrpy +--- <4,
o k" with pp < A+ 46 for k> k".
If then k£ > k"' := max{k' + k", jo} is arbitrary we have
R:= fip1pe—k -1 + for+2Pk—k—2 + -+ fepo <6

and also px, Pk—1,---,Pk—k < A+ 6. Consequently

fopx + -+ fioPk—jo + -+ fePr—p + R
< fjopk——jo +(f0+"'+fjo—1 +"'+fjo+l +)(A+6)+6
= fioPr—jo + (1 — fio) A +20.

Now consider the particular case when k = k,, and k, satisfies k; > k"’ as well as
pk, > A—0. Then A —6 < fjopk,—jo + (1 — fj,)A + 26, hence pg,—j, > A — (3/fj,)0.
In this way we have shown that A — (3/f;,)d < pr,jo < A+ 6 for large s, hence
lims 00 Pk, —jo = A and thus jo € M.

Dk

WHY DOES IT HELP? Let k and € > 0 be arbitrary. Step 2 provides a ko with ko, ko+1,
., ko + k € M. Fix an arbitrary sequence (pi,) converging to A and consider the k+1
sequences (Pk,—ko)s> (Pk,—ko—1)s» - - - » (P, _k,_i)s- They all converge to A, and thus we
may choose a sufficiently large s w1th Pk, —ko» Pky—1—ko» -~ -1 Py, _k_g, = A — €
We set k := ks — ko, and we will finish the proof of step 3 with the help of (6.2):

1

Topr + -+ TkPDo
ToPk + -+ TiPy_

2
> (ro+---+r;)(A-¢).

This is true for every k and every ¢, and therefore A < 1/(ro+7, +---) = 1/ as claimed.

Step 4: To show that B > 1/u we argue similarly. This time we may suppose that p < oo,
and now we consider as our set M the collection of all kg such that the pg,_x, tend to B
with s = co whenever px, — B. The proof that {j | f; > 0} lies in M parallels the one
above, and with step 2 we arrive at a k such that px, px—1,..., p,_; < B +¢€, where k
and € > 0 are prescribed arbitrarily.

The end of the proof is slightly different. We choose — for given € > 0 — the number k
such that 3° .z r; <e. Then

1 As a more evident example consider unknown z,y € [0,1] such that Az + (1 — A)y is close to one. If
it is known that A is “not too small” one may conclude that z itself is close to one as well.
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1 = ropk+---+Tipo
< Topk + o+ TpPp_j T E
< (ro+--+r)(B+e) +e¢
£ (w=e)(B+e) +e,
and this can happen only if B > 1/u. (/g/dquﬂ\,_ \ a

Remarks:

1. The proof has an essential drawback in that it is not constructive: we know that
pr — 1/p, but it is hardly possible from an inspection of the preceding argument to find
a ko for a given € > 0 such that |pr — 1/u| < € for k > ky. Only with such an information
at hand, however, one could decide in concrete applications when a calculation should
terminate in order to have the result with prescribed accuracy.

In particular this would be desirable in the case when we are going to apply our
lemma to prove the convergence of an irreducible and aperiodic Markov chain to its
equilibrium. Part II of this book will contain techniques which provide concrete bounds
for this situation. Lemma 6.1 is contained here since it is of independent interest. Its
consequences are very far-reaching, a first application can be found in the following
remark.

2. By the equations in lemma 6.1(i) the sequences p and f determine each other. Thus
it would suffice to start with nonnegative f), fa,... which satisfy (ii) and (iii) and then
to define p1,p2, ... recursively by (i).

This can be used to derive a first probabilistic interpretation of the lemma. Let a
probability measure P on N be given which satisfies gcd{k | P({k}) > 0} = 1. The
fr := P({k}) satisfy 6.1(ii) and (iii), but what is the meaning of the associated py?

Imagine a random walk on {0,1,2,...} which starts at 0 and, whenever the position
in the k’th step is n, passes next to n + m, where m € N is chosen at random with
probability f,,. This, of course, corresponds to the Markov chain with state space Ny
and the doubly infinite transition matrix

0 i f2 f3
0 0 fi fo

0 0 0 fi

Choose as a probabilistic model a probability space (2, A4,P) and random variables
Xo0=0,X;,...: Q2 — Ny (cf. exercise 6.4). It might be interesting to know whether or
not a walk visits a particular state n. The probability that this happens is

P{w | there exists k such that X;(w) =n},

a number which will be called p,, for the moment.
To calculate the p,, we condition on the position just before going to n. More precisely,
put

En
En m

i)

{w | there exists k > 0 such that Xy(w) =n}
{w | there exists k > 0 such that X;_,(w) = m, X} (w) = n}
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for 0 < m < n. Then E, is the disjoint union of the E, o, ..., Ep n—1, and the probability
of E,  is P(E,) times the probability to pass in one step from m to n, i.e., pm fr—m-
Therefore the p, satisfy the set of equations in lemma 6.1(i):

P1 = fl’
p2 = fa+pifi,
ok = fe+prife—1+-+pe-1f1,

and thus — by uniqueness — they are precisely the py of the preceding calculations. In
particular they converge to 1/u, where u = 3. nf, is the expectation of the stepsize of
our random walk (this assertion is called the renewal theorem).

As an illustration consider a game where a player starts at zero, and the number of
units to proceed on Ny is determined by throwing two dice. The expected value of
the step size is 7, and-thus the probability that the walk touches a particular “large”
n is roughly 1/7. As already mentioned, the proof of lemma 6.1 does not provide
information what “roughly” and “large” here mean precisely. We will return to this
question later, concrete estimates will be obtained as a by-product of the results in
part II (see the end of chapter 10).

We must resist the temptation to proceed further along these lines. What we just
have developed are the very beginnings of discrete renewal theory (see [33] for a more
extensive introduction to this field). The name stems from the fact that it is possible to
model simple renewal situations in just this way.

Imagine that one deals with machines/bulbs/transistors/... each working for some
time of which only the probability distribution is known (lifetime n days with prob-
ability fn). One starts with a new machine/bulb/transistor, and it is replaced as
soon it is defect. Then one will have to renew an item on a particular day in the fu-
ture with a probability which is roughly 1 divided by the expectation of the lifetime,
at least if the assumptions of lemma 6.1 are met.

It is this connection why our lemma is sometimes called the fundamental lemma of
discrete renewal theory (or the discrete renewal theorem).

Exercises

6.1: The main result of the present chapter states that under three assumptions a cer-
tain sequence converges. Is each of these assumptions essential? (Try to find suitable
counterexamples).

6.2: For a fixed real sequence (a;) and a real A put

M := {ko | lim ay, g, = A wheneverlimay, = A}.

a) Prove that M+ M C M.
b) Give an example where M = {0,2,4,...}.
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6.3: Let M be a nonempty subset of the positive integers such that M + M C M. Prove
that there are integers d > 0 and kg such that M contains all kd for k > ko.

6.4: Prove the existence of Ny-valued random variables X7, ... on [0,1] with the Borel-
Lebesgue measure which model the random walk given by the renewal probabilities
fi, f2,. ... (Hint: cf. our second proof of theorem 1.4.)

6.5: We resume the application to renewal theory, this time we start with a probability
vector fg, f1,.... This means — if fo > 0 — that we allow a positive probability that the
walk pauses. Try to find an expression for lim pg in this more general situation.
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7 Irreducible Markov chains

The results of the preceding chapter will enable us to complete our picture of finite
Markov chains. We will proceed as follows:

¢ Investigation of the behaviour of the pgf ) for “large” k in the case of recurrent
states 1.

o Proof of the existence of an equilibrium distribution for irreducible aperiodic chains.
e Discussion of irreducible chains with an arbitrary period.

o Calculation of the first passage time matrix.

Long-time behaviour of recurrent and positive recurrent states

We know that all states in an irreducible chain are recurrent (proposition 4.10) and
that ), pgf ) = oo for such i (proposition 4.9). In contrast to the corresponding characta-
rization for transient states (where one might conclude from ), pgf ) < oo that pgf ) 5 0)

this does not contain much information on the limit behaviour of the pff ). This is provided
by part (i) of the following proposition:

Proposition 7.1 Let i be an arbitrary recurrent state.
(i) Suppose that 1 has period d. Then p(.“ = 0 whenever k' is not of the form kd,

3
and limg 00 pgfd) = d/pii; (recall that py; = > k fi(ik) denotes the ezpectation'
of the number of steps to come from i to ).
(ii) Let j be another state such that i < j. If i is positive recurrent, then so is j.

Proof. (i) Suppose first that d = 1. Put p; := pgf), fr = fi(ik). Since ¢ is recurrent, we
know that 5 fr = 1, and we have already shown that the pg, fr satisfy the recurrence
relation 6.1(i) (see the calculations after proposition 4.8). Thus it only remains to show
that condition (iii) of lemma 6.1 holds since then the assertion to be proved is true by
this lemma.

Put G, := ged{k | pr # 0} and Gy := gcd{k | fr # 0}. We have to show that G, =1
(our assumption) yields Gy = 1. To this end let m be a number such that m-divides all
k such that fr > 0. We claim that m divides all k with py > 0 as well which would imply
Gy £ Gp and thus Gy = 1.

We proceed by induction. The case k¥ = 1 is clear since p; = f;. Now let k& be any
number, we assume that m|k’ whenever &’ is such that k' < k and p > 0 and also that
pr > 0. We know that

L Cf. (4.4) in chapter 4; we will prove in the next proposition that the x;; are finite so that they really
can be thought of as expectations.
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Pr = fr +D1fe—1+ -+ pr-1f1,

and we consider two possibilities. Either fi > 0 in which case m|k trivially holds. Or
fr = 0, but then there has to exist a k' < k with prr > 0, fx_pr > 0. m thus divides both
k' and k — k', hence m|k and the proof of (i) in the case d = 1 is complete.

(kd)

Now we consider the case of an arbitrary period d. That only the numbers p;;

the pgll ),pgf ),pgf ),... can have non-zero values follows from the definition of d. Their
convergence is proved by reduction to the case d = 1 as follows: pass from the original
chain (with transition matrix P) to the chain with transition matrix P := P? Whereas in
the original chain ¢ had period d it now is aperiodic; this is nothing but the elementary
relation gcddM = dgcd M. Thus, by the first part of the proof,. the f)ff ) converge to
1/fi, where the ~notation is used to remind us that we are now dealing with the chain
defined by the transition matrix P. However, the relation between the numbers with or

without the ~ is simple, namely

among

_(k kd
Pgi) = Pgi ),
Z(k kd

FB =l

Therefore fi;; = > k f-(-k ) = uii/d, and this completes the proof of (i).

1
(if) Choose k', k" as in the proof of proposition 4.10: the numbers pg'), pg-f”) are positive,

and
k+k'+k) (k), (k') (k")
P;‘j 2 D Pi; "Dj;

for all k. Since the pflk 9 tend to d/pi; and this number is strictly positive by assumption,
it follows that py;) is larger than d pﬁf ) pgf ) /2p;; for infinitely many k, i.e., these numbers
do not converge to zero. But we know from proposition 4.6 and proposition 4.10 that j is
recurrent and also has period d. Hence the pﬁ?‘” converge to d/u;; by (i), and it follows
that pj; < oo.

O

Proposition 7.2 All states i which lie in some minimal closed set C, are positive re-
current. In particular all states in an irreducible chain have this property.?

Proof. By passing to a minimal closed set we may assume that ¢ communicates with all
other states. They all are recurrent by proposition 4.10, and by the preceding proposition
there are only two possibilities: all are null recurrent or all are positive recurrent.
Suppose that p;; = co would hold for all i. This would imply not only pff ) 50 (by
proposition 7.1) but also pgf) — 0 for all ¢,j (see the proof of proposition 5.1). As a
consequence the numbers ) j pg) would tend to zero with £k — oo since there are only

finitely many j. But this is surely a contradiction, since j pg?) =1 O

2 It is stressed again here that we deal with finite chains only; the result does not hold in the general
case.
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The equilibrium distribution

Chains which are irreducible and where all states are aperiodic will play an important
role, they will be called irreducible and aperiodic chains for short?; occasionally we will
also speak of an irreducible and aperiodic transition matrix P if the associated chain has
this property.
First we prove a simple characterization:

Lemma 7.3
(i) A chain is irreducible iff there exists a k such that all entries of the matriz
P+ P? + ...+ P* are strictly positive.
(ii) It is irreducible and aperiodic iff P* has strictly positive components for a suitable
integer k.

Proof. (i) Under the assumption of irreducibility we have i — j for all ¢, j, and therefore
we find k(i,j) with p(k(”)) > 0. Then P + P? 4 --. + P* will be strictly positive as
soon as k majorizes all k(i, j). Conversely, if the (4, j)—component of P+ P?4 ...+ P*
is greater than zero, there must be a k' < k with pgfl) > 0 so that ¢ — j.
(ii) Let all components of P* be strictly positive (which we will abbreviate by P* > 0).
It is clear that then the chain is irreducible.

From P* > 0 it follows that P*¥*! > 0 since P is a stochastic matrix. Conclusion:
pgf )'> 0 for k' > k so that all i are aperiodic.
Conversely, let the chain be irreducible and aperiodic. Since limg_, o pgf ) = 1/pi; > 0 by
proposition 7.1 and proposition 7.2 we may choose a k' such that pflk ) > 0 for all i. Then
- as can easily be calculated - P¥*+*" > 0 for any k" which majorizes all k(3,j) (which
have the same meaning as in the first part of this proof). O

We are now able to understand the phenomenon described at the end of chapter 3:

Theorem 7.4 Consider a Markov chain with state space {1,..., N} which is assumed
to be irreducible and aperiodic.

(i) The powers P* of the transition matriz P converge componentwise to a stochastic
matriz W in which all rows are equal. If we denote a typical row by n' =
(71,-..,7N), then we have w3 > 0 for all i and Y, m; = 1.

(ii) = is the unique vector such that n"P=m" and 3, m; = 1.

(iii) For every i, the i’th component of 7 is just 1/ ;.
This unique T is called the equilibrium distribution associated with the chain®.

Proof. (i) All i are positive recurrent so that pgf ) 1/pi; > 0. From this and the identity

k k—1 1 k— 1
W = £+ £+ £

it follows immediately that the pg.’:) also converge and that the limit is f7;/pu;.

3 Sometimes the word “ergodic” is used instead of “irreducible and aperiodic”.
4 Cf. the following remark 1, there it is explained why this notion is appropriate.
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We claim that f;; = 1. For the proof of this fact fix the smallest k' with pg?/) > 0.
Then, since 1 — f7; is the probability that a walk starting at j will never arrive at i, the

product pg.“/) (1—£};) is the probability that a walk which starts at i is at j in step number

k' and is later never seen at its starting position®. In particular pﬁfl)(l —f5) <1-fz,
which is the probability of no return to 7 for a walk starting there. But thus probability
is zero since 1 is recurrent, hence f; = 1.

So far we have shown that pgf) — 1/py; =: m; with & — oco. That the m; sum up
to one follows from the fact that all matrices P* are stochastic and that this property
is preserved under coordinate-wise limits. The proof of (i) is now complete, and the
assertion (iii) was established as a by-product. ‘

(ii) If m is as in (i), then 7 TP = 77 is equivalent with W P = W, and this identity follows
easily from the continuity of matrix multiplication:

WP = (lim P¥)P = lim P¥*! = W.

Conversely, let 7 be given such that #T P = #" and 5 #; = 1. #" is also an eigenvector
with associated eigenvalue 1 for all P* and thus - by continuity — of W. We consequently
get

Al =f"W=n",

where the last equality follows from ) #; = 1. a

Equilibrium distributions will be very important in the sequel. Some additional remarks
concerning the theorem are in order:

1. The convergence of the numbers pg.c)

to identify k& given the pg-c): the chain “forgets” the length of its history. The fact that
the limit does not depend on i implies that — for large k — it is hardly possible to assert
where the starting position was, even if all pg-c) have been estimated rather carefully: the
chain “forgets” the initial position.

As we have already mentioned in chapter 3, an interesting phenomenon occurs if we
take 77 as the initial distribution: the chain forgets the length of its history completely
and immediately. This explains why 7 is called the equilibrium distribution.

2. Whereas there does not seem not to exist any simple way to determine the u;; directly
from the definition, the eigenvector equation 7T P = 7' (together with the condition
> m; = 1) is rather simple to solve, in particular since one can guarantee that there
exists precisely one solution. And once the m; are calculated, the u; = 1/m; are also
known.

3. The theorem depends essentially on proposition 7.1 which in turn was a corollary to
the analytical lemma 6.1. Since no explicit information on the rate of convergence was
provided there it has to be admitted that theorem 7.4 in the present form will be of
little practical interest. Explicit bounds, however, would be interesting in view of the
applications we have in mind in part III. Part II of this book will be mainly devoted to
the development of techniques by which it is possible to remedy this drawback.

means that for large k it is more and more difficult

5 Once more a special case of the strong Markov property is used here: a walk starting at j behaves
like one which after k' steps is restarted there. Cf. the discussion leading to proposition 4.8 and - for
a more thorough treatment — chapter 12.



52 Part I: Finite Markov chains (the background)

The reader is invited to have a look at proposition 10.5 or at proposition 10.8. They
provide — together with concrete bounds - two independent possibilities to prove
convergence directly.

Here are some examples:

1. Suppose that our stochastic matrix P is not only irreducible and aperiodic but also
doubly stochastic: 3, p;; = 1 for all j; this is, e.g., the case if P is symmetric. Then
m" = (1/N,...,1/N) surely is a solution of 7P = n' with 3,7 = 1, and since
this is unique it follows that the equilibrium distribution is the uniform distribution.
Proposition 7.4(iii) here means that it takes a walk on the average N steps between a
visit of and a return to a particular state 1.

2. Let the transition matrix P be such that all rows coincide (in order to have an ir-
reducible and aperiodic chain we assume that all entries are strictly positive). Then all
P* are equal so that W = P in this case. This simple example also shows that every
probability distribution on a finite set which is strictly positive everywhere can occur as
an equilibrium distribution of an irreducible and aperiodic chain.

3. Consider, with positive a, b such that 2a + b = 1, the following reflecting random walk
on {1,2,3,4}:

2 b 0 O

a b a O

Pi= 0 a b a
0 0 b 2a

The equilibrium distribution is easily calculated:

T__( a b b a )
T4 140 146 1487

This is the uniform distribution precisely if a = b (= 1/3).

Irreducible chains with an arbitrary period

We consider now an irreducible chain with transition matrix P which is not necessar-
ily aperiodic. By proposition 4.6 we know that all states have the same period, say d
(sometimes such a chain is called an irreducible chain with period d). Now we pass — as
in the proof of proposition 7.1 - to the chain with transition matrix P¢. This will not be
irreducible in general. However, on the minimal closed sets G the chain behaves like an
irreducible aperiodic chain, and this idea gives rise to a complete description:

Theorem 7.5 Let a Markov chain on a finite state space S be given by an_irreducible
stochastic matriz and denote by d its period.
(i) There is a partition of S into disjoint non-empty subsets Gy, ...,G4—1 such that:

e The G5 are minimal closed sets with respect to P%; the restriction of the
chain associated with P® to each G is irreducible and aperiodic.
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o For the original chain there are transitions only from G5 to G541 (with the
convention Gg := Gg). For the transition probabilities this means that

Z pij =1

J€Gs+1

for every i € Gs.
(i) The Cesdaro limit W of the matriz sequence P, P?,... ezists:

W = lim (P+---+ P*)/k
k—o0

(which, as usual, is meant to hold for every component). W is a stochastic matriz
in which all rows are identical. This row vector, which we will denote by 7, is the
unique solution of the eigenvector equation m' P = 1" such that Yumio=1. As
in theorem 7.4 also here m; = 1/ps; holds, and again w" is called the equilibrium
distribution associated with the chain.

Proof. (i) Consider the chain with transition matrix P¢ and denote by G the collection
of its minimal closed subsets. Since all states of the original chain are recurrent, the
numbers pﬁf k) converge with k — 0o to a non-zero value (7.1(i)) und thus the ¢ are not
transient with respect to the new chain (by 4.9). This shows that the state space S is
the disjoint, union of the G € G.

Now fix any element of G and call it Gy. Define subsets G5 of Sford =1,...,d—1by

Gs :={j | there are i € Go and k € {0, +d,d + 2d,...} such that pgf) > 0}.

(Note that it would be admissible to use this definition also with § = 0: the set G which
is defined in this way is precisely the set G we started with. The reason is that all ¢ € Gy
communicate with respect to the new chain. However, it is not clear a priori that the G
liein G.)

Claim 1: S is the disjoint union of the Go,...,G4-1.

Proof: Tt is clear that S = Go U --- U Gg4_1 since 1 — j for all ¢,5. Now fix two different
&',6" and arbitrary j' € Gy,5" € Gsn. There are - for suitable i’,i"” € Go and integers
k', k", k,k - transitions with positive probabilities

from 7 to j in & +k'd steps,
from ¢ to j" in ¢&" +Kk"d steps,
from ¢ to ¢’ in kd steps,
from j' to i in k steps.

This follows from the definition of the G5 and the fact that the original (resp. the new)
chain acts irreducibly on S (resp. on Gy).

Now suppose that j' = j"” would hold. Then the preceding observations would give
rise to two possible ways from ¢’ to i’ with positive probability, namely one of length
ky := &' + k'd + k and another of length ky := kd + 6" + k"d + k. Since i’ has period d,
both k; and ks are divisible by d. In particular we would have d|6’ — 8", a contradiction.
This proves that Gg N Gsr = 0.

Claim 2: For any 4 there are only transitions (of the original chain) from Gs to Gs41
(with G4 := Gop).
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Proof: This is proved similarly: the existence of other transitions would violate the d-
periodicity of all states.

Claim 3: G is just the collection Gy, ...,G4_1.

Proof: We claim that — with respect to P? - each Gj is invariant and that each two
j',7" in G5 communicate. The invariance is clear from the definition. For the second part
choose " in Go and k", k > 0 such that the probabilities for a transition

from i to 7” in  §+Kk'd steps,
and from j' to ¢ in d-—§+dk steps

are positive (for the existence of k one has to combine claim 2 with the fact that 7/ — /).
This shows that one may pass from j’ to ;" under P<.

(ii) Denote the entries of (P + --- + P*)/k by quk ). We consider first the case where i, j
lie in the same Gs. Since P? acts as an irreducible and aperiodic chain on G5 we know

from proposition 7.4 that the pgkl) tend to d/p;; with k' — oo. Since the pgf) vanish for

k # dk' it follows that ¢{ — 1/u;;.
Now fix ¢ and consider ¢ € Gs,j € Gs4r for some 1 <r < d (with d+7r := (6 + 1)
(r) plak) (*) vanish. Therefore qff L

mod d). Then p£;+dk) = Zj’EGs.,.,- p;;7Pj; , and the other p;;

1/p;j since qj(fcj) — 1/pj; and the pg,) sum up to one.

The rest of the proof parallels that of theorem 7.4: (P + --- + P*)/k — W implies
WP = liin(Pz +-+ PRk = lim (P + P24 4 PN (k+1) =W,

and this means that 7' P = 7' if we set m; := 1 Juii- > m; = 1is a consequence of the
fact that W is stochastic as the limit of stochastic matrices.

Conversely: 7' P = 7" yields #' (P +--- + P*)/k = #7 and thus #' W = #". Hence
#T =77 if the components of 7T sum up to one. O

Most of the remarks following the proof of theorem 7.4 could be repeated here. Note,
however, that an irreducible chain with d > 1 does not completely forget the length of
its history: if the walk starts at a state in Gy and you find it for some — arbitrarily large
- k in G3 you know that k mod d = 3. But this is essentially all that can be said.

A similar remark applies to a guess of the starting position given the position in the k’th
step.
Note that the theorem in particular implies that the transition matrix P has the form

0« 0 - 0
00 % --- 0
000 - =«
x 00 -+ 0

if S ={1,...,N} and the states are labelled such that the first ones belong to Go, the
next ones to G, etc.; here the 0 denote matrices with zero entries and the * stand for
stochastic — not necessarily square — matrices.
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The first passage time matrix

Now we will restrict ourselves again to the case of irreducible and aperiodic chains.
Similarly to the end of chapter 5 where we used linear algebra to calculate certain num-
bers in connection with transient states we now want to apply the same techniques to
determine the expectations of running times until return. The y;; as a measure of the av-
erage number of steps to pass from 7 to j have been introduced already in (4.4) of chapter
4. These numbers, however, have played a role so far only in the case ¢ = j. Under this
condition we know that they are finite by proposition 7.2, we alrcady have shown that

5 =1 for all 4, j (see the proof of 7.4(i)), but this is not sufficient to guarantee that all
wi; are finite. A little trick is necessary:

Lemma 7.6 For an irreducible and aperiodic chain all p;; are finite (so that these num-
bers can be considered as the expectation of the number of steps to come from i to j).
The matriz M = (pij)ij is called the first passage time matrix of our chain.

Proof. To be specific we assume that the state space is {1,..., N}, and we will show that
pij < oo for, e.g., j = 1 and all ¢ # 1. The trick is to declare {1} as a minimal closed set
by passing from the original transition matrix P = (p;;) to

1 0 o --- 0
P21 P22 P23 0 DP2N
P-=| P31 P32 P33z - D3N
PN1 PN2 DPN3 " PNN
For the chain defined by P the states 2,..., N are transient: the original chain is irre-

ducible, and consequently j — 1 for all j. Therefore the number of steps to come from
state i € {2,..., N} to 1 (subject to P) is precisely the number of steps which is needed
for the transient state 7 to be absorbed in the collection of minimal closed sets — which
is just {1} - if we argue with respect to P.

In this way the assertion of the lemma is reduced to proposition 5.1(iii). O

By the next theorem the matrix M can be determined by simple matrix calculations.
The following notation will be used: if R = (r4;);; is any square matrix, then R, is
defined to be the matrix (r;;d;;);; (with d;;= the Kronecker delta), i.e., Ras has the
same diagonal as R, but all other entries vanish; and the symbol E will stand for an
N x N-matrix where all entries are 1.

Theorem 7.7 Consider an irreducible aperiodic chain given by a stochastic matriz P.
In proposition 7.4 we have shown that W = lim P¥ exzists, and we already know that the
rows of W are the normalized solutions of an eigenvalue equation.

(i) The matriz Id — (P — W) is invertible, its inverse will be called Z.

(i) The first passage time matriz can be calculated as

M = (Id - Z + EZdiag)Mdiag°

Explicitly written this means that pi; = (8i; — 2i5 + 2j5) /5.
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Note: Part (ii) seems to be circular since M appears on both sides of the equation.
However, on the right hand side only My, is of importance, and this matrix is known
since the elements p;; on the diagonal are the inverses of the components m; of the
equilibrium distribution.

Proof. (i) We have (Id — Q)(Id + Q + Q> + --- + Q%) = Id — Q**! for any square
matrix Q. Suppose that we know for some reason that Q* — 0. Then the determinant
of Id — Q**1, being a continuous function of the entries, will tend to 1, the determinant
of Id. In particular this determinant will be nonzero for large k. But then Id — @ and
also Id + Q + - - - + QF have a nonzero determinant as well by the determinant product
formula, and thus both of them are invertible. If we now let k tend to infinity in the
equation Id + Q + --- + Q* = (Id — Q)~'(Id — Q**'), it follows from Q* — 0 that
Id+ Q + Q% + - - - exists and is the inverse of Id — Q. (Note that the argument is a little
bit more involved than that in the proof of lemma, 5.2: there the existence of Id+Q + - - -
could be assumed.)

To prove the assertion (i) we will apply the preceding argument with Q = P — W.
From W = lim P* it follows at once — as in the proof of theorem 7.4(ii) above — that
WP =W = W? = PW. And from this we get by induction that (P—W)* = P*~W — 0,
and hence it is justified to use the preceding argument.

(ii) First we claim that the first passage time matrix M is the unique matrix R which
coincides on the diagonal with M and satisfies the matrix equation R = P(R— Rai,) + E.

The matriz M is a solution.
The condition concerning the diagonal is trivially satisfied, and the matrix equation

means
szll"l] +1= szlll’lj + szl =pij + szl(mj =+ 1)

I#1 I#i I#1

That this holds follows by a calculation involving conditional ezpectations.

For any random variable Y’ on a probability space (2, 4, P) whose expectation E (Y)
exists one has E(Y) = 3" P(B,)E (Y, ), whenever By, ..., B, is a disjoint partition of
Q; here Yp, means the restrlctlon of the random varlable Y to the probability space
(B, Als,, B/B(B,)).

We will apply this fact as follows. Fix ¢ and j and consider a Markov process Xy, X1, .. .,
defined on some (2, .4, P), with transition probabilities given by P, and X = ¢. Then,
with ¥ := inf{k | Xx = j} we have p;; = E(Y") by definition. Q is the disjoint union
of the B; := {X; = l}, and with the notation of the preceding paragraph we know that
E(Ys;) =1and E(Yp,) = mj;+1for l # j (“+1”, since we must not forget the first step
from ¢ to [ in our calculation; it should be stressed that here again it is crucial that we
deal with homogeneous chains). It now suffices to note that P(B;) = pa.

M 1is the only solution.

Let M be another solution, we put R := M — M. The diagonal of R vanishes, and also
R = P(R — Ry.,) = PR holds. Let z be any column of R. The matrix equation means
that Pz = z. Thus P*z = z for all k and consequently Wz = z. But all rows in W equal
the same vector 77, hence all components of z must be identical (with the value 7' 2).
Since R has a vanishing diagonal, at least one of these components is zero. Thus z is zero
and we have shown that R = 0.

With this preparation in mind it remains to show that

R = (Id - Z + EZdiag)Mdiag
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satisfies Rging = Maing as well as R = P(R — Ry.,) + E. The first condition can be verified
by simple calculation, it is a consequence of the fact that every entry on the diagonal of
Id — Z + EZ,,, is one.

The matrix equation needs further preparations; we claim that

Id-Z = W-PZ, (7.1)
WM., = E, (7.2)
PEZy, = EZi.,. (7.3)

The first equation follows from

o o0
Z=Id+Y (P-W)t=1Id+) (P*-W)
k=1 k=1

since this series expansion together with W = PW show that

(oo}
Id-Z=) (W-P*)=W-PZ.
k=1

The second one is clear by theorem 7.4(iii), and for the proof of the third one one only
has to use the fact that P is stochastic.
Here is the end of the proof:

P(R—Ruyng) + E = P(—Z+4 EZ4 )My + E
(=PZ + EZyg) My + E

= R+ (-Id+Z-P2)My.,+ E
= R-WMy,+E

= R;

the first transformation is justified since Ry, = Mui., the second is clear by (7.3), in

the next one only the definition of R is reproduced, and finally (7.1) and (7.2) are used.
a

We close this chapter with some examples:

1) Let P be such that p;; = 1/N for all 4, j; here as usual N denotes the cardinality
of the state space. This example has the advantage that we know the result beforehand
since the number of steps to walk from ¢ to j corresponds to the number of independent
trials until the first “success” occurs, where “success” means that the random generator
produces just j; the probability of this to happen is 1/N, and hence the expected number
of trials should be N. In fact this turns out to be true here: the equilibrium distribution
is the uniform distribution, and it follows that Z = Id. Consequently, as it was to be
expected, M is the matrix EZy,, M., = NE, that is all entries equal the number N.

2) The same argument applies in the more general situation where P is a transition
matrix such that all rows are identical. If we denote the entries of a typical row by
D1,-...,PN, then the formula for M in theorem 7.7 in fact produces
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1/pr 1/pa -+ 1/pn

1/pr 1/p2 -+ 1/pn
| VPP e

1/pr 1/p2 - 1/pn

as it should be.
3) As an example where one really has to do some calculations consider

8 1 10
18011
P‘l_o 8 1 0 1
8 110

This describes a chain on {1,2, 3,4} which obviously is irreducible and aperiodic. Some
qualitative aspects can be read from the matrix: there is a strong tendency of the walks
towards state 1, also note that the states 2 and 3 play a completely symmetric role.

The equilibrium is easily calculated as the normalized solution of a system of linear
equations:

1

.
= —(44 .
= (44,55, 1)

And this leads to
110 -1 -1 2
0 120 -1 -9
Id’(P'W)“m 0 -1 120 -9
0

and thus to
Z=Id-(P-W))l=—

Finally we arrive at

40 40 220
44 40 200
40 44 200
40 40 220

1
M=-
4

Qv Ot Ov

Notice the obvious symmetry between states 2 and 3 in all these calculations (see also
exercise 7.12 below).

Exercises

7.1: In example 5 of chapter 2 we have introduced various shuffles. Prove that in all
these cases the associated chains are irreducible and aperiodic and that the equilibrium
distribution is the uniform distribution.

7.2: For a chain on a state space with N elements which is given by a stochastic matrix
the following are equivalent:



Chapter 7: Irreducible Markov chains 59

a) the chain is irreducible;

b) Id + P + - + PV is strictly positive.

7.3: Consider once more the product chain of example 1.3. Prove or disprove: if the
original chain is irreducible (resp. irreducible and aperiodic) then so is the product chain.
7.4: Let P be an irreducible stochastic matrix such that p;; > 0. Prove that all states
are aperiodic.

7.5: For a general stochastic N x N-matrix P a probability vector (m1,...,mn) is called
an equilibrium distribution if (71,...,75)P = (71,...,7n) holds (cf. exercise 3.5). As
before we will denote the collection of these 7' by K.

a) K is always nonempty, and for every extreme point (71, ...,m,) of K there is a minimal
closed subset C such that 7; =0 for ¢ ¢ C.

b) For every (my,...,7mn) € K and every transient ¢ the number 7; vanishes.

7.6: Suppose that a chain admits more than one minimal closed subset. Then there are
at least two different equilibria.

7.7: In theorem 7.5 we have used Cesaro limits. These limits play an important role in
various fields, those readers who have never met them before are invited to investigate

some basic properties.
We will say that a sequence (a) of real numbers is C-convergent if limg (a; +- - - +ax) /k
exists in R. This limit will be called the C-limit of (ax) and written C-lim ag.

a) If (ax) is convergent, then it is C-convergent. The converse does not hold.
b) Sums of C-convergent sequences (ax) and (b) are also C-convergent. In this case one
has

C-lim(ay + bx) = C-lim ag, + C-lim by.

c) Does every sequence (a;) admit a subsequence which is C-convergent?
d) Are subsequences of C-convergent sequences also C-convergent?
e) Are there unbounded C-convergent sequences?

7.8: Let P be an irreducible matrix. With E= “the matrix where all entries are 1” prove
that Id — P + E is invertible and that the equilibrium distribution 77 of P is the unique
solution of

(m1,...,an)Id— P+ E) =(1,...,1).
7.9: In this exercise P is an arbitrary irreducible 2x2-matrix. Calculate explicitly the

matrix of running times.
7.10: The chain given by

00440
o026 0
P==|0000 8
81 000 0 8
35000

is irreducible with period 3. Analyse this chain (equilibrium, behaviour of P2 on the
irreducible subsets, etc.)

7.11: Let P be irreducible, = the unique equilibrium and i, j states such that i ~ j
(cf. exercise 2.10). Prove that m; = ;.
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7.12: How can the symmetry between the states 2 and 3 in the last example of the
present chapter be explained by general properties of the relation “~”7

7.13: Let P and P’ be stochastic N x N-matrices such that P is irreducible and aperiodic.
Then AP + (1 — A\)P’ has the same property for every A €]0, 1].
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8 Notes and remarks

Part I was intended to introduce Markov chains, to define the notions relevant for the
further investigations and to reveal the structure of an arbitrary chain on a finite state
space. Here is a short summary:

What is a Markov chain?

Formally a Markov chain is nothing but a finite set S plus a stochastic matrix P plus
a probability vector p. The latter encodes the distribution how to start, the rows of
P contain the information how to move to the next position. Usually, however, one is
interested in the behaviour of the chain with respect to arbitrary starting distributions,
and therefore the matrix P is much more important than the vector p.

Rather than to consider a chain as something static it should be thought of as an
instruction to perform a random walk on S; the parameters of the random generators to
be used can be found in p and P.

And finally, there is the model in the framework of probability theory. Using this lan-
guage we have to consider an S-valued stochastic process which is defined on some prob-
ability space, a process which is in a certain sense memoryless and homogeneous. One
can show that such a model always can be constructed, its existence is necessary to build
the proofs on the safe ground of probability spaces.

Markov chains can be defined in various ways. Most common is the description by
defining P and p directly, but sometimes it is more convenient to use weighted directed
graphs with the elements of S as vertices or even to fix the stochastic transition rules
verbally.

The steps to analyse a chain

A first crucial step is to find the minimal closed subsets C1,...,C;r; once they are
known also the set of transient states S\ (C1 U---UC}) is identified. In most cases the
C, are easily determined once one has understood the “dynamics” of the chain.

If this is not possible for some reason one could proceed as follows. First find the
nonzero elements in Q := P + P +--- + P (see exercise 7.2); this can considerably be
facilitated by replacing in every step of the calculation the nonzero entries by 1. Then
the nonzero elements in the i’th row of @) are precisely at those positions j where ¢ — j.
The proof of this fact is easy, see exercise 8.1.

In this way we know the relation “—” and thus “<” and now it suffices to recall that
the Ci,...,C, can be found among the equivalence classes with respect to “<” (see
proposition 4.4 and exercise 8.2).

The next step will be an investigation of the transient states: calculate the fundamen-
tal matrix (Id — Q)~!, then theorem 5.3 will enable you to determine the absorption
probabilities and the expected running times until absorption for each transient i.

And finally the behaviour within the C, can be studied. To this end, fix any minimal
invariant C and pass from P to the restriction of the chain to this set (which for simplicity
we will continue to call P here). Calculate the period d (e.g., by having a look at the
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nonzero elements of the diagonal of the P, P2, ...) and identify thc minimal closed subsets
of C with respect to P%. There the chain works as an aperiodic and irreducible chain, and
a thorough analysis now necessitates the determination of the equilibrium distribution
(theorem 7.4) and the matrix of first passage times (theorem 7.7).

An example

As an example we consider a chain on {1,2,...,8} defined by

19 0 00 0 0O

55 0 00000

00 0 28 000

p= i 0 0 10 0 0 0 0 O

10 0 0 10 0 0 0 0 O

21 1 2 1111

00 0 OO0 5 0 5

11 0 0 0 0 0 8

(In order to save space we have skipped the very first step where one has to identify the
minimal closed sets. Our chain is already in canonical form.)

One can see from the matrix that C; := {1,2} and Cy := {3,4,5} are the minimal
closed sets and that the states 6,7,8 are transient. Now we start with the matrix cal-
culations.

a) The matrices which govern the behaviour of the transient states
Here are the matrix @), the fundamental matrix F' and the matrices R and F R (notation

as in theorem 5.3):
1 111 1 (20 2 15
10 5 0 5 |, T 10 18 50 |,
0 0 8 0 0 85

1 21121 1 55 35 20 40 20
10 0 000 O0], 170 70 60 10 20 10 |.
11000 8 8 0 0 O

By theorem 5.3 these matrices contain the relevant information concerning the transient
states. E.g.:

o A walk starting at state 5 will on the average need (20 + 2 4 15)/17 = 37/17 steps
until it will be absorbed forever in C; U Cs; recall that this number includes the
starting position so that it surely would be more realistic to deal with 37/17 -1 =
20/17.

e The absorption of such a walk will take place at state 2 with probability 35/170
(= 7/34), and the probabilities to be absorbed in C or in C; are

55435 _ 9 and 20440420 _ 8
170~ 17 170 7

respectively.
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e The return probability for state 8 is

fr = 85/17—1 _ 68
87 g5/17 85

b) The period of C,

Since all entries of the restriction of the transition matrix P to C) are strictly positive,
the restricted chain is aperiodic (and, of course, irreducible).

¢) The equilibrium distribution of C;

This necessitates to solve the matrix equation

(m1,m2) = (m1,m2) ( ;ﬁg gﬁg ) , m+m =1

One easily finds (m,m2) = (5/14, 9/14) as the unique solution.

d) The matriz of running times for C;

We adopt the notation of proposition 7.7. W is already known, both rows equal 5/14, 9/14.
We obtain consecutively Id — (P — W), its inverse Z and finally the running time matrix
M by the formula derived in theorem 7.7:

1 /44 -9\ 1/40 9\ 1 /126 50
35\ -5 40 ) 49\ 5 44 )2 25\ 90 70 )

e) The period of Co
On C; the chain oscillates between Cy; := {3} and Cy, := {4,5}, and the square of the

restriction of P to Cs is
1 0 0
0 1/5 4/5 |.
0 1/5 4/5

Hence the period of Cs is 2, and with respect to P? the set C- splits into the minimal

closed subset Cq; and Cas.

f) The equilibrium distributions of P? on Cy; and Coz and the associated matrices of
running times

These are particularly easy to determine: the associated transition matrices are (1) and
( 1/5 475 ), and we get the unit mass on {3} and the distribution (1/5, 4/5) on

1/5 4/5
. . 4
{4, 5} as equilibrium distributions. The running time matrices are (1) and ( g g; 4 >,
respectively.
(Note that these running times refer to P2. For state 4, e.g., one needs 2 - 5 steps to
return on the average if one counts with respect to the original chain.)
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We continue with some notes and remarks. First we want to emphasize that all re-
sults presented in part I were found in the early decades of Markov chain theory at the
beginning of the twentieth century, also the examples are standard (with the exception
of example 9 and - maybe — example 5: the connection between Markov chains and card
shuffling is rather recent!). We omit to try to associate the various results with certain
mathematicians; those readers who are interested in the general history of this field are
referred to [28] (chapter XII), the notes and remarks in [50], and [68] (chapter 10).

The material is selected and presented according to the author’s taste, there are numer-
ous monographs where other approaches have been chosen (two recommendable recent
references are [20] and [60], more advanced introductions are [17] or [22]).

Whereas the chains considered here give rise to many interesting applications they
are surely the most elementary representatives of mathematical models for “memory-
less” stochastic phenomena; they are, in a sense, the simplest situation after sequences
of independent identically distributed random variables which can assume only finitely
many values. They have the advantage that elementary probability suffices to develop the
theory rigorously, also nearly all of the abstract existence results can be complemented
by recipes by which the probabilities or expectations can be determined explicitly with
the help of easy matriz calculations. We have tried here to give typical examples of this
interplay between probability and linear algebra. However, what has been shown is far
from being exhaustive (further results into this direction can be found in chapter XVI of
[30], [42], [43], or [49]).

Several generalizations have been studied. One of these has already been mentioned,
the case of countable state spaces. The theory can still be developed in an elementary
way, expectedly some of the results fail to be true (cf. exercise 4.6). For a systematic
development of the countable theory the reader is referred to {20], [50], or [60].

Whereas the step from finite to countable state spaces does not lead to conceptual
difficulties it is not as easy to pass from discrete to continuous time. Let us try to
understand the underlying idea. We start with a finite state space S, and as before we
want to fix rules for a “walk” on S. In this book we have done this by prescribing an
initial distribution and stochastic rules what to do at “times” k =1,2,.... Now we want
to refine this, the “position of the walk at time ¢” shall have a meaning for all real
t > 0. This is essentially done as before, the next position in S is chosen according to a
probability distribution on S which only depends on the present position. But there is
a new feature: the walk will pause after the occupation of a new state ¢ for some time
T before it continues, where T' has an exponential distribution the parameter of which
might depend on 7. It should be clear that it is again rather simple to simulate such
generalized walks. Also, as in the case considered in this book, all that has to be known
about such a walk is encoded in a single matriz. There is a matrix @ with the following
property: if a walk is started according to an initial distribution given by a probability
vector (p;)ies, then the probability to find the walk at a state ip at time ¢ is just the
ig-component of the vector

(pe)e';
here e'@ means the matrix exponential of Q, i.e., the matrix Id+ (tQ)/1!+ (tQ)?/2!+- - -.

1 The reader will find further investigations in the following chapters. Standard references are [1], [3]
and [24]. For the “deterministic” theory of card shuffling cf. [59].
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It is considerably more difficult than in the case of discrete time to transform this idea
into a family (X¢)¢>0 of S-valued random variables on a suitable probability space, and
further severe problems have to be overcome if one passes from finite to countable state
spaces. We refer the reader to [50] or [60] for details.

Even more advanced is the theory of Markov processes in continuous time on un-
countable state spaces. A number of nontrivial technical difficulties have to be taken into
account (measurability of the paths, the definition of conditional probabilities as a special
case of conditional expectations, ...), this general approach is beyond the scope of this
book. See [48] and the literature cited there.

One of the most surprising properties of Markov chains is the fact that — under the
mild assumption of irreducibility and aperiodicity of the transition matrix P — they tend
to forget their history. All rows of P* converge to the same vector 7', i.e., neither k
nor the starting position can be read from the probability to find the walk at state j in
the k’th step. A positive formulation of this phenomenon could be the statement that
one knows all probabilities to find the walk in the various states 7 provided that it has
run for sufficiently many steps. But how often will a special state be visited? The naive
answer would be the following: if the probability to find the walk at j is 7;, then it is to
be expected that roughly for 7; - k times out of k steps the walk will occupy this state.
That this is in fact true is the ergodic theorem for Markouv chains, here is the rigorous
formulation:

Let P be an irreducible stochastic N x N-matrix and Xg, X;,... a homo-
geneous {1,..., N}-valued Markov process with the transition probabilities
given by P (the initial distribution (p;) might be arbitrary here). Then, if 7T
denotes the unique equilibrium, one has with probability one that

card{k' |0 < k' < k, Xp =1}
k

tends to m; for every 1.

(For a proof, see chapter 1.10 in [60] or chapter 3.4 in [20].)

Exercises

8.1: Prove that the entry at the i-j-position of Id + P + --- + PV is strictly positive iff
1= 7.

8.2: Which of the equivalence classes with respect to “<” correspond to the minimal
closed subsets of the chain?

8.3: Analyse, similarly to the example in this chapter, the chain given by the matrix

1 9000000

10 000000 0

0 0028000
p_ll 00127000
~10]| 0 0244000
2 1121111

0 1040005

1 1070100
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In part I we have developed the basic theory of finite Markov chains. There the usual
approach was to start with the state space S and the transition matrix P and then to
calculate the relevant probabilities, expected running times and so on.

In the applications we have in mind, however, one is mainly interested in a fixed
probability distribution 7 on a finite set S, and Markov chains come into play in order
to simulate it.

More precisely: suppose that there are prescribed positive real numbers 7; for 7 in a
finite — but generally huge — set S such that ), m; = 1. Assume that one needs a random
generator which produces elements of S in such a way that each particular ¢ occurs with
probability ;. In many cases 7 will be the uniform distribution, i.e., m; = 1/card(S) for
every 1.

As an example fix an integer ko and two functions ¢,% : {0,...,ko} — Z with
§ < ¥ and ¢(0) = $(0).

Let us say that a mapping w : {0,...,ko} — Z is a ¢-¢-path if § < w < ¥ and
|w(k) —w(k+1)] =1 for k =0,...,ko—1. The problem is to find a “typical” ¢-
¥-path. (You can think of a game where one starts to play with w(0) $/DM/. ..
and where one loses or gains 1 $/DM/... at times k = 1,..., ko; #(k) and ¥ (k) are
certain maximal losses or gains which might depend on k. Another translation of
this setting can be found in [32] where it is shown that the set S of all ¢-y-paths
corresponds to the collection of certain total orders which extend a given order.)

Clearly S is a finite set, it might be incredibly large, and in general the precise
number of elements will be difficult to determine. Nevertheless it is comparitively
simple to generate (approximately) uniformly distributed samples. One only has
to define a Markov chain on S such that it is irreducible and the equilibrium is
the uniform distribution, as samples one can use the position of the chain after
“sufficiently many” steps. A natural candidate for such a chain declares as admissible
the transitions w — w’, where w(k) and w’(k) are different for at most one k. For
a suitable choice of the transition probabilities from w to the (at most ko + 1) w’
the transition matrix is doubly stochastic, and thus the equilibrium is the uniform
distribution as desired.

The technique sketched in the preceding example is generalized to a strategy to solve
this problem with Markov chains as follows.

e Find a transition matrix P such that the associated chain is irreducible and aperi-
odic and has (m;);es as its uniquely determined equilibrium distribution.

¢ Fix a “large” number k. We then know from theorem 7.4 that the probabilities pE;)

are “close to” 7; for all ¢, or — to phrase it otherwise — the algorithm

Start the chain at any i;
run it for k steps;

use the final position j as the output for a m—simulation

really produces the elements of S with (nearly) the correct probabilities.
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One might suspect that this procedure is unnecessarily complicated: would it not be
much simpler rather than to design a special P to work with a matrix where all rows are
identical with entries (m;)? Mathematically this is correct, one could even choose k = 1
in this case. For practical purposes, however, this idea is rather useless since in order to
simulate 7 (this has to be achieved) one must be able to do just this if one wants to run
the chain.

Therefore it is necessary to supplement the above description in that one wants to find
(better: one must find) P such that in addition to the above requirements a random walk
subject to P is easy to simulate.

There are some obvious questions in connection with this simulation procedure:

e What is meant precisely if one states that it is simpler to run the chain than to
simulate 7?7 Unfortunately I cannot provide a satisfactory answer. The meaning of
“simple” depends on the power of the available computers and the built-in random
generators. For the examples we have in mind even the fastest computers are unable
to simulate the desired 7 without using Markov chains.

e How does one find P? Again there is no simple answer. We will study many exam-
ples, but there is no general rule for an appropriate choice of P for a new particular
situation.

e How large must k (the number of steps) be in order to guarantee the desired pre-
cision? This is just the problem of the rate of convergence in theorem 7.4(i): how
fast does P* tend to W?

Part II is devoted mainly to the investigation of techniques which might be used
to deal with this aspect of the problem.

e Why should it be interesting to produce random elements in a finite set subject to
prescribed probabilities, i.e., what are the applications?

The answer is postponed to part III where we will study a number of examples.

Some of the methods we will study in part II have been known for a long time (like
the estimations which use the second-largest eigenvalue of the transition matrix), others
are more recent. Not all results apply to arbitrary Markov chains, for some it is assumed
that they are defined by graphs, others can only be used for Markov chains on groups.
(These latter chains will be discussed rather extensively in the chapters 15 and 16. What
is proved there can also be considered as an introduction to harmonic analysis on finite
groups.)

For more details on what will be done see the introductions to the various chapters
or the extended table of contents at the beginning of this book. Some supplementary
information can be found in the Notes-and-Remarks chapter 22.
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9  Perron-Frobenius theory

In this chapter we aim at understanding why the eigenvalues of the transition matrix
P of a chain play a fundamental role for the rate of convergence to the equilibrium
distribution. Also we will discuss some other far-reaching algebraic consequences of the
fact that a square matrix is stochastic!.

We begin with a lemma concerning the eigenvalues of general stochastic matrices:

Lemma 9.1 Let P = (pij)i j=1,..,N be a stochastic matriz. Then 1 is an eigenvalue, and
every eigenvalue A satisfies || < 1.

Proof. Since P is a stochastic matrix we know that
PA,1,.... )" =(1,1,...,1)T

so that 1 is an eigenvalue.
Now let A € C be given such that there is a nontrivial z = (zy,...,zx)" with

P(zy,...,zn)"T = Mz1,...,zN)

Choose an index ig such that |z;,| = max; |z;|. This means that all z; lie in the disk
with radius |z;,| and center in the origin. The eigenvalue equation implies that Az;, is a
convex combination of the z;, and therefore it is obvious that necessarily |[A| < 1 holds.

Here is a more formal proof:

[Allzig| = (Zmoﬂjl
i
< Y pioslal
7
< Y piosleiol
;
= [T,
hence |A] < 1. O

Simple examples show that nonreal eigenvalues of modulus one are possible, even for
P which correspond to irreducible chains: fix an N’th root of unity, say w, and consider
the V x N-matrix

0100 0
0010 0

P .= ,
1000 ---0

a deterministic cyclic walk; we have

1 The algebraic theory of such matrices is usually called Perron-Frobenius theory. The present book
contains only the very beginnings of this theory, for a more extensive study see [69].
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P(Lw,...,w¥ )T =w(l,w,...,w¥ 1T
so that w is an eigenvalue of P.

Let us now turn to properties of stochastic matrices P with strictly positive P* for
suitable k, i.e., to matrices which correspond to aperiodic and irreducible chains (see
lemma 7.3). Such chains will be of importance in the applications we have in mind.

Proposition 9.2 Let P* have strictly positive entries for a suitable k.

(i) A =1 is the only eigenvalue of P with modulus one?.

(ii) The geometric multiplicity of A = 1 is one. The eigenspace associated with A\ = 1
is spanned by (1,...,1)7.

(iii) If a nontrivial vector 7 satisfies 7' P = w", then there are a p € C with |u| =1
and strictly positive ay,...,an such that my = pay,..., TN = pay.

(iv) The algebraic multiplicity of XA = 1 is also one: 1 is a simple root of the charac-
teristic equation det(AId — P) = 0.

Proof. (i) Suppose first that not only P* but P itself has strictly positive components. As
in the preceding proof we will use a convexity argument. This time it will be important
that disks in the plane are not only convex, but strictly convez:

Whenever py,...,pny > 0with > p; =1landzy,...,2y € Cwith |z1],...,]|2n] <
rand | ), pizi| =7 are given, then z; = --- = 2.

A proof of this obvious fact is simple. Without loss of generality suppose that r =1 = Y p;z;.
If, e.g., we had 21 # 1, then the real part of z; would be at most 1 — ¢ for a strictly positive e.
But then the real part of > piz: could be estimated by p1(1—¢)+ (1 —p1) < 1, a contradiction.
Now let A with [A| = 1 be such that there is a nontrivial vector z with Pz = Az. With the
notation of the proof of the preceding lemma we know that Az;, is a convex combination
of z,,...,zN with strictly positive weights. Since Az;, lies on the boundary of the disk
under consideration it follows that z; = --- = z. Hence also Az;, = Y p;z; = z;,, and
therefore — since z;, # 0 — we have shown that A = 1.

The general case can be reduced to what has already been shown. Pz = Az implies
that P*z = A\*z, and consequently - since P* has strictly positive entries by assumption
— all z; coincide and A¥ = 1. And with P* also P**! is strictly positive so that A¥+! =1
as well. This proves that A = 1.

(i) This result has been shown as a by-product in the preceding proof.

(iii) Since 7" P = 7" implies that 77 P¥* = 77 we may assume that P itself is strictly
positive. Now recall that in the Cauchy-Schwarz inequality one has equality precisely if
the vectors under consideration point into the same direction. For the case of complex
numbers this means that |z + --- + zy| = |z1| + --- + |2n| iff 2; = a;u for a suitable
u € Candai,...,ay > 0.

This is applied here as follows:

doml = D01 piim]
i g

1

2 This result should be compared with the preceding example: this chain has a strictly positive period,
and only for this reason eigenvalues A with A # 1, |A| = 1 are possible.
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> piilm]
i

i

> oiml > b
j i
= > Iml.

J

IN

Consequently the inequality is in fact an equality, and we have |3, pjim;| = > Ipjim;l

for every i. It follows that the p;;w; and thus also the m; point into the same direction.
As a consequence every m;, being of the form > ; PjiT, will be different from zero if

at least one 7; is nontrivial, and this completes the proof of (iii).-

(Note: The result also follows from a combination of lemma 7.3 and theorem 7.4. We

have preferred, however, to provide an independent algebraic proof.)

(iv) There seems to be no way to avoid some technicalities in order to prove this fact.?
We start with

Claim 1: Let Q = (g;;) be a matrix such that 0 < ¢;; < p;; for all 4,5 and ¢;; < psj at
least once (as a short-hand notation we will express this by writing 0 < Q < P, @ # P).
Then |A| < 1 for all eigenvalues A of Q.

Proof of claim 1: Let y be a nontrivial vector and assume that y'Q = Ay'; here we
use the fact that we have the choice to deal with left or right eigenvectors. Denote by
z the vector (Jy1],...,|yn|)T. We have |A|zT < 27Q < 2T P (where “<” stands for the
coordinate-wise order), and with

NI z<Y Y pizi=2 25(Q pi) =D 2 (9.1)
i i j J i J
we arrive at [A] < 1.

But we need more, the claim is “<” and not only “<”. To this end we will show that
|A] =1 leads to a contradiction.

Suppose that |A\| = 1. The first consequence is that then 27 < 2TP, but in this
componentwise inequality there can’t be any “<” since otherwise (9.1) would produce
2% < ;%

Knowing that z7 = 2T P we can conclude from (iii) that all components of z are
strictly positive, and this finally leads to the desired contradiction: it implies that 2TQ
is strictly smaller than zT P at least at one component in contrast to z7 < 27Q < 2P
and z" = 2T P.

Claim 2: Let P be the matrix (pi;)ij=1,.,v—1 (just forget the last row and the last
column in P). Then the modulus of all eigenvalues of P is strictly less than one.

Proof of claim 2: Complete P with zero entries to obtain an N x N-matrix and call the
resulting matrix Q. Then Q and P have the same (nonzero) eigenvalues, 0 < Q < P
holds, and @Q # P is surely also satisfied since @ is not a stochastic matrix. Hence the
assertion is a consequence of claim 1.

3 If P is self-adjoint or at least similar to a self-adjoint matrix then the result is covered by part (ii)
since then the geometric equals the algebraic multiplicity. The general result is contained here only
for the sake of a complete description of the spectral behaviour of P. It will not be needed in the
sequel.
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We now turn to the proof of (iv). Let ¢(A) := det(A\d — P) denote the characteristic
polynomial of P and consider any A where ¢(\) does not vanish. Then Ad — P is
invertible, but more is true: the inverse can explicitly be described as the product of
1/¢(A\) with a matrix A(A) where each coefficient is a polynomial in A (usually A(}) is
called the adjugate associated with A\Id — P, the possibility of this easy description is an
immediate consequence of Cramer’s rule). Hence for all A with ¢(A) # 0 we have

(AMld - P)A(N) = A(\)(A\Id — P) = ¢(\)Id. (9.2)

But all entries of the matrices involved in these equations are polynomials, and since
there are only finitely many zeroes of ¢ it follows that (9.2) holds for all A. In particular
equality obtains for A = 1 and thus, if we put A := A(1), it follows from ¢(1) = 0 that
A = PA = AP. This has the remarkable consequence that all rows of A are in the left
eigenspace and all columns are in the right eigenspace of the eigenvalue 1. By (ii) and
(iii) this yields that either A is identically zero or nonzero at every component. We claim
that the second alternative necessarily holds: the element a at the end of the last row of
A is just the determinant of that matrix which arises from Id — P after cancelling the
last row and the last column; and this determinant is nonzero by our claim 2 since 1 is
not an eigenvalue of the truncated P. 5

We need, however, a little bit more. Call — with the notation of claim 2 — ¢()) the
characteristic polynomial of P. The zeroes of ¢ lie in {JA < 1}, and qE(/\) is strictly
positive for large positive real A. Hence, by continuity, ¢ is strictly positive on [1,00],
and this implies in particular that a > 0. Therefore, by (ii) and (iii), all components of
A are nonzero and positive.

To finish the proof we differentiate the matrix equation (9.2). With B(A) := “the
coordinate-wise derivative of A()\)” we get

A(\) + (\Id — P)B(\) = ¢/(\)1d,

so that in particular A+ (Id— P)B(1) = ¢’(1)Id holds. We multiply this matrix equation
from the left by any strictly positive 7| for which 77 = 7' P; such a ' exists by lemma
9.1 and (iii). And now the vector equation 7'.4 = ¢'(1)7" proves that ¢'(1) # 0 as
claimed. a

Combining the preceding results with standard matrix theory we arrive at

Theorem 9.3 Let P be a stochastic N x N-matriz such that P¥ is strictly positive for
a suitable k. Then there is an invertible matriz S such that S~1PS can be written as

1 0 0 0

0 J(/\z, 712) 0 L 0

0 0 J()\3, n3) tee 0

0 0 0 oo J(Ary )

Here J(\,n) stands for a typical Jordan block, i.e., for the n X n-matriz

A1 0 --- 00
0O x1.-- 00
0 0 0 - Al
0 0 0 - 0 A
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and the symbol “0” denotes matrices of suitable dimension with zero entries. All |z, ...,
|Ar| are strictly less than one.

If P is similar to a self-adjoint matriz, then the eigenvalues A are real, the dimensions
n, of the Jordan blocks are one and the A may be enumerated such that 1 > Xy > A3 >
o> A > -1

This theorem will be essential to derive mixing rates which are optimal, at least theo-
retically (see the next chapter). In these investigations the limit behaviour of P* will be
of interest. That theorem 9.3 can be used when ezplicit formulas are needed is illustrated
by the following

Example: Let a and b be numbers with 0 < a, b < 1. We define P by ( 1 ; a 1 fL_ b )

As eigenvalues we obtain 1 and 1 — (a + b), hence P will be similar to the diagonal ma-

. = 1 0
trix P._—(O 1= (a+b)

a nontrivial solution of PS = S P; this set of four linear equations gives (up to a constant)

S=(1 _;/a).Hence 5—1:<b/(a+b) a/(a+b) )

). A transformation matrix S can be calculated by finding

1 af(a+b) —a/(a+Db)

Finally, from P = SPS™!, we get P¥ = SP*S~! and thus the explicit formula

Pk_#(b+a[l—(a+b)]k a—a[l—(a+b)]’°>
Ta+b\ b=bl-(a+b)]* a+b[l-(at+d)*

All qualitative and quantitative questions concerning the limit behaviour can now be
answered easily.

Exercises

9.1: Let A and g be complex numbers such that |A|] < |u] < 1. Does there exist an
irreducible stochastic matrix P such that A and p are eigenvalues of P? Is it possible
to find P such that p is the eigenvalue with maximal modulus among all eigenvalues
different from 17

9.2: Suppose that P = (p;j)i,j=1,...,~ is a stochastic N x N-matrix such that, for a suitable
r, {1,...,7} and {r+1,...,N} are closed sets for the associated chain. How are the
eigenvalues of P related to the eigenvalues of (pij)i j=1,...r and (pi;)i j=r+1,...N7

9.3: Let an irreducible chain be given. Prove that \* (= the maximum of the eigenvalues
different from 1) does not necessarily coincide with the absolute value of the second-
largest eigenvalue.

9.4: Let P = (pij)i,j=1,.,~ be a stochastic matrix. The states are labelled such that

the 7 in {1,...,7} belong to minimal invariant subsets and the ¢ in {r+1,..., N} are
transient. Now let A be an eigenvalue of P such that |A| = 1. Then, for any (7y,...,7n)
such that (m1,...,78)P = A(m1,...,7n) it follows that 741 = - =75y = 0.

9.5: Let P and X be as in the preceding exercise. Prove that A is a d’th root of unity,
where 1 < d < N. Conversely, if 1 < d < N, every d’th root of unity can be an eigenvalue
of a suitable stochastic N x N-matrix.
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9.6: Let the stochastic matrix P be such that P* is strictly positive for a suitable number
k. Then all eigenvalues A of P with |A| = 1 satisfy A\F = 1.
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10 Rapid mixing: a first approach

Here we start our investigations of rapid mixing for chains which are aperiodic and
irreducible: how fast do the P* tend to W, the matrix which contains in each row the
equilibrium distribution? The structure of P has been described in the last chapter, and
from this description it follows that the rate of convergence to W will depend on the
number :

A" :=max{|A| | A is an eigenvalue, A # 1}
which is known to be smaller than one.

The qualitative argument is as follows. For a suitable S the matrix S~ PS is built
up from blocks on the diagonal, the first one contains only the number 1, the others
are matrices J(A,n) with |A| < 1. Therefore the k’th powers of S™!PS will tend to
a matrix S’ which has a “1” at the top-left position and for which all other entries
vanish. It remains to remark that the rate of convergence is that of the “worst”
(J(\,m))*, 1e., it is determined by A*. Also,

limP* = SS'limPFSs!
S(limS~'PS)S™!
S$S'S71,

and this is a matrix with identical rows.

We will start our investigations in the second section below by making this precise.
There we will restrict ourselves to the special case where P and the equilibrium dis-
tribution are in detailed balance — the definition will be introduced shortly —, which in
particular implies that we have to deal with self-adjoint matrices only; in this way we
avoid the notational difficulties when treating powers of Jordan blocks. Such P are the
favourite candidates for our purposes, they cover many of the applications we have in
mind. We provide the definition and collect some properties in the first section.

The convergence theorems in section 2 are in a sense the best that can be done by using
eigenvalues. There are, however, two drawbacks. The first one is that the results which
describe the precise asymptotic order of convergence can be proved only in the case of
detailed balance. This is less important since the more interesting upper bounds could
also be obtained for more general P. But it is extremely unsatisfactory that everything
depends on A*, a number which in most cases cannot be determined explicitly. Therefore
the theorems in section 2 are not the end of the story, in the following chapters they will
be complemented by

e results by which one gets at least reasonable upper estimates for \* and

e bounds which do not use eigenvalues.
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In the present chapter — in the third section — we will only point out how an upper
bound for the rate of convergence can be read off from the entries of P directly. This
is universally applicable, the provable rate of convergence, however, is rather poor in
the case of large state spaces. For reasonably large S, however, the direct approach has
many advantages. We will present a first application to examples from renewal theory in
section 4.

This chapter will be introductory. Nevertheless the results will suffice to illustrate the
typical difficulties with which one is faced in this area. For example, an estimate is of little
practical use if one cannot identify the relevant numbers which are involved (like A*).
Also we will see that often there are several meaningful choices to define what “is close
to” means. Here we are interested in how fast P* approximates W: should all lpl(-;.c) — ;]
be small (the absolute error), or is it more desirable to measure the approximation by the
size of the numbers [pl(;) —mj|/m; (the relative error)? Or does it suffice to know this only
for a particular ¢ and all j (the error with respect to a fixed starting position)? Should
one demand small 3, IPE;) —m|?...

Having settled this question one aims at proving theorems of the form: whenever
k > ko, then the approximation is better than . However, such a result is rather worthless
if ko is gigantic.

This, of course, often happens when one tries to provide rigorous results for algo-
rithms in applied mathematics “which work somehow”. Here is a quotation from
[44], p. 7, a book which deals with the numerical treatment of differential equations:
“The statement falls into the broad category of statements like ‘the distance between
London and New York is less than 47 light years’ which, although manifestly true,
fail to contribute significantly to the sum total of human knowledge.”

Hence it will always be desirable to complement the upper by lower estimates. Only
then one can be sure that — up to a constant which hopefully is of reasonable size — one
has got the best possible result.

Detailed balance
Let P be any stochastic matrix which we will assume to be irreducible. Suppose that
there is a probability vector A = (A;,...,Anx) " such that

/\ipij = /\jpji for all 7,,] (101)

This has some remarkable consequences. The first is that A necessarily coincides with the
equilibrium distribution 7 from theorem 7.5 since (10.1) simply implies that ATP = AT.
Thus, to avoid confusion, we replace (10.1) with the condition

TiPij = TjPji for all\i,j. (10.2)

Now imagine that the chain is in equilibrium, either by choosing m as the starting
distribution or by starting arbitrarily and waiting for a very, very long time. For arbitrary
irreducible and aperiodic chains this means that the probability to find the chain in state
1 is m;, no matter at what step you decide to have a look at the chain. What about the
probability to observe a certain jump, from i to j, say? This is just the probability to find
the chain in ¢ times the conditional probability to jump from i to j, that is m;p;;; this is
the meaning of the numbers in (10.2). For general chains, however, m;p;; will be different
from 7;pji, nobody really expects that jumps from i to j are equally likely as those from
j toi.
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As an example consider a deterministic cyclic random walk on {0,..., N —1}
with N > 3: pii+1 = 1. If the chain is in equilibrium, that is if all states
are equally probable, we “expect” a jump from 7 to 7 + 1 mod N, jumps
into the other direction are not possible. Of course this expectation can be
verified numerically: m;p; ;41 is 1/N whereas m;11pi+1,; is zero. (By a simple
modification we also could have an example with an irreducible and aperiodic
chain: pass from P to (Id+ P)/2.)

Remarkably this reversal of the order of jumps can always be modelled. Start with an
irreducible P and an equilibrium distribution 7 and try to find another stochastic matrix
P with the same equilibrium and the following property: the probability of jumps from
1 to j subject to P is precisely the probability to observe a transition from j to 7 if the
chain is driven by P. By the above remarks this means that

TiDij = Fjﬁji for all 7,,] (103)

has to hold, and - surprisingly - such a P always exists: one simply has to take (10.3) as
the definition of P. Then the properties of P and  easily imply that P is a stochastic
matrix with 7T P = 77 . Also this new matrix is irreducible (and even aperiodic if P is)
by lemma 7.3 since its entries are positive multiples of the p;;.

For obvious reasons the chain associated with P is called the time reversal of the
original chain.

It is time for a formal definition:

Definition 10.1 If an irreducible stochastic matrix P and a probability vector 7 satisfy
mipij = 7;p;; for all 4, 7, then one says that P and 7 are in detailed balance (or that P is
reversible).

For later use we collect some properties the easy proofs of which are left to the reader:

Proposition 10.2 Let P be an irreducible matriz with equilibrium . Denote by D the
matriz for which di; = \/m; and for which all other entries vanish.

(i) P and 7 are in detailed balance iff DPD™! is a symmetric matriz. In particular
it follows that there exists a basis of RY which consist of eigenvectors of P if
this condition is satisfied.

(ii) Denote by H, the N-dimensional real vector space equipped with the scalar prod-
uct

(($1,...,$N)T,(y1,. "yN W:—Zﬂ.leyu

and associate with P the linear map Tp : Hx = Hx,(2:)i = Pz = (3; pijz;)i-
Then P and w are in detailed balance iff Tp satisfies (Tpz,y) = (z, pr) for
all z,y, i.e., iff Tp is a self-adjoint operator on the Hilbert space (Hyr, (-, )x).
(i) If P and © are in detailed balance, then the matriz (m;p;;)i; is symmetric.
Conversely, let (a;j); j=1,..,N be a symmetric matriz with nonnegative a;; such
that Z” a;; =1 and m; = Z a;j is strictly positive for every i. Then, with
pij = aij/m;, the matriz P := (p;;) is a stochastic matriz with equilibrium
= (n1,...,7n)", and P and 7 satisfy the detailed balance condition. If, for
some k, A" has strictly positive components, then so has P*. Thus there are
essentially as many P which are in detailed balance with their equilibria as there
are (sufficiently nontrivial) symmetric nonnegative matrices.
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Remark: Let (-,-) be a fixed scalar product on RY and suppose that the map Tp from
the preceding proposition is self-adjoint with respect to (-, -). Then the eigenvalues of Tp
are real and there is an orthogonal basis z1,...,zn of eigenvectors!. If the z; were also
orthogonal with respect to (:,-)» then it would follow that Tp is (-, -)—self-adjoint and
thus P would be reversible. In general, however, much less can be shown: if (without loss
of generality) z; is an eigenvector with associated eigenvalue 1, then (z1,z;)r = 0 for
1=2,...,N.

Denote by S the matrix for which the i’th column is just z;. Then S~! PS is diagonal
with the eigenvalues on the diagonal. Hence (S™'PS)* = S~!P*S has the k’th
power of the eigenvalues on the diagonal. If k tends to infinity this proves that
S™'WS is the diagonal matrix with 1,0,...,0 on the diagonal. And this yields

(21,7)r = ((cc, ..., 0) i) =cm Ty = 0
for ¢ > 1.

Here is a concrete example of a P with real eigenvalues which is not reversible. Define,
fora,b>0withb<a,2a+b=1,

a a—b 2b
P:=| a+b b a-b>b
0 a+b a

P is doubly stochastic, hence the equilibrium is the uniform distribution, and we see that
P is not reversible if b > 0. On the other hand, the eigenvalues of P are easily calculated
if b = 0: we obtain 1, 1/2, —1/2. And thus for small positive b we have a chain which
is not reversible but nevertheless has three different real eigenvalues and thus a basis of
eigenvectors.

An estimate using eigenvalues

Suppose that an aperiodic and irreducible P is such that for a suitable invertible
matrix S the product S~!PS is diagonal. As diagonal entries of this matrix we find the
eigenvalues of P, that is one entry is one and the others are less than one in absolute
value. Therefore the rate of convergence of the powers (S~!PS)* = S~1P*S is known,
and this allows one — in principle — to derive estimates for the difference between P*
and W in this general situation. However, since we want more explicit bounds we confine
ourselves to the restricted class of reversible chains.

Let P be irreducible, aperiodic and reversible with equilibrium 7 7. We define 6(k) to
be the mazimal relative error when approximating the components of © by the pﬁf) :

5(k) = max|pj) —mjl/m;,

and we recall that A* stands for the maximum of the |A|, where A runs through all
eigenvalues of P which are different from 1. We then claim:

! Note that the converse is also true: if Tp has real eigenvalues and if it is possible to find a ba-
sis 1,...,zN of eigenvectors, then there is a scalar product such that Tp is self-adjoint and the
Zi,...,ZN are orthonormal.
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Theorem 10.3
(i) (k) < (A\*)*/min; m; for all k.
(ii) (k) > (A\*)* for all even k; if all eigenvalues are nonnegative then this inequality
holds for all k.

Proof. (i) With the notation of proposition 10.2 we denote by A the symmetric matrix
DPD~1. Choose an orthogonal matrix S = (s;;);; such that B := SAS™! is diagonal.
Note that this means that the rows e[, ... ,eI, as well as the columns fi,..., fy of S are
orthogonal with respect to the ordinary scalar product on RY : ((a;), (b)) := Y, asb;.
Also, S=! = ST holds so that, with Kronecker’s §-notation, e] f; = &;;.

Without loss of generality we may assume that

1 0 0 --- 0

0 X 0 --- O
B={| . . . -

0 0 O AN

with 1> [As| > --- > [Awl.

From SA = BS it follows that the e] are left eigenvectors of A with associated
eigenvalue );. In particular e] A = e and thus (e D)P = e] D hold, and consequently
there is a number ¢ such that e] D = c¢r . Hence e] = cr' D71, and therefore, since e
as well as 7" D! are normalized with respect to (-, -), we know that ¢ = 1. We may

and will assume that c =1, i.e., e = (V71,...,/TN)-
The e are orthonormal, i.e., eTeJ = & Hence the N x N-matrix e; eT has the

property that e;e] e; = (ej,ei)ei. Thus, by hnearlty, eie] T = (z,e;)e; for all z, and we
get (for arbitrary k)

Abz = A%(D (z,ei)es)
= Z(zl,ei)Akei

ixﬂz,ei)ei

= i)\feie:x.

Therefore the matrices A* and 3, A¥e;e] coincide, and this provides a useful repre-
sentation of P*:

Pt = (D7'AD)* = DT'AFD = " MD7lese] D.

The first summand is easy to evaluate since we know e;; the matrix D~ 16161 D is just
the matrix lim P* = W each row of which coincides with 7.
Written explicitly this means that

pl] =75 4+ /T[T Z)\, 813815,

and it follows with the help of the Cauchy-Schwarz inequality that
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k) N
lpﬁj - ] 1
—_— = —= Msisi;
. \/w—wj'; £suis|
N
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< iy
= min[ m ; Isllllslll
(A
< . .
< Sl
B (/\*)Ic
- minlm'

This proves that d(k) < (A\*)¥/ min; ;.
(ii) It follows from the above calculations that

3(k)

v

maxilp(k) — 7]
g omj A J

L
_ 1 kg2 1
= mjax [leéz\, sLJ]

Now suppose that k is even or that all A; are nonnegative. Then we can continue with

v

1 *\k 2
mjax[;;(/\ ) szj]
1

— /\* k il 2.
( ) mJa.x ;i 32]1

where we have made use of the fact that A* = |Az| > |A3] > ---.
We claim that max; s3;/m; > 1 (which will finish the proof): otherwise s3; < m; would
hold for all j in contrast to 1= 3", s3; = 3 7;. o

The proposition shows that, as it was to be expected, the order of convergence is pro-
portional to (A*)*. Note that the more interesting upper bound involves the equilibrium
distribution, and therefore the result will be rather useless if there exist no estimates for
the minimum of the ;.

However, in many applications 7 is known explicitly, often it will be the uniform
distribution. In this case the theorem gives the best possible bound, namely an estimate
of order N(A\*)¥. Even this looks not promising if the cardinality NV of the state space is
large, but one should have in mind that (A\*)*¥ decreases rapidly if A\* is not too close to
one.

In order to apply the proposition one needs to know A* or at least some reasonable
estimates. We will see in the next chapter how this can be achieved by introducing
the “conductance”, a number associated with the chain which sometimes can be easier
calculated than the eigenvalues but which nevertheless helps to bound A* away from one.

Here we only will indicate how the problem can be transformed into an optimization
problem. Suppose that — as before — the chain is reversible and that we know for some
reason that all eigenvalues are nonnegative.
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In general this might be difficult to decide. However, if P is irreducible, aperiodic
and reversible, then P := (Id + P)/2 has the same properties and even the same
equilibrium distribution; this can be checked easily. The eigenvalues X of P are just
the numbers (1 + \)/2, where A runs through the eigenvalues of P. Consequently
all of them are nonnegative.

Note that the passage from P to P means a “slowing down” of the chain: the chain
behaves essentially as before, but on the average there are only k real moves among
2k possible steps.

Then \* is the second-largest eigenvalue, and this number can be determined as follows.
Let Ay =1 > Xy > ... > Ay > 0 be the eigenvalues in decreasing order, we are interested
in \2. Choose an orthonormal basis ey,...,en of eigenvectors of. A := DPD™!, where
RY is provided with the usual scalar product (-,-); we will assume that Ae; = A;e; for
i=1,...,N.

Denote by V the linear span of the vectors eg,...,en. V is just the orthogonal com-
plement of Re;, a typical normalized element z of V' has the form z = Zf; a;e;, where
the a; are real with 3, a? = 1. Consequently (z, Azr) = Zf—_z Xia?, and we see that this
number assumes A as its maximal value.

A similar argument holds for arbitrary self-adjoint matrices, and we arrive at

Proposition 10.4 Let (-,-) be any scalar-product on RV and A a matriz which is self-
adjoint with respect to (-,-). If the largest eigenvalue is simple with associated eigenvector
e, then the second-largest eigenvalue )\ satisfies

(r, Az)
(z,7)

/\2=max{ lx_Le,a:;éO}.

Estimates which use the entries of P directly

We start with an arbitrary stochastic matrix P and consider, for £ = 1,..., the mini-
mum and the maximum of the j’th column of P*:

®) .— min pt® (k) . (k)
m;” = minp;;’, M;™ = maxp;; .

A convex combination of some numbers always dominates their minimum, and thus

(k+D)

)

_ . (k
= milll Xl: pilplj)

> miny_ pum{”
l

k)

= minp
J i

M <m? <. <M < MY, (10.4)
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Now suppose that P is irreducible and aperiodic. Then the pg?) will tend to m; with
k — oco. From (10.4) it follows immediately that with p(;“) also 7; lies in the interval
[mgk),M](k)], and therefore |7; — pu)] can be bounded by M; (k) _ fik). We will try to
find estimates for this “variation in the j’th column of P*”.

Let 6 be the minimum of the p;;, 4,5 = 1,...,N. From Z .pi; = 1 it follows that in

every row there is a j with p;; < 1/N and thus 6 can be bounded from above by 1/N.
Hence 7 := 1 — N§ lies between 0 and 1, and we claim that

(k+1) (k+1) (k) (k)5 .
M; - m; <MY —m;7);
this implies that
(k+1) (k+1) koar(1) 1
Mj —-m; <7 (Mj —-m; ),

and we get geometrically fast convergence of pgf) tom; if 7 <1

To prove the claim we fix arbitrary iy and jo. It will be convenient to denote by A’
(resp. A") the collection of those j in {1,..., N } where p;i;; > Djoj (resp Digj < pm) and
to abbreviate the clumsy expressions Z ear---and Yo a . by Y. and 3

First we observe that

! n
D (Pioj = Pios) + Y, (Pioj = Pios) = D Pioj = Pioj = O-

J
Also, from Y"piy; + ¥'pjoj > N6 and 3 'pig; + 3" pigs = 1, we get

! n !
> (Pioj —Pios) =1=3_ pij — D Pioj < 1= N§,

and these calculations imply that, for arbitrary s,

k+1 k+1 k
Pfos ) Pﬁ'os )= Z(pioj _pjoj)pg‘s)
j

Z,(pioj — Pios)P}Y + Z"(pioj ~ Pioi)PY
ZI(Pioj = Pioj) MM + Z“(Pioj — Pioj)m{Y
Zl(pioj — Djos) MP) — Zl(mo]‘ — Djoj)mH
[ (Bing = pis)] (M = i)

< T(MP —mP).

| VAN

This holds for arbitrary g, jo, and our claim follows.
With these preparations at hand we are ready to prove

Proposition 10.5 Let P be an irreducible and aperiodic stochastic matriz, and let kg be
such that P*o is strictly positive?. Denote by § the minimum of the entries of P* and
put T :=1— N§; note that 0 < 7 < 1.

(i) Ifko =1, then lpg) — ;| < 7F for all states i,j and all k.

2 Recall that such a kg exists by lemma 7.3.
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(ii) In the case ko > 1 this inequality has to be modified:
Pl = 5] < (1/7)7Hko.
Therefore the pg.c) approach w; for every i geometrically fast.

Proof. Part (i) is a direct consequence of the calculations preceding the proposition, one
1 1 . 1 1

only has to note that MJ( )~ mg ) <7 (f MJ( ) = Digj, then 1 = MJ( ) 4+ Zs;éjpio,; >

MM + (N —1)6 so that M) —m{? <1 N§).

To prove (ii), we need an elementary fact about decreasing sequences. Let (cx) be a
decreasing sequence of nonnegative numbers such that ¢k, < 7% for some fixed ko,
7 < 1 and all k'. If then k is arbitrary we may write k = k'kg + s with an s < kg, and
thus .

Ck < cprng S TF = (TV/RoYkrms/ko < (p1/koyk /p.
Here, this has to be applied to the sequence
Ck = M}k) - mj(.k).

Monotonicity has been shown above, and the estimate follows by passing from P to P*°
and an application of (i). a

A comparison of theorem 10.3 with the preceding proposition reveals that they deal
with different aspects of closeness. Whereas the former bounds the relative error the
latter makes assertions about the absolute difference between the pg) and the 7;. An-
other difference is that theorem 10.3 provides the correct order of convergence whereas
proposition 10.5 might produce poor bounds®.

To illustrate proposition 10.5 consider the simple example

1/2 2
P"Z(l 3)'

Here we may choose ko = 1 with § = 1/4 so that 7 = 1 — 2/4 = 1/2. The equilibrium is
71 = (1/3, 2/3), and thus proposition 10.5 predicts lpgf) -1/3|, |p§§) —3/4| < 1/2%. An
explicit calculation shows that

2 4
P° = —13 ( 5 11 ) s and therefore P* = 25 ( 85 171 ) .

Thus, for example, Ipﬁ) —m| =|86/256 — 1/3| = 1/384, but from the proposition we
only know that the error is < 1/16.

With some care it is sometimes possible to get better estimates. Denote by di, the
minimum of the coefficients of P* and put 7y, := 1—Ndk,. Then the error in the k’th step
can be bounded (essentially) by (7x,)*/*°, and it might happen that — for two admissible

S . 1/10 9/10
ko, k; — the numbers (1y,)*0, (74, )** differ. Here is an ezample: for P := < 5410 5;10 )

we have P2 = < ig;gg gg;gg ) . Hence §; = 1/10,71 = 4/5 and é; = 15/50, 15 = 2/5;
and since 2/5 < (4/5)? it is better to apply proposition 10.5 with ko = 2 rather than
with ky = 1. Usually one will try to find a compromise between choosing kg large (=
good bounds, but many calculations) or small.

3 If, e.g., P is strictly positive with identical rows, then the pg.“) coincide with the 7;. But 7 in proposition
10.5 is zero only if all rows of P correspond to the uniform distribution.
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We are now going to present a second approach without eigenvalues, it is based on
contracting maps and Banach’s fized point theorem.

Let (M, d) be a non-empty metric space and T : M — M a map such that d(Tz,Ty) <
Ld(z,y) for some L < 1 and all z,y. If z¢ is a fized point of T, i.e., if Txg = xo, then

d(T*z,z0) = d(T*z, T*z¢) < L¥d(z,z0) (10.5)

for arbitrary € M and all k. Therefore the iterations T*z converge geometrically fast
to zg, and in particular it follows that there is at most one fixed point. Banach’s fixed
point theorem asserts that a fixed point in fact exists if (M, d) is assumed to be complete.

This will now be applied to investigate the convergence of a Markov chain to its
equilibrium. We fix an arbitrary stochastic N x N-matrix P. The complete metric space
M which will be of importance here is the set

M= {(1:1,...,1:1\{) l T; 2 O’ Zzi = 1},
a subset of RY provided with the I'-norm*. The map T : M — M is defined by

T : (xl,...,xN) > (Z-’Ejpjl,---v ijij)~
j J

Lemma 10.6 Denote by R; the i’th row of P, i=1,...,N, and put

1
Cp = 5 max||R; — Ryl
]

(i) The I*-diameter of the convez hull K of the R; is 2Cp.
(ii) 1Tz — Tyl < Cpllz —yll for z,y € M.
(iii) Let zo be a fized point of T. Then

IT*z — zoll» < 2(Cp)*
for all x and all k.

Proof. (i) Denote the diameter of K by C'. Then 2Cp < C’ holds by definition. Fix any
Rj,. All R; lie in the (convex!) ball B(R;,,2Cp) with center R;, and radius 2Cp by the
definition of Cp. Thus K C B(R;,,2Cp), or ||z — Rj,|ly < 2Cp for all z € K. Now fix
any zo € K. By the first part all R; are contained in the ball B(zo,2Cp) so that — again
by convexity — K C B(zg,2Cp), i.e., ||zo — yl|l1 <2Cp for all y € K.

(For those who have some background in convexity we also include a “one-line-proof”:
the assertion is a consequence of the fact that a convex function (here: (z,y) — ||z —yl|1,
from K x K to R) assumes its maximum at an extreme point; note that the extreme
points of K x K are of the form (R;, R;).)

(ii) Let ai,...,an be real numbers such that 3 a; = 0, we claim that

I aiRilly < Cpll(ar, ---,anw)lh-
i

4 That is ||(z1, - .-, zn)ll1 = |z1] + - + |z N
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Without loss of generality we may assume that ||(ay,...,an)||i = 2. Denote by 3" (resp.

5.") summation over those indices j where a; > 0 (resp. a; < 0). Then 3"'a; = -"a; =

1 so that the vectors z := 3 'a;R;, y := —5."a;R;, being convex combinations of the

Rj, lie in K. Hence, by (i), 2Cp > ||z — y|l» = || 2_ a; R;||1, and this proves the claim.
For the proof of (ii) it only remains to consider, for given z,y € M, the vector

(a1y...,aN) =T —y.

(iii) This follows from (10.5) and the fact that the diameter of M is two. a

Now there are two possibilities to proceed further. The first one is to take the existence
of an equilibrium for granted (theorem 7.4):

Proposition 10.7 Let P be irreducible and aperiodic with equilibrium .
Then Y, Ipt) — m;] < 2(Cp)* for all i and all k.

Proof. This follows from part (iii) of the preceding lemma, one has to apply this assertion
to zo = (m1,...,7n) and £ = (0,...,0,1,0,...,0) with the “1” at the 7’th position. O

Also we can apply Banach’s theorem to get at the same time the existence of the
equilibrium and geometrically fast convergence:

Proposition 10.8 Let P be irreducible and aperiodic, choose ko such that P*o is strictly
positive®. Denote by C the number Cpr, (= 0.5 times the mazimal I -distance between
the rows of P ). Then:

(i) C < 1; therefore, by lemma 10.6 (ii) and Banach’s fized-point theorem, there is

a unique fized point 17 = (m1,...,7n) of T* in M, where T : (z1,...,TN) —
(z1,...,zN)P.
(ii) = also satisfies (m1,...,mN)P = (m1,...,7n) So that it is the equilibrium distri-

bution. One has
& 2
Ej Py =il < 50”“

for all i and k.

Proof. (i) This is clear: if two vectors z, y have have strictly positive components, then
llz = y|l1 < l|z|l1 + ||y||1- For the case under consideration this means that each two rows
have an [!-distance which is strictly less than two.
(ii) From

T*(T(xT)) = T** (x ") = T(T*(x 7)) = T(x")

it follows that both 7" and T'(7 ") are fixed-points of T7%°. Thus, by uniqueness, T'(7 ") =
T

w'.

Now let z be the vector (0,...,0,1,0,...,0) (with 1 at the i’th position) and k an

arbitrary integer. We write k = rko + k' with 0 < k' < ko and r € Ny. Then

k
ST -ml = 2P x|l
J

llzP* — T P*|ly

5 Cf. lemma 7.3.
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(z = aT)Prho+ ||,
(@ = xT)PR |,

< Cllz ==
< 20k=K)/ko
2
S ’5 Ck/ko:
and the proof is complete. a

An application: bounds in the renewal theorem

As an application of the preceding results we want to find reasonable bounds for the
rate of convergence in the renewal theorem. Recall that we have introduced the basic
definitions at the end of chapter 6:

o We assume that we are given nonnegative numbers f1, f2,...such that > f; = 1. In
order to be able to work with matrices and to arrive at an irreducible and aperiodic
chain we will assume that there is an N such that f; = O fori > N and f; > 0
fori=1,...,N. (It is not too hard to get rid of these restrictions, in the general
situation, however, there arise some notational and technical complications.)

e The f; are used to play the following “game”: start at zero, and in every step move
from n to n + m with probability f,.

¢ Denote by p, the probability that a player meets position n. Then the p, satisfy the
recurrence relations on page 46, and they converge to 1/p:=1/(1f1 +---+ N fn).

How fast do they converge? For example, how close to 1/7 is the probability that a
player in the two-dice-game described at the end of chapter 6, page 46, will meet the
position 101, say?

To deal with this problem, we will transform it such that the |px — 1/u| correspond to
certain ngc ) - 7| for a Markoy chain on a finite state space. The idea is to pass from
an investigation of single py to a study of blocks px+1,...,Pk+N:

Lemma 10.9 Define a matriz P to be the N ’th power of

0 1 0 - 0
0 0 1 - 0
Q=1 : : :
0 0 0 -1

In N1 N2 0 A

Then P is an irreducible and aperiodic stochastic matriz such that

Pk+N Pk

Pk4+2N -1 Pk+N~1
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Proof. The recurrence relations for the p; (page 46) may be rephrased as

Pk+1 Pk
=Q : )
Pk+N Pk+N~1
and by applying this relation N times it follows that multiplication by P = Q" describes
the transition from (pg,...,pksnN—1)" t0 (PkeN,---,Pks2N—1) - With Q also P is a
stochastic matrix, and since all f; are strictly positive the same is true for all entries of
P. Hence this matrix is irreducible and aperiodic. O

Let us put pg := 1 and p; := 0 for negative . Then (10.6) also holds for k = —=N + 1,
and thus the vector (prn+1,---,P(r+1) ~) T is the last column of P" (= the product from
the right of P" by (p—n41,-.-,00)" = (0,...,1)T) for every r. And therefore the distance
of the prN+1,- -+, P(r41)N to TN (= the N’th component of the equilibrium) is precisely
the distance of the pg\),, ceey pm\, to that number. In this way we get bounds for the
convergence of the renewal sequence by using the estimates developed in this chapter.

E.g., from proposition 10.5 we get the following qualitative version of the discrete renewal
theorem:

Proposition 10.10 Let P be the strictly positive matriz of the preceding lemma, by &
we denote the minimum of its entries. Then the distance of the prn+1,---,P(r+1)N tO
1/u can be bounded by (1 — N§)™.

Here is an example, we consider the case f; = 1/10, fo = 3/10, f3 = 6/10. Then

1 0 10 O 1 600 300 100
Q= T 0 0 10 | andthus P= 1000 60 630 310
6 3 1 186 153 661

We have N§ = 81/100, and thus we get the information that after 3r steps the p; are
close to 1/(f1 + 2f2 + 3f3) = 2/5 with an error of (81/100)".

Similarly one can use proposition 10.8, by this result we can bound the distance by
2(549/1000)".

Exercises

10.1: Prove what has been claimed about the existence of the time-reversal chain: p
exists for irreducible P, and P and P have the same equilibrium distribution.

10.2: If P is a doubly stochastic (resp. a symmetric) irreducible matrix, then so is P.
10.3: Let P be an arbitrary stochastic 2x2-matrix. Under what conditions on the entries
is P irreducible? Calculate for these P the unique equilibrium and provide an explicit
form of the time-reversal chain in terms of the entries of P.

10.4: Why is it necessary to restrict the definition of the time-reversal chain to irreducible
chains?
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10.5: In proposition 10.2 we have identified P with an operator T on the Hilbert space
H,.. What is the relation between the adjoint operator T and the time reversal of P?

10.6: Let an irreducible and aperiodic stochastic matrix be such that all rows are
identical. Does it follow that P is reversible?

10.7: Identify the reversible chains among the examples of chapter 2.

10.8: Prove that a strictly positive doubly stochastic matrix is in detailed balance iff it
is symmetric.

10.9: Prove the assertions of proposition 10.2.
10.10: Consider the irreducible stochastic matrix

1 11 8
Pzﬁ 3 3 4
5 5 0

Use the results of this chapter to decide how fast the rows of P* tend to the equilibrium.
10.11: Let a renewal process be defined by

fi = fo =1/100, f3 = 98/100.

What can be said about the rate of convergence of the p;?
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11 Conductance

The origin of the technique we are going to describe now lies in graph theory ([7], [8])
where the relation between the second-largest eigenvalue and certain structural properties
of the graph under consideration was investigated first. This was extended to the Markov
chain setting in [2].

The idea is to associate a constant — the conductance — with a Markov chain which mea-
sures the “strength of mixing”. The definition is rather natural, it is, however, surprisingly
difficult to prove rigorously that and how the conductance is related to the convergence
of the chain to its equilibrium distribution. It will be shown that the knowledge of the
conductance is essentially as good as information about the size of the second-largest
eigenvalue. In view of proposition 10.3 this is not precisely what is needed since the
second-largest eigenvalue A2 will not necessarily coincide with A*, the maximal modulus
of the eigenvalues which are different from 1. However, this difficulty is easy to remedy
since A* = Ay will hold if all eigenvalues are positive, and this can be achieved by passing
from P to (Id + P)/2.

But there remains another problem, namely to determine the conductance for a given
chain numerically. A tremendously large number of calculations has to be done — about
2NV if the state space has N elements —, and therefore a naive approach will usually
not be successful. But one may find at least reasonable bounds for the conductance by
a technique which was discovered by Sinclair (see [70], chapter 3.1), the method of the
canonical paths.

These introductory remarks are also thought of as a schedule for the present chapter, we
start with

Definition 11.1 Let P = (p;;); j=1,...~ be an irreducible, aperiodic and reversible stochas-
tic matrix with equilibrium (7y,...,75)T. For T C S := {1,..., N} we define

Cr:= Zm and Fr := Z TiDijs
ieT i€T,j¢T

these numbers are called the capacity of T and the ergodic flow from T to S\ T, re-
spectively. &7 denotes the quotient Fr/Cr, and the conductance of P (or the associated
chain) is

= Inin max{®r, ®s\1}-

In order to see why this quantity can serve as a measure of mixing it is helpful to
understand the probabilistic meaning of Ct, Fr and ®7. Fix T, start the chain anywhere
and wait for some time. Then the chain will be close to its equilibrium, that is the
probability to find it in a certain state i is (approximately) m;, and consequently Cr
is the probability that the chain occupies some position in 7. Since we have already
convinced ourselves' that m;p;; is the probability to observe a jump from i to j it is clear

! See the discussion following (10.2).
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that with probability Fr one sees a transition from T to its complement. And therefore
&1 is a conditional probability: how likely is it that the chain leaves T in the next step
under the condition that it is in fact in T now? Hence a small &1 means that T is
something like a ¢rap for the chain, and therefore it is to be expected that a good mixing
rate will be related with a big conductance.

Note, however, that both T" and S\ T are involved. Thus a high conductance @ is
compatible with a small ®1, for some Ty provided that this is balanced by a big

@T\To .

Since P is reversible, the numbers Frr and Fg\r coincide. Therefore &7 will be bigger
than ®g\r iff Cr is smaller than Cs\7. But C7+Cs\r = 1, and therefore the conductance
could have alternatively been defined as

¢ :=min{®r | T C S,0< Cr <1/2}.

Let us consider some ezamples. Suppose first that P is such that all rows are identi-
cal, they then necessarily will coincide with the equilibrium 7 7. In this case we have
Fr = CrCs\r so that ®r equals Cs\r, and therefore the conductance @ is given by
min{} ;o7 m; | T C S such that 0 < 37, m; < 1/2}. Note that even in this particularly
simple situation an exact calculation of ® can be cumbersome if S is large.

a
1-b
The equilibrium is (b/(a + b),a/(a + b)), and it follows easily that the conductance is
max{a, b}.

And finally let P be the chain associated with the cyclic random walk on {1,...,N}:

As a second example consider P := ( 1 b @ ) for a, b strictly between 0 and 1.

1-2p p 0 0 --- 0 P

D 1-2p D 0 --- 0 0

pP.= 0 P 1-2p p --- 0 0
p 0 0 0 --- p 1-2p

where 0 < p < 1/2. The equilibrium is the uniform distribution, and thus we have to
consider the T such that r := card(T) is at most N/2. For the T with fixed r < N/2
the ergodic flow @ will depend on how “scattered” T is, the minimum will obviously be
attained precisely when T is of the form {k,k+ 1,...,k +r — 1}(modN). Since in this
case Frr = 2p/N and thus &1 = 2p/r hold it follows that & = 2p/r’, where r' := [N/2]
denotes the largest integer less than or equal to N/2. Therefore the conductance is only
of the order 1/N.

For general Markov chains — even in the case of moderate N — it will be difficult to
determine ® exactly, often it will only be possible to derive estimates. A rather intricate
method which provides such results which was designed for a special class of chains will
be presented below (proposition 11.7). Here we will only show a much weaker inequality:

Lemma 11.2 Let the chain be irreducible, aperiodic and reversible. If v > 0 is a number
such that 7; < yp;i; holds for all i,j, then

1
> —.
<I>_27
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Proof. Let T C S be a subset with Cr < 1/2. Then Cs\r > 1/2, and it follows that
Cr/2 < CrCs\r

= mm)

€T jgT
- Z T35
i€T, j¢T
< Z Vi
i€T, j¢T
= 'YFT-
Hence Fr/Cr > 1/2v, and this proves that ® > 1/27. O

Here is the main result which relates the conductance with the eigenvalues:

Theorem 11.3 Let P be aperiodic, irreducible and reversible. Write the (necessarily
real) eigenvalues of P as \{ = 1> Ay > --- > Ay > —1. Then

(i) A2 <1-®2%/2, and

(ii) A2 >1-29.

Proof. (i) Let X be any eigenvalue different from 1 and 7 = (z1,...,2n) an associated
left eigenvector with real components:

(xl,...,:vN)P = /\(xl,...,fZN).

We aim at proving that 1 — X > $2/2.

First we observe that ) z; = 0 which is immediate from A} z; = 3, pijzi = 3 2.
Let T C {1,...,N} be the collection of indices where z; > 0. Then, without loss of
generality,

e C7, the capacity of T, is < 1/2 (otherwise pass to (—zi,...,—2ZnN));

e Tistheset {1,...,r} for asuitabler, and the (nonnegative) numbers z, /7y, ..., T, /7,
are decreasing (obvious).

We now put w;; := m;p;j,

y

o .')3,'/7'&',' : 1eT
Yi = 0 : otherwise

and we define D to be the number
D wii(w® —yi?) Y miyi
1<j i
By definition, D is positive, we claim that
> &, and (11.1)
> D?/2. (11.2)

Both inequalities together imply the desired 1 — A > $2/2, we now turn to their proofs.
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Proof of (11.1): Denote, for k =1,...,r, by T the set {1,...,k}. From the definition of
® it follows that F, > ®Cr,, and this will be used to prove that

> wii(y® —y?) > @y myt.
i

i<j

The idea is to use summation by parts, a discrete variant of the more common integra-

tion by parts:
Zw,] i —yJ = Zw” Z ~ Yir1)

i<j i<j i<k<j
T
= Z(ylzc —ylzc-i-l)( Z wij)
k=1 i<k<j
,.
= > Wk —¥iv1)Fr, (11.3)
k=1
2 ‘I’Z - Yi+1)Cr. (11.4)
= ‘I’Z(ylzc—ylzcﬂ) Z U
k= 1<i<k
= ‘I’ZmZ ~ Yis)
=1 k=i

r
= ¢ Zﬂ'iyiz;
i=1

in (11.3) the definition of the Fr, was inserted, and in (11.4) it was important to know
that the y7 — yZ,, are nonnegative.

Proof of (11.2): The proof of this inequality is even harder. We set

E = Z wl] y] / Z Trlyz ’

i<j

and it will be shown that E > D?/2 (= claim 1) as wellas 1 — A > E (= claim 2).
Proof of claim 1: From (a +b)* < 2(a® +b) and 3, ;; wi; < m; for all ¢ it follows that

Swilyi+y)? < 2 wi(v +y?)

i<j 1<j

< 2> myh (11.5)

here we have used once more the fact the w;; = wj;.

This is combined with a rather tricky application of the Cauchy-Schwarz inequality:
we put a,] = /Wi (ys — y;) and Bij := /W5 (ys +y;) for i < j. Then (3, ; @ijBis)* <
Y i @8 Lic; Bl leads to D* < B, wij(ys +y;)?/ 3, miy?, and with the help of
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(11.5) this can further be estimated by 2E.

Proof of claim 2: We evaluate (z1,...,zx)(Id — P)(y1,-..,yn)" in two ways. On the
one hand this matrix product is

(1—’\)(9:1:'~'127N)(y1> )yN = Zmzyz (I—A)Zﬂlify?‘

On the other hand this number equals Eij (Id — P)jizjy; which we may first simplify as
> ier, j(Id — P)jiz;y; since the y; vanish outside T'. Further, for ¢ in T and j not in T
the coefficient (Id — P)j; is < 0 and also z; < 0 holds, and thus >ij({d = P)jizjy; is
bounded from below by 3, jer(Id— P)jiy;zj. We also note that (Id — P);; equals —pj;
fori#jand1—p; =3, i Pil if i = 7, and therefore we may continue with

Z (Id - P)jiyiz; = Z —PjiYiT; + Z Zpilyizi

1,j€T 1,J€T, i#] €T I

= Z —WjiYiy; + Z Z wiy;
1,J€T, i#j i€T I#i

= Z —Wi;Yiy; + Z Z wiy;
i,J€T, i#] i€T I#i

2 Z —Wijyiy; + Z wiy;
4,J€T, i#] LIET, i#l

= 2wy +  wi (U} +v3) (11.6)

i<j i<j

= Z wzg y] 7

i<y

in (11.6) we have used that w;; = wj;.

We thus have established that (1~ X) 3 my? > 37, wij(y: — ;)% ie, E<1- A

(if) We have to show that 1 — Ay < 2®7 for all T C S such that Cr < 1/2.

Let such a T be given. The idea is to combine proposition 10.2(ii) with proposition 10.4:
(1,1,...,1)7 is an eigenvector with associated (simple) eigenvalue 1 of P, and thus

Ao(z,x)r > (z, Px), (11.7)

whenever ¢ = (z;) is such that ) mz; = 0.
To make use of this fact we define the z; by

o l/CT : forieT
TT -1/Cs\r : forieS\T.

Then, by the definition of Cr, Cs\7, we have ) mz; = 0, and in order to proceed we
will have to evaluate the scalar products in (11.7).

The left-hand side is simply A2(1/Cr + 1/Cs\7), again by the definition of the capac-
ities. For the investigation of the right-hand side we write P as Id — (Id — P). First we
note that the entries on the diagonal of Id — P are the numbers (3, ;. pi;)i and that
we may replace m;p;; by m;pji:
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(z,(Id— P)z), = Y mz;» (Id— P)jz;

J

= —Z Z TiZiPij T + Z Z TiTiPij T4

i g, j#i i g, j#i
_ 2
= > Y mpilel - zizy)
ig,j#
p— .. . 2
= E mipij (T — x;)°.
i<y

Since the z; are constant on T and on S\ T, there are contributions to this sum only
when ¢ lies in T and j in S\ T or vice versa, and therefore the value is

1 1 2 1 1 \2
(C_T + CS\T) ieT%':eTﬂ-ipij = FT(C—T + CS\T) .

To finish the proof we evaluate (11.7):

v

A2 (6’1; + %\7‘) (z, Pz)x

(z,2)r — (z,({d — P)T),
1 1 \2
(G csl\T) ‘FT('CLT' * C’S\T) ‘

This yields 1 — A2 < Fr(1/Cr + 1/Cs\7), and since Cs\y > Cr, this can further be
estimated by < 2Fr/Cr = 2®7. O

It has already been emphasized that it might be a difficult task to calculate the conduc-
tance of a given chain. Therefore we want to complement our investigations by describing
a technique which provides reasonable estimates for a special case. What we have in mind
are chains which are defined by graphs. There is given a finite set V' (the vertices) together
with a subset E C V x V (the edges). We will assume that E is symmetric: (Z,j) belongs
to E iff (j,4) does. Then G := (V, E) will be called an undirected graph (or simply a graph
since we will not discuss directed graphs). Graphs can easily be visualized if we let the
vertices correspond to points in the plane and if we draw a line segment between two of
these points 4, j iff (i,j) € E.

Graphs give rise to Markov chains as follows:

Definition 11.4 Let G = (V, E) be any graph. Denote by d the maximal number of
edges connecting any vertex with the others:

d:=maxcard(j | j #4,(i,) € BY;

we will assume that d > 0.

Now let 8 be a number, 0 < 8 < 1. We define a Markov chain by declaring V' to be the
set of states and by fixing the transition probabilities according to the following rule: if
there are d; edges from “state” 7 to other vertices (i.e., d; = card{j | j # 4, (3,J) € E}),
then pass from 7 to any of the j with j # 4, (i,7) € E, with equal probability 3/d and
stay at ¢ with probability 1 — d;3/d.
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It should be clear that the graphs

® ® g
* ——0— 00— 00— 90 ® ®
[ & L 4 L J

give rise to a reflecting and a cyclic random walk, respectively (cf. the pictures on page
14).

Some readers might wonder why we do not work with the more natural “pass to the
next admissible vertex” (that is one for which there is a connecting edge) in such a way
that — if there are d; edges — each transition has probability 1/d;. The reason is that only
definition 11.4 leads to “nice” chains:

Lemma 11.5 The chain defined in 11.4 is symmetric so that the uniform distribution 1s
an equilibrium distribution. If the graph is connected®, then the chain is irreducible. If in
addition 8 is strictly less than one, then we are dealing with an aperiodic and irreducible
chain which is in detailed balance.

(These facts are obvious, a proof is omitted.)
The following definition is the graph theoretical variant of “conductance”.

Definition 11.6 Let (V| E) be a graph. Define y to be the minimum of the numbers

card({(,§) |1 €T, j ¢ T,(i,j) € E})
card(T) ’

where T runs through all sets of vertices such that card(T") < card(V')/2.
p is called the edge magnification of the graph.

Thus p counts the outbound edges in relation with the size of a collection of vertices,
and therefore it is to be expected that in the following examples the first one has a small
# (because of the “bottleneck” in the middle) whereas the second one — a complete graph
— leads to a maximal value among all graphs with four vertices:

2 This means: for 7, j there are 11, ..., such that i1 = t,i, = j and (ig,ik41) € Efork=1,...,n-1.
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In fact, if we consider T'= “the six points on the left-hand side” in the first graph, then
the relevant quotient is 1/6, and no other subset behaves worse. For the second graph we
have to investigate subsets with 1 and 2 elements. For such subsets the quotient is 3/1
resp. 4/2, and this means that p = 2.

Here is another ezample. Let N be an even number, we consider the cyclic graph with
vertices {0,..., N—1} for which there are edges precisely between 7 and ¢ + 1 (modulo
N). For a fixed k a subset T with k elements will have a minimum number of edges
joining it with the complement iff it is a cyclic segment. In this case there are 2 such
edges. It follows that the edge magnification is 2/[N/2] = 4/N.

We note in passing that the edge magnification is related with the conductance of the
underlying Markov chain according to definition 11.4 in a simple way:

& = fu/d.

This is obvious, more interesting is the question whether p can be calculated more simply
than the conductance. An interesting technique which provides reasonable bounds is due
to Sinclair (see [70]). This method of canonical paths will be presented now.

Let (V, E) be a graph which we assume to be connected. For i,5 € V a (directed) path
from i to j is nothing but a sequence i1,.. ., i, in V such that iy = 7, i, = 7, and (i, tg41)
is an edge for k = 1,...,n — 1. For ¢ € E we say that the path meets e if there is a k
such that (i, ix+1) = e.

Assume that, for every ordered pair of different vertices, a path from 7 to j is prescribed;
its length might depend on ¢ and j.

Of course a formal definition which uses “there is given a map such that ...” instead
of “there is prescribed ...” is also possible. It would be rather clumsy, and therefore
we prefer to give an illustration instead: imagine a city where there are certain
points of interest (= the vertices) and certain streets joining them (= the edges).
Then we assume that directions are given how to drive from ¢ to j.

Usually there will be a gigantic number of such lists of “canonical paths”. It is intuitively
clear that there should be a connection between the edge magnification p and the “over-
lap” of the canonical paths: in the case of a small g it is to be expected that there are
edges which are used by many paths. This is in fact true:
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Proposition 11.7 Let a family of canonical paths be prescribed and suppose that o is
an wnteger such that the following holds: whenever e is an edge, then there are at most o
pairs (i,7) of different vertices such that the canonical path iy, ... i, from i to j meets
e. Then p > card(V)/2c.

Proof. We will use the following simple argument: whenever ¢ : A — B is a map be-
tween finite sets such that every preimage ¢~1({b}) contains at most « elements, then
a card(B) > card(A).

Now let T C V be arbitrary such that card(T) < card(V)/2. Denote by e1,...,¢
the edges which join T to its complement. For ¢ € T and j ¢ T the canonical path
from 2 to j necessarily will meet some ey, and this fact can be used to define a map ¢
from {(¢,j) | i € T, j ¢ T} to {1,...,1}: the path from i to j meets ¢(3,5)>. From our
assumption we know that each preimage contains at most « elements, and in this way
we arrive at the inequality

al > card(T)(card(V) — card(T)).

But card(V') — card(T") > card(V)/2 so that I/card(T) > card(V)/2«. The proof is now
complete since p i1s the minimum of the numbers on the left-hand side of the inequality.
[}

Here are two examples how to apply canonical paths:

1. Consider the cyclic graph with NV vertices (see page 98). First we consider the following
family of canonical paths:

Go from i to j in the clockwise direction, that is the canonical path is i,
i+ 1, .., (¢4+ k) mod N, where k > 0 is the smallest number such that
i+k = jmod N.

(Thus, for example, one needs a path of length 10 to come from 11 to 9 in the case
N =12)

Now fix any edge, say e = {0,1}. If : = 0, then there are N—1 vertices j (namely
j = 1,2,..., N—1) where the canonical path from i to j meets e; for ¢ = 1 (resp.
2, resp. 3, ...) there are 0 (resp. 1, resp. 2, ...) candidates, hence we get a total of
0+1+2+.--4+ N-1 = N(N-1)/2 paths which meet e. Therefore we might put
a = N(N-1)/2 in the preceding proposition, and we get p > N/[N(N-1)] = 1/(N-1).
Note that this is of the same order as the correct g = 4/N and that, with the present
value, we get the estimate ® = Bu/d > 3/2(N — 1) for the conductance of the associated
chain.

As a variant we fix the canonical paths according to

Move from i to j on the shortest way, clockwise or counterclockwise. If both
paths have the same length, i.e., if N is even and j = i+ N/2 mod N, then
choose the clockwise direction.

To find the best & now we repeat the preceding analysis (let us assume for simplicity
that IV is even). For e = {0, 1}, for example, this edge will be met by N/2 (resp. N/2—1,
N/2—-1, N/2—-2, N/2 —2,...) paths if we start at 0 (resp. at 1, N—1,2, N—2,... and
move according to the rules to the other points, and therefore the choice

3 Note that ¢ is in general not uniquely determined, there might be several possibilities to associate a
pair (z,7) with an edge.
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a=(N/2)+2(1+2+---+(N/2-1)) = N?/4

is admissible. Note that, expectedly, this is much better than before.

2. Let r be a fixed integer, and V = {0,1}". We define a graph by prescribing edges
between points (41,...,4-) and (j1,-..,Jr) for which for precisely one « the coordinate
iy is different from j,; this graph can be considered as an r-dimensional hypercube (cf.
example 8 in chapter 2).

In order to estimate p we use canonical paths: a canonical path from u = (iy,...,i,)
tov = (J1,-.-,Jr) is defined by flipping the coordinates which are different one after the
other from left to right.

As an example consider r = 7, u = (0100101) and v = (0010111). The canonical
path is
(0100101) — (0000101) — (0010101) — (0010111).

Now let e be an arbitrary edge, from state (i1,...,%5-1,0,¢s41,- . -, ir) to state (i1,...,%5—1,
1,%s541,...,%r), say. By definition a canonical path from u to v will meet e precisely if
u (resp. v) is of the form (x,---,%,0,i54y,...,%,) (vesp. (i1,...,45-1,1,%,+-+,%)) with
arbitrary * in {0, 1}. This means that there are 2"~! possibilities for such pairs (u,v) so
that « in proposition 11.7 can be chosen as this number. We get

p> card(V)/(20) = 27/(2-277Y) = 1,

and the rate of rapid mixing could now be further discussed with the help of the estimate
® =pup/d>B/r.

How powerful is the method of canonical paths? There seem to be no general results
which assert that one can always determine p (at least up to a constant) by this technique.
Thus we are in a situation which is different from the preceding ones. In theorem 10.3,
propositions 10.5 and 10.8, and also in theorem 11.3 we had to calculate something and
this gave rise to a convergence result. Now things have changed. We have to be creative
to find an appropriate as possible definition of “canonical paths”, a definition which
provides the smallest possible « in order to find the best estimate for x and thus for ®. It
should be clear that this will necessitate to take into account the particular structure of
the graph and that one will have a chance to find satisfactory solutions only after some
experience with this method.

We have presented the method of canonical paths only for the case of chains which
are induced by graphs. Here is a more general version, it can be considered as a
refinement of lemma 11.2.

Consider, as always in this chapter, an irreducible, aperiodic and reversible chain.
By a prescription of canonical paths we mean a rule which for arbitrary different
states s,t associates (i1,...,%n) with s = ¢; and t = i,. Fix states 4,7 such that
i # j. We say that a path (i1,...,2,) meets (3, 5) if there is a k such that i = ¢ and
ik+1 = j. Now let a be a number such that, for all i, j,

E T < QmiPij,

where the sum runs over all pairs (s,t¢) such that the canonical path from s to ¢
meets (7,7). Then we have
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Proposition 11.8 ¢ > 1/2a.

The proof is left to the reader, it is canonical once one has understood the proofs
of lemma 11.2 and proposition 11.7.

It should be emphasized that proposition 11.8 generalizes both results: lemma 11.2
follows if one chooses as a canonical path always the shortest one: i; = s,i2 = t; and
proposition 11.7 is contained in 11.8 if one considers chains which are determined
by graphs as in definition 11.4.

Exercises
11.1: Calculate the conductance of the chain given by

P =

W
e
NN O =
O N =

11.2: Consider the cyclic walk on {1,..., N}, where, with the notation of example 1
of chapter 2, a; = ¢; = ¢ and b; = 1 — 2¢ for all ¢ (with 0 < € < 1/2.) What is the
conductance of this chain?

11.3: For what n > 0 does there exist a reversible chain such that the conductance is
precisely n?

11.4: Determine the conductance of an arbitrary reversible chain provided that there
are only two states.

11.5: What is the edge magnification p of the complete graph with NV vertices?

11.6: Calculate the edge magnification of a graph with vertices a, b, a1, ...,ar,b1,...,bs,
where edges are between a and b, between a and all a;, and between b and all b; (this
graph is depicted in the case r = s = 5 as the left picture after definition 11.6).

11.7: Let N vertices be given. Try to find edges in such a way that the resulting graph
is connected and the edge magnification is

a) as large as possible,

b) as small as possible.

11.8: Suppose that a graph has N vertices and r edges, that there are prescribed canon-
ical paths and that it is known that the total length of all paths is L. What can be said
about the edge magnification p?

11.9: Let the vertices of a graph be the elements of the symmetric group S, und suppose
that there are edges between two permutations iff one can pass from one to the other by
applying a transposition. Find a family of canonical paths for this graph and bound the
edge magnification.

11.10: Prove lemma 11.5.

11.11: Prove proposition 11.8.
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12 Stopping times and the strong Markov
property

This chapter prepares our investigations of how coupling methods can be used to bound
mixing rates, it also will be of importance in chapter 14.

To understand these approaches one needs to know what stopping times are. Whereas
the underlying idea is simple, the formal definition is rather involved.

We will use the opportunity to complement our discussion of the Markov property from
chapter 1: it will be shown that the Markov processes discussed in this book have in fact
the strong Markov property'. '

Stopping times

Let us return to the situation from the very beginning: we are given a finite set S,
probabilities (p;):cs which determine where to start the walk and some stochastic rules to
move in the k’th step from a state 7 to another position. You can think of a homogeneous
Markov chain where the rules are encoded in a single stochastic matrix P, but this is not
necessary here: the transition procedure can be prescribed as complicated as you wish?.

E.g.: Start at any point of S := {0,1,2,...,9} with equal probability. To
determine where to move in the k’th step, generate an integer j according
to the Poisson distribution with parameter k (i.e., P(j) = kie~%/j!); if the
present position is ¢ € S and if this state has been occupied by the walk
for an odd number of times, then move to (¢ + j) mod 10, otherwise go to
(i + k) mod 10.

Let, for example, start the walk at 7, and suppose that the Poisson random
generator produces the numbers 0,0,1,2,5,2,3,.... Then the walk will begin
with 7,7,9,0,2,7,9,6,...

Now we want to define a rule by which the walk can be stopped: someone has to shout
“STOP!” which will then result in terminating the walk immediately. Simple examples
- they refer to the preceding walk — of such rules are:

1. stop after the 444’th step;
2. stop immediately after the starting position has been occupied;
3. stop as soon as state 2 has been occupied for the 5’th time;

4. stop after the first transition of the form i — i;

! This second part of the present chapter is not essential for the investigations to come. Some read-
ers, however, might consider it interesting to learn how carefully one has to deal with the notion
“memoryless”.

2 This means that arbitrary S-valued stochastic processes are admitted.
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5. have a careful look at the Poisson random generator and announce “STOP!” as
soon as it has produced — for some k£ — in the k’th step the number 7 and in the
(k + 1)’th step the number 17.

We note in passing that it is also possible to prescribe “rules” which cannot reasonably
be obeyed, like “stop three steps before 5 will be occupied for the second time”.

This is similar to the situation when you need help in a town where you are for the
first time: rules like “turn to the left at the first intersection with a traffic light” are
reasonable, but the advice “turn to the right three streets before you see the petrol
station on the left-hand side” will be of limited use.

We are now going to be a little bit more formal. We start with an arbitrary stochastic
process Xg, X1,...: 2 — S, where (2, A,P) is any probability space. A “rule to stop”
surely has to be formalized as a map T : Q@ — {0,1,...,00}. T(w) is the time when the
process has to be stopped, where T(w) = oo just means that it runs forever. But how is
it possible to single out “reasonable” rules?

To this end, let us have another look at the above examples. If you investigate these
rules more carefully, you will note a difference: whether or not they can reasonably be
applied by an observer depends on the information about the walk he or she has. Rules
1 and 2 are deterministic and thus in a sense trivial: no information is needed. For rule
3 one needs at least partial information, it would suffice to observe state 2 and to notice
how often it has been occupied. For rule 4 instead one needs to know the whole walk in
order to be able to stop correctly, and rule 5 is the most demanding: one in fact has to
have full information, not only about the positions of the walk but also how they have
been produced, i.e., the values of the Poisson random generator.

Therefore we need something which formalizes “the information after the k’th step”,
then we will be able to say that a “reasonable” rule is one which uses only this information
in order to decide whether to stop after this k’th step or not.

It was a remarkable idea in probability theory to relate partial information with sub-
o-algebras. It is now generally accepted that partial information concerning a probability
space (2, A, P) is nothing but a o-algebra B which is a subset of A.

This looks strange when one is confronted with this fact for the first time, let’s try
to motivate it.

Regard a probability space (£2, A, P) simply as some kind of machine which produces
points w in such a way that the results are “unforeseeable”, but — on the long run —
occur with a known frequency: one will find an w in a prescribed set A € A roughly in
P(A)k of k random experiments if k is “sufficiently large”. Then partial information
about this probability space means that one knows something in advance, the most
general variant seems to be the following: there is a collection B of measurable
subsets such that, for any B € B, one knows in advance whether the w which
will be the result of the next experiment lies in B or not. Common examples are
B = {B} (which gives rise to the notion of conditional probability P(A | B)) or B
= the o-algebra generated by a fixed random variable.

Now a moment’s reflection shows that, if the above property holds for B, it holds
for the o-algebra generated by B as well, and therefore one might assume from the
beginning that B is already a o-algebra.

Using o-algebras we are now able to make precise what is meant by “the information of
the process after the k’th step”:
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Definition 12.1 Let Xo, X1,... be a stochastic process defined on some probability
space (2, A, P).

(i) By a filtration we mean a sequence (Fj)=o,1,.. of o-algebras such that Fo C
FCc---CA.

(ii) A particularly important example is the natural filtration associated with the
process: this filtration (Fp**)k=o,1,... is defined by Fg** := the smallest o-algebra
such that X, ..., X are measurable.

(iii) The process Xo, X1, ... will be called adapted to a given filtration (Fk)k=0,1,...,
if X} is Fji-measurable for every k.

This looks, admittedly, rather technical. It should be stressed, however, that the defi-
nition is natural once we have accepted to think of information as of sub-o-algebras, here
Fi is the information we have at our disposal after the k’th step. Then the first part of
the definition only means that we don’t forget, the information after k¥ + 1 moves is not
worse than that after k& moves. The natural filtration, which is in a sense the smallest
among the reasonable ones, contains the information given by the positions of the walk,
and “the process is adapted” asserts nothing but the fact that the available information
comprises the knowledge of all positions: we are allowed to observe the walk. In particular
it is — trivially — true that the process is adapted to the natural filtration.

Now it is also clear how to explain the difference between the examples 1 through
4 and example 5: in the first four cases one only needs information which corresponds
to any filtration such that the process is adapted, whereas in example 5 the filtration
must contain information on the Poisson generator (cf. the discussion after the following
definition).

Finally we can define stopping times as rules which use nothing but the information
contained in a fixed (adapted) filtration. The definition is natural once we adopt the
translation “having the information B (a subalgebra of A) is nothing but the fact that
all questions of the form ‘does w lie in B?’ can be answered unambiguously for B € B”.

Definition 12.2 Let Xg, Xi,... be as in the preceding definition, and Fo C F; C --- C
A a filtration such that Xo, X3, ... is adapted. A map T : Q@ = {0,1,...,00} is called a
stopping time with respect to (Fi)y, provided that T—!({k}) lies in F} for every k.

Often it will suffice to replace the preceding formal definiton by the following rule of
thumb: let a stopping rule be given which can be expressed as “Stop after step k£ provided
that Ej holds”, where E} is an expression which contains (maybe) Xo, ..., Xk but not
Xj+1,...; then this is a stopping time with respect to the natural filtration.

Here is a sketch what our examples 1 to 5 would look like if we were asked to treat
them formally.

Consider any probability space (£2,.4,P) such that it is possible to define inde-
pendent random variables U, Y1,Y3, ... such that U : @ — {0,...,9} is uniformly
distributed and, for k£ = 1,. .., the random variable Yi : @ = {0,1,2,...} has a Pois-
son distribution with parameter k. Use these U,Y1,... to define random variables
Xo,X1,...: Q2 = {0,...,9} according to the above definition (X} := the position
after k steps, with Xo := U etc.; an explicit definition of the X} in terms of the Y’s
surely would look rather ugly). Put F := the o-algebra generated by U, Y1,...,Y%.
Then it is easy to show that

e the process Xo, X1,... is adapted to the filtration (Fi)r=0,1,...;
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e the above rules 1 to 4, but not rule 5, are stopping times with respect to the
natural filtration;

e rule 5 is a stopping time with respect to (Fi)k=o,....

The strong Markov property?

Now we will restrict ourselves again to the case of a homogeneous Markov chain on a
finite set S which is defined by a stochastic matrix P and an initial distribution (p;)es.
We have seen already in the first chapter that the appropriate mathematical model is
an S-valued Markov process, i.e., a sequence of random variables Xy, X1,...: Q2 = S
defined on some probability space (2, 4, P) such that P(X, = i) = p; and

P(Xp1 =7 | Xo=1t0,X1=11,...,Xp-1 = ig—1, X =19) = P(Xpn = J | X =14) = pyj

for all 7, 7.

If you think of such a Markov chain as a collection of stochastic rules how to move on
S, then the following holds:

Suppose your walk is at “time” kg in state ig. If you now set all counters to
zero but continue your walk, then it will be impossible to distinguish what
you see from a walk which starts deterministically at g.

This is more than obvious since we work with the same random generators as before, the
fact has been used several times in part I of this book. It is, however, a little bit more
complicated to check this fact in the mathematical model. There it reads as follows:

Lemma 12.3 Let X, X1,...: Q = S be a homogeneous Markov process as above. Let
ip € S and ko be given and suppose that Xy, = io happens with positive probability.
Put Q' := {X, = io}, provide this set with the restricted o-algebra and the measure
P':=P/P(Y), and define Yo,Y1,...: Q' = S by Yi(w) := Xgotk(w). Then the Yy, Y1, ...
are a homogeneous Markov process which starts deterministically at i9 and which has the
same transition probabilities as the Xo, X1, ....

Proof. The Markov property of the Y} is reduced to that of the X once one knows that
P(Xiy1 = Jrt1 | Xr = Jr, Xrp1 = Jrats -+, Xi = Jk) = P(Xit1 = Jit1 | Xk = i)

for all 0 < 7 < k; the original Markov property from definition 1.3 corresponds to r = 0.
But this equality follows immediately from

P(XT = jr; XT+1 = jr+1; . '7‘Yk+1 = jk+1) = P(XT = jf’)pjrjr+1 * Pikjres1o

an equality which follows easily from (1.2) in chapter 1. a

It should be noted that, conversely, a process which has the property described in the
lemma will be a homogeneous Markov process so that it can be used interchangeably
with the original definition.

Let’s now turn to a more involved construction, we start with the “obvious” part where
the walk is defined by a collection of random generators:

3 This subsection is also rather technical. What we present will not be a necessary prerequisite to
understand couplings.
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Let ¢¢ be fixed and suppose that a reasonable rule to stop the process is given;
let it be stopped, e.g., three steps after a state jo (which might be different
from i9) has been occupied for the second time. Now start the process and
suppose that it is stopped just at i9. Then set all counters to zero and continue
the walk. It is to be expected that one will observe something which looks
like an ordinary walk which started at iq.

That this “obvious” property is in fact true is the so-called strong Markov property
which has been introduced by Hunt in [41]. For some time it has been tacitly assumed
that it is shared by every homogeneous Markov process. The full truth, however, is more
complicated: in our elementary situation (finite state space) the intuition is justified,
but there are Markov processes which fail to have the strong Markov property (for an
example cf. exercise 8.20 in [17]).

In order to work in the mathematical model we have to be more formal. In view of
our discussion of stopping times we know what “reasonable stopping rules” are. It is also
not too difficult to formalize what is meant by “start again after the process has been
stopped”:

Theorem 12.4 Let Xo, X1,... be a homogeneous S-valued Markov process. Further let
T:Q - {0,1,...,00} be a stopping time with respect to the natural filtration and suppose
that T is finite almost surely; for simplicity we will even assume that {T = oo} = 0. Then
it is possible to define the stopped process X1 : Q = S by X1(w) := Xr()(w). We claim
that Xt is a random variable.

Now let iy be fized and suppose that Q' := { Xt = 1o} has positive probability. Q' will be
considerd as a probability space similarly to the preceding lemma, and a process Yy, Y1, ...
will be defined on this space by Yi(w) := Xr()+k(w). Then the Y5,Y1,... form a homo-
geneous Markov process with the same transition probabilities as the Xo, X1,..., and the
Y -process starts deterministically at io.

Proof. The measurability of X is easy to show: { Xt = i} coincides with
{T=0}{Xo=ihU{T=1}n{Xi =P U,

and this set obviously lies in A.

Now let k be arbitrary, we consider the event B := {T = k}. By assumption B lies in
the o-algebra generated by Xo,..., Xx.

It can easily be described explicitly, it consists of all sets which are unions of sets of the
form Cj,,... ;. = {Xo = jo,..., Xk = jx}. (Proof: All Cj,,. . ;. must be contained in any
o-algebra for which the Xy, ..., X} are measurable, and the union of the C’s obviously
is such a og-algebra.)

For any fixed C = Cj,,...,;, one has

P(Cﬂ{Xk+1 =11,..., Xr =i,.}) = P(Xo=1Jo, --s Xt = Jk, Xkt1 =21, Xptr =1
= DPjoPjojr """ Pir_1in-
If in particular it happens that jx = ig then it follows that
P(CN{Xkt1 =141, -+, Xitr = ir}) = P(O)Pigiy Piri ** * Piv_yiv-

Now observe that the set BN {Xj = ig} can be written as the disjoint union of such
Cio,....jx With jx =1, and in this way we arrive at
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P(BNA{Xy =i0, Xg1 =1%1,. -, Xir = i }) = P(BNA{ Xk = i0})Digiy Pirin = * Pip_yin-
If we sum up these equations for £ = 0,1, ... this gives
P(XT = iO) XT+I = il; MR ] XT+T = 21‘) = P(XT = io)pioilpiliz ot 'pi,-‘_li,‘a

and it follows immediately that the Yp, ... are a Markov process with (p;;) as transition
probabilities.
That the Y-process starts deterministically at ig is trivially true. ]

Remarks: 1. The result can be considered as a generalization of lemma 12.3 which
corresponds to the case of a deterministic stopping time T = ko.

2. It was essential for the proof that we have dealt with a stopping time with respect to
the natural filtration: the stopping rule must not depend on information which cannot
be read off from the positions of the walk. The theorem does not hold in the case of
arbitrary stopping times and adapted processes (see exercise 12.6 below).

Exercises

12.1: For  := {0,1}Y and i = 1,... we denote by X; : @ — {0,1} the natural ¢’th
projection (z1,z2,...) — z;. Let Fn be the o-algebra generated by X,,..., Xy. Which
of the following subsets F' of Q are in Figp0?

a) F = {(:111,. . ) I T 9‘5 T44 — Ts5 + 3:1:999}.

b) F:={(z1,...) | T10m > 24 = 21}

C) F .= {(.’L’l, .. ) | (2?1003 - 1).'21003 = 0}

12.2: Suppose that (2, A, P) is an arbitrary measure space and T : Q@ — Ny a measurable
map. Prove that there is a filtration (Fj) such that T is a stopping time with respect
to this filtration. Is there a filtration with this property such that each Fj is as small as
possible?

12.3: Fix a measure space (0, A4, P) together with a filtration F = (F¢). T, T, and T,
are assumed to be stopping times with respect to F.

a) What are the integers r such that rT is a stopping time?

b) Which of the random variables Ty +Ts, T -T2, max{T;, T2}, min{T;, T2} is a stopping
time?

12.4: Provide a probability space with Q = N together with random variables Xy, X1,...
such that

“Stop at step kg — 2, where kg denotes the first time when the walk is in state
44

is a stopping time with respect to the natural filtration.

12.5: To motivate stopping times we have discussed five examples at the beginning
of this chapter. Find in all these cases a minimal filtration F such that the stopping
procedure is a stopping time with respect to F.

12.6: In the main theorem of this chapter, in theorem 12.4, it was important in the proof
that we have dealt with stopping times with respect to the natural filtration.

a) Prove that there are cases where the theorem holds for stopping times with respect to
a strictly larger filtration.

b) Give an example to show that one cannot replace the natural filtration by an arbitrary
filtration in the theorem.
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13 Coupling methods

Coupling methods have applications in many areas of probability theory. They were
introduced by Doeblin ([29]) in the thirties, the reader will find a survey and a sketch of
the history in [54]. Since the seventies they have been successfully used to estimate the
mixing rate of Markov chains (see, e.g., [39] or [62]).

Stopping times are a necessary prerequisite to understand how one can bound mixing
times by using coupled Markov chains, they were introduced in the last chapter. Our
investigations of couplings begin with a motivation and the formal definition. Next we
define the total variation distance between two probability measures, a distance which
already was important in chapter 10. Then we show how the coupling inequality relates
the variation distance with couplings, it will play an important role later.

Then we turn to Markov chains, we complement our study of the how-fast-is-the-
convergence-to-the-equilibrium—problem by defining some appropriate quantities and by
studying some of their properties. Next coupled Markov chains are defined. The main
results can be found in theorem 13.9, they are applied in a number of illustrating ezam-
ples. The final part of this chapter — which can be skipped at first reading — is addressed
to the question: how powerful are coupling methods?

Couplings

The underlying idea of couplings is simple: you perform only one random experiment,
and the result is used to determine the next step of more than one random walk. Consider
for example the state space S = {0,...,9}, we want to perform two cyclic random walks
by using a single fair die. Both walks start deterministically somewhere, for the choice of
the respective next positions one throws the die.

Walk 1 now steps one unit (modulo 10) to the right resp. to the left depending on
whether the die shows an even resp. an odd number. Walk 2 instead moves one step
to the right resp. to the left if the die shows 1,2,3 resp. 4,5,6. The remarkable fact is
that both walks are perfect cyclic random walks, with equal probability they move one
step clockwise or counter-clockwise. However, there is some dependency between the two
walks: if walk 1 steps to the right (since the die shows 2, 4 or 6) it is more likely that
walk 2 moves to the left than to the right (the probabilities are 2/3 and 1/3). This is
different from a situation where they move independently, e.g., if one uses two fair coins.

Consider as a variant the following rule for walk 2: move to the right resp. to the
left in case of a result in {1, 3, 5} resp. in {2, 4, 6}; this is precisely the opposite rule
as for walk 1. Again both walks are perfect cyclic random walks, but now any step
of walk 2 depends deterministically on what walk 1 does.

This will now be formalized:

Definition 13.1 Let x and v be two probability measures on S := {1,...,N}.
By a coupling of p and v we mean any probability measure P’ on S x S with marginals
u and v, that is u(A) = P(A x S) and v(A) =P(S x A) for AC S.
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It is sometimes ccnvenient to think of p and v as of families of nonnegative numbers
(i) and (v;) with 3 p; = S v; = 1 and of P as an N x N-matrix [p;;] with p;; > 0,
>_ij pij = 1. Then the coupling condition is (obviously) equivalent with >, pi; = p;,
Zj pij = v; for all 7, 5.

For example, let p and v be the measures on {1,2,3,4} which are defined
by (2/8, 2/8, 2/8,2/8) and (3/8, 3/8, 1/8, 1/8), respectively. Here are the
p-matrices of two possible couplings!:

2100 2 010
10111 1l0 201
8/0 001|810 010
0010 0001

As another example, let © = v be the uniform distribution on {L, R}. The
four couplings

1f10]1fo1]1[11]1[21
210 1’21 0’411 1(|’6(1 2]
could be used to control the next step of two random walks on {0,...,9}: p

corresponds to the first, v to the second walk, where “L” and “R” yield “step
to the left” resp. “step to the right”. Do you recognize the above examples?

Even in the preceding very elementary case there are numerous couplings for two given
measures p,v. The collection of all Pis a compact convex set, it is a nontrivial task to
describe its structure completely, e.g., by identifying the extreme points. However, this
is not our concern here, we refer the reader to [61] and the literature cited there.

It is simple to convince oneself that for arbitrary pu, v a coupling exists: put p;; := p;vj,
this coupling corresponds to the product measure, the associated random variables are
independent in this case.

Couplings are contained in this book since we will use them to provide bounds for the
mixing rate. The preceding p, v will correspond to the distributions of two random walks
after a “large” number of steps, and couplings will come into play when we investigate the
distance between u and v. The appropriate definition of “distance between two measures”
here is

Definition 13.2 Let x and v be two probability measures on S = {1,..., N}. Then the
total variation distance between p and v is defined by

lu — v := sup |u(A) — v(A)].
ACS

This is very natural, the total variation distance is just the distance with respect to
the sup-norm if we think of a measure on S as of a function from the power set to the
reals. Surprisingly a simple description is possible, the reader cannot fail to be reminded
of the {!-norm difference we have met in proposition 10.7:

1 We will use square brackets when dealing with coupling matrices in order not to confuse them with
stochastic matrices.
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Lemma 13.3 Let p and v be identified with probability vectors (u;) and (v;). Then
1
e =vil= 3 > lwi = vil.
i

Proof. Write S as the disjoint union of subsets S;, S», where the elements of S; (resp.
Sa) are precisely the ¢ with p; > v; (resp. p; < v;). As a consequence of ) p; = p_ v; it

follows that
S b=l = 3 b =il = 5 3 i = il

i€5) 1€S2 i€S
Now let A C S be arbitrary, we suppose that, without loss of generality,
Yoolm=wl> Y lmi—wl
i€Sina i€S2NA
Then we get
(A =) = [ =
1EA

Z [ — vy — Z | — vil

1€SI1NA 1€52NA

> i —wil

i€S1NA

Y lwi =il

i€S,

= %Zlm - vil,

i€S

IA

IN

and this proves that ||p — v|| <3, | — vil/2.
The reverse inequality is easily proved: with A := S5; we have p(A) — v(A) =
> lpi — vil/2, and thus “>” has to hold in the lemma. O

Remark: Note that, by the last step of the proof, it is not necessary to pass to absolute
values in the definition of the total variation distance:

llu = vll = sup (p(A) = v(A)).
acs

Here is the main result, the following coupling inequality relates couplings with the vari-
ation distance:

Proposition 13.4 Let u and v be probability measures on S = {1,...,N} and Pa
probability measure on S x S which is a coupling for p,v. Then

lln = vIl < PUG, ) i # 3)-

Also there ezists a coupling P’ such that in fact “=" holds in this inequality.
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Proof. For any i, we may write p; = 3 pji and v; = Zj pij- Now let A C S be given.
If we express p(A) —v(A) by the p;;, then the summands which correspond to points of
A x A will cancel, only the (7,7) in A’ x A and in A x A’ survive, where A’ := S\ A:

pA) —v(A) = > pii— Y pij

A'xA AxA!

Since A’ x A and A x A’ are disjoint subsets of {(i,7) | ¢ # j} we can continue with
the inequality < P({(i,7) | i # 7}), and this — by the remark preceding the proposition —
proves the first part.

For the proof of the second part put &; := min{u;, v;}. The €; will serve as entries on
the diagonal of a coupling P’ which will provide “=" in the coupling inequality.

More precisely, P’ will be defined by prescribing numbers pgj, and we start with the
definition p}; := €;.

How can this be extended to give a coupling? Suppose, e.g., that ¢ € Sy (the notation
is as in the proof of the preceding lemma). Then &; = p;, and it follows that all p}; for
j # i will have to vanish in order to achieve ; p}; = p;. Similarly the p;; have to be
zero if 1 € Sy and ¢ # j.

Thus it remains to fix the pj; with i € Ss,j € S; properly. We set 7 := 3, (u; — €;).
Note that 7 > 0 and that 7 = ). (v; — ;) (since 3, u; = Y, v;). Also, 7 will vanish only
if u and v coincide, a case in which the assertion is obvious: let all the p;; which remain
to be found vanish. Therefore we may assume that 7 is strictly positive. We define the
remaining entries of P’ as

p;j = (pj —€;)(vi —ei)/T fori € Sz, j € Si.

Then P’ is a coupling for p, v, this follows at once from

T = Z(M—Ei)
= Z(Hi—fi)

i1€S

D wi—ej)
i
= > (v—e)

JES2

Also it is clear from the construction that

PG i#5Y) = D
1€S2,jES1

=1 > ()i —e)

i€52,j€S1
= > (u—-v)
JES1
= |lp-vl,
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and this completes the proof of our proposition. O

Sometimes it will be convenient to use a slight reformulation of couplings and the
coupling inequality. Let S be as before and X, Y : @ — S be two random variables
defined on some probability space (2, A, P); the measure P is then called a coupling of X
and Y. If we pass to the induced measures — i.e., to y; ;= P(X =1), v; :=P(Y =) —and
consider the coupling in the sense of definition 13.1 defined by B(i, ) :== P(X =1, Y = j)
then the coupling inequality reads as follows:

Proposition 13.5 ||p —v|| < P(X #7Y).

Coupled Markov chains and an estimate of the mixing rate

We now return to our main concern, the mixing rate of a chain. We will work with
couplings, and — in view of the coupling inequality of proposition 13.4 - it will be necessary
to start with some notions and facts concerning the variation distance of the measures
we are interested in.

Definition 13.6 Let P = (p;;)i,j=1,..,~ be an irreducible and aperiodic stochastic ma-
trix and 7' the associated equilibrium distribution.
(i) For any ¢ € S := {1,...,N} and any integer k > 0 we denote by d;(k) the
variation distance between the i’th row of P* and 7 7:

di(k) := 3 Z by — ;1.

(i) d(k) := max; d;(k).
(iii) For k > 0 consider the N measures which correspond to the rows of P*. By p(k)
we will denote the variation diameter of this collectien:

k k
p(k) = 5 max Z ) - p2)).
(Note that we have already met the d;(k) in chapter 10; see proposition 10.7.)

Lemma 13.7
(i) p(k) > p(k+1),
(i) d(k) > d(k+1),
(i) d(k) < p(k) < 2d(k),
(iv) p(k+1) < p(k)p(l).

Proof. (i) Denote by Ay the convex hull of the N measures of part (iii) of definition
13.6. We have shown in lemma 10.6 that p(k) is the diameter of this set. Also, since
Pk+1 = PPk the rows of P! are convex combinations of the rows of P*, and therefore
the (p(k“))J 1,...~ lie in Ag. This proves that Agy1 C A, and in particular (i) follows.
(ii) We start with the observation that ' lies in all Ag: these sets are closed and
decreasing, and if 77 failed to lie in some Ay we would obtain a contradiction to the fact
that the rows of P* converge to 7.



Chapter 13: Coupling methods 113

By definition, d(k} is the radius of the smallest ball (with respect to the total variation

distance) with center 7' which contains (pij)) j=1,..,~ for all ¢ or, equivalently, which
contains Ag. (ii) follows now from Ay ; C Ag.
(iii) The first inequality is an immediate consequence of what just has been shown, the
second one follows from the triangle inequality.
(iv) In this proof we will use for the first time the coupling inequality.
Let k, [ and i;, i, be arbitrary and denote the i;’th and is’th row of P¥*! by y and v,
respectively. We have to show that ||z — v|| < p(k)p(l), and the idea is to construct a
coupling P on S x S of y and v such that ]P’({(z i) 1i#35}) < p(k)p(l); an application of
(the easy part of) proposition 13.4 then will complete the proof of (iv).

PP will be constructed with the help of the hard part of 13.4. First we consider the i;’th
resp. the i2’th row in P* which we will denote by o resp. 5. By proposition 13.4, there

is a coupling P for these two measures, i.e., we find nonnegative numbers a;; such that
200 =0y, 3o a5 =Biand 30,0 ai; = |la - B

Similarly we treat the [-step transitions. For — not necessarily distinct — ji,js we
choose, again with the help of proposition 13.4, an optimal coupling for the measures

which correspond to the j;’th and j»’th row of P! = (')) In this way we get a,’”2 >0
such that
17 !
Zah” = p.gl)J’
!
Zaluz — p§2)“

_ (l)
Zaf;.” ~ 9 Zl 12N _an :

i#j

(The case j; = ja2 can be treated directly: simply put af}jz = pgll and a’”2 := 0 for

i#3.)
With these preparations at hand we now define the coupling P = (pij)ijes by pij ==
Zs ¢ asta . This is in fact a coupling for x4 and v:

— st
E pPij = E E AstQj;
j s,t

= Z st Z a:;’%
s,t 7

= Z astp‘(;li)

= Z p(l) Z Qst

= Z pﬁi’pzzs

_ (k+l)
- pzzz )

similarly it follows that ), pi; = pifjl)

In order to estimate P({(i,) | i # j}) we note that the sums Diiti a{}jz vanish for
j1 = j2 and can be estimated by p(l) in general:
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P({(i,j) i #j}) = Zpij
i#]
= 2D aadj]

i 8.t

= Y 3 a)au
st i#j
p(l) z Ast

s#t
p(Dllu = vi|
p(k)p(l).

This completes the proof. O

IN

Il

IN

Now we are ready to put things together, we will introduce coupled Markov chains.
Here is the idea, a formal definition will be given shortly.
As usual we start with a transition matrix P on a finite set S where we fix two arbitrary
states g, jo with ig # jo.

We want to let two walks start at the same time, one at ig, the other at jo. We will
speak of a coupled Markov chain if the following two conditions are satisfied:

» If one observes only one of the two walks, then it is an ordinary random walk with
transition probabilities given by the matrix P.

o Suppose that, for a certain k, both walks occupy the same state i in the k’th step.
Then they stay together for all future steps.

Here are some examples to illustrate what is meant:
1. With S = {1,2} let P be the matrix ( 1/32/3 ) .

2/3 1/3
The walks start at 1 and 2, in each step they move according to the following rule:

Throw a fair die. If it shows 1 or 2, both random walkers stay where they are,
otherwise they exchange their positions.

Obviously both conditions are met, the second one in a trivial sense (since the walks will
never be at the same state.)

2. With S and P as in the preceding example, we change the rule (the starting positions,
however, are as before):

Throw a fair die, let the result be d. If d = 1 or d = 2, then walk 1 stays
where it is, otherwise it changes to the (unique) other state. Walk 2 instead
holds the present position if d = 5 or d = 6 and moves if d = 1,2, 3,4.

This rule applies until the walks have met for the first time. Then both con-
tinue to move according to the previous rule for walk 1.

Now there is a chance that the walks meet: if they have not occupied the same position
until the k’th step they will do so in the k + 1’th step with probability 2/3 (namely if
d=1,2,5 or 6). Or: only with probability 1/3 — if d = 3 or d = 4 — they will exchange
their positions and therefore again fail to meet. Thus the number of steps until the first
coincidence is just the waiting time until the first “success” (d = 1,2, 5,6), and therefore
the expexted number of steps is 3/2.
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3. Here we define a coupled random walk for the following chain, a variant of example 8
in chapter 2: the states are the 0-1-sequences of length r, transitions are possible if they
are of the form i — i or between states which differ at just one component; the former
have probability 1/2, the latter probability 1/2r.

The chain pauses with a positive probability, and therefore it is aperiodic. It is also clear
that every two states communicate, and hence the chain will converge to its equilibrium.
Since P is doubly stochastic, the equilibrium is the uniform distribution: all states are
(roughly) equally likely if the chain has run for a “long” time.

Let ig, jo be fixed starting positions of two random walks. Here is the rule how to
proceed if walk 1 resp. walk 2 occupies state i = (€1,...,&r) 1€8p. j = (T1,...,Tr):

Choose a coordinate p € {1,...,7} and a number w € {0, 1}, both according
to the equidistribution.

First case: ¢ and j coincide at the p’th bit: e, = 7,.
Then, if w = 0, let the walks move to ¢’ resp. j', where these states arise from
i resp. j by switching the p’th bit; if w = 1, both walks stay where they are.

Second case: €, # T,.

Now, if w = 0, switch the p’th bit of 7; this gives rise to a state which will be
the new position of the first walk. The second walk stays at j. If it happens
that w = 1, then walk 1 stays at i and walk 2 switches its p’th bit.

A moment’s reflection shows that both walks really move with the desired transition
probabilities: the probability is 1/2 for keeping the position and - for arbitrary p — 1/2r
for switching the p’th bit. It is also clear that they will move forever together after they
have met at the same position.

How long will it take them to meet? Suppose that ig and jo have different bits precisely
at the components lying in A C {1,...,r}. By our rule, regardless of which p has been
randomly chosen in the k’th step, the p’th bit of the positions in the &+ 1’th step will be
the same for both walks. Therefore the walks will meet precisely as soon as the random
generator producing the p has provided all elements of A.

It’s time for a formal definition:

Definition 13.8 Let P = (p;;);,j=1,.,~ be a stochastic matrix. We put S := {1,...,N},
and we fix 4o, jo € S with ip # jo. By a coupled Markov chain associated with P, 1o, jo
we mean two Markov processes X, X;,...: @ — S and Yp,Y7,...: @ — S defined on
the same probability space (2, A, P) such that
(i) both processes have transition probabilities according to P;
(ii) Xo = o, Yo = jo;
(iii) Xg(w) = Yi(w) implies that Xi41(w) = Yiy1(w) (all k and w).

With every coupled Markov chain there is associated a stopping time T. It is defined by
T(w) := min{k | X (w) = Yk (w)},

where we adopt the usual convention that the minimum of the empty set is co. This —
obviously - is in fact a stopping time with respect to the filtration (F%), where Fy is the
o-algebra generated by Xo, ..., Xk, Yo, .- ., Yi’.

2 To phrase it less formally: it suffices to observe the walks in order to be able to stop correctly.
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We have already started to investigate T in our previous ezamples:

1. Here T is the constant function co.

2. We have mentioned already that P(T > k) = (1/3)* and that the expectation E(T) of
T is 3/2.

3. In order to treat this example one has to recall some elementary facts from elementary
probability.

Let Uy, Us, ... be independent, equidistributed {1,...,r}-valued random variables (they
generate our p). It has been noted above that T is the waiting time until the U7, ... have
exhausted all p in A. This will depend on how large A is. In the worst case one has to
wait until all 1,...,7 have been provided at least once3. It is known that the expected
value of this time is 1+r/(r—1)+r/(r —2)+---+r/1, a number which can be bounded
from above by r(1 + logr).

Here is the main result, stopping times and couplings meet to make possible a new rapid
mixing inequality:

Theorem 13.9 Let P = (p;j)i,j=1,..,n be (an arbitrary) stochastic matriz and 1o, jo €
{1,...,N}. Further, let (X}), (Y&) be a coupled Markov chain associated with P, ig, jo
as in the preceding definition; by T we denote the waiting time until the walks meet.

If k is arbitrary, then ||p — v]| < P(T > k), where u, v stand for the measures associated
with the ig 'th resp. the jo ’th row of P*.

Proof. 1 and v are just the image measures of X and Y%, respectively. Hence, by the
coupling inequality in proposition 13.5, ||u — v|| < P(X; # Yk). But {Xx # Yi}is a
subset of {T > k} since coupled Markov chains walk together as soon as they have met,
and thus the proof is already complete. a

Here are the most important consequences:

e Suppose that you can treat all possible ig, jo in a unified way. Then you obtain an
estimate of the maximum over the possible ||u — V]|, i.e., of p(k).

e Once you know that p(kg) is “small” for a suitable ky you can use lemma 13.7:
p(rko) < p(ko)”. With this lemma one also gets bounds for d(k), the maximal total
variation distance of the (pgﬂ, . ngz)v) to the equilibrium.

e If only the expectation of T is known but possibly not the explicit values of the
P(T > k), one can still apply the theorem:

simply use the obvious inequality (k + 1)P(T > k) < E(T).

e It is a priori by no means clear how to choose an appropriate coupling in order to
get good estimates for the mixing rate with the help of the theorem. In this respect
the situation is similar to that of chapter 11 where the strength of what can be
shown by using conductance methods was limited by our ability to invent skillfully
designed canonical paths.

We will return to this question at the end of this chapter.

3 Some readers will have recognized that the problem we are dealing with is the coupon collector’s
problem from elementary probability in disguise; in Feller’s book [30] one finds a thorough discussion.
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Typical applications of the theorem are illustrated by the following examples:

1. In the above example 1 (page 114) T is finite for no w. Therefore our theorem only
yields the poor estimate ||p — v|| <1 (and thus p(k) < 1).

2. The coupling of example 2 for the same chain works better: we get
p(k) <P(T > k) = (1/3)".
If it were only known that E (T) = 3/2 we could only conclude that
(k+1)P(T > k) < 3/2,

that is,

3
o) < sy
3. We already know the expected value of the stopping time associated with example 3,
and this gives the estimate p(k) < (r/r+7r/(r—1)+r/(r=2)+---+7r/1)/(k+ 1), i.e,,
a convergence which is roughly of order rlogr/k.

To get a better result we recall that T > & just means that k independent and equidis-
tributed choices out of {1,...,7} have not produced all elements. If ig € {1,...,r} is
fixed, then this state will not have been chosen in k trials with probability (1 — 1/r)*.
Consequently, if we sum over all ig, we get (1 — 1/7)* as a bound for the probability
that any element is not present after k choices. Hence P(T > k) < r(1 — 1/r)*, and we
arrive at p(k) < r(1—1/r)k.

To discuss this a little bit further we recall that 1 —z < e~2 so that (1—1/r)* < e~*/7.
Consequently, if we want to have p(k) bounded by e~ for an arbitrary c, it suffices to
take k of order rlogr + cr. It follows that — not surprisingly — a doubling of r essentially
necessitates a doubling of the number of simulation steps to achieve a similarly small
p(k), i.e., a similar precision of approximation.

4. Let P be a strictly positive stochastic matrix, we will apply the preceding theorem to
give another proof of the fact that (P*) converges to a matrix with identical rows.

It will suffice to show that (p(k))x tends to zero, and this will be proved by considering
suitable couplings. We fix iy and jo as the starting positions of two walks, and we prescribe
transitions as follows:

Suppose that the walks have not yet met. Then the next step is for both as
prescribed by P, and the two new positions are generated independently.
From the first meeting on they move together, only one random choice (ac-
cording to the appropriate P-probabilities) is necessary.

It is plain that this rule meets the requirements of coupled Markov chains. To apply
theorem 13.9 we have to analyse the associated stopping time T.

Let p be the positive number min;; p;; and suppose that at step k the two walks still
occupy different positions, i’ and j' say. Since we choose the next position independently,
we can assure that — for arbitrary 7,7 — they will be next at 7 (walk 1) resp. j (walk 2)
with probability py;p; ;. Therefore the probability that they meet is Y, piipj i, a number
which is bounded from below by Np?. And thus only with probability (1 — Np?)* a
meeting will not have taken place in k steps:

P(T > k) < (1 — Np?)*.
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This really implies that p(k) — 0; the rate of convergence, however, is much worse than
that we have obtained by other methods (see proposition 10.5).

5. We are now going to analyse the random-to-top-shuffle (cf. also example 5 in chapter 2).
There is given a deck of r cards, they are — from top to bottom — labelled 1, ..., r. Shuffling
is defined by selecting a card at random and putting it to the top. How often will it be
necessary to shuffle this way until the cards in the resulting deck lie such that all of the
r! permutations are (approximately) equally probable*?

In order to prescribe a coupling rule we start with two fixed permutations of the cards
(that is, with two points of our state space), we think of them as two decks of r cards
which are labelled as above and which are in some fixed order at the beginning. Here is
the rule:

Select p € {1,...,r} uniformly at random. p is used to perform the transitions
in the two decks: in deck 1, the p’th card — counted from above — is put on
top. Let this card have the label I, say, then in deck 2 also the label-/-card
will move to the top, regardless of where it is found?®.

By this rule, after any move the uppermost cards in both decks coincide. It is also clear
that both decks “move” together as soon as their cards are in the same order and that
they transform according to the correct transition probabilities: every individual card has
the same chance to be the card on top next, the reason is that the uniform distribution
is invariant with respect to permutations.

The problem to estimate T for this coupling leads to similar questions as in the above
example 3. Both decks will coincide as soon as every number in {1,...,7} has been chosen
as a p. We omit to repeat the above discussion.

How powerful is the coupling method?

Any coupling can be used to get bounds for the p(k), but the discussion of the examples
has shown that it is not a simple task to get “good” inequalities in this way. What are the
theoretical limits of this method, is it always possible to get the best possible estimates?
Does there exist, for arbitrary S, P, ig, jo, & coupling such that equality holds for every
k in the inequality of theorem 13.97 The answer is yes, the proof is due to Griffeath ([39],
[40]), for different approaches see [62], [38], and [71].

The construction of this optimal coupling, however, is extremely involved, it is far
beyond the scope of this book. Let us try to understand the difficulties.

We consider S = {1,2,3,4} together with the stochastic matrix

and we want to study couplings for walks which start at io = 1 and jo = 2. Our very
modest task will be to find a coupled Markov chain for P, ig, jo such that theorem 13.9
gives the best possible result for the first two steps of the chain.

4 Note that also in this example the equilibrium is the uniform distribution, see e}fercise 7.1.
5If, e.g., 7 = 6 and the two decks are D; = (124653), D2 = (653214), then the choice p = 3 would lead
to Dy = (412653), D2 = (465321).



Chapter 13: Coupling methods 119

As a preparation we calculate P?:

|
UL Ut ot
Ut Ot Ot Ut
LW ww
L www

and we define measures
u=1(2/8,2/8,2/8,2/8), v=(3/8,3/8,1/8,1/8)
(= the first two rows of P) and
w =v' =(5/16,5/16, 3/16, 3/16)

(= the first two rows of P?). We need a stochastic rule which controls the two walks such
that:

1. After the first step the probability that they occupy different positions is ||u—v|| =
1/4; the various states of S have to be chosen in accordance with u and v for the
two walks.

2. Also in the second step they move as prescribed by P (and they move in the same
way if they have met in the first step). Also it is necessary that they now occupy the
same position with probability one (in order to have ||u' — V'|| = 0 = P(X» # Y2)).

To satisfy “1.” we need a coupling for p and v. Two of them have been presented af-
ter definition 13.1, but both fail to fulfill “1.”. With a glance at the construction in
proposition 13.4 we can be more successful, we see that every coupling of the form

2 0 p13 pus
110 2 paz poa

0 0 1 0

0 0 O 1

P13 P14
P23 P24
“2.” one has to choose these p;; carefully. Consider, e.g., p23/8. This is the probability
that after the first move walk 1 resp. walk 2 occupies state 2 resp. 3. The next step
has to be according to P, that is as described by the measures which correspond to the
rows 2 and 3 of this matrix. The variation distance of them is different from zero, and
thus there is no hope to find a coupling with zero entries off the diagonal. Therefore we
cannot succeed to fulfill requirement “2.” if it happens that pes is different from zero. By
a similar reasoning we convince ourselves that p;4 will have to vanish, and consequently
the only coupling for the first step with which we might hope to be successful is

20

— with a doubly stochastic matrix [ ] — gives the desired result. To satisfy

| =
[==N R}
O O N
O = O =
—_ O = O
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In fact this works! If we continue to couple carefully we can achieve our goal that the
walks move together after the second step. If it happens, for example, that they are at
states 1 and 3 we let them both choose the next position according to the probability
law (1/4, 1/4, 1/4, 1/4). This is the first and the third row of P, thus they move in
accordance with the prescribed transition probabilities, also they are at the same place
after this move. Similarly one deals with the case “walk 1 at 2, walk 2 at 4”, then for
both the law (3/8, 3/8, 1/8, 1/8) is relevant. '

The moral of the story is that in choosing even the first coupling rule one has to
take into account how the future moves are governed by P. This makes the construction
extremely difficult, even an optimal rule for ky steps for moderate kg will be an extremely
demanding task. And therefore the fact that coupling methods are able to provide the
best possible bounds for the mixing rate is mainly of theoretical interest.

Exercises

13.1: Let (u1,..-,un) and (v1,...,vN) be fixed probability distributions and C,, , the
collection of all couplings for g and v. Prove that Cy,, is a nonvoid compact convex set
(in RV * . if we identify couplings with suitable matrices).

13.2: Let 4 = (1/N,...,1/N) be the uniform distribution and v = (1,0, ...,0) the point
mass at 1. Determine all extreme points of C,, ..

13.3: Couplings can be defined more generally. If, e.g., u and v are probability measures
on [0,1], then a coupling of x and v is a measure P on the square with marginals 1 and
v. Prove the easy part of the coupling inequality in this more general setting:

sup |u(4) — v(4)| < P({(z,y) |z # y}),

where the supremum is taken over all measurable A C [0, 1].

13.4: Denote by Cj, , the collection of maximal couplings for p and v (the notation
is as in exercise 13.1; a coupling is called mazimal if it provides “=" in the coupling
inequality). Prove that this set is a nonvoid closed face in C,,, (cf. exercise 1.2).

13.5: Let u be a fixed probability measure on {1,..., N}. Characterize the probability
measures v such that there is precisely one maximal coupling for 1 and v.

13.6: Let p be the uniform distribution on {1,..., N}. For what probability measures v
is the total variation distance from p to v as large as possible?

13.7: What are the probability distributions (u1,...,un) and (vi,...,vn) such that
there exists a coupling with

P({(z,y) |z #y}) =17

13.8: Consider an arbitrary Markov chain on a finite state space. Does there exist, for
different states o, jo, a coupled Markov chain (X}), (Yx) associated with P, g, jo such
that the X never meet the Y;?

13.9: Choose any stochastic 2x2-matrix P which is not the identity matrix. Find best
possible couplings for the first two steps of the chain similarly to our example from the
end of the chapter.
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14 Strong uniform times

The technique we are going to describe now was introduced in the eighties by Aldous and
Diaconis (see [24], [3], [4]). As in the previous chapter stopping times play an important
role, the reader can find the necessary prerequisites in chapter 12.

The notation will be as before, in order to have a unique equilibrium = it is assumed
that the matrix P under consideration is irreducible. Let Xg, X1,... : € — S be any
Markov process with transition probabilites prescribed by a stochastic matrix P, the
starting distribution might be arbitrary. Sometimes it is possible to stop the process in
such a way that the states where one decides to stop are distributed in accordance with
m. To apply such a stopping rule it might be necessary to have more information than
just the knowledge about the walk up to the present positions, and therefore we cannot
restrict ourselves to stopping times with respect to the natural filtration.

The stopping times we have in mind must have the special property that the necessary
information to stop correctly does not spoil the Markov property. To be more precise,
denote by Fg* C Fp* C --- the natural filtration!. In the proof of theorem 12.4 we have
shown that

IP(B n {Xk = 7:0:)(1»‘+1 =11, ’Xk+7‘ = Zr}) = ]P(Bﬂ {Xk = io})piohpiliz c o Pievin
for every B € Fg*. Summation over all ¢,,...,%,—1 leads to

P(BN{Xk =0, Xp4r =ir}) = P(BN{Xx=1io})p\])

10in
= P(BN{Xi = io})P(Xx = io | Xitr = ir),

that is to P(Xg4r = i l X =10) = P(Xgyr = ir I Xy =19, B).

This can be rephrased by saying that the additional information given by such a B does
not influence the transition probabilities. We are interested in filtrations which behave
similarly:

Definition 14.1 Let Xg,X;1,... be as before and Fy C F; C --- be a filtration on
(2, A,P) such that Fp** C Fj for all k¥ (so that (Xi) is adapted). A stopping time
T:Q — {0,1,...,00} with respect to this filtration will be said to be compatible with
the Markov property of (Xi) if

P(Xksr = ir | Xe = d0) = P(Xesr = ir | Xi = o, B)
holds for every B € F; and all 4g, i, in the state space?.

We have just convinced ourselves that the natural filtration has this property, further
examples will be given later.
Of particular importance will be stopping times T such that the stopped process is
distributed like 7:
1 cf. definition 12.1.

2 Note that this property only depends on the filtration and not on the stopping time. Therefore it is
a slight abuse of language to speak of a time which is compatible with the Markov property.
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Definition 14.2 Let T be a stopping time as in the preceding definition. We say that T
is a strong uniform time if

(i) T is finite with probability one, and

(i) P(Xx =1|T = k) =m; for every k and every i.
(This means that, regardless of when the chain is stopped, the states where this happens
are distributed exactly in accordance with the equilibrium.)

As a simple illustration consider a chain where P is such that P*° has identical rows
for a suitable ko (as it happened with k; = 2 and

2 2 2 2
113 3 11
P—g 2 2 2 2
3311

at the end of the previous chapter). Then all these rows are identical with 7', and
consequently the deterministic time T = k¢ will be a strong uniform time with respect
to the natural filtration.

We aim to apply this new concept to estimate the mixing rate:

Proposition 14.3 Let P be an irreducible stochastic matriz with equilibrium w and
(Xk)k=0,1,.. @ Markouv process governed by P.

If we denote, for fized k, by v the distribution of X (i.e., v; i= P(Xy = 1)), then the
variation distance ||m — v|| is bounded by P(T > k) for any strong uniform time.

Proof. Fix k > 0, 1,7 € S and consider any k' < k. The set {T = '} lies in Fi so that
PXy=i|Xp =5, T=k)=P(Xy =1| Xp =J).
This together with the strong uniform time property of T yields

]P(Xk =13, T= k/, X :J) = ]P(Xk = I T= kl, Xy =])]P(T _ kl, Xy = ])
]P(Xk =1 I Xk’ =J)]P’(T = k/, ch’ :])

= P(Xpe=i|Xp=j)P(Xp =5 |T=k)P(T=Fk)
= i ImB(T = k).

Now it is of importance that  satisfies 77 P = n' (and thus also 77 P*~* = 7T). It
follows that the sum over the preceding equations with different j is just m;P(T = k').
Hence

P(Xg=1i) > P(Xj=4, T<k)
= > PXp=i,Xp=j T=FK)
k'<k,jE€S
= > mP(T=k)
k' <k
= mP(T < k)
= m(1—P(T > k).

Now let A C S be arbitrary. By our inequalities we have
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v(4) = P(Xy€A)
= ) P(X;=1i)

iI€EA

> w1 -P(T > k)
iI€EA

= (A)(1-B(T > k)),

and it follows that v(A4) — 7(A4) < #(A)P(T > k) < P(T > k). By the remark after the
proof of lemma 13.3 this proves that ||v — 7|| < P(T > k). O

Some comments are in order. First, the end of the proof (where we have estimated
m(A) < 1) shows that we could have proved a sharper estimate. We refer the reader
to [4] where a distance different from our variation distance is introduced to obtain
the best possible bound by using T. There it is also sketched how one can “construct”
strong uniform times which provide sharp estimates for every k. (This, however, makes
it necessary to extend the notion of stopping times, one has to deal with randomized
stopping times. Also the construction necessitates to know explicitly all pg.c), and therefore
it seems to be only of theoretical interest.) Also, all remarks corresponding to those after
theorem 13.9 can also be made here, in particular an approach which is independent of
the starting position will provide bounds for the p(k).

We are now going to study some examples. Note that one is faced with two problems.
The first is to invent a stopping rule T which uses “not too much” information and
nevertheless provides the equilibrium distribution, the second is to estimate the numbers
P(T > k) in order to get bounds for the mixing time.

1. In the rather trivial example after definition 14.2 the theorem gives the obviously true
estimate ||v — p|] = 0 = P(T > k) whenever k > ko.

2. Let, for the state space {1,2,3,4}, the transition matrix be defined by

P11 Pi2 D13 1/4
p—| Pn P2 Px 1/4

D31 P32 P33 1/4 ’

1/4 1/4 1/4 1/4

where the p;; are strictly positive such that ), p;; = Zj pij = 3/4 for all 4, j. Since P is
doubly stochastic, the equilibrium distribution is the uniform distribution.

We consider a random walk which starts at state ig = 1 (the cases ig = 2, 3,4 can be
treated similarly, for the case ig = 4 it is surely optimal to stop deterministically after
the first step). We consider the following stopping rule which will be called T:

Stop one step after the walk has been in position 4 for the first time.

One can stop in accordance with this rule by just observing the walk, and therefore T
is a stopping time with respect to the natural filtration. T is in fact a strong uniform
time: it is compatible with the Markov property of the process, it is almost surely finite
(since the probability to jump from {1,2,3} to 4 in the next step is 1/4), and since the
last row of P is the uniform distribution, all states are equally likely to be the position
of the walk at time T. The theorem asserts now that the variation distance between the
first row of P¥ and the equilibrium is at most P(T > k) = (3/4)*.
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3. We now investigate the top-to-random-shuffle. Our r cards are labelled 1,...,r, and
at the beginning the deck is in canonical order with card number r at the bottom. How
often is it necessary to “shuffle” in the top-to-random way to be able to guarantee that
all possible permutations of the cards are (nearly) equally likely?

As in the case of the random-to-top shuffle (see example 5 after theorem 13.9) it is
necessary to observe that the chain has the uniform distribution as its equilibrium; this
is left to the reader. We will provide bounds of the mixing time by investigating suitable
uniform times.

The stopping time we have in mind is defined as follows:

Stop one step after the card with label r has reached the top position.

Here is an example with r = 4, we start with the permutation (1234). Suppose that a random
generator produces equidistributed elements in {1, 2, 3,4} as follows:

1,2,4,4,3,4...
Then the deck “walks” as follows (the starting position is included):
(1234) — (1234) — (2134) — (1342) — (3421) — (4231) — (2314),

and here we stop.

This is a stopping time with respect to the natural filtration, hence we only have to
check whether it is almost surely finite and whether the stopped positions are equidis-
tributed.

To this end, we analyse the behaviour of the last card, the label-r-card. It will move
from its original position to the r—1’th position precisely when our random generator has
provided the number r. This has a probability 1/r and therefore the expected waiting
time for this to happen is r. The next move upwards of the r-card happens when an
element of {r—1,7} is chosen. This results in an expected waiting time of r/2 since the
probability of “success” is 2/r. Note that we find at the positions r—1,r two cards c;, ¢z
from {1,...,7—1} where both relative orders have the same probability.

Continuing this way we observe sooner or later that our card arrives at the top. For
the last step we only have had an expected waiting time of r/(r—1), and in the positions
2 to r we find any of the permutations of {1,...,r—1}, all being equally likely. Finally,
the last step produces a perfectly random permutation of {1,...,r}.

The expected waiting time to arrive at this point is the number r + /2 + --- + r/r
which is < (r+1) logr. Hence T, having a finite expectation, must be finite almost surely.
That Xt is equidistributed has also been shown, and thus T is a strong uniform time.

To get bounds for p(k) we have two choices. The first one is to use the fact that always
P(T > k) < E(T)/(k+1) which in our case provides d(k) < (r+1)(1+logr)/(k+1). Also
one could try to bound {T > k} directly. Denote the waiting times we have considered
in the above analysis by Ty, Ta,...,T: Ty (resp. Ts resp. ...) is the moment when the
bottom card moves for the first (resp. second resp. ...) time. Then T =T +--- + T,
and therefore T will be greater than k only if at least one of the T, is greater than k/r.
It follows that

P(T>k) < P(Ty>k/r)+--+P(T, >k/r)
= (A=1/D" + @ =2/r)* "+ (A= [r)HT
< r(—=1/r)k"
< rexp(—k/r?).
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4. We treat once more the collection S of 0-1-sequences of length r. Transitions are
possible if they are of the form ¢ — i (probability 1/2) or between states which are
different at precisely one component (probability 1/2r); see page 114. Note that, since
the associated transition matrix is doubly stochastic, the equilibrium distribution is the
uniform distribution.

A realization of this chain could be defined by the following rule (the chain is assumed
to start, e.g., at (0,...,0)):

Choose a random position p in {1,...,r} and throw a fair coin. If it shows
head, then don’t move, otherwise switch the p’th component.

This rule obviously produces the desired transition probabilities, a more formal real-
ization can also easily be given.

One only has to choose a probability space ({2, A, P) together with independent ran-
dom variables Uy, Uz, ..., V1, Va,... such that the Uy (resp. the Vi) are identically
distributed, and P(Uy = p) = 1/rforp=1,...,rand P(Vy, =¢) =1/2 fore =0, 1.
Then the Uy, Vi give rise to an appropriate Markov process Xo, X1,... : & = S:
Xo :=(0,...,0), and the choice of X4+ given Xi depends on the values of Vi, Uy
according to the above rule.

If, e.g., 7 = 4 and the first pairs (Uk, Vi) happen to be (4,0), (3,0), (2,1), (3,0),...,
then the Xo, Xi,... are (0,0,0,0) — (0,0,0,0) — (0,0,0,0) — (0,1,0,0) —
(0,1,0,0).

Our candidate for a strong uniform time for this process is defined as follows:
Stop as soon as the Uy, Us, ... have covered all of {1,...,r}, that is

T(w) ;= min{k | {Up(w) | 1 <k <k} ={1,...,r}}.

It has to be emphasized that this is not a stopping time with respect to the natural
filtration, and therefore we have to check more carefully whether proposition 14.3 can be
applied. It is clear that we will have to deal with the filtration (Fj) defined by Fi := the
o-algebra generated by Uy, ..., Uk, Vi,..., Vk. Surely this is an appropriate filtration to
make T a stopping time, and the process will also be adapted.

Claim 1: T is almost surely finite.

This is clear, see the discussion of the examples at the end of chapter 13.

Claim 2: T is compatible with the Markov property.

Naively this is obvious, the next state only depends on the present position and not
on the special way it has been produced by the first U’s and V’s. For the sake of easy
reference we include a general argument in the next lemma which covers the case under
consideration.

Claim 3: T is a strong uniform time. Let p be an element of {1,...,r}. Then the p’'th
component of Xy is 0 or 1 with equal prability, regardless of for how many k' < k we have
had Uy = p (provided there is at least one such k'); this follows from the independence
of the Uy, ..., Vi,.... Hence, if we stop after all p’s have occurred — immediately or later
~ we necessarily are at a state for which at every component both values 0 and 1 are
equally likely, and these values are independent for different p. To phrase it otherwise:
the distribution of X7 is the r-fold product of the uniform distribution on {0, 1}, i.e., the
equidistribution on S.
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In the last example we have claimed that the way how we have generated the process
and defined T has given rise to a stopping time which respects the Markov property. This
is true in many similar situations, an appropriate generalization reads as follows:

Lemma 14.4 Let S be a finite set and (2, A,P) a probability space together with equidis-
tributed independent random variables Wi, Ws, ... which are defined on Q and have values
in an arbitrary measurable space (', A'). Suppose that there is given a measurable func-
tion f: S x Q' — S which we use to define a process Xo,X1,...: 2 —= S as follows:
Xo is the constant function ig (where ig is a fized state), Xi(w) := f(Xp—1(w), Wk(w))
for k > 1. Then:
(i) (Xk) is a Markov process with transition probabilities p;; = P(f(i, W1) = j).
(ii) If Fo denotes the trivial o-algebra and, for k > 1, Fy, the o-algebra generated by
Wi, ..., W, then Xo, X, is adapted and every stopping time with respect to this
filtration respects the Markov property.

Proof. First one has to check that the X are measurable, but this follows easily by
induction on k from the formula

Xk =} = J{ X =530 (G, We) = }).

That the (Xj) are a Markov process with the p;; as transition properties is left to the
reader (see exercise 14.6). Clearly the X} are adapted to (F%), it remains to show that

P(Xirr =7 | Xk =4) = P(Xeqr = j | X =4, B)

for B in Fy.
We denote by g, : S x ()" — S the r-fold “composition” of f with itself: g; := f,
and
gr(t, Wi, ooy wh) = fgrat(wy, .oy wh_q), Wh).

Then, by definition, Xty = gr(Xk, Wikt1,-.., Wetr)). Now consider the set B’ :=
{9r(, Wi+1,---, Wikyr)) = 7}. This set is independent of the B € F, and therefore it

follows that
P(B', X = i, B) = P(B")P(Xy = i, B)
as well as
P(B', Xi = 1) = P(B)P(X; = 1).
But {Xii, = j, X =1} = B'N{Xx =1}, and we conclude that

P(Xg4r =J, Xp =1, B)P(Xp =) = P((B', Xi =1, B)P(X =1)
= P(B ) (Xk =i, B)P(Xy =)
= P(Xi =1, B)P(B', Xi = i)
= ]P( k—z B) (Xk+,- =j, Xk=i).

This is precisely the formula for the conditional probabilities we have to show, and
hence the proof of the lemma is complete. O

Remark: Did you recognize the construction of the previous example? There Q' =
{1,...,7} x {0,1}, W corresponds to (U, V), and f is the function



Chapter 14: Strong uniform times 127

f((er, -, er), py€) =(€1,-.., €p—1,6p +€mod 2, £pi1,..., Er).

Exercises

14.1: Characterize the stochastic matrices P such that the constant time T = kg is a
strong uniform time.

14.2: Let T be a strong uniform time. Is T + 1 also a strong uniform time? Or 2T?
14.3: Is it possible to find a strong uniform time for an arbitrary homogeneous Markov
chain?

14.4: Construct a filtration together with a stopping time T such that T is not compatible
with the Markov property.

14.5: Prove that the time T of example 4 before lemma 14.4 is not a stopping time with
respect to the natural filtration.

14.6: In lemma 14.4 we have defined a process (X}) from random variables (Wy). Prove
that (Xx) is a Markov process.
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15 Markov chains on finite groups I
(commutative groups)

We now turn to state spaces which have the additional structure of a group; implicitly
we have already met them, e.g., when prescribing rules like “with equal probability go
toi+1mod N or to i —1mod N” (on {0,...,N—1}). In a group it is possible to move
from a state ¢ to a new position by composing 7 with the elements j of the group, where
J is chosen in accordance with a certain probability law which is independent of i (in the
preceding example +1 and —1 have been chosen each with probability 1/2).

Let (G, o) be any finite group, we will denote the elements by g, A, .. .. Every probability
measure Py on G gives rise to a Markov chain with state space G if we define the transition
probabilities by

Pg,hog = Po({h}) (or pg.n :=Po({hog™'})) for g,h € G.

To state it otherwise: if the chain is now in position g, we choose an h in accordance
with the probability law Pg; the next position will then be h o g.
(Note that we multiply the random element h from the left; multiplication from the right
leads to similar results.)

Here are two examples:

1. Denote by G the group {0,1}" (addition is component-wise modulo 2). A
probability measure Py on G is defined by

Po(0,...,0) := 1/2
Po(1,0,...,0) = 1/2r
Po(0,1,0,...,0) := 1/2r
Po(0,...,0,1) = 1/2r.

The associated chain is equivalent with the random walk on the hypercube
which we have already met several times (cf. example 3 on page 114).

2. Let G = S, be the group of permutations of r elements. Denote, for k& =
1,...,r, by II; the following permutation:

O = 1 2 ... k-1 k k+1 ... r
F=\k 1 ... k=2 k-1 k+1 ... r

(I1; is the identical permutation). We define P such that all IT; have the same
probability 1/r. Do you recognize the top-to-random-shuffle chain (chapter
14, page 124)?

Lemma 15.1 With the preceding definition of the transition probabilities the following
assertions are true:
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(i) The pg hos are the entries of a stochastic matriz; in fact this matriz is doubly
stochastic so that the uniform distribution is the equilibrium distribution.

(ii) Let H be the subgroup generated by supp P := {h | Po(h) > 0}, the support of Py.
The irreducible subsets of the chain are precisely the sets of the form H o g with
g € G, that is, the left conjugacy classes. In particular the chain is irreducible iff
supp Py generates G.

(iil) The chain is aperiodic and irreducible iff there is a k such that every element of
G can be written as the product of k elements, each lying in supp Py.

Proof. (i) It should be obvious that the sum over each row of the transition matrix is
one. For the second part fix any go, we have to calculate the sum over all probabilities
to jump from an arbitrary g to go. Since there is precisely one h which gives rise to this
transition, namely gog~", we have to evaluate the sum 3> Po(gog™"). But the collection
of all gog~! coincides with G, hence this sum is the total mass of Py.

(ii) Let go be arbitrary. If the chain starts there, one may arrive with a positive probability
at all states of the form g, o0---0g; o go with arbitrary r and g1, ..., g, in the support of
Py. Therefore the claim is that H coincides with

H' :={g,o---0og1|r €N, g1,...,9, € suppPo}.

H' is clearly a subset of H, it remains to show that H' is a group. Let g be an arbitrary
element of the support. Since the group is finite there is a k with g* = e (= the neutral
element), and therefore H' contains the inverse g*~1 of g. It follows that inverse elements
of arbitrary elements of H' are also in this set: (g, o---0g;)~! = g;' o---0g-!. That
H' is closed with respect to multiplication is clear.

(iii) The property described in (iii) is nothing but the statement that the k’th power of
the transition matrix is strictly positive. Therefore the assertion follows from part (ii) of
lemma 7.3. O

Given G and Py, what are the properties of the associated chain? In particular, what
are the relevant objects to investigate rapid mixing? It will turn out that an answer can
be given which depends on harmonic analysis.

In the present chapter we discuss the case of commutative finite groups, in this partic-
ularly simple setting it is easier to understand the underlying ideas: characters, Fourier
transform of functions and measures, convolutions and the role of the Plancherel theorem
to bound the variation distance between measures. The investigation of arbitrary finite
groups is postponed to the next chapter. The strategy is essentially the same, the tech-
nicalities, however, are considerably more demanding.

In this chapter (G, +) will be a finite commutative group, the “group multiplication”
is written “+”, the neutral element will be denoted by “0”. Whereas it is known what
such groups look like explicitly we prefer to regard (G, +) as an abstract object. We are
mainly interested in the following questions:

e How is it possible to relate the abstract group G with more concrete objects like
numbers?
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o If Py is a probability measure on G, how can one describe explicitly the measures
which correspond to the k-step transitions of the Markov chain associated with G
and ]Po?

o What quantities have to be known in order to decide how fast this chains converges
to its equilibrium?

Note that the distance to the equilibrium 7' does not depend on the starting
distribution since 7 ' is the uniform distribution: walks which start at a state go
are equivalent with a translation by go of walks starting at 0; and the uniform
distribution is invariant with respect to translation.

Characters

The crucial idea to tackle the first problem successfully is to consider appropriate maps
from G to the complex numbers:

Definition 15.2 Denote by (T',-) the multiplicative group of all complex numbers of
modulus one. Then a character on G is a group homomorphism x from G to I':

x(g + h) = x(g)x(n)
for all g,h € G.
It is not difficult to check that characters have the following properties:

With x, X1, x2 also X (= the map which assigns to g the complex conjugate
x(g) of x(g9)) and x1x2 are characters on G; X is the inverse 1/x of x; the
constant map g — 1 is a character (the trivial character ..., on G); the
collection G of all characters forms a commutative group with respect to
pointwise multiplication (G is called the character group of G); if G has N
elements, then the range of any character on G is contained in the set of the
N’th roots of unity, i.e., in

in this and in the following chapter i will denote the complex number /—1.

(The proofs are simple; the last property, for example, is a consequence of the fact that
g+g+---+g,asum with NV summands, is the neutral element 0 and that 0 is mapped
to 1 by every character.)
Here are some ezamples of characters.
1. Consider first Zy = (Z/NZ, + ), the group {0,1,...,N — 1} of residues modulo N
with addition modulo N. A moment’s reflection shows that x; : a — exp (2mija/N)
defines a character for every j. Conversely, if x is an arbitrary character of this group,
then — since G has N elements — x(1) must be of the form exp (27ij/N) for a suitable
j. This means that x and x; coincide at 1, and since this element generates G' and since
both x and x; are characters it follows that x = x;.

Therefore j — X; is an onto mapping from G to G. Obviously it is also one-to-one and
a group homomorphism, and thus (G, +) and (@, -) are isomorphic.
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2. Let G = {0,1}", with component-wise addition modulo 2. How is it possible to assign
complex numbers to the g € G such that sums are mapped to products?

Since g + g = 0 for every g the range of any character will be in {—1,+1}. Also it is
clear that a character is determined by its values on the “unit vectors” e; := (1,0, ...,0),
ez :=(0,1,0,...,0), ..., e, :== (0,...,0,1) since these elements generate G. Therefore it
is natural to try a definition which assigns an arbitrary number &, in {—1, +1} to ey:

Xeqoen (11, ..., 0p) > 7' ER - &)
for (e1,...,&r) € {—1,41}" and (i1,...,ir) € G. It is clear that all these maps are
characters, that all of them are different and that every character has this form. Thus
the map (e1,...,&7) = Xe,..e, 1S a bijection between {—1,+1}" and G, and it is also a
group isomorphism if {—1,+1}" is provided with component-wise multiplication. This
group is isomorphic with G so that — as in in the preceding example — G and its character
group are isomorphic.

This is a general fact, G and G are always the same groupsif G is finite and commutative:

Lemma 15.3 Let (G,+) be a commutative group with N elements. The N -dimensional
vector space of all mappings from G to C will be denoted by X, and this space will be
provided with the scalar product (f1, f2)¢ := 3, f1(9) f2(9)/N.
(1) Let x be a character which is not the trivial character X..... Then 3, x(g) = 0.
(i) In the Hilbert space (Xg,(:,")s) the family of characters forms an orthonormal
system.
(ili) Any collection of characters is linearly independent.

(iv) G has at most N elements.
(v) In fact there ezist N different characters so that G is an orthonormal basis of

~

Xa. Also (G, +) is isomorphic with (G, -).

Proof. (i) Fix an arbitrary go and calculate 3  x(go + g). On the one hand — since x is
multiplicative - this sum equals X(go) >_, X(¢). On the other hand the go + g run through
every group element precisely once if g runs through G, and consequently we have

x(90) (> x(9) =" x(9)-
g 9

Thus 3°, x(g) = 0 provided that we can find some go with x(go) # 1.
(ii) That two different characters x1, x2 are orthogonal follows from (i) since the scalar
product (xi1,X2)g is (up to the factor 1/N) the sum ) x(g) with the character x =
X1Xz ! = x1xz. They are also normalized due to the factor 1/N in the scalar product.
(iii), (iv) These assertions follow immediately from (ii) (note that X is N-dimensional).
(v) Whereas the preceding proofs have been self-contained this part needs the result that
commutative finite groups are products of cyclic groups! (see [46], theorem 3.13). With
the help of this fact the proof is simple, it even provides another verification of part (iv).
The assertion is true if G is a cyclic group Zy, this is just what we have shown in
example 1 above. Also, the characters of a product group G x G2 are precisely the maps
(91,92) » x1(g1)x2(g2) with x; € G; and x2 € G2 (this is an easy exercise), a fact which
can be rephrased by saying that

1 We will give a self-contained (and rather lengthy) proof of the corresponding statement for arbitrary
finite groups in the next chapter.
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(x1,x2) = ((91: 92) = x1(91)x2(g2))

is a bijection from é\l X 6’\2 to Gmg. This map is even a group isomorphism, and thus
(v) is true for a product if it holds for the factors.
Since G can be built up this way from cyclic groups the result follows. O

By the lemma the set of characters G is an orthonormal basis of the Hilbert space
(Xa, (-, )g)- This has some remarkable consequences:

Corollary 15.4
(i) Let f be any element of Xg. Then f can be written as a linear combination of

the x € G as follows:
F=>{fxex
P

(ii) For different g, h € G there is a character x such that x(g) # x(h).

Proof. (i) is an explicit restatement of the fact that the x form an orthonormal basis,
and (ii) follows easily from (i): it suffices to consider an f with f(g) # f(h). a

Fourier transform of functions

Now we introduce the Fourier transform of functions on G; this is a preparation to
treat the Fourier transform of probability measures which will be of crucial importance
in the sequel.

Definition 15.5 Let f : G — C be any function. We define the Fourier transform f of
f by

F:85C xm 5 Y Hox(o)
9

The following properties are easy consequences of the definition or of lemma 15.3:

e f 1 f is a linear map from the complex-valued functions on G to the complex-
valued functions on G.

e The Fourier transform of a character x is the indicator function of the set {X}:
x(x') vanishes for x' # X and is one at ¥’ = X.

e There are N different ¥ and therefore the range of the Fourier transform is N-
dimensional. Consequently — as an onto linear map between /N-dimensional vector
spaces — it is also one-to-one.

An explicit description of the inverse map is easy:

Lemma 15.6 (Inverse Fourier transform )
Any f € X can be reconstructed from f by the formula

flo)=Y_f00x(g) forgeG.
X
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Proof. We already know that f — f is a bijection, and therefore it suffices to check
the formula for the elements of G, they are a basis of Xg. But for f = xo € G the
Fourier transform is zero resp. one for x # Xo resp. x = Xo so that the sum reduces to
xo0(9) = xo(9)- =

The Fourier transform is not only a bijection between the spaces of complex-valued
functions on G and @G, respectively. It even is an isometry if we measure the size of a
function by its (suitably normalized) L2-norm:

Proposition 15.7 (The Plancherel formula)
Let f1, fo be functions on G. Then

(f.fo)g = O L0 F(X)
X

In particular,
1 R
5 2 f@F = 1f0or
g X
holds for all f.

Proof. Suppose first that f; = x; and fo = x2 are characters. Then, by lemma 15.3, the
left-hand side is zero resp. one depending on whether xi, x2 are different or equal. The
Fourier transforms are the indicator functions of the sets {X7} and {Xxz}, and therefore
the sum on the right-hand side also is zero for different X1, x2 and one otherwise. This
proves the assertion for this special situation.

The general case follows since arbitrary fi, fo can be written as linear combinations of
characters. a

Fourier transform of measures.

As we have already noted we will need in particular the Fourier transform of measures
Pg, it is defined by

Po:G = C, x+~ Y x(9)Po({9});

9

we note in passing that this is just the integral of x with respect ot the measure space
(Ga ]PO)

Note that IT”B is not the Fourier transform of the function g — Po({g}), for functions
one has to multiply the sum by 1/N.

The reason for the different treatment of functions and measures lies in the role of
the uniform distribution on G, it is the only probability measure Py which respects
the group structure in that it is ¢ranslation invariant®: Po(A+g) = Po(A) for every
A C G. And every Py has a density fp, with respect to the uniform distribution,
namely fp, : g — NPo({g}). Therefore the Fourier transform of the measure Py is
nothing but the (ordinary) Fourier transform of this density.

2 In harmonic analysis it is called the Haar measure of G.
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By lemma 15.6 all information contained in Py is contained in its Fourier transform.
The reason why this “translation” is important will become clear immediately, first let’s
calculate some examples:

1. We start with the Bernoulli probability space: here G is Zy = {0, 1}, and the measure
Py assigns to 1 resp. to 0 the probability p resp. 1 — p. The character group of G consists
of the trivial character and of x : g — (—1)9. Then H/’T) maps Xy to1-(1=p)+1-p=1
and xtol-(1—-p)—1-p=1-2p.

2. More generally, let po,...,py—1 be nonnegative numbers with )" p; = 1. They give
rise to a probability measure Py on Zy, and we will calculate its Fourier transform. The
typical character is x; : a — exp (2mija/N), it is mapped by Py to

N-1
Y paexp (2mija/N),

a=0
that is to a certain convex combination of N’th roots of unity.

3. Now we investigate the very first example where we have introduced a measure Py on
the hypercube. Let xe,.... be any character (see page 131). Its image under Py is
1

+$(el+~--+ar).

[

0 _
+ ——261 15p5p+1 CE. =

[N
/'\

Consider in particular in the preceding example 2 the special case when Py is the
uniform distribution. Then Py at x; is ), exp (27iaj/N)/N, and this number is 1 for
j=0andOforj=2,...,N-1.

Proof: With € := exp (27ij/N) this sum is (1 +& + --- +&¥~')/N, and for j =
1,...,N —1 we have £ # 1 so that it can be evaluated as (1 — £V)/[N(1 —¢)] = 0.

This is a special case of part (i) of the following

Lemma 15.8 Let Py, Py, Py be probability measures on the finite commutative group G;
by U we denote the uniform distribution.
(i) Po=U iff ]I’E(x) is one for the trivial character and zero for the other x.
(ii) The variation distance ||Py —P2|| can be estimated by (3_, IP1(x) = P2(x)2)1/2/2;
in particular ||Py — U|| is less than or equal to (30, 4,,.., IP1 (x)|2)/2/2, where
the summation runs over all nontrivial characters x.
(ili) Conversely, the distance of ﬁ’: and P, with respect to the mazimum norm 1is
bounded by 2||P, — Ps||.

Proof. (i =2, U{gDx(9) = 32, x(9)/N, and this sum is one resp. zero if X = Xuriv

resp. X ;é eriv by lemma 15.3. Smce Py — ]f”; is one-to-one this happens only for the
uniform distribution.
(ii) For measures P}, Py the Plancherel formula has the special form

1 B
5 2 Vg =P =D P () ~ P10,
g X
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where p, :=P1({g}), v, := P2({g}). Thus it is only necessary to relate the L'-norm with

the L?-norm:
(Z g — V9|)2
9
NZ g — Vg|2
9

ST () - Pa(x) s

X

4Py — Py

IN

here we have used the inequality (E;.V:l a;)?<NY a? for real aj, it is just the Cauchy-
Schwarz inequality for the Hilbert space RY applied to the two vectors (1,...,1) and
((11,. .. ,aN).

The second part of (ii) follows from the observation that the Fourier transform of any
probability measure at the trivial character is 1 (so that the corresponding term in the
sum is zero) and that U vanishes at the nontrivial characters.

(iii) Let x be arbitrary. Then

i) - P20l = D x(9) (g — vy))|
9

Zlﬂg’”gl

g

2[|Py — Py|.

IN

o

This lemma allows one to transform the question “how close is a distribution Py to the
uniform distribution?” to the investigation of “how small are the ]f’;(x) for the nontrivial
characters x?”. In order to apply it to the present situation it remains to have a closer
look at the measures which correspond to the k-step transitions.

Convolutions

Our starting point was a probability Py on G which was used to define the one-step
transitions: if we start at an arbitrary go we will be next at go + h with probability
Po({h}). From go + h we continue to go to (go + h) + h' where h' again is chosen in
accordance with Py. Also - this was tacitly assumed throughout — the choices of h and A’
(and also the choices for the moves to come) are independent. Hence the position which
is occupied after the second step will be a certain go + hg, where hg has the form h + h'.
Therefore the probability of the transition go = go + ho is 3., pi—p, Po({2})Po({R'}).

To argue a little bit more formally start with a sequence W1, ... of G-valued random
variables which are independent and have distribution Pp. Then the positions of
the walk are go, go + W1, go + W1 + Wa,.... We are interested in the distribution of
W1 + W,. This can easily be calculated if we condition on W1 and use the fact that
W1, W2 are independent:
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P(Wi+ W, = ho) Z]P(I/Vl + W3 = ho, Wi = h)

h
STP(Why = h, Wy = ho — h)
h

> P(Wh = h)P(W2 = ho — h)

h
> P(Wi=h)P(W; =h')
h+h'=ho

Y. Po({R)Po({R'}).

h+h!=hg

Some readers will be reminded of a result from elementary probability where one derives
a similar formula for the distribution of the sum of two independent Z- or R-valued
random variables. The present investigations are the appropriate version for arbitrary
commutative (finite) groups, later we will also discuss the non-commutative case.

We can summarize the preceding discussion by saying that the two-step transitions
go —* go + ho of our chain are governed by a probability measure which assigns to hg the
number Y, Po({h})Po({ho — h}). This motivates

Definition 15.9 Let P;, P; be probability measures on G.
(i) We define the convolution P, x P, of Py, P; by

(P2 * P1)({ho}) := Y Pr({h})Px({ho — h}).
h

(ii) In the special case P; = P, = Py we put ]P’(()z*) := Py *x Pg. This is extended to a
definition for arbitrary integer exponents by P{¥*1)%) .= p{¥) « p.

(It is left to the reader to show that the convolution is again a probability measure.)
With this definition we know:

If the one-step transitions are governed by Py, then one will ob-
serve k-step transitions of the form gy — go + hy with probability
]P’(()k*)({ho}). Consequently the problem of how fast the chain con-
verges to its equilibrium is equivalent with the question of how fast
the P**) tend to the uniform distribution.

Since we have proved that the variation distance can be calculated with the help of the
Fourier transform it will be necessary to relate the Fourier transform of a convolution
with the Fourier transforms of the factors. There is a surprisingly simple connection, a
fact which makes the Fourier transform an extremely useful tool:

Proposition 15.10 For probability measures P1,Py on (G, +) the Fourier transform of
Py Py is just the (pointwise) product of the functions ]ﬁ; and ]I/”; In particular it follows
that, for any probability Py, the Fourier transform of ]P’gk*) is the k’th power of the Fourier
transform of Po.

Proof. Let x be arbitrary. Then
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PrxPi(x) = Y x(g0)(P2+P1)({g0})
9o
= > x(90) Y Pi({gHP2({g0 ~ 9})
go g
= > x(g+9 - 9)Pi({g)P2({g0 - g})

90,9

= > x(9)x(9 — 9)P1({g})P2({g0 — 9})

90,9

= > x(@x(g"P({g})P({g'})
]
= O x@P:({g)) O x(a)P2({g'}))
g g

= P(x)Pi(x).
O

Therefore we arrive at the remarkable result that for a chain on G which is defined by
a probability Py the rate of convergence to the equilibrium solely depends on the size of
the numbers ﬁ(x) for the nontrivial characters x. They are always convex combinations
of the x(g), that is of complex numbers of modulus one. Therefore they lie in the unit
disk, but only if they are “not too close” to the boundary their powers will converge
sufficiently fast to zero; this convergence will be studied in more detail later.
Before we turn to applications to the mixing rate we prove an interesting consequence of
the preceding proposition, it is an extension of lemma 15.1:

Proposition 15.11 Let Py be a probability measure on a finite commutative group (G, +),
its support will be denoted by A. Then the following assertions are equivalent:
(i) The associated chain is irreducible and aperiodic.
(i) A=A (:={g—-h]g,he A}) generates G.
(iii) There are no proper subgroup H of G and go € G such that A lies in go + H.
(iv) There is a k such that every g € G can be written as a sum g = g1 + -+ + g
with g1,...,9x € A.
(v) |Po(x)| < 1 for every nontrivial character x.
(vi) The measures ]P’(()k*) converge to the uniform distribution on G with respect to the
total variation norm.

Proof. By lemma 15.1, (i) and (iv) are equivalent. Hence, under the assumption of (iv),
the k-step transitions converge in variation norm to the equilibrium (lemma 7.4) which
is the uniform distribution (lemma 15.1(i)), and this establishes “(iv)=(vi)”. From (vi)
the assertion (v) follows easily with the help of lemma 15.8 and proposition 15.10: the

]P(()k*) tend to U iff the numbers (Po(x))* tend to zero for all nontrivial x.

(v)=(ii): Let Hp, be the subgroup generated by A — A, suppose that Hp, is a proper
subgroup of G. Then the quotient G/Hp, contains a nontrivial element so that there is
a nontrivial character ¢ on G/Hp, (recall that commutative groups always have “many”
characters: for any g # 0 there is — by corollary 15.4 — a character which maps g not
to 1). Then x := “the natural quotient map composed with ¢” is a nontrivial character
which is identically 1 on Hp,. In particular, x(go — g) = 1 holds for all go,g € A.
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Therefore, if we fix go, it follows that I[/”B(x) is the convex combination of certain x(g)
all of which are identical with x(go). Thus ﬁ(x) = x(go) which is of modulus one. This
proves that (v) implies (ii).

(ii)=>(iil): Suppose that (iii) does not hold. Then, with a proper subgoup H and a suitable
go, we have A C go + H,i.e, A — A Cgo—go+ H — H = H. Consequently Hp,, being
a subset of H, would be properly contained in G.

(iii)=(ii): Fix any go € A. Then A—go C Hp, holds so that A C go+ Hp,. By assumption
this implies Hp, = G.

(ii)=>(iv): Let g € G be arbitrary. We already noted in the proof of lemma 15.1 that the
subgroup which is generated by a certain subset is just the collection of finite sums from
elements of this subset. Thus, in our case, there are g1,...,9r, h1,-..,hr € A such that
g=g1 —hy +---+ gr — h.. Now we observe that (N — 1)h(=h+---+h with N -1
summands) equals —h if N denotes the cardinality of G; this follows from Nh = 0, the
order of an element divides the order of the group. Hence g can be written as a sum of
kg := 7+ (N — 1)r elements of A. This is also true for 0:

O0=h+ (N =1Dh+---+h, + (N = 1)h,.
And therefore (iv) holds with k := 3__k,. a

In order to check wlle\ther the conditions of the preceding proposition are satisfied we
have to calculate the |Py(x)|. Let’s review the examples from page 134:
1. In the case oﬁ\the Bernoulli probability space there is only one nontrivial character.
The associated Pp-value is 1 — 2p, and this number has modulus less than one precisely
if p lies properly between 0 and 1.
2. For an arbitrary probability on Zy we have to consider the characters with labels
j=1,...,N —1. A convex combination of the numbers exp (27ija/N) can lie on the
boundary of the unit circle ealy if all weights are concentrated on the same number.
And this happens only if the support of the measure is contained in a set of the form
{a+kb|k=0,...,N —1} with ged{b,N} > 1.
3. In the hypercube example the nontrivial characters correspond to the Xe,.., with
(e1...&r) # (1,...,1). The associated value of ]I/’E is 1/2+ (1 + - -~ + &,)/2r, and this
number is smaller than one since at least one of the g, is —1.

Rapid mixing

To derive results on rapid mixing we only have to combine the preceding results. If an
arbitrary Py on the commutative group G is §iven, then the distribution after k steps of
a walk which starts at 0 corresponds to Py %), (A starting position at any other go only
means a translation of the walks; this is unimportant if we are interested in the distance
to the uniform distribution, see the note on page 130.) A combination of lemma 15.8
with proposition 15.10 leads to

Proposition 15.12

N 1 =
|Po*) — U2 < 1 Po(x)I**.
X#X!riv
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Here are some examples to illustrate the result:

1. Consider on (Zn,+) a Py which is supported by {0,1}. What is the optimal choice
of p := Po({1}) to have a mixing rate as fast as possible? It is to be expected that very
small or large p are not favourable: in the former case the chain stays too long close to
its starting position, and in the latter it behaves nearly like a deterministic chain.

With the preceding theorem one can analyse the problem as follows. We have to discuss
the numbers E/Dz(xj) = pexp (27ij/N)+ (1 — p) for j = 1,..., N — 1 which are certain
points on the line segment between one and exp (27ij/N). Their absolute values decrease
for p between 0 and 1/2 and increase for p between 1/2 and 1. Therefore the minimum
value is — regardless of j — attained at p = 1/2: this is the optimal choice.

2. This time we consider on (Zn,+) the measure Py which is defined by Po({—1}) =
Po({+1}) = 1/2; note that Py gives rise to the cyclic random walk on {0,..., N — 1}.
‘o avoid periodicity we assume that N is an odd number. The computation of the

@(Xj) is easy:

= 1 .. .. .
Po(x;) = 3 (exp (2mij/N) + exp (=2mij/N)) = cos(2mj/N).
Therefore, by our proposition, it follows that

N-1
(kx) g 1 o 2k
B~ VP < 5 7 (cos(zmi/N) .

j=1

In the present form this estimate is of little use, we will try to simplify it. First we recall
that cos(—z) = cos(z) and cos(m — z) = — cos z for all £. Thus the numbers

cos(2mj/N), j=1,...,N -1
are identical with the two times repeated sequences
cos(mj/N), j =2,4,..., K
and
—cos(wj/N), 7=1,3,..., K,

where K (resp. K') denotes the maximum of the even (resp. odd) numbers which are
< (N —=1)/2. Therefore - since only even powers occur — we may rewrite the above sum
as

(N-1)/2

Z (cos(mj/N))?.

DO | =

We continue by applying the inequality cosz < e 2 for0<z < /2.

One observes first that z cosz < sin z for these z: the inequality holds at 0 and the
derivative of the left-hand side is not greater than that of the right-hand side.

With this preparation at hand one considers h(z) := log(e’z/2 cos ). h vanishes at
zerc, and its derivative (= £ — tan z) is not greater than zero by the first step. This

proves that h < 0, hence the result.
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It follows that

1 (N-1)/2
(k=) 2 2:2 2
e —Ul* < 3 ; exp (—7%5%k/N?)
1 e o]
< 5 exp(=m’k/N?) Y exp(=n*(j* ~ 1)k/N?)
Jj=1
1 e o]
2 2 2 2
< jexp(-m’k/N )>_exp (-3n%jk/N?)

Jj=0
1 exp(=m’k/N?)
21— exp(—3n2k/N2)’

in the last inequality we have used the fact that 72 — 1 > 3(j — 1), the final expression
has resulted from the formula for the geometric series.

The denominator is > 2(1 —exp (—372)) > 1 for k > N2, and thus we finally arrive at
the bound

B — UJ)? < exp (—n2k/N?).

This means that one has to run the chain k = O(N?) steps in order to be sure that the
distribution is close to the uniform distribution.

3. We modify the hypercube example from the beginning of this chapter: G is {0, 1}" with
component-wise addition modulo 2, and Py assigns equal mass 1/(r + 1) to the points

(0,...,0), (1,0,...,0), (0,1,0,...,0),..., (0,...,0,1).

The characters have been identified on page 131, the associated values of P, are

— 1 . )

P _;_ e --elr

0 (Xer..er) ] L 1 r
L +etin<

1
= m(1+€1+"‘+€r)
= 1-2uw(ey,...,&r)/(r+1),

where w(ey, . ..,&,) denotes the number of —1’s in the sequence €, ..., &,.
We have to take into account all (gy,...,&,) # (1,...,1). For s = 1,...,r there
are precisely (:) such vectors with w(ey,...,&,) = s, and therefore the estimate from

proposition 15.12 implies that

(k%) j 2s \2k
1P —U”2SZ§(3>(1—1'+1) ’

The summand with s = 1 is the relevant one if convergence for k¥ — oo is studied. I
follows that '

(k*)_ __2_k
B ~vli<o(1- 7).

with C depending on r but not on k.
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Exercises
15.1: Which measure on the symmetric group S, corresponds to the random-to-random
shuffle, which one to the random-to-bottom shuffle?

15.2: In example 2 of chapter 2 we have introduced certain random walks. Which of
these can be thought of as a random walk induced by a measure on the cyclic group Zy?
(Your answer might depend on certain properties of the numbers a;, b;, ¢; by which the
walks are defined.)

15.3: Consider the collection of all probability measures Py on a (not necessarily com-
mutative) finite group (G, o) which give rise to an irreducible chain. Is this set convex,
is it open as a subset of all probability measures on G?

15.4: A chain is called deterministic if for every i there is a j with p;; = 1. What precisely
are the measures Py on a finite group which give rise to deterministic chains?

(If not stated otherwise, (G,+) denotes a commutative finite group in the sequel.)
15.5: Let Py be a probability measure on G. If Po({0}) > 0, then the associated chain is
aperiodic. Is the reverse implication also true?

15.6: Let U be a subgroup of G. Prove that there is a probability measure Py on G such
that the closed subsets of the associated Markov chain are precisely the residue classes
" {u+ g|u e U}, where g runs through G.

15.7: Let 0 < a < b < N, we consider the measure Py on the cyclic group Zy which has
mass 1/2 on a and b. Characterize the numbers a, b, N such that the associated chain is
irreducible (resp. irreducible and aperiodic).

15.8: Prove that, for commutative groups G; and G2, the map
(x1,x2) = ((g,h) = x1(g)x2(h))

is a bijection between 6'\1 X@ and sz.

15.9: Let Py be a probability measure on G such that, for some k, the convolution
product Po(k*) is the uniform distribution U. Then also Py = U holds.

15.}\0: For a probability measure Py on G, prove that Po({g}) = Po({—g}) implies that
all Py(x) are real. Is the converse also true?

15.11: All characters on G are real valued iff g + g = 0 for all g.

15.12: fi * fo = fo * f1 holds for arbitrary complex-valued functions on G.

15.13: More generally than in the present context one can define characters on arbitrary
commutative groups (G, +) with a topology: a character x is a continuous group homo-
morphism from G to I. (Clearly the collection G of all characters is a group with respect
to pointwise multiplication also in this more general setting.)

Identify G for the groups (Z,+), (R,+), and (T, -), where each of these spaces is provided
with its natural topology.
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16 Markov chains on finite groups II
(arbitrary groups)

In this chapter we are going to generalize the preceding considerations to the case of an
arbitrary finite group (G, o), the approach will be similar: relate the abstract group with
something more concrete and solve problems for G by transforming them into problems
concerning numbers. However, it is not to be expected that the notions introduced up to
now will suffice, the reason is simple:

Whenever a group homomorphism, say ¢, on G has a commutative range,
then

#(goh) = d(g)d(h) = ¢(h)p(g) = ¢(hog)

for all g, h. Therefore there is no hope that such ¢ distinguish between dif-
ferent elements of a non-commutative group. In particular, homomorphisms
from G to I' will not suffice.

The idea is to pass from characters to representations, i.e., to certain matriz-valued
maps. They will be introduced and studied in the first section, of particular importance
will be the “essential” (the irreducible) representations. The further structure is similar to
what has been done in the last chapter: Fourier transform of functions, Fourier transform
of measures, the Plancherel theorem, convolutions, connections with rapid mizing. At the
end of the chapter we will discuss some ezamples.

Representations

Before we introduce the relevant definition we recall that, for a complex d x d-matrix
M = (ajk);jk=1,..d, one defines the adjoint matrizc M* by M* = (@x;);j k=1,..,4) (note that
one not only passes to the complex conjugates of the entries, but that also a reflection at
the main diagonal is necessary). M is called unitary provided that M M* is the identity
matrix Id; then M*M = Id also holds.

It is easy to see that the collection Uy of unitary d x d-matrices is a group with respect
to matrix multiplication, this is our candidate to serve as an appropriate range space.

A d-dimensional representation® p of (G, o) is nothing but a group homomorphism from
G to Uy.

Examples

1. In the commutative case every character is a (one-dimensional) representation if we
identify numbers with 1 x 1-matrices. Similarly, every map x : G —= I" with x(g; 0 g2) =
x(91)x(g2) on an arbitrary (G, o) is a one-dimensional representation. In particular, every
group admits the trivial representation p,.;, which corresponds to the constant map g — 1.

1 What we introduce are in fact unitary representations. Since these are the only representations we
will consider in this book no confusion should arise.
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But often there exist other one-dimensional p. A simple cxample is the map which
assigns the sign to a permutation, that is +1 (resp. —1) if the permutation can be
written as an even (resp. odd) number of transpositions. This induces a one-dimensional
representation on every symmetric group S,(= the permutations of {1,...,n}).

2. It is easy to get new representations from known ones. A first technique is to start
with a d-dimensional p and to fix an M in Uy. It is plain that then pps : g — Mp(g)M~*
is a (d-dimensional) representation as well?.

Also, if p1, p2 are representations which are d;- and dj-dimensional, respectively, then

g ( pl(()g) Pz?g) )

obviously defines a (d; + ds)-dimensional representation. It is called the product of p1, p2
and written p; & po.

3. We define the Hilbert space X as in the commutative case as the space of C-valued
mappings on G together with the scalar product (fi, f2) = 3_, fi1(9) f2(g)/N; as before,
N denotes the cardinality of G.

Every g € G induces a map T, : X¢g = X¢g by

fr(g— flghog)).

The T, are obviously linear, and they satisfy Ty 0, = Ty, © Ty, (this is due to the
rather artificial definition). They are also isometric:

(Tg(fl):Tg(f2)>G

% Y hlg Tt egd) (g o g)
"

D MACRIACD)
= (fi, fag-

Thus they are unitary linear operators on the Hilbert space X¢ so that, if we fix an
orthonormal basis, every T, correponds to a unitary matrix M, and we end up with an
N-dimensional representation g — Mj.

IfT: X¢ = X is any linear map and fi,..., fv any orthonormal basis, then — as is
well-known - T is described by the matrix A = (ax;), where ax; = (T f;, fr)g (notin
the reverse order). With this definition T' corresponds to the map (a1,...,a N)T -
A(ay,...,an)" from CV to CV if this space is identified with Xg via the map

(a.l,...,a,)\r)T — > a;fj.

It is called the left-regular representation of G,-we will denote it by p.equtac-

[Irreducible representations]

Since we will use representations to describe G it is surely desirable to try to identify
the “essential” ones:

2 If the p(g) are regarded as unitary operators on the d-dimensional Hilbert space, then the transition
from p to pps corresponds to the transition to a new orthonormal base.
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Can one find a class C of representations

e which is sufficiently rich to reconstruct the structure of G

e and which is at the same time as small as possible among classes C of
representations with the first property?

We will see that such a class in fact always does exist. To motivate the approach we
first observe that a possible candidate for C must not contain representations which are
of the form p = p; @ p2 since such p can be built up as soon as one has access to the
“atoms” p; and ps.

Also, since equivalent representations contain essentially the same information, C should
contain at most one representative from each equivalence class.

Therefore it is natural to start with

Definition 16.1 Let p, p; and py be representations of (G, o).
(1) p1 and p2 are said to be equivalent provided that they have the same dimension
(say d) and there exists an M € Uy such that pa(g) = Mp1(g)M ! for all g.
(if) p is called irreducible if it is not equivalent with a representation of the form
P1 @ p2.

Examples will be given later, here we only note that one-dimensional representations
trivially are irreducible. Also let’s remark that possible candidates for the above class C
necessarily are collections of irreducible representations two of which are not equivalent.
That every such candidate behaves as desired will be the main content of the Peter-Weyl
theorem below. It needs some preparations.

Schur’s lemma and some consequencesl

Lemma 16.2 (Schur’s lemma)
Let p be a d-dimensional representation of (G,o). Then the following conditions are
equivalent:
(i) p is irreducible.
(ii) If A is any d x d-matriz such that Ap(g) = p(g)A for all g, then A is a multiple
of the identity matriz.
(iii) Let Vbe a subspace of C* such that p(g)z lies in V whenever g € G and x € V
(V is said to reduce p if this is the case®). Then V = {0} or V = C4.

Proof. (1)=(ii): For the proof we remind the reader of some facts from linear algebra:

e A matrix A is called self-adjoint if A = A*.If this is the case, then there is a unitary
matrix M such that MAM ™! is a diagonal matrix.

e If B = (bjx) is a diagonal d x d-matrix, Q(z) = ag+a1z+---+a,z" is a polynomial
and C = Q(B) := apId+ a1 B + a2 B? + - - - + a.B", then C is also diagonal and
the entries on the diagonal of C are the @-images of the corresponding B-entries.

In particular, if by; = byp = -+ = by and by # bj; for some 1 < d' < d and
all j =d +1,...,d, then one may choose @ in such a way that the associated
C = (cj) satisfies ¢;1 =+ = cgr¢ = 1 and cjx = 0 for the other j, k.

3 Sometimes reducing subspaces are also called subspaces which are invariant with respect to the p(g).
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Now let A be a d x d-matrix which is not in C Id and which commutes with all p(g). We
will show that p is reducible.

As a first step we show that A may be chosen such that it is self-adjoint. To this end
we observe that with A also A* commutes with the p(g). This is a consequence of the
fact that M* = M ™! for unitary matrices M so that (p(g))* = p(g™!) :

(p(9)A*)* = A(p(9))* = Ap(g™") = p(g7)A = (p(g))* A = (A" p(9))",

hence p(g)A™ = A*p(g).
Therefore the p(g) commute with the two selfadjoint matrices

A+ A A A*
A =22 a4, =22
2 21

and since A = A; + iAs, one of these will not be in CId.

Thus, let A be self-adjoint. Choose an M € Uy such that B := MAM~! is diagonal;
we may assume that the entries Aj, ... on the diagonal are such that Ay =--- = Ay and
Aj # A1 for a suitable d' < d and all j > d'.

B obviously commutes with all Mp(g)M~! (= pum(g)), and so does every polynomial
Q(B) of B. Thus, with a proper choice of @, we find a matrix C = Q(B) = (cjx) with

e c;1 = -+ =cqgq = 1and cjx =0 for the other entries;

e Cpu(g) = pu(g)C for all g.

But this means that pj(g) has a nonzero entry at position j, k only if 1 < j, k < d’' or
if d +1< 7, k <d, and thus pjs is of the form p; @ p2 with two representations p, and
p2 (of dimension d' and d — d', respectively). It follows that p = (p1 ® p2) -1 so that p
is reducible.

(ii)=(iii): We will prove that the existence of a nontrivial reducing subspace enables us
to find a matrix not lying in C Id which commutes with all p(g).
Let V be a reducing subspace, we assume for the moment that V' is of the form

Vg :={(z1,...,2a,0,...,0)7 | z1,...,24 € C}

with 1 < d' < d. Then, since V reduces p, the entries of the p(g) at the positions j, k
with j =d' +1,...,d, k=1,...,d" must vanish. Since p(g) = (p(¢g~"))*, this holds also
true with the roles of j and k reversed. This implies that the p(g) commute with the
matrix C from the preceding part of the proof.

The general case can be reduced to the preceding argument: for any V' which is neither
{0} or C? there is a unitary matrix M such that z € V is equivalent with Mz € V for a
suitably chosen d', 1 < d’ < d. The result follows if we now argue with the representation
pu instead of p.

(iii)=(i): If p = (p1 D p2)m holds, then V := {z | Mz € Vg } defines a nontrivial reducing
subspace; here d’ stands for the dimension of p;. O

Schur’s lemma has a number of interesting consequences:

Corollary 16.3 If G is a commutative group, then every irreducible representation is
one-dimensional. Therefore the collection of irreducible representations can be identified
with the character group G in this case.
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Proof. Let p be irreducible. Under the assumption of commutativity every fixed p(go)
commutes with all p(g) and thus is of the form ag4,Id. If the dimension were larger than
one there would exist an abundance of matrices A not lying in C Id commuting with the
p(g) (or an abundance of nontrivial reducing subspaces), a contradiction. a

Corollary 16.4 Let p; and ps be irreducible representations of G with dimension d; and
dy, respectively. We will say that a da % d;-matriz A connects p, and p2 if

Ap1(g) = p2(9)A

for every g (note that this definition is not symmetric in py, p2).
(i) If A connects p1 and p2, then either A = 0 or dy = dy in which case A is a
nonnegative multiple of a unitary matriz.
(i1) p1 is equivalent with ps iff there is a nonzero A which connects p1 and ps.

Proof. (i) Let V. C C% be the collection of the vectors z such that Az = 0. From
Ap1(g) = p2(g)A it follows that p,(g)z € V provided that z € V. Consequently V is
either the zero space or all of C¥1. If we argue similarly with W = {Az | z € C%} and p»
it follows that W is {0} or C%2. Therefore, if A is not the zero matrix, it has independent
rows, and the column rank is d,. This is possible only if d; = d» and if A is invertible.

The equation Ap;(g~') = p2(g~!)A (for all g) implies that p;(g)A* = A*p2(g) holds;
this follows as usual by taking adjoints. Therefore A*A commutes with all p;(g), and
Schur’s lemma provides an a € C with A*A = ald. This number a is necessarily real and
strictly positive since we have, in the Hilbert space C%,

0 < (Az, Az) = (A Az, z) = a(z, T),

and at least for some x strict positivity obtains.

It remains to note that M := A/\/a satisfies M*M = Id so that it is unitary.

(ii) One implication is trivial: in the case of equivalence we have Mp;(g)M ™! = p,(g)
with a suitable unitary M so that M connects p; with ps. The converse follows from the
first part of the proof. (Note that with A also A/+/a connects p; with ps and that A*A
is nonzero for nonzero A; this follows easily from the equation (A*Az,z) = (Az, Az) =
1 4z]]2.) o

In order to apply the preceding facts it is useful to know how one can find connecting
matrices:

Lemma 16.5 Let p; and po be irreducible representations of G with dimensions d; and
ds. Then, for any ds X di-matriz A, the matrizc

sz(g )Ap1(9)

connects p1 and p2.

Consequently A is zero if p1 and p, are not equivalent, and A is a positive multiple
of a unitary operator otherwise. In the case p1 = p2 the matriz Aisa multiple of the
identity matriz. The constant is the trace* tr(A) of A, divided by the dimension of p;.

4 The trace of a square matrix is the sum over the diagonal elements.
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Proof. Fix any go. Then

Ap1(go) = p2(g0)A

is equivalent with

sz ) Api(gogo) =) pa(goo g™ ")Ap(9)-
g

That this equation holds can easily be seen by a change of summation: with g’ := go go
the first sum is 3 p2(go © (g")"HApi(g).

Now suppose that p := p; = py. Since A commutes with all p(g), Schur’s lemma
provides an a such that A = ald. Since the trace of AB is the same as the trace of
BA for arbitrary square matrices it follows that the trace of A equals the trace of all
p1(g~1)Ap1(g) and thus the trace of A. This completes the proof. o

rDuals of G and the Peter-Weyl theoremJ

Now we are going to investigate the properties of the coordinate functions of repre-
sentations as functions on G. More precisely, let p be an irreducible representation of
dimension d. For 1 < j, k < d we define the functions f” G = C by ( ) := the
entry in the j’th row and the k’th column of p(g). The precedlng preparatlons enable us
to study the fJ, as elements of the Hilbert space X¢.

Lemma 16.6 The coordinate functions satisfy the following orthogonality properties as
elements of X¢g:
(i) If p1 and ps are irreducible representations which are not equivalent, then
( ]‘.’,:, 2 = 0 for arbitrary indices j,k,l,m.
(ii) Let p be irreducible. Then each two different functions f;’k are orthogonal, and

(F5e> Fi)e = 1/d, (with d,= the dimension of p).

Proof. (i) Denote by d; and d» the dimensions of p; and ps, respectively. Fix j,k,l,m
and define a dy x d;-matrix A = (as:) by

a;; = 1, and the other ay; vanish.

Then, with = the k’th unit vector of C# resp. y = the m’th unit vector in C%, the
(Cdz-scala,r product (Ap1(9)z, p2(g)y) equals f; 21 (9) fF2(g)- Since (p2(g))* = p2(g7"), the
scalar product is just (p2(g™')Ap1(g)z,y) so that summation over g leads to

("Ziz)y> =< ;7137 fyi)G’

with A as in lemma 16.5. But A is the zero matrix by this lemma, hence the result.

(ii) We apply once more the preceding argument, now with p = p1 = pa. If 7 #1, then
the trace of A is zero and therefore A is the zero matrix in this case. In the case j =1
the trace is one, and this time A is (1/d,)Id. It follows that — with the above notation —

1
( fka Jl'jm>G = d_(x7y>
7]
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Since (z,y) = dkm (with Kronecker’s delta) the proof is complete. o

Now we know that there are “not too many” irreducible representations: if we select
precisely one representative p from every equivalence class, then ) d;", is bounded by the
dimension of X which is just the cardinality of G. We will show that the coordinate
functions are in fact an orthogonal basis of X so that there are also “sufficiently many”
such p.

Definition 16.7 Any finite collection of representations which contains precisely one
representative from each equivalence class of irreducible representations is called a dual
of G. In general there are many duals, nevertheless one uses the symbol G. (Only in the
commutative case there is only one @, it can be identified with the character group.)

Any dual G of G suffices to describe the structure of G completely. This is the main
content of the Peter- Weyl theorem, more precisely it states that the (normalized) coordi-
nate functions which are associated with a dual G are an orthonormal basis of X¢. (Note
that the theorem can be thought of as a generalization of lemma 15.3.) Once this result
is established everything which is needed to study rapid mixing can easily be obtained.

In the proof of the Peter-Weyl theorem we will use some special properties of rep-
resentations, in particular some facts concerning the left regular representation. It is
convenient to prepare the proof by dealing with these facts separately.

Preparations I: some general properties of representations

For commutative groups we know that the complex conjugate of a character is again
a character. There is an analogue for representations of arbitrary groups:

Lemma 16.8 Let M = (mj) be unitary and p a representation of G.
() Denote by M the matriz (%), that is the component-wise complez conjugate.
Then M is unitary.
(i) Let p be d-dimensional. If we define p: G — Uy by g — p(g), then P is also a
d-dimensional representation.
(iii) With p also p is irreducible.

Proof. (i) and (ii) are obvious, and (iii) is easy with the help of Schur’s lemma: if a matrix
A commutes with all p(g), then — if p is irreducible — A lies in C Id since it commutes
with the p(g); therefore A is a constant multiple of the identity as well. a

Every representation “contains” an irreducible one:

Lemma 16.9 Any representation is irreducible or is equivalent with a representation
p1 ® p2 with an irreducible p; .

Proof. We argue by induction on the dimension d, of p.
In the case d, = 1 nothing has to be shown. Suppose that d, > 1, that p is reducible
and that for representations with smaller dimensions the statement has been verified.
By assumption there are a unitary M and p', p" such that Mp(g)M ™" = p'(9)®p" (g). If
p' is irreducible, we are done, otherwise we find by our induction hypothesis an irreducible
p1 such that p'c. = p1 @ py with suitable M and p,. It should be clear that
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MpuM™ =p1 & (p2®p"),
where M = (M & Id)M. O

Preparations II: some properties of the left-regular representation

Let W be a nonzero subspace of X which is invariant with respect to the left-regular
representation:

feW=T,feW

for all go; recall that Tyo f : g = f(g5 ' og).

Since Ty, is unitary not only on X but on every reducing subspace such a situtation
gives rise to a representation of G: fix any orthonormal basis fi,..., f4 of W and define
p(go) as the matrix

(Tgof11f1>c (Tgof2;f1)G <Tgofd,f1>c
(Tgof11f2)(;' (Tyof2’f2>G (Tgofdan)G

<T90fl.afd>c’ (Tgof?:afd>(; (Tgoft;afd>G

As in the case of the left-regular representation (which corresponds to the case W = Xg)
g — p(g) is a representation of G. How are the coordinate functions go — (T, f&, f;) ¢
of p related with the functions f;? In the case of irreducibility the answer is at follows,
it will be crucial for the proof of the Peter-Weyl theorem:

Lemma 16.10 Suppose that the preceding p is irreducible. Further, let p' be an irre-
ducible representation which is equivalent with p. Then it is not true that all coordinate

functions of p' are orthogonal with all fi,..., f4 (i-e., not all fJ‘.’,; lie in Wt).

Proof. Suppose that the f;’,; lie in W+. Then the fjﬁ,c — by assumption they are linear

combinations of the f]‘f’ ,; — also lie in this space:

(o, fo)G=0forj, k1 =1,...,d.

By the definition of p and the scalar product this means that

0 = > filg)f5(g0)
go

= Y fi(90) ffi(0)
g0
= > filgo)(Tyo fis fi)-
On the other hand, we know that g
Toofe = Y (Toofrs fidafi (16.1)

J

since the fi,..., f4 are an orthonormal basis. We evaluate this equation at g = go:
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(Tyo fr)(g0) = fr(95" 0 90) = fr(€) =D _(Tyo fi, ) fi(90)-
J

This holds for all go and thus, if we sum up all these equations with various go, we get

Nfi(e) =Y fi(90){Too f fi) -

90,J

But we have shown above that this expression is zero, and therefore all fi vanish at zero.
Then — by an evaluation of (16.1) at g = e — it follows that the fi are zero at g5 ' for
arbitrary go, that is they all vanish identically. This is impossible for an orthonormal
family, and we can conclude our proof with this contradiction. m|

Now we are ready for

Theorem 16.11 ( The Peter-Weyl theorem )
Let G be a dual of the finite group G (we continue to denote the dimension of a p € G
by d,). Then the family

{(Vaoff | p€G, jk=1,...,d,}

is an orthonormal basis of Xg.
1t follows that
(i) Zpeﬁ d2 = N (= the cardinality of G),
i) f= Ep,j,k dp(f> ;k)G ]Pk for every f € Xg. R
(iii) For every g # e there is an irreducible representation p € G such that p(g) is

not the identity matriz.
(iv) G is commutative iff all irreducible p are one-dimensional.

Proof. Let V be the linear span of the f;’k. Since the orthogonality properties are already
established we only have to show that V is all of X or, equivalently, that the orthogonal
complement W := V< of V vanishes. We assume the contrary, and we will derive a
contradiction.
Claim 1: V is an invariant subspace for p,.qia.-
Let p € G be arbitrary. For fixed go we know that p(95t 0 g) = p(g5")p(g) holds for
arbitrary g. Therefore every translate Ty, f ;’k of every coordinate function f;’ & 1S a certain
linear combination of the f/ and thus lies in V. It follows that Ty, V C V, i.e,, V is
invariant for peguia:-
Claim 2: W is invariant as well.
It is a general fact that orthogonal complements of invariant subspaces are also invariant.
For a proof let fi € W be given, we have to show that Ty, fi € W. To this end, let f; € V
be arbitrary, the claim is that (Ty, fi, f2) = 0.

Since V is invariant, we know that f3 := Tgo—l f2 belongs to V so that (fi, f3); = 0.
Now the unitarity of the Ty, comes into play, it leads to

0 = (f1, f3)g = (Tgo f1, Tgo f3) g = (Tyo f1, f2) -

It’s time to apply the above preparations. First we consider the representation which is
induced by the left-regular representation on W. It will not be irreducible in general, but
nevertheless we find orthonormal fi,..., fs in W such that the linear span is invariant
and the induced representation is irreducible. This is what has been shown in lemma

16.9.
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Summing up, we are precisely in the situation of lemma 16.10: we have f1, ..., f4 which
give rise to an irreducible representation p. On the one hand, G contains a p' which is
equivalent with 5, and all coordinate functions f;’,; lie in V = W+. On the other hand,
lemma 16.10 just states that such a situation never occurs.

This contradiction proves that necessarily W = {0}, or V = Xg as claimed.

The consequences (i), (ii), (iii) are obvious. One implication in (iv) has already been
shown in corollary 16.3, the other follows from (iii): if all p are one-dimensional, then
p(goh) = p(hog) sothat — by (iii) — g o h = h o g for arbitrary g, h. a

It will be important in the sequel to know — for a given G — a dual G. The construction
of such a dual can be an extremely demanding problem, it cannot be our aim here to
provide a complete list of available techniques. We will confine ourselves to a discussion
of some examples. The following observation is very helpful:

Proposition 16.12 Let C be a finite collection of representations of G such that the
family

{Vdpf;')klpeca jak:]-;"'adp}

is an orthonormal basis of Xq; the f;’k are defined as in the Peter-Weyl theorem.
Then C contains precisely one representative from every class of irreducible representa-
tions, i.e., C is a dual of G.

Proof. Let p be a d-dimensional representation such that the coordinate functions are
orthogonal and have norm 1/V/d; also let M = (mjx) € Uy be given. How are the
coordinate functions of p related with those of ps? If we denote the former by f;x and

the latter by fjk, then
fie = ijnmfnz

In

by the definition of pps. Therefore

(it fiwde =Y, (Fabs frir) gminToRImA 0 TG0
Lnl',n/

1 —
= L_IE MM MM n

l,n

1 _ _—
- L) (5 ma)
1 n

1
= E(Skkléjjl;

here we have used the orthogonality relations for the fj; and the equations ), m i =
djk (which are a restatement of MM* = Id).

Now let p € C with dimension d be arbitrary, we claim that p is irreducible. If this
were not the case there would be py, p2 (with dimensions dy,ds > 0,d; + d2 = d) such
that p; is irreducible, and ppr = p1 @ p2 for a suitable unitary M. Then, by the preceding
considerations, the coordinate functions of p; would have norm 1/ V/d. On the other hand,
by lemma 16.6, they have norm 1/v/d; # 1/Vd.
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Thus C solely consists of irreducible representations. We claim that every two p1, p.
are not equivalent: by assumption the coordinate functions of p; are orthogonal to the
coordinate functions of pg; in the case p2 = (p1)ar, however, the coordinate functions
of po are linear combinations of the coordinate functions of p;, and thus orthogonality
would not be possible.

It remains to show that C contains a representative for each irreducible p'. In fact, if
an irreducible p' existed which were not equivalent with any p € C, then the coordinate
functions of p’ would be orthogonal to the coordinate functions associated with the p € C
(lemma 16.6), which by assumption are an orthogonal basis of X. Therefore all ]”k would
vanish simultaneously, and this is surely not possible for entries of unitary matrices. O

ISome examples of duals]

By the preceding proposition it suffices to produce irreducible representations until the
coordinate functions exhaust Xg: finally a G is found.
Ezample 1: The permutation group S3
We abbreviate the six elements of S; as follows:

123 123 123 123 123 123
0‘(123)’ 1‘(312)’2‘(231)’3—(132>’4'(321>’ 5‘(213)’

and multiplication is defined such that the permutation on the left-hand side is applied
first (e.g., 1-3 = 35).

Since the group is not commutative, there must be an irreducible representation with
a dimension strictly larger than one. By theorem 16.11(i) this is only possible if there
are one irreducible representation of dimension two and two one-dimensional ones.

The latter are easily identified as the trivial representation p,.;, and the sign represen-
tation p,,, which we will regard as mappings X.., and X,i. from Sz to C (cf. page 143).
To find the remaining two-dimensional candidate it is useful to remember that motions
in the plane which fix the origin correspond to unitary matrices. Therefore one could try
to model permutations by such motions. This in fact works: if we label the vertices of
an equilateral triangle by 1,2, 3, then the motions which leave the triangle invariant give
rise to permutations of the vertices and thus to certain elements of S3. This induces a
representation p.

The unitary matrices which are associated with the group elements 0,1,2,3,4,5 are

(3$>(5%Z.fﬁ>(_%iiﬁf»

(o ) (o ') (U )

In the following table we have collected the values of all coordinate functions:

g: |0 1 2 3 4 5

Xeriw | 1 1 1 1 1 1

Xaign | 1 1 1 -1 -1 -1
iy -12  -1/2 -1 1/2 1/2
|0 VB4 34 0 —\B/4 \/3/4
510 —/3/4 3/4 0 —4/3/4 +/3/4
i1y =12 -12 1 -1/2 -1/2
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It is routine to check that p is a representation, that the six coordinate functions are
orthogonal and that the f/, have norm 1/+/2. Therefore

‘53 = {Xtriva Xsign) p}

is a dual of S3.
Example 2: The quaternion group Q

This group consists of certain distinguished elements of the skew-field of quaternions,
namely of the eight elements

1, %4, 5, £k;

those who don’t know the quaternions might think of an arbitrary set of eight elements
which are called +1, —1,....

The group operation “o” is written multiplicatively, usually the dot is omitted. It is
defined by the following rules:

o the remaining 40 definitions of the group multiplication are evident if one applies
the usual rules for calculations with +1 and + (e.g., (1) g = g (1) = +g for all
g, where +g:=g; k(-1) = —ki=—j,...)

It is straigthforward to show that this multiplication gives rise to a group, we want to
find a dual.

Q is not commutative, at least one irreducible representation of dimension greater than
one is to be expected. Since the squares of the dimensions sum up to eight and since there
is at least one one-dimensional candidate — the trivial representation — we can conclude:

Q admits one two-dimensional and four one-dimensional irreducible repre-
sentations.

The one-dimensional representations are easy to be found, for simplicity we write them
as mappings x = @ — T (that is we identify a one-dimensional representation with its
coordinate function). Such a x necessarily maps 1 to 1 and —1 to —1 or +1. The value
—1, however, is not possible: in this case i, j, £ would be mapped to 7 (the complex
number!) or —i, and this is not compatible with the equation 2 J=k

Similarly it turns out that there are not many choices for the x-values of ¢, j, k, finally
one arrives at three possibilities for multiplicative mappings from Q to I. They are
denoted x;, Xj, Xk, the definitions are as follows:

Xi: Ll tim 1, +f,tke -1,

xj L, £5 1, £i, k- —1,

Xe o £1, 2k > 1, 4,45 > —1.

To find a two-dimensional representation p means to model the group Q by unitary
2 x 2-matrices. This is considerably more difficult than to determine the above one-
dimensional representations, we only give the result:
Define p by
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1+ xFE, i £, £ +J, £k — %K,

where E, I, J, K denote the following unitary matrices:

EZ((I)(1)> I=\/L§(z_zz) Jz(—oltl)> Kz%czz)

This is in fact a unitary representation, the collection

g: |1 -1 i -i  j -j k -k
Xeiw |11 1 1 1 1 1 1
xi |1 1 1 1 -1 -1 -1 -1
x; |11 =1 -1 1 1 -1 -1
xe |1 1 -1 -1 -1 -1 1 1
01 -1 i/V2 —i/vV2 0 0 —i/vV2 i/V2
fllo 0 iNV2 o —-i/V2Z 1 =1 V2 —i)V2
1o 0 V2 —i/V2 -1 1 iV2Z O —ifV2
|l =1 —i/v2 i/v2 0 0 i/V2 —i/V2

of coordinate functions satisfies the conditions of proposition 16.12, and thus
Q = {Xtriv: Xi, Xia Xk» p}
is a dual of Q.

The Fourier transform of functions and measures

From now on we fix a group (G, o) having N elements together with a dual G.
The definitions and results which follow are generalizations of what has been done in the
preceding chapter for the commutative case. Everything — naturally — is technically more
involved. For example, in the commutative case the Fourier transform of a function is
also a function, here the appropriate definition is

Definition 16.13 Let f : G — C be any function. The Fourier transform f of fisa
family of matrices (f (p))p & where f(p) is defined by

oy L _((L () £P
flo) = Zg:f(g)p(g) = ((N ?f\g) jk(g)>j’k=1w”dp) :
Similarly, for any measure Py on G, IE/’B is the family (]I/”E(p))p & with

Po(p) = > Po({g})p(9).
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Thus, formally, f and M/Pg are elements of
H Mdp’
pel

where My denotes the space of complex d x d-matrices. Note that this product is an
N-dimensional linear space in a natural way, it can be considered as a certain space of
“mappings” defined on G, where the range possibly varies for different p.

f:Sg—)C,(123>i—')a,
abc

As examples consider

and Py defined on Q by
Po({1}) = Po({i}) = Po({j}) =Po({k}) = 1/4.

Then, with respect to the above duals,

~

1
f(xmv)=6(1+3+2+1+3+2)=2,

FOwen) = 5043 +2-1-3-2) =0,
=22 ) o s )]~ )
Po(Xurv) = i(l +1+1+1) =1,

(1+1-1-1)=0,

=

Po(x;) =

(1-1+1-1)=0,

N

Po(x;) =
Po(xe) = 7(1-1-1+1) =0,
o =3(s 0)+ (v %)+ =i(Ldws ).

It is obvious that f — f is a linear map, and therefore it is natural to try to identify
the Fourier transform of a suitable basis. This is surprisingly simple for the coordinate

functions:
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Lemma 16.14
(i) Let Jp,g be the complex conjugate of a coordinate function f;’,g associated with

any po € G. Then @(p) is the zero matriz whenever p # po, and —]‘-’E(po) is the
following matriz E;’,‘; = (alm)l,m=1,.‘.,d,,0 rajx = 1/d,,, and the other a;y, vanish.

(ii) The Fourier transform of the uniform distribution U on G vanishes at any p #
Dusiv- At puiy it has the value 1.

Proof. This is nothing but a restatement of lemma 16.6. a
By the definition of the scalar product we have to work with W instead of f;’,g . If it happens
that p is in G for some p # po, then the Fourier transform of kao will vanish there. However, in

general only a representation which is equivalent with p will be in @; this is, for example, the
case for the above dual of Q.

By this observation it is — with the help of the Peter-Weyl theorem — not too hard
to invert the Fourier transform. One only has to find an expression with the following
properties:

e it assigns to any family in H,, & Mg, an element of X in a linear way;

e for a suitably chosen basis fi,... of X¢ it is true that f] is mapped to f;.

Since the ]‘.’ . are a basis of X¢ the J’.’k are a basis as well; this is more than obvious.

Therefore we only have to try to find a “linear” definition which produces E‘Z when

applied to ff,. After some trial and error this leads to

Proposition 16.15 (The Fourier inversion formula )

(i) Let f € Xg be arbitrary. Then, for g € G,
£(g) = dotr(p(g™") f(p));
peC

recall that tr(M) denotes the trace of M for any square matriz.
(ii) f > f is a bijection between X¢g and Hpeﬁ Ma,.
(iii) If Py is any measure on G, then

Po({9)) = 3 3 dotr(o(g™Fa(p)
peG

for all g.

Proof. (i) Let f = }ﬁ"_ be given. Since p(g~!) = (p(g))* it follows that p(g~!)f(p) is the
zero matrix for p # po and the matrix

0 0 7@ 0 0
110 0 fiz(9) O 0
dp, :

0 0 ff3(9 © 0
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for p = po (the f’s are in the k’th column). The trace of this matrix is —ij,f(g)/ dy,, and
this proves that the assertion holds for };‘f. By the linearity of f — f and (M), —
>, dotr(p(g™")M,) it holds for all f € Xg.

(ii) By the first part f — f is one-to-one. That this mapping is onto follows from a
dimension argument: both X and H,, & Mg, have dimension N = 3 ) df,

(i) With fp,(g9) := NPo({g}) we have Py = f, and the claim follows from (i) with
f = fPO' 0O

Similarly one can derive a general version of the Plancherel formula (proposition 15.7):

Proposition 16.16 (The “non-commutative” Plancherel formula )
Let f1, fo € Xg be arbitrary. Then

(fi, oo = 3 dptr[fi(0) (f2())"]-
Prel

In particular we have

< 2 15) = S dylf o))

9

for every function f, and

S (Po({g})? = Zd r[Po(o) (Po ()]
N

9

for every measure Py.
Proof. f — f is a linear map, and both (fi, f2) = (f1, f2); and

(M), (Ny),) = Z dotr(M,N;)
p

are linear in the first and conjugate linear in the second argument. Therefore it suffices
to prove the claim for fi, fo running through a basis of Xg.

As’in the proof of the inversion formula we work with the complex conjugates of the
coordinate functions, that is we start with

- 7
fl = f;’m f2 =f1€n

with p', p" € G. Then the left-hand side of the Plancherel formula is zero unless p' = p”,
J =1, k = m in which case it is 1/d,. For the evaluation of the right-hand side we recall
that f; (p) is zero for the p # p' and equals Eka at p = p (see lemma 16.14). Therefore
the resulting sum is different from zero precisely when p' = p”, j = [, k = m, and then
it equals 1/d, . As we have already noted this proves the result for all f1, fo.

The Plancherel formula for measures follows as in the preceding proof by considering
the special case f = fp,. O
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As an illustration consider the measure Py on the quaternion group on page 155.
For this example we have

S ®o(iah)* =4(3) =3

9

The right-hand side coincides with this number:

l[12+02+02+02+2cr (1 ( ! L+iv2 ) % ( l_li\/i e >)]

8 4\ —1+iv2 1 1
1 1 1
_§<1+2-ﬁ~8>_z.

With the results proved so far we can describe in terms of Fourier transforms how close
measures are to the uniform distribution. The following lemma, should be compared with
lemma 15.8:

Lemma 16.17 For probability measures Py, Py, Py,... on G the following assertions
hold:
(1) Po coincides with the uniform distribution iﬁﬁ; s one at the trivial representa-
(i) tion and vanishes at the other p € G.

ii

S (Eolgh-3) =5 X dtulBa(o) Eolo)))

9 PFEPtriv

(iii) The variation distance ||Po — U|| can be estimated by

LY dtBolo)Eolo) ).

PFPeriv

(iv) The Py tend to U in variation norm iff the ﬂ(p)([ﬁ’;(p))* tend to zero for all
p € G with p # Py

Proof. (i) That U (puin) = 1 and that U vanishes at the other p has already been noted
in lemma 16.14 (ii). The other implication is then clear: Py @B is one-to-one.

(ii) This follows from (i) and the Plancherel formula®.

(iif) One only has to relate the L2-distance (part (ii)) with the variation distance as in
the proof of lemma 15.8 (ii).

(iv) This is a consequence of (iii): the ﬁ(p)(ﬁ(p))* are self-adjoint and nonnegative,
and therefore, if the traces tend to zero, the matrices will converge to zero as well (cf.
exercise 16.22). O

5 Strictly speaking the statement we need here has not been proved in proposition 16.16 since Py — U is
not a probability measure. It is only a signed measure, and one has to check our proof to verify that
it covers also this slightly more general situation.
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Convolutions

Let P; and P, be probability measures on G. As in the preceding chapter we want
to calculate the distribution of the final position of a two-step walk which starts at the
neutral element e and for which the two (independent) steps e — h and h — h' o h are
in accordance with the probability laws P; and Py, respectively. The final position will
be hg with probability

S Bi({RPYP({R'}) = D Pi({h})Pa({ho 0 A7'Y).
{r'|h'oh=ho} h
This leads to

Definition 16.18 The convolution Py * Py of Py, P is defined to be the measure

P+ Py({ho}) := Y _ Pi({h})Pa({ho o h™'}).
h

As in the case of commutative groups we define ]Pf)k*) by induction: ]P(()I*) = Py, and

P{ATD) = P « .

Note that we have to write the measures P;, P, from the right to the left in Pz %Py
if we want to model transitions where [P; is used first, this is similar to the case of
mappings. In contrast to the commutative case the order might be relevant.

We can now repeat what has been said in chapter 15:

If the one-step transitions are governed by Py, then one will observe
k-step transitions of the form gy — hgogo with probability ]P‘(()k*)({ho}).
Consequently the problem of how fast the chain converges to its
equilibrium is equivalent with the question of how fast the ]P‘()k*)
tend to the uniform distribution.

One of the main reasons to study Fourier transforms is the fact that convolution is
transformed to multiplication. The following proposition generalizes a similar assertion
for commutative groups (see proposition 15.10):

Proposition 16.19 Let Py, Py be probability measures on (G, o). Then the Fourier trans-
form of Py x Py is component-wise the (matriz-)product of the Fourier transforms of P;
and Py :

Py + Py(p) = Pa(p)P1(p)

for every p € G.
Consequently, for any probability Py and any p, IP’(()k*)(p) is the k’th power of ﬁ(p).

Proof. The proof is similar to that of proposition 15.10:

P+ Pi(p) = Y p(g0)P2*Pi({g0})

> p(90) Y Pi({g})P2({g0097'})
90 9
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= > pgoog™ o g)Pi({g})P2({go0 g™'})
90,9

= > (g0 °97)p(g)P1({g})P2({go 0 g™1})

90,9

= > o(g")p(9)P1({g})P2({g'})

9’59

= (Z 292D (3 plo)Ps ({s}))

= Pa(p)Pi(p)

holds for arbitrary p. a

So far our approach to generalize the techniques which worked so successfully in the
commutative case looks rather promising. There is, however, a fundamental difference
between the commutative and the general situation.

In both cases we want to study how fast the IPé,k*) tend to the uniform distribution.
For commutative groups this has been transformed to the question:

How fast do the (@E(X))’c tend to zero for the nontrivial characters?

The answer is simple, one only has to check the absolute value of ﬁ(x).

For arbitrary groups, however, we are faced with the following much more difficult
problem, it will be resumed in the next section:

Consider, for all nontrivial p € G, the matrix A := ]T’B(p). Does
A*(A*)* tend to zero, and if so, how fast?

Now we study a general version of proposition 15.11, the characterization of irre-
ducibility by means of the support of the measure under consideration. As a preparation
we introduce a definition: whenever A is a nonvoid subset of G, then Ga denotes the
set of all g € G such that there are an even number g1, ..., g, of elements of G with
g = g19...0g2, such that r of the g;’s lie in A and the othersliein A~} (= {g~! | g € A});
thus, for example, if g1, g2, g3, g4 are elements of A, then g, o ga 0 g5 1o 95 ! lies in Ga,
but gs 0 g5 1o g7' is possibly not contained in this set. Ga has the following properties:

Lemma 16.20
(i) Ga is a subgroup of G, it lies between the subgroup and the normal subgroup
which are generated by

AoA™! (={goh7!|g,he A)}).

Both inclusions might be proper.
(i) If A contains the neutral element e, then Ga is the subgroup generated by A.
(i) Ga is all of G iff there is a k such that every g can be written as a product of k
elements each lying in A.
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Proof. (i) It is clear that with g, h also g o h lies in Ga. This already implies that Ga
is a subgroup since G is finite. A o A~! - and thus the subgroup generated by this set
- surely is contained in Ga so that it remains to show that Ga C Na(:= the normal
subgroup generated by A o A™1).

We first note that A= o A C Na, this follows from the identity

1

h_logzg_ ogoh*log.

For arbitrary g € Ga we proceed by induction on r (with r as in the above definition).
The case 7 = 1 has just been settled, now suppose that 7 > 1 and that the claim is
proved for all smaller r'. Let a g = g3 o -+ - 0 go, be given were r of the g; are in A and
the others come from A~!.

Case 1: g1, gor lie in A.
Then there is an [ < r such that both g’ = g1 0---0 gy and g" = ga41 0 - - - 0 g2r contain
the same number of factors from A and A~!.
For a proof of this assertion define ¢; := +1 (resp. —1) if g; € A (resp. € A™!) for
i=1,...,2r. Then & = €2, = 1 and Y ¢; = 0. Thus there must be an I’ < 2r with
v ' .
Y i=1€i =0, and I’ is necessarily an even number.
By the induction hypothesis g’ and ¢" lie in Na, and therefore g € Na as well.

Case 2: g1, g2» lie in A™L,
This case can be is treated in a similar way.

Case 3: g1, g5, € A or gl_l, g2r € A.
Then g’ := gy 0---0gsr—1 lies in GA (and thus in Na), and it suffices to note that

g=(g109g og7") o (g109n)

with g1 0 g’ 0o g7' € Na and g1 0 g2r € (Ao A1) U (A7 0 A) C Na.

It can happen that G is strictly larger than the group generated by Ao A~!: consider
in S; the set A = {1,5} (the notation is as on page 152); then A o A~! = {0,4}, and
this is a subgroup which does not contain 3 =571 01 € Ga.

In order to prove that the second inclusion also might be strict it suffices to choose A
as a subgroup which is not normal.

(ii) The group generated by A is the collection of the g o ---o g; with g; € A, and every

such product can be written as gy o---ogjoe~lo---0e7L,

(iii) Suppose that GA = G. We fix any go, and we write go as g1 0 - -0ga,, where r of the g;
are in A and r are elements of A~!; note that r will depend on go. Replace those g; = hi‘1
which lie in A~! by hﬁv ~! where — as usual — N stands for the order of G. The h; lie in A,
and this shows that go can be written as a product of kg, := 7+ (N —1)r =N elements
of A. The element e can also be written in this way, e.g., as g"V with an arbitrary g € A.
It follows that G = Ao---0 A, where A occurs k =3 kg, times.

If, conversely, G = Ao---0A with k factors, then we can write any given g as gio---ogx
and also e as e = hy o---0 hg. Thus

g:glo---ogkohglo'--ohrl
lies in Ga. O

Proposition 16.21 Let Py be a probability measure on the finite group (G, o) with sup-
port A = {g | Po({g}) > 0}. The following conditions are equivalent:
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(i) Ga=G.
(ii) There is a k such that every g € G can be written as a product g =gy o---0 g
with g1,...,g9k € A.
(iii) For every irreducible representation p # p.., the matriz A := ﬁ(p) satisfies
[|A*(A*)*|| = 0 for any matriz norm || - ||.

)

(iv) The measures P((,k* converge to the uniform distribution on G with respect to the

vartation norm.

Proof. (i) is equivalent with (ii) by the preceding lemma, and (ii) is a restatement of the
fact that the associated chain is irreducible and aperiodic; this proves the equivalence
with (iv). That (iii) and (iv) are equivalent follows immediately from lemma 16.17 and
proposition 16.19. a

Rapid mixing

A combination of lemma 16.17 with proposition 16.19 also gives rise to a quantitative
version of the preceding equivalence (iii)< (iv):

Lemma 16.22 ( The upper-bound lemma)

IB*) — U < 7 37 dytalBolo))* (Fo(o)))*)

p:/‘l"ptriv

In order to apply this lemma one needs to know whether, for a given square matrix A
which is a convex combination of unitary matrices, one has A*(4*)* — 0. We provide
three techniques to deal with this question.

Matriz norms

Let || - || be a matrix norm on the space of d x d-matrices; this means that [|AB]|| <
||A]l||B|| holds for arbitrary A, B. As an example one can regard A as a linear map on
C4, the operator norm ||Al|op of this map has the desired properties.

||Allop is defined as the maximum of the numbers || Az|| (= the euclidean norm
of Az) with ||z|]| = 1. It can be shown that ||A||,p is the square root of the
maximum of the numbers |A|, where A runs through the eigenvalues of AA*.

Then ||A*(A*)*|| < ||A||¥||A*||¥, and one might hope to apply lemma 16.22 successfully
with this estimate.

Unfortunately it can happen that this gives very weak results. Consider for example
the following convex combination of unitary matrices:

a=3((2 )+ (5 3)=(50):

The matrix A has operator norm one, but nevertheless A* tends to zero remarkably fast
(already A? vanishes).
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[ Selfadjoint matrices

Let us recall some definitions and facts from linear algebra:

e A square matrix A is called normal if AA* = A*A; note that self-adjoint matrices
are trivially normal.

e AA* is always a self-adjoint matrix.

e If A is normal, then [[A||,p is the supremum of the numbers ||, where A runs
through the eigenvalues of A.

Therefore, if it happens that A = Pq(p) is normal, then ||A*(A*)¥||,, = ¥, where a is
the square of the maximum of the moduli of the eigenvalues of A. Thus the convergence
we want to investigate solely depends on the size of a.

There seems to be no simple characterization of the Py for which all Iﬁ’; (p) are normal.
A sufficient criterion for self-adjointness, however, can easily be found:

Lemma 16.23 Let Py be a symmetric measure: Po({g}) = Po({g™'}) for all g. Then all
Po(p), p € G, are self-adjoint.

Proof. This follows from (p(g))* = p(g~1), that is from the unitarity of the p(g):
®Bo(p)” = (D Pol{ghr(@)’
P)

> Po({g})n(g™")
9

Il

Il

> Po({g™ Nelg™)

il

> Po({g})elg)

= Po(p).

{Class functiogl
Sometimes it happens that Pg is such that

Po({goh}) = Po({hog})

for all g,h € G. This means that Po({g}) = Po({h o go h™'}), ie., Py is constant on
conjugacy classes. We will speak of a class measure if this is the case.

Class measures share many features with measures on commutative groups. Their
Fourier transforms are particularly simple to determine:

Lemma 16.24 Let Py be a class measure. Then ﬁ(p) is a multiple of the identity for
every p € G. More precisely:

Po(p) = [51; > lP’o({g})xp(g)] Id.

Here x, stands for the character associated with p, it is defined by x,(g) := the trace of
r(g)-
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Proof. Let h € G be arbitrary. Then
p(R)Po(p) = p(h) > Po({g})r(g)
9

> Po({g})p(hog)

Y Bo({h o g'Dalg)
"

> Bo({g' o ™ Pplg")
gl

> Po({g})p(goh)

" Pol{g})r(9))p(R)

= Po(p)o(h).

Hence the ﬁrsL part of the assertion follows from Schur’s lemma 16.2.
Now write Po(p) as aId. Then, on the one hand, the trace of this matrix is ad,; on
the other hand it equals 9 Po({9})x,(g), and this completes the proof. 0O

Remarks:

1. Note that in the case of commutative groups “character” means a group homomor-
phism from G to the complex numbers of modulus one. For general groups the characters
are the traces of the irreducible representations. This extends the previous definition since
in the commutative case all irreducible representations are one-dimensional.

One could argue that the definition might depend on the particularly chosen dual (so
that one should speak of “a character with respect to G”). This is not the case: if p is
an irreducible d-dimensional representation and M € Uy, then p(g) and M p(g)M ~! have
the same trace, and therefore p and pps give rise to the same character.

2. Characters play an important role in harmonic analysis, they are sufficient to describe
the “commutative” aspect of G in that they are the most general class functions:

e Every x, satisfies x,(goh) = x,(ho g); this follows at once from tr(AB) = tr(BA)
for d x d-matrices A, B. As a consequence all linear combinations f of characters
are class functions, i.e., they satisfy f(go h) = f(hoyg) for all g, h.

e Conversely, let f be any class function. Then it follows as in the preceding proof that
f(p) is the identity matrix multiplied by 3, f(h)x,(h)/Nd,. The inverse Fourier
transform (proposition 16.15) then provides the formula

7(9) = % X F xR,
p,h

and if one notes that x,(g~") = xz(g) with p as in lemma 16.8, then it follows that
f lies in the linear span of the x,°.

6 In fact one has to argue a little bit more subtly since 5 needs not be an element of G. However, there
is a p' in this dual which is equivalent with p, and both p and p’ give rise to the same character.
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Sometimes conjugacy classes are rather big. In the case of the symmetric group S, for
example, the collection of all transpositions (= the permutations which only exchange
two elements ¢, j with i # j) is a conjugacy class. To make use of this fact let us
consider a deck of r cards, we want to analyse the random-transposition shuffle. This
shuffle is slightly different from the random-to-random shuffle we have met in example
5 of chapter 2. In the language of the present chapter the random-to-random shuffle
corresponds to a Py which assigns mass 1/r to the identity, 2/r? to the transpositions
which exchange adjacent elements, and 1/r? to the remaining transpositions. This Py is
not a class measure. In the case of the random-transposition shuffle we use a different
rule:

Select j,k in {1,...,r} independently according to the uniform distribution
and exchange the j’th and the k’th card.

The associated measure (which we continue to call Pg) has mass 1/r on the identity and
mass 2/r% on each of the r(r — 1)/2 transpositions so that it is a class measure.

In order to discuss this example further it would be necessary to provide a dual for
S;. In fact, here much less is essential. Since we are dealing with a particularly simple
class measure we only need to know, for every irreducible p, the value of x, at the trivial
permutation and at any transposition 7 (the value will be independent of 7). The first
number is d,, the trace of the d, x d,-identity matrix, let us denote the second by Xp-

Since there are r(r — 1)/2 transpositions and each one has weight 2/r? it follows from
lemma 16.24 that

= . (1 r=1 x5
Po(p) = (r + 4,

Therefore the mixing rate of the associated chain is determined by the number

)1d.

1 -1 ’
1or-1%

M, := max
T T d,

P1PF Periv

Since the x} are traces of unitary matrices it follows that their absclute values are
bounded by d,, but this observation only provides the poor bound M, < 1. Better results
necessitate to put into action the machinery of advanced group theory. In the literature
on this subject one finds tables of the numbers x}. For example, if r = 10, page 354 of
[47] contains the information that there are precisely 42 irreducible representations with
dimensions ranging from 1 (for the trivial and the sign representation) to 768. On this
page also the x7 can be found so that it is possible to derive Mo explicitly”.

It is considerably more difficult to provide results concerning this shuffle for arbitrary
r. Diaconis proves in theorem 5 of [24] the following assertion. The proof depends on
deep properties of characters of the symmetric group which enable one to estimate the
M, and thus to apply the upper-bound lemma 16.22.

Theorem 16.25 There is a constant a > 0 such that for any ¢ > 0 one has
IBo™ — Ul < ae?,
provided that k > (rlogr)/2 + cr.

7 The worst case happens for a representation where d, =9 and xj = 7; this leads to

1 9 7 4
Mp = — + — -+ =2,
W05
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This roughly means that a k of order rlogr suffices to guarantee that after k¥ random-
transposition shuffles all permutations of the cards are (approximately) equally likely.

Exercises
(G, o) will be a finite group in the following ezercises.)

16.1: There exists a G which does not admit any non-trivial one-dimensional represen-
tation. (Hint: consider a suitable subgroup of the symmetric group S,, where r is not too
small.)

16.2: Let Py be a probability measure on G such that
Po(A) =Po({gogo | g€ A})

for all A C G and all go; such measures are called translation invariant. Prove that the
uniform distribution is the only translation invariant probability measure on G.

16.3: Let d be an integer, d > 1. Prove that every d-dimensional representation p such
that all p(g) are diagonal can be written as a product of one-dimensional representations.

16.4: Let §, and Jp be Dirac measures associated with two elements g and h of G.
Calculate the convolution d, * .

16.5: G is commutative iff P; * P, = Py * IP; holds for arbitrary probability measures
]P], P-z on G.

16.6: Let G; and G be finite groups and p; and p; representations of G; und Gs,
respectively. Prove that

p1(g1) 0 )
»g2) —
(91,92) ( 0 pa(g2)
defines a representation of the product group G; XG5.

16.7: Let go be a fixed element of G and §,, the Dirac measure associated with go. Can
you give, for an arbitrary probability measure Pg on G, an explicit description of d4, *Py?

16.8: Prove that the convolution is an associative operation.
16.9: Let x : G — T" be multiplicative on G and p a d-dimensional representation. Define
xp by

g+~ x(g)p(g)-

a) Prove that xp is a d-dimensional representation of G.

b) Is xp irreducible if p is?

c) What problems arise if one wants to define, for given d-dimensional representations
p1, P2, @ new one by

g~ p1(g)p2(9)?

16.10: The Peter-Weyl theorem implies that 7 is equivalent with some p' € G for every
p in a dual G of G. Verify this fact for the above two-dimensional representation p of Q.

16.11: Can there be a d-dimensional irreducible representation on a group with d? ele-
ments?
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16.12: Let H be a normal subgroup of G and gy an element which does not belong to
H. Prove that there exists an irreducible representation p such that p(g) is the identity
matrix for all g € H, but p(go) # Id.

16.13: Let a measure Py on the quaternion group Q be defined by
Po({1}) = Po({i}) = 1/3, Po({j}) = Po({k}) = 1/6.

Calculate ]l/’E and reconstruct Py from ]T’B with the help of the Fourier inversion formula.
16.14: For a probability measure Pq on G define a new measure P; by

Ps({g}) :=Po({g™'}).

a) P§ is a probability measure.
b) If Py x Py = U, the uniform distribution, then Pq = U.

It is important to consider Pg * P and not Py * Py here since there are groups for
which measures Py different from U exist which nevertheless satisfy Po * Py = U.
(See [15], a complete discussion of this problem can be found in [27] and [72].) This
is in marked contrast to the commutative case, cf. exercise 15.9.

16.15: Let U,V be distinct unitary dxd-matrices. Prove that ||[(U + V)/2||op is strictly
less than one if d = 1, but that for d > 1 there are examples such that ||(U+V)/2|lop =1
holds.

16.16: Let f be a complex valued function on a group G with N elements. Define f by

f(go) = ]%,‘Zf(9°go°9_l)-
g

Prove that f is a class function and that f — f is a linear projection on the space Xg.
16.17: Prove that the notion “equivalence” for representations of a group has the prop-
erties of an equivalence relation: it is reflexive, symmetric and transitive.

16.18: Let p be a d-dimensional representation of G. Prove that p is irreducible iff the
subspace spanned by the p(g) is d>-dimensional.

16.19: How is the Fourier transform of a function f related with that of the functions
g+~ f(g7!) and g - f(go o g)?

16.20: We have introduced characters resp. representations such that the x(g) resp. the
p(g) are complez numbers resp. unitary matrices. Where was this important, what goes
wrong if one restricts oneself to real numbers and matrices?

16.21: Characterize the probability measures Py such that the associated chain on G is
reversible.

16.22: Let A be a self-adjoint N x N-matrix with nonnegative eigenvalues for k = 1,.. ..
Prove that the Ag tend to zero (component-wise) iff limy tr(Ag) = 0.
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17 Notes and remarks

The results presented in chapter 9 have been known since the “classical” period of Markov
chain theory, the approach presented here emphasizes the use of convexity arguments.
The proof of proposition 9.2(iv) is from [69], readers who want to learn more on the
algebraic theory of stochastic matrices are referred to this book.

Also all results in chapter 10 are folklore. The structure of our proof of theorem 10.3
follows chapter 2.2 in [70]. The simple idea to treat certain renewal problems as presented
in the text seems to have no counterpart in the literature.

The material of chapter 11 is mainly from [70], there one also finds extensive comments
on the development of conductance techniques. Our proof of theorem 11.3 is similar to the
approach in chapter 2.2 of [70]. (Despite considerable effort there seems to be at present
no really elegant and simple proof of this result. For competing or similar variants see
(18] or [74].) The observation which we have called proposition 11.8 seems to be new.

Chapter 12 covers standard material, in the present context (finite state space, discrete
time) the proofs remain rather simple.

As already noted in the text, the couplings in chapter 18 have a long history (see [54]).
Aldous ([1]) seems to be the first who has applied couplings systematically to get bounds
of rapid mixing, most of our results are from this paper.

The standard reference for chapter 14 is [4], further results can be found in [3] and [24].
Our contribution is only to emphasize the property which we have called “T respects the
Markov property”.

Who is responsible for the results in chapter 15 and chapter 167 The development
of harmonic analysis on finite groups was the work of many mathematicians, it was
completed at the beginning of the twentieth century. Here I have tried to find an approach
which is self-contained and elementary. My way to the Peter-Weyl theorem is based on
lemma 16.10, more common is an application of the Stone-Weierstral theorem at this
point.

I did not find any remark in the literature who used harmonic analysis for the first time
to investigate mixing properties of chains on groups. At present the standard reference is
[24], it contains an abundance of applications of group theory to probability and statistics.
Most of our theorems — in particular the last one — can be found there (as an exception I
mention the properties of Ga and proposition 16.21 which seem to be due to the author).
The results of this chapter can only be applied if one has mastered the problem to exhibit
sufficiently many irreducible representations of a given group. For this [19], [34] and [47]
might be helpful.

It should be noted that the same technique has been applied similarly successfully to
certain infinite groups: the approach is the same, the concrete calculations, however, are
much more involved (see, e.g., [65]).

This Notes-and-Remarks chapter closes with some supplements. The first one con-
cerns couplings. The idea with coupled Markov chains is to observe two copies of a random
walk until they meet. A variant has been proposed in [63]. There one simulates a chain
backwards, more precisely, one tries to find a time step —ko in such a way that now,
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at time 0, all walks which have been started at time —kg have met at the same state,
say ¢. The surprising feature is that a particular state i is found in this way precisely
with probability m;. This “coupling from the past” has been applied successfully to treat
various problems, see [32] or [64]. Other methods which also provide ezact simulation -
and not only outputs with a distribution arbitrarily close to the equilibrium - can be
found in [75].

Next we want to mention a phenomenon which has attracted the attention of several
mathematicians. Imagine an irreducible and aperiodic chain with equilibrium 7' and
suppose that it starts deterministically. Then often the following happens: for a certain
number of steps the probabilities to find the walk at some state i are “far away” from 7;,
and then — not much later — they approximate m; very well. This “cut-off phenomenon”
has been studied in a number of papers (see, e.g., [1], [3], [24], [55], or [65]), it can be
observed at many concrete chains. A theoretical understanding, however, which covers
arbitrary chains has not yet been proposed.

And finally it has to be remarked that only a selection of known mixing methods has
been treated here. For example, we have completely omitted the so-called L?-methods
where Hilbert space methods come systematically into play?; see the article of L. Saloff-
Coste in [37]. For a survey of other methods cf. [53], and in this connection it is also
necessary to mention [5] (which hopefully sooner or later will manage the transformation
from mere electronic existence into a real book).

! In section 21, however, in the proof of proposition 21.3, we will make use of such techniques.
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In part IT we have developed a number of techniques which enable us to determine how
fast a given chain converges to its equilibrium. In particular we are now in a position
to generate random elements from a finite set according to a prescribed distribution
provided it can be thought of as the equilibrium of a chain to which our methods apply.

Part III will contain some examples to demonstrate how one can profit from this idea.
In chapter 18 we describe the connection between approzimate counting and random
generation: for a certain class of of sets, the solution sets of self-reducible problems, it is
essentially equivalent to be able to count up to a prescribed accuracy or to have access to
a (nearly) uniform random generator. Next, in chapter 19 we introduce Markov random
fields which can be thought of as a natural generalization of Markov chains. It will be
shown how it is possible to generate samples from such a field by using the Markov
chain techniques developed earlier in this book. For a special class of random fields, the
class of Gibbs fields, the probability measure is defined by certain functions, the potential
functions. Gibbs fields are studied in chapter 20, we prove that they are Markov random
fields. A celebrated example of a Gibbs field, the Ising model, is investigated more closely.
At the end of this chapter we show how one can obtain samples from a Gibbs field, to
this end we provide concrete bounds for the mixing rate of the Gibbs sampler.

There is a variant of the Gibbs sampler: also with the Metropolis sampler it is possible
to sample from a finite space for which the probability distribution is given by an energy
function. This is studied at the beginning of chapter 21. The second half of this chapter
is devoted to simulated annealing, a stochastic optimization technique which has found
numerous applications in various areas of applied mathematics. Finally, the last chapter
of this book (chapter 22) contains some Notes and remarks.
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18 Random generation and counting

Sometimes it happens that one is dealing with a set S for which it is easy to check that
it is finite but for which there seems to be no simple way to determine the number of
elements within reasonable time. There are even situations where this problem is N P-
hard so that exact counting is in a sense impossible. However, by using Markov chains
one can treat the weaker problem of approzimate counting, a connection which has been
systematically studied by Sinclair and others (see [70] and the literature cited there).
We start our discussion with some sample problems in section I. It will then be im-
portant to note that some of these are of a particular type: they can be reduced to “few”
simpler ones which in turn give rise to others which are even more tractable and so on.
They will be called self-reducible, it is this class of problems to which Markov chain tech-
niques apply. Next, in section 2, we indicate how the possibility of exact counting gives
rise to the possibility of exact uniform simulation. More interesting is the converse: if we
have uniform random generators at our disposal we can count the number of solutions
of self-reducible problems approximately. This will be presented in section 3.
Finally, in section 4, we complement the investigations of section 2 in that we describe an
approximately uniform random generator over the solutions of a self-reducible problem
without the assumption of knowing the numbers associated with the reduced problems.

Self-reducible problems

Most of the ideas we are dealing with in this chapter can be illustrated with the
“problem” of determining the number N (r) of all permutations over r elements. Usually
one argues as follows: the collection of all permutations is the disjoint union of r subsets
the p’th of which contains the permutations which send 1 to p (p = 1,...,7); each of the
subsets has N (r—1) elements, this gives rise to the recursion N(r) = rN(r—1), and with
N(1) = 1 one gets N(r) = r!. The crucial point in the argument is to split the problem
into a “small” number of simpler ones. Before we try to be more formal we consider
further

Examples:

1. Let n > 0 be an integer. What is the number of partitions of n, that is how many
families n; > --- >ng > 1 exist such that n = ny +---+ny? (The number 5, e.g., admits
the 7 partitions 5,4 +1,3+2,3+1+1,2+24+1,2+1+1+1,1+1+1+1+1)
2. Let F(uy,...,u,;) be a Boolean formula in the Boolean variables up,...,ur, that is
a well-defined logical expression which contains the u’s and which is built up using the
logical operations A (= “and”), V (= “or”) and = (= “not”).

Here are examples in the three variables u, v, w:

(V) A (mw), (Vo)A (uVw))V(-v),...
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There are 2" possibilities to give the variables the values “true” or “false”. How many
of these give rise to the value “true” for the expression F'? For example, for the case
(u V v) A (~w), it is easy to check that there are precisely 3 possibilities, but how can
the number be determined for larger r? Also it could be important to have an answer to
the more modest question whether or not there exist any truth values for the u’s which

make F a true expression!.

3. Let A be a collection of 7 points in the d-dimensional euclidean space R%; we assume
that » > d + 2. Then Carathéodory’s theorem asserts that for every z in the convex
hull of A there are elements xg,...,z4 of A such that z lies already in the convex hull

of these d + 1 elements. There are ( d:— 1 ) possibilities to choose these elements, for

how many choices will z be in the convex hull?

4. Let n be an integer, one wants to know the number of nontrivial divisors m of n. A
particular instance is the problem whether there exist any such m, that is whether or
not n is prime.

5. Let (V, E) be a graph (see page 96). A perfect matching of size n is a subset M of the
edges E such that M has n elements and each two different e;,e; in M have no vertex
in common. Denote by M,, the collection of these M, how many elements does this set
have?

A particular case has attracted the attention of many mathematicians. Assume that
(V,E) is of the special form that V is the disjoint union of two subsets V;,V, each
containing r elements and that there are only edges which join vertices of V; to those of
Va (a bipartite graph). Obviously there are precisely as many such graphs as there are
r x r-matrices A = (a;;) with a;; € {0,1}, one simply has to translate a “1” at position
i,J into an edge joining ¢ to j and vice versa. Then a matching of size r for the graph
corresponds to the choice of r positions 7,j in the matrix with a;; = 1 in such a way
that every row and every column contains precisely one of these specified positions. The
number of such choices can be written more compactly as

T
per (A) = Z Qig(i)>
o i=1
where the summation runs over all permutations o of {1,...,7}. One cannot fail to
observe the similarity of this expression with that of the determinant of A, surprisingly
the calculation of per (4), which is called the permanent of A, is much harder than that
of the determinant?.

We want to emphasize here that some of these enumeration problems share with our
introducing example of the permutations the possibility that counting can be reduced to
the counting problem for simpler situations. For example:

e Suppose that you know, for all m < n, the number 7(m, k) of partitions of m such
that all summands are bounded by k. (For example, 7(4,2) = 3, since we have to
take into account the three partitions 2+2,2+1+1,1+1+1+1). A moment’s
reflection shows that 7(n,n) — this is the number we are interested in — is just the
sum

! For more comments on this satisfiability problem and its connections to the P = NP circle of ideas
see chapter 22.
2 A standard reference concerning the permanent is [58].



176 Part III: Rapidly mixing chains: applications

1+7(l,n-1)+7(2,n—=2)+---+7(n—1,1). (18.1)

e In the last example fix an edge e of the bipartite graph under investigation joining
a fixed vertex zo to another vertex yo and consider the graph which is obtained
from the original one by erasing e, the vertices zg, yo and all edges starting at zo
or yo. Suppose that you know the number P, of perfect matchings of size r — 1 of
this reduced graph for every such e. Then the number of matchings of size r is just
the sum over the P,.

To phrase it in the language of the permanent: the permanent of an r X r-matrix A with
0-1-entries is the sum of the permanents of the < r matrices which are derived from A
by erasing a fixed line and a column where this line contains a “1”. This corresponds to
a similar technique for determinants.

For the other problems it is not obvious how to choose an appropriate reduction. For
problem 4, the number of divisors, it is at present even unknown whether a similar
simplification is possible.

Now we are going to argue a little bit more formally. However, in order to avoid
the danger of hiding the relevant ideas behind technicalities our approach will not be
perfectly rigorous®. We are given a problem which can be posed by prescribing a certain
mathematical object z. One knows in advance that there exists a finite set R(z) of
solutions to this problem, and we are interested in the cardinality of R(z). In the very
first example, e.g., z is the number r and R(z) is the set of all permutations of r elements.

We suppose that we can associate with every such situation a nonnegative integer
I(z) which can be thought of as a measure of difficulty to treat the problem; in the
permutation example surely [(z) = r is a natural choice. And the precise meaning of
“the problem can be reduced to ‘few’ simpler problems” then is that it is possible to find
subproblems z,...,zs of a similar kind such that

o [(z;) <l(z)fori=1,...,s

e the cardinality of R(z) is the sum of the cardinalities of the R(z;) (or, more gen-
erally, R(z) can simply be counted if all R(z;) are known);

e the number s of subproblems is not too large: there is a polynomial @ such that

s < Q(z)).

Also it is assumed that problems with {(z) = 0 have a unique solution which can be
found in constant time.

Readers who are not familiar with theoretical investigations of complexity might won-
der why polynomials occur here. The reason is that it is now a generally accepted idea
to regard only those problems as tractable for which the amount of work to solve them
can be bounded by a polynomial in the number of bytes which are necessary to pose
the problem. E.g., as everybody knows, the calculation of the product of two numbers is
tractable, but there are many problems for which this is unlikely (a well-known example
is the travelling salesman problem).

3 Cf. [70], chapter 1, for a more extended presentation.
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In view of these remarks we hasten to complement our assumptions: it is tacitly un-
derstood that the calculation of I(z) and the determination of the z;,...,z; have a
polynomially bounded running time, also I(z) must be bounded by a polynomial in the
number of bytes which are necessary to describe z. If these conditions are met we will
speak of a self-reducing problem.

It should be clear how the above examples fit into this framework, we omit to identify
the I(z) and the z;,...,z; in these special cases. Rather we want to recommend the
following visualization of self-reducible problems. We associate with each such problem a
tree with root R(z), it is depicted at level I = I(z). The R(z;) are connected by edges
with R(z), they occupy certain levels which are smaller than [ (for simplicity we have
placed all of them at level I —1 in our picture). The individual R(z;) give rise to new sub-
subproblems at even lower levels, and so on until we reach the level zero. There we find
the “leaves” of our tree, certain R(y) which can rapidly be determined. This information
then gives rise — by working backwards — to the number of elements in R(z).

I(z) =1

s) (I)Zl—l

A

/

R(z11) R(z12) R(zs) e I(z) =1—2
R(z11..1) R(z11.2) and the other R(z ) forz  withl=0 l(z) =0

The solution tree of a self-reducing problem
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Counting plus self-reducibility implies simulation

We resume our permutation example. Suppose that we want to provide a random
permutation 7 = (71,...,7100) Of {1,...,100}. There are

100! = 9332621544394415268169923885626670049071
5968264381621468592963895217599993229915
6089414639761565182862536979208272237582
51185210916864000000000000000000000000

of them, a finite though rather big number. Therefore there is no hope to approach the
problem by enumerating all candidates and then to generate a random number between
1 and 100!. It is much more natural to start with a random choice in {1,...,100} to
obtain the first element 7, then to select uniformly 72 among the remaining 99 numbers
and so on. In this way we can get a uniformly distributed 7 from all permutations of n
elements after n random choices among at most n elements. It should be obvious that
this method reduces the complexity of the problem drastically (otherwise it would not
even be tractable).

The reason why the resulting permutation is in fact uniformly distributed is simple,
one only has to apply repeatedly the following argument*:

Suppose a finite set M is written as a disjoint union of sets M, ..., M, each
having t elements. If one chooses o € {1,..., s} uniformly at random and then
z in M, independently and also uniformly, then z will be equidistributed in
M.

Only a little modification of this idea is necessary to treat arbitrary self-reducing
problems in a similar way:

Proposition 18.1 Let R(z) be the solution set associated with a self-reducing problem.
Suppose that this class of problems is such that it is easy’ to determine the cardinality of

R(y) for all y.
Then one can generate a uniformly distributed z in R(z) as follows:

e Denote by n,ny,...,ns the cardinalities of R(z), R(z1),..., R(zs), respectively;

here xy,...,x5 are the subproblems associated with  (note that n = ny + --- +
ns by the definition of self-reducibility). Choose o € {1,...,s} according to the
probabilities ny /n, ..., ns/n and continue to work with z,.

e Pass similarly from z, to a sub-subproblem, from there to a sub-sub-subproblem
and so on until you arrive at a problem y of level l = 0.

o Find the unique z' in the leave R(y) and use this — by working backwards — to get
a z in R(z). This z is the output of our generator.

Proof. The justification is easy: if Uy, ...,U; denote the uniform distributions on sets
M, ..., M, which are a disjoint partition of a set M, then

4 In technical terms it is the trivial statement that the product of two uniform distributions is also
uniform.
5 “Easy”, of course, means “in polynomial time”.
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card(M;)

card(M;)
card(M) ~°

card(M) Ut

is uniform on M. This is applied here to M (x) which — up to isomorphism — is the disjoint
union of the R(z;). m]

As a variant of this idea suppose that we don’t know the R(z) exactly but that it is
possible to get approximations as close as we wish within reasonable time. More rigorously
this can be expressed by saying that we have an algorithm at our disposal with the
following two properties:

o For given € > 0 and z the algorithm provides a number r such that

|r — card(R(z))|
card(R(z)) —

with a probability of at least 1 — ¢.

e The running time to get r is bounded by a polynomial in 1/e and the number of
bytes to describe z.

Then we can modify the simulation procedure in proposition 18.1 to get a random gen-
erator for the z € R(z) which has distribution e-close to the uniform distribution and a
polynomially bounded running time (with a polynomial in 1/¢ and the “length” of z).

The proof is not difficult, one only has to glue together the various polynomials. Never-
theless, a rigorous argument is technically cumbersome, the reader is referred to chapter
1.2 in [70)].

Simulation offers the possibility of counting

Surprisingly, it is possible to reverse the idea. To motivate the approach let’s consider
again the permutations p = (p1,...,pr) of {1,...,7}. We pretend not to have the slightest
idea of how big the number N(r) of the p might be. However, we suppose that we are
clever enough to simulate them with respect to the uniform distribution. With the help
of such a generator we will observe after some time that roughly a 1/r-fraction of the
samples satify p; =i fori=1,...,r. We repeat the experiments with permutations over
{1,...,7 — 1}, and also this time the first entry is uniformly distributed. In this way we
proceed until we arrive at a level which can be treated directly, say r = 3. Then we argue
as follows: N(3) = 6, and among the permutations of four elements it is (roughly) equally
likely to get “1 followed by a permutation of {2,3,4}” or “2 followed by a permutation
of {1,3,4}” or .... Thus N(4) should be close to 4N (3) = 24.

Note that this is a variant of the following elementary fact: if an urn contains
an unknown number m of balls precisely & of which are white, then you can
estimate m provided that k and the probability of drawing a white ball are
known.

Working backwards we really arrive at the estimate N(r) & r!, a guess which of course
should be complemented by an error analysis.
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This can be made precise for arbitrary self-reducing problems: the number of elements
in the set R(z) can be counted approximately in polynomially bounded time if one
has access to a generator which provides these elements nearly uniformly distributed
in polynomial time. A rigorous formulation and the details of the canonical proof are
omitted here, we refer the reader to chapter 1.4 in [70].

A celebrated example where this counting method plays an important role is the
permanent which we have met at the beginning of this chapter: we are given a ma-
trix A containing solely 1’s and 0’s, and the problem is to determine per (A4), the number
of permutations o such that all a;,(;), ¢ = 1,...,r, are one. It has been shown by Valiant
([73]) that the calculation of per (A) is “difficult”: this calculation is # P-complete, a
notion from the zoo of complexity definitions which essentially states that there is no
hope for a polynomially bounded algorithm. On the other hand, the permanent can be
calculated approximately in polynomial time, and thus we have an example of a situation
where Monte-Carlo techniques are provably superior to exact methods.

The idea is to combine the following facts:

1. The permanent of a matrix is just the the number M, of perfect matchings of size
n of a suitable bipartite graph (V, E) with 2n vertices.

2. The determination of the permanent is a self-reducing problem.
3. It is possible to generate a random perfect matching of size n in polynomial time®.

This has first been sketched by Broder in [21], the result is described in full detail in
chapter 3 of [70].

Simulation without counting

Let us finally remark that one can aelways simulate elements of R(z) in the case of
self-reducing problems. It has to be admitted, however, that the method performs rather
poorly.

The idea is to apply the Markov chain techniques for chains which are defined by
graphs from chapter 11 to the graph which is associated with the problem (see page
177).

We want to produce elements of R(z), or, equivalently, vertices at the level [ = 0 (these
are the leaves of our tree); they all should have (approximately) the same probability.

On the other hand, we know how to produce a random vertex of the whole graph, this
has been described in the second half of chapter 11. From the results we have proved
there we even can derive concrete bounds for the mixing rate, it will depend on the edge
magnification p of the concrete graph under consideration.

And to bridge the gap between our “we want” and the “we know” one simply produces a
random vertex of the whole graph with the restriction that it will be used as the output
of our random generator only if it is at level [ = 0. Then the outputs will clearly be
(nearly) equidistributed in this subset.

6 More precisely: the samples are nearly uniformly distributed, and the distance & between the uniform
and the real distribution contributes with a polynomial in loge to the running time.
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Let us analyse what happens if we are going to produce random permutations 7 of
{1,...,r} in this way. The various levels | = r, r—1, ..., 0 can be thought of as the
number of components of 7 which remain to be specified. It is reasonable to identify a
vertex with the sequence of components we already know, and thus the root of our tree
is the empty set @, let us start there.

We proceed as described in chapter 11 (cf. definition 11.4; for simplicity we will work
with 8 = 1). The maximal number d of edges in our graph is r+1, and thus we stay at
@ or we will move to 1, to 2, ..., or to r each with probability 1/(r+1). Suppose that
we arrive at 2. Then, with equal probability, we will return to @ or continue to one of
21, 23, ..., or 2r. In this way we perform a walk on the possible selections of 0, 1, ...,
or 7 numbers (without repetition) out of {1,...,r}, a walk which will from time to time
be in II:= the selection of 7 numbers = the set of permutations. We stop the walk after
some time, and only if we are at a state in II this is used as an output.

Two natural questions arise. The first is the question of efficiency, how often will it
happen that we stop at a state in II? The graph has g, := 1+ r +r(r=1) +--- + 7!
elements r! of which are favourable. The quotient is close to 1/e &~ 0.38, and this ratio is
surely not too bad: the random walk will produce roughly 38 outputs out of 100 runs.

And what about the running time? Unfortunately, the graph under consideration is
particularly unsuitable for rapid mixing because of the bottleneck at the root; to pass
from one leave (= a permutation) to another one with a different first component one
has to climb up to the very top of the graph. Let us assume for simplicity that r is even,
by T we denote the vertices which belong to the left half of the graph (not including the
root). The capacity Cr is very close to 1/2, the ergodic flow Fr, however, is rather small.
There are 7/2 edges from T to its complement each with transition probability 1/(r+1),
and therefore Fr = r/[2(r+1)g,]. It follows that ®7 and thus also the conductance ®
of our chain is as tiny as 1/g,, and since the mixing rate is bounded by 1 — 2® it is
impossible to guarantee a good mixing rate within reasonable time.

Moral of the story: Simulation without counting is — at least in the case where one works
with the solution tree of a self-reducing problem — mainly interesting for theoretical
reasons, this method can be used only for very restricted examples.

Exercises

18.1: Let (M, <) be a finite ordered space. Prove that the problem of finding all totally
ordered subsets of M is self-reducing.

18.2: Let A be an NxN-matrix with integer coefficients. Verify that the problem of
calculating the determinant of A is self-reducing.

18.3: Prove formula (18.1).
18.4: Calculate the permanent of

0110
1100
A= 0 011
1111

and sketch the associate bipartite graph.
18.5: Let A; and A be square matrices. Give a formula of the permanent of
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A, 0
0 A

in terms of the permanents of A; and A;. What does this result mean for the associated
bipartite graphs if A; and A, have 0-1-entries?

18.6: Let N be an integer with r digits.

a) Prove that the number of elementary calculations to determine N? is bounded by a
polynomial of degree 2 in r.

b) What degree belongs to the calculation of N3?

c) Suppose that N is a square, N = M?. Is the number of calculations which are necessary
to determine M bounded by a polynomial in r?

18.7: Let A be a finite set which is written as the disjoint union of subsets A, ..., 4;.
Suppose that one has the information that the number of elements in A, is n, for
p=1,...,r. However, this is known to be true in each of the r cases only with probability
1—¢ (where “true” or “false” are independent for the various p). Also n,, is possibly not
precisely the cardinality of A,, there might be a relative error 4:

[card(4,) =
—_— ).
card(4,) £9

What can be said about the number of elements in A?
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19 Markov random fields

Imagine a set S of people, the inhabitants of your home town, say. For every s € S there
is a subset AV, of S: the people whom s knows, his or her neighbours, friends or colleagues.
It happens that some people are infected by a dangerous disease D, the probability that
a particular person s has D will naturally depend on the number of t € A; with D. What
can be said about the distribution of infected people? Will D eventually disappear or
will everybody be infected sooner or later?

It is easy to find similar situations, “s has D” can be replaced by “s has heard of
the rumour R” or by “s is in favour of the political party P”. Of great interest are
also examples from physics. It is known, for example, that the orientation of a magnetic
dipole d depends stochastically on the orientation of its neighbours: if they all have the
same orientation O then there is a strong tendency that O is also assumed by d.

In the present chapter we introduce a model to deal with such probabilities which
are (solely) influenced by the “neighbours”. For many years it has been used in various
areas, ranging from physics over sociology, medicine and biology to applications in image
reconstruction.

The appropriate setting will be Markov random fields. Such a field is a family (X5),
of random variables indexed by a set S, where the term “Markov” refers to the fact that
“little” information (namely the values of X; for the “neighbours” ¢ of s) is as good as the
knowledge of all X;, t # s if one wants to predict X;. We start with rigorous definitions:
random fields, neighbourhood systems, Markov random fields, local characteristics. The
connection between a local and a global view is discussed in some detail in the second
section, there Markov chains and their equilibrium distributions will play an important
role.

Markov random fields: definitions and examples

Let us first fix notation. We need a finite set .S, the sites, and a finite set A of states.
To avoid trivialities we will assume throughout that A has at least two elements. Usually
A is small, but even then the collection A of all mappings from S to A can be incredibly
large, this is the space we are interested in!.

To illustrate these abstract notions we consider some

Examples: 1. Let S be as at the beginning of this chapter. With A := {0, 1}, a mapping
z : S = A can be thought of as a description of the distribution of the disease D at a
fixed moment: one only has to translate z(s) = 1 (resp. = 0) into “s has D” (resp. not).
2. Let T4, ..., T, be the football teams (political parties, preferred restaurants, ...) of a
town. We put A = {0,1,...,r}, and we describe the football preferences at a particular
moment by a function z : S = A; z(s) = p of course means that T, is the favourite team
of s, with the interpretation “s has no favourite team” in case z(s) = 0.

1 The £ : S — A are sometimes called configurations.
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3. Now we turn to pictures. With S = {1,...,256} x {1,...,256} and A = {0,1} a
black-and-white picture in a 256 x 256-resolution corresponds to a map z : S = A. It is
easy to introduce colours by passing to a bigger A.

Note that even in the black-and-white case and even with this moderate number of pixels
we have to deal with a space AS containing 2256256 ~ 1019660 elements.

This was the set theoretical part, we now turn to probability considerations. By a ran-
dom field we mean a space AS together with a probability measure P; if it is necessary
to emphasize the roles of S and A it is more precise to speak of a random field on S with
state space A. As before S and A are finite, and it is usually assumed that P is strictly
positive at every point; we will follow this convention.

By X, :AS = A, s € S, we will denote the evaluation maps = + z(s). If (AS,P) is a
random field, then the X, are random variables, we are mainly interested in stochastic
dependencies between them. With the s € S there are associated the conditional prob-
abilities P(X | X, t # s). For our purposes it will be convenient to work with the
numbers

P(Xs=A|X;=Aforte S, t#s), (19.1)
where A and the A; are arbitrary clements of A. (Or, equivalently, with the
P(Xs;=xz(s) | Xy =z(t) for t € S, t # s),
for z € AS.)

Suppose that you know at a given moment the state of health of all persons who
are different from a fixed person s. What is the probability that s has the disease
D?

These quantities can always be defined. In many cases, however, it is not necessary to
have access to all X; with ¢t # s in order to deal with the probabilities in (19.1) since
already the ¢ in a “small” subset of S contain the relevant information.

If our person s lives alone with his family then it might be sufficient to know whether
or not his wife or his children have D.

This leads to the following fundamental definition, the starting point of the investigations
to come:

Definition 19.1 Let S be as above. By a neighbourhood system we mean a family N =
(Ns)ses such that

(i) for s € S, N, is a (possibly empty) subset of S which does not contain s.

(ii) t € N, yields s € M; for all s,¢.
Now let (X;)s be a random field with state space A. It is called a Markov random field
with respect to the neighbourhood system N provided that

P(X,=A| Xs=Mfort€S, t#s)=PXs=A| X=X fort € Ny)

for arbitrary s € S, A, A; € A.
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Some remarks are in order. First we emphasize that all conditional probabilities are
defined since we are dealing with a strictly positive IP; note that, if A; = @, the conditional
probability on the left-hand side is just P(X; = A). And we also want to stress that it is
important always to have in mind the dependency of the Markov property on N: if MV,
denotes the mazimal neighbourhood system — where the neighbours of s are all ¢ with
t # s — then every random field is Markov with respect to M..,. The other extreme is
the case where all NV, are empty. Now “Markov random field” translates into “the (X;),
are independent random variables” (cf. exercise 19.6).

How are the Markov processes which we have studied throughout related to random
fields? To explain the connection we fix a (strictly positive) initial distribution (p;)i=1,...~
and a strictly positive N x N-matrix P.

Maybe you have noted that we are considering a chain on {1,..., N} and not on
a general state space S as often before. The reason is that the letter S now has a
different meaning than before. For most of the book “S” was used for the states,
and we have investigated which states are occupied at time steps k¥ = 0,1,.... In
this chapter, however, “S” abbreviates site, the states are now the elements of A.
Hopefully you are not too much confused by these different notational preferences
of the Markov chain versus the random field community.

Let ko be a fixed integer: in order to arrive at a finite probability space we will have
to restrict ourselves to a fixed number of steps. The sites of our random field are the
numbers k = 0,1,..., kg, with every site k we associate the random variable Xy = “the
position of the walk at step number k”. So far this is not new, we have a random field with
S ={0,...,ko} and A = {1,..., N}, and we also know how to calculate all probabilities
in connection with this field: a particular element of A°, that is a path g, 1, ..., ik, Will
be observed with probability

PioPigir Piviz * " " Pirg—1ikg (19.2)

this has been observed in (1.2) in chapter 1.

Now some care is needed. From the very beginning of this book until the previous
chapter the Markov property of a process X, X1, - - . was synonymous with the fact that,
in order to predict Xy, the information Xg = 4o, ..., Xt—1 = ig—1 is precisely as good as
Xg—1 = tg-1.

With (Xk)k=o,... ko, considered as a random field, the situation is different, there we
are faced with the following problem:

For a k between 0 and ko, what are the subsets A C {0,...,k—1,k+1,...,ko}
such that

P(Xk=ik|Xl=il fOI'l?ék)=]P(Xk=ik|Xl=iz fOI'lEA)
for all 49, . ..,ik,; what is the smallest such A?

In view of the preceding remarks it is tempting to try A = {k—1}. This, however,
is not successful, since sometimes the knowledge of all X; with ! # k is strictly better
than that of X;_; alone. (If, for example, an ordinary random walk on {0,...,9} is at
position 5 at time k—1 = 7, it might be at 4 or 6 with equal probability at £ = 8; the
additional information, however, that Xy, = 3 implies that X; = 4 with probability
one.) A better choice is to use both “neighbours” of k instead:
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Lemma 19.2 With the preceding notation we define Ny := {k—1, k+1} for k=1,...,
ko—1, No := {1}, Nk, := {ko—1}. With respect to this neighbourhood system the Markov
chain (Xi)k=o,... ko 5 a Markov random field.

Proof. Fix k as well as states 1o, ...,ix, we assume that k lies strictly between 0 and kg
(the cases k = 0 and k = ko can be treated similarly). Consider the events

A = {Xk = ik},
B = {XQ‘:io, X1=i1,..., Xk_lzik—l, Xk+1=ik+17--'7 Xkoziko}’
C = {Xp_1=1tk-1, Xig1 =tk41}-

By (19.2), the respective probabilities are

IP(A n B) = DigDigiy Piyia " * 'piko—liko )
P(B) = E DigPigir Piriz * " " Pix 1), Piliegr """ Ping—1ikg»
%
P(ANC) = E Dit Dit it Ditity - ** Pity _yin—1 Pin—rin Pininsr»
i il
P(C) = > DayPatit Ditty  Pil,_in_ 1 Pin_ 14, Pilingr

s i i
1ga81 reeerlyy _or

and it follows that
P(AN B)

P(B)
Dis1iePininga
Zi; pik-1i;pifcik+1
P(ANC)
P(C)
= PA|C).

P(A|B) =

This is just the Markov condition for the neighbourhoods under consideration. O

The global versus the local approach

Now fix S, A, and a neighbourhood system N = (N)s. There are two possible ap-
proaches to deal with the random fields which possibly have the Markov property with
respect to AV. The first one is to prescribe a strictly positive measure P and then to check
whether or not the Markov property is satisfied; this will be called the global approach
here.

If we have defined a Markov random field with respect to A, then surely the numbers
P(X; = A | X; = X\ for t € Ny) will play an important role, they are called the family of
local characteristics associated with P.

Now we turn to the second approach, the local one. Our starting point is introduced in
the following
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Definition 19.3 With S, A and N as before a family of local characteristics is a family
(II(s; A\; y)s,a,y) of strictly positive numbers; here s runs through S, A is an arbitrary
state and y denotes a map from N; to A. We assume that

D (s Ay) =1

AEA
for all s and all y.

The significance of these numbers is the following: II(s; A; y) is a candidate of a con-
ditional probability, namely of the probability that the site s is in state A\ under the
assumption that the neighbours are in states given by y. Note that it will depend on the
size of the NV; whether there are many or few local characteristics.

It is clear that, given a Markov random field with respect to A" by a measure P
on A5 the family of local characteristics associated with P is in fact a family of local
characteristics. It is not obvious, however, whether such families always arise in this way.

But this is an extremely important problem since, in view of the examples we have
introduced at the beginning of this chapter, it is surely very natural to start with local
probability assumptions.

For example, we do not know how large the probability of a particular dis-
tribution of the disease D is (and in most cases this is not even of interest).
However, it is not too hard to invent models which specify how likely it is
that a person s has D under the assumption that a certain percentage of the
neighbours is infected. This observation applies similarly to the other exam-
ples: the preference of a football team, the orientation of a magnetic dipole
and so on.

To phrase it more formally, we want to know:

Let a family (II(s; A\;y)s,1,y) of local characteristics be given. Does there exist
a probability P on A° which gives rise to a Markov random field such that
the II(s; \;y) satisfy

O(s; 0 y) =P(Xs =X | Xy = y(t) for t € Ny)

for all s, A, y?
If P does exist, is it uniquely determined?

In order to investigate this problem we will work with Markov chains on AS. To
understand the underlying idea we resume once more the very first example. How will
the disease D be distributed?

We can think of a mechanism which works as follows. A person s is selected at random,
and then his or her neighbours are inspected whether or not they have D; let the result of
this inspection be a function y : Ny — A = {0,1}. Now the family of local characteristics
is consulted, of interest are the numbers II(s; A; y), A € A, for this site s and this function
y. They sum up to one, and therefore we can regard them as probabilities according to
which we select A € A. This is the new state of s. The procedure can be applied “very
often”, every second, say. Each single step is some kind of update of the distribution of
D, and it is natural to assume that “in the limit” our model reflects somehow the real
situation.
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After this heuristic consideration we are going to be more rigorous. Let S, A, A" and
(II(5; A;y)s,0,y) be given. We fix a strictly positive probability ¢ = (gs)s on S, and we
define a Markov chain by the following rules:

o The state space of our chain is S := AS; one must not confuse the elements of S
with those of A which also are called states.

e The chain starts deterministically at a fixed o € S. This configuration can be
defined arbitrarily, for example as a constant function.

e Let z € S be the actual state of the walk. To find the next position, first select an
s € S in accordance with the distribution g. Then put y := “the restriction of z
to N ” and choose A by using the distribution II(s; \;y), A € A; the gs- and the
A-choice are assumed to be independent. Then the new position will be the state
z € S, where z is defined by

t) - ift
z(t):z{m(; : iftiz.

Theorem 19.4 The previously defined chain has the following properties:
(1) It is irreducible and aperiodic so that there is a unique equilibrium distribution
T = (Tz)geas on AS.
(ii) For s € S and z € AS let m(z;S\{s}) be the sum over all m,, where z runs
through the elements of AS which coincide with  on S\ {s}. Then

2 = D qTI(s;2(s); y)m(z; S\{s}),

with y = the restriction of z to Nj.

(iil) Suppose that the local characteristics are such that the equilibrium 7 is indepen-
dent of (¢s). Then AS, provided with the measure associated with 7, is a Markov
random field with respect to N for which the local characteristics are just the
I(s; A5 9).

Also, the chain is reversible.

Proof. (i) This follows from the assumption that all g, and all II(s; \;y) are strictly
positive: with some luck one can pass from any z to any z in card(S) many steps, and
there is also a positive probability to pause.

(ii) The assertion is a reformulation of the equilibrium condition.

(iii) Denote by P, the measure associated with =, i.e., Pr(4) := 3 4 mz. (Of course
one could identify © with P, but we have introduced 7 as a vector. Also, the measure
notation is more convenient for our purposes.) The claim is that

Po(X,=2(s) | Xe=a(t) fort#5) = Ba(X,=2(s) | Xo=a(t) for t € )
= H(S;Z(S);.TlN,)

for all z € AS and all s.
We start our investigations with the observation that

T = I(s; 2(s); 2w, ) m(z; S\{s}) (19.3)



Chapter 19: Markov random fields 189

for all z and all s; this equation follows immediately from the fact that by assumption
the equation in (ii) holds for all choices of the (g;)-
Now let us fix z and s. If we divide (19.3) by w(z; S\{s}), we get

Pr(Xs = z(s) | X(2) = 2(t) for ¢ # s) = II(s; 2(s); z|w,)-

To prove the second half of the claim we introduce the following notation: for z € A® the
function z' will be defined by

iy | oz(t) ¢ ift#s
() '_{ z(s) : ift=s.
Let z be arbitrary such that z coincides with z on N,. From (19.3) we conclude that
m = II(s;2(s); 2lw, ) (2 S\{s})
I(s; 2(s); zlw, )w(2; S\{s})
= I(s; 2(s); 2w, )m(2"5 S\{s}),

and summation over these probabilities for all z leads us to

> -

z|n,=z|N,

= 2 >,

AEA z|ny=2|Nny,2(8)=A

= Z Z I(s; sz, )w(2'; S\ {s})

AEA z|n,=z|ny,2(8)=A

= Z II(s; s z|ar,) Z m(2'; S\{s})

AEA z|ny =z N, 2(8)=A

= Z (s; A;z|a,) Z m(z;5\{s})

A€A zlnyu s} =2|n,us)

= Z m(z; S\{s}) Z I(s; A z|a,)

2| MU {s} =2 MU s} A€EA

- Y n@S\s);

2| nyu (s} =Z N Us)

P.(X(t) = z(t) for t € Nj)

in the last step the normalization from definition 19.3 has come into play.
Also we have, by (19.3),

P.(X(t) = z(t) for t € N; U {s})

Tz

z|pyugsy=z|n, U{s}

= 3 I(s; z(s); z|w, ) m(2; S\{s}),

z|py U} =TIN, U s}
and together with the preceding calculations this implies
Pr(Xs = z(s) | X(t) = z(t) for t € Ns) = II(s; z(s); z|w,)

as claimed.
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It remains to verify that the chain is reversible, here once more equation (19.3) is
helpful. Let z, z be arbitrary elements of AS such that a transition from z to z or vice
versa is possible. We may assume that z # 2z, and hence there is a unique s such that z
and z coincide on S\ {s}. By the definition of the chain the probability p;. (resp. p.s)
for a jump from z to z (resp. from z to z) is ¢,I1(s; 2(s); z|nr,) (resp. gsII(s;z(s); z|n,))-
Thus, by (19.3) and since n(z; S\{s}) = 7(z; S\{s}), it follows that

TPz = I(s52(s);z|n,)7m(z; S\{s})gsII(s; 2(s); 7|7, )
= TI(s;2(5); 2|w, )m (25 S\ {s})gs I1(s; z(5); 2|, )
= T:Dzzg-
This completes the proof. |

The space A, provided with the the equilibrium 7, will in general not be a Markov
random field with respect to A, condition (ii) of the theorem is much weaker than the
Markov property. Let’s analyse an

Example: Consider S = {a,b,c} and A = {0,1}. The elements of A° will be denoted
by 000, 001, 010, 011, ..., 111, the element 101, e.g., is the element which maps a to 1,
bto 0 and ¢ to 1. In the description of the transition matrix which we will give shortly
they will occur in exactly this order (000 € AS corresponds to state 1 and so on).

A neighbourhood system A is defined by N, := {b}, N, := {a,c}, and N, := {b}.
With € = “a small positive number” we define the local characteristics as follows:

e For a, we have to prescribe the II(a; \;y) for A € A and y : N, = A. We can
identify y with 0 or 1, here is the definition:

II(a;0;0) := II(a; 1;0) :=II(a;0;1) := (a; 1;1) := 1/2;

this means that — regardless of the state of b —, the state of a will be set to 0 or 1
with equal probability.

e The neighbourhood of b has the two elements a and c. If the function y is 0 on both
a arrd ¢, then we put

II(b;1,y) :=1—¢, II(b;0,y) := €.
For the other three possible y the definition is

(b 1,y) :==¢, U(b;0,y) :=1—€.

e As in the case of a also for ¢ the function y (= the state of b) is 0 or 1. We set
I(c;0;0) := 1 —¢, T(c;1;0) := ¢, H(c;0;1) :=¢, (c;1;1) :=1—€.

These probabilities are designed such that:

e For z := 000 and z := 100 one has p;; = p.z.

e By the definition of the II's one tries to let the chain run in such a way that
it is more often in z than in position z; this is done by the choice of the local
characteristics at b and c.
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o If one really succeeds with this idea then m; < m. will hold. Therefore the
chain is not reversible and thus A5 cannot be a Markov random field by the

next theorem.

The number ¢ is only included to meet the condition of strictly positive II(s; A;y).

It remains to fix the (gs), we choose the uniform distribution. Then it is easy to

calculate the transition matrix, for the special case ¢ = 1/100 it has the form

150 1 99 0 5 0 0 O
99 52 0 99 O 50 0 O
1 0 150 99 0 0 50 0
p= 1 0 99 1 150 O 0 0 50
300 50 0 0 0 248 1 1 O
0 50 0 0 99 150 0 1
0 0 5 0 99 0 52 99
0 0 0 50 0 99 1 150

Why, for example, does the transition 010 — 010 have the probability 1/27

With probability 1/3 the state of a is (possibly) changed. The (conditional) prob-
ability that a keeps its state is 1/2, and thus this possibility contributes with 1/6.
If, however, the state of b is concerned (this also will happen with probability 1/3),
then one has to look at the states of @ and c: both are 0, and thus with (conditional)
probability 99/100 the state 1 survives at b; therefore the second contribution for
the transition 010 — 010 is 99/300. Finally, if the (gs)-sampler chooses c, the chance
that state 0 is chosen again at c is only 1/100, that is we have to add 1/300 to the
already determined 1/6 + 99/300. In this way 1/2 has been obtained, and similarly
all other transition probabilities can be derived.

With the help of a computer the equilibrium 7 is easily calculated as the positive
normalized solution of 77 P = 7T, here is the result:

7' = (0.162, 0.074, 0.117, 0.148, 0.338, 0.070, 0.025, 0.066).

In particular, we see that really mggg = 0.162 < 0.338 = w90 so that the chain is not
reversible. Consequently, by the following theorem, (A%, ) is not a Markov random field.
This, of course, can also be calculated directly. We have, e.g.,

000 _ 0.162
o000 + T100 ~0.162 +0.338

Pr(Xoe=0|Xp=X.=0)= = 0.324,

this is the conditional probability under complete information on the complement
of a. If, however, the states are only known on N, we have to calculate

o000 + 7001
Tooo + 7100 + Too1 + 7101

= 0.366.

Pr(Xa=0|X,=0)=

What happens if we consider a chain on AS which is defined not by arbitrary local
characteristics but rather by those associated with a Markov random field?

The following assertion is not too surprising;:
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Theorem 19.5 With S, A and N as above let P be a measure on AS which gives rise
to a Markov random field.
Denote by IIp (s; A; y) the associated local characteristics, that is

Op (s; 0;9) :=P(Xs =X | Xt =y(t) fort € Ny).

If the Markov chain which we have defined preceding theorem 19.4 is run with arbitrary
gs > 0 and with the II(s; \;y) := Ip (s; \;y), then the equilibrium of this chain coincides
with P. Also, the chain is reversible.

Proof. Rather than to compare P and the unique equilibrium directly we prefer to start
with the detailed balance condition. If z and z are different elements of A such that
transitions are possible — so that they are different at a unique s —, then the probability
to come from z to z is gsIIp (s; 2(s); z|n, ). Also, in view of the Markov condition, P({z})
can be replaced by

Ip (s; z(s); x|y, ) - P(X, = a(t) for t # 5).

Consequently the product “probability of z” times “probability for a jump =z — 2” is
the same as “probability of z” times “probability for a jump z — z”: both numbers equal

gsI1p (s; 2(5); z|nv, )T (s; 2(s); v, )P(Xe = x(t) for ¢ # 3).

We have already remarked in chapter 10 (see (10.2)) that then © = (P{z}),eas must be
the equilibrium. The remaining assertions now can be read from theorem 19.4. ]

Corollary 19.6 If (II(s; A;¥)s,a,y) 5 a family of local characteristics, then there is at
most one measure P on A° such that

(i) AS, together with P, is a Markov random field with respect to N';

(ii) the local characteristics associated with P are just the II(s; A;y).

Proof. This follows at once from the preceding theorem and the uniqueness of the equi-

librium distribution.
O

Corollary 19.7 Under the assumptions of theorem 19.5 one can produce samples from
AS with probabilities given by P up to arbitrary precision; it is only necessary to run the
above chain on AS for “sufficiently many” steps and to use the position obtained in this
way as an output.

Proof. This follows from theorem 19.4(i), theorem 7.4 and theorem 19.5. (In order to
apply this corollary a more detailed analysis of the mixing rate will be necessary; see,
e.g., the discussion of the Gibbs sampler at the end of the next chapter.) a

As an illustration we resume the Markov random field induced by a Markov chain which
we have studied in lemma 19.2. In the proof of this lemma we have already calculated
the local characteristics: if k is in S and the states of k — 1 and k + 1 are ix—; and 541,
respectively, then k will be in state iy with probability

Pir_1iePirieyr (19 4)
Zi; Piy_1i Piy ik
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This provides a second possibility to simulate ordinary Markov chains. If a sample of
the chain is needed for the time steps k = 0,1, ..., ko, start with an arbitrary sequence
40,91, -,1k,- Then update this element of AS “very often” by choosing a k at random
and changing the state ¢ at k in accordance with the probabilities in (19.4). It is plain
that this is much less effective than the usual procedure where one chooses ip according
to (p;) then i; by using the ig’th row of the transition matrix and so on. This sampling
method is extremely faster and provides the output even with the exact probabilities.

Exercises
19.1: Let (AS,P) be a Markov random field and s € S.
a) Prove that there is a minimal subset A of S\ {s} such that

P(X;=2(s) | Xe=z(t) fort € A) =P(X; =z(s) | Xy = z(t) for t € S, t # s).

b) Give an example to show that in general A is not unique.
c) It can happen that the minimal set A coincides with .S\ {s} for all s.
19.2: Let (5, d) be a finite metric space.

a) Fix R > 0 and put N&® = {t | 0 < d(s,t) < R} for s € S. Prove that N8 =
(N&R) s defines a neighbourhood system.

b) Let A be an arbitrary neighbourhood system on a finite set S. Prove that there is
a metric d on S such that, for a suitable R, A is of the form N%®. In particular the
minimal and the maximal neighbourhood systems Nmin and Mmax can be represented in
this way.

c) Let R; > 0, s € S, be arbitrary numbers, we put
Ns = {t]0<d(s,t) < Rs}.

Is (V)5 a neighbourhood system?

19.3: Consider an ordinary cyclic random walk on {0,...,9} which starts deterministi-
cally at 5, we observe this walk at “times” k = 0,...,100. Now we regard this random
walk as a Markov random field. What are the local characteristics at k = 157

19.4: Similarly to the case of ordinary Markov chains one can treat processes with a
short memory. To be specific, we consider the stochastic process of example 6 in chapter
2, we observe this process for the steps k = 0, ..., k. As in the present chapter this gives
rise to a random field: there are two states (a and b), and the set of sites is {0,...,ko}.
Find natural candidates for neighbourhoods in order to have a Markov random field and
determine the local characteristics.

19.5: Neighbourhood systems have been introduced in definition 19.1. By the second
condition they have a certain kind of symmetry: ¢t € N, is equivalent with s € A;. In
which of the arguments of the present chapter was this property of importance?

19.6: Prove that a random field (A%, P) is Markov with respect to the minimal neighbour-
hood systems (= empty neighbourhoods) iff (X,)ses is a family of independent random
variables.

19.7: Provide — with arbitrary finite sets S and A — the set AS with the uniform distri-
bution. Determine all neighbourhood systems such that this random field is Markov.
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19.8: Let N be a neighbourhood system for S. Is it possible to find a probability P on
A such that the random field (A%, P) is Markov with respect to N'?

19.9: Let a Markov random field (A°,P) be given (Markov with respect to A'). Now let
N be a second neighbourhood system such that AV, C A, for every s. Is (AS,P) also
Markov with respect to A/?

19.10: Let a family of local characteristics be given such that II(s; A;y) = r» for all s,
A and y and suitable ry > 0 with ), 7y = 1. Prove that the equilibrium of the chain of
theorem 19.4 gives rise to a Markov random field on A,

19.11: In the example preceding theorem 19.5, calculate the numbers
P (Xe=0|Xp=X,) and P (X, =1| X, =1).

19.12: In lemma 19.2 we have considered a A-valued Markov process as a random field,
and it turned out that this field is Markov with respect to the neighbourhood system
N defined in this lemma. Prove the following more general assertion: if an arbitrary A-
valued stochastic process Xg, X1,... is considered as a random field, then the Markov
property of this field with respect to A is equivalent with the Markov property of the
process (Xg).
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20 Potentials, Gibbs fields, and the Ising
model

Let the set of sites S, the state space A and a neighbourhood system A be given as in
the preceding chapter®. Sometimes a probability measure on A% is given in closed form
by a potential, this will lead us to the Gibbs fields. We will show that such fields are
Markov random fields, the celebrated Ising model will serve as a simple example. In the
final section we describe the Gibbs sampler, a method by which one can produce samples
from Gibbs fields with (approximately) correct probabilities.

The energy function and potentials

We begin with an elementary observation: if P is any strictly positive probability
measure on an arbitrary finite set S, then there is a real-valued function H such that

P({a}) = e

holds for every z. Conversely, if H : S — R is arbitrary, then

—-H(z)
Pr({z}) = = (20.1)

will be a strictly positive probability on S if we define Z by

Z = Z e W),

yeS

Since H and Z have their origin in statistical physics they are usually called the en-
ergy function and the partition function, respectively (see [51] or [66] for the physical
background). Note that two energy functions H and H' induce the same P iff H — H' is
constant.

In the applications we have in mind the probabilities Py, are usually introduced by
(20.1) with a more or less easy-to-calculate energy function H. At first glance this seems
to be as good as to work with an explicitly defined Py, but this is far from being true.
The reason is that in most cases the set S is that huge that it is hopeless to calculate Z.
This has a remarkable consequence:

If a probability P is defined by an energy function, then the P({z}) are in
many cases practically unknown. Easy to determine, however, is usually the
ratio P({z})/P({z}) - which is just e~ H(@)+THE) _ for arbitrary z, z. Similarly
simple is the calculation of conditional probabilities P(A | B) for “small” sets
A and B.

! The definitions which are not explained in the present chapter can also be found there.
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One should have this in mind when discussing whether definitions or methods are merely
of theoretical interest or useful for real applications.

Now we turn to the case S = AS. The energy functions we are going to study will be
defined such that for the calculation of #(z) the neighbourhood system A plays a crucial
role2. We have already seen by the example in the preceding chapter that some care is
necessary: for the Markov condition to hold it is not sufficient to work with definitions
which solely use properties of neighbourhoods. Something more is needed, here it is some
kind of symmetry which is implicitly introduced in the following

Definition 20.1 Let S, A and A be as above.
(i) A nonempty subset C of S is called a clique if it is a singleton or if — for different
s,t € C —onehas s € N; and t € N.
The collection of all cliques will be denoted by C; note that the definition depends
on N so that it would be more precise to write Cy .
(ii) By a Gibbs potential we mean a family V = (Vi )cec, where each V¢ is a map

Vo : A© 5 R.
(ili) Let V = (V&)cec be a Gibbs potential, the induced energy function Hy is defined
by

Hy(z) =Y Vo(zlo).
C

(iv) Let the measure Py be induced by Hy asin (20.1), it is called the Gibbs measure.
AS, together with Py, is the Gibbs field associated with V.

To illustrate these notions let us consider some examples.

1. Let N™== be the system of maximal neighbourhoods: N, := S\ {s} for every s. Then
every nonempty subset of S is a clique. The other extreme case, N™", occurs when all
N, are empty: now only the singletons are cliques.

2. In the Markov chain example which has been introduced in lemma 19.2 the cliques are
precisely the one-point sets and the {k,k + 1}, where k =0,...,ky — 1.

This is the special case r = 1 of the more general situation where S is the set
{0,...,ko}™ and N consists of those t for which the [*-distance? to s is precisely one:
here the cliques which are not singletons are sets of the form

{(1:1,...,ip-l,k,ip+1,...,im),(il,...,ip_l,k+1,ip+1,...,'im)},

with p=1,...,m, il,...,ip.._l,'ip+1,...,7;m € {0,...,k0}, and k=0,...,ko—1.

3. More generally, one can start with an S together with any metric: for s € S, the
neighbourhood of s is defined to be the set of all ¢ for which the distance to s lies
in ]0, R], where R is a fixed positive number. It is illustrative to identify the cliques for
various metrics, the reader is invited to check the case of the euclidean and the maximum
metric.

4. Let N™= be the maximal neighbourhood system from example 1. Then S is a clique,
and therefore every function # : AS — R is of the form Hy: simply define Vs := H and
let all other V- vanish.

2 Of course this is to be expected if one wants to arrive at a Markov random field with respect to A.
3 Cf. page 86.
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This implies that every measure on A can be considered as a Gibbs measure for a
system of suitably large neighbourhoods.

5. Now suppose that all neighbourhoods are empty. A potential for this situation can be
identified with a family of mappings Vs : A = R, s € S, and the energy function then
has the particularly simple form

Hy(z) = Z Vs (z(3))-

It follows rather easily that the evaluation maps from AS to A are independent random
variables with respect to the measure Py which is induced by Hy; also AS is a Markov
random field for V'™,

Note that, conversely, every Markov random field relative to A™" is a Gibbs field, an
appropriate definition of the potential functions is V5(A) := —logP(X; = A) for A € A
and s € S.

6. In example 2 above we have identified the cliques of the random field associated with
an ordinary Markov chain. Is it a Gibbs field?

One has to solve the following problem: an z = (i, .. .,4x,) € AS has the probability
P({z}) = pioPioir * * * Piry_rin, » and one must find functions

Vk:A—-)Rande,kH:AxA—)]R

such that IP’({:::}‘) is — possibly up to a constant — the number

ko ko—1
exp(— D Vi(ie) = Y Viesr(in,ins1))-
k=0 k=0

A moment’s reflection shows that this is achieved by the following definition:
e V} vanishes for k =1,..., ko, and V5 (i) := — logp;;
L4 Vk,k+1(7:,j) = —logpij for k = 0,.. .,ko -1

Gibbs fields are Markov random fields

Let S, A and NV be as before, and again C will denote the collection of cliques. We fix a
Gibbs potential V = (Viz)¢, and for the sake of notational convenience we agree to write

e H resp. P instead of Hy resp. Py, and
e Vi (z) instead of the more correct Vo (z|c).

We then claim:

Theorem 20.2 The Gibbs field induced by V is a Markov random field, and the associ-
ated local characteristics have the form

- \%
P(X;=x(s) | X; = z(t) fort e N) = Z)‘eixfx(p(?g;eicc;/(;()is;x))

for s € S and z € AS; here 5> stands for that function from S to A which has the value
X at s and coincides with x at the other points of S.
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Proof. The only difficulty of the proof is to avoid notational confusion.
Let s and z be given, we have to show that both P(X; = z(s) | X; = z(¢) for t € N})
and P(X, =z(s) | Xy = z(t) for t € S, t # s) coincide with

exp(— Z Vc(a:)) /g\exp(— Z Vc(x‘”’\)).

C,seC C,seC

s and z will be fixed from now on.

It will be convenient to split the energy into two sums, where the first one measures
the contribution of the Vo with s € C; this term is usually called the local energy at the
site s.

More precisely, we define

Ho(z) = Y Vola), Hi(z):= 3. Vol2)

cec,seC cec,s¢C

for z € AS.
Trivially H(z) = H,(z) + H2(z) holds, we will need some further facts. The first is the
identity

H;(2) = Hi(z) (20.2)
for the z which are identical with z at all ¢, ¢t # s (obvious); further,
Hs(z) = Hs(x) (20.3)

holds for all z which coincide with z on N, U {s} (this is true since — by the definition of
“clique” - every C € C such that s € C is a subset of s U {s}); and finally, (20.3) has a
variant which will also be important:

Ho(2"Y) = Hy(z), (20.4)
for all z such that z(t) = z(t) for t € N.
Now the calculations are straightforward (Z will denote the partition function):
ZP({z}) = e
e~ Mo (@) g=Hi(2),

and also, with the help of (20.2),

ZP({z| 2(t) =x(t) for t #£s}) = ZY P

A€EA
I e =R @)

A
= T e G-
A

= e Hil@) Z e~ Ha(z*?)
A

This proves that
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o—Hs (@)

B(X, =3(s) | Xe = 2(t) for £ €5, 1 #5) = =y,
A 3

the first half of the assertion.
Similarly we calculate, with (20.3),

ZP({z|z(t) = z(t) for t e N, U{s}}) = Z > P({z})

z|n,usy=2la,ugsy

- ) o= Ha(3)=H:(2)

TN u{s}=2IN,U s}

- Z e~ Hs(@)—H(z)
z|n,usy=2In,uls)

= ¢ Hi@) Z e M),

TN ula}=2|M U s}

and with (20.2) and (20.4) we obtain

ZP({z ] 2(t) =z(t) forteN}) = Z D P({z})

z Ny =z|n,

> Y P{="})

z|ayu{ay=2la,ugey A

= 3 T e M= A )

z|n,u(ar=2IN,usy A

= 3 T e Hele =R ()

z|ayu{sy=2ln,ugey A

= el 3 M),
A

z|puiar=2|n,0 0

By taking the quotient of these two expressions we arrive at

e—Hs(2)
P(X, = z(s) | X; = z(t) for t € N) = IR
A

and this completes the proof. a

Let us try to understand why it was important to work with cliques. To phrase it
otherwise:

Let D be any system of subsets of S and suppose that Vp is a function from
AP to R for every D € D. Similarly as before we pass from the family (Vp)
to Hp, defined by

Hp(z) =Y Vp(zlp),
D
and further to the induced probability measure Pp. Under what conditions

on D can we mimic the proof of the preceding theorem, when will the random
field have the Markov property?
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Of course, in the line of the above arguments, one would first introduce the (Hp)s
and the (Hp)} as before. Then one would note that equation (20.2) is valid without any
restriction on D. For (20.3) and (20.4) to hold, however, it is essential to know that D is
a subset of Ny U {s} whenever s € D and D € D. This implies that all D € D are cliques,
and we conclude that our approach necessitates to work with this type of subsets.

What about the converse of the preceding theorem? Is every Markov random field a
Gibbs field for a suitable potential? In view of the above examples there is some evidence
for this to hold since for all random fields with the Markov property studied above we
have been able to provide a V with P = Py. In fact, this is generally true: a random
field is a Markov random field iff it is a Gibbs field. This is the celebrated theorem of
Hammersley and Clifford from 1968, for a proof we refer the reader to [76], theorem 3.3.2,
or to {20], theorem 7.2.2.

The Ising model*

This model was introduced by Ising ([45]) in 1925 to model the phenomenon of phase
transition in ferromagnetic materials. It is a particularly simple example of a Gibbs field,
it has applications in physics (theory of matter), medicine (distribution of epidemies),
biology and sociology.

We will only discuss the two-dimensional situation, the modifications which are neces-
sary to generalize the definitions to arbitrarily many dimensions are canonical. It would
be desirable to work with Z x Z as the set of sites, S. This set, however, is infinite so
that one restricts oneself to S := {0,...,7 — 1} x {0,...,r — 1} with a sufficiently large
r. But now there is another drawback: different sites might have a different number of
neighbours. To remedy this one uses the wrap-around trick: in the set {0,...,7 — 1} one
declares the elements 0 and 7 — 1 to be neighbours, similarly to constructions in previ-
ous chapters when we have studied Markov chains on the cyclic group Z/rZ. Then S is
something like a discrete torus, all s = (i,7) € S have the same neighbourhood structure
if we define the neighbourhood N of s by

-N; = {(i_lvj)a (i+1,j)a (ivj_l)’ (iaj+1)}

(with ¢ £ 1 and j + 1 modulo r).

Every site s can have one of the two states in A = {—1,+1}. In Ising’s model “state”
was meant to be the orientation of a magnetic dipole, but you can think of any other
situation where a site has to choose its state among two possibilities. It remains to define
a Gibbs potential in order to arrive at a Markov random field. The special feature of the
Ising model is that, for a clique S, the potential Vi is a particularly simple function of
the z(s),s € C.

To motivate the definition of the Vi we first note that there are two types of cliques,
namely the singletons and the four two-point sets

{(i’j>’(i—1’j)}a {(iaj)’(i"'l)j)}’ {(iaj)y(i’j_l)}’ {(7"])’(7".7"'1)}

4 Those who want to pronounce the name “Ising” correctly should know that it is a German name;
therefore the vowel “I” is spoken like the “ea” in “eagle” and not like the “i” in “icecream”.




Chapter 20: Potentials, Gibbs fields, and the Ising model 201

Next we recall that the probability of a configuration z € AS will be proportional to
exp(—Hy(z)), and therefore the z with a high probability will be those with a small value
of the energy function. These probabilities can be controlled by assigning appropriate
potentials to the cliques, in the Ising model the two different types are treated as follows.
The singletons: Consider a clique C = {s}. Then Vi could be any function from A to
the reals. Since V¢ (z) is just Vo (z(s)), the definition of Vi controls the z(s)-entry. By
the values of Vo (+1) we can prescribe how likely the state z(s) = +1 is: if Vo (+1) is
smaller than Vo (—1), then z(s) = +1 is more likely than z(s) = —1.

Such a “tendency to have the value —1 or +1” can be a desirable feature of the
model. In Ising’s original approach this part of the potential stood for an external
magnetic field, in other situations it can be an inherent tendency to have a certain
opinion, or the disposition to catch a certain disease.

In the Ising model the potentials for the singletons are defined by
Viay (@) = ~ha(s),

where h is a real number (the same for all s). By the size of h it is possible to quantify, e.g.,
the strength of a magnetic field or the disposition to have political opinions. Usually h
will be positive so that state +1 is favoured, but negative values might also be reasonable.
The two-point cliques: This is the more interesting part, it describes the interactions.
The underlying idea can be phrased as

Do in Rome what the Romans do.

More seriously: if all neighbours of s are in state +1 resp. all are in —1, then there is a
more or less strong tendency for s — it will be quantified by a parameter K — also to be
in state +1 resp. —1; and if some neighbours are in state +1 and others are in state —1,
then both z(s) = +1 and z(s) = —1 might be equally likely. Now note that, for a clique
C = {s,t}, the number z(s)z(t) is +1 resp. —1 if z(s) = z(t) resp. z(s) # z(t). Hence
the definition

Vi) (@) 1= ~Kz(s)a(t)

favours z(s) = z(t) if K is positive; note that then z(s) = z(t) leads to a smaller energy
than z(s) # z(t). For a negative K, however, the model enforces z(s) to be different from
z(t).

Now we are ready for the definition of the Ising model:

Definition 20.3 Let r be an integer and h and K real numbers. The two-dimensional
toric Ising model consists of
(i) the set of sites S = {0,...,7—1} x {0,...,r—1},
(ii) the state space A = {-1,+1},
(iii) the neighbourhoods N, := {(i—1,j), (i+1,7), (5,7-1), (4,j+1)} for s = (4,5)
(where ¢ £1 and j + 1 are calulated modulo r),
(iv) the Gibbs potential V = (V)¢ which is defined by

Vis}(z) = —hz(s) and Vi, 4 (z) = —Kz(s)z(t)

for the one- and two-dimensional cliques, respectively.



202 Part III: Rapidly mixing chains: applications

It is not hard to visualize this model, one only has to apply corollary 19.7. In order to
get a “typical sample”, one has to proceed as follows:

e Start with any configuration zg, often this is chosen by flipping coins at every site
s to determine zg(s).

e Then let a Markov chain run on AS. If the present position is the configuration
z, then the next one is obtained as follows: choose an s at random; caiculate, for
€ = %1, the number

a(e) := he + Ke > z(t);
t, {s,t} is a clique
select 7 = +1 resp. —1 according to the probabilities

ea(+1) resp ea(-1)
) .

ea(+1) 1 ga(—1 ea(+) 1 ga(—D)’

the next position of the walk is then the configuration which is identical with = on
S\ {s} and for which the state at s is 7.

e Let the chain run for “a long time” in this way and use the configuration which
is occupied then as an output. These samples are distributed approximately in
accordance with Py so that you will observe something typical.

Similarly one can treat the case S = {0,...,7—1}x{0,...,I—1} with possibly different
r and [; e.g., the neighbours of (0,0) are (1,0), (0,1), (r — 1,0) and (0, — 1). Here are
some samples with » = 30 and ! = 20, the states £1 are visualized by little white and
black squares in a 30 x 20-grid:



Chapter 20: Potentials, Gibbs fields, and the Ising model 203

(o

Picture “a” is a starting position, the states at the sites are chosen at random with equal
probability.

Picture “b” shows the state of the random walk after 10,000 steps; the parameters are h =
0 and K = 0.3. Since K is rather small, there is weak interaction and the configuration
has a lot of structure.

In picture “c” one sees the position of the walk after 10,000 further iterations. All these
new iterations, however, are with K = 0.8 (and h = 0 as before). Note that now there is
more interaction, the state at a site is now influenced more strongly by the states of the
neighbours than before. Not surprisingly, this results in a picture of a different character,
there are much fewer black or white “islands”.

Finally, to prepare picture “d”, we have produced another 10,000 steps of the walk, this
time with K = —0.8 (and h = 0). As it was to be expected, the character of the picture
has changed once more: the state of a site tends to be “as opposite as possible” to the
states of the neighbours, and thus we see something like a checkerboard pattern.

We close this section on the Ising model with the calculation of a partition function,
one of the main results in Ising’s doctoral thesis. It has been stressed above that it is in
most cases impossible to determine Z = 3, e~H(®)_ For a particular case of the Ising
model, the one-dimensional situation, one can provide this number explicitly.

Fix an integer N. The one-dimensional toric Ising model is defined similarly
as above, that is the neighbours of a site € S = {0,...,N-1} are i £1
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modulo N. Therefore the cliques are the sets {i} and {i,7 + 1}, and the
energy function has the concrete form

=—-hz 2)——KZ (@)z(i +1).

=0

By definition, the partition function Z = Zy is the number

Zn = Ze—ﬂv(l‘)
TzEAS
= Zexp(hZa:c)-{—KZ z)zz+1))
=0
- Zexp(gg (i) +2(i + 1)) + Ka(ia(i + ).

The evaluation needs some preparations, we introduce the numbers Z%, R*1:%! and the
transfer matriz R:

© Z% =3 ,cas 2(0)=%1 exp(h YN 5  z(i) + K YN o 2(6)z(i +1));
e R*" :=exp(h(e +n)/2 + Ken), for g, n = £1;

RYL+1 R+l,-1 eh+K oK
e R= ( R-L+1 R-1,-1 ) = ( e—K e—htK )
Then it is plain that Zy = Z,"\} + Zy, and also - since

ZN = Z RE0€1 RE1€2 ... REN-1,€0

£0,-.EN—-1=F1

holds - that
Y =RtbtZE 4+ RYMTIZS |, Zo =RVPZE  +RVIZG .

n

(%)-=(%2)
Zy Zya )

and by induction on N it follows immediately that Z}'\} resp. Zy is the top left resp. the
bottom right element of RV (the case N = 2 has to be calculated directly). Therefore
Zn is just the trace of RN.

To arrive at our final result it remains to recall that the trace of a self-adjoint matrix
is the sum of the eigenvalues and that the eigenvalues of RV are the N’th powers of the
eigenvalues of R:

This means that

Proposition 20.4 Let A and p be the eigenvalues of the transfer matriz R. Then Zy,
the partition function of the one-dimensional toric Ising model on {0,...,N — 1}, has
the value

IN = AN'+'MA(
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The Gibbs sampler

We return to the situation of a general Gibbs field which is given by sets S and A, a
neighbourhood system N and a Gibbs potential V. We continue to write A instead of
the more correct Hy.

The local characteristics have been determined in theorem 20.2, and in corollary 19.7
we have shown how samples can be produced by running a suitable Markov chain. In
this section we want to replace the vague “let the chain run for a sufficiently long time”
by concrete bounds.

For these calculations it will be convenient to change the definitions of the associated
Markov chain slightly. Originally — cf. page 188 — the choice of the next configuration was
started with the selection of a site s in accordance with certain probabilities (gs). Now we
fix once and for all an enumeration of S, that is we identify this set with {1,...,N}. And
the sites where one possibly changes the state by using the probabilities prescribed by
the local characteristics are no longer chosen at random. Instead we work systematically:
in the first step — the step after the arbitrarily chosen starting position — we work with
s = 1, then with s = 2 and so on until we arrive at s = N. Then, in step N + 1, we
start again at s = 1, next we consider s = 2, .... Usually the enumeration of S is called
a wvisiting scheme, and a sweep with respect to this scheme is the result of N consecutive
steps (beginning with a — possible — change at s = 1).

The Markov chain we are going to analyse has A as its state space, the starting
position is arbitrary but fixed, and the next step is the configuration which is produced
after a sweep. The technique to produce samples from a Gibbs field with this chain is
called the Gibbs sampler, the “output” is the position of the chain after “many” sweeps.

To fix notation, let P, be the transition matrix which is associated with a (possible)
change at s. Then Q := P, P,--- Py is the matrix which governs the transitions of the
new chain. '

Lemma 20.5
(i) The entries of Q are strictly positive so that the chain is irreducible and aperiodic.
(ii) The equilibrium 7 of Q is the Gibbs distribution:
e—'H(a:)
VA

T =

for z € AS.

Proof. (i) is obvious: since all local characteristics are strictly positive, one may pass in
one step® from any z to any z.

(ii) Fix s € S and =z € AS. By T,, we will denote the set of configurations 2’ such
that a transition from 2z’ to z with respect to the transition matrix P, is possible; T .
thus contains the z’ which coincide with z on S\ {s}. By definition, a transition from a
z € Ts to z has probability

e_’H(I)
ZZ’GT, =z e=M(=)"

5 Note that a step for Q is a complete sweep.
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Thus, with 7, := e~*(2)/Z_ it follows that 7" P, = n ", and this implies that 7' Q = 7.
This completes the proof since there is precisely one equilibrium. O

We will estimate the rate of convergence of the @-chain by using theorem 10.5. To apply
this result it is necessary to bound the number §, the minimal nonzero probability for a
transition between two arbitrary configurations. Let us introduce some further notation:

e the number L will stand for the cardinality of A;

o for s € S and z € AS, Mg,z resp. M, ; mean the minimum resp. the maximum of
the {H(z) | z € Ts 3} (for the definition of T, ; see the preceding proof);

o vy :=max{M;, —m, . |z € AS}, for s € S;
e A := max, v,.

Now let z and z be arbitrary such that transitions are possible. The probability for a
jump from z to z according to () can be estimated as follows.

Consider first P;. The probability that z and z will coincide at state 1 after one step
of the P;-chain is

e—'H(z')
“H(z')’
ZZ’ETs,a € (z )

where z'(1) = 2(1) and z'(s) = z(s) for the other s. This number can be estimated by

e—H(a:') e—’H(z')-{-ml,,
>
ZZ'GT,,, e—H(=') = EZ'ET],: e—’H(z )+mi,2
e V1
>
- L
The transitions at s = 2,..., N can be treated similarly, and therefore the probability of

a transition £ — z after a complete sweep is at least

ﬁ e—Ys S e—NA.
L = LN’
s=1

this is a lower bound for the number § from theorem 10.5. It remains to apply this resultf:

Proposition 20.6 The convergence rate of the Gibbs sampler can be estimated as fol-
lows. If the starting position is arbitrary then a configuration x will be observed as the
position of the walk after k sweeps with a probability p which satisfies

p=Py({z})] < (1 —e V)X,

As an illustration of this result lets consider the Ising model on an r X r-square (con-
sidered as above as a discrete torus). For s = (3, j), the local energy is

6 Note that “N” has two different meanings in theorem 10.5 and in the present investigations. There it
was the cardinality of the state space, now it is the number of sites, and therefore we have to replace
N in 10.5 by LV.
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Ha(z) = ha(s) + K (D z(t)z(s)).

tEN,

We will assume that h and K are positive. Then

H(z) = ha(s) + K( D z(t)a(s)) + H3(z)

tEN,
for fixed s and the z € T} ;; therefore
Mz = —h—4K +H}(z), Ms, =h+4K +H;(z)

and consequently

Us,z = Vs = A =2h +8K.

It has to be admitted that only for small values of 7, h and K the resulting error bound

< (1 _ e—(2h+8K)r2)k

will lead to satisfactory results, some readers will be reminded of the citation on page
78.

Exercises

20.1: Let (S,d) be a finite metric space, the neighbourhood system N'%# is defined as
in exercise 19.2. Prove that the cliques are precisely the subsets of S of diameter at most
R.

20.2: Is it possible to reconstruct the neighbourhood system from the collection of
cliques? (More precisely: if A and N are nelghbourhood systems on the same set which
give rise to the same cliques, does it follow that N = N 7

20.3: Let S together with a neighbourhood system be given. Suppose that one knows
which of the subsets containing precisely two elements are cliques. Is it then possible to
find all cliques?

20.4: Let S be a finite set. Characterize the collections C of subsets which are the cliques
for a suitable neighbourhood system.

20.5: Let V be a potential and Hy the associated energy function. Prove or disprove:
a) in the case of the minimal neighbourhood system (i.e., all neighbourhoods are empty)
it is possible to reconstruct V from H;

b) in general, this is not possible.

20.6: Suppose that the neighbourhood system on S is such that every energy function
‘H can be written as Hy for a suitable potential V. Prove that then S is a clique.

20 7: Let V = (Vo) cec be a potential. Deﬁne for a fixed real number r, another potential
% by Vo = Vo — r. Prove that V and % give rise to the same Gibbs field.

20.8: We consider the two-dimensional (or, more generally, the r-dimensional) toric Ising
model with A = 0 and a site s all neighbours of which are in state —1.

a) Suppose that K = 0.8. What is the probability that s is also in state —17
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b) Let p € [0, 1] be arbitrary. Is it possible to choose K such that s is in state 1 with
probability p?

20.9: Let a,b, c be real numbers such that |b| + |¢| < a. Use the method of the transfer
matrix to evaluate the expression

£0,E E1,€E2 EN —1,E
E RO) lR 1 ,,,R 1y 0,

Eo,...,E'N_1=:|:1

where R®% := \/a + be + ¢d.

20.10: Denote by A and u the eigenvalues of the transfer matrix as in proposition 20.4.
Determine the collection of all (A, ) which arise in this way for various h and K. Can it
happen, e.g., that A = u? Or that A or u vanishes?

20.11: Consider the Gibbs field induced by a potential V. Denote, for T C S, by N the
collection of all elements in the union of the AV, s € T, which are not in 7. (For obvious
reasons, N is called the neighbourhood of T.)

a) Calculate Ar for some T in our standard examples.

b) Prove that the Markov property of Gibbs fields (theorem 20.2) admits the following
generalization: whenever T' C S, then P(X, = z(s) fors € T | X; = z(t) for t ¢ T) =
P(X; =z(s) for s € T | X; = z(t) for t € NT).

(Note that theorem 20.2 corresponds to the case T' = {s}.)

20.12: Let (AS,Py) be a Gibbs field given by a potential V and r an integer such that
every s lies in at most r cliques. We consider the Markov chain on AS induced by the local
characteristics of Py. How many calculations (= evaluations of potentials) are necessary
to simulate one step of the chain?
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21 The Metropolis sampler and simulated
annealing

The setting is as at the beginning of the previous chapter: we are given a finite set S and
a function! # : S — R, and this function gives rise to a probability measure P on S by

e“H(z)
Py ({z}) = — , with Z:= Y e "0,

Since from now on no sites and configurations will be considered, it will cause no confusion
if we write S instead of S.

The aim of the present chapter is twofold. In the first section we present the Metropolis
sampler, a method to provide samples from S which are distributed like 3. This variant
of the Gibbs sampler also works without an explicit use of the (generally) unknown
number Z. Then, in the second section, we present an introduction to simulated annealing
which is based on the Metropolis sampler. This is a stochastic optimization technique
which since many years has found applications in various fields.

The Metropolis sampler

As in chapter 20 we don’t know Py ({z}) explicitly, but nevertheless samples are
required with this distribution. In the preceding chapter the relevant notion was that
of neighbourhoods: (hopefully) only few neighbours influence the state of a given site.
Here the situation is similar in that the set S has an additional structure. It is helpful to
visualize S as the set of the vertices of a graph such that

e every vertex is connected with “few” other vertices, and

e there are sufficiently many edges to get from any vertex to any other in “not too
many” steps.

(Typical examples are the graphs which we met in chapter 19 or the lattices {0,1}™;
there edges connect two m-tuples iff they differ at precisely one component.)

The approach will be a little bit more general, we will assume that a Markov chain on
S is prescribed by a transition matrix @ = (gzy)z,yes. This matrix @ will be called the
proposal matriz, the reason for this notion should be clear by the following

Definition 21.1 Let the state space S, the energy function H and the proposal matrix
Q be given. We suppose that @ is symmetric (i.e., ¢zy = gyz) and that the chain defined
by @ on S is irreducible and aperiodic.

By the Metropolis chain we mean the Markov chain on S which is defined by the
following transitions (the starting position is fixed but arbitrary):

o Suppose that the walk is now at position z. Choose a y according to the proposal
matrix @, that is, y is selected with probability gzy.

1 For historical reasons H is called the “energy function”, even in this general approach.
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o If H(y) < H(z), then the next position of the walk will be y.

o If, however, H(y) > H(z), an additional Bernoulli experiment is needed: it should
provide 1 resp. 0 with probability exp(H(z) — H(y)) resp. 1 — exp(H(z) — H(y)).
If the experiment produces a 1, then go to y, otherwise stay at z.

To phrase it otherwise: by the ()-matrix a state y is “proposed” as the possible next
position. Only if this does not result in an increase of the energy, the proposal is
accepted immediately. If H increases, there is nevertheless a chance to go to y, the
probability of this transition depends on the difference between H(z) and H(y). If
H(y) is much greater than H(y), then a jump to y is not to be expected.

By this definition it is likely that the chain has a tendency to occupy positions where
H is low. Even more is true, in the long run the probability to occupy position z tends
to Py (z):

Proposition 21.2 The previously defined chain is irreducible, aperiodic and reversible,
the equilibrium distribution 7 coincides with Py .

Proof. A transition z — y has a positive probability with respect to the Metropolis chain
iff this is true with respect to the @-chain. Therefore irreducibility and aperiodicity follow
from the assumptions on Q.

Now let m, := e~"()/Z for z € S. If the p,, denote the Metropolis transition proba-
bilities, then we have to show that

TzPzy = TyPyz (21'1)

for arbitrary «,y; then (7;); will be the equilibrium, and the proof will be complete.
For the proof of (21.1) we may assume that = # y. If H(y) > H(z), then

2 oPay e~ H(@) g, M -Hw)
q,ye"”(y)
= qyze—ﬂ(y)
= ZTyPyz.
The proof for the case H(z) < H(y) is similar. a

Since the probabilities associated with the k-step transitions of an irreducible and
aperiodic chain tend to the equilibrium, one can use the preceding result to produce
samples from S which are distributed like Py ; it is only necessary to run the Metropolis
chain for “sufficiently many” steps. This is called the Metropolis sampler.

But how many steps are “sufficiently many”? A moment’s reflection shows that the
mixing rate of the Metropolis chain will depend on the mixing rate of the @Q-chain — this
is obvious — and also on the variation of the function H: if great differences H(z) — H(y)
are possible, then the chain can be trapped at local minima of H.

We will present a result due to P. Mathé ([56]) by which this observation is quantified:

Proposition 21.3 Let S and H be as above, we continue to denote by w the equilibrium
of the Metropolis chain. As a measure of the variation of H we define

a:= minm;/ maxm,.
T T
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To quantify the mizing rate we use the second largest eigenvaluc®. By the results of chapter
10 the distance of this eigenvalue to 1 contains all relevant informations, it is called the
spectral gap. Let AL resp. /\;9 stand for the second largest eigenvalue of the Metropolis
chain and the proposal chain, respectively, and denote by pp := 1— Ay and pug :=1-\¢
the corresponding spectral gaps. Then

a? < 2
SHQ S kP < ZHe

Proof. First we have to develop the Hilbert space techniques with which we have already
been concerned in chapter 10 a little bit further. We consider an arbitrary irreducible,
aperiodic and reversible chain on a set S with N elements, given by a stochastic matrix
P and with equilibrium 7. The Hilbert space H, has been introduced in proposition 10.2
as the space R together with the scalar product (-, ), induced by = :

(f,9)r == Z f(:t)g(:l:)ﬂ'z,

z€eS

As in this proposition we identify P with a map on H.. Since our chain is reversible by
assumption the operator P is self-adjoint, and therefore we may apply proposition 10.4:
AZ, the second-largest eigenvalue of P, is the maximum of the numbers (f, Pf)x/(f, f)x,
where the f run through all nonzero vectors in H, which are orthogonal to (1,...,1).
Consequently, the spectral gap 1 — A} equals

mm{_———(f,ﬂn f;éO,f.L(l,...,l)}.

We have already met the expression in the numerator, it has played an important role in
the proof of theorem 11.3. It is usually called the Dirichlet form associated with P and
written

gP(f3 f)

Let g be an arbitrary element of H, which does not lie in the linear span of e :=
(1,...,1). Then g = (e,g)re + f with an f which is orthogonal to e. Since Id — P
annihilates e, the Dirichlet form has the same value at g as at f, and therefore we may
rewrite the formula for the spectral gap as

. 1€p(g,9)
1-\F = hEAARYA - 0}, 21.2
> mm{Varp(g) 1Var (9) > } (21.2)
where Varp(g) := ||g— (g, €)re||2. This number is called the variation of g, note that it is

just the ordinary variance of g if g is considered as a random variable from S - provided
with 7 as the probability measure — to R.

Now we turn to the proof. The equilibrium distributions of the proposal chain resp. the
Metropolis chain will be denoted by (7,) resp. (n;), the corresponding Dirichlet forms,
second-largest eigenvalues and variations by £p resp. £g, A{ resp. /\g2 and Varp resp.
Varg; note that 7, = 1/N for every z since @ is symmetric by assumption.

The number ¢ is defined such that

2 Cf. theorem 10.3. Note that Ay is useful to bound the mixing rate only if it coincides with A\*, the
maximum of the eigenvalues which are different from 1. Recall that this can always be achieved by
passing from the transition matrix P to (Id + P)/2.
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am, < amaxmy = minm, < 7,
y ]

holds for every z. Summation leads to

a<aNmaxmy = Nminm, <1,
Y Y

and thus
ang <myp < 772/0‘

for all z.

With these preparations at hand we investigate the above formula (21.2) for 1 — Xs. To
deal with Varp and Varg we recall from elementary probability theory that the variance
of a random variable X is the minimum of the expectations of (X — ¢)?, with ¢ € R
(the minimum is assumed at the expectation of X). For our setting this yields, for an
arbitrary g € H,,

Varp(g) = min) (g(z) - o)’

v

amin 3" (9(@) - o’n.
= aVarg ($g).

To treat the Dirichlet form we first note that £p(g,g) = Zzyy(g(m) = 9(¥))Prym/2:
this is easy to verify. From this expression one deduces that

Ep(9:9) < Y (9(z) = 9(v))*Pryme-

Ty2Ma

(Here “<” cannot be replaced by “=” in general; this is due to the z,y with 7, = m,.)
Now the special structure of our chains comes into play: if m, > 7, then p;y = gz by
definition. We are thus led to

Ep(9:9) < D (9(2) — 9(v)*Pryme

Ty 2 Mo
= Y (9@) - 91) Geyme
Ty2Ta
< Y (0@ - 90) e
Ty 2Ma
< = Y (0(e) - 90) aayme

2
= ~¢(9,9)
It remains to put both inequalities together to arrive at

€p(9,9) . 2 £q(9:9)
Varp(g) = a2 Varg(g)’

and - by (21.2) — this shows that
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2
KPS —SHQ-

That a®ug/2 < pp also holds is proved similarly. O

Simulated annealing

As before, let H be a real valued function on a finite set S. The measure which assigns
the probability Py, ({z}) = exp(—H(z))/Z to = € S is large where H is small. Thus
there should be a good chance to get an x with #(z) close to minH if one produces a
sample from S with distribution Py. Now let 3 be a positive real parameter, for historical
reasons® it is called the inverse temperature.

The idea is to pass from H to BH, the associated partition function and the measure
will be denoted by Zz and Pz. What is to be expected? Suppose first that 3 is close to
zero (“high temperature”). Then BH is essentially constant so that Ps is close to the
uniform distribution: all z € S are (nearly) equally likely to be sampled. Now let 3 be
large (“low temperature”). Then, for an z where #(z) is larger than min , the number
exp(—BH(z)) will be tiny compared with the exp(—BH(y)) for the y with H(y) = min#H,
and thus it is hardly to be expected that a sample with distribution Pg will produce z.

The preceding observations motivate a stochastic optimization technique which is
called simulated annealing:

e A function # on a finite set S is given. One wants to find an zo such that H(zo) =
minH.

e Fix numbers 0 < 8; < B2 < - -+, the cooling schedule.

e Let — with an arbitrary starting position — a suitable Markov chain run on S which
has Pg, as its equilibrium. Let it run so many steps such that the chain occupies a
position, z, say, which is approximately distributed in accordance with Pg, .

e Now repeat this procedure with z; as the new starting position and a chain with
Pg, as its equilibrium. Stop after “sufficiently many” steps in state zs.

e Continue this way with Pg,, Pg, and so on. Then, for large m, the z,, should be
such that H(zm,) is close to min H.

Simulated annealing can be compared with someone who seeks the deepest point
in a valley on a foggy day. He starts somewhere, and then he walks around without
taking much care about where he is (high temperature 1/81). Next — with parameter
B2 — he favours a little, but not too much, to go downwards. For large B, at later
stages of his search, going upwards is practically not taken into account: he prefers
to stay at a (local or global) minimum.

It should be clear that the chance that he will arrive at the global minimum (= the
deepest point of the valley) will be influenced by many facts. The geometry of the
valley will play an important role, and also it is surely not desirable to choose large
values of B, early: the walk would be trapped in a local minimum.

3 In statistical physics the Gibbs distribution takes the form exp(—%(z)/kT)/Z, with the Boltzmann
constant k and the absolute temperature T'; thus 8 corresponds to 1/kT.
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The underlying idea of simulated annealing is in fact very appealing. Once it is possible
to sample from S with prescribed distributions Pg it remains to choose the cooling
schedule. This, of course, has to be done carefully. If the (8,,) tend to infinity too fast
then it is likely that the procedure only produces a local minimum. On the other hand,
if they increase only slowly, then it costs too much time to arrive at an z,, with H(z)
close to min H.

Unfortunately, rigorous results which provide reasonable bounds are rare. This is bal-
anced by the fact that simulated annealing can be applied in various situations where
constructive methods are not available. Implementation is easy, even large optimization
problems can be treated.

We are now going to study an example of a cooling schedule, the Markov chains
which will come into play will be Metropolis chains. Our main result will be theorem 21.5
below, we need a number of preparations.

First we agree to modify our procedure a little bit. Instead of using the Metropolis
sampler associated with 81 H for “sufficiently many” steps, then that for f;H for some
further steps and so on it will be more convenient to walk only one step with the inverse
temperature 81, one with B2, and similarly for the other 3,. This can easily be achieved
by passing from the original B-sequence fi, B2,... to Bi,...,B1,82,.--, B2, . -

Suppose that the procedure starts at some z. Then the probability to arrive after step
number k at a state y can be found in the z-y-position* of the product matrix

Py := P, Pg, -+ Pg,;

this is clear by an argument similar to that from the beginning of chapter 3 which has
led to (3.2).

Note that therefore, for the first time in this book, we have to deal with inhomogeneous
Markov chains. We will prepare the proof of theorem 21.5 by studying some general facts
concerning such chains. Let an arbitrary state space S = {1,...,N} and a sequence
Py, Py, ... of stochastic matrices be given. (p1, . .., pn) will denote a starting distribution,
and P, will stand for the matrix P; - - - P;. We are interested in the product (py, . . . ,pn)f’k,
this vector contains at its j’th component the probability to find the walk at j after the
k’th step. In view of the application to simulated annealing we have in mind we have to
show that under suitable conditions on the P these probabilities converge.

The norms which are of importance here have already been used in earlier chapters.
We recall that — for a vector z = (z1,...,zn) or £ = (1,...,Zn) " — the {*-norm of z is
denoted by ||z|l; = 3 |z;| and that the total variation distance || —v|| of two probability
vectors p and v is just || — v||1/2 (see lemma 13.3). With these two norms the Lipschitz
property of the operators associated with stochastic matrices can easily be expressed: if
P is any such matrix and if Cp stands for the maximum of the total variation distances
between the rows of P, then

”((El,....’l.'N)P— (ylaayN)Pul S CP“(zlaxN) _(yla“"yN)”l (213)

for all probability vectors z, y; this has been shown in chapter 10 (lemma 10.6).

We need another notion in connection with the Lipschitz property: Lp will denote
the best possible Lipschitz constant of the map (z1,...,zn) — (Z1,...,2N)P, ie., the
minimum of the numbers L such that

4 Those who find this notation confusing should identify S with {1,..., N}. Then the entry in the
“g,y-position” in the transition matrix is — for z,y € S - the element at the y’th place in the z’th
row.
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l(z1,...2n)P = (y1,---,y~)Plli < Ll|(z1,...28) = (¥1,---»yN)h

holds for all probabilities £ and y. It is clear that Lp < Cp, and also that Lp,..p, <
Lp, --- Lp, for stochastic matrices Py, ..., P,.

Proposition 21.4 Suppose that

e each of the stochastic matrices Py, k = 1, ... is irreducible and aperiodic, the unique

equilibria will be denoted by (rNT = (x(® 78 #)y;

o S lir® — D] < oo;
. ka,Pk,+1...pk,+k tends to zero with k — oo for every k'.

This implies:
(i) the sequence (w¥)),_, .. is convergent to a vector w
(i) (pi1,...,pN)Ps tends to w" for k — oo.

T =(m,...,7N), and

Proof. (i) Fix any ip. Then

LA e [
|(rk+r) — qletr=1)y . 4 (w2 RNy
k+r—1
<

>l — Oy,
=k
(k)

and therefore, by the second assumption, the sequence ("’ ) is Cauchy.

(ii) As a preparation we prove that sup, |77 — 7" Py P41 - - - Pir k|1 tends to zero with
k' — oo. The idea is to write the difference under consideration as a telescoping series,
for typographical convenience we will use the notation 7w and 7 instead of the correct

but more clumsy 7' and (7(*))T in the following argument:

TPy Pyyr Poypg—m1 = (m—mp)Pe - Poyr +
k
+ Z(ﬂ'k'—1+l = Thr 1) Prr gt -+ Prrgr +
=1

+ (ke — ) 5
this is due to the fact that m Py = Py. Since all Lp are bounded by 1 it follows that

|7 Pyt Prr 1 -+ Prrpg, — 7l‘”1 < ka,...pk,+k||7r — el +
k
+ ZLPk/+,~-~Pk/+k||7Tk'—l+l — il +
=1
+ ek — el

2sup|lm = mll + Y llm — mga -
1>k 5

IA

The first summand is small for large k' by (i), the second as a consequence of

> lime = mesally < oo
P
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Now let (p1,...,pn) be any starting distribution. Then we have, for arbitrary k',

(1, -, pN)PL -+ Pe =7 |lx

= |[((p1,---PN)Py - Py =7 )P+~ Pi +
47 Py Pe—7 |1

ka,...pk”(pl, e ,pN)Pl P — 7TT”1 +
+ ”7TTPk/ R A 7TT”1

< 2ka,...pk + ”7I'T.Pk/ - P —7TT“1.

(o1, .- pN) B = 77 ||a

IN

If now ¢ is any positive number we can choose a k' with ||77 Py --- Py — 7" ||; < ¢ for all
k > K'; for large k, we also have Lp,,...p, < € by assumption, hence

l(p1,...,oN)PL - P — 7" |1 < 3¢

for these k, and this completes the proof. O

It remains to choose the inverse temperatures f; such that the conditions of the pre-
ceding proposition are met. We will use the following notation:

e A :=max{H(z) - H(y) | z,y € S, qzy > 0}; this is the mazimal local increase of
H.

e For z,y € S we denote by o(z,y) the minimal length of a path from z to y, that is
the minimum of the integers r such that there exist zg, 1, ...,z such that o = z,
Zr =Y, and ¢rozys- - - > 9z, 2. > 0. Note that all o(z,y) are finite since the (J-chain
is irreducible.

o T:=maxgyo(T,y).
o ¥ :=min{gzy | gzy > 0}.

The main result of this section is the following theorem. In the proof we will assume
that the proposal matrix @ has the property that all ¢, are strictly positive, this will
facilitate the argument slightly.

Theorem 21.5 Let the cooling schedule 1 < B2 < --- be such that fx — oo, and

1
< —logk.
P < TA 8
Then, if M is the set where H attains its minimum, simulated annealing converges to
the uniform distribution on M. More precisely: if (pz)zes s any initial distribution and
if p(mk) denotes the probability that the walk is in state x after k steps, then pgk) tends to
zero (resp. to 1/card(M)) for x ¢ M (resp. for x € M) with k — o.

Proof. We want to apply the preceding proposition, with Py := Pg, = the Metropolis
matrix associated with S;. We know that each P is irreducible and aperiodic with
equilibrium given by (7 (z))zes = (exp(—BrH(z))/Zs,)zes, and the theorem will be
proved as soon as we have shown that

L Y llm® — B+ < oo

2. for every k', Lp, P,y Pu,, = 0 with k — oo;
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3. the z-component of 7 tends to 0 resp. to 1/card(M) for z ¢ M resp. for z € M.

As is to be expected, the proof uses the concrete form of the equilibrium. We put
a(z,B) = exp(—PH(z))/Zs, our claim is that for every z there exists a 3, such that
B~ a(z, ) is monotone (i.e., increasing or decreasing) for 5 > ..

First, we suppose that £ € M. Then

1
m+ 3y em exp(=B(H(y) — )’

where m := card (M) and ¢ := minH. Thus a(z,-) increases on all of R, and the limit is
1/m.

For z ¢ M the argument is a little bit subtler. Let, for y € S, a, be the number
H(y) — c. Then the inequality a(z, 8) > a(z, 8 +t) is equivalent with

f) = et (m +3 e~(6+t)ay)

yEM

> m+ Z e Py
yEM

a(z,B) =

=: b.

Clearly f(0) > b holds, we claim that the derivative of f is positive for £ > 0 provided
that 3 is sufficiently large. In fact, up to the factor e!®= this derivative is

azm + Z (az — ay)e~ By
yEM

where a,m is strictly positive and the second summand can be made arbitrarily small
uniformly in ¢ > 0 for large § (note that all a, under consideration are greater than
zero). This proves the claim.

That “3.” holds follows easily from the concrete form of the a(z, 3), the assertion “1.”
will be proved next. Fix any z and and choose k; so large that Bx > B, for k > k.
Then the sum ), |a(z,B8k) — a(z, Br+1)| is in fact a telescoping series since a(z,-)
is monotone, and therefore it equals |a(z, Bk,) — limk a(z, Bx)|- In particular, the sum
>k la(z, Bx) — a(z, Br+1)| is finite, and this is essentially the statement “1.”.

It remains to prove “2.”. Fix any k' and consider the Lipschitz constants [ :=
Lp,,, Py, for k > 0 (it will be more convenient to work with these numbers than
with the Lp,,...p,, +k). The sequence (l;) is decreasing since all Lp are bounded by one,
and therefore it suffices to prove that a subsequence tends to zero. The claim is that the
subsequence (I;,la-,...) has this property.

To prove this claim we first analyse [.. This number is the best possible Lipschitz
constant of the map induced by the stochastic matrix R := Fg,,,, ---Pg,,, . In R we
find the transition probabilities r, to get from any z to any y in 7 steps, where Metropolis
samplers with inverse temperatures By 41, B/ +2,- - - ,0k'+r are used. The probability of a
single Metropolis step from z to y under a general 3 is > de~?2 if a transition is possible
at all; this is due to the definition®. It follows that

5 Here it is important that we have assumed that gzz > 0, otherwise we would have difficulties to deal
with the case z = y.
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Tay > U exp(—ABr+1+ -+ Brryr))
> 97 exp(—TPr4+-A)
4,

I

i.e., R is a matrix the entries of which are strictly bounded from below by §. Proposition
10.5 implies that Cr < 1 — N4, and this leads us to

ka,+l...pk,+7 <Cr <1—- NY exp(—=7Br4+-4),
with N := card(S5).

A similar argument provides estimates for the Lp,,
and putting these together we obtain

+r+1"’Pk’+2r7 LPk'+2r+1"'Pk'+3r ¥t

L < LPk'+l “Pergr Tt 'LPk'+(r—1)r+1“'Pk'+rr
T
< H(l — NY exp(=1Br +jA)).
Jj=1

To complete the proof it will suffice to show that the right hand side tends to zero with

T — 0.
When does a sequence H;zl (1—aj) converge to zero, where the a; lie in [0, 1[? Here it

is useful to know that log(l —a) < —a for a < 1, this fact implies that H;= (1=a;) =0
provided that a; + a3 + - -+ = 0o. In the present case we have to check the series

97 (exp(—TPk' 4+ A) + exp(—7Pr +2:A) + exp(—TBr 43:A) + - -),

now the assumption of logarithmic increase comes into play. Since we know that 8y <
(logk)/TA we can estimate a typical summand by

1
exp(—T7Plk +jr ) > ———.
p( ﬂk +j7 )_. k'+]7‘
And since the harmonic series diverges we have in fact shown that the above products
tend to zero with r — oo. Now the proof is complete. m]
Exercises

21.1: Prove that, under the assumptions of definition 21.1, the Metropolis chain coincides
with the @-chain iff the energy is constant.

21.2: In the definition of the Metropolis chain we have assumed that the proposal chain
is symmetric. With this assumption it was possible to show that the Metropolis chain is
reversible. Is the assumption really necessary? Is it sufficient to start with a reversible
(-chain to arrive at a reversible Metropolis chain?

21.3: Let H be an arbitrary energy function and (8,) a sequence of positive numbers
with 8, — 0. Prove that the measures Pg, converge to the uniform distribution.

21.4: Consider in proposition 21.3 the special case where the proposal matrix @ has
in each row the uniform distribution. What can be said about the spectral gap of the
Metropolis chain as a function of the number a from this proposition?
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21.5: Here we consider a simple example of an inhomogeneous Markov chain. Let two
stochastic N x N-matrices @; and Q2 be given, we suppose that they have strictly positive
entries. They give rise to a Markov chain on {1,..., N} if we prescribe that transitions
in the k’th step are governed by @; resp. Q2 if k is even resp. odd. For example, if
(p1,--.,pn~) denotes the initial distribution, then the probabilities to find the walk in the
various states after the fifth step can be read off from

(P1,---,PN)Q1Q2Q1Q2Q:.

a) Does there exist a distribution (my,...,7n) such that the probability to find the walk
after k steps in state ¢ tends to m; with k — oo for every i?

b) Prove that this is true provided that there is a probability (y,...,7x) with
(m1yee 0y mn)@Qr = (1, .., TN) = (M1, .., TN) Q2.

21.6: Let a3 < a2 < --- be any real sequence which tends to infinity. Prove that there

are suitable integers 7,72, . .. such that the sequence £, f2, ..., defined by
Arye.,01,02,...,09,...
(with 7 repetitions of a;, ro repetitions of as, ...) satisfles the assumptions of theo-

rem 21.5. This means that one can decrease the temperature arbitrarily provided that
one stays for “sufficiently many” steps at the various levels.

21.7: In the proof of proposition 21.3 we have omitted two steps which should be proved
now:

a) The Dirichlet form £(g, g) can be rewritten as 3°,  (9(z) — 9(¥))2peymz /2.

b) Let a random variable X : S — R on a finite probability space be given. The expec-
tation of X is the unique number c such that the expectation of (X — ¢)? is minimal.
21.8: The assertion (i) of proposition 21.4 is a special case of the following general fact:
whenever z,, ... is a sequence in a Banach space such that ||z1]| + ||z2|| + - - - < o0, then
the series x; + x2 + - - - converges. Prove this fact.

21.9: In the final step of the proof of theorem 21.5 we have demonstrated that a; + a2 +
.-+ = oo implies that H;zl (1 —a;) converges to zero. Show that the converse also holds.
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22 Notes and remarks

The material of chapter 18 is mainly from [70], there one can find the tedious calculations
which have only been sketched in our text. One point should be emphasized again: there
are situations which are provable untractable if exact solutions are needed but which
nevertheless can be solved up to arbitrary precision with the help of Markov chains in
polynomial time.

Of course, in order to deal with such assertions rigorously it would be necessary to
develop the basic definitions of algorithmic complexity. This is not our concern here;
readers who want to learn more of this should first read [35] and then consult [70] again.
A particularly important role play problems which are of type P resp. of type NP. The
former are problems which are characterized by the property that the time to solve them is
bounded by a polynomial in the number of bytes by which they are formulated, the latter
are problems which — with positive probability — can be reduced to ones of type P. At
present nobody knows a problem which is NP but not P. Can one prove nonexistence,
is it possible to find an example? This is considered as one of the outstanding open
questions of our time. Here the satisfiability problem has its place: it is typical in that it
is NP and that all NP problems would be P once the problem of satisfiability could be
proven to be of class P.

Chapter 19 mainly contains the basic standard definitions for random fields. Supple-
mentary material can be found in chapter 7 of [20] and - together with some historical
comments — in part II of [76]. What has been stated in theorem 19.4(ii) and (iii) seems to
be new: usually the Markov chain defined by the local characteristics is only considered
in the case of Gibbs fields.

Because of their importance in so many areas the Gibbs fields from chapter 20 have
attracted the attention of many mathematicians. For some references, see again [20]
and [76], a more ambitious treatment can be found in [53]. Our presentation mainly
follows [20], the proof of proposition 20.6 is inspired by that in [76]. Readers who want
to learn more on the Ising model should consult [23], there one also finds an extensive
bibliography.

As far as chapter 21 is concerned I have profited much from discussions with P. Mathé.
The Metropolis sampler has been presented in [57], since then it has played an important
role whenever it is necessary to sample from a space where one only knows the relative
probabilities 7;/m; (for a survey see [67]). Standard references for simulated annealing
are [9] and [52], further interesting material can be found in part I of [76] and in [2]. That
simulated annealing is not only an appealing idea but can be stated as a mathematical
theorem is due to S. and D. Geman ([36]). This is our theorem 21.5, the proof — which
is based on Dobrushin’s theorem (proposition 21.4) — follows [76].

In part IIT we have tried to present some typical examples where Markov chain methods
are of importance. We close this book with a brief sketch of some others.

A classical application of random methods is Monte-Carlo integration. Let a bounded
measurable function f : D — [0, oo be given, where D is a bounded measurable subset of
R™ with Lebesgue measure one. Then the integral of f can be thought of as its expectation
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if f is considered as a random variable on D. On the other hand, by the law of large
numbers, the expectation can be approximated by

CARREES (CO} (2.1

if r is sufficiently large and the z;,...,z, are independent and uniformly distributed
samples from D. (The complete truth is a little bit more complicated: for every € > 0
and every § > 0 there is an r such that (22.1) is e-close to the expectation with a
probability at least 1 —4.)

This so-called Monte-Carlo integration necessitates to find uniformly distributed sam-
ples in D. To this end D is replaced by a sufficiently fine finite grid, and on this grid
points are sampled with prescribed probabilities using Markov chain methods. We refer
the reader to [56] and the literature cited there.

Another field of research which should be mentioned here is volume estimation. More
precisely, one is given a convex body K in a high-dimensional euclidean space R™, and
the problem is to find reasonable approximations of the euclidean volume V(K of K. It
is in general hopeless to evaluate V(K) by analytical methods, here also Markov chain
techniques have been applied successfully.

The idea is as follows. As a preparation the problem is reduced to the approximate
evaluation of the quotient V(L)/V(K) of two volumina, where K and L are convex
bodies with L C K such that V(L)/V(K) lies between 1/2 and 1. This ratio is evaluated
by approximating K by a fine grid G. Then a Markov chain is run on G which has the
uniform distribution as its equilibrium. It is stopped after “sufficiently many” steps at
some state i, and one observes whether ¢ lies in L or not. Then the proportion of successes
after many such experiments serves as an approximation of V(L)/V (K). It can be shown
that in this way one can get good approximations with a high probability in a number of
steps which is bounded by a polynomial in the input complexity (for details the reader is
referred to [18]). On the other hand, deterministic methods give good results only after
exponentially many steps, and therefore we have here — as in the case of the permanent
— another example where stochastic approaches are provably superior to exact ones.

Finally another field of applications should be mentioned. Markov chain methods have
proven to be extremely useful in image analysis. How can a computer recognize the
essential features of a picture given by a grid of black-and-white pixels? How can a
picture be reconstructed if some of the pixels are destroyed? Readers who have mastered
the theory presented in this book should have the necessary prerequisites to understand
the answers to these questions given in [76].
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intended to introduce the reader to
some key ideas in the field, and to
form a basis for further study. The
reader is assumed to be familiar
with the rudiments of complex
variable theory and of two-dimen-
sional differential geometry, as well
as some basic topics from topology.
The exposition is clear and enriched
by many beautiful illustrations.

November 1999
Anderungen vorbehalten,
Erhéltlich beim Buchhandel oder beim Verlag.
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The Gamma Function - Hypergeo-
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Database - Holonomic Recurrence
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Algorithm - Differential Equations
for Sums - Differential Antideri-
vatives -Hyperexponential Antideri-
vatives - Holonomic Equations for
Integrals - Rodrigues Formulas and
Generating Functions

[n this book modern algorithmic
techniques for summation, most of
which have been introduced within
the last decade, are developed and
carefully implemented in the com-
puter algebra system Maple. The
algorithms of Gosper, Zeilberger
and PetkovSek on hypergeometric
summation and recurrence equati-
ons and their g-analogues are cover-
ed, and similar algorithms on diffe-
rential equations are considered. An
equivalent theory of hyperexponen-
tial integration due to Almkvist and
Zeilberger completes the book. The
combination of all results conside-
red gives work with orthogonal
polynomials and (hypergeometric
type) special functions a solid algo-
rithmic foundation. Hence, many
examples from this very active field
are given.

November 1999

Anderungen vorbehalten,
Erhdltlich beim Buchhandel oder beim Verlag.






