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Life’s most important questions are, for the most part,
nothing but probability problems.

Pierre Simon de Laplace



Preface

This book is based on the lecture notes that I have been using since 1988
for the course entitled Processus stochastiques at the Ecole Polytechnique de
Montréal. This course is mostly taken by students in electrical engineering
and applied mathematics, notably in operations research, who are generally
at the master’s degree level. Therefore, we take for granted that the reader
is familiar with elementary probability theory. However, in order to write a
self-contained book, the first chapter of the text presents the basic results in
probability.

This book aims at providing the readers with a reference that covers the
most important subjects in the field of stochastic processes and that is ac-
cessible to students who don’t necessarily have a sound theoretical knowledge
of mathematics. Indeed, we don’t insist very much in this volume on rigor-
ous proofs of the theoretical results; rather, we spend much more time on
applications of these results.

After the review of elementary probability theory in Chapter 1, the remain-
der of this chapter is devoted to random variables and vectors. In particular,
we cover the notion of conditional expectation, which is very useful in the
sequel.

The main characteristics of stochastic processes are given in Chapter 2.
Important properties, such as the concept of independent and stationary in-
crements, are defined in Section 2.1. Next, Sections 2.2 and 2.3 deal with
ergodicity and stationarity, respectively. The chapter ends with a section on
Gaussian and Markovian processes.

Chapter 3 is the longest in this book. It covers the cases of both discrete-
time and continuous-time Markov chains. We treat the problem of calculating
the limiting probabilities of the chains in detail. Branching processes and birth
and death processes are two of the particular cases considered. The chapter
contains nearly 100 exercises at its end.

The Wiener process is the main subject of Chapter 4. Various processes
based on the Wiener process are presented as well. In particular, there are sub-
sections on models such as the geometric Brownian motion, which is very im-
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portant in financial mathematics, and the Ornstein—Uhlenbeck process. White
noise is defined, and first-passage problems are discussed in the last section
of the chapter.

In Chapter 5, the Poisson process, which is probably the most important
stochastic process for students in telecommunications, is studied in detail.
Several generalizations of this process, including nonhomogeneous Poisson
processes and renewal processes, can be found in this chapter.

Finally, Chapter 6 is concerned with the theory of queues. The models
with a single server and those with at least two servers are treated separately.
In general, we limit ourselves to the case of exponential models, in which both
the times between successive customers and the service times are exponential
random variables. This chapter then becomes an application of Chapter 3
(and 5). :

In addition to the examples presented in the theory, the book contains ap-
proximately 350 exercises, many of which are multiple-part problems. These
exercises are all problems given in exams or homework and were mostly cre-
ated for these exams or homework. The answers to the even-numbered prob-
lems are given in Appendix B.

Finally, it is my pleasure to thank Vaishali Damle, Julie Park, and Eliza-
beth Loew from Springer for their work on this book.

Mario Lefebvre
Montréal, November 2005
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1

Review of Probability Theory

1.1 Elementary probability

Definition 1.1.1. A random experiment is an experiment that can be re-
peated under the same conditions and whose result cannot be predicted with
certainty.

Example 1.1.1. We consider the following three classical experiments:

E;: a coin is tossed three times and the number of “tails” obtained is recorded;
Es: a die is thrown until a “6” appears, and the number of throws made is
counted;

Es5: a number is taken at random in the interval (0,1).

Remark. A closed interval will be denoted by [a, b], whereas we write (a,b) in
the case of an open interval, rather than ]a, b, as some authors write.

Definition 1.1.2. The sample space S of a random experiment is the set
of all possible outcomes of this experiment.

Example 1.1.2. The sample spaces that correspond to the random experiments
in the example above are the following:

Sl = {0717273}’
822{1,2,...};
Sy = (0,1).

Definition 1.1.3. An event is a subset of the sample space S. In particu-
lar, each possible outcome of a random experiment is called an elementary
event.

The number of elementary events in a sample space may be finite (S1),
countably infinite (S3), or uncountably infinite (S3).
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Fig. 1.1. Venn diagram.

We often use Venn! diagrams in elementary probability: the sample space
S is represented by a rectangle and the events A, B, C, etc. by circles that
overlap inside the rectangle (see Fig. 1.1).

Ezample 1.1.3. We can define, in particular, the following events with respect
to the sample spaces associated with the random experiments of Example
1.1.1:

Ay = “tails” is obtained only once, that is, A; = {1};

Ag = six or seven throws are made to obtain the first “6,” that is, A, = {6,7};
Az = the number taken at random is smaller than 1/2, that is, A3 = [0,1/2).

Notations
Union: AU B (corresponds to the case when we seek the probability that one
event or another one occurred, or that both events occurred).

Intersection: AN B or AB (when we seek the probability that an event and
another one occurred). If two events are incompatible (or mutually exclusive},
then we write that AN B = § (the empty set).

Complement: A°¢ (the set of elementary events that do not belong to A).

Inclusion: A C B (when all the elementary events that belong to A also
belong to B).

Definition 1.1.4. A probability measure is a function P of the subsets of
a sample space S, associated with a random experiment E, that possesses the
following properties:

Axiom I: P[A] >0 VACS;

Axiom II: P[S] =1;

! John Venn, 1834-1923, was born and died in England. He was a mathemati-
cian and priest. He taught at the University of Cambridge and worked in both
mathematical logic and probability theory.
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Axiom III: If Ay, As, ... is an infinite sequence of events that are all incom-
patible when taken two at a time, then

P[ D Ak] = iP[Ak] (1.1)
k=1 k=1

In particular,

P[AUB]=P[A|+ P[B] ifAnB=40 (1.2)

If the number n of elementary events is finite and if these events are
equiprobable (or equally likely), then we may write that

n(A)
n

P[A] = (1.3)

where n(A) is the number of elementary events in A. However, in general,
the elementary events are not equiprobable. For instance, the four elementary
events of the sample space S; in Example 1.1.2 have the following probabil-
ities: P[{0}] = P[{3}] = 1/8 and P[{1}] = P[{2}] = 3/8 (if we assume that
the coin is fair), and not P[{k}] =1/4, for k =0,1,2,3.

Remark. 1t is said that the French mathematician d’Alembert? believed that
when a fair coin is tossed twice, then the probability of getting one “tail” and
one “head” is equal to 1/3. His reasoning was based on the fact that there
are three possible outcomes in this random experiment: getting two “tails”;
two “heads”; or one “tail” and one “head.” It is easy to determine that the
probability of obtaining one “tail” and one “head” is actually 1/2, because
here there are four equiprobable elementary events: Hy H, (that is, “heads”
on the first and on the second toss); H17T»; T1 Ha; and T1T3. Finally, the event
A: getting one “tail” and one “head” corresponds to two elementary events:
H1T2 and TlHQ.

Proposition 1.1.1. We have
1) P[A€]=1-P[4] VACS.
2) For all events A and B,
P[Au B] = P[A] + P|B] — P[AB| (1.4)

3) For any three events A, B, and C,

P[AUBUC] = P[A] + P{B] + P[C] — P[AB] — P|AC] — P|BC] + P|ABC)]
(1.5)

% Jean Le Rond d’Alembert, 1717-1783, was born and died in France. He was a
prolific mathematician and writer. e published books, in particular, on dynamics
and on the equilibrium and motion of fluids.
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Counting

Proposition 1.1.2. Ifk objects are taken at random among n distinct objects
and if the order in which the objects were drawn does matter, then the number
of different permutations that can be obtained is given by

nxnx..xn=n" (1.6)

if the objects are taken with replacement, and by

n!

nx(n—1)x...x [n*(k—l)]z(T_'—k-)—! =Py fork=0,1,...,n
(1.7
when the objects are taken without replacement.
Remark. If, among the n objects, there are n; of type ¢, where 1 =1,2,...,7,

then the number of different permutations of the entire set of objects is given
by (the multinomial coefficients)
n!

—_— (1.8)
nilngt. - my !

Example 1.1.4. The combination of a certain padlock is made up of three
digits. Therefore, theoretically there are 10 = 1000 possible combinations.
However, in practice, if we impose the following constraint: the combination
cannot be made up of two identical consecutive digits, then the number of
possible combinations is given by 10 x 9 x 9 = 810. This result can also be
obtained by subtracting from 1000 the number of combinations with at least
two identical consecutive digits, namely, 10 (with three identical digits) +
10x1x9 4+ 10x9x 1 (with ezactly two identical digits, either the first two
or the last two digits).

Proposition 1.1.3. If k objects are taken, at random and without replace-
ment, among n distinct objects and if the order in which the objects were
drawn does not matter, then the number of different combinations that can
be obtained is given, for k=0,1,...,n, by

nx(n-1)x...x[n—(k—=1)] n! (7Y
k! T n-k)l (k) =Gk (1.9)

Remark. If the objects are taken with replacement, then the number of different
combinations is CF+*~1, In this case, k may take any value in N® := {0,1,...}.

Remark. In the preceding example, according to the common use, the word
“combinations” was used for a padlock. However, they were indeed “permu-
tations.”
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Ezample 1.1.5. In a given lottery, 6 balls are drawn at random and without
replacement among 49 balls numbered from 1 to 49. We win a prize if the
combination that we chose has at least three correct numbers. Let

F = we win a prize
and

Fy, = our combination has exactly k correct numbers, for k =0,1,...,6.
We have

: . @5
PIFl=1-Y PRj=1-) -k ok
k=0 k=0 (6)
(1-6,096,454) + (6 - 962, 598) + (15 - 123,410)
13,983, 816
1 —0.9814 = (0.0186

:1—-

13,723,192 _
13,983,816

Notation, The expression P[A | B] denotes the probability of the event A,
given that (or knowing that, or simply if) the event B has occurred.

Definition 1.1.5. We set

[AN B]

PlA| B = PP[B] if PIB) >0 (1.10)

Proposition 1.1.4. (Multiplication rule) We have

P[ANB] =PJ|A| B|x P|B] = P[B | A] x P[A] if P[AJP[B]>0 (1.11)

Ezample 1.1.6. In the preceding example, let
F}. = the number of the kth ball that is drawn is part of our combination.
Generalizing the multiplication rule, we may write that

P{Fl ﬂFQﬂFg] = P[Fg I Fy ﬂFQ]P[FQ I FI]P[Fl}
4 5 6 120

S22 Loo0n
7’19 T 110,544

Definition 1.1.6. The events Bi, Ba,..., B, constitute a partition of the
sample space S if

i) B;NB; =0V i#j,
i) UZ=1 B, =25,
i) P|By} >0, fork=1,2,... ,n.
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If By, Bs,..., B, is a partition of S, then we may write, for any event A,
that

A=(ANB))U(ANB)U...U(ANBy) (1.12)

where (AN B;)) N (AN B;) = BV i # j. Making use of Axiom III in the
definition of the function P, p. 2, we obtain the following result.

Proposition 1.1.5. (Total probability rule) If A C S and the events By,
By, ..., B, form a partition of S, then

ZZPAan :ZPA‘Bk Bk] (1.13)
k=1 k=1

Finally, we deduce from the total probability rule and from the formula

P[B | AlP[A]

PlA| Bl = =50

if P[A|P[B] >0 (1.14)

the result known as Bayes’ 2 rule (or formula, or also theorem).
Proposition 1.1.6. (Bayes’ rule) If P{A] > 0, then

P[A | B;]P[B,]
Y k=1 P[A| Bx]P[Bi]

where By, By, ..., B, is a partition of S.

P[B;| Al =

fori=12,...,n (1.15)

Example 1.1.7. In a certain institution, 80% of the teaching staff are men.
Moreover, 80% of the male teachers hold a Ph.D. and 90% of the female
teachers hold a Ph.D. A teacher from this institution is taken at random. Let
F = this teacher is a woman
and
D = this teacher holds a Ph.D.
We may write, by the total probability rule, that

P[D] = P|D | F|P|F]+ P|D | F°|P[F°] = 0.9 x 0.2 4+ 0.8 x 0.8 = 0.82
Furthermore, we have

P[D| F|P[F] _ 0.9 x0.2

= ~ 0.2195
PD] 0.82

P|F | D] =

® The Reverend Thomas Bayes, 1702-1761, was born and died in England. His
works on probability theory were published in a posthumous scientific paper in
1764.
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Definition 1.1.7. Two events, A and B, are said to be independent if

P[AN B] = P|A|P|B] (1.16)

Remark. Let C be an event such that P[C] > 0. We say that A and B are
conditionally independent with respect to C if

P[ANB|C] = P[A|CIPIB|C] (1.17)

If, in particular, A and C, or B and C, are incompatible, then A and B are
conditionally independent with respect to C, whether they are independent
or not. Moreover, A and B can be independent, but not conditionally inde-
pendent with respect to C. For instance, this may be the case if 4 and C, and
B and C, are not incompatible, but ANBNC = 0.

For events A and B such that P[A]x P[B] > 0, the next proposition could
serve as a more intuitive definition of independence.

Proposition 1.1.7. Two events, A and B, having a positive probability are
independent if and only if

P[A|B] = P[A] or P|B|A]=P[B] (1.18)

Proposition 1.1.8. If A and B are independent, then so are A and B, A
and B¢, and A° and B°.

Remark. The preceding proposition is obviously false if we replace the word
“independent” by “incompatible” {and if A and B are not the sample space

S).

All that remains to do is to generalize the notion of independence to any
number of events.

Definition 1.1.8. The events A, As, ... , A, are said to be independent f
we may write that

k
PlAy, NAi, N...N A, = [] PlAs;] (1.19)

j=1

fork=2,3,... ,n, where the events A, € {A1,...,An} V j are all different.

Remark. If the preceding definition is satisfied (at least) for k = 2, we say that
the events Ay, As, ..., A, are pairwise independent.
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@ ®)

Fig. 1.2. Examples of (a) a series system and (b) a parallel system.

Ezample 1.1.8. A given system is made up of n components placed in series
and that operate independently from one another [see Fig. 1.2 (a)]. Let
F = the system is functioning at time tg
and
Fy, = component k is functioning at time ¢g, for k =1,...,n.
We have

PIF| = PR, NFyn...n F) " ] P
k=1

Remark. To help out the reader, the justification of the equality, as here by
independence (abbreviated as ind.)}, is sometimes placed above the equality
sign.

When the components are placed in parallel, we may write that

P[Fl=1-P[F]=1-P[Ffn...nF)" 1 - ﬁ(l — P[Fy])
k=1

1.2 Random variables

Definition 1.2.1. A random variable (r.v.) is a function X that associates
a real number X (s) = x with each element s of S, where S is a sample space
associated to a random experiment E. We denote by Sx the set of all possible
values of X (see Fig. 1.3).

Remark. The reason for which we introduce the concept of a random variable
is that the elements s of the sample space S can be anything, for example,
a color or a brand of object. Since we prefer to work with real numbers, we
transform (if needed) each s into a real number z = X (s).
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§ X)) =x

v

* R

L 45

Fig. 1.3. Graphical representation of a random variable.

Ezample 1.2.1. Consider the random experiment E5 in Example 1.1.1 that
consists of taking a number at random in the interval (0,1). In this case, the
elements of S are already real numbers, so that we can define the r.v. X that
is simply the number obtained. That is, X is the identity function which with
s associates the real number s.

We can define other random variables on the same sample space S, for
example:

1 if the number obtained is smaller than 1/2
Y= .
0 otherwise

(called the indicator variable of the event A: the number obtained is smaller
than 1/2) and Z(s) = Ins; that is, Z is the natural logarithm of the number

taken at random in the interval (0,1).
We have

SX ESZ(O‘,l), Sy :{0,1}, and SZZ (—-O0,0)
Definition 1.2.2. The distribution function of the r.v. X is defined by
Fx(z)=P[X <z} VzelR (1.20)
Properties. i) 0 < Fx(z) < L.
il) limg—, —oo Fx (z) = 0 and lim,;_,o Fx(z) = 1.
111) If x1 < x9, then Fx(.’Ijl) < Fx(l'g).

iv) The function Fx is (at least) right-continuous:

Fx(at) ZFx(;L'+) = leiglFx(J)—I-E) (1.21)

Proposition 1.2.1. We have
1) Pla < X <b] = Fx(b) — Fx(a),
@) P[X =z] = Fx(z) — Fx(z™), where Fx(z~) = lim¢jo Fx(z — €).

Remark. Part ii) of the preceding proposition implies that P[X = x| = 0 for
all  where the function Fy () is continuous.
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Definition 1.2.3. The conditional distribution function of the r.v. X,
given an event A for which P[A] > 0, is defined by

Pl{X <z} N 4]

(1.22)

Remark. A marginal distribution function Fx (z) is simply the particular case
of the preceding definition where the event A is the sample space S.

Ezample 1.2.2. The distribution function of the r.v. X in Example 1.2.1 is
given by

0ifx <0

Fx(z)=PX<z]l=<zif0<z<1

lifzx>1
It is easy to check that this function possesses all the properties of a distribu-
tion function. In fact, it is continuous for all real z, so that we can state that
the number that will be taken at random in the interval (0, 1) had, a priori,
a zero probability of being chosen, which might seem contradictory. However,
there are so many real numbers in the interval (0,1) that if we assigned a
positive probability to each of them, then the sum of all these probabilities
would diverge.

Next, consider the event A: the number obtained is smaller than 1/2. Since
P[A] =1/2 > 0, we calculate

Fx(z|A)=P[X<z|X<1/2]=2PX<z] if0<z<1/2
so that we may write that

0ifz<0
Fx(z|A) =< 2zif0<x<1/2
1ifz>1/2
Definition 1.2.4. If the set Sx of values that the r.v. X can take is finite or
countably infinite, we say that X is a discrete r.v. or an r.v. of discrete

type.

Definition 1.2.5. The probability mass function of the discrete r.v. X is
defined by

pX(-’L'k) = P[X = .’L‘k] ¥V x, € Sx (1.23)

Remarks. i) Properties: a) px(xx) >0V zg; b) 3o, g, Px(xk) = 1.
ii) We may write that

Fx(z)= Y px(z)ule - x) (1.24)
TRrE€ESX
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where u(z) is the Heaviside! function, defined by

0ifx <0

iii) Generalization: the conditional probability mass function of X, given an
event A having a positive probability, is defined by

PH{X =z} N 4]

(1.26)
Exzample 1.2.3. An urn contains five white balls and three red balls. We draw
one ball at a time, at random and without replacement, until we obtain a white

ball. Let X be the number of draws needed to end the random experiment.
We find that

T 1 2 3 4 X
IERCEORIEROIOIOIE
and
T 1 2 3 4
)5 B0 O+O0 Q@O0 !

Finally, let A: the first white ball is obtained after at most two draws. We

have P[A] = Fx(2) =2+ 2 x 2 =82 and

T 1 2 | X

px(@l4) | § 5|1

Important discrete random variables

i) Bernoulli® distribution: we say that X has a Bernoulli distribution with
parameter p, where p is called the probability of a success, if

px(z) =p*(1 —p)'™® forz =0and1 (1.27)

4 Oliver Heaviside, 1850-1925, who was born and died in England, was a physicist
who worked in the field of electromagnetism. He invented operational calculus to
solve ordinary differential equations.

5 Jacob (or Jacques) Bernoulli, 1654-1705, was born and died in Switzerland. His
important book on probability theory was published eight years after his death.
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Remark. The term (probability) distribution is used to designate the set of
possible values of a discrete random variable, along with their respective prob-
abilities given by the probability mass function. By extension, the same term
will be employed in the continuous case (see p. 13).

ii) Binomial distribution with parameters n and p: Sx = {0,1,... ,n} and

pxta) = (1)1 - (129

We write X ~ B(n,p). Some values of its distribution function are given in
Table 6.4, p. 358.

iii) Geometric distribution with parameter p: Sx = {1,2,...} and

px(z)=(1-p) Ip (1.29)
We write X ~ Geom(p).
iv) Poisson® distribution with parameter A > 0: Sx = {0,1,...} and

N

- (1.30)

px(z)y=e

We write X ~ Poi(A). Its distribution function is given, for some values of A,
in Table 6.4, p. 361.

Poisson approximation. If n is large enough (>20) and p is sufficiently
small (<0.05), then we may write that

P[B(n,p) = k] ~ P[Poi(A =np) = k] fork=0,1,...,n (1.31)
If the parameter p is greater than 1/2, we proceed as follows:

P[B(n,p) = k] = P[B(n,1 —p) =n —k]
=~ P[Poi(A =n(l —p)) =n — k] (1.32)

When p > 1/2, we also have

P[B(n,p) < k] = P[B(n,1-p) = n~ ]
~ P[Poi(A =n(l —p)) > n— k| (1.33)

5 Siméon Denis Poisson, 1781-1840, was born and died in France. He first stud-
ied medicine and, from 1798, mathematics at the Ecole Polytechnique de Paris,
where he taught from 1802 to 1808. His professors at the Ecole Polytechnique
were, among others, Laplace and Lagrange. In mathematics, his main results
were his papers on definite integrals and Fourier series. The Poisson distribution
appeared in his important book on probability theory published in 1837. He also
published works on mechanics, electricity, magnetism, and astronomy. His name
is associated with numerous results in both mathematics and physics.
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Ezample 1.2.4. Suppose that we repeat the random experiment in Example
1.2.3 20 times and that we count the number of times, which we denote by
X, that the first white ball was obtained on the fourth draw. We may write
that X ~ B(n = 20,p = 1/56). We calculate

55 2° 1 55\ 19

The approximation with a Poisson distribution gives
P[X €1] ~ PlY <1], whereY ~ Poi(20/56)
5
_ ,—5/14 -5/14 Y ~ (0.9496
e +e 11

Definition 1.2.6. A continuous random variable X is an r.v. that can
take an uncountably infinite number of values and whose distribution function
Fx is continuous.

Definition 1.2.7. The (probability) density function of the continuous r.v.
X is defined (ot all points where the derivative exists) by

Fx(@) = 2 Fx(a) (1.34)

Remark. The function fx(z) is not the probability P[X = ] for a continuous
r.v. since P[X =z] = 0V z in this case. The interpretation that can be given
to fx(x) is the following:

fx(z) ~ Pla-§<X<ots] (1.35)

€

Nlm
Nl

where € > 0. The equality is obtained by taking the limit as € | 0.

Properties. i) fx(z) > 0 [by the formula (1.35), or by the formula (1.34),
because Fx is a nondecreasing function].
ii) We deduce from the formula (1.34) that

Fx( / Fx(8) (1.36)
It follows that
/oo fx(z)dz =1 (1.37)
We also have -
Pla < X < b] = Fx(b) — Fx(a) = /ab fx(z)da (1.38)

Thus, the probability that X takes a value in the interval (a, b] is given by the
area under the curve y = fx(z) from a to b.
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Definition 1.2.8. The conditional density function of the continuous r.v.
X, given an event A for which P[A] > 0, is given by

Fx(z] A) = %Fx(x | 4) (1.39)

Remark. We find that the function fx(x | A) may be expressed as follows:

fx(z)
== 1.40
for all z € Sx for which the event A occurs. For example, if Sx = [0,1] and
A= {X <1/2}, then Sy =[0,1/2), where Y := X | A.

Remark. If X is an r.v. that can take an uncountably infinite number of
values, but the function Fx is not continuous, then X is an r.v. of mized type.
An example of an r.v. of mixed type is the quantity X (in inches) of rain
or snow that will fall during a certain day in a given region. We certainly
have the following: P[X = 0] > 0, so that X is not a continuous r.v. (since
P[X = 0] = 0 for any continuous r.v.). It is not an r.v. of discrete type either,
because it can (theoretically) take any value in the interval [0, c0).

Example 1.2.5. Suppose that

1/4 f-1<z<1
fx(z)=<¢1/(2z)if1 <z <e
0 elsewhere

We can check that the function fx is nonnegative and that its integral over
R is indeed equal to 1.
We calculate

0 ifz < -1
(z+1)/4 if-1<z<1
(I+lnz)/2if1<z<e

1 ifx>e

Fx(x)=

Note that the density function fx(z) is discontinuous at z = 1 (and at
z = —1 and z = e}, which is allowed, whereas the distribution function Fx is
a continuous function, as it should be (for a continuous random variable).

Next, we can calculate Fx(z | X < 0) and differentiate this function
to obtain fx(z | X < 0). It is, however, more efficient to simply calculate
P[X < 0] =1/4 and write that

lif-1<a<0
0 elsewhere

fX(:le<0):{

Finally, note that the function fx (x| X < 0) also satisfies the two properties
of probability density functions: it is nonnegative and its integral over R is
equal to 1.
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Important continuous random variables

i) Uniform distribution on the interval [a, b]:
fx(z)=(b—-a)"t fora<z<b (1.41)
Notation: X ~ Ula, b}.
il) Exponential distribution with parameter A > 0:
fx(z)=xe™* forz>0 (1.42)
Notation: X ~ Exp(A).
iii) Gamma distribution with parameters o > 0 and A > 0:

)\e-—,\x()\x)a—l

T(a) forz >0 (1.43)

fx(z) =
where I'(a) = (a — 1)! if @ € N (see p. 115). Notation: X ~ G(a, A).
iv) Gaussian” distribution with parameters 1 and o2, where ¢ > 0:

)2
exp {_%éﬁ_} forz e R (1.44)

Ifx(z) =

2no

Notation: X ~ N(u,a?).

Remarks. i) In the particular case where u = 0 and o =1 (see Fig. 1.4), X is
called a standard Gaussian distribution. Its distribution function is denoted
by &:

B(2) = / T L g, (1.45)

—oo V2T

The values of this function are presented in Table A.3, p. 370, for z > 0. By
symmetry, we may write that #(—z) =1 — &(z).

ii) If we define Y = aX + b, where X has a Gaussian distribution with pa-
rameters ;1 and o2, then we find that Y ~ N(apu + b,a?c?). In particular,
Z = (X —u)/o ~N(0,1).

Transformations. If X is a r.v., then any transformation Y := g(X), where
g is a real-valued function defined on R, is also a random variable.

7 Carl Friedrich Gauss, 1777-1855, was born and died in Germany. He carried out
numerous works in astronomy and physics, in addition to his important mathe-
matical discoveries. He was interested, in particular, in algebra and geometry. He
introduced the law of errors, that now bears his name, as a model for the errors
in astronomical observations.
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Fig. 1.4. Standard Gaussian distribution.

Proposition 1.2.2. Suppose that the transformation y = g(x) is bijective.
Then the density function of Y := g(X) is given by

o) = fx (1)) ]%g*(y)] (1.46)

fory € lg(a), g(b)] (respectively, [g(b), g(a)]) if g is a strictly increasing (resp.,
decreasing) function and Sx = [a,b].

Ezample 1.2.6. 1f X ~ U(0,1) and we define Y = e¥, then we obtain

d
fr(y) = fx (lny) ld—ylny %
for y € (1,e).

Definition 1.2.9. The mathematical expectation (or the mean) E[X] of
the r.v. X is defined by

EX]= imk px(zy) (discrete case) (1.47)
k=1
or
EX] = /00 z fx{xz)dx (continuous case) (1.48)

Remarks. i) Generalization: we obtain the conditional (mathematical) ex-
pectation E[X | A] of X, given an event A, by replacing px(z) by px(z | 4)
or fx(z) by fx(x | A) in the definition.

i) The mathematical operator E is linear.

Proposition 1.2.3. The mathematical expectation of g(X) is given by
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Elg(X)] = Zg(wk)px(xk) (discrete case) (1.49)
k=1
or
Elg(X)] = /00 g{z) fx(x)dx (continuous case) (1.50)

Remark. We can calculate the mathematical expectation of g(X) by condi-
tioning, as follows:

n

Elg(X)] =Y _ Elg(X) | B,|P|Bi] (1.51)
i=1
where By,... , B, is a partition of a sample space S.

The next two definitions are particular cases of mathematical expectations
of transformations g(X) of the r.v. X.

Definition 1.2.10. The kth moment (or moment of order k) of the r.v.
X about the origin is given by E[X*], for k =0,1,2,....

Definition 1.2.11. The variance of the r.v. X is the nonnegative quantity

V[X] = E[(X - B[X])’] (1.52)

Remarks. i) The standard deviation of X is defined by STD[X] = (V[X])/2.
The r.v. X and STD[X] have the same units of measure.

ii) We can also calculate the variance of X by conditioning with respect to a
partition of a sample space S, together with the formula (1.52):

VIX] = 3 B{(X - E[X))? | BJP[B]

=1

ili) Generalization: the conditional variance of X, given an event A, is de-
fined by

VIX | A] = E[(X — E[X | A)?| 4] (1.53)

Proposition 1.2.4. 1) V[aX + b = a?V[X] Va,beR.
i) VIX] = E[X?] — (EIX])2.

Ezample 1.2.7. The mean (or the expected value) of the r.v. Y in Example
1.2.6 is given by

c 1
E[Y]:/1 y-g;dy:e—l

We also have
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© .1 y?|"_ et -1
EY2=/ Pidy==| =
[Y~] V=g 3
It follows that
2 _ 2 _
V[Y].—_e21—(e—1)2—_——ei;—e—3-20.2420
Now, let Z :=InY. We have
€ 1 (ny)?|° 1
EZ——:/lny—dy=—— ==
1Z] 1 Y 2 |, 2

Note that Z is identical to the r.v. X in Example 1.2.6 and that the mean of
X ~ U(0,1) is indeed equal to 1/2.

A very important special case of the mathematical expectation E[g(X)]
occurs when g(X) = e/@X,

Definition 1.2.12. The function
Cx(w) = E[e?X] (1.54)
where j = +/—1, is called the characteristic function of the r.v. X.

If X is a continuous r.v., then Cx(w) is the Fourier® transform of the
density function fx(z):

o0
Cx(w) :/ 9% fx () dx (1.55)
We can invert this Fourier transform and write that
1 © .
Fx(z) = — / =197y () dw (1.56)
27 J_ o

Since the Fourier transform is unique, the function Cx(w) characterizes en-
tirely the r.v. X. For instance, there is only the standardﬁaussian distribution
that possesses the characteristic function Cx (w) = ™% /2,

We can also use the function Cx(w) to obtain the moments of order n
of the r.v. X, generally more easily than from the definition of E[X™] (for
ne{2,3,...}).

Proposition 1.2.5. If the mathematical expectation E[X"] exists and is fi-
nite for alln € {1,2,...}, then

B[X") = (=) Cx(@)luma (1.57)

8 Joseph (Baron) Fourier, 1768-1830, was born and died in France. He taught at
the Collége de France and at the Ecole Polytechnique. In his main work, the
Théorie Analytique de la Chaleur, published in 1822, he made wide use of the
series that now bears his name, but that he did not invent.
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Table 1.1. Means, Variances, and Characteristic Functions of the Main Random
Variables (with ¢:= 1 — p)

Distribution | Mean | Variance | Characteristic function
Bernoulli p g pe?¥ +q
B(n,p) np npq (pe” + )"
2 pe’®
Geom(p) 1/p qa/p [
Poi()\) A A exp{\(e* — 1)}
a+b (b—a)? elwb — eiwe
Ula, b _—
[a,t] 2 12 jw(b—a)
1 1 A
Exp(X - —
*p() ) N2 X jw
« «@ A @
G(oy A = il
(2. 2) ) 2 (A - jw)
N(u,0?) It o exp{jwp — jwo?}

Remark. Table 1.1 gives the mean, the variance, and the characteristic function
of all the discrete and continuous random variables mentioned previously.

Many authors prefer to work with the following function, which, as its
name indicates, also enables us to calculate the moments of a random variable.

Definition 1.2.13. The moment-generating function of the r.v. X is de-
fined, if the mathematical expectation exists, by Mx (t) = E[etX).

Remarks. i) When X is a continuous and nonnegative r.v., Mx(t) is the
Laplace® transform of the function f x ().

ii) Corresponding to the formula (1.57), we find that

dn
E[X" = prm Mx (t)|,—g forn=1,2,... (1.58)

® Pierre Simon (Marquis de) Laplace, 1749-1827, was born and died in France. In
addition to being a mathematician and an astronomer, he was also a minister and
a senator. He was made a count by Napoléon and marquis by Louis X VIII. He par-
ticipated in the organization of the Ecole Polytechnique of Paris. His main works
were on astronomy and on the calculus of probabilities: the Traité de Mécanique
Céleste, published in five volumes, from 1799, and the Théorie Analytique des
Probabilités, whose first edition appeared in 1812. Many mathematical formulas
bear his name.



20 1 Review of Probability Theory

Ezample 1.2.8. If X ~ Poi()), we calculate
% k 0 t)\\k
Mx(t) = Z etke")‘)\— = e Z GV e exp(ef))
We deduce from this formula and from Eq. (1.58) that

EX]=M4%(0)=X and E[X? =X+

so that V[X] = A2+ X - (\)2 =\
Note that to obtain E[X?], we can proceed as follows:

_/\ = -
E[X? = Zk2 AN Z _ /\ZdA —1)'

d Ak d
a4 o=
- ¢ )\d/\k= RSN

Aty = A+ 22

It is clear that it is easier to differentiate twice the function e~ exp(et)) than
to evaluate the infinite sum above.

When we do not know the distribution of the r.v. X, we can use the
following inequalities to obtain bounds for the probability of certain events.

Proposition 1.2.6. a) (Markov’s!? inequality) If X is an r.v. that takes
only nonnegative values, then

PIX > <

E—[c)ﬂ Ve>o0 (1.59)

b) (Chebyshev’s!! inequality) If E[Y] and V|Y] exzist, then we have

Py ez d < veso (1.60)

¥ Andrei Andreyevich Markov, 1856-1922, who was born and died in Russia, was a
professor at St. Petersburg University. His first works were on number theory and
mathematical analysis. He proved the central limit theorem under quite general
conditions. His study of what is now called Markov chains initiated the theory of
stochastic processes. He was also interested in poetry.

" Pafnuty Lvovich Chebyshev, 1821-1894, was born and died in Russia. By using
the inequality that bears his name, he gave a simple proof of the law of large
numbers. He also worked intensively on the central limit theorem.
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1.3 Random vectors

Definition 1.3.1. An n-dimensional random vector is a function X =
(X1,...,Xy) that associates a vector (X1(s),... ,Xn(8)) of real numbers with
each element s of a sample space S of a random experiment E. Each compo-
nent Xy of the vector is a random variable. We denote by Sx (C R®) the set
of all possible values of X.

Remark. As in the case of the random variables, we will use the abbreviation
r.v., for random vector, since there is no risk of confusion between a random
variable and a random vector.

Two-dimensional random vectors

Definition 1.3.2. The joint distribution function of the r.v. (X,Y) is
defined, for all points (z,y) € R?, by

Fxy(z,y) = P{X <z}n{Y <y} =PX <z,Y <y (1.61)
Properties. i) Fx y(—oc,y) = Fx,y(z,—00) = 0 and Fx,y(00,00) = 1.

il) Fx,y(z1,1) £ Fx,y(z2,12) if 11 < z2 and y1 < yo.
iii) We have

lilrg Fxv(z+ey)= lifgl Fxy(z,y+e¢)=Fxy(z,y) (1.62)

Remark. We can show that

P[a <X <begY <L d] = FX!y(b, d) — FX’y(b,C) - FX,y(a,d) + FX,y(a,C)
(1.63)

where a, b, ¢, and d are constants.

It is easy to obtain the marginal distribution function of X when the
function Fxy is known. Indeed, we may write that

Fx(z) = P|X <z,Y < o0] = Fx,y(z,00) (1.64)

Definition 1.3.3. A two-dimensional r.v., Z = (X,Y), is of discrete type
if Sz, is a finite or countably infinite set of points in R?:

Sz ESXXY :{(m]-,yk),jzl,Q,... ;k=1,2,...} (1.65)

Definition 1.3.4. The joint probability mass function of the discrete r.v.
(X,Y) is defined by

px.v{(zj,y) = PIX =2;,Y = yi] (1.66)
forjk=1,2,....
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To obtain the marginal probability mass function of X, from pxy, we
make use of the total probability rule:

o

px(z;) =P|X =z/] = ZP[{X =z;}N{Y =w}] = ZPX,Y(mj,yk)
k=1 k=1
(1.67)

Ezample 1.5.1. The generalization of the binomial distribution to the two-
dimensional case is the joint probability mass function given by

m!

pX1,X2($17$2) = 2)] pzlmpgz(l 4! ___p2)m—z1—m2 (168)

zleel(m —z1 — 2

where 11,72 € {0,1,... ,m} and x1 +z2 < m € N. We say that (X1, X2) has
a trinomial distribution with parameters m, p;, and p2, where 0 < pi, < 1, for
k = 1,2. We can generalize further the binomial distribution and obtain the
multinomial distribution (in n dimensions).

Definition 1.3.5. A two-dimensional r.v., Z = (X,Y), is of continuous
type if Sz is an uncountably infinite subset of R?. (We assume that X and
Y are two continuous random variables.)

Remark. We will not consider in this book the case of random vectors with at
least one component being a random variable of mixed type.

Definition 1.3.6. The joint (probability) density function of the con-
tinuous r.v. Z = (X,Y) is defined by

0?2
= —F 1.69
fxy(z,y) 520y X,Y(xay) ( )

for any point where the derivative exists.

Remarks. i) Corresponding to the formula (1.67), the marginal (probabil-
ity) density function of X can be obtained as follows:

e}
fx@ = [ frxtudy (1.70)
—00
where we integrate in practice over all the values that Y can take when X = .

ii) The probability of the event {Z € A}, where A C Sz, can be calculated as
follows:

Pzed= [ [feviopdedy (L.71)
A

iii) The distribution function of the continuous r.v. (X,Y) is given by
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Fx y(:IZ y / / fXY u ’U)dudU (1.72)
In the discrete case, the formula above becomes
Fyy(x,y) = Z ZPXY Tj,Yk) (1.73)
z;<x Yy <y

Ezxample 1.3.2. The continuous r.v. (X,Y’) has the joint density function

1—n—1f1<33<e,0<y<£
fxylzy) =< *

0 elsewhere

We calculate el
fX(-T)Z/ 2Ty =g ifl<z<e
0

T
and e
/ln:z: ‘z _1 ifo<y<1
. 2
— € 2 € —_— 2
Frly) = /ln_;cdlenm Iy e oy e
y T 2y 2
0 elsewhere

Ezample 1.3.3. Let

_f2yeTifz>0,0<y<1
fX,Y(‘T>y) - { 0 elsewhere

First, we calculate

1
fx(z) = / 2ue Fdy=¢e " ifz>0
0
and -
fY(l/)z/ uePdr=2y ifO0<y<l1
0
Moreover, we find that

0 ifr<Oory<0
Fxy(@y)=4 Ql-e )y ife>0and 0<y<1
e * fz>0andy>1
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Finally, we calculate
1 1-y
P[X+Y>1]=1—P[X+Y§1]=1—// 2ye " drdy
0o Jo

1
=1—/ 2yl —e' Vdy=1—-(1-2e"1)=2e""
0

because . .
/ yeydy=yey]é—/ ldy=e—(e—1)=1
0 0

Definition 1.3.7. Let (X,Y) be a random vector. We say that X and Y are
independent random variables if

px,v (%, yk) = px(z;)py (ye) o (X,Y) is discrete (1.74)
or
fxv(z,y) = fx@)fy(y) if (X,Y) is continuous (1.75)
Remarks. 1) More generally, X and Y are independent if (and only if)
P[X € A)Y € B] = P[X € A]P}Y € B| (1.76)

where A (respectively, B) is any event that involves only X (resp., Y). In
particular, we must have

Fyy(z,y) = PIX <z,Y <y]=Fx(x)Fy(y) VY (z,y) (1.77)

ity If X and Y are independent r.v.s, then so are g(X) and A(Y).

iii) Let Z := X +Y, where X and Y are two independent r.v.s. Then [see the
formula (1.102)],

Mz(t) = Elet?] = E[e!X*Y)] = E[e"X|E[eY] = Mx (t)My(t)  (1.78)
Similarly, Cz(w) = Cx{w)Cy (w).

Ezxample 1.3.4. We deduce from Eq. (1.75) that the r.v.s X and Y in Example
1.3.2 are not independent, whereas those in Example 1.3.3 are.

Definition 1.3.8. IfY is a discrete r.v., then the conditional distribution

function of X, given that Y = yi, is defined by

P[X <z, Y = yk]
PlY = yi]

Fxiy(z | yx) = if PIY = 3] >0 (1.79)

Remark. In theory, Y can be a continuous r.v. in the preceding definition.
However, in practice, most of the time the two random variables in the pair
(X,Y) are of the same type.
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Definition 1.3.9. If (X,Y) is a discrete r.v., then the conditional proba-
bility mass function of X, given that Y =y, is defined by
_pxy(@iouk)  PIX =x;,Y =y

pxy(z; | yk) = s - P = if PIY = yk] >0
(1.80)

Remark. The conditional functions possess the same properties as the corre-
sponding marginal functions.

When Y is a continuous r.v., we cannot condition on the event {Y = y}
directly, because P[Y = y] = 0 for all y. We must rather take the limit as
dy decreases to zero of the functions defined by conditioning on the event
{y <Y <y + dy}. We then obtain the following proposition.

Proposition 1.3.1. If (X,Y) is a continuous r.v. and fy(y) > 0, then the
conditional distribution function aend the conditional density function
of X, given that Y =y, are given, respectively, by

2 fxy(uy)du
fr(y)

and fuy(ely) = EED )

Fxiy(z|y) =

Ezxample 1.3.5. The conditional density function of Y, given that X = z, in
Example 1.3.2 is

fy;x(yfﬂf)zlp&(x’—y):% fo<y<z

Ix(z)

That is, Y | {X = x} has a uniform distribution on the interval (0, z). Hence,
we easily find that Fyx(y | ) =0if y <0,

Fy|X(y|x)=§ fo<y<m

and Fy|x(ylz)=1ify >z

Proposition 1.3.2. The r.v.s X and Y are independent if and only if the
conditional distribution function, the conditional probability mass function,
or the conditional density function of X, given that Y =y, is identical to the
corresponding marginal function.

Ezample 1.3.6. We say that the continuous random variables X and Y have
a binormal (or bivariate normal) distribution with parameters ux € R,
py € R, 0% > 0,02 >0, and p € (~1,1), and we write that (X,Y) ~
N(ux,py;o0%,0%; p), if their joint density function is

1
2roxoy(l — p2)l/2

fX,Y(:E7y) =
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ol () ()

_2p($—ux)(y—MY)}} (1.82)

TxXOoy

for (z,y) € R?.
We easily find that X ~ N(ux,0%) and Y ~ N(uy,0%). It follows that

X [ {Y =y} ~N(ux + plox/oy)(y — py),0x (1 — p?)) (1.83)

Since X and X | {Y = y} have the same distribution if p = 0, we can state
that X and Y are independent r.v.s if the parameter p is equal to zero. This
parameter is actually the correlation coefficient of X and Y.

Definition 1.3.10. The conditional expectation of X, given that Y =y,
is defined by

EX|Y =y = imj pxiy(z; | y) (discrete case) (1.84)
7=1
or
EX|Y =y = /00 z fxjy(z | y)dx (continuous case) (1.85)

The mean E[g(X)] of a transformation g of a random variable X is a real
constant, while E[g(X) | Y = y] is a function of y, where y is a particular
value taken by the r.v. Y. We now consider E[g(X) | Y]. It is a function of
the r.v. Y that takes the value E[g(X) | Y = y] when Y = y. Consequently,
Elg(X) | Y] is a random variable, whose mean can be calculated. We then
obtain the following important proposition.

Proposition 1.3.3. We have
Elg(X)] = E[Elg(X) | Y]] (1.86)
Remarks. 1) We deduce from the preceding proposition that

21?;1 E|X |Y =y py(yx) (discrete case)
EX]=E[E[X |Y] =
2 EIX |Y =y] fr(y)dy (continuous case)
(1.87)

il) We can calculate the variance of X by conditioning on another r.v. Y as
follows:
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VX] = E[EX? | Y]] - (BIEIX | Y])® (1.88)

iii) Let X1, X2,... be r.v.s that possess the same distribution as the r.v. X,
so that E[X;] = E[X] and V[X;] = V[X], for k =1,2,..., and let N be an

r.v. independent of the X;’s and taking its values in the set {1,2,...}. By
making use of the formula (1.86), we can show (see p. 254) that

N
E [Z X
k=1

If the r.v.s X} are independent among themselves, we also have (see p. 254)

= E[N)E[X] (1.89)

14

N
ZXkJ = E[N|V[X] + V[N]|(E[X])* (1.90)
k=1

iv) Suppose that we wish to estimate a random variable X by using another
r.v. Y. It can be shown that the function ¢g(Y') that minimizes the mean-square
error (MSE)

"MSE := E[(X — g(Y))?] (1.91)
is g(Y) = E[X | Y]. If we look for a function of the form g(Y) = aY + 3, we
can show that the constants o and 3 that minimize MSE are

E[XY] - E[X]E[Y]

VY] and f = E[X] - GE[Y] (1.92)

& =

Finally, if g(Y) = ¢, we easily find that the constant ¢ that yields the smallest
MSE is ¢ = E[X].

The function g(Y') = E[X | Y] is the best estimator of X, in terms of Y,
while g(Y) = &Y + 3 is the best linear estimator of X, in terms of Y. If X

and Y both have a Gaussian distribution, then the two estimators are equal
(see Ex. 1.3.6).

Proposition 1.3.3 also enables us to calculate the probability of the event
{X € A} by conditioning on the possible values of an r.v. Y. We only have
to define the r.v. W such that W =1if X € Aand W =01if X ¢ A, and use
the fact that E[W] = P[X € A]. We can then show the following proposition,
which is the equivalent of the total probability rule for random variables. This
proposition and Proposition 1.3.3 will be very useful in the next chapters.

Proposition 1.3.4. We may write that

Yooy PIX € ALY = yi] py () (discrete case)
ffooo P[X € A|Y =vy| fy(y)dy (continuous case)
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Corresponding to the definition of the conditional variance VX | A} that
was given in the preceding section, we now have the following definition.

Definition 1.3.11. The conditional variance of X, given the r.v. Y, is
defined by

VIX| Y] = E[(X - BIX | Y]} | Y] (1.94)
Remarks. i) We find that

VIX|Y]=E[X?|Y]-(EX|Y])? (1.95)
il} We can show the following useful result:

VIX]=E[VIX Y]+ VI[EX|Y] (1.96)

Example 1.3.7. Instead of calculating the variance of the r.v. Y in Example
1.3.2 from the density function fy that we obtained and from the definition of
VY], we can use the fact (see Ex. 1.3.5) that Y | X ~ U(0, X). It follows that
ElY | X] = X/2 and V[Y | X] = X?/12, and then, by the formula (1.96),

VY] = %E[Xﬂ + iV[X] = %E[Xz] - 211-(E[X])2 =~ 0.4252

because

E[X]=/ xlnxd:c:%(eQ-}.l) and E[X2]=/ 2’ Inzdr =
1 1

(2¢% +1)

O =

Remark. We can check that

ElY] = %(e2 +1) and E[Y? = %(2e3 +1)
Remark. We can consider conditional expectations E[X | A}, or conditional
density functions fx y(z,y | A), etc., with respect to more general events
A like Y <y, Y >0, etc., and also with respect to events A that involve
both random variables, X and Y. For instance, let X; and X5 be independent
random variables having a U(0, 1) distribution. We have

P[Xl <z le < Xz]

P[Xl <z, X5 < XQ]
PIX, < X5

. 1 X1 1
ind. 2/ P[Xl <ri,X; < :L‘g] dzro = 2{/ To dxo +/ T dﬂ:g}
0 0 T

1

1
=2/ P[X1 <z1,X3 <X2|X2=.’L‘2]~1d.1‘2
0

= .'131(2 - .'L‘l)
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so that
le(.Tl ] X1 < XQ) = 2(1 —[El) forO0<z; <1

Next, we have

1
1
E{Xl |X1 < Xz] =/ T -2(1 —:El)d$1 = 3‘
0
Actually, if we are only looking for the mean of X, given that X; < X, we
can directly write that

1
[Xl | X1 < X2 / / - dl‘zd.’L‘l 3

where we used the formula

le,Xg($17x2)

for 0 < < <1
P[X; < X5 oS TsT

fXx,Xz('Tl’xQ I X1 < XQ)

The following proposition is the two-dimensional version of Proposition
1.2.2.

Proposition 1.3.5. Let W := ¢;(X,Y) and Z := g2(X,Y), where X and Y
are two continuous r.v.s. If

1) the system w = g1(x,y), z = g2(z,y) has the unique solution x = hi(w, z),
Y= h2(wa Z)

and

2) the functions g; and go have continuous partial derivatives ¥V (z,y) and the
Jacobian J(z,y) of the transformation is such that

J(x,y) = 891 392 392 391

B 8y B 8y #0 V(z,y) (1.97)
then
fwz(w, z) = fxy(hi(w, 2), ho(w, 2)) |J (h1(w, 2), ho(w, z))j_1 (1.98)

Remarks. i) The proposition can be easily generalized to the n-dimensional
case, where n € {3,4,...}.

ii) In the particular case where X and Y are independent and Z := X +7Y, we
could use the proposition to obtain the density function of Z. We must first
define an appropriate auziliary variable W, then calculate the joint density
function of the r.v. (W, Z), and finally integrate this joint density function
with respect to w to obtain fz(z). We can also proceed as follows:

Fz(z) = / / (v)dvdu = fz(z / fx (W) fy(z = u) du
(1.99)

Note that the density function of Z is the convolution product of the density
functions of X and Y.
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Proposition 1.3.6. The mathematical expectation of the random variable
Z :=g(X,Y) is given by

D ge1 Sonet 9(T4, k) Px,y (T4, yk) (discrete case)
E|Z] = (1.100)
2, ffooo 9(z,y) fxv(z,y)dz dy (continuous case)

Remark. If the mathematical expectations E[X] and E[Y] exist, we have
ElaX +bY] =aE[X]+bE[Y] Va,beR (1.101)
Moreover, if X and Y are independent r.v.s and g(X,Y) = ¢1(X)g2(Y), then
E[g(X,Y)] = Elg1(X)]E[g2(Y)] (1.102)
Definition 1.3.12. The covariance of X and Y is defined by

Cov[X,Y] = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X|E[Y] (1.103)

Remarks. 1) The covariance generalizes the variance, since Cov[X, X] = V[X],
but the covariance Cov[X, Y] can be negative. For example, if Y = — X, then
we have

Cov[X,Y] = Cov[X, ~X] = E[X(~X)] - E[X]E[-X] = =V[X] <0
(1.104)

ii) We deduce from Eq. (1.102) that if X and Y are independent, then
Cov[X,Y] = 0. However, the converse is not always true.

iii) We also define the correlation coefficient of X and Y by

Cov[X,Y]

X~ STOXISTDW] e

We then deduce from Example 1.3.6 that, in the case of the bivariate normal
distribution, the r.v.s X and Y are independent if and only if their correlation
coeflicient is equal to zero.

An important particular case of transformations of random vectors is the
one where the random variable Z := g(X1,... , X,) is a linear combination of
the roves Xy, ..., Xp:

Z=ag+ar1 X1+ +a X, (1.106)

where the ai’s are real constants V k. We can show the following proposition.
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Proposition 1.3.7. Let Z be a linear combination of the r.v.s X1,...,X,.
We can write (if the mathematical ezpectations exist) that

E[Z] = ap + mE[X1] + - + an E[X,)] (1.107)
and
1 n o n
Viz) =Y aViXi] +2Y Y ajaCov[X;, Xi) (1.108)
k=1 j=1 k=1
=
i<k

Ezxample 1.3.8. If X and Y are two independent r.v.s having a uniform distri-
bution on the interval [0,1} and Z := X + Y, then Sz = [0,2] and

0 1
fz(z):/_ fx(u)fy(z—u)du=/0 fy (= — u) du

Since

lifz—-1<u<z
0 elsewhere

e ={
we may write that

z
/ ldu=2 if0<z<1
0

o 1
fz(2) = / ldu=2—-2zif1l<2<2
z—1

0 elsewhere

\
Remark. If we define the auxiliary variable W = X, then we find that
fwzw,z)=1 f0<w<1,0<2<2,w<z<w+1

Integrating fw z (w,2) with respect to w, we retrieve the function fz (2)
above.

Next, if Z := X — % and W := 72, we calculate
Cov[Z, W) = E[ZW] — E|Z|E[W]| = E[Z%] -0=0
because E[Z%+1] = 0, for all k € {0,1,...}. However, Z and W are not

independent, since Z = 0 = W = 0, in particular.
Finally, Eq. (1.108) enables us to write that
2
1
X - =
(3]

VIZ —3W] = V[Z] +9V[W] — 6 Cov[Z, W] =V {X - %} +oV
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11
=VI[X]+9V[T?], where T ~U [__, _}

2°2
1 1 2
—ﬁ”(m)—ﬁ

because
1/2 1/2 2
VIT? =E[T4]—(E[T2])2=/ . 1dt — / 2. 1dt
-1/2 —1/2

1 1\ 64 1
T 5x16 3x4/ ~ 80x144 180

We continue with limit theorems that will be used in the subsequent chap-
ters.

Proposition 1.3.8. Let X1, Xo,... be an infinite sequence of independent
and identically distributed (i.i.d.) r.v.s, and let Sp := X1 +-+- + Xy

a) (Weak law of large numbers) If E[X ] = p € R, then

n—oo

lim P['%—u‘ <c] =1 V ¢>0 (1.109)

b) (Strong law of large numbers) If E[X?] < oo, then we may write that
. Sy

Pllim = =pu}j=1 (1.110)
n—oo N

¢) (Central limit theorem) If E[X;] = u € R and V[X;] = 02 € (0,00),
then we have

lim P {5"7;;33 < z] = P[N(0,1) < 2] (1.111)

Remarks. i) Actually, the condition E[X?] < oo is a sufficient condition for
the strong law of large numbers to hold. It may be replaced by the weaker
condition E[|X1|] < oo, which reduces to E{X;] < oo in the case when X; > 0.

ii) The central limit theorem (CLT) implies that

S, ~ N(np,no?) and ~ N(u,o?/n) (1.112)

-
n
In general, from n = 30, the approximation by the Gaussian distribution
should be rather good.
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iii) An application of the CLT is the Moivre'?-Laplace Gaussian approzima-
tion to a binomial distribution:

P[B(n,p) = k| =~ fz(k), where Z ~ N(np,np(1 —p)) (1.113)

For the approximation to be good, the minimum between np and n(l — p)
should be at least equal to 5.

Ezample 1.3.9. If X;, ~ Exp(1), for k = 1,...,30, and if the X}’s are inde-
pendent r.v.s, then we can show that

S30:=X1+...4+ X3~ G(30,1)
Making use of the formula
P[G(n, \) < z] = P[Poi(\z) > n] (1.114)

we obtain (from a table of the distribution function of the Poisson distribution)
that
P[S30 < 30] = P[Poi(30) > 30] =~ 0.5243

The approximation by the CLT yields

P[Ss0 < 30] ~ P[N(30,30) < 30] = 0.5

Ezample 1.3.10. Suppose that 1% of the tires manufactured by a certain com-
pany do not conform to the norms (or are defective). What is the probability
that among 1000 tires, there are exactly 10 that do not conform to the norms?

Solution. Let X be the number of tires that do not conform to the norms
among the 1000 tires. If we assume that the tires are independent, then X
has a binomial distribution with parameters n = 1000 and p = 0.01. We seek

PIX =10] ~ fz(10), where Z ~ N(10,9.9)

1 1(10 - 10)2}
= ————exp{ —=——> 5 ~0.1268
V9.9 p{ 27 9.9

Remarks. 1) In fact, we obtain that P[X = 10] ~ 0.1257. By using the Poisson
approximation (see p. 12), we find that

12 One of the pioncers of the calculus of probabilities, Abraham de Moivre, 1667
1754, was born in France and died in England. The definition of independence of
two events can be found in his book The Doctrine of Chance published in 1718.
The formula attributed to Stirling appeared in a book that he published in 1730.
He later used this formula to prove the Gaussian approximation to the binomial
distribution.
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P[X = 10] ~ P[Poi(10) = 10] ~ 0.1251

In this example, the Poisson approximation is slightly more accurate. However,
if we increase the value of the probability p, the Moivre-Laplace approxima-
tion should be better.

ii) To calculate approximately a probability like P[5 < X < 10|, we would
rather use the distribution function of the Gaussian distribution. It is then
recommended to make a continuity correction to improve the approximation.
That is, we write that

P[5 < X <10} = P[4.5 < X < 10.5] ~ P[4.5 < Z < 10.5]

1.4 Exercises

Section 1.1

Question no. 1

In urn A, there are four red balls and two white balls, while urn B contains
two red balls and four white balls. We throw, only once, a coin for which the
probability of “tails” is equal to p (0 < p <.1). If we get “tails,” then we will
draw balls from urn A; otherwise, urn B will be used.

(a) What is the probability of obtaining a red ball on any draw?

(b) If we obtained a red ball on each of the first two draws, what is the
probability of obtaining a red ball on the third draw?

(c) If we obtained a red ball on each of the first n draws, what is the probability
that we are using urn A?

Question no. 2

Box 1 contains 1000 transistors, of which 100 are defective, and box 2
contains 2000 transistors, of which 100 are also defective. A box is taken
at random and two transistors are drawn from it, at random and without
replacement.

(a) Calculate the probability that both transistors are defective.

(b) Given that both transistors are defective, what is the probability that they
come from box 17

Question no. 3

Assume that there is a leap year every four years. How many (independent)
persons must be in a room, at minimum, if we want the probability that at
least one of these persons was born on February 29 to be greater than 1/2?
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Question no. 4

Object O moves on the z-axis between 0 and 2, while object Op moves
on the y-axis between 0 and 1. Suppose that the position of each object is
completely random. What is the probability that the distance between the
two objects is greater than 17

Question no. 5

A certain user of the public transport system can take bus no. N; or bus
no. Nz to go to work. A bus no. Nj runs near his home every hour, from 6:00
a.m., while a bus no. N, runs there d minutes after the hour, where d € (0, 30].
The user arrives at the bus stop at a completely random time between 7:45
a.m. and 8:15 a.m. What is the value of d if he takes a bus no. Nj thrice more
often than a bus no. Ny?

Question no. 6

Two sport teams play a series of (independent) games to win a trophy. The
first team that wins four games gets the trophy. There are no draws. What is
the probability that a team having, for each game, only a one-in-three chance
of winning gets the trophy?

Question no. 7
In how many ways can we permute the numbers 1,2,... ,n if we do not
want a single number to remain in its original position?

Question no. 8

In the dice game called craps, the player tosses two (fair) dice simultane-
ously. If the sum of the two numbers that show up is equal to 7 or 11, the
player wins. If the sum is equal to 2, 3, or 12, he loses. When the sum is a
number z different from the preceding numbers, the player must toss the two
dice again until he gets a sum equal to = or 7. If z is obtained first, the player
wins; otherwise, he loses. What is the probability that the player wins?

Question no. 9

A says that B told her that C has lied. If the three persons tell the truth
and lie with probability p € (0, 1), independently from one another, what is
the probability that C has indeed lied?

Question no. 10

A man takes part in a television game show. At the end, he is presented
with three doors and is asked to choose one among them. The grand prize is
hidden, at random, behind one of the doors, while there is nothing behind the
other two doors. The game show host knows where the grand prize has been
hidden. Suppose that the man has chosen door no. 1 and that the host tells
him that he did well in not choosing door no. 3, because there was nothing
behind it. He then offers the man the opportunity to change his choice and,



36 1 Review of Probability Theory

therefore, to select door no. 2 instead. What is the probability that the man
will win the grand prize if he decides to stick with door no. 1?7

Section 1.2

Question no. 11

Boxes I and IT both contain n transistors. At each step, a fair coin is tossed.
If “heads” (respectively, “tails”) is obtained, we take, at random and without
replacement, a transistor in box I (resp., II). We repeat this experiment until
one of the two boxes is empty. Let N be the number of transistors that remain
in the other box at that moment. If we assume that the repeated trials are
independent, what is the probability mass function of N?

Question no. 12
Let X be a continuous random variable whose density function is given by

fx(x) = c?ze™® forz >0

where c is a positive constant. Calculate E[X | X < 1].

Question no. 13

A mathematician hesitates between three methods to solve a certain prob-
lem. With the first (respectively, second) method he will work in vain for two
(resp., three) hours, while the third method will give him the solution at
once. If we assume that at each step the mathematician uses a method taken
at random among those that he still has not tried, what is the variance of the
number of hours that he will have to work to solve his problem?

Question no. 14
Let X be a random variable whose moment-generating function, Mx (t),
exists for t € (—¢, c). Show that

P X >a]<e ®Mx(t) forO0<t<c
and

PX <al<e ®Mx(t) for—c<t<0
where a is a real constant.

Question no. 15
Suppose that the moment-generating function of X exists for every real
value of ¢t and is given by

et —e?
c~c 0
Mx(t) = 2t i #
1 ift=0
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Use the results of the preceding question to show that

P[X>1=0 and P[X<-1]=0

Question no. 16

Let X be a continuous random variable whose set of possible values is the
interval [a, b]. We define Y = g(X).
(a) Calculate the probability density function of Y if g(z) =1 — Fx(x).
Indication. The inverse distribution function F'y ! exists.
(b) Find a transformation g(x) such that

fy(y):% for1<y<3

Question no. 17
Calculate E[X | X > 1], where X is a random variable having a standard
Gaussian distribution.

Question no. 18
Two players, X and Y, take turns at tossing a fair coin. The first one that
gets “tails” wins. Calculate, assuming that X starts,

(a) the probability that X wins,

(b) the probability that X wins, given that she did not obtain “tails” on her
first two trials,

(c) the average number of tosses needed to end the game, given that X lost.

Question no. 19
Suppose that the probability that a family has exactly n children is given
by
P,=¢cp" forn=12,...

where ¢ >0and 0 <p < 1,and Py =1- 3>, P,. Suppose also that every
child is equally likely to be a male or a female.

(a) Calculate the probability that a family with n children has exactly £ male
children, for k =0,1,... ,n.

(b) Find the probability that a family has no male children.

(c) What is the average number of male children per family?

Question no. 20

A box contains 200 brand A and 10 brand B transistors. Twenty transistors
are taken at random. Let X be the number of brand A transistors obtained.
(a) Calculate P[X = 20], assuming that the transistors are taken without
replacement.
(b) Calculate P[X = 19] if the transistors are taken with replacement.
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(c) Use a Poisson distribution to calculate approximately P[X = 18] when
the transistors are taken with replacement.

Question no. 21
The density function of the random variable X is given by

_Jk1-2?)ifo<z<1
fx(@) = { 0 elsewhere

where k is a positive constant.

(a) Calculate fx(z | X2 <1/4).

(b) Find the constant b that minimizes E[(X — b)?].
(c) Find the constant ¢ that minimizes E[|X — ¢|].

Indication. The value z,,, for which Fx(z,,) = 1/2 is called the median of the
continuous r.v. X. It can be shown that, for any real constant a,

Tn

Eljz - af] = E{jz — 2m|] +2 / (z - a)fx () dz

a

Question no. 22

We say that the continuous random variable X, whose set of possible values
is the interval [0, 00), has a Pareto'® distribution with parameter 6 > 0 if its
density function is of the form

9 )
fx(z) = mﬁlfzzo

0 elsewhere

In economics, the Pareto distribution is used to describe the (unequal) dis-
tribution of wealth. Suppose that, in a given country, the wealth X of an
individual (in thousands of dollars) has a Pareto distribution with parameter
0=1.2

(a) Calculate fx (2|1 < X <3).

(b) What is the median wealth (see Question no. 21) in this country?

(c) We find that about 11.65% of the population has a personal wealth of at
least $5000, which is the average wealth in this population. What percentage
of the total wealth of this country does this 11.65% of the population own?

Question no. 23
Let 2
_fkz?e T 2ifx >0
fx(a) = { 0 elsewhere

13 Vilfredo Pareto, 1848-1923, born in France and died in Switzerland, was an
economist and sociologist. He observed that 20% of the Italian population owned
80% of the wealth of the country, which was generalized by the concept of Pareto
distribution.
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where k is a positive constant.
(a) Calculate fx (x| X < 1.282).

Indication. We have P[N(0,1) < 1.282] ~ 0.9.
(b) Find the value of zy for which Fx(zg) ~ 0.35.

Remark. The random variable X defined above actually has a Mazwell'* dis-
tribution with parameter a = 1. In the general case where o > 0, we may
write that
fx(z) = Y—— Q!sze‘“‘z/(2o‘2) ifz>0
o

We find that E[X] = 2a+/2/7 and V[X] = o?[3 — (8/x)]. This distribu-
tion is used in statistical mechanics, in particular, to describe the velocity of
molecules in thermal equilibrium.

Question no. 24
Let X be a continuous random variable having the density function

Fx(@) { %6"3”2/(292) fz>0
X -

0 elsewhere

We say that X has a Rayleigh'® distribution with parameter 6 > 0.

(a) Show that E[X] = 6+/7/2 and V[X]| = 2 [2 — (7/2)].

(b) Let Y := In X, where X has a Rayleigh distribution with parameter § = 1.
Calculate (i) fy (1) and (ii) the moment-generating function of Y at ¢ = 2.

(c) We define Z = 1/X. Calculate the mathematical expectation of Z if § = 1
as in (b).

Section 1.3

Question no. 25

The lifetime X (in days) of a device has an exponential distribution with
parameter A. Moreover, the fraction of time during which the device is used
each day has a uniform distribution on the interval [0, 1], independently from
one day to another. Let N be the number of complete days during which the
device is in a working state.

(a) Show that PI[N >n] = (1 —e™")"/A", forn =1,2,....

4 James Clerk Maxwell, 18311879, was born in Scotland and died in England. He
was a physicist and mathematician who worked in the fields of electricity and
magnetism.

% John William Strutt Rayleigh, 1842-1919, was born and died in England. He
won the Nobel Prize for physics in 1905. The distribution that bears his name
is associated with the phenomenon known as Rayleigh fading in communication
theory.
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Indication. Because of the memoryless property of the exponential distribu-
tion, that is,

PIX>s+t|X>t|=PX>s] Vs,t>0

it is as if we started anew every day.
(b) Calculate E[N | N < 2] if A =1/10.

Question no. 26
Let X; and X» be two independent N(u, 02) random variables. We set Y}
=X+ Xoand Y5 = X; +2X5.
(a) What is the joint density function of ¥; and Y37
(b) What is the covariance of Y; and Y5?

Question no. 27

Let X1 and X5 be two independent random variables. If X; has a gamma
distribution with parameters n/2 and 1/2, and Y := X; + X2 has a gamma
distribution with parameters m/2 and 1/2, where m > n, what is the distri-
bution of X9?

Indication. If X has a gamma distribution with parameters « and A, then (see

Table 1.1, p. 19)
)\a
=T

Question no. 28
Show that if E[(X — Y)?] = 0, then P{X = Y] =1, where X and Y are
arbitrary random variables.

Question no. 29
The conditional variance of X, given the random variable Y, has been
defined (see p. 28) by

VIX|Y]=E[[X - B[X | Y]]?| Y]
Prove the formula (1.96):

VIX]=E[VIX | Y]]+ VIEIX | Y]]

Question no. 30

Let X be a random variable having a Poisson distribution with parameter
Y, where Y is an exponential r.v. with mean equal to 1. Show that W := X 4-1
has a geometric distribution with parameter 1/2. That is,

pw(n) = (1/2)" forn=12,...
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Question no. 31
Let X; and X5 be two independent random variables, both having a stan-
dard Gaussian distribution.
(2) Calculate the joint density function of Y := X? + X2 and Ys := Xo.
(b) What is the marginal density function of Y17

Question no. 32

Let X and Y be independent and identically distributed random variables.
(a) Show that h(z) :=E[X | X +Y =z] = /2.
(b) Evaluate E[(X — h(Z))?] in terms of V[X].

Question no. 33
A company found out that the quantity X of a certain product it sells
during a given time period has the following conditional density function:

4
Ixiy(@|y) = -—Qme_%/y ifx>0
Y

where Y is a random variable whose reciprocal Z := 1/Y has a gamma dis-
tribution. That is,

(/\Z)a_l

fz(z) = e~ M T(a)

forz>0
(a) Obtain the marginal density function of X.
(b) Calculate E[Z | X = z].
Question no. 34
Let X and Y be continuous and independent random variables. Express

the conditional density function of Z := X + Y, given that X = z, in terms
of fy‘

Question no. 35
Show that for continuous random variables X and Y, we have

E[Y}ng]:al(}—;/j E[Y | X = ulfx(u) du

if Fx(z) > 0.
Question no. 36
Let Xi,..., X, be independent random variables such that
ag/m
Mo =
for —-co<z <ooand k=1,2,... ,n, where ap, >0V k.

(a) Calculate the density function of the sum Z := X1 +... + X,
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Indication. The characteristic function of X}, is given by
Ox, () = e~

(b) Assuming that a; = ay, for k = 2,3,..., can we state that fz(z) tends
toward a Gaussian probability density? Justify.

Question no. 37

Suppose that X ~ N(0,1) and Y ~ N(1, 1) are random variables such that
px,y = p, where pxy is the correlation coefficient of X and Y. Calculate
E{X?Y?).

Question no. 38

Let
e Vifr>0,y>z
0 elsewhere

fxy(z,y) = {

be the joint density function of the random vector (X,Y).

(a) Find the estimator g(Y) of X, in terms of Y, that minimizes the mean-
square error MSE := E[(X — g(Y))2].

(b) Calculate the minimum mean-square error.

Question no. 39
The joint density function of the random vector (X,Y) is given by

3@ +ay+yd)if-1<zr<land -1<y<l1
13
Fxy(z.y) = { 0 elsewhere

Calculate (a) E[X | Y =1/2], (b) E[Y | X], (c) the mean-square error MSE

:= E[(Y — g(X))?] made by using g(X) := E[Y | X] to estimate the random
variable Y.

Indication. It can be shown that

MSE = E[Y?] - E[¢*(X)] ifg(X)=E[Y | X]

Question no. 40

A number X is taken at random in the interval [0, 1], and then a number
Y is taken at random in the interval [0, X]. Finally, a number Z is taken at
random in the interval [0,Y]. Calculate (a) E[Z], (b) V[Y], (c) P[Z < 1/2].
Question no. 41

An angle A is taken at random in the interval [0,7/2], so that

2
fala) = —~ for0 <a<m/2
Let X :=cos A and Y := sin A. Calculate

(a) PIX =1]Y =0], (b) E[Y | X], (c) E[Y], (d) E[X|X+Y],
(0 E[X*| X +Y], () E[X|4], (g) PIX =0]{X=0}u{X=+3/2}]
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Indication. We have

1
— arccosr = —————r- for -1 < <1

dx N
(h) VX | Y] if the angle A is taken at random in the interval (0, 7).

Question no. 42
Let
fxiy(z|y) =ye ™ forz>00<y<l1

Calculate, assuming that Y has a uniform distribution on the interval (0, 1),
(a) fx(z), (b) PIXY >1], (¢ VIX|Y], (d) E[X].

Question no. 43

We suppose that the (random) number N of customers that arrive at
an automatic teller machine to withdraw money, during a given hour, has
a Poisson distribution with parameter A = 5. Moreover, the amount X of
money withdrawn by an arbitrary customer is a discrete random variable
whose probability mass function is given by

1
px(e) = if z =20, 40, 60, 80, or 100

Finally, we assume that N and X are independent random variables. Let Y
be the total amount of money withdrawn over a one-hour period. Calculate

(a) E[Y | N >0}, (b) P[Y =60], (c) P[N=3]Y =60].

Question no. 44

Let X; and X, be two independent random variables having a uniform
distribution on the interval (0,1). We define Y = max{X;, X»}. Calculate (a)
Fyix,(y | 21), (0) EYY | X, =], (o) VIE[Y | Xall, (&) E[VIY | Xa]).
Indication. If X is a nonnegative continuous (or mixed type) random variable,
then

EX] = /000[1 — Fx(z)]dz

Question no. 45

We consider a system made up of two components placed in parallel and
operating independently. That is, both components operate at the same time,
but the system functions if at least one of them is operational. Let T; be the
lifetime of component 4, for 1 = 1,2, and let T be the lifetime of the system.
We suppose that T; ~ Exp{1/2), for i = 1,2. Calculate
(@) E[T | Ty =1], (b) E[T|Ty>1], (c) E[T|{T1>1}U{Ty > 1}].

Indication. In (c), we can use the formula

E[X|AUB]=FE[X | A P[A|AUB])+ E[X | B] P[B| AU B]
— E|X|AnB] P[ANB| AU B
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Question no. 46
Let X; ~ U[-1,1], X2 ~ U[0, 1], and X3 ~ U[0, 2] be independent random
variables. Calculate

(a) PIX) < X, (b) PX1 < Xz < Xol, (¢) E [
where Y := X; + Xs and Z := X; + Xs.

X1
m}, (d) E[YZ | Xi],

Question no. 47
Suppose that X; and X, are independent random variables such that

Ix;(w:) = %)\ie_’\""""l forz; €R

where ); is a positive constant, for ¢ = 1, 2. Calculate

(a) P[X) < X3), (b) V[X1| X1 >0], (c) B[ X1 |Xa] > 1],
(d) E[Xl + X5 | X; < Xz] if Ay = Aq.

Question no. 48

Calculate P[Y > X]if X ~ B(2,1/2) and Y ~ Poi(1) are two independent
random variables.

Question no. 49
Use the central limit theorem to calculate (approximately)

PXi+...4+ X4 < Xg1 + ... + X100

where X1,..., Xigo are independent random variables, each having a U[0, 1]
distribution.

Question no. 50
Suppose that the random variables X7, ..., X3¢ are independent and all
have the probability density function

fx(gr:):l forl<z<e
T

What is the approximate density function of the product X;Xa - X307

Question no. 51

Let (X,Y) be a random vector having a bivariate normal distribution.
(a) Calculate P[XY < 0] if ux =0, uyy =0, 0% =1, 0% =4, and p = 0.
(b) What is the best estimator of X? in terms of Y when ux = 0, py = 0,
0% =102 =1,and p = 0?
(c) Calculate E[XY] when px =1, uyy =2, 0% =1, 0% =4, and p = 1/2.
Question no. 52

Let X and Y be two random variables, and let g and h be real-valued
functions. Show that
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(a) E[g(X) | X] = g(X),
(b) E[g(X)MY)] = E[MY)E[g(X) | Y]]

Question no. 53

Letters are generated at random (among the 26 letters of the alphabet)
until the word “me” has been formed, in this order, with the two most recent
letters. Let N be the total number of letters that will have to be generated to
end the random experiment, and let X be the kth generated letter. It can be
shown that E[N] = 676 and V[N] = 454,948. Calculate (a) E[N | X3 = €],
(b) E[N | X; =m], and (c¢) E[N? | X; = m].

Remark. The variable X}, is not a random variable in the strict sense of the
term, because its possible values are not real numbers. We can say that it is an
example of a qualitative (rather than guantitative) variable. It could easily be
transformed into a real random variable by defining X}, instead to be equal to
7 if the kth generated letter is the jth letter of the alphabet, for j = 1,...,26.

Question no. 54
Let X;, for i = 1,2,3, be independent random variables, each having a
uniform distribution on the interval (0, 1). Calculate
(a) E[Xl + X + X3 f X +X2],
(b) E[X1 + 31Xz | X1+ Xo + X3,
() E[V[Xy | X1 + X2 + X3]].
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Stochastic Processes

2.1 Introduction and definitions

Definition 2.1.1. Suppose that with each element s of a sample space S of
some random experiment E, we associate a function X (t,s), where t belongs
to T C R. The set {X(t,s),t € T} is called a stochastic (or random)
process.

Remarks. i) The function X (¢, s) is a random variable for any particular value
of ¢.

ii) In this book, the set T will generally be the set N® = {0,1,...} or the
interval [0, 00).

Classification of the stochastic processes

We consider the case when T is either a countably infinite set or an uncount-
ably infinite set. Moreover, the set of possible values of the random variables
X(t,s) can be discrete (that is, finite or countably infinite) or continuous
(that is, uncountably infinite). Consequently, there are four different types of
stochastic processes (s.p.).

Definition 2.1.2. If T is a countably infinite set (respectively, an interval or
a set of intervals), then {X (t,s),t € T} is said to be a discrete-time (resp.,
continuous-time) stochastic process.

Remarks. i) Except in Section 2.3, it will not be necessary to write explicitly
the argument s of the function X (¢, s). Thus, the stochastic process will be
denoted by {X(t),t € T}. However, in the discrete case, it is customary to
write {X,,n € T}.

il) We will not consider in this book the case when 7" is the union of a set of
points and of an uncountably infinite set.
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X

n o

Fig. 2.1. Example of a random walk.

Ezample 2.1.1. A classic example of a stochastic process is the one where we
consider a particle that, at time 0, is at the origin. At each time unit, a coin
is tossed. If “tails” (respectively, “heads”) is obtained, the particle moves one
unit to the right (resp., left) (see Fig. 2.1). Thus, the random variable X,
denotes the position of the particle after n tosses of the coin, and the s.p.
{Xp,n = 0,1,...} is a particular random walk (see Chapter 3). Note that
here the index n can simply denote the toss number {or the number of times
the coin has been tossed) and it is not necessary to introduce the notion of
time in this example.

Ezample 2.1.2. An elementary continuous-time s.p., {X(t),t > 0}, is obtained
by defining
X(t)y=Yt fort>0

where Y is a random variable having an arbitrary distribution.

Definition 2.1.3. The set Sx;) of values that the r.v.s X (t) can take ts called
the state space of the stochastic process {X(t),t € T}. If Sx () is finite or
countably infinite (respectively, uncountably infinite), {X (t),t € T} is said to
be a discrete-state (Tesp., continuous-state) process.

Ezample 2.1.3. The random walk in Example 2.1.1 is a discrete-time and
discrete-state s.p., since Sx, = {0,+£1,£2,...}. For the continuous time s.p.
in Example 2.1.2, it is a continuous-state process, unless Y takes on the value
0, because Sx () = [0,00) if Y > 0 and Sx ) = (—00,0] if Y < 0.

As we mentioned above, for any fixed value of ¢, we obtain a random
variable X (t) (= X(¢t,s)). Although many authors use the notation X(t) to
designate the stochastic process itself, we prefer to use the notation {X(¢t),t €
T} to avoid the possible confusion between the s.p. and the random variable.
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Definition 2.1.4. The distribution function of order k of the stochastic
process {X (t),t € T} is the joint distribution function of the random vector

(X(t1),-.., X(tx)):
Flzy, oo xrsty, ... tg) = PX(t) <z,... , X (t) <z (2.1)

Similarly, we define the probability mass and density functions of order
k of an s.p.:

T, TN, k) = PlXp, =21, Xy = Tk (2.2)
and (where the derivative exists)

ak
e Tty yte) = e F(T1, o Tt ot 2.3
flz1 Tp; 1 k) 9rr .. 9as (z1 Tkit k) (23)
Remark. When & = 1 or 2, the preceding definitions are in fact only new
notations for functions already defined in Sections 1.2 and 1.3.

Ezample 2.1.4. If the tosses of the coin are independent in Example 2.1.1,
then we may write, with p := P[{Tails}|, that the first-order probability mass
function (or probability mass function of order 1) of the process at time n = 2
is given by

2p(1-p)ifx=0

2 fx=2
plan=2) =Py =a]=¢ o ¥ 5 77
0 otherwise

First- and second-order moments of stochastic processes

Just like the means, variances, and covariances enable us to characterize,
at least partially, random variables and vectors, we can also characterize a
stochastic process with the help of its moments.

Definition 2.1.5. The mean E[X(t)] of an s.p. {X(t),t € T} at timet is de-
noted by mx (t). Moreover, the autocorrelation function and the autoco-
variance function of the process at the point (t1,t2) are defined, respectively,

by

Rx(tl,tg) = E[X(tl)X(tg)] (2.4)
and
Cx(t1,t2) = Rx(t1,t2) — mx(t1)mx(t2) (2.5)
Finally, the correlation coefficient of the s.p. at the point {t1,t2) is
Cx(t1,¢t
px(tr,b2) = x(t1,t) (2.6)

[Cx (t1,t1)Cx (2, 12)]1/2
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Remarks. i) In the case of pairs of random variables, the quantity E[XY]
is called the correlation of the vector (X,Y). Here, we use the prefix “auto”
because the function is calculated for two values of the same stochastic process
{X(t),t € T}. The function Rx y(t1,t2) := E[X(t1)Y (t2)], where {Y (t),t €
T*} is another s.p., is named the cross-correlation function, etc. In fact, we
could simply use the term correlation function in the case of the function
Rx(t1,t2).

ii) The function Rx (t,t) = E[X?(t)] is called the average power of the stochas-
tic process {X(t),t € T'}. Furthermore, the variance of the process at time ¢
is

VIX(®)] = Cx(t,1) (2.7)

Since V[X(t)] > 0, we then deduce from Eq. (2.6) that px(t,t) = 1.

Two properties of stochastic processes that will be assumed to hold true
in the definition of the Wiener! process (see Chapter 4) and of the Poisson?
process (see Chapter 5), in particular, are given in the following definitions.

Definition 2.1.6. If the random variables X (t4) — X (t3) and X (t2) — X (t1)
are independent V t; < t3 < t3 < t4, we say that the stochastic process
{X(t),t € T} is a process with independent increments.

Definition 2.1.7. If the random variables X (t2 + s) — X(t1 +s) and X (t2) —
X(t1) have the same distribution function for all s, {X(t),t € T} is said to
be a process with stationary increments.

Remarks. i) The random variables X (t5 + ) — X(t; +s) and X (t2) — X(¢1) in
the preceding definition are identically distributed. However, in general, they
are not equal.

il) The Poisson process is a process that counts the number of events, for
instance, the arrival of customers or of phone calls, that occurred in the in-
terval [0,t]. By assuming that this process possesses these two properties, we
take for granted that the r.v.s that designate the number of events in disjoint
intervals are independent, and that the distribution of the number of events
in a given interval depends only on the length of this interval. In practice,
we can doubt these assertions. For example, the fact of having had many (or

! Norbert Wiener, 1894-1964, was born in the United States and died in Sweden.
He obtained his Ph.D. in philosophy from Harvard University at the age of 18.
His research subject was mathematical logic. After a stay in Europe to study
mathematics, he started working at the Massachusetts Institute of Technology,
where he did some research on Brownian motion. He contributed, in particular,
to communication theory and to control. In fact, he is the inventor of cybernet-
ics, which is the “science of communication and control in the animal and the
machine.”

% See p. 12.
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very few) customers on a given morning should give us some indication about
how the rest of the day will unfold. Similarly, the arrival rate of customers
at a store is generally not constant in time. There are rush periods and slack
periods that occur at about the same hours day after day. Nevertheless, these
simplifying assumptions enable us, for instance, to obtain explicit answers to
problems in the theory of queues. Without these assumptions, it would be
very difficult to calculate many quantities of interest exactly.

Ezample 2.1.5. Independent trials for which the probability of success is the
same for each of these trials are called Bernoulli trials. For example, we can
roll some die independently an indefinite number of times and define a success
as being the rolling of a “6.”

A Bernoulli process is a sequence X1, X3,... of Bernoulli r.v.s associated
with Bernoulli trials. That is, X = 1 if the kth trial is a success and X =0
otherwise. We easily calculate

ElXyl=p Vke{l,2,...}
where p is the probability of a success, and

p?if ki # ko

Rx(kl,kQ) = E[Xk:lez] = { pifk = ko

It follows that Cx(k’l, kg) =0if k1 7é kg and Cx(kl, k‘z) = p(l -—p) if kl = k‘2.

Ezample 2.1.6. Let Y be a random variable having a U(0,1) distribution. We
define the stochastic process {X(¢),¢ > 0} by

X(t)=e"t fort>0

The first-order density function of the process can be obtained by using Propo-
sition 1.2.2 (see Example 1.2.6):

Flz;t) = fxp () = fy(In(z/t)) ’d_m;xi/ﬂi

1
z

1
=1 == ifze(tte)
T

Next, the mean E[X(t)] of the process at time ¢ > 0 is given by
1
EX({t)] = / eYt-1dy=t{le—-1) fort>0
0
or, equivalently, by

te
E[X(t)]:/ x~§dz=te-—t:t(e—1) fort >0
t
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Finally, we have
X)X(t+s)=e¥t-e¥ (t+s) =€ t(t+s)
It follows that
2

Rx(t,t+5) = E[X()X(t +5)] = E[e? t(t + )] = t{t +5)

V s5,t>0

2.2 Stationarity

Definition 2.2.1. We say that the stochastic process {X(t),t € T} is sta-
tionary, or strict-sense stationary (SSS), if its distribution function of
order n is invariant under any change of origin:

F(xi,...,&pitr, ... ytn) = F(x1,... ,Tn;t1 +8,... ,tn +9) (2.8)
for all s, n, and tq,... ,t,.

Remark. The value of s in the preceding definition must be chosen so that
tr+seT, fork=1,...,n. So, if T = [0, 00), for instance, then tx + s must
be nonnegative for all k.

In practice, it is difficult to show that a given stochastic process is station-
ary in the strict sense (except in the case of Gaussian processes, as will be
seen in Section 2.4). Consequently, we often satisfy ourselves with a weaker
version of the notion of stationarity, by considering only the cases where n =
1 and n = 2 in Definition 2.2.1.

If {X(t),t € T} is a (continuous) SSS process, then we may write that

flast) = fmt+s) Vst (2.9)
and
F(z1,225t1,t0) = f(x1, @25t + 5,82 +8) Vs,ty,to (2.10)

We deduce from Eq. (2.9) that the first-order density function of the process
must actually be independent of ¢:

flzt)=f(z) Vi (2.11)

Moreover, Eq. (2.10) implies that it is not necessary to know explicitly the
values of t; and t2 to be able to evaluate f(xj,z2;%1,t2). It is sufficient to
know the difference t5 — #1:

f(zr, 223t t2) = f(x1,@05t2 — 1) Vit (2.12)

In terms of the moments of the process, Eqs. (2.11) and (2.12) imply that
mx(t) is a constant and that the autocorrelation function Rx(t1,%2) is, in
fact, a function R% of a single variable: Rx (t1,t2) = R%(t2 — t1). By abuse
of notation, we simply write that Rx(t1,t2) = Rx(t2 — t1).
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Definition 2.2.2. We say that the stochastic process {X(t),t € T} is wide-
sense stationary (WSS) if mx(t) =m and

Rx(ty,t2) =Rx(ta—t1) Vi,ta €T (2.13)

Remarks. 1) Since mx(t) = m if {X(t),t € T} is wide-sense stationary, we
can also write that

Cx(tl,tg) = Rx(tl,tQ) - mlx(tl)mx(tg) = Rx(tg - tl) —m?= Cx(tg - tl)
(2.14)

Y t1,t2 € T. Similarly, we have

Cx(ta —t1)

) (2.15)

px(t1,t2) = px(t2 —t1) =
ii) By choosing t; = t, = ¢, we obtain that E[X%(¢)] = Rx(t,t) = Rx(0), for
all t € T. Therefore, the average power of a WSS s.p. does not depend on t.
iii) We often take t; = ¢ and ¢ty = t + s when we calculate the function Rx (or

Cx). If the process considered is WSS, then the function obtained depends
only on s.

iv) It is clear that an SSS stochastic process is also WSS. We will see in Section
2.4 that, in the case of Gaussian processes, the converse is true as well.

Ezxample 2.2.1. The most important continuous-time and continuous-state
stochastic process is the Wiener process, {W(t),t > 0}, which will be the
subject (in part) of Chapter 4. We will see that E[W(t)] = 0 and that

Cwl(t,t+s) = Rw(t,t+s)=0c%

where ¢ > 0 is a constant and s,t > 0. Since the function Rw (¢,t+s) depends
on ¢t (rather than on s), the Wiener process is not wide-sense stationary.

Ezample 2.2.2. The Poisson process, that we denote by {N(t),t > 0} and that
will be studied in detail in Chapter 5, possesses the following characteristics:

E[N(f)] =Xt and RN(tl,tg) = )\min{tl,tg}

for all ¢, t1, and ¢, > 0, where ) is a positive constant. It is therefore not
stationary (not even in the wide sense), because its mean depends on t. If we
define the stochastic process {X(t),t > 0} by

X{t)=—= fort>90
then the mean of the process is a constant. However, we find that we can-

not write that Rx(t1,t2) = Rx(to — t1). Consequently, this process is not
stationary either.
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Remark. By definition, the Wiener and Poisson processes have stationary in-
crements. However, as we have just seen, they are not even wide-sense sta-
tionary. Therefore, these two notions must not be confused.

Ezxample 2.2.3. An elementary example of a strict-sense stationary stochastic
process is obtained by setting

Xt)y=Y fort>0

where Y is an arbitrary random variable. Since X (t) does not depend on the
variable t, the process {X (t),t > 0} necessarily satisfies Eq. (2.8) in Definition
2.2.1.

Definition 2.2.3. The spectral density of o wide-sense stationary sto-
chastic process, {X(t),t € T}, is the Fourier transform Sx(w) of its auto-
correlation function:

Sx(w) = /00 e 7*Rx(s)ds (2.16)

—o0

Remarks. i) Inverting the Fourier transform, we obtain that
1 [ .
Rx(s) = —/ e’ Sx (w) dw (2.17)
27 J_

i) Since the autocorrelation function of a WSS process is an even function
(that is, Rx(—s) = Rx(s)), the spectral density Sx(w) is a real and even
function. We can then write that

o0 1 oo
Sx(w) = 2/ Rx(s)coswsds and Rx(s)= ;/ Sx{w) cosws dw
0 0
(2.18)
ili) It can be shown (the Wiener-Khintchin® theorem) that the spectral den-

sity Sx (w) is a nonnegative function. Actually, a function Sx{w) is a spectral
density if and only if it is nonnegative.

Suppose now that the following relation holds between the processes
{X(@),teT}and {Y(t),t €T}

Y(t) = X(8) » h(t) = /_ " X(t - $)h(s)ds (2.19)

3 Aleksandr Yakovlevich Khintchin, 1894-1959, was born and died in Russia. He
contributed in a very important way to the development of the theory of stochas-
tic processes. He was also interested in statistical mechanics and in information
theory.
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Remark. We can interpret the process {Y(t),t € T} as being the output of
a linear system whose input is the process {X(t),t € T'}. We write Y (t) =
LiX(@#)]-

We assume again that {X(t),t € T} is stationary in the wide sense. If
E[X(t)] = 0, we can show that {Y(¢),t € T} is a WSS process with zero
mean and such that

Sy (w) = Sx (@) [ H()? (2.20)
where
H(w) = / ” e I h(s)ds (2.21)
We also have h
B = Ry )= - [ Sx@IH@Pds (0) @2

2.3 Ergodicity

In statistics, to estimate an unknown parameter of a distribution function, for
example, the parameter A of an r.v. X having a Poi(\) distribution, we draw
a random sample of X. That is, we take n observations, Xi,...,X,, of X
and we assume that the X;’s have the same distribution function as X and
are independent. Next, we write that the estimator A of A (which is the mean
of the distribution) is the arithmetic mean of the observations. Similarly, to
estimate the mean mx(t) of a stochastic process {X(t),t € T'} at time t, we
must first take observations X (¢, sk) of the process. Next, we define

x (2) = %Z X(t, 5¢) (2.23)
k=1

Thus, we estimate the mean mx (t) of the s.p. by the mean of a random sample
taken at time ¢. Of course, the more o/bgmvations of the process at time ¢t we
have, the more precise the estimator mx (¢) should be. Suppose, however, that
we only have a single observation, X (¢, s1), of X(t). Since we cannot estimate
mx(t) in a reasonable way from a single observation, we would like to use
the values of the process for the other values of ¢ to estimate mx(¢). For this
to be possible, it is necessary (but not sufficient) that the mean mx(t) be
independent of t.

Definition 2.3.1. The temporal mean of the s.p. {X(t),t € R} is defined
by

S
(X(t))s = 515-, /_ X(t,s) e (2.24)
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Remarks. 1) In this section, we will suppose that the set T is the entire
real line. If T = [0, 00), for example, we can modify the definition above.
Moreover, in the discrete case, the integral is replaced by a sum. Thus, when
T = {0,£1,+2,...}, we can write that

Kol = e 3 X (8) (2.25)

where N is a natural number.

i) We call a realization or trajectory of the process {X(t),t € T} the graph
of X(t, s) as a function of ¢, for a fixed value of s.

Definition 2.3.2. The stochastic process {X (t),t € T} is said to be ergodic
if any characteristic of the process can be obtained, with probability 1, from a
single realization X (t,s) of the process.

A stochastic process can be, in particular, mean ergodic, distribution er-
godic (that is, ergodic with respect to the distribution function), correlation
ergodic (with respect to the correlation function), etc. In this book, we will
limit ourselves to the most important case, namely, the one where the process
{X(t),t € T} is mean ergodic (see also p. 72).

Definition 2.3.3. An s.p. {X(t),t € T} for which mx(t) = mVteTis
called mean ergodic if

P [SILH;O (X(t)s = m] =1 (2.26)

Now, the temporal mean, (X(t))s, is a random variable. Since

S S
E[(X(t))s]= 515 /_S E[X(t,s)]dt = QlS— /_Smdt =m (2.27)

we can state that Eq. (2.26) in the definition above will be satisfied if the
variance V{(X(t))s] of the temporal mean decreases to 0 when S tends to
infinity. Indeed, if limg_,o, V(X (t)}s] = 0, then (X (t)) s converges to its mean
value when S tends to infinity. To calculate the variance V[(X(t))s], we can
use the following proposition.

Proposition 2.3.1. The variance of the temporal mean of the stochastic pro-

cess {X(t),t € T} is given by

S S
VIX(D)s] = 753 / ) / Cx(tnt) dnd (2.28)
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Corollary 2.3.1. If the process {X(t),t € T'} is wide-sense stationary, then
we may write that

28 s
VK@) = 55 [ oxto|1- 2] s (229)

Often, it is not necessary to calculate V(X (t))s] to determine whether
the stochastic process {X(t),t € T'} is mean ergodic. For example, when the
process is WSS, we can use either of the sufficient conditions given in the
following proposition.

Proposition 2.3.2. The WSS s.p. {X(t),t € T'} is mean ergodic if

Cx(0)<oo and lim Cx(s)=0 (2.30)

[s]—o0

or if its autocovariance function Cx(s) is absolutely integrable, that is, if

/—OO [Cx(s)|ds < o0 (2.31)

Ezample 2.3.1. The elementary stochastic process defined in Example 2.2.3 is
strict-sense stationary. However, it is not mean ergodic. Indeed, we have

S
(X(t))s = %/_SYdt ~Y

Thus, we may write that V[(X(t))s] = V[Y]. Now, if Y is not a constant, the
variance VY] is strictly positive and does not decrease to 0 when S tends to
infinity (since VY] does not depend on S). Therefore, an arbitrary stochastic
process can be mean ergodic without even being WSS (provided that mx (t)
is a constant), and a strict-sense stationary process is not necessarily mean
ergodic.

Example 2.3.2. As will be seen in Chapter 5, the s.p. {X(t),t € T'} called the
random telegraph signal, which is defined from a Poisson process, is zero mean
and its autocovariance function is given by

CX(S) - 6—2)\131

where A is a positive constant. Using the conditions in Eq. (2.30), we can state
that the process is mean ergodic. Indeed, we have

Cx(0)=1<oo and lim Cx(s)= lim e~2Msl _

|s]|—00 |s] =00

Actually, we also have
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/ {Cx(s)lds:Q/ e P ds = ! <o
0 A

—0o0

Remarks. i) It is important to remember that the conditions in Proposition
2.3.2 are sufficient, but not necessary, conditions. Consequently, if we cannot
show that the process considered is mean ergodic by making use of this propo-
sition, then we must calculate the variance of the temporal mean and check
whether it decreases to 0 or not with S — oo.

ii) It can be shown that the random telegraph signal is an example of a strict-
sense stationary stochastic process. Therefore, we can calculate the variance
V(X (t))s] by using the formula (2.29):

S

VIX(@)s) = og /025 e [1- 2] ds

The integral above is not difficult to evaluate. However, here, it is not even
necessary to calculate it explicitly. It is sufficient to replace the expression
between the square brackets by 1, because this expression is comprised of
values between 0 and 1 when s varies from 0 to 2S. It follows that

1_ 48
VIIX®)s] < —55g
Finally, we have
1_ 428
Jim VIX@)s] < Jim —555— =0

Since the variance V[(X(t))s] is nonnegative, we can conclude that
lim V[(X(t))s] =0,
S—oo

which confirms the fact that the random telegraph signal is mean ergodic.

2.4 Gaussian and Markovian processes

The bivariate normal distribution was defined in Example 1.3.6. The general-
ization of this distribution to the n-dimensional case is named the multinormal
distribution.

Definition 2.4.1. We say that the random wvector (X1, ... , X, ) has a multi-
normal distribution if each random variable X, can be expressed as a linear
combination of independent random variables Z1,. .. , Zn,, where Z; ~ N(0, 1),
forj=1,...,m. That is, if

Xi=pmr+ Y cgjZ fork=1,...,n (2.32)
j=1

where py is a real constant, for all k.
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Just as a Gaussian distribution N(y,0?) is completely determined by its
mean yu and its variance o2, and a bivariate normal distribution by its pa-
rameters px, 4y, 03(, cr%, and p, the joint density function of the random
vector X = (Xj,...,X,) is completely determined by the vector of means
m = (ux,,...,Mx,) and the covariance matriz K, where

V[Xi] Cov[Xi,Xs] ... Cov[X1, Xy)

CovlXs, X1] V[Xs] ...Cov[Xs, X,]

K := (2.33)

Cov[X,,X1] Cov[X,, Xo] ... VI[X,]

By analogy with the one-dimensional case, we write that X ~ N(m, K).

The matrix K is symmetrical, because Cov[X,Y] = Cov[Y, X], and non-
negative definite:

n n
> ciekCov[X;, Xi] >0 Veicr €R (2.34)

i=1 k=1
If, in addition, it is nonsingular, then we may write that

1

1
Fx(x) = (27)"2 (det K)

1 -
775 XD {——2—(x —m)K 1 (xT — mT)} (2.35)
for x := (x1,...,2,) € R™, where “det” denotes the determinant and T
denotes the transpose of the vector.

Proposition 2.4.1. Let X ~ N(m,K). The joint characteristic function of
the r.v. X:

dx(wi,... ,wp) = Elexp{j(w1 X1+ ... +wpXn)} (2.36)
is given by
' n 1 n n ‘ . 1 r
¢x(w) = expej > px,wi— = Ouwiwg ¢ = exp { jmw’ — ~wKw
i=1 2 i=1 k=1 2
(2.37)
where o5, := Cov[X;, Xi} and w := (wy, ... ,wy).

Proof. We use the fact that any linear combination of Gaussian random
variables also has a Gaussian distribution. More precisely, we can write that

Yi=wiXi+...+wnXn ~ N(uy,0%) (2.38)

where
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n T n
py = ZwiNXi and o%, = ZZwiwkaik (2.39)

i=1 i=1 k=1

We obtain the formula (2.37) by observing (see Table 1.1, p. 19) that

bx(w) = E&¥] = éy(1) = exp (juy - %oi) o (240)

Properties. i) If Cov[X;, Xx] = 0, then the random variables X; and X are
independent.

iy IfY;, fori=1,...,m, is a linear combination of the random variables X},
of a random vector (X1,...,X,) having a multinormal distribution, then the
rv. (Y1,...,Y,,) also has a multinormal distribution.

Example 2.4.1. Let X = (X4,...,X,) be a random vector having a multinor-
mal distribution N(0,1,,), where 0 := (0,... ,0) and I,, is the identity matriz
of order n. Thus, all the random variables X} have a standard Gaussian dis-
tribution and are independent (because o;; = 0V i # j). It follows that the
mathematical expectation of the square of the distance of the vector X from
the origin is

n n
EX?+X3+...+ XY= EX}'S Y 1=n
k=1 k=1

and the variance of the squared distance is

VIX2+ X3+ + X2 S vixyE Y 2=on
k=1 k=1

because if Z ~ N(0,1), then we have
d4
(4D —w/2 —
BZ) = (=)' 7| __

so that V[Z% =3 -12 =2.

Definition 2.4.2. A stochastic process {X(t),t € T} is said to be a Gaus-
sian process if the random vector (X (t1),... ,X(tn)) has a multinormal dis-
tribution, for any n and for all ty,... ,t,.

Remark. Let X be a random variable whose distribution is N(ux,0%). Any
affine transformation of X also has a Gaussian distribution:

Y:=aX+b = Y ~N(aux +b,a’0%) (2.41)
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Similarly, any affine transformation of a Gaussian process remains a Gaussian
process. For example, if {X(t),t € T} is a Gaussian process, then the s.p.
{Y(t),t € T} defined by

Y(t)=2X(t) -1 or Y(t)=X(t%) (2.42)
is Gaussian as well. We can also show that {Y'(¢),t € T’} is a Gaussian process
if

¢
Y(t) = / X(s)ds (2.43)
0

because an integral is the limit of a sum. However, the process is not Gaussian
if
Y(t)=X2%(t) or Y(t)=e® (2.44)

etc.

Proposition 2.4.2. If a Gaussian process {X(t),t € T} is such that its mean
mx(t) is a constant mx and if its autocovariance function Cx (t,t+s) depends
only on s, then it is stationary (in the strict sense).

Proof. Since the nth-order characteristic function of the s.p. {X(t),t € T} is
given by [see Eq. (2.37)]

n n n n
. , 1
P [exp {J zwim}] - {]mx RITEED 3 SN tmwk}
i=1 i=1 i=1 k=1
(2.45)
we can assert that the statistical characteristics of a Gaussian process de-

pend only on its mean and its autocovariance function. Now, we see that the
function above is nvariant under any change of time origin. O

Remark. The preceding proposition means that a wide-sense stationary Gaus-
sian process is also strict-sense stationary.

Definition 2.4.3. An s.p. {X(t),t € T} is said to be Markovian if
P[X(tn) < | X(t),t < tn—l] = P[X(tn) <z, X(tn—l)] (2.46)
where t,_1 < t,.

Remarks. i) We say that the future, given the present and the past, depends
only on the present.

il) If {X(t),t € T} is a discrete-state process, we can write the formula (2.46)
as follows:
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P[Xt+s =] | Xt = ’i,Xt" = in,. .o ,th = ’1;1] = P[Xt+s =] | Xt = Z] (247)
for all states 1,...,%n,1,5, and for all time instants t; < ... < t, <t and

s> 0.

iii) The random walk considered in Example 2.1.1 is a typical example of a
Markovian process, which follows directly from the fact that we assume that
the tosses of the coin are independent.

A Markovian, continuous-time, and continuous-state stochastic process,
{X(t),t € T}, is completely determined by its first-order density function:

flast) = —-PIX(0) <4] (2.48)
and by its conditional transition density function, defined by
p(x,T0;t,t0) = Fx(e))xte) (T | o) (2.49)
_ gﬂ% P[X(t) e (a:,w-lc—l;lz] | X(to) = x) for t >t

Since the process must be somewhere at time £, we have

o0 o]
/ flz;t)de =1 and / p(z, To;t, tg)dx =1 (2.50)
oo oo

Moreover, by conditioning on all possible initial states, we may write that
oo
$@6) = [ Flaosta)pla,moityto) oo (2.51)
—00

Similarly, we deduce from the Chapman®-Kolmogoror® equations (see
Chapter 3) that

o0

p(l’,l‘o;t,to) =/ . p(xvxl;tvtl)p(‘z‘hx@;tl’to)d‘rl (252)

-0

where to < t1 < t. Finally, since at the initial time the distribution of the
process is deterministic, we also have

4 Sydney Chapman, 1888-1970, was born in England and died in the United States.
He is especially known for his work in geophysics. One of the craters of the moon
is named after him.

® Andrei Nikolaevich Kolmogorov, 1903-1987, was born and died in Russia. He was
a great mathematician who, before getting his Ph.D., had already published 18
scientific papers, many of which were written during his undergraduate studies.
His work on Markov processes in continuous time and with continuous-state space
is the basis of the theory of diffusion processes. His book on theoretical probability,
published in 1933, marks the beginning of modern probability theory. He also
contributed in an important way to many other domains of mathematics, notably
to the theory of dynamical systems.
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Plftﬂp(l"» To; t,to) = 6(z — To) (2.53)
14

where &(-) is the Dirac® delta function defined by

5(z) = { O% i . i 8 (2.54)
so that
/00 0{z)de =1 (2.55)

Definition 2.4.4. The infinitesimal mean m(z;t) and the infinitesimal
variance v(z;t) of the continuous-time and continuous-state stochastic pro-
cess {X(t),t € T} are defined, respectively, by

m(ait) = lim }G—E[X(t +e)—X() | X(t) = o] (2.56)
and

i) = lim %E[(X(t +e)— X(8)* | X(2) = 2] (2.57)

Remarks. 1) We can also obtain m(z;tp) and v(zg;to) as follows:

m(zosto) = Him = BIX(8) | X(to) = o (2.58)
and
v(zo;to) = %lllg} %V[X(t) | X(to) = zo] (2.59)

ii) Suppose that the process {X(t),t € T} has infinitesimal moments m(z;t)
=m(z) V t and v(z;t) = v(z) and that its state space is the interval [a, b] (or
[a,b), etc.). Let

Y({#):=9¢[X(#)] forteT (2.60)

If the function g is strictly increasing or decreasing on the interval [a,b] and
if the second derivative g”(z) exists and is continuous, for @ < < b, then

6 Paul Adrien Maurice Dirac, 1902-1984, was born in England and died in the
United States. He was a physicist whose father was a French-speaking Swiss. He
won the Nobel Prize for physics in 1933 for his work on quantum mechanics. He
was a professor at the University of Cambridge for 37 years.
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we can show that the infinitesimal moments of the process {Y(t),t € T} are
given by

my () = m(@)d (@) + 50(2)g" (2) (261)
and

vy (y) = v(z)[g'(2))? (2.62)
where z = g~!(y). Moreover, the state space of the process is the interval
lg(a), g(b)] (respectively, [g(b), g(a)]) if g is strictly increasing (resp., decreas-
ing).

It can be shown that the function p(z, zg;t,to) satisfies the following par-
tial differential equations:

op 0 1 92
. _ =7 . = 2.63
%+ Lt ypl - Loty =0 (2.69)
and
dp op 1 0%p
. pa— * — 2~64
ET™ + m(mo,to)——axo + QU(iEo,to) 22 0 (2.64)

These equations are called the Kolmogorov equations or the diffusion equa-
tions. The first one is the Kolmogorov forward equation (or Fokker”-Planck®
equation), and the second one is the Kolmogorov backward equation.

Definition 2.4.5. If the function p(z,zo;t,te) depends only on (x, z¢ and)
the difference t — tg, the stochastic process {X(t),t € T} is said to be time-
homogeneous.

Remarks. 1) If the s.p. {X(¢),t € T} is time-homogeneous, then the functions
m(z;t) and v(z;t) do not depend on t.

ii) Note that a time-homogeneous s.p. is not necessarily (wide-sense) station-
ary, because the function f(z;t) may depend on the variable ¢. On the other
hand, if f(x;t) = f(z), then the process is strict-sense stationary, because it
is completely determined by f(r;t) and p(z, ze;t,to).

Definition 2.4.6. A stochastic process {B(t),t > 0} is called a white noise
(process) if its mean is equal to zero and if its autocovariance function is of
the form

Cplty,t2) = q(tl)é(tz - tl) (2.65)
where q(t1) > 0 and §(-) is the Dirac delta function (see p. 63).
7 Adriaan Daniél Fokker, 1887-1972, was born in Indonesia and died in the Nether-
lands. He was a physicist and musician. He proved the equation in question in
1913 in his Ph.D. thesis.

8 Max Karl Ernst Ludwig Planck, 1858-1947, born and died in Germany, was a
renowned physicist famous for the development of quantum theory.
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Remark. Actually, {B(t),t > 0} is not a stochastic process in the proper sense
of the term.

Finally, the following important result can be shown.

Proposition 2.4.3. A Gaussian and stationary process, {X(t),t € T}, is
Markovian if and only if its autocorrelation function is of the form

Rx(s) = g%ebl (2.66)
where a and o are positive constants.

Ezample 2.4.2. The Wiener process {W(t),t > 0} (see Example 2.2.1) is such
that E[W(t) | W(te) = wo] = wg and V[W(t) | W(ty) = wo] = o2(t — to).
It follows that its infinitesimal mean and variance are given by m(w;t) =
0 and v(w;t) = o%. Therefore, the conditional transition density function
plw, wp; t, ty) satisfies the Kolmogorov forward equation

We can check that W(t) | {W(ty) = wp} has a Gaussian distribution with
parameters wo and o?(t — to). That is, the function p(w, wo;t,to) given by
1 (w — wp)?

————————exp<{ —= for t > to
2mo2(t — tg) P { 2 0%(t —to) }

p(w,wost, tg) =

is a solution of the partial differential equation above. Moreover, we have

hmp(w, u)O;t»tO) = (S(’U) - w())
tlto

as required.

2.5 Exercises

Section 2.1

Question no. 1
We define the stochastic process {X(t),¢ > 0} by

Xt)y=eYt fort>0
where Y is a random variable having a uniform distribution on the interval
(0,1). Calculate
(a) the first-order density function of the process {X(¢t),t > 0},
(b) E[X(t)], for t > 0,
(c¢) Cx (t,t+ s), where s,t > 0.
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Question no. 2

Let {X,,n = 1,2,...} be a Bernoulli process. That is, the random vari-
ables X1, X5,... are independent and all have a Bernoulli distribution with
parameter p. Calculate

(a) the particular case p(0,1;n; = 0,n2 = 1) of the second-order probability
mass function of the process,

(b) the correlation coefficient px(n,m) of the process if p = 1/2 and n,m €
{1,2,...}.

Question no. 3
Calculate the first-order density function of the s.p. {X(t),t > 0} defined
by
X(t)=tY +1

where Y is a random variable having a U(0, 1) distribution.

Question no. 4
We define the stochastic process {X(¢),t > 0} by

X(t)z% fort >0

where Y has a uniform distribution on the interval (0,2). Calculate the func-
tion f(z;t), for z > t/2.

Question no. 5

We consider the process {X(t),t > 0} defined by X(t) = (tanY)t, for
t > 0, where Y is a random variable having a uniform distribution on the
interval (—m/2,7/2). Calculate the probability P[3 ¢t € (0,1): X(t) ¢ [0,1]].
In other words, calculate the probability that the process {X(t),t > 0} leaves
the interval [0, 1] between 0 and 1.

Indication. It can be shown that the r.v. W := tanY has the following density
function: )
= f eR
fww) = oy forw
That is, W has a Cauchy® distribution, or a Student'® distribution with one
degree of freedom.

9 Augustin Louis Cauchy, 17891857, was born and died in France. He is considered
the father of mathematical analysis and the inventor of the theory of functions
of a complex variable.

10 Pseudonym of William Sealy Gosset, 1876-1937, who was born and died in En-
gland. He worked as a chemist for the Guinness brewery, in Ireland, where he
invented a statistical test for the control of the quality of beer. This test uses the
distribution that bears his name.
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Question no. 6
Are the increments of the stochastic process {X(t),t > 0} defined in Ex-
ample 2.1.6 independent? stationary? Justify.

Question no. 7

(a) Find the autocorrelation function of the process {X(t),t > 0} defined by
X(@t)=1ifY >tand X(t) =0if Y < ¢, where Y is a random variable having
a U(0, ¢} distribution.

(b) Calculate Rx(t1,t2) in (a) if X(t) = 6(Y — ¢) instead, where d(-) is the
Dirac delta function.

Question no. 8

We consider the process {X(t),t > 0} defined by X(t) = e~ Y?, for t > 0,
where Y is a continuous random variable whose density function is fy(y), for
y=0.

(a) Find f(z;t) in terms of fy (y).
(b) Calculate E[X(t)] and Rx(t1,t2) when Y has an exponential distribution
with parameter 1.

Question no. 9
Let

X(t):/ot [/OSB(T)dT] ds fort>0

where {B(t),t > 0} is the white noise process defined on p. 64. What is the
average power of the stochastic process {X(t),t > 0}?

Section 2.2

Question no. 10
Is the stochastic process { X (t),t > 0} defined in Question no. 1 wide-sense
stationary? Justify.

Question no. 11
Let {X (t),t > 0} be a stochastic process whose autocorrelation and auto-
covariance functions are

Rx(t1,t2) = e lti—tal +1 and Cx(ti1,t2) = e~lti—tal

Is the process wide-sense stationary? Justify.

Question no. 12
Let {X(t),t > 0} be a wide-sense stationary stochastic process, with zero
mean and autocorrelation function given by Rx(s) = e~lsl. We define

Y(t) =tX?(1/t) fort >0

Is the stochastic process {Y (t),t > 0} wide-sense stationary? Justify.
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Question no. 13
We consider a stochastic process {X (¢),¢ > 0} for which

1
and Rx(ty,tp) = ————— +4

Cx(t1,t2) = T Ta—ti+1

[ta —t1] +1
Is the process wide-sense stationary? Justify.

Question no. 14
Let Y be a random variable having a uniform distribution on the interval
(—1,1). We consider the stochastic process {X(t),t > 0} defined by

Xt)=Y3 fort>0

Is the process stationary? J ustify.

Question no. 15
Let Y be a random variable such that ¢y (1) = 2¢y(—1) and ¢y (2) =
4¢y (—2), where ¢y (-) is the characteristic function of Y. We set

X(t)=cos(wt+Y) fort>0

Show that the stochastic process {X(t),t > 0} is wide-sense stationary.
Indication. We have the following trigonometric identity:

1
cos(wty + s) cos(wty + 8) = 3 {cosw(ty — t2) + cos(wty + wip +2s)}

Question no. 16
We set
Y(t)=X(t+1)—-X(t) forteR
where {X(t),t € R} is a wide-sense stationary stochastic process. Find the

spectral density of the process {Y(t),t € R} in terms of Sx(w).

Question no. 17
Consider the wide-sense stationary process {X(t),t € R} whose spectral
density is Sx(w) = 2/(1 + w?). We set
t+1
Y{t) = X(s)ds forteR

t—1

Calculate Sy (w).
Indication. Write Y (t) in the form

Y(t) = /_00 h(t — s)X(s)ds

for an appropriately chosen function h.
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Question no. 18
We consider the random variable Y (t) defined by Eq. (2.19). Calculate the
mean of X (¢)Y(t) if {X(t),t € T} is a white noise process.

Section 2.3

Question no. 19
Are the stochastic processes defined in Questions nos. 11, 12, and 13 mean
ergodic? Justify.

Question no. 20
Is the Bernoulli process defined in Example 2.1.5 mean ergodic? Justify.

Question no. 21
We define X (t) = m+B(t), for t > 0, where m is a constant and {B(t),t >
0} is a white noise process, so that E[B(t)] = 0 and

Cg(t1,t2) = q(t1) 6(t2 —t1)

where §(-) is the Dirac delta function. Show that the process {X(t),t > 0} is
mean ergodic if the function ¢ is bounded.

Question no. 22
Let {X(t),t > 0} be a wide-sense stationary stochastic process, with zero
mean and for which
Rx(s) = e~®ll cos 2nws

where a and w are positive constants. Is this process mean ergodic? Justify.

Question no. 23
The stochastic process {X (t),t > 0} is defined by

X(t) =Y + B(t)

where Y ~ N(0,1) and {B(t),t > 0} is a white noise process whose autocor-
relation function is Rp(s) = c¢d(s), with ¢ > 0. We assume that the random
variable Y and the white noise are independent. Is the process {X (t),t > 0}

(a) wide-sense stationary?
(b) mean ergodic?
Question no. 24
Let {B(t),t > 0} be a white noise process for which the function ¢(t;) is
a constant ¢ > 0. Calculate the variance of the random variable
1 T

IT = ﬁ _TB(t) dt
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Question no. 25

The standard Brownian motion is the particular case of the Wiener process
{W(t),t > 0} (see Example 2.2.1) for which E[W(t)] = 0 and Cw (t1,t2) =
min{tl, tz}.
(a) Calculate V[(W(t))s].

(b) Is the process mean ergodic? Justify.

Section 2.4

Question no. 26

Let (Xi,...,X,) be a random vector having a multinormal distribution
for which m = (0,... ,0) and the covariance matrix K is the identity matrix
of order n (> 4).
(a) Calculate the characteristic function of Y := X7 + Xo.
Reminder. The characteristic function of a random variable X having a Gaus-
sian N(u, 0?) distribution is given by ¢x (w) = exp (juw — Jo%w?).
(b) Does the random vector (Y, Z), where Z := X3 — X4, have a bivariate
normal distribution? If it does, give its five parameters; otherwise, justify.

Question no. 27
Let {X(t),t > 0} be a Gaussian process such that E[X (t)] = ut, fort >0,
where u is a nonzero constant, and

Rx(t,t +s) =2t + p’t(t +s) fors,t>0
We define Y (¢) = X (t) — pt, for t > 0. Is the process {Y (¢),t > 0} stationary?
Justify.

Question no. 28
We consider a Gaussian process {X(t),t > 0} for which E[{X(t)] = 0 and
whose autocovariance function is

Cx(t,t+s)=¢ " fors,t>0
Let Y (t) := X2(t), for t > 0. Is the stochastic process {Y (¢),t > 0} (a) sta-
tionary? (b) mean ergodic? Justify.

Question no. 29

Let {Xn,n =1,2,...} be a discrete-time and discrete-state process such
that
PXpi1=37|Xn=1,Xn1=tn-1,..., X1 =11]

= PXpt1 =7 | Xn =1, Xn_1 = in-1]

for all states 41,... ,%n—1,1,j and for any time instant n. This process is not
Markovian. Transform the state space so that the process thus obtained is
Markovian.
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Question no. 30
Suppose that {X(t),t > 0} is a Gaussian process such that

E[X(t) | X(to) =z0] =20 and VIX(£) | X{to) =z0] =¢ ¥t >0
Let
Y(t):=eX® fort>0

(a) Calculate the infinitesimal parameters of the process {Y(t),t > 0} by
using the formulas (2.56) and (2.57).

(b) Check your results with the help of the formulas (2.58) and (2.59).

Question no. 31
Find a solution of the Fokker—Planck equation

op 8 1 92
% o) " 3=

where p € R and ¢ > 0 are constants, for which

(6%p) =0 (for z € R and t >ty > 0)

lim p(z, zo;t, t0) = 8(x — To)
tito

Indications. i) Try the density function of a Gaussian distribution as a solution.

ii) We can take the Fourier transform (with respect to z) of the equation and
then invert the solution of the ordinary differential equation obtained. We
have

lim p(x,z0;t,t0) =0

x—+00
which implies that

. 0
z-l—I»I:Eoo . (z,x0;t,t0) =0

as well.
Question no. 32
Let {X(¢),t € R} be a wide-sense stationary Gaussian process, with zero

mean and Ry (s) = 2¢~45l. We define Y = X (¢t +s) and Z = X(t —s), where
s> 0.

(a) What is the distribution of the random variable X (¢)7?
(b) Calculate the mean of Y Z.
(c) Calculate the variance of Y + Z.

Question no. 33
The Gaussian process {X(¢),¢ > 0} is such that E[X(t)] =0V t and

Rx(t1,ts) = cle—Czlh—tzl

where ¢1,c¢y > 0.
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(a) Show that the stochastic process {X(¢),t > 0} is stationary and mean
ergodic.

(b) We define the process {Y (¢),t > 0} by

1if X(¢) <
Y = {0 if X(£) > .

We then have E[Y ()] = F(z;t). If the process {X(t),t > 0} is stationary,
we may write that F(z;t) = F(x). We say that the s.p. {X(t),t > 0} is
distribution ergodic if {Y'(t),t > 0} is mean ergodic. Is the stochastic process
{X(t),t > 0} distribution ergodic?

(c) When the process {X(t),t > 0} is stationary, we also define the process
{Zs(t),t > 0} by Z,(t) = X (t) X (t+s), where s > 0. It follows that E[Z,(t)] =
Rx(s). We say that the s.p. {X(t),t > 0} is correlation ergodic if { Z,(t),t > 0}
is mean ergodic. Can we assert that {X(¢),¢ > 0} is correlation ergodic?

Question no. 34
Suppose that {X(t),t € R} is a stationary Gaussian process such that

Cx(s)=Rx(s) =e 2 forseR

(a) What is the distribution of X (£)? Justify.
(b) We define the random variable

Y(#)=9X(@)]+1
where &(-) is the distribution function of the N(0,1) distribution. That is,

&(z) := P[N(0,1) < z]. What is the distribution of Y (¢)? Justify.
Indication. The inverse function ! exists.

Question no. 35
Let {X(t),t € R} be a stationary Gaussian process whose autocovariance

function is 1 (Jsl/2)] if 8] < 2
41— (Js|/2)] if Js| <
CX(S)z{ 0 if]s|>2
Is the stochastic process {X (t),t € R}
(a) mean ergodic?
(b) distribution ergodic (see Question no. 33)? Justify.
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Markov Chains

3.1 Introduction

The notion of a Markovian process was seen in Section 2.4. In the general
case, the stochastic process {X(t),t € T'} is said to be Markovian if

PlX(tnt1) € Al X(t) = 4, t <tp) = P[X(tng1) € A| X(tn) = 71,]  (3.1)

for all events A and for all time instants ¢, < t,41.

Equation (3.1) means that the probability that the process moves from
state x;,, where it is at time ¢,, to a state included in A at time t,11 does not
depend on the way the process reached x;, from x;,, where ty is the initial
time (that is, does not depend on the path followed by the process from zy,
to z¢, ).

In this chapter, we will consider the cases where {X (t),t € T’} is a discrete-
time process and where it is a continuous-time and discrete-state process.
Actually, we will only mention briefly, within the framework of an example,
the case of discrete-time and continuous-state processes.

When {X,,n=0,1,...} is a discrete-time and discrete-state process, the
Markov property implies that

P[Xn-f-l :j!Xn:ivXn—l =lp_1,... 7XO:i0]:P[Xn+1 :]]Xn:l]

(3.2)
for all states ig,... ,%,-1,4, 7, and for any time n. We also have
P[Xn-H =j l Xn—1 =in-1,Xpn-2 =1ln-2,... , X0 = iO]
= P[Xn+1 =7 [ KXn-1= Z‘n—l] (33)

etc., which means that the transition probabilities depend only on the most
recent information about the process that is available.
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Remark. We call a Markov chain a discrete-time process that possesses
the Markov property. Originally, this expression denoted discrete-time and
discrete-state Markovian processes. However, we can accept the fact that
the state space of the process may be continuous. By extension, we will call
a continuous-time Markov chain a discrete-state (and continuous-time)
Markovian stochastic process. Discrete-time and continuous-time Markov
chains will be studied in Sections 3.2 and 3.3, respectively.

We can generalize Eq. (3.2) as follows.

Proposition 3.1.1. If the discrete-time and discrete-state stochastic process
{Xn,n=0,1,...} possesses the Markov property, then

P[(Xn+1,Xn+2,...) €B | X =ip, Xpo1 =tpn—1,--. ,Xo= io]
= P[(Xn+1,Xn+2, .. ) €B | X, = ’Ln] (34)

where B is an infinite-dimensional event.

Remark. For example, by using the fact that
P[AnNBNnC] P[AnBNC]PBNC|
P[C] ~ P[BNC(] P[C]
— P[A| BN C|P|B| C] (3.5)

Pl[ANB|C] =

we can easily show that

P[(Xn+laXn+2) = (in+17in+2) l Xn - ian—l = 'i'n—l’ R ’XO = iO]
- P[(Xn+1’Xn+2) = (in+1ain+2) | Xn = Zn] (36)

We now give several examples of discrete-time and continuous-time Markov
chains.

Ezample 3.1.1. One of the simplest, but not trivial, examples of a Markovian
process is that of the random walk (see p. 48). We can generalize the random
walk as follows: if the particle is in state ¢ at time n, then it will be in state
J at time n 4- 1 with probability

pifj=i+1
. . ifj=i-1
PlFurs =31 %o =i = | 157

0 otherwise

where p, ¢, and r are nonnegative constants such that p + ¢ + r = 1. That
is, we add the possibility that the particle does not move from the position it
occupies at time n.

Another way of generalizing the random walk is to assume that the prob-
abilities p and ¢ (and r in the case above) may depend on the state i where
the particle is. Thus, we have
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pifj=i4+1
PXpi=jlXp=dl=d qifj=i-1 (3.7)
0 otherwise

and p; +¢; = 1, for any ¢ € {0, £1,42,... }.

Finally, we can generalize the random walk to the d-dimensional case,
where d € N. For example, a two-dimensional (d = 2) random walk is a
stochastic process {(Xy,Ys),n = 0,1,...} for which the state space is the set

Sixu vy = {(0,4): 4,5 € {0,£1,£2,...}}

and such that
P[(Xn-{-layn-i—l) = (in+17jn+1) I (Xnyyn) - (Zn»]nﬂ

Y41 if in—}-l =iy + 1»jn+1 = ]n
D2 if Ingl = invjn-f—l =Jn+1
=¢ qif in+1 =1y — Ljnt1 = Jn

g2 ifiny1 = tn,fn1 =Jn—1

0 otherwise
where p1 +p2 + @1 + ¢ =1 (and p; > 0 and ¢; > 0, for i = 1,2). Thus, the
particle can only move to one of its four nearest neighbors. In three dimensions,
the particle can move from a given state to one of its six nearest neighbors [the
neighbors of the origin being the triplets (£1,0,0), (0,£1,0) and (0,0, £1)],
etc.

Ezample 3.1.2. An important particular case of the random walk having the
transition probabilities given in Eq. (3.7) is the one where
N —4 i

D; = N and q@'zﬁ

If we suppose that the state space is the finite set {0,1,..., N}, then we can
give the following interpretation to this random walk: we consider two urns
that contain N balls in all. At each time unit, a ball is taken at random from
all the balls and is placed in the other urn. Let X, be the number of balls in
urn I after n shifts. This model was used by Paul and Tatiana Ehrenfest! to
study the transfer of heat between the molecules in a gas.

Ezample 3.1.3. Suppose that we observe the number of customers that are
standing in line in front of an automated teller machine. Let X, be the number
of customers in the queue at time n € {0,1,...}. That is, we observe the
system at deterministic time instants separated by one time unit, for example,

! Paul Ehrenfest, 1880-1933, born in Austria and died in the Netherlands, was
a physicist who studied statistical mechanics and quantum theory. His wife, of
Russian origin, was Tatiana Ehrenfest-Afanaseva, 1876-1964. She was interested
in the same subjects.
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every hour, or every 10 minutes (a time unit may be an arbitrary number of
minutes), etc. Suppose next that if a customer is using the teller machine at
time n, then the probability that he is finished before time n+1 is ¢ € (0,1).
Finally, suppose that the probability that k customers arrive during a time
unit is given by

for k=0,1,... and for any n € {0,1,...}. That is, the number Y, of arrivals
in the system in the interval [n, n+1) has a Poisson distribution with parame-
ter A Vn. Thus, we may write that X, = X, + Y, with probability p=1—¢
and Xp41 = (X, — 1) +Y, with probability q. We find that {X,,n =0,1,...}
is a (discrete-time and discrete-state) Markov chain for which the transition
probabilities are

k )\k+1

A
Y .Y o )
pe E!-+qe mﬂj—z—i—kandzéN
% . s s .
PXpy1=7|Xn=1i]= qe/\k ifj=i—landieN
e_}‘ﬁ fj=kandi=0
0 otherwise

(3.8)
This is an example of a queueing model in discrete-time.

Ezample 3.1.4. An example of a discrete-time, but continuous-state, Markov
chain is obtained from a problem in optimal control: suppose that an object
moves on the real line. Let X, be its position at time n € {0,1,...}. We
suppose that

Xnt1 = anXn +bpun +€n

where a,, and b, are nonzero constants, u, is the control (or command) vari-
able, and ¢, is the term that corresponds to the noise in the system. We
assume that e, ~ N(0,0?), for all n and that the random variables X,, and
€n are independent. The objective is to bring the object close to the origin.
To do so, we choose

Up = ——a—an Vn (3.9)
bn

Remark. In stochastic optimal control, the variable u,, must be chosen so as
to minimize the mathematical expectation of a certain cost function J. If the
function in question is of the form

o0

1
J(Xn,un) =Y (kX,% +5¢ u?,)

n=0

where ¢ > 0 and k are constants, then the optimal solution is indeed obtained
by using the formula (3.9) above.
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The s.p. {X,,,n=0,1,...} is a Markov chain. If fx_,.|x,(y | ) denotes
the conditional density function of the random variable X,.1, given that
X, =z, we may write that

1 y?
= — - foryeR
fromla) = ——ew{-25} tory
That is, X,+1 | X, ~ N(0,5?).
We can also suppose that the noise €, has a variance depending on X,,. For
instance, V[e,] = 02X?2. In this case, we have that X,+1 | Xn ~ N(0,0%X2).

Ezample 3.1.5. Suppose that X (t) denotes the number of customers who ar-
rived in the interval [0, ] in the example of a queueing system in discrete-time
(see Example 3.1.3). If we assume that the time 7, elapsed until the arrival
of a new customer into the system, when there have been n arrivals since
the initial time, has an exponential distribution with parameter A, for all n,
and that the random variables 79, 71,... are independent, then we find that
{X(¢),t > 0} is a continuous-time and discrete-state Markovian process called
a Poisson process. In this case, the number of arrivals in the system in the
interval [0, t] has a Poisson distribution with parameter At. Therefore, during
one time unit, the number of arrivals indeed has a Poi(\) distribution.

In general, if the random variable 7, has an exponential distribution with
parameter A, then {X(¢),t > 0} is a continuous-time Markov chain.

Ezample 3.1.6. In the preceding example, we considered only the arrivals in
the system. Suppose that the time an arbitrary customer spends using the
automated teller machine is an exponential random variable with parameter
u. Now, let X(t) be the number of customers in the system at time ¢ > 0.
If the customers arrive one at a time, then the process {X(t),t > 0} is an
example of a continuous-time Markov chain called a birth and death process. It
is also the basic model in the theory of queues, as will be seen in Chapter 6. It
is denoted by the symbol M/M/1. When there are two servers (for example,
two automated teller machines) rather than a single one, we write M/M/2,
etc.

Remark. Actually, the Poisson process is a particular case of the so-called pure
birth {or growth) processes.

3.2 Discrete-time Markov chains

3.2.1 Definitions and notations

Definition 3.2.1. A stochastic process {X,,n = 0,1,...} whose state space
Sx,, 1s finite or countably infinite is a stationary (or time-homogeneous)
Markov chain if
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P[Xn+1 =J | Xn = 7:7Xn—1 - in——l"- . 7X0 = ZO]
= P[Xn+1 :j I Xn = Z] = Di,j (310)

for all states ig, ... ,in—1,%,j and for any n > 0.

Remarks. i) In the general case, we can denote the conditional probability
P[Xny1 =j | Xn =1] by p; j(n). Moreover, when there is no risk of confusion,
we may also write p; ; simply as p;;.

ii) When the states of the Markov chain are identified by a coding system, we
will use, by convention, the set NC := {0,1,...} as the set space. For example,
suppose that we wish to model the flow of a river as a Markov chain and that
we use three adjectives to describe the flow X,, during the nth day of the year:
low, average, or high, rather than considering the exact flow. In this case, we
would denote the state low flow by state 0, the state average flow by 1, and
the state high flow by 2.

ili) Note that, in the example given above, the conditional probabilities
P[Xp+1 = j | Xn = 1] actually depend on n, since the probability of moving
from a low flow to an average flow, in particular, is not the same during the
whole year. Indeed, this probability is assuredly smaller during the winter and
higher in the spring. Therefore, we should, theoretically, use a nonstationary
Markov chain. In practice, we can use a stationary Markov chain, but for a
shorter time period, such as the one covering only the thawing period in the
spring.

In this book, we will consider only stationary Markov chains. Anyhow,
the general case is not used much in practice. Moreover, in the absence of an
indication to the contrary, we take for granted in the formulas and definitions
that follow that the state space of the chain is the set {0,1,...}.

Definition 3.2.2. The one-step transition probability matrix P of a
Markov chain is given by

0 1 2
0| po,o Po,1 Doz ---
1| pLopr1pi2---

T 2| P20 P21 P22 (3.11)

Remarks. 1) We have indicated the possible states of the Markov chain to the
left of and above the matrix, in order to facilitate the comprehension of this
transition matriz. The state to the left is the one in which the process is at
time n, and the state above that in which the process will be at time n + 1.

ii) Since the p; ;’s are (conditional) probabilities, we have

pi; >0 Vi,j (3.12)
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Moreover, because the process must be in one and only one state at time n+1,
we may write that

o0
> opig=1 Vi (3.13)
j=0

A matrix that possesses these two properties is said to be stochastic. The sum
Yio0 Pi,j, for its part, may take any nonnegative value. If we also have

oC
Spig=1 Y (3.14)
=0

the matrix P is called doubly stochastic. We will see, in Subsection 3.2.3, that
for such a matrix the limiting probabilities, in the case when the state space
is finite, are obtained without our having to do any calculations.

We now wish to generalize the transition matrix P by considering the case
when the process moves from state i to state j in n steps. We then introduce
the following notation.

Notation. The probability of moving from state i to state j in n steps (or
transitions) is denoted by

P = P Xy =j | Xm=1], form,n,i,j>0 (3.15)

From the pgj}) ’s we can construct the matrix P(™ of the transition prob-
abilities in n steps. This matrix and P have the same dimensions. Moreover,
we find that we can obtain P(™ by raising the transition matrix P to the

power n.

Proposition 3.2.1 (Chapman—Kolmogorov equations). We have
o 0]
PE? ™ = Zpgfﬁ)pff} form,n,i,j 20 (3.16)
k=0

Proof. Since we consider only stationary Markov chains, we can write, using
the total probability rule, that

P = PXnym = 5| Xo = i] (3.17)
X

= PlXpmin =5 Xm =k | Xo =] (3.18)
k=0

We then deduce from the formula (see p. 74)

P[ANB|C]=P[A| BnC|P[B|C) (3.19)
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that

pE’r;H-n) ZP m+n_J|Xm__k-X0_'L]P[X —k{Xo:l]
k=0
)

- Z e pl ™ = Z py;;)pi"} (3.20)

k=0

In matricial form, the various equations (3.16) are written as follows:

pim+n) _ pm)p(n) (3.21)
which implies that
PR = pLpd .. . pl (3.22)
N——— ————
nX

Since P(V) = P, we indeed have

P — p» (3.23)

Ezample 3.2.1. Suppose that the Markov chain {X,,n = 0,1,...}, whose
state space is the set {0, 1,2}, has the (one-step) transition matrix

0 1 2
0[1/31/31/3
P=1| 0 1/21/2

211 0 0

We have
4/95/18 5/18
P?®=P2=1{1/2 1/4 1/4
1/3 1/3 1/3

Thus, pgf(), = 4/9. Note that to obtain this result, it is sufficient to know the
first row and the first column of the matrix P. Similarly, if we are looking for

pg ), we can use the matrix P® to calculate the first row of P(4). We obtain

139/324 185/648 185/648
PW =pt= _ _ _

Next, we have

¢ 139 1 185 185 833
_ 139 1, 18 185 ~ 0.4285
Poo =351 "3 68 * 528 X'~ Toma
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(n)

So, in general, to obtain only the element p; /' of the matrix P it suffices

to calculate the ith row of the matrix P~ ) and to multiply it by the jth
column of P,

In Subsection 3.2.3, we will be interested in finding (if it exists) the limit
of the matrix P when n tends to infinity. To do so, we will give a theorem
that enables us to calculate the lmiting probabilities of the Markov chain.
By making use of a mathematical software package, we can also multiply
the matrix P by itself a sufficient number of times to see to what matrix it
converges. Here, we find that if n is sufficiently large, then

0.4286 0.2857 0.2857
P — P ~ | 0.4286 0.2857 0.2857
0.4286 0.2857 0.2857

Observe that the three rows of the matrix above are identical, from which
we deduce that whatever the state in which the process is at the initial time,
there is a probability of approximately 0.4286 that it will be in state 0 after a
very large number of transitions (this probability was equal to ~ 0.4285 after
only five transitions, from state 0). By using the theorem of Subsection 3.2.3,
we can show that the ezact probability that the process is in state 0 when it
is in equilibrium is equal to 3/7.

Sometimes, rather than being interested in the transition probabilities in
n steps of the Markov chain {X,,n = 0,1,...}, we want to calculate the
probability that the chain will move to state 7, from Xg = 1, for the first time
at time n.

Notation. The probability of moving to state j, from the initial state i, for
the first time at the nth transition is denoted by

sz =PX,=4Xp-1#J,...,.X1#j| Xo=14 forn>1landi,j>0
(3.24)

Remarks. i) When ¢ = j, pg;-) is the probability of first return to the initial

state i after exactly n transitions.

ii) We have the following relation between p ) and p,
k) (n—k)
pw ZPEJ pJT; (3.25)

When the p(n)’s are known, we can use the preceding formula recursively to
obtain the p( )’s, for k=1,2,.

Ezample 3.2.2. In some cases, it is easy to calculate directly the probabilities
of first return in n transitions. For example, let
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0 1

P (1)[1{3 2(/)3]

be the matrix of transition probabilities in one step of a Markov chain whose
possible values are 0 and 1. We find that

P = P{Xp =1,Xn-1=0,...,X; = 0] Xo = 0] = (1/3)""1(2/3) = =

forn =1,2,.... Similarly,
p(ll()) =1 and p({‘g =0 forn=2,3,...
Next, we have

Poa=1/3, py=1(2/3)x1=2/3, and pJJ=0 forn=34,...

Finally, we calculate p(lli =0, p(123 =2/3, and

n 2
A =1x(1/3)"2(2/3) = gy forn= 3,4...

Note that, in this example, we have ) >, p(lno) =1, .p 8"3 =1,

DI Z:T:g =1

1
n=1 3

and
1

1-—

I
—

C»JINJ
lOil\D

o
S =042 +Z3n
=

These results hold true because, here, whatever the initial state, the process
is certain to eventually visit the other state.

-

Ezample 3.2.3. In Example 3.2.1, we calculated P(®. We also find that the
matrix P®) is given by

0 1 2

0[23/54 31/108 31/108
P® = 1| 5/12 7/24 7/24
2| 4/9 5/18 5/18

From this, we deduce from Eq. (3.25) that, for instance,

1 (1-1 1 yp 1
3=Po1 =poapin D =phaxl = pol=3
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and
5 ) 2-1) 2) (2-2
E=P§)1=Polp§1 +P<()%p(11 )
1 1 2 (2)
=3% '2‘+P(()i><1 = Po1—9
and
31 1) (31 2) (3-2 3) (3-3
Tbg=pf),3=p”‘ )"'Pf);p(n )+P(()1p(11)
1111 @ 4
=3x3tgrgtmixl = su=g
and so on.

As in the preceding example, we can, at least for relatively small values of
n, try to calculate directly p(") Indeed, we have

(1) (1)

1 2
» (% P((),:{ OXP01—‘9

Po,1 = Pp 3»
and L 4
3 1 1 1 1 1
P61 = Bl X P X P + Py X Pt X iy = 7+§ =57
However, in general, the technique that consists in summing up the proba-
bilities of all the paths leading from 7 to j in exactly n transitions rapidly
becomes of little use.

Until now, we have considered only conditional probabilities that the pro-
cess {Xn,n =0,1,...} finds itself in a state j at a time instant n, given that
Xo = i. To be able to calculate the marginal probability P[X,, = j], we need
to know the probability that Xg = 4, for every possible state q.

Definition 3.2.3. The initial distribution of a« Markov chain is the set
{a;,i=0,1,...}, where a; is defined by

Remarks. 1) In many applications, the initial position is deterministic. For
example, we often suppose that Xy = 0. In this case, the initial distribution

of the Markov chain becomes ag = 1 and a; = 0, for : = 1,2,... . In general,
we have > .oqa; = 1.

ii) The marginal probability ag-") = P[X, = j], for n = 1,2,..., is obtained
by conditioning on the initial state:

a;‘n) = P ZP n=1J ! Xo = Z Zp(n)az (3’27)

When a; = 1 for some k, we simply have a(") = p,inj)
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Ezample 3.2.4. Suppose that a; = 1/3, for i = 0,1, and 2, in Example 3.2.1.
Then, we may write that
9 2 3/ 54

and

It follows that

23 31 31 31
ElXo] =0 x =2 31 31 _ 3
(Kol =0x o3 +1x 7o+ 2% 12 =35
and 31 31 155
EX2 =041 x o 492 x o= = 22
X2 =0+ 15 x 10+ 27X 702 = 15
so that 9
155 /31 899
Vi, = 99 _ (31)\" 89
Xe) = 758 (36) 1296

Particular cases

1) A (classic) random walk is a Markov chain whose state space is the set
{-+.,—2,-1,0,1,2,...} of all integers, and for which

Pijr1t =p=1—-p;;—1 fori=0,£1,42,... (3.28)
for some p € (0,1). Its one-step transition matrix is therefore (with ¢ := 1—-p):

i—1 i i+1i42

p- q 2 P (3.20)

Thus, in the case of a classic random walk, the process can make a tran-
sition from a given state ¢ only to one or the other of its two immediate
neighbors: ¢ — 1 or ¢ + 1. Moreover, the length of the displacement is always
the same, i.e., one unit. If the state space is finite, say the set {0,1,... ,N},
then these properties can be checked for each interior state: 1,2,... ,N — 1.
When the process reaches state 0 or state N, there are many possibilities. For
example, if

Poo = PN,N = 1 (3.30)
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we say that the states 0 and N are absorbing. If pg1 = 1, the state 0 is said
to be reflecting.

Remarks. i) If p1 2 = p, p11 = ¢q, and p1g = (1 — ¢)g, where 0 < ¢ < 1, the
boundary at 0, when pg o = 1, is said to be elastic.

ii) We can also say that the process has a reflecting boundary at the point
1/2 if the state space is {1,2,...}, p1.1 = ¢, and py 2 = p.

2) We can easily construct a Markov chain from a set Yp,Y:,... of iid.
random variables, whose possible values are integers, by proceeding as follows:
let

Xn ::ZY;“ forn=0,1,... (3.31)

Then, {X,,,n=0,1,...} is a Markov chain and, if
o :=P[Y, =k] Yk (3.32)

we have

n+1

> V=3
k=0

n

ZYk:i

k=0

Ppij=PXnt1=j| Xn=i]=P (3.33)

=P N Py =J— 4] = oy

Yn+1:j_i

iyk =1
k=0

We say that the chain, in addition to being time-homogeneous, is also homo-
geneous with respect to the state variable, because the probability p;; does
not depend explicitly on ¢ and j, but only on the difference 7 — 1.

3.2.2 Properties

Generally, our first task in the study of a particular Markov chain is to de-
termine whether, from an arbitrary state 4, it is possible that the process
eventually reaches any state j or, rather, some states are inaccessible from
state .

Definition 3.2.4. We say that the state j is accessible from i if there exists
ann > 0 such that pgg-) > 0. We write i — j.

© -1 0, any

Remark. Since we include n = 0 in the definition and since p; ; =

state is accessible from itself.

Definition 3.2.5. If i is accessible from j, and j is accessible from i, we say
that the states i and j communicate, or that they are communicating. We
write § < j.



86 3 Markov Chains

Remark. Any state communicates with itself. Moreover, the notion of com-
munication is commutative: i < j = j « i. Finally, since (by the Chapman-
Kolmogorov equations)

pg,';wn) > pi?)pxc) for all m and n > 0 (3.34)

we can assert that this notion is also fransitive: if ¢ «— j and j < k, then
i — k. Actually, it is sufficient to notice that if it is possible to move from
state ¢ to state j in m steps, and from 7 to k in n steps, then it is possible
(by the Markov property) to go from 7 to k in m + n steps.

Definition 3.2.6. If i «+» j, we say that the states i and j are in the same
class.

Remark. The transitivity property (see above) implies that two arbitrary
classes are either identical or disjoint. Indeed, suppose that the state space is
the set {0,1,2} and that the chain has two classes: {0,1} and {1,2}. Since
0 & 1and 1 « 2, we have that 0 — 2, which contradicts the fact that the
states 0 and 2 are not in the same class. Consequently, we can decompose the
state space into disjoint classes.

Definition 3.2.7. Let C be a subset of the state space of a Markov chain. We

say that C is a closed set if, from any i € C, the process always remains in
C:

PXp1€C|Xp=i€Cl=1 forallicC (3.35)

Definition 3.2.8. A Markov chain is said to be irreducible if all the states
communicate, that is, if the state space contains no closed set apart from the
set of all states.

The following result is easy to show.

Proposition 3.2.2. If i — j or j — i for all pairs of states i and j of the
Markov chain {X,,n =10,1,...}, then the chain is irreducible.

Remark. We can also give the following irreducibility criterion: if there exists
a path, whose probability is strictly positive, which starts from any state ¢
and returns to ¢ after having visited at least once all other states of the chain,
then the chain is irreducible. We can say that there exists a cycle with strictly
positive probability.

Ezample 3.2.5. The Markov chain whose one-step transition matrix P is given
in Example 3.2.1 is irreducible, because we may write that
1

X X —1x1x1~—>0
Do,1 X P1,2 p2,0—3 5 =5
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Note that here the cycle 0 — 1 — 2 — 0 is the shortest possible. However, we
also have, for example,

Do,2 X P2,0 X Po,1 X Pr,2 X P20 >0
Remark. If a Markov chain (with at least two states) has an absorbing state,

then it cannot be irreducible, since any absorbing state constitutes a closed
set by itself.

Definition 3.2.9. The state i is said to be recurrent if

fig=P U{Xn =i}

n=1

X = 7} =1 (3.36)

If fiis <1, we say that i is a transient state.

Remarks. i) The quantity f;; is the probability of an eventual return of the
process to the initial state i. It is a particular case of

fij :=P[U{Xn:j}

n=1

Xo = z} (3.37)

which denotes the probability that, starting from state ¢, the process will
eventually visit state j. We may write that

o0
fg =Y p" (3.38)
n=1

i1) It can be shown that the state space Sx,, of a Markov chain can be decom-
posed in a unique way as follows:

Sx, =DUCLUCUCs... (3.39)

where D is the set of transient states of the chain and the Ci.’s, k = 1,2,...,
are closed and irreducible sets (that is, the states of each of these sets com-
municate) of recurrent states.

Proposition 3.2.3. Let N; be the number of times that state ¢ will be visited,
gwen that Xo = i. The state i is recurrent if and only if E[N;] = oco.

Proof. We have
P[N;=n]=f" 1~ f;;) forn=1,2,... (3.40)

That is, N; ~ Geom(p :=1 — f; ;). Since E[N;] = 1/p, we indeed have
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1

BN = 1— fis

=00 <<= fii=1 0 (3.41)

Remark. Since the set T = {0,1,...} is countably infinite, that is, time con-
tinues forever, if the probability of revisiting the initial state is equal to 1,
then this state will be visited an infinite number of times (because the process
starts anew every time the initial state is visited), so that P[N; = oo] = 1,
which directly implies that E[N;] = oo. Conversely, if £ is transient, then we
have :

P|N; = ] = lim P[N; > n]= lim

N~-r00 n—00

-1

i =0 (3.42)
That is, a transient state will be visited only a finite number of times. Conse-
quently, if the state space of a Markov chain is finite, then at least one state
must be recurrent (otherwise no states would be visited after a finite time).

Proposition 3.2.4. The state i is recurrent if and only if 3,0 g pg;) = 00.

Proof. Let Iyx,=i} be the indicator variable of the event {X, =i}. That is,

1 X, =i
Ix,=iy = {0 if X, £ (3.43)
We only have to use the preceding proposition and notice that, given that
X¢ = i, the random variable Iix,—i} has a Bernoulli distribution with pa-
rameter p := P[X, =i | Xg = ], so that

EN,]=FE [Z Iix, =i}

n=>0

Xo = {I = Z E[I{Xn=i} | Xo = 1]

n=0

o0 o0
=Y PlX,=i|Xo=d=) p7 O (3.44)
n=0

n=0

Remark. It can also be shown that if 7 is transient, then

oo
Z Pg’) < oo for all states k
n=1

The next result is actually a corollary of the preceding proposition.

Proposition 3.2.5. Recurrence is a class property: if states i and j commu-
nicate, then they are either both recurrent or both transient.
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Proof. It is sufficient to show that if ¢ is recurrent, then j too is recurrent
(the other result being simply the contrapositive of this assertion).

By definition of communicating states, there exist integers k and [ such
that p(k) > 0 and p(l) > 0. Now, we have

(l k l k
pEmHR) > plpn) p®) (3.45)
Then
l k (1
zp( +n+ ) > p] 2[)5]; Zp(n) (3.46)
> 0
=00

Thus, j is recurrent. O

Corollary 3.2.1. All states of a finite and irreducible Markov chain are re-
current.

Proof. This follows indeed from the preceding proposition and from the fact
that a finite Markov chain must have at least one recurrent state (see p. 88).
n

Notation. Let ¢ be a recurrent state. We denote by p; the average number
of transitions needed by the process, starting from state ¢, to return to 4 for
the first time. That is,

pi = Z npl") (3.47)

Definition 3.2.10. Let i be a recurrent state. We say that i is

positive recurrent if u; <
null recurrent if y; = 0o

Remarks. i) It can be shown (see Prop. 3.2.4) that ¢ is a null recurrent state
if and only if 0 pgz) = o0, but lim, e p( ") — 0. We then also have
lim, o0 p( o 0, for all states k.

i) It can be shown as well that two recurrent states that are in the same
class are both of the same type: either both positive recurrent or both null
recurrent. Thus, the type of recurrence is also a class property.

iii) Finally, it is easy to accept the fact that any recurrent state of a finite
Markov chain is positive recurrent.
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Ezample 3.2.6. Because the Markov chain considered in Example 3.2.1 is finite
and irreducible, we can at once assert that the three states—0, 1, and 2—are
positive recurrent. However, the chain whose one-step transition matrix is
given by
0 1 2
0[1/31/31/3
P,=1]| 0 1/21/2
210 1 O

is not irreducible, because state 0 is not accessible from either 1 or 2. Since
there is a probability of 2/3 that the process will leave state 0 on its very first
transition and will never return to that state, we have

foo<1-2/3=1/3<1 (actually, foo =1/3)

which implies that state 0 is transient. Next,

1
Pr2Xpai=3> 0
so that states 1 and 2 are in the same class. Because the chain must have at
least one recurrent state, we conclude that 1 and 2 are recurrent states. We
may write that Sx, = DU C}, where D = {0} and C; = {1,2}.
When
0 1 2
0[1/31/31/3
Py=1] 0 1/21/2
21 0 0 1

we find that each state constitutes a class. The classes {0} and {1} are tran-
sient, whereas {2} is recurrent. These results are easy to check by using Propo-
sition 3.2.4. We have

1
n=0 n=0 3
%) 00
1 1
Yo=Y gr=or=2<%®
n=0 n=0 2
and

o0 oo

S-S 1-c

n=0 n=0

As we already mentioned, any absorbing state (like state 2 here) trivially
constitutes a recurrent class. Moreover, the state space being finite, state 2
is positive recurrent. Finally, we have that Sx, = D U C;, where D = {0,1}
and C; = {2}.
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Definition 3.2.11. 4 state ¢ is said to be periodic with period d if pgz) =0
for any n that is not divisible by d, where d is the largest integer with this
property. If d = 1, the state is called aperiodic.

Remarks. 1) If pgz) =0 for all n > 0, we consider 7 as an aperiodic state. That
is, the chain may start from state ¢, but it leaves ¢ on its first transition and

never returns to i. For example, state 0 in the transition matrix

01 2
of01/21/2
P=1[01/21/2
210 0 1

is such that p((fg) =0 for all n > 0.

ii) As in the case of the other characteristics of the states of a Markov chain,
it can be shown that periodicity is a class property: if ¢ and j communicate
and if ¢ is periodic with period d, then j too is periodic with period d.

ifi) If p;li) > 0, then 7 is evidently aperiodic. Consequently, for an irreducible
Markov chain, if there is at least one positive element on the diagonal (from
Po,0) of the transition matrix P, then the chain is aperiodic, by the preceding
remark.

iv) If pg) > 0 and pgi-) > 0, then 7 is aperiodic, because for any n € {2,3,...}
there exist integers k1 and ko € {0,1,...} such that n = 2k + 3ks.

v) If d = 4 for an arbitrary state i, then d = 2 too satisfies the definition of
periodicity. Indeed, we then have

p§§n+1) =0 forn=0,1,...
so that we can assert that pgz) = 0 for any n that is not divisible by 2. Thus,
we must really take the largest integer with the property in question.

Ezample 8.2.7. If
01

0,01
P=, { 1 0}
then the Markov chain is periodic with period d = 2, because it is irreducible
and

(2n)

pggﬂ)zo and pyg =1 forn=0,1,...

Note that d is not equal to 4, in particular because 2 is not divisible by 4 and
(2)
p0,0 = 1 > 0.



92 3 Markov Chains

Example 3.2.8. Let
0 1 2
o[ 0 1/21/2
P=1|1/2 0 1/2
2(1/21/2 0
The Markov chain is aperiodic. Indeed, it is irreducible (since pg,1 Xp1,2Xp2,0 =
1/8 > 0) and
P53 (=1/2) >0 and piy (=1/4) >0

Example 3.2.9. Let

01 2 3 4
ofo1/21/2 0 0
110 0 0 1/32/3

P=2/00 0 2/31/3
310 0 0 0
410 0 0 0

be the one-step transition matrix of a Markov chain whose state space is the
set {0,1,2,3,4}. We have

Po,1 X P1,3 X P3,0 X Po,2 X P2,4 X pao >0
Therefore, the chain is irreducible. Moreover, we find that

w _ [1ifn=0,3,6,9,...
P00 = ) 0 otherwise

Thus, we may conclude that the chain is periodic with period d = 3.

Ezample 3.2.10. In the case of a classic random walk, defined on all the inte-
gers, all the states communicate, which follows directly from the fact that the
process cannot jump over a neighboring state and that it is unconstrained,
that is, there are no boundaries (absorbing or else). The chain being irre-
ducible, the states are either all recurrent or all transient. We consider state
0. Since the process moves exactly one unit to the right or to the left at each
transition, it is clear that if it starts from 0, then it cannot be at 0 after an
uneven number of transitions. That is,
pg{f“) =0 forn=0,1,...

Next, for the process to be back to the initial state 0 after 2n transitions, there
must have been exactly n transitions to the right (and thus n to the left). Since
the transitions are independent and the probability that the process moves to
the right is always equal to p, we may write that, forn =1,2,...,

(2n)!

(271): — — 2n ni1 — n\? — (1 — p)*
5 = PBenD) = ol = ()0 -0 = S -p)
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To determine whether state 0 (and therefore the chain) is recurrent, we

consider the sum -
2
> wlo = Z Poo
n=1

However, we do not need to know the exact value of this sum, but rather
we need only know whether it converges or not. Consequently, we can use
Stirling’s* formula:

n! ~n"tie /2 (3.48)

(that is, the ratio of both terms tends to 1 when n tends to infinity) to
determine the behavior of the infinite sum. We find that

(zn) _ [4p(1 —p)I"
0.0 TN

which implies that

Zp(n)<oo — ;M\l/-_;_np_)]ri<oo

Now, if p = 1/2, the stochastic process is called a symmetric random walk
and the sum becomes

because

When p # 1/2, we have
[4p(1 — s 4p(1 -
Z F <2 =

Thus, the classic random walk is recurrent if p = 1/2 and is transient if
p#£1/2.

Remark. It can be shown that the two-dimensional symmetric random walk
too is recurrent. However, those of dimension & > 3 are transient. This follows
from the fact that the probability of returning to the origin in 2n transitions
is bounded by ¢/ nk/2_ where c is a constant, and

Z s <oo ifk>3 (3.49)

2 James Stirling, 1692-1770, who was born and died in Scotland, was a mathemati-
cian who worked especially in the field of differential calculus, particularly on the
gamma function.
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3.2.3 Limiting probabilities

In this section, we will present a theorem that enables us to calculate, if it
exists, the limit lim,_, pgf;-) by solving a system of linear equations, rather
than by trying to obtain directly lim,_, P, which is generally difficult.
The theorem in question is valid when the chain is irreducible and ergodic, as
defined below.

Definition 3.2.12. Positive recurrent and aperiodic states are called ergodic
states.

Theorem 3.2.1. In the case of an irreducible and ergodic Markov chain, the
limit

mj = lim p(n-) (3.50)

n—oo”

exists and is independent of i. Moreover, we have

1
7r,~=ﬂ—>0 forallje{0,1,...} (3.51)
J

where p; is defined in Eq. (3.47). To obtain the 7;’s, we can solve the system

7 =7P (3.52)

o
dom=1 (3.53)
Jj=0

where T 1= (my, 71,...). It can be shown that the preceding system possesses
a unique positive solution.

Remarks. i) For a given state j, Eq. (3.52) becomes
X
’ﬂ'j = Z (i pi,j (354)
i=0

Note that, if the state space is finite and comprises k states, then there are k
equations like the following one:

k-1
7Tj = Z w5 pi,j (355)
1=0

With the condition Z;:é m; = 1, there are thus k + 1 equations and k un-
knowns. In practice, we drop one of the k equations given by (3.55) and make
use of the condition Z?;é m; = 1 to obtain a unique solution. Theoretically,
we should make sure that the m;’s obtained satisfy the equation that was
dropped.



3.2 Discrete-time Markov chains 95

ii) A solution {r;,7 = 0,1,...} of the system (3.52), (3.53) is called a station-
ary distribution of the Markov chain. This terminology stems from the fact
that if we set

then, proceeding by mathematical induction, we may write that

3

PlXnsr =gl =3 PlXni1 = j | Xn =i P[Xn =]

o0
= Zpi’j T, = T4 (3.57)

where the last equality follows from Eq. (3.54). Thus, we find that

PX,=jl=m, Vnje{0,1,2...} (3.58)

iii) If the chain is not irreducible, then there can be many stationary distri-
butions. For example, let
01

0[10
P_JOJ

Because states 0 and 1 are absorbing, they are positive recurrent and aperi-
odic. However, the chain has two classes: {0} and {1}. The system that must
be solved to obtain the m;’s is

7]'0 = 7{'0 (359)
T =T (3.60)
mo+m =1 (361)

We see that mp = ¢, m; = 1 — ¢ is a valid solution for any c € [0, 1].

iv) The theorem asserts that the m;’s exist and can be obtained by solving
the system (3.52), (3.53). If we assume that the 7;’s exist, then it is easy to
show that they must satisfy Eq. (3.52). Indeed, since limp o0 P[Xny1 = j] =
limp, o P[X,, = j], we have

20
PXpp1 =41 =) PlXpy1 =3 | Xn = i]P[Xp = 1]
=0

= lim P[Xny1=7]= lim Y PlXnp1=j| X =i]P[Xn =]
i=0

o o0
= ;= Zpi,j = Zm Dij (3.62)
=0 i=0
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where we assumed that we can interchange the limit and the summation.

v) In addition to being the limiting probabilities, the 7;’s also represent the
proportion of time that the process spends in state j, over a long period of
time. Actually, if the chain is positive recurrent but periodic, then this is the
only interpretation of the 7;’s. Note that, on average, the process spends one
time unit in state j for u; time units, from which we deduce that 7; = 1/,
as stated in the theorem.

vi) When the Markov chain can be decomposed into subchains, we can ap-
ply the theorem to each of these subchains. For example, suppose that the
transition matrix of the chain is

01 2
of{1 0 O
P=1{01/21/2
2101/21/2
In this case, the limit lim, o pgz) exists but is not independent of . We easily
find that
. () J1lifi=0
A Pio = {0 ifi£0 (3.63)

and (by symmetry)

. n) _ .
nll»ngo pi’l - nlgr;opi’2 - 0 ifi=0 (364)

(n)_{1/2ifi=lor2

However, we cannot write that mp = 1 and m; = 72 = 1/2, since the 7;’s do
not exist in this example. At any rate, we see that the sum of the 7;’s would
then be equal to 2, and not to 1, as required.

Ezample 3.2.11. The Markov chain {X,,n = 0,1,...} considered in Exam-
ple 3.2.1 is irreducible and positive recurrent (see Example 3.2.6). Since the
probability pg o (or py,1) is strictly positive, the chain is aperiodic, and thus
ergodic, so that Theorem 3.2.1 applies. We must solve the system

1/31/31/3
(mo, m1,m2) = (mo, 1, m2) | O 1/21/2
1 0 0

that is,

1
o = §W0+7T2

21
Ty = z7g+ 771

31 1
M2 = =M+ =71
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subject to the condition mg + 7 + mo @ 1. Often, we try to express every

limiting probability in terms of 7g, and then we make use of the condition (*)
to evaluate mg. Here, Eq. (1) implies that mp = %71’0, and Eq. (2) enables us

to assert that m; = %WO too [so that 71 = g, which actually follows directly
from Egs. (2) and (3)]. Substituting into Eq. (*), we obtain:

~| N

2 2
7ro+§7fo+§7fo=1 ¥ M=z T M=M=

We can check that these values of the 7;’s are also a solution of Eq. (3), which
was not used.
("')7

Note finally that the 7;’s correspond to the limits of the ;.

in Example 3.2.1 by finding the approximate value of the matrix P(™ when
n is large.

s computed

When the state space S, is finite, before trying to solve the system (3.52),
(3.53), it is recommended to check whether the chain is doubly stochastic (see
p. 79), as can be seen in the following proposition.

Proposition 3.2.6. In the case of an irreducible and aperiodic Markov chain
whose state space is the finite set {0,1, ... , k}, if the chain is doubly stochastic,
then the limiting probabilities exist and are given by

1 .

ﬂ-j:k'——{—l forg:O,l,...,k (365)
Proof. Since the number of states is finite, the chain is positive recurrent.
Moreover, as the chain is aperiodic (by assumption), it follows that it is er-
godic. Thus, we can assert that the 7;’s exist and are the unique positive
solution of

k
Wj:Zmp,:,j vVie{o,1,...,k} (3.66)
=0
k
Som =1 (3.67)
7=0
Now, if we set m; = 1/(k + 1) > 0, we obtain
k
1
—_—= 3.68
21! (3.8
=0
and
k k

1 1 1 1
- - 1= 3.69
Zk+1p” k+1 Op” /lc+1>< k+1 (3:69)

1=0 §==

(because the chain is doubly stochastic). 0
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Ezample 3.2.12. The matrix

0o 1 2
o[1/31/31/3
P=1]| 0 1/21/2
2|2/31/61/6

is irreducible and aperiodic (because pg ¢ > 0, in particular). Since it is doubly
stochastic, we can conclude that 7; = 1/3 for each of the three possible states.
We can, of course, check these results by applying Theorem 3.2.1.

Example 3.2.13. The one-step transition matrix

01 2

o[t 0 0
P=1/01/21/2
2]01/21/2

is doubly stochastic. However, the chain is not irreducible. Consequently, we

cannot write that 7; = 1/3. Actually, we calculated the limits lim, .o pg,’;) in

remark vi) on p. 96.

When the state space {0,1,...} is infinite, the calculation of the limiting
probabilities is generally difficult. However, when the transition matrix is such
that po,1 > 0, pjj—1 X pjj+1 >0V j >0, and

piy=0 if|j—i|>1 (3.70)
we can give a general formula for the 7;’s. Indeed, we have
T = ToPo,0 + T1P1,0 (3.71)
and
Tj = Wj-1Pj-1,5 + TjPjj + T+1Pj+1 (3.72)

for j =1,2,.... We find that

Po1 X P12 X X Pj—1,j
71']' =

= mp forj=1,2,... (3.73)
P10 X P21 X+ X Py

Then a necessary and sufficient condition for the existence of the m;’s is that

oG
X X oo X D
Po,1 X P1,2 Pe—1k _ (3.74)
by P10 X P21 X oo X Prk—1

If the sum above diverges, then we cannot have that Z;?_-o ;= 1.
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Note that this type of Markov chain includes the random walks on the
set {0,1,...}, for which pp1 =p =1—poo and p;i41 =p = 1 — pi -1, for
1=1,2,.... We have

0,1 X P1,2 X = X Pp—1,k
1 X Py, £y (3.75)
£ pro X pai X X prk-1 A (L= p)F

and this sum converges if and only if p < 1/2. Thus, we can write (with
g :=1—p) that

my (/=1 = m=1- b (3.76)
k=0 g
and then
J j
= <9) o = (3_’) (1 -~ 3) (3.77)
q q q
forj=1,2,....

Actually, we could have used Theorem 3.2.1 to obtain these results. Indeed,
consider the transition matrix

g 1 2 3 ... . Ek—2k—1Ek
o [ap 1
1 g0 p
2 q0 p
k-1 q 0p
koL q p]

As the Markov chain is irreducible and ergodic, we can try to solve the system

Ty = q Ty +q 71
T =pWj—1+qmip1 forj=1,..., k-1

Tk =P Th—1 +P Tk

We find that

p 7
7Tj:<") me forj=1,...,k (3.79)
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Then, the condition E?:o m; = 1 enables us to write

(@7 e

Taking the limit as k tends to infinity, we obtain (in the case when p < ¢ &

p<1/2)
o — (1 - g) and m — <§>,~ (1 _ g) (3.81)

for j = 1,2,..., which effectively corresponds to the formulas (3.76) and
(3.77).

3.2.4 Absorption problems

We already mentioned (see p. 87) that the state space of a Markov chain can
be decomposed into the set D of transient states of the chain and the union
of closed and irreducible sets C), of recurrent states. We are interested in the
problem of determining the probability that, starting from an element of D,
the process will remain indefinitely in D or instead will enter one of the sets
Cy, from where it cannot escape.

Notation. Let ¢ € D and let C be a recurrent class. We set

r{™(C) = P[X, € C | Xo =] Zp(") forn=1,2,... (3.82)
jec

and

ri(C) = lim r<">(c } (3.83)

We have the following result.

Theorem 3.2.2. The probability r;(C) is the smallest nonnegative solution
of the system

ri(C) = Zp"»j ri(C) + Zpi:j forallie D (3.84)
j€D jec
Moreover, if D is a finite set, then the solution is unique.
Remarks. i) The system (3.84) is a system of nonhomogeneous linear equa-

tions. When D is finite, we can try to solve this system by using results from
linear algebra.
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ii) Actually, it is not necessary that the set C' be a class. It is sufficient that
C be a closed set of recurrent states.

iii) We can imagine that all the states of the recurrent class C constitute a
single absorbing state, since, once the process has entered this class, it cannot
leave it again.

A classic example of an absorption problem is known as the gambler’s
ruin problem and is described as follows: a player, at each play of a game,
wins one unit (for example, one dollar) with probability p and loses one unit
with probability ¢ := 1 —p. Assume that he initially possesses ¢ units and that
he plays independent repetitions of the game until his fortune reaches k units
or he goes broke.

Let X, be the fortune of the player at time n (that is, after n plays). Then
{Xn,n=0,1,...} is a Markov chain whose state space is the set {0,1,... ,k}.
As states 0 and k are absorbing, we have that pg o = pxr = 1. For all the other

states i = 1,... ,k — 1, we may write that
Pii+1 =p=1—pii-1 (3.85)
This is a random walk on the set {0,1,... ,k}, with absorbing boundaries at

0 and k. The chain thus has three classes: {0}, {k}, and {1,2,... ,k—1}. The
first two are recurrent, because 0 and k are absorbing, whereas the third one
is transient. Indeed, we have, in particular, that

PX;=0|Xo=1=¢>0 = f11<1 (3.86)

from which we can conclude that the player’s fortune will reach 0 or k units
after a finite number of repetitions.

Let r;({0}), for ¢ = 0,1,... ,k, be the probability that the player will be
ruined, given that his initial fortune is equal to ¢ units. That is, we write that
C is the class {0} in Eq. (3.83). We will first consider the case when p = 1/2.
Note that, in this case, we have

E[X; |X0=z']:(i—1)><%+(i+1)x%:i fori=1,...,k—1 (3.87)
We also have
EX)|Xo=0]=0 and E[X;|Xo=k =k (3.88)
That is, in general,
EX,i1 | Xp =1 =1 foranyi (3.89)

This type of Markov chain is a martingale and is very important for the
applications, notably in financial mathematics.
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Definition 3.2.13. A Markov chain for which

EXp41| Xo=il= Y jpij=i forallicSx, (3.90)
j€Sx,,

is called o martingale.

Remark. We can rewrite Eq. (3.90) as follows:
E(Xnt1 | Xo) = Xn (3.91)

Now, proceeding by induction, we may write that
k
i=EXn | Xo=i]= jp\7 (3.92)

Indeed, if we make the induction assumption that E[X,_, | Xo = 1] = 1, then
we have

k
ElX, | Xo=i]=) jp{) = Zng”p“’ Y
Jj=0 j=01=0
k
= ZZMZJPJ(S V= Zpi,lE[Xn—l | Xo=1]
=0 =0
k
=) il =E[X1| Xo=1i] =1 (3.93)
=0
Now, we have
lim p; (") — 0 for all transient states J (3.94)

n—00 Y

(otherwise the sum Y o>, pE';) would diverge, contradicting the remark on
p. 88). It follows, taking the limit as n tends to infinity in Eq. (3.92), that

k-1
i= lim Op%) + ijl + kp(") =k lim p(") (3.95)
That is,
Jim ) = k (3.96)

from which we deduce that

im py =1-~ — r({0})=1- % (3.97)
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Thus, the more ambitious the player is, the greater is the risk that he will be
ruined.

In the general case where p € (0, 1), the probability r;({0}), which will be
denoted by r; to simplify the formulas, is such that 7o = 1, 7, = 0 and [see
Eq. (3.84)]

ri=pra+gq (3.98)
Ty =Qqri—1+priy; fori=2,...,k—2 (3.99)

and
Th—1 = qTk-2 (3.100)

Rewriting Eq. (3.99) as follows:
(p+q)ri=qri-1 +priy1 (3.101)
we obtain

ri+1—ri=%(ri—ri_1) fori=2,...,k—2 (3.102)

which implies that

rig1 — 7 = (%)H (ra —11) = (%)i (ri —1) (3.103)

where the last equality follows from Eq. (3.98).
Next, since r = 0, Eg. (3.100) can be rewritten as follows:

Th—1 = (qTk—2 +PTk (3.104)

We can then state that Eq. (3.103) is valid for 7 = 0,... ,k — 1. Adding the
equations for each of these values of i, from 0 to j — 1, we find that

[

j"'

rj—ro=(ri—1)> (a/p)’ (3.105)
i=0
Since 1y = 1, we obtain
1— J
Rl U1 A I TSN

r;= 1-(q/p) (3.106)
1+4(r1—1) ifp=gq

for j =0,1,...,k. Finally, the fact that r, = 0 enables us to obtain an explicit
expression for r; — 1 from the preceding formula, from which we find that
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L 1=(a/py

—rifp#q
1— k
—% ifp=gqg

Note that for p = ¢ = 1/2, we retrieve the formula (3.97).
We can calculate the limit of the probability r; in the case when & tends
to infinity. It is easy to check that

. _[la/p)ifp>1/2
im r; = { 1 ifp<1/2 (3.108)

Thus, if p > 1/2, there exists a strictly positive probability that the process
will spend an infinite time in the set of transient states.

Another example for which the Markov chain may spend an infinite time
in the set D of transient states of the chain is the following.

Ezample 3.2.14. Let pog =1 and
Pio=0;(>0) =1—pj 41 forj=12,...

be the one-step transition probabilities of a Markov chain whose state space
is the set {0, 1, ... }. This chain has two classes: {0} (recurrent) and {1,2,...}
{transient). We calculate directly

o0

ri({0}) =1- (1 - ej12)
=0
It can be shown that r;({0}) < 1 if and only if the sum > oo Qi COMVErges.
For example, if a; = (1/2)¢, for all i > 1, then we have

i%‘ﬂ = i(l/Q)jH = (1/2)"! < o0
=0 =0

3.2.5 Branching processes

In 19th-century England, some people got interested in the possibility that
certain family names (particularly names of aristocratic families) would dis-
appear, for lack of male descendants. Galton® formulated the problem math-
ematically in 1873, and he and Watson? published a paper on this subject in

% Francis Galton, 1822-1911, was born and died in England. He was a cousin of
Charles Darwin. After having studied mathematics, he became an explorer and
anthropologist.

4 The Reverend Henry William Watson, 1827-1903, was born and died in England.
He was a mathematician who wrote many books on various subjects. He became
a priest in 1858.
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1874. Because Bienaymé® had worked on this type of problem previously, the
corresponding stochastic processes are sometimes called (branching) processes
of Bienaymé—Galton—-Watson. More simply, the term branching processes is
also used.

Definition 3.2.14. Let {Z, ;,n=0,1,... ;5 =1,2,...} be a set of i.i.d. ran-
dom variables whose possible values are nonnegative integers. That is, Sz, , C
{0,1,...}. A branching process is a Markov chain {X,,n =0,1,...} de-
fined by

Xn-1

X, = Zl Zn-15 ¥ Xn-1>0 (3.109)
J:

0 if Xn—1 =0
forn=1,2,....

Remarks. i) In the case of the application to the problem of the disappearance
of family names, we can interpret the random variables X,, and Z,_; ; as
follows: Xy is the number of members of the initial generation, that is, the
number of ancestors of the population. Often, we assume that Xy = 1, so that
we are interested in a lineage. Z,_; ; denotes the number of descendants of
the jth member of the (n — 1)st generation.

ii) Let
pi = P[Z,-1;=1] forallnandj (3.110)

To avoid trivial cases, we assume that p; is strictly smaller than 1, for all
t = 0,1,.... We also assume that py > 0; otherwise, the problem of the
disappearance of family names would not exist.

The state space S, of the Markov chain {X,,n = 0,1,...} is the set
{0,1,...}. As state 0 is absorbing, we can decompose Sx, into two sets:

Sx, = DU {0} (3.111)

where D = {1,2,...} is the set of transient states. Indeed, since we assumed
that pg > 0, we may write that

PlX,#iVne{l,2,...} | Xo=1] > pio = py >0 (3.112)

Thus, fi; < 1, and all the states i = 1,2,... are effectively transient. Now,
given that a transient state is visited only a finite number of times, we can

5 Irénée-Jules Bienaymé, 1796-1878, was born and died in France. He studied at
the Ecole Polytechnique de Paris. In 1848, he was named professor of probability
at the Sorbonne. A friend of Chebyshev, he translated Chebyshev’s works from
Russian into French.
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assert that the process cannot remain indefinitely in the set {1,2,...,k}, for
any finite k. Thus, we conclude that the population will disappear or that its
size will tend to infinity.

Suppose that Xy = 1. Let’s now calculate the average number g, of indi-
viduals in the nth generation, for n = 1,2,... . Note that u; = E[X;] is the
average number of descendants of an individual, in general. We have

fin = E[Xp] =Y E[Xn | Xpo1 = j]P[Xn-1 = ]
=0
=Y jmPXn1 = j] = mE[Xn-1] (3.113)
=0

Using this result recurrently, we obtain
pn = W E[Xn 1] = i E[Xn—2] = ... = pT E[Xo] = u7 (3.114)

Remark. Let 02 := V[X;]. When p1 = 1, from Eq. (1.96), which enables us
to express the variance of X, in terms of E[X,, | X,-1] and of V[X,, | Xn_1],
we may write that

V[Xn] E{V[Xn [ Xn—l]] + V[E[Xn [ Xn—1”
iid

= E[Xn—laf} + V[Xn——l X 1]

= 0} x 14 V[Xpo1] = 207 + V[X,2]

= ... = not + V[Xy] = no? (3.115)
since V[{X] = 0 (X, being a constant). When p; # 1, we find that

1
Vi) = ot (1) (3.116)
H1

We wish to determine the probability of eventual extinction of the popu-
lation, namely,

goi = lim P[X, =0]| X, =1] (3.117)
[ amde o]
By independence, we may write that

do,i = qé,l (3.118)

Consequently, it suffices to calculate gg 1, which will be denoted simply by gq.
We have

[]8

PX,=0|Xo=1=1-PX,>1|Xo=1=1-Y P[X,=k|Xo=1]

k

Il

1
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o0
>1-) kPX,=k|Xo=1=1-E[X,|Xo=1]
k=1
—1—up (3.119)
[by Eq. (3.114)]. It follows that, if u; € (0,1), then

g>lml-pt=1 = ¢g=1 (3.120)
n—00
which is a rather obvious result, since if each individual has less than one
descendant, on average, we indeed expect the population to disappear.
When 1 > 1, Eq. (3.119) implies only that go > 0 (if 41 = 1) or that
go > —oo (if uy > 1). However, the following theorem can be proved.

Theorem 3.2.3. The probability qo of eventual extinction of the population
is equal to 1 if py <1, while gqo <1 if py > 1.

Remarks. i) We deduce from the theorem that a necessary condition for the
probability ¢y to be smaller than 1 is that p; must be greater than 0 for at
least one j > 2. Indeed, if pp = p > 0 and p; = 1 — p, then we directly have
m=1l-p<l

il) When po = 0 and p; = 1, we have that u; = 1. According to the theorem,
we should have go = 1. Yet, if p; = 1, it is obvious that the size of the
population will always remain equal to Xy, and then gy = 0. However, the
theorem applies only when pg > 0.

Let F be the event defined by
F=|J{X,=0} (3.121)
n=1

so that g = P[F | Xy = 1]. To obtain the value of gg, we can solve the
following equation:

oo oo
QQ=ZP[F|X1 = i]pj :Zq(])pj (3122)
Jj=0 7=0

The equation above possesses many solutions. It can be shown that when
p1 > 1, go is the smallest positive solution of the equation.

Remark. Note that go = 1 is always a solution of Eq. (3.122).

Ezample 3.2.15. Suppose that pg = 1/3 and p; = 2/9, for j = 1,2,3. First,
we calculate

2 4
m=0+5(1+2+3)=2>1

Thus, we may assert that go < 1. Eq. (3.122) becomes
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1 2 7 3
qo=§+§(qo+q3+q3) = q3+q3—§qo+§=0

Since go = 1 is a solution of this equation, we find that
. 3
(0-1){ g +200—3) =0

The three solutions of the equation are 1 and —1 % 1/5/2. Therefore, we
conclude that go = —1 4 4/5/2 ~ 0.5811.
Remark. If po = 1/2 and p; = 1/6, for j = 1,2,3, then we have

1
u1=0+6(1+2+3)=1
Consequently, Theorem 3.2.3 implies that ¢o = 1. Eq. (3.122) is now

1 1
qO=§+g(qO+q§+q8) “— (qo—1)2(qo+3)-—-0

so that the three solutions of the equation are 1 (double root) and —3, which
confirms the fact that gg = 1.
Similarly, if po = p1 = 1/2, then we find that

1
QO=‘2“(1+‘10) = =1

in accordance with Theorem 3.2.3, since u; = 1/2 < 1.

Assume again that Xo = 1. Let
Toi=) Xp=1+) Xk (3.123)
k=0 k=1

That is, T,, designates the total number of descendants of the population’s
ancestor, in addition to the ancestor himself. It can be shown that

i P [nllrr;o T, = j] = g (3.124)
i=1

Thus, if gg < 1, then Ty := lim,,_,oc T}, is a random variable called defective,
which takes the value oo with probability 1 — go. Moreover, if go < 1, the
mathematical expectation of T, is evidently infinite. When ¢go = 1, we have
the following result.

Proposition 3.2.7. The mathematical expectation of the random variable To,
s given by

E[Ts] = 1u1 ifur <1 (3.125)
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Remark. We observe that when puy = 1, we have that P[Tw < oo} = 1, but
ETy] = .

Erample 3.2.16. If py = p € (0,1) and p; = 1 — p, then we know that go =1,
because 3 =1 — p < 1. In this case, we may write that

x, — J 1 with probability (1-p)*
* = 0 with probability 1 — (1 — p)*

Thus, we have

i 5 1 1
ETn:1+ 1— k n__)oo st
[T5] Z_‘;( p) i

which is indeed equal to 1/(1 — uy).

3.3 Continuous-time Markov chains

3.3.1 Exponential and gamma distributions

In the case of discrete-time Markov chains, we said nothing about the time
the processes spend in state ¢ before making a transition to some state j. As
in Example 2.1.1 on random walks, we may assume that this time is determin-
istic and is equal to one unit. On the other hand, an essential characteristic of
continuous-time Markov chains is that the time that the processes spend in a
given state has an exponential distribution, so that this time is random. More-
over, we will show that the sum of independent exponential random variables
(having the same parameter) is a variable having a gamma distribution. We
already mentioned the exponential and gamma distributions in Chapter 1. In
the present section, we give the main properties of these two distributions.

Exponential distribution

Definition 3.3.1. (Reminder) If the probability density function of the con-
tinuous random variable X, whose set of possible values is the interval [0, 00),
is of the form

=AT Sf.
fx(z) = {Aeo Zﬁ i 8 (3.126)

we say that X has an exponential distribution with parameter A > 0 and
we write X ~ Ezp(\).

Remarks. 1) Using the Heaviside function u(z) (see p. 11}, we may write that

fx(x) = e Mu(z) (VzeR) (3.127)
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Note that we have the following relation between the functions u(z) and é(x)
(see p. 63):

u(z) = /_x §(t) dt (3.128)

it} For some authors, a random variable X having an exponential distribution
with parameter A possesses the density function

Fx(@) = ye u(z) (3.129)

The advantage of this choice is that we then have E[X] = A, while for us
E[X] = 1/A, as will be shown further on.
The distribution function of X is given by

0 ifex <0
_ T
Fx(z) = / e Mdt=1—eifz>0 (3.130)
0

Note that we have the following very simple formula:
PIX>z]=e forz>0 (3.131)

Some people write F(z) for the probability P[X > z].

The main reason for which the exponential distribution is used so much, in
particular in reliability and in the theory of queues, is the fact that it possesses
the memoryless property, as we show below.

Proposition 3.3.1. (Memoryless property) Suppose that X ~ Ezp()).
We have

PIX>s+t|X>t]=PX>s] Vst20 (3.132)

Proof. By the formula (3.131), we may write that

PX>s+t,X>t P[X>s+t
P[X > t] T PIX >t
e-—)\(s-i-t)
JesY;

PX>s+t| X>t]=

=eM=PX>s] O (3.133)

Remark. Actually, the exponential random variables are the only r.v.s having
this property for all nonnegative s and t. The geometric distribution possesses
the memoryless property, but only for integer (and positive) values of s and ¢.

We can easily calculate the moment-generating function of the r.v. X ~
Exp(A):



3.3 Continuous-time Markov chains 111

it < A (3.134)

e A
Mx(t) = E[eiX] = / e e M dx =
0 A—t

Then

Mx(t) = and My (t) = (3.135)

A
(A-1)? (A—t)?

which implies that

1

1
’% and V[X] == (3.136)

EIX] = M(0) =5, BIX?] = M{(0) =

=z
Remark. Note that the mean and the standard deviation of X are equal.
Consequently, if we seek a model for some data, the exponential distribution
should only be considered if the mean and the standard deviation of the
observations are approximately equal. Otherwise, we must transform the data,
for example, by subtracting or by adding a constant to the raw data.

Ezample 3.3.1. Suppose that the lifetime X of a car has an exponential dis-
tribution with parameter A. What is the probability that a car having already
reached its expected lifetime will function (in all) more than twice its expected
lifetime?

Solution. We seek

2 1 1
PiX>= | = ~Zl =e 1 ~0.3679
x> 2x> 2= p[x> 1] e w03

Remark. The assumption that the lifetime of a car has an exponential distribu-
tion is certainly not entirely realistic, since cars age. However, this assamption
may be acceptable for a time period during which the (major) failure rate of
cars is more or less constant, for example, during the first three years of use.
Incidentally, most car manufacturers offer a three-year warranty.

As the following proposition shows, the geometric distribution may be
considered as the discrete version of the exponential distribution.

Proposition 3.3.2. Let X ~ Ezp()\) and Y := int(X)+ 1, where “int” des-
tgnates the integer part. We have

PlY =k]=(e M Y1-e?) fork=12,... (3.137)
That is, Y ~ Geom(p:=1—e"?).

Proof. First, since int(X) € {0,1,...}, we indeed have that Sy = {1,2,...}.
We calculate

PlY =k = Plint(X) =k —1] =Pk —1 < X < (3.138)
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k
= Ae M dp = — 7N
k-1

k — - -
lk-lze MMk 1)(1—-6 )\) 0

Remark. 1f we define the geometric distribution by
PY =kl=¢*p fork=0,1,2,... (3.139)

(as many authors do), then we simply have that Y := int(X) ~ Geom(p =
1—e™ ).

We can also consider the exponential distribution on the entire real line.

Definition 3.3.2. Let X be a continuous random variable whose density func-
tion is given by

fx(z) = %e")‘m forzeR (3.140)

where X is a positive parameter. We say that X has a double exponential
distribution or a Laplace® distribution.

Remark. We find that the mean value of X is equal to zero and that V[X] =
2/A2. The fact that E[X] = 0 follows from the symmetry of the function fx
about the origin (and from the existence of this mathematical expectation).

Proposition 3.3.3. If X ~ Ezp()), then for all o > 0, we have
EX | X >xg)=z0+ E[X] and V[X|X >z =V[X] (3.141)
Proof. The formula P[X > 1p] = e~*% implies that

Fx(x] X >z) = Ae M&720)  for & >z (3.142)

from which we have

E[X]X>:c0]=/oo

To

= E[X]+ zoP|X € [0,00)] = E[X] + o (3.143)

o0
x NeAE=0) g YVEITT0 / (y + zo)Ae™ Y dy
0

Next, we calculate

o o
E[X?| X >z = / z? Ae~MET0) g YT / (y + z0)*Xe™ dy
0

= E[(jX2] + 229 E[X] + z2P[X € [0, 00)]
= E[X? + 220 E[X] + z} (3.144)

5 See p. 19.
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Then we obtain

VIX | X >z0) = B|[X?| X > 2] — (B[X | X > z0))?
= E[XY - (E[X])?=VI[X] O (3.145)
Remark. The preceding proposition actually follows directly from the memo-
ryless property of the exponential distribution.

A result that will be used many times in this book is given in the following
proposition.

Proposition 3.3.4. Let X; ~ Ezp(A) and X2 ~ Exp(Ag) be two independent
random variables. We have

A
PlX1 < Xg]=——— 3.146
[X1 < X2 N (3.146)
Proof. By conditioning on the possible values of X, we obtain
o0
P{Xz >X1] = / P[XQ > X4 ‘Xl =:L‘]fX1(.CE)dIL' (3.147)
0

ind o0 o0
m:'/ PlX, >a7]/\1€”)‘””dz::/ e\ e M2 dx
0 0

At
A1+ A

o]
:/ e~ Matd2z gy (3.148)
0

Remarks. 1) We have that P[X; < Xo] = 1/2 if A; = A2, which had to be the
case, by symmetry and continuity.

ii) The proposition may be rewritten as follows:

A1
P{X; = min{X;, X5} = ————— 3.149
(X1 = min{Xy, X>}] SV (3.149)
Moreover, we can generalize the result: let Xy, ... , X, be independent random
variables, where X ~ Exp(Ag), for all k. We have
P|X; = min{X X} = S (3.150)
1 190 340 /\1++)\n
To prove this formula, we can make use of the following proposition.
Proposition 3.3.5. Let X1 ~ Ezp(A\1), ..., Xn ~ Ezp(A\n) be independent
random variables, and let Y := min{X,...,X,}. The r.v. Y has an expo-

nential distribution with parameter A := Ay + ... + A,.

Proof. Since min{ X1, X3, X3} = min {X;, min{ X2, X3}}, it suffices to prove
the result for n = 2. We have, for y > 0,
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PlY >y = P[X; >y, Xy > y] "= P[X; > y|P[X2 > 9]
= g MY~ rey — o~ (Mtd2)y
= fr(y) = (M +A)em M) O (3.151)

Example 3.3.2. Suppose that X, X,, and X3 are independent random vari-
ables, all of which have an Exp()) distribution. Calculate the probability
P[Xl < (X2 +X3)/2].

Solution. We have P[X; < (X2 + X3)/2] = P[Y < Xy + X3}, where Y :=
2X;. Moreover, for y > 0,

PlY <y]=PlX;<y/2)=1-e? = Y ~Exp(}/2)
Then, by the memoryless property of the exponential distribution,

P[?Xl<X2+X3]=1—P[YZX2+X3]
=1—P{YZX2+X3lYZXz]P[YZXQ}

2
i A
=1-PY > Xs]P[Y > X5) & 1- .
A+ 5

=1-(2/3)?=5/9

Finally, we would like to have a two-dimensional version of the exponential
distribution. We can, of course, define

Fx0.x: (@1, T2) = Mhge~PaZitha2) for 4 >0, 25 > 0 (3.152)

However, the random variables X; and X, are then independent. To ob-
tain a nontrivial generalization of the exponential distribution to the two-
dimensional case, we can write

P[X;y > z1, X2 > z2] = exp{—A171 — dox2 — Ao max{zy,22}}  (3.1563)

for 1 > 0, x2 > 0, where A15 is a positive constant. We indeed find that X; ~
Exp(A;), for ¢ = 1,2. -

Another possibility is the random vector whose joint density function is
(see Ref. [5])

A1A2 A1x1 + Aoxo 2(p)\1)\2:1:1m2)1/2
exp | — I
1- 1—-p 1-p

for £1 > 0, x2 > 0, where p € [0, 1) is the correlation coefficient of X; and X3,
and Io(-) is a modified Bessel’ function of the first kind (of order 0) defined
by (see p. 375 of Ref. [1])

7 Friedrich Wilhelm Bessel, 1784-1846, was born in Germany and died in Konigs-
berg, in Prussia (now Kaliningrad, in Russia). He was an astronomer and mathe-
matician. The mathematical functions that he introduced in 1817 are important
in applied mathematics, in physics, and in engineering.

Ix1,x(T1,02) = (3.154)
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1,2 1,232 (1.2\3
Io(z) =1+ 4;,)2&?;)3 +(€32!)2 ool (3.155)

Here, too, we find that X; ~ Exp(};) and X3 ~ Exp(A2).

Gamma distribution

Definition 3.3.3 (Reminder). We say that the continuous and nonnegative
random variable X has o gamma distribution with parameters a > 0 and
A >0, and we write that X ~ Gla, M), if
(Az)2~ e A"
I'(c)

where I'(-) is the gamma function, defined (for a > 0) by

fx(z) = u(z) (3.156)

I(a)= f tele=tdt (3.157)
0

Remarks. 1) The function I'(«) is strictly positive for any positive a. For
a > 1, we have

o0
I'a) = —t"‘_le“t|;° + (@ — 1)/ t*2e7tdt
0
204 (a~-1)T(a—1)=(a—1)T(a—1) (3.158)
Then, since
(ee]
ra = / etdt =1 (3.159)
0
we have

I'ny)=(n-1)I'(n-1)=(n-1)(n-2)I"(n-2)
=... =n-1n-2)---1-I'N) =(n—-1)! (3.160)

Thus, the gamma function generalizes the factorial function. We also have
r/2) = / t™12e"t gt s"“_/ V2e™ 12 ds (3.161)
—2\/—/ e /2d3:2\/7_rP[N(0,1)20}=\/7_r

ii) Contrary to the exponential distribution, whose density function always has
the same form, the shape of the density function fx changes with each value of
the parameter «, which makes it a very useful model for the applications. We
say that the parameter « is a shape parameter, while A is a scale parameter (see
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Fig. 8.1. Examples of probability density functions of G(«, A = 1) random variables.

Fig. 3.1). In reality, the shape of the function fx varies mostly when o is small.
When a increases, the gamma distribution tends to a Gaussian distribution,
which follows from the fact that if X ~ G(n, ), then the random variable
X can be represented as the sum of n independent r.v.s X ~ Exp(}), for
k=1,...,n (see Prop. 3.3.6).

iii) If X ~ G(a =1, ), we have
fX(x) = )\e—)‘zu(:p) (3.162)

Thus, the gamma distribution generalizes the exponential distribution, since
G(a=1,A) = Exp(}).

iv) The parameter o may take any real positive value. When a = n € N,
the gamma distribution is also named the Erlang8 distribution. Moreover, we
have that G(a = n/2,A = 1/2) = x2. That is, the chi-square distribution
with n degrees of freedom, which is very important in statistics, is a particular
case of the gamma distribution, too.

The moment-generating function of X ~ G(a, ) is

00 Ae—)@(}\x)a—l PR o0 3 1
Mx(t = / et® dr = / et=Nzga—l g
© 0 T'() @) Jo

y=(~t)z A% a1 g AY
= r(a)(A—tw/o TNy = T @)

8 Agner Krarup Erlang, 1878-1929, was born and died in Denmark. He was first
educated by his father, who was a schoolmaster. He studied mathematics and nat-
ural sciences at the University of Copenhagen and taught in schools for several
years. After meeting the chief engineer for the Copenhagen telephone company,
he joined this company in 1908. He then started to apply his knowledge of proba-
bility theory to the resolution of problems related to telephone calls. He was also
interested in mathematical tables.
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A o

= —— fi 3.163
()\ — t) ort <A ( )

We then calculate

1
BIX] = My(0) = and E[X?] = M} (0) = % (3.164)
so that
ala+1) (a2 a

=———(5) =3 3.165
VIA] A2 ()\) A2 ( )

We can transform a G(o,A) random variable X into an r.v. having a
G(a,1) distribution, sometimes called the standard gamma distribution, by
setting Y = AX. Indeed, we then have

a—le—y
fy(y)=fx(y/A)!d(Z£’\)(:y ) u(y) (3.166)

The distribution function of Y can be expressed as follows:

Fy(y) = 71(10(‘(5) for y > 0 (3.167)

where y(a, y) is the incomplete gamma function, defined by

y
7(a,y):/ t* et dt (3.168)
0

We have the following formula (see p. 272 of Ref. [1]):
Yayy) ="y VM(1L,1 + ayy) (3.169)

where M (., -, -} is a confluent hypergeometric function, defined by (see p. 504
of Ref. [1])

2 3
M(a,b,z):1+ﬁz+a(a+1)z a(a+1)(a+2)z

D e T e nery 3 T G0

When a = n € N, the function v(«, y) becomes

y(n,y) =I'(n) |1 —e7¥ "2:1 %'i} (3.171)
k=0
which implies that
n—1 k
Fy(y) =1-) e fory>0 (3.172)
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This formula can be rewritten as follows:
PlY <y]=1-P{W <n-1]=P[W >n], where W ~ Poi(y) (3.173)

Remarks. i) The formula (3.173) can be obtained by doing the integral

/y t"letdt (=v(n,y)) (3.174)
0

by parts (repeatedly).

ii) We will see in Section 5.1 that, in the case of a Poisson process (with rate
A = 1), the random variable Y represents the time needed for n events to
occur, whereas W is the number of events that occur in the interval [0, y] In
other words, the relation between Y and W is expressed as follows: the nth
event of the Poisson process occurs at the latest at time y if and only if there
are at least n events in the interval [0, y].

Ezample 3.3.3. Suppose that the duration T (in hours) of a major power fail-
ure is a random variable having a gamma distribution with parameters a =
2 and A = 1/2 (so that the average duration is equal to four hours). What
is the probability that an arbitrary (major) power failure lasts more than six
hours?

Solution. First, we have
P[T > 6] = P[X >3], where X ~ G(2,1)
Then, by using the formula (3.173), we can write that

P[X >3] = P[Poi(3) < 1] = e 3(1 4+ 3) = 4¢3 ~0.1991

Remarks. 1) It is important not to forget that T' (or X) is a continuous random
variable, while W is discrete.

ii) When the parameter « is small, as in this example, we can simply integrate
by parts:

w$2—1e—z o0
PlX >3] = ———dz = “d
I ] /3 %0) T /:; ze Tdx

o
= ——:ve_””lgo +/ e ®dr=3e3+e P =4e73
3
We have seen that the exponential distribution is a particular case of the

gamma distribution. We will now show that the sum of independent exponen-
tial random variables, with the same parameter, has a gamma distribution.
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Proposition 3.3.6. Let X1,...,X,, be independent random variables. If X;
has an exponential distribution with parameter A, for all i, then

> Xi~Gla=n,)) (3.175)
=1

Proof. Let S:=3""_ X;. We have

Ms(t) = Ele'’] = E {exp {tin}} nd ﬁMX-,:(t)
i=1 i=1
= 1 /\_2\:; = ()\_A—_—t> fort < A (3.176)

Since [A/(A—t)]" is the moment-generating function of an r.v. having a G(a =
n, A) distribution, the result is then obtained by uniqueness. Indeed, only the
G(a = n, A) distribution has this moment-generating function. O

The exponential and gamma distributions are models that are widely used
in reliability. Another continuous random variable, which also generalizes the
exponential distribution and which is very commonly used in reliability and
in many other applications, is the Weibull ? distribution.

Definition 3.3.4. Let X be a continuous random variable whose probability
density function s given by

fX(l”):t)—?(xg’Y)ﬁ_lexp[— <x;’y>ﬁ}u(a:—fy) (3.177)

We say that X has o Weibull distribution with parameters 3 >0, v € R,
and § > 0.

Remark. The exponential distribution is the particular case where § = 1,
v =0, and § = 1/). Like the gamma distribution, this distribution has a
shape parameter, namely 8. The parameter < is a position parameter, while
4 is a scale parameter. When v = 0 and § = 1, we have

fx(z) = ﬁmﬁ‘le_’”ﬂ u(z) (3.178)

This variable is called the standard Weibull distribution. Its distribution func-
tion is

Fx(z)=1-e¢% forz>0 (3.179)
® E. H. Wallodi Weibull, 1887-1979, was born in Sweden and died in France. In

addition to his scientific papers on the distribution that bears his name, he is the
author of numerous papers on strength of materials, fatigue, and reliability.
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Because the exponential, gamma, and Weibull distributions are very im-
portant in reliability, we will end this section with the definition of the failure
rate of a device, or a system, etc.

Definition 3.3.5. The failure rate (or hazard rate) of a device, whose
lifetime X is a continuous and nonnegative random variable, is defined by

o fx(®)

Remarks. i) We have that rx(t) ~ P[X € (t,t + dt] | X > t]/dt. That is, the
failure rate rx(t), multiplied by dt, is approximately equal to the probability
that a device being ¢ time unit(s) old will fail in the interval (¢,¢ + dt], given
that it is functioning at time ¢.

ii) To each function rx (t) there corresponds one and only one distribution
function Fx(t). Indeed, we have

rx(t) = fx(t)  £Fx(t)

C1-Fx(t) 1-Fx(t) (3.181)

from which we can write (since Fx (0) = 0) that

‘ ’ %FX(S) _ t_ _
/Orx(s)ds*:/0 T‘!_F—X(S)ds———ln[l—FX(s)]lo——ln[l Fx(t)]

= Fx(t)=1—exp {—/Ot rx(s) ds} (3.182)

Particular cases
1) If X ~ Exp()), then

de~ M

Note that this result is a consequence of the memoryless property of the expo-
nential distribution. We say that the parameter ) is the rate of the exponential
distribution.

2) In the case of the standard gamma distribution, we may write that
ta—le—t

Fla) — oD (3159

rx(t) =

3) Finally, if X has a standard Weibull distribution, we deduce from Eqgs.
(3.178) and (3.179) that
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rx(t) = ptPt (3.185)

In practice, the function rx(¢) has more or less the shape of a bathtub.
That is, at the beginning the failure rate decreases, then this rate is rather
constant, and finally the failure rate increases (which is equally true for the
death rate of humans). To obtain this kind of curve, we can consider a random
variable that is a linear combination of three Weibull distributions:

Xi=c X{+co Xo+c3 X3 (3.186)

with ¢; > 0, for all 4, and ¢; +ca+c3 = 1 (called a mized Weibull distribution),
where X has a (8 parameter smaller than 1, X5 a 3 parameter equal to 1,
and X3 a § parameter greater than 1.

3.3.2 Continuous-time Markov chains

Let {X(t),t > 0} be a continuous-time and discrete-state Markovian [see Eq.
{3.1)] stochastic process, and let 7; be the time that the process spends in
state ¢ before making a transition to some other state. We may write that

P{Ti>$+t1Ti>t]:P[Ti>S] \V’S,tZO (3187)

Indeed, since the process is Markovian, the time it has spent in a given state
does not influence the future. Consequently, whatever the time that the pro-
cess has already spent in ¢, it is as likely that it will remain there during at
least s additional time units than if it had just entered this state. Eq. (3.187)
means that the continuous random variable 7; possesses the memoryless prop-
erty. As we already mentioned (see p. 110), only the exponential distribution
possesses this property. We can therefore conclude that 7; has an exponential
distribution, with parameter denoted by v;, which, in general, depends on
state <.

Moreover, the Markov property also implies that the next state visited, 7,
is independent of 7;. Thus, when the process leaves state i, it enters state j
(# ¢) with probability p; ; (by definition), where

o0
pii=0 Vi and » piy=1 Vi (3.188)
7=0

The p; ;'s are the one-step transition probabilities of the embedded (or as-
sociated) discrete-time Markov chain. Note, however, that, contrary to the
transition matrices in the preceding section, all the terms on the main (de-
creasing from top left to bottom right) diagonal of the matrix are necessarily
equal to zero, by definition of the p; ;’s in the present case.

The process {X (¢),t > 0} is called a continuous-time Markov chain, which
is now defined formally.
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Definition 3.3.6. Let {X(t),t > 0} be a continuous-time stochastic pro-
cess whose state space is N° = {0,1,...}. We say that {X(t),t > 0} is a
continuous-time Markov chain if

PX(t+s)=j|X(s)=i,X(r)=2,0<r <3
— PIX(t+5) = | X(5) = 1] = pig () (3.189)

Vs,t>0andV 1,4z, € N,

Remarks. i) As in the case of the discrete-time Markov chains, we assume that
the chains considered have stationary or time-homogeneous transition proba-
bilities. We could treat the general case and denote the conditional probability
P[X(t) =j | X(s) =1] by p; ;(s,t), where t > s, but since the most important
processes for the applications are indeed such that p; j(s,t) = p;;(t — s), it
will not be necessary.

ii) Continuous-time Markov chains are also known as Markov jump processes.

iii) The function p; ;(t) is called the transition function of the continuous-time
Markov chain.

iv) The probabilities p; ;(t) correspond to the pg?-)’s in discrete-time Markov

chains. If there exist a t > 0 for which p; ;(t) > 0 and a t* > 0 for which
p;,i(t*) > 0, we say that states i and j communicate. The chain is irreducible
if all states communicate.

v) We may write that
D opiit)=1 Vi (3.190)
j=0

since the process must be in some state at time t + s, regardless of the state
it was in at time s.

vi) For the sake of simplicity, we will assume in the sequel that the state space
of the Markov chain {X(¢),t > 0} is, save indication to the contrary, the set
{0,1,...}. However, as in the discrete case, the state space can actually be a
set Sx(¢) C {0,1,...}, or, more generally, a finite or countably infinite set of
real numbers.

Ezample 3.3.4. Since all the elements of the main diagonal of the matrix P
in Example 3.2.8 are equal to zero, we can consider this matrix as the transi-
tion matrix of the embedded discrete-time Markov chain of a continuous-time
Markov chain. The fact that p; ; = 1/2, for all i # j, does not mean that all
the random variables 7; have the same parameter v;, for i = 0,1, 2.

The following proposition is the equivalent, in the continuous case, of
Proposition 3.2.1.
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Proposition 3.3.7 (Chapman—Kolmogorov equations (2)). For all s,t
nonnegative, we have

pzk t+ 9 sz,g pgk sz,J p]k (3'191)

Proof. The proof is similar to that of Proposition 3.2.1. O

Example 3.3.5. In general, it is not easy to calculate the functions p; ;(t) ex-
plicitly. T' heorems 3.3.1 and 3.3.2 provide differential equations whose solu-
tions are these p; ;(t)’s. In the case of a Poisson process (see Section 5.1), we
find directly that

j—i
e M E’,\t) il forj—i>0
— 1)
pij(t) = J
0 forj—i <0

where ) is the rate of the process. We indeed have, for k > 1,

k i—i k—j
AP s (As) T
pr ka me p]k Z (j—i)!e (k—j)!
]=Z
—A(t+s)/\k—'zk: ti—ish=d Mt+s) \k zkz_:l tigkid
=€ ’ — T = e - T T
= U= Dlk=5)! = Ik —i—g)!
k—i _ Jok—i~j (t_+_8)k—i
Mtts) yk— zz ( Z) s () —A(t+s) \h—i
Y a0l
o (k —i)! (k —)!
Cagers) A+ 9)] — pin(t+9)

where Eq. (*) is obtained by Newton’s!® binomial theorem.

Notation. We denote by p;(t) the (marginal) probability that the process
{X(t),t > 0} will be in state j at time ¢:

p;(t) = PIX(t) = j] (3.192)
If a; := P{X(0) =], for i = 0,1,..., then we may write that

t) =" a;pi;(t) (3.193)
=0

When P[X(0) = k] = 1 for some k € {0,1,...}, we simply have that p;(t) =
pkw] (t)'

10 Sir Isaac Newton, 1643-1727, was born and died in England. Newton was a scholar
who is famous for his contributions to the fields of mechanics, optics, and astron-
omy. He is one of the inventors of differential calculus. He also wrote theological
books.
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3.3.3 Calculation of the transition function p; ;(t)

First, if state i is absorbing, which means that the parameter v; of the random
variable 7; is equal to 0, we may write that

lifi=3j
pij(t) = bij := {0 vy #j’ (3.194)

for all t > 0. In the case of nonabsorbing states, we will obtain two systems
of differential equations, which, when we can solve them, give us the value of
pi,5(t), for all states 4,5 € {0,1,...}.

Remark. It can be shown that the p; ;(t)’s are continuous functions of ¢, for
every pair (i, 7).

Definition 3.3.7. The quantities
viji=vipiy Yi#je{01,...} (3.195)

are the infinitesimal parameters or instantaneous transition rates of
the continuous-time Markov chain {X(t),t > 0}.

Remark. We have

Z Vi = Zpi’j =vy; (because p;; = 0) (3.196)
ji i
We set
Vig = —V; (3.197)
It follows that
Y vi;=0 (3.198)
=0

Definition 3.3.8. The matriz

0 Vo0 Yo,1 V9,2 -+ -
rigriivi2 .-

G=2 Voo Va1 V22 ... (3.199)

is known as the generating matrix of the continuous-time Markov chain
{X(t), t > 0}.

Remarks. i) If we know the quantities v; ;, for all i # j, then we can calculate
the rates 1; and the probabilities p; ; from Eq. (3.195). Moreover, we will show
in this section that the p; ;(t)’s depend only on the v;’s and the p; ;’s, from
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which one derives the name of generator of the Markov chain for the set of all
Vi,j ’s.

ii) The matrix G corresponds to the transition matrix P for a discrete-time
Markov chain. However, note that the v; ;’s are not probabilities and that the
sum of the elements of each row of G is equal to 0 rather than to 1.

Notation. If the function g(x) is such that
im 2@ _ g (3.200)
rz—0 T

then we write that g{x) = o(z).

A function g(z) that “is” o(x) must therefore tend to 0 more rapidly than
the identity function f(z) = = when = — 0. Thus, g;(z) := 2?2 is o(z), while
g2(z) = +/z is not o(z). Moreover, if g;(z) = o(z), for i =1,... ,n, then

zn:cz-gi(:c) =o(z) Ve eR (3.201)
i=1

Proposition 3.3.8. The probability that a continuous-time Markov chain,
{X(t),t > 0}, makes two or more transitions in an interval of length ¢ is

o(9).
Proof. We know that the time 7; that the process spends in state i has an
exponential distribution with parameter v;, for ¢ = 0,1,... . Suppose first

that »; = v V ¢ and, without loss of generality, that X (0} = 0. Let NV be the
number of transitions of the Markov chain in the interval [0,d]. We have

P[N >2]=1-P[N =0] - P[N = 1]

00 .6
~1-Pl>8-Y [ fu(wporPln> 6 - uldu
k=170

00 5
=1- e V8 _ ZPOJ‘?/ ve v e—-u(é—u) du
k=1 0

o0
=1-e" — Zpo,k e uf =1—e V(1 +vé) (3.202)

k=1
Using the series expansion
72
ez:1+x+§+...:1+x+o(x) (3.203)

we may write that

PIN>2l=1-e"(14vd)=1—[1—vd+0(8)](1 +vd) =0o(d) (3.204)



126 3 Markov Chains

Now, if the v;’s are not all equal, it suffices to replace each v; by v :=
max{vg, v1,...} to prove the result. Indeed, since E[r;] = 1/v;, the larger v;
is, the shorter the average time that the process spends in state 4 is. But, since
for the largest v; we can assert that PN > 2] = o(d), this must hold true
when v; <v Vi O

Proposition 3.3.9. We may write that
d ..
Vij = d_pi’j(t) A4 1,7 € {0, 1, v } (3205)
¢ =0

Proof. Suppose first that i = j. We know, by the preceding proposition, that
the probability of two or more transitions in an interval of length ¢ is o(d). It
follows that

pi.i(0) = P[r; > 6] + 0(8) = e7"*% + 0(8) = 1 — v;6 + 0(6) (3.206)

Since p; ;(0) = 1, we may write that

5,i(0) — P (0 é
pi,i(8) — pi,i(0) = 36 + 0(8) = I-)-'—ﬁ—)zs—p‘-’-—(-)- =y, + 9(7). (3.207)
Taking the limit on both sides as § decreases to 0, we obtain
Pg,i(o) = -V =V (3.208)

When ¢ # j, we have that p; ;(0) = 0. Then

Pi,i(8) = Pl < 8] pij +0(8) = (1 — e™"%) pi j + 0(8) = v; 6 pij + 0(6)
(3.209)

. Pi,i(6) = pi;(0) . 0(6)
p;,](O) = %ﬁ)l _J.—dl_ = V; Pi + %1%1 T =V Pij = Vij ] (3210)

We now give the first system of differential equations that enables us to
calculate the p; ;(t)’s.

Theorem 3.3.1 (Kolmogorov backward equations). For all states i,
€ N°, and for all t > 0, we have

() =D vikprs(t) (3.211)
k=0

Proof. We decompose the probability p; ;(¢) into two incompatible cases:

Pij(t) = Plri <, X(t) =j | X(0) =] + Plr; > t, X(t) = j | X(0) = 9]
(3.212)
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Since P[7; > t] = e~ "%, we may write that
Plri >, X(t) = 7| X(0) = i] = e” "4y (3.213)
Next, we have
t
Plr<t,X(t)=j| X(0)=4] = / yie—"w(z Dik Prj(t — s)>ds (3.214)
0 ki
so that
pij(t) = eV 6y + / (Zpl kDk,j(t — s))d (3.215)
k#i

Remark. This integral equation allows us to state that the p; ;(t)’s are continu-
ous functions of ¢, as we already mentioned above. It follows that the function
that we integrate is a continuous function as well.

Finally, to obtain the Kolmogorov backward equations, it suffices to first
rewrite Eq. (3.215) as follows:

Pi;(t) = e85, + e ’/z/ <szkplw ) (3.216)

k#i

and then to differentiate this last equation:

piy](t) = _.Vi{e—llitéij + I/ie_l/,:t / viu < sz k Dk J ) }

kF#i
R Z Pik Pk, ()

oy
= =i Pii (1) + V0 Y Pik Phi(t) = VisPis (8) + Y Vigk P (t)
ki oy
o>
= Vikprs(t) O (3.217)

Remark. If we set t = 0 in the Kolmogorov backward equations, we obtain

00
pg’j(O) = Zyi’k pk,j(o) = Vi pj,j(O) =Vij (3218)
k=0

which confirms the result in Proposition 3.3.9. Actually, from Proposition
3.3.9, we can show directly the validity of the Kolmogorov backward equations.
Indeed, we deduce from the Chapman—Kolmogorov equations that
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d S d
A —Dpij(s+1) =Zd— ik(S) p,i(t) Vs,t>0 (3.219)
= piy szk )Pk, (t)  (with s =0)
oo
= pj,t) = Z Vik Pk,j(t)
k=0

where we assumed, in the first equation, that we can interchange the derivative
and the summation.

The second system of differential equations that we can use to calculate
the p; ;j(t)'s is valid when, as in the remark above, we can interchange the
derivative and the summation when we differentiate the Chapman—Kolmogo-
rov equations. Now, this interchange is allowed when the state space of the
Markov chain is finite and, also, in particular, for the birth and death processes,
which will be defined in the next subsection.

Theorem 3.3.2 (Kolmogorov forward equations). Under the condition
mentioned above, for all i,j € N°, and for any t > 0, we have

o0
pi;(t) = Zpi,k(t) Vk,j (3.220)
k=0

Proof. We have, under the condition in question,

d

2Pt +9) szk p;m( s) Vst>0 (3.221)
if s=
0 0 = S pea(®) s 0)

= p(t)= sz',k(t) Vk,j

by Proposition 3.3.9. O

Remarks. i) Since there is a Kolmogorov equation for every pair (7,7), the
two systems of differential equations comprise m? equations each, where m
is the number of elements in the state space of the Markov chain {X(t),
t > 0} (which can be infinite). Thus, obtaining an explicit solution for the
probabilities p; ;(t) from these systems of equations is generally very difficult.
In the next subsection, we will calculate the p; ;(t)’s when the state space has
only two elements.

ii) In certain particular cases, for example, in the case of the Poisson pro-
cess, we can determine the p; ;(t)’s without having to solve the Kolmogorov
differential equations.
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Example 3.3.6. Suppose that the Markov chain {X(t),t > 0} has state space
{0,1,...}, and that the process, from state 0, can only move to state 1. That
is, po,1 = 1. We then have

et 41} ifk=0
Vo = vy ifk=1
0 otherwise

It follows that the Kolmogorov backward equation for the pair (0, ) is given
by
Po,;(t) = vo[p1,5(t) — po,;(t)]

If state O is absorbing instead, we have the following trivial result:

poo(t)=1 and po;(t)=0 foranyj#0

Note that since the two functions are constant, the differential equation above,
which becomes pj ;(t) = 0 (since vy = 0), is satisfied. Conversely, the solution
of the differential equation pg ;(t) = 01is po,;() = ¢, and the fact that po ;(0) =
do;, that is, the initial condition, enables us to determine the value of the
constant c.

3.3.4 Particular processes

A continuous-time, two-state Markov chain

The first particular case that we consider is that for which the state space of
the continuous-time Markov chain {X(¢),¢ > 0} is the set {0,1}. We assume
that these states are not absorbing, so that they communicate. Since the
process, from state 0 (respectively, 1), can only move to state 1 (resp., 0), we
have that po,1 = p1,0 = 1. The generating matrix of the chain is given by

_O0l—v
G= 1{ " _UJ (3.222)
from which we deduce that the four Kolmogorov backward equations are, for
any ¢t > 0,
/ w
Poolt) = —vopooe(t) +ropie(t)
e
p(),l(t) = - pO,l(t) + 14 pl,l(t) (3 223)
) )
Pro(t) = vipoe(t) — vip1e(t)
&)
p11() = vipo(t) —vipi(t)

Moreover, we have the following initial conditions:

pij(0) = 8;; fori,j=0,1 (3.224)
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Since

po,0(t) + po,1(t) = p1,o(t) +p1a(t) =1 (3.225)

it is sufficient to consider Egs. (1) and (3) of the system (3.223). We deduce
from these equations that

Po,o(t) +ph0(t) = (11 — v0)[Po,o(t) — Pro(t)] (3.226)
Thus, if vy = v1, we have
Poo(t) +P10(t) =0 = poo(t) +p1e(t)=c (3.227)

a constant. The initial conditions (3.224) imply that ¢ = 1. Eq. (1) can there-
fore be rewritten as follows:

Poolt) = —wolpoo(t) — 1+ pop(t)] =  pop(t) +2v0poo(t) = vo

(3.228)
Multiplying on both sides by e#*f, we may write that
d (o
= (€7 poo(t)) = vo ™" (3.229)
The general solution of this ordinary differential equation is
e*°% po o(t) = %62"‘"5 +co (3.230)

where ¢q is a constant. Making use of the condition pg ¢(0) = 1, we find that
¢ = 1/2, so that

1
po,o(t) = 5 (1+e™2%%) fort>0 (3.231)

From this function, we can calculate the other three functions p; ;(t).

Remark. The general solution of the ordinary differential equation (o.d.e.)
F'(z) + cF(z) = G(z) (3.232)

where c is a constant, is (for > 0)
F(z)=e™* (F(O) + / eVG(y) dy) (3.233)
0

When v # vy, subtracting Eq. (3) from Eq. (1) in the system (3.223), we
find that

Po,0(t) — p1o(t) = —(vo + v1)[po,o(t) — P1,0(t)] (3.234)
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Using the preceding remark with F(t) := ppo(t) — p1,0(t) and G(t) = 0, we
may write that the solution of this o.d.e. is

p0,0(t) _ pl,O(t) _ [pO,()(O) "pl,O(O)}e_(w.{_yl)t - e—(uo+u1)t (3235)
Substituting into Eq. (1), we obtain
Pho(t) = —pe (ot (3236)

from which we deduce that

t t
/ Ppo(s)ds = —/ voe™ o) g
0 0

I/ —
= po,o(t) = po,o(0) — 7 f " (1 —e ("“+"‘)t) (3.237)

That is,

_ Y1 ) —(vo+11)t
t) = + e ot Vt>0 3.238
Poalt) = ;4 1 (3259

Note that if vy = v; in this formula, then we retrieve the formula (3.231).
Next, by using Eq. (3.235), we find that

t) = t) — _(U0+y1)t = " — “1 6_(V0+V1)t VtZO
pro(t) =poo(t) —e o+ ot
(3.239)
Finally, Eq. (3.225) implies that
Poi(t) =1—poo(t) = —2— — —L_e=totm)t yi>0  (3.240)

1/0+1/1 1/0+I/1

and
Vg vy

e"otudt yi>0 0 (3.241)
vy + 11 Vo + V1

pri(t) =1—pio(t) =

As in the discrete case, an important problem (which will be treated in the
next subsection) is that of determining, if it exists, the limiting probability
lim;_,o p;, ; (t). Here, we easily find that

' ifj=0andi=0,1
vy + 1

: ) = 242
Hm pi;(t) (3.242)

" fj=1landi=0,1
v+

Note that the limit exists and does not depend on the initial state i.
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Pure birth processes

Definition 3.3.9. Let {X(t),t > 0} be a continuous-time Markov chain
whose state space is the set {0,1,...}. If

Piag1 =1 fori=0,1,... (3.243)
the process is called a pure birth process.

Remarks. i) A pure birth process is thus a continuous-time Markov chain for
which transitions can only be made from an arbitrary state to its right-hand
neighbor. It is a particular case of the birth and death processes, which will be
treated further on.

ii) We can also define a pure birth process by setting

 fwmifj=il .
Vij = { 0 otherwise (3.244)

for alli # 5 € {0,1,...}.
The Kolmogorov forward equations for a pure birth process are the fol-
lowing:

Pii(t) = —vipia(t) (3.245)
and
Phs(t) = vjo1pijo1(t) — vy pig(t) Hj=i+1,i+2,... (3.246)

Proposition 3.3.10. The function p; ;(t) for a pure birth process is given,
for any t > 0 and for alli € {0,1,...}, by p, ;(t) =0 if j <4, and

Vit ifj=i

L : , 3.247
Pi(t) yj_le_"jt/ e ®p;j_1(s)ds if j > i ( !
0

Proof. Since the process can move only to the right, we indeed have p; ;(t) =0
ifj <.

Next, let F' be the following event: the process makes no transitions in the
interval [0, ¢]. Since the process cannot move backward, we may write that

Pi,i(t) = P[F] = P[r; > t] = 7" (3.248)

Finally, by (3.233), the solution of Eq. (3.246) is

t
pij(t) =e 7" {Pi,j(o) + Vi1 / €"°p; j-1(s) ds} (3.249)
0
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and the result follows from the fact that p; ;(0) =0, for j =i+1,i+2,... .0

From the formulas (3.247), we can calculate p; ;(t) recursively. For in-
stance, we have

t
Pii41(t) = Vz‘en""‘“t/ "4 %p;(s) ds
0

¢ t
= yie_ui+1t/ eVit18p7 Vi8S o I/ie_"""“t/ eWit1=vi)s 4o
0 0

V,-te_”it if Vi = Vit1

_ N (3.250)
— 7t (em¥it - e""'“t) if v; # Vg1
Vit1 — V%

Particular cases

1) Poisson process. This process is obtained by setting v; = A, for all i €
{0,1,...}. To obtain its transition function p; ;(t), we can use Eqs. (3.247)
and (3.250), with v; = v;11 = A. We have

A A (A)?
Piisi(t) =Ate™ = p01)= )\e"\t/ eMAse Mds = 5 ¢
0
(3.251)
Proceeding recursively, we obtain the following general formula:
£k
Piivk(t) = (—Ak,)—e‘“ fort>0and k=0,1,... (3.252)
That is,
piitk(t) = P[Poi(At) = k] (3.253)

The parameter ) is called the rate of the process.

We can also obtain the preceding formula without making use of the Kol-
mogorov equations, proceeding as follows: since v; = A, the random variables
7; all have an exponential distribution with parameter A. Moreover, they are
independent, by the Markov property. It follows, by Proposition 3.3.6, that

Si=mi+...+Tgp-1~ Gk VE>1 (3.254)

Then, we may write that

t PSR s —ats)
Pii+k(t) = / fs(8) Plripe >t — slds = / jAe e ds
; o oD
_ e A / L1 gy — e a QO (3.255)
Mo

(k- 1)1 Kl
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for i,k € {0,1,...} (since p; ;(¢) (6.219) e~M) and V t > 0.

2) Yule!! process. This process, studied by Yule in the framework of the
theory of evolution, can be interpreted as follows: we consider a population
whose members cannot die and such that each member, independently of the
others, gives birth to descendants according to a Poisson process with rate A.
It follows that

vi=iA Vi>0 (3.256)

Indeed, when X (t) = i, the time 7; that the process spends in this state is
given by

7 =min{X;,...,X;} (3.257)

where the random variables Xi,...,X; are independent and all have an ex-
ponential distribution with parameter A. By Proposition 3.3.5, we may write
that 7; ~ Exp(v; = i}).

Remark. Note that if X (0) = 0, then the process remains in this state forever.

We can calculate the transition function of the process in various ways.
We find that

i —1 . .
pij(t) = (JJ i)e—”\t(l —e MY fi>i>1 (3.258)

To check this result, we use the fact that Eq. (3.246) becomes
Pii(t) = (G = DApij-1(t) — jApij(t) forj=i+1,i+2,... (3.259)

Next, from the formula (3.258), we may write that

j—1 1
pi,j—l(t) = R (m) pi,j(t) (3260)

Moreover, we calculate [also from (3.258)]

P ;(t) = —iApi;(t) + (G - DAe™p; j_1(t) (3.261)
We have
—iApi () + (G — DAe™p; j_1(t) = (§ — DApij-1(t) — jADpi;(t)
= (-DA—e)pia(t) = (G —i)pi;(t) (3.262)

1 George Udny Yule, 1871-1951, was born in Scotland and died in England. He
first obtained an engineering degree. Next, he became interested in the field of
statistics and wrote important papers on regression and correlation theory. His
book Introduction to the Theory of Statistics, published for the first time in 1911,
was very successful.
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which holds true by Eq. (3.260).

Finally, the function given in (3.258) does indeed satisfy the initial condi-
tion

Pi,5(0) = &;; (3.263)
Remark. When ¢ = 1, the formula (3.258) becomes
p1i(t) = e ML —e M) ifj>1 (3.264)
We can then write that
p1,;(t) = P[Geom(p:=e ™) =j] ifj=1 (3.265)

Now, when X(0) =i > 1, it is as if we added ¢ independent random variables,
Xi,...,X;, all of which have a geometric distribution with parameter p =
e~*. We can show that such a sum S has a negative binomial or Pascal'?
distribution with parameters ¢ and p, whose probability mass function is given
by

P[S =j] = (;: 1) p(1—p)~t forj=id,i+1,... (3.266)

The formula for p; ;(t) thus follows directly from that for p; ;(t).

Birth and death processes

Definition 3.3.10. If the instantaneous transition rates v; ; of the continuous-
time Markov chain {X(t),t > 0} are such that

vi; =0 aflj—i|>1 (3.267)
the process is said to be a birth and death process.
Definition 3.3.11. The parameters
Xi=vi1 (fori>0) and pi:=vi;—1 (fori>1) (3.268)

are called, respectively, the birth and death rates of the birth and death
process.

12 Blaise Pascal, 1623-1662, was born and died in France. He is one of the founders
of the theory of probability. He was also interested in geometry and in physics,
in addition to publishing books on philosophy and on theology.
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Remark. Other terms used to designate the parameters A; and p; are the fol-
lowing: growth or arrival rates, and mortality or departure rates, respectively.
From the instantaneous transition rates v; j, we can calculate the param-

eters v; of the random variables 7;, as well as the probabilities p; ;, for all
states 7 and j in the set {0,1,...}. We have

Vo = —lpo = Vo1 = Ao (3.269)
and
Vi=—Vi; =Viigl +Viic1 =N +pg ifi>1 (3.270)
In the case when the state space is the finite set {0,1,... ,m}, we have
Vm = —Vm.m = Vm,m—1 = fm (3.271)

If A; = p; = 0, then state 7 is absorbing. For all nonabsorbing states
i €{0,1,...}, we have that po; = 1 and, using the formula (3.195),

Vi it1 A e
;. = == = :1— i lfl>1 3.272
Dii+1 Vi N + 1 Dii-1 Z ( )

Remarks. i) A birth and death process is a continuous-time Markov chain for
which transitions, from state i, can only be made to ¢ — 1 (if ¢ > 0) or i + 1.
In a short interval, of length &, the probability that the process moves from
state i to i + 1 (respectively, i — 1) is equal to \;8 + o(8) (resp., 10 + o(8)).
Thus, 1 — (XA; + p:)d + 0(d) is the probability that the process will still be (or
will be back) in state ¢ after 4 unit(s) of time.

ii) In many applications, the state of the process at a given time instant is
the number of individuals in the system at this time instant. A birth and
death process may then be interpreted as follows: when X (t) = i, the waiting
time until the next arrival is a random variable X; having an Exp(\;) distri-
bution and which is independent of the waiting time Y;, having an Exp(u;)
distribution, until the next departure. We then have 19 = Xy ~ Exp(rvg = Ag)
and

i = min{X;,Y;} ~ Exp(y; = A\; + ;) fori>0 (3.273)

Moreover, we indeed have py; =1 and

ind. A P
Piir1 = PIX; < Yi] = P[Exp(\;) < Exp(u;)] "= " 4_‘”' ifi>0 (3.274)
2 1

Similarly,

Piio1= ifi>0 (3.275)
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iii) A pure birth process is the particular case where the death rates u; are
all equal to zero. A process for which \; = 0 for all i is called a pure death
process.

Particular cases

1) The continuous-time Markov chain whose state space is the set {0,1},
considered at the beginning of this subsection (see p. 129), is an example of a
birth and death process, for which

A=1vy and p; =u (3.276)

(all the other birth and death rates being equal to zero).

2) Suppose that we modify the Yule process as follows: after an exponential
time with parameter ), an individual either gives birth to a descendant, with
probability p, or disappears from the population, with probability 1 — p. Let
X(t) be the number of individuals in the population at time t. The process
{X(t),t > 0} is now a birth and death process whose birth and death rates
are given by

Ai=ipA and u; =i1—p)A fori>0 (3.277)

If we assume rather that, when an individual gives birth to a descendant,
there is a probability p (respectively, 1 — p) that this individual remains in
(resp., disappears from) the population, then the process {X(t),t > 0} is no
longer a continuous-time Markov chain. Indeed, suppose that X(0) = 1. We
may write that

Pl <t]= Zp p)*TIPIXy 4.+ X < ] (3.278)

where the X;’s are independent random variables that all have an exponen-
tial distribution with parameter A. This result follows from the fact that we
perform independent trials for which the probability of success, that is, the
case when the individual remains in the population, is equal to p. Since the
random variable 71 does not have an exponential distribution, {X(t),t > 0} is
not a continuous-time Markov chain anymore. Actually, 71 is an infinite linear
combination of independent gamma distributions.

3) The queueing model M/M/s. This process will be studied in detail
in Section 6.3.1. We suppose that customers arrive at a system according
to a Poisson process with rate A. There are s servers, but the customers
form a single queue. The service times are independent and have an Exp{u)
distribution. We have

A=A Vi>0, p=ip if1<i<s, and p;=sp ifi>s (3.279)
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(since if all the servers are occupied, then the departure rate from the system
is equal to su, for any number of persons in the system).

Remark. M means that the waiting (and service) times are exponential, thus
Markovian.

To end this subsection, we give the Kolmogorov backward and forward
equations for a birth and death process. First, the backward equations are

Po;(t) = —Xopo;(t) + dopr(t) (3.280)
if i
P B0 i pic1(t) — (N + ) pig(8) + Nipigrg(t)  (3.281)
In the case of the Kolmogorov forward equations, we find that

Pio(t) = pipii(t) = dopio(t) (3.282)
if j>0
p;,j(t)l £ Nj—1Dij—1(8) = (Nj + 15) Pii () + pjv1 Pig+1(t) (3.283)

3.3.5 Limiting probabilities and balance equations

Since it is generally very difficult to solve explicitly the Kolmogorov equations
to obtain the transition functions p; ;(¢), we must often content ourselves with
the computation of the limiting probability that the process will be in a given
state when it is in equilibrium. To obtain these limiting probabilities, we can
try to solve a system of linear equations called the balance eguations of the
process.

Definition 3.3.12. Let mg, 71, ... be nonnegative real numbers such that
o0
Y omi=1 (3.284)
=0

If the equation
’ o
> o mipist) =m7; (3.285)
=0

is satisfied for all j € {0,1,...} and for allt > 0, then 7 := (my, W1,...) i5 @
stationary distribution.

The expression stationary distribution is used because if we assume that
PX(0)=j]=m; foralje{0,1,...} (3.286)

then we have

PIX(t) = ] = Y PIX(t) = j | X(0) = i|P[X(0) = ]
=0
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= i pis)m OE g, (3.287)
=0
That is,
PIX(t) = §] = PIX(0) = j] = m; (328%)

Vie{0,1,...} and V¢ >0.

As in the discrete case, we can define the notion of recurrence of a state.

Notation. We denote by T; ; the time elapsed between two consecutive visits
to state ¢ of the continuous-time Markov chain {X(t),t > 0}.

Definition 3.3.13. We say that state i is recurrent if P[T;; < oo] =1 and
transient if P[T;; < 0] < 1. Moreover, let

llfi,i = E[CFZ,Z] (3289)

The recurrent state i is said to be positive (respectively, null) recurrent if
i < 00 (resp., = o).

We can prove the following theorem.

Theorem 3.3.3. If the continuous-time Markov chain {X(t),t > 0} is ir-
reducible and positive recurrent, then i has a unique stationary distribution
7 = (mo,71,...), where 7w; is the limiting probability

= tl_i_}rgopiyj(t) forall j € {0,1,...} (3.290)

Remarks. i) Note that the 7;’s do not depend on the initial state 7. The
quantity 7; is also the proportion of time that the Markov chain spends in
state j, on the long run.

ii) If the Markov chain is transient or null recurrent, then it does not have a
stationary distribution.

iii) Contrary to the discrete-time Markov chains, a continuous-time Markov
chain cannot be periodic. This follows from the fact that the time the pro-
cess spends in an arbitrary state is a random variable having an exponential
distribution, which is continuous. Consequently, if the limiting probabilities
exist, then we say that the Markov chain is ergodic.

iv) We find that

T = for all j € Sxuy =1{0,1,...} (3.291)

Vjiltj,j
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where the state space Sx ;) may, of course, be finite, but must comprise more
than one state. The interpretation of this result is the following: v} !js the
average time that the process spends in state j on an arbitrary visit to this
state, and fi; ; is the average time between two consecutive visits to state j,
so that t/u; ; is the average number of visits to state j over a period of length
t, where t is large. Thus, over this long period of time, the proportion of time
during which the chain is in state j is effectively given by the ratio v} i Wi

v) If state j is absorbing, we consider it as positive recurrent. The theorem
applies even in the case when the state space contains a single state, say 0.
We then have, trivially, that mg = 1.

Now, if we differentiate both sides of Eq. (3.285) with respect to t, we
obtain

o0
Y mipl(t)=0 Vje{0,1,...}and V¢t >0 (3.292)
i=0

With ¢ = 0, we may write, by Proposition 3.3.9, that

o>
Y miviy=0 ¥je{0,1,...} (3.293)
=0

Remarks. 1) If the number of states is finite, we can indeed interchange the
derivative and the summation. However, when the state space is infinite, this
interchange, though allowed here, must be justified.

ii) It can be shown that Eq. (3.293) is satisfied if and only if Eq. (3.285) is
also satisfied.

Since v;; = —v;, we can rewrite Eq. (3.293) as follows:
V5 = Z'ﬂ’i Vi V] S {0,1,} (3294)
i#]

Definition 3.3.14. The equations above are called the balance equations
of the stochastic process {X (t),t > 0}.

Remarks. i) We can interpret the balance equations as follows: the rate at
which the process leaves state j must be equal to the rate at which it enters
state j, for all j. Now, the rate at which transitions occur, on the long run,
from state i to any other state j # i of the Markov chain is given by i34,
since m; is the proportion of time that the process spends in state ¢ during the
period considered, and v; ; is the rate at which, when it is in state 1, it enters
J. Given that the process spends an exponential time with parameter v; in
state j, m;v; is the departure rate from j, and the sum of the terms m; v; ;
over all states i # j is the arrival rate to 7.



3.3 Continuous-time Markov chains 141

ii) The limiting probabilities 7; can be obtained by solving the system (3.294),
under the condition Y°22,7; = 1 [see (3.284)].

We will now obtain a general formula for the 7;’s when {X(t),t >0} is a
birth and death process. First, we give a proposition that tells us when the
7;’s do exist.

Proposition 3.3.11. Let {X(¢),t > 0} be an irreducible birth and death pro-
cess, whose state space is the set {0,1,...}. We set

e W SR s
5122__01_&_1 and Sy =S Hkzr i (3.295)
= papr kzl)\l)\z...)\k

The Markov chain is

positive recurrent if S1 < 00
null recurrent if 1 = Sy = 00 (3.296)
transient if Sy < o0

Remark. If the state space of the irreducible birth and death process is finite,
then we necessarily have that S; < oo, so that the Markov chain is positive
recurrent.

With the help of this proposition, we can prove the following theorem.

Theorem 3.3.4. For an irreducible and positive recurrent birth and death
process {X(t),t > 0}, whose state space is the set {0,1,...}, the limiting
probabilities are given by

1

T = =t forj=0,1,... 3.297
where
Iy:=1 and II;:= Ao Ayt forj>1 (3.298)
Mipha - g

Proof. In the case of a birth and death process, the balance equations become

state j departure rate from 7 = arrival rate to j

0 AoTg = pa Ty
1 (A1 4 p)m = pama + Aomo
k (>1) (M + UE)TE = Be+1Tht1 + Mo 1Tk—1

Adding the equations for j = 0 and j = 1, then for j =1 and j = 2, etc., we
find that
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)‘j'/Tj = Hj41T541 V] 2 0 (3299)
which implies that
NPT W5
™ = MWO (3.300)
Ty g

Using the fact that Z;io m; = 1, we obtain

-1

)\0/\1 HO
14 S I (3.301)
kzl pape - > ko Ik
so that
II; .
Tj = =s——— forj=0,1,... (3.302)
! Zzio I

Finally, it can be shown that © = (mg, 71, ... ) is a stationary distribution of
the Markov chain {X (¢),¢ > 0}. By Theorem 3.3.3, this distribution is unique.
Thus, the limiting probabilities are indeed given by the preceding equations.

0

Remark. We can rewrite the formula (3.297) as follows:

1, ,
= for j =0,1,... 3.303
Ty 1 +S1 or 7 ( )

where S} is defined in (3.295).

Ezample 3.3.7. In the case of the two-state, continuous-time Markov chain
(see pp. 129 and 137), we have

A
s =20 _%
H1 n

from which we deduce that

o = 1 = Vl :1—7{'1
1+V—‘1’ vy + 11

1%

Note that these results correspond to those given by Eq. (3.242).
When vy = vy, we have that mp = m; = 1/2, which had to be the case, by
syminetry.
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3.4 Exercises

Section 3.2

Question no. 1

We suppose that the probability that a certain machine functions without
failure today is equal to
0.7 if the machine functioned without failure yesterday and the day before
yesterday (state 0),
0.5 if the machine functioned without failure yesterday, but not the day before
yesterday (state 1),
0.4 if the machine functioned without failure the day before yesterday, but
not yesterday (state 2),
0.2 if the machine did not function without failure, neither yesterday nor the
day before yesterday (state 3).

(a) Find the one-step transition probability matrix of the Markov chain asso-
ciated with the functioning state of the machine.

(b) Calculate p , that is, the probability of moving from state 0 to state 1
in two steps.

(c) Calculate the average number of days without failure of the machine over
the next two days, given that the Markov chain is presently in state 0.

Question no. 2
Let {X,,n = 0,1,...} be a Markov chain whose state space is the set
{0,1} and whose one-step transition probability matrix P is given by

P {1}/72 1112}4

where 0 <p < 1.
(a) Suppose that p = 1 and that X, = 0. Calculate E[X>).
(b) Suppose that p = 1/2 and that P[X, = 0] = P[Xy = 1] = 1/2. We define
the continuous-time stochastic process {Y (¢),t > 0} by Y (t) = t X[y, for ¢t > 0,
where [t] denotes the integer part of t.
(i) Calculate Cy (t,t + 1).
(ii) Is the stochastic process {Y(t) t > 0} wide-sense stationary? Justify.
(iit) Calculate lim,_,o, P[X, = 0.

Question no. 3

We consider a Markov chain {X,,n = 0,1,...} having states 0 and 1.
On each step, the process moves from state 0 to state 1 with probability p €
(0,1), or from state 1 to state 0 with probability 1 — p
(a) Calculate plm).
(b) Suppose that X, = 0. Calculate the autocorrelation function Rx(1,13).
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Question no. 4
The one-step transition probability matrix P of a Markov chain whose
state space is {0,1} is given by

p- [1(/)2 1{2]

Calculate E[X,] if P[X, =0] = 1/3.

Question no. 5

Let Y7,Ys,... be an infinite sequence of independent random variables,
all having a Bernoulli distribution with parameter p = 1/3. We define X,, =
> ey Y, for n =1,2,.... Then (see p. 85) the stochastic process {Xp,n =

1,2,...} is a Markov chain. Calculate pg,?%.

Question no. 6
Let {X,,n =0,1,...} be a random walk for which

2 1
Pii+l = 3 and p; -1 = 3 fori € {0,£1,£2,...}

Calculate F{Xs | Xo = 0.

Question no. 7
Let {X,,n = 0,1,...} be a Markov chain whose state space is the set
{0,1} and whose one-step transition probability matrix is given by

01
it
(a) Calculate Cx(t1,t2) at t; = 0 and t, = 1 if P[X, = 0] = P[X() =1] =
1/2.
(b) Find lim,_,oc P[X, =0| X, =0].

Question no. 8
Let X1, Xs,... be an infinite sequence of independent random variables,
all having a Poisson distribution with parameter a = 1. We define

n
Y,,=Zxk forn=1,2,...
k=1

Then, {Y,,n =1,2,...} is a Markov chain (see p. 85). Calculate pﬁg, that is,
the probability of moving from state 1 to state 3 in four steps.

Question no. 9
The flow of a certain river can be one of the following three states:

0: low flow
1: average flow
2: high flow
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We suppose that the stochastic process {X,,n = 0,1,... }, where X,, repre-
sents the state of the river flow on the nth day, is a Markov chain. Furthermore,
we estimate that the probability that the flow moves from state i to state j
in one day is given by the formula

1 . .
Pij =3~ Ji — j)6s

where 0 < §; < 1, for 4,5 = 0,1, 2.

(a) Calculate the probability that the river flow moves from state 0 to state
1 in one day.

(b) What is the probability that the river flow moves from state 0 to state 2
in two days?

Question no. 10

A machine is made up of two components that operate independently.
The lifetime T; (in days) of component ¢ has an exponential distribution with
parameter A;, for i = 1,2.

Suppose that the two components are placed in parallel and that A; =
A2 = In2. When the machine breaks down, the two components are replaced
by new ones at the beginning of the following day. Let X,, be the number
of components that operate at the end of n days. Then the stochastic pro-
cess {X,,n = 0,1,...} is a Markov chain. Calculate its one-step transition
probability matrix.

Question no. 11
Let {X,,n = 0,1,...} be a Markov chain whose state space is the set
{0,1,2,3,4} and whose one-step transition probability matrix is

1 0 000
05020300
P=]0 0 010
0 0 001
0 0 1060

(a) Calculate the probability that the process will move from state 1 to state
2 in four steps.

(b) Suppose that Xy = 1. Let Ny be the number of times that state 1 will be
visited, including the initial state. Calculate E[Ny].

Question no. 12
A Markov chain {X,,n = 0,1,...} with state space {0,1,2,3} has the
following one-step transition probability matrix:

1/21/2 0 0
1/21/41/4 0
0 0 1/43/4
00 0 1

P:
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Assuming that Xy = 1, calculate the probability that state 0 will be visited
before state 3.

Question no. 13
A Markov chain has the following one-step transition probabilities:

Popo =1
pii=p=1l—p;;1 fori=1,23,....

Calculate the probability p%) that the chain will move from state ¢ to state 0

for the first time after exactly n transitions, for i = 1,2,...

Question no. 14

Let
qp000

qg0p00
P={0qg0p0
00¢q0p
000¢gp
where p+ ¢ =1 and 0 < p < 1, be the one-step transition probability matrix
of a Markov chain whose state space is the set {0,1,2, 3,4}

(a) Is the chain periodic or aperiodic? Justify.
(b) Calculate, if they exist, the limiting probabilities ;.
Question no. 15

We perform repeated trials that are not Bernoulli trials (see p. 51). We
suppose that the probability p,, of a success on the nth trial is given by

1/2 forn=1,2
Xn+2

forn=3,4,...

where X, is the total number of successes obtained on the (n — 2)nd and
(n — 1)st trials. Calculate lim,_, oo pp.

Question no. 16

In the gambler’s ruin problem (see p. 101), let Y; be the number of plays
needed to end the game (with the player being ruined or having reached his
objective of k units), given that his initial fortune is equal to % units, for
1=0,1,...,k. Show that

@p—n*{fgfé%%j—i}ﬁp¢1m

E[Y] =
i(k — i) ifp=1/2

Indication. We may write that E[Yy] = E[Yi] = 0 and (by conditioning on
the result of the first play)
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EY;|=14pE[Yit1|+¢EY;—1] fori=1,...,k—1

Question no. 17

We consider a branching process for which p; = (1 — p)ip, for i = 0,1,.. .,
where 0 < p < 1. That is, Y := Z+1, where Z is the number of descendants of
an arbitrary individual, has a geometric distribution with parameter p. Show
that the probability go of eventual extinction of the population is given by

_[p/l-p)ifp<1/2
% 1 ifp>1/2

Question no. 18
Let {X,,n =0,1,...} be an irreducible and ergodic Markov chain. Sup-
pose that the chain is in equilibrium, so that we can write that

PiX, =i]=mn; for all states ¢ and for any n

We can show that the process {Xy,k=...,n+1,n,...}, for which the time
is reversed, is also a Markov chain, whose transition probabilities are given by

Gij =P Xp=j|Xny1=1= pj_iﬂ for all states i,
L
We say that the chain {X,,n = 0,1,...} is time-reversible if ¢; ; = p; ;, for
all 7, 7. Show that the Markov chain whose state space is the set {0,1,2,3}
and with one-step transition probability matrix

1/21/2 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1/21/2

P=

is time-reversible.

Question no. 19

In the urn model of P. and T. Ehrenfest for the movement of molecules
in a gas (see p. 75), suppose that Xy = 1. Let m, := E[X,,] be the average
number of molecules in urn I after n shifts. Show that

N 2\" N
m=g+(1-%) (-3)

Indication. Show first that m,, 1 =1+ LNN;2) Myy-

forn=12,....

Question no. 20
A Markov chain has the following one-step transition probabilities: po,; =1
and
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Dii+1 = Q4 (> 0) =1 — Di0 fori: = 1,2,3,.- .

(a) Show that all states are recurrent if and only if

n
lim ap =0

{(b) Show that if the chain is recurrent, then all states are positive recurrent

if and only if
oo n
Z H ap < 00
n=1k=1

Indication. If N is a random variable taking its values in the set N° :=
{0,1,...}, then we have

E[N] = i P[N > n]

n=1

Use this result with the variable N denoting the number of transitions needed
to return to state O.

Question no. 21
The one-step transition probabilities of a Markov chain whose state space
is {—3,-2,-1,0,1,2, 3} are given by

Dii+1 =2/3 fori=-3,-2,...,2
Pii—1=1/3 fori=-2,-1,...,3
p-33 =1/3=1-p3_3

Remark. This chain can be considered as a particular case of a random walk
defined on a circle.

{(a) Show that the Markov chain is irreducible.
(b) Determine the period of the chain.

(c) Calculate the fraction of time that the process spends, over a long period,
in state 4, for i = —-3,...,3.

Question no. 22

(a) Show that in a symmetric random walk {X,,n = 0,1,...}, starting from
Xp = 0, the probability that state a > 0 will be visited before state —b < 0 is
equal to b/(a + b).

(b) In a random walk starting from Xy = 0, what is the probability that there
will be exactly one visit to state 07

(c) In a random walk on {0,1,2,...}, starting from X, = 0 and for which
po,1 = 1, what is the probability that there will be exactly £ € {1,2...}
visit(s) to state 07
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Question no. 23
We consider a branching process {X,,n = 0,1,...} for which Xo =1 and
)\i
i :e_)‘,—’ for:=0,1,...
il
That is, the number of descendants of an arbitrary individual has a Pois-
son distribution with parameter A. Determine the probability ¢g of eventual
extinction of the population if (a) A =In2 and (b) A = In4.

Question no. 24
A Markov chain with state space {—2,—1,0,1,2} has the following one-
step transition probabilities:

Dii+1 = 3/4 for i = —2, ——1,0, 1

Dii—-1 = 1/4 fori= —1,0, 1,2

P22 =1/4=1~p o
(a) Determine the classes of the Markov chain. For each class, establish
whether it is recurrent or transient and whether it is periodic or aperiodic.
(b) Do the limiting probabilities exist? If they do, compute them.
(c) Is the chain time-reversible (see p. 147)? Justify.
Question no. 25

We consider an irreducible Markov chain whose state space is the set
{0,1,2, 3,4} and whose one-step transition probability matrix is given by

01/32/3 0 0
00 0 1/43/4
P=1{00 0 1/43/4
10 0 0 O
10 0 0 0

(a) What is the period of the chain?

(b) What is the fraction of time, 7;, that the process spends in state j on the
long run, for 7 =0,1,2,3,47

Question no. 26

Let (X,,Y,) be the position of a particle that moves in the plane. We
suppose that {X,,n = 0,1,...} and {¥,,n = 0,1,...} are two independent
symmetric random walks such that Xo = Yy = 0. We define D,, = \/X? + Y,2.
That is, D,, represents the distance of the particle from the origin after n
transitions. Show that if n is large, then

PD,<dj~1- e/ for d >0

Indication. Express X, (and Y;,) in terms of a binomial distribution, and use
the fact that if Z;,Zs,...,Z, are independent random variables having a
standard Gaussian distribution, then
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Z34+Z3+... +Z ~Gla=k/2,A=1/2)

Question no. 27

Let Y3,Y,,... be an infinite sequence of independent random variables,
all distributed as the discrete r.v. Y whose set of possible values is the set
Z := {0,41,42,...} of all integers. We know (see p. 85) that the stochastic
process {X,,n=1,2,...} defined by

Xp,=Y1+Y2+4+...+Y, forn=12,...

is a Markov chain and that p; ; = a;_;, where a; := P[Y =], for any 1.
We suppose that |E[Y]| < co and V(Y] < oo. Show that the chain is
transient if E[Y] # 0.

Question no. 28
We consider a Markov chain with transition probabilities given by

k+1 1

ra 24 Pekn=T

Pro =

for k=0,1,2,....

(a) Show that the chain is irreducible and ergodic.
Indication. See Question no. 20.

(b) Calculate the limiting probabilities 7y, for k =0,1,2,... .
Question no. 29

The one-step transition probabilities of an irreducible Markov chain are

given by
-1 1 d Kk
DPo1 =1, pPro= PERE ana  pPrk+1 = —k 11

fork=1,2,....
(a) Calculate p(()’f,z, for k=1,2,....

(b) Calculate pgfg, for £ = 2 and 3. What is the period of the chain?

(¢) Is the Markov chain transient, positive recurrent, or null recurrent? Justify.
Indication. See Question no. 20.

Question no. 30

We consider a Markov chain defined by the one-step transition probability
matrix
1/2 1/4 1/4
P=|lal-a 0
0 a l1-a
where 0 < o < 1. The state space is the set {0, 1,2}.

(a) For what values of the constant o is the Markov chain irreducible and
ergodic? Justify.
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(b) Calculate the limiting probabilities for the values of a found in part (a).

Question no. 31

A system is made up of two identical components in standby redundancy.
That is, only one component is active at a time, and the other is in standby.
We assume that the lifetime of each component has an exponential distri-
bution and that the probability that the active component will fail during a
given day is equal to 0.1. The other component, if it is not also down, then
relieves the failed one at the beginning of the following day. There is a single
technician who repairs the components. Moreover, he only starts repairing a
failed component at the beginning of his workday, and he needs two working
days to complete a repair.

Let X, be the condition of the components at the end of the nth day. The
process {X,,n=0,1,2,...} is a Markov chain having the following states:

0: neither component is down

1: a single component is down and it will be repaired one day
from now

2: a single component is down and it will be repaired two days
from now

3: both components are down (and a component will be repaired
one day from now)

(a) What is the matrix P of one-step transition probabilities of the chain?

(b) For each class of the chain, determine whether it is transient or recurrent.
Justify.

(c) Suppose that Xy = 0. Calculate the probability that there will be a single
component that is not down at the end of the second day.

Question no. 32

Let
1/301/31/3
100 O
P = 010 O
010 O

be the one-step transition probability matrix of an irreducible Markov chain
whose state space is the set {0,1,2,3}.

(a) What is the period of state 1?7 Justify.

(b) Calculate, if they exist, the quantities m;, where 7; is the proportion
of time that the process spends in state j, over a long period of time, for
j=0,1,2,3.

(c) Suppose that the elements of the first row of the matrix P are the p;’s
of a branching process. Calculate the probability that the population will die
out if (i) Xo =2, (il) X1 <1 (and Xy = 2).
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Question no. 33

John plays independent repetitions of the following game: he tosses two
fair dice simultaneously. If he gets a sum of 7 or 11 (respectively, 2, 3, or 12),
he wins (resp., loses) $1. Otherwise, he neither wins nor loses anything. John
has an initial fortune of $i, where i = 1 or 2, and he will stop playing when
either he goes broke or his fortune reaches $3. Let X, be John’s fortune after
n repetitions, for n =0,1,... . Then {X,,n =0,1,...} is a Markov chain.

(a) Find the matrix P of one-step transition probabilities of the Markov chain.
(b) For each class of the chain, specify whether it is recurrent or transient.
Justify.

(c) Calculate the mathematical expectation of X7 if the initial distribution of
the chainis ap =0, a1 = 1/2,a2 =1/2, and a3 = 0.

Question no. 34
A Markov chain whose state space is the set {0,1,2} has the following
one-step transition probability matrix:

0 10
P=|1-p0p
0 10

where 0 < p < 1.
(a) Calculate P for n > 2.
(b) Find the period of every state of the Markov chain.
(c) (i) Calculate the proportion of time that the process spends, on the long
run, in state 0.

(ii) Is this proportion equal to the limit lim,,_ o pgz)? Justify.
Question no. 35

A machine is made up of two components placed in parallel and that oper-
ate independently of each other. The lifetime (in months) of each component
has an exponential distribution with mean equal to two months. When the
machine breaks down, the two components are replaced at the beginning of the
next month. Let X,,, n =0,1,..., be the number of components functioning
after n months.
(a) Justify why the stochastic process {X,,n =0,1,...} is a Markov chain.
(b) Calculate the matrix P of one-step transition probabilities of the Markov
chain.
(c) Identify each class of the chain as recurrent or transient. Justify.
(d) Calculate V[X] if the two components are functioning at time n = 0.
Question no. 36

A Markov chain whose state space is the set {0,1,...} has the following
one-step transition probabilities:
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pio=2/3 and p;p=(1/4)* fori=0,1,... and k=1,2,...

(a) Show that the limiting probabilities m; exist, and calculate them.
(b) Suppose that the p; ;’s are the p;’s, k > 0, of a branching process. Calcu-
late the probability of eventual extinction of the population if Xg = 1.

Question no. 37
Let X3, Xo,... be an infinite sequence of independent random variables,
all having a Bernoulli distribution with parameter p € (0,1). We define

n
Y, = ZXk forn=1,2,...
k=1
Then the stochastic process {Y,,,n = 1,2,...} is a Markov chain (see p. 85).

(a) Calculate the one-step transition probability matrix P of the Markov
chain.

(b) For every class of the chain, find out whether it is recurrent or transient.
Justify.

(c) Calculate V[Y, | X; =1].

(d) Let T := min{n > 1: Y, = 1}. What is the distribution of the random
variable T17

Question no. 38

Let
0 1 0 O
pP_ 1/2 0 1/2 0
10 1/2 0 1/2
0 0 1 0O

be the one-step transition probability matrix of a Markov chain {X,,n =
0,1,...} whose state space is the set {0,1,2,3}.

(a) Let m; be the proportion of time that the process spends in state j, over
a long period of time. Show that the 7;’s exist and calculate them.

(b) Calculate the period of the Markov chain.

(c) Let Tj := min{n > 0: X,, = j}. Calculate P[Ty < T3 | X¢ = 1]. That
is, calculate the probability that, from state 1, the process will visit state 0
before state 3.

Question no. 39
We define the Markov chain {Y,,n=1,2,...} by

n
YnZZXk forn=1,2,...
k=1

where Xi,Xs,... is an infinite sequence of independent random variables
having a binomial distribution with parameters n = 2 and p = 1/2 (see p. 85).
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(a) Calculate the transition matrix of the Markov chain.

(b) For every class of the chain, establish whether it is recurrent or transient.
Justify.
(c) What is the distribution of the random variable Y2?
(d) Let Ty := min{n > 1: Y, = 1}. Calculate
(iy P[Ty = k], for k=1,2,...,

Question no. 40
We consider the particular case of the gambler’s ruin problem (see p. 101)
for which k = 4.

(a) (i) Calculate the matrix P if the gambler, on any play, actually has a
probability equal to

1/4 of winning the play
1/4 of losing the play
1/2 of neither winning nor losing the play

(ii) Do the probabilities 7} := lim, .o P[Xn = j | Xo = 2| exist? If they
do, calculate these probabilities.

(b) Suppose that the gambler, on an arbitrary play, bets

$1 if his fortune is equal to $1 or $3
$2 if his fortune is equal to $2

Calculate, under the same assumptions as in (a), the probability that the
gambler will eventually be ruined if X, = $3.

Question no. 41

We consider a population of constant size, N, composed of individuals of
type A and of type B. We assume that before reproducing, and disappearing
from the population, an arbitrary individual of type A (respectively, B) is
mutated into an individual of type B (resp., A) with probability a (resp., 3).
Moreover, we assume that at the moment of reproduction, each individual in
the population has a probability p of giving birth to an offspring of type A,
where p is the mathematical expectation of the proportion of individuals of
type A in the population after mutation. Finally, we assume that the individ-
uals are independent from one another. Let X,, be the number of individuals
of type A in the nth generation before mutation. Then {X,,,n =0,1,...} is
a Markov chain.

(a) Calculate p (= p;) if X, = .
(b) Calculate p; ;, for 4,5 € {0,...,N}.

(c) Suppose that & = 0 and 3 € (0,1). For each class of the Markov chain,
determine whether it is recurrent or transient. Justify.
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(d) Suppose that there are exactly N4 > 0 individuals of type A in the initial
generation after mutation. Given that the first of these N, individuals gave
birth to an offspring of type A, calculate, with p = N4 /N, (i) the mean and
(ii) the variance of Xj.

Question no. 42
Suppose that

1/41/2 1/4
P=1a 0 1-a«a
g 0 1-0

is the one-step transition probability matrix of a Markov chain with state
space {0,1,2}.

(a) For what values of o and 3 is the Markov chain irreducible?

(b) Suppose that a = 8 = 1/2. Compute, if they exist, the limiting probabil-
ities 7;, for j = 0,1, 2.

(c) Suppose that Xy = 0. Compute the probability that the process will (i)
visit state 1 before state 2 and (ii) return to (or stay in) state 0 before visiting
state 2.

Question no. ‘43
Let {Xn,,n =0,1,...} be a Markov chain with state space {0,2} and with
one-step transition probability matrix

Px =11

and let {Y,,n =0,1,...} be a Markov chain whose state space is {3,4} and
whose matrix P is given by
01
P =[1o)

Assume that the random variables X,, and Y;, are independent, for all n.
We define Z,, = X, +Y,,. We can show that the stochastic process {Z,,n =
0,1,...} is a Markov chain whose state space is {3,4,5, 6}.

(a) Calculate the matrix Py of the Markov chain {Z,,n=0,1,...}.
(b) For every class of the chain {Z,,n = 0,1,...}, determine whether it is
recurrent or transient. Justify.

(c) Give the period of every class of the chain {Z,,n =0,1,...}.

(d) Calculate the matrix P(Zn) and deduce from it the value of the limit lim,,
PlZ,=3|2Zy,=3]

Question no. 44
Let
0 1/2 1/2
P=]|0 a 1-a
g1-p 0
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be the one-step transition probability matrix of a Markov chain {X,,n =
0,1,...} having state space {0,1, 2}.

(a) For what values of « and 3 is the Markov chain irreducible?

(b) Suppose that @ = 1/2 and 8 = 1/3. Calculate, if they exist, the limiting
probabilities 7, for j = 0,1,2. ,

(c) Give the values of a and 3 for which the limiting probabilities 7; exist
and are equal to 1/3, for j = 0,1, 2. Justify.

(d) Suppose that o = 1/2, 8 = 1, and Xo = 1. Let Ny be the number of

transitions needed for the process to visit state 0 for the first time. Calculate
E{Ny).

Question no. 45

A person buys stocks of a certain company at the price of 3 cents per share
(what is known as a penny stock). The investor decides to sell her shares if
their value decreases to 1 cent or becomes greater than or equal to 5 cents.
Let X,, be the value of the shares (for the investor) after n days. We sup-
pose that {X,,n =0,1,...} is a Markov chain having as state space the set
{0,1,...,7}, and for which rows 3 to 5 (corresponding to states 2,3, 4) of the
one-step transition probability matrix P are the following:

1/8 1/41/41/4 1/8 0 0 0
1/12 1/7 1/41/21 1/4 1/71/12 0
0 1/121/7 1/4 1/211/4 1/7 1/12

(a) Give the other rows of the matrix P.

Indication. Once the investor has sold her shares, or their price went to zero,
their value (for the investor) does not change anymore.

(b) For every class of the chain {Z,,n = 0,1,...}, establish whether it is
recurrent or transient. Justify.

(c) Calculate E[X; | {X1 =3} U{X; =4}].

(d) What is the probability that, after exactly two days, the investor (i) sells

his shares with a profit? (ii) sells her shares with a loss? (iii) loses all the
money she invested?

Question no. 46
A Markov chain {X,,n = 0,1,...} with state space {0,1,2} has the fol-
lowing one-step transition probability matrix:

1/201/2

P=]1010
1 00

Calculate limy,_, o pgz), for all 4,7 € {0,1,2}.
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Question no. 47

We consider the gambler’s ruin problem (see p. 101). Suppose that Xy =
$1 and that p = 1/4. However, if the player wins, he wins $2 and if he loses,
he loses $1. His objective is to reach at least $4. Calculate the probability that
he will achieve his objective.

Question no. 48
(a) Calculate the probability gg of eventual extinction of the population in a
branching process for which pg = 1/4, p; = 1/4, and py = 1/2.

(b) Suppose that the individuals can only give birth to twins, so that the
probabilities in (a) become p§ = 1/4, p5 = 1/4, and p} = 1/2. Can we assert
that g} = ¢2? Justify.

Question no. 49
Let {X,,n = 0,1,...} be a symmetric random walk defined on the set
{0,£1,42,...} and such that Xy = 0. We set

Y, = X2 forn=0,1,...

It can be shown that {Y,,,n = 0,1,...} is a Markov chain whose state space
is {0,1,4,9,... }.

(a) Calculate the one-step transition probability matrix of the chain {Y,,n =
0,1,...}.

(b) Is the stochastic process {Y,,,n = 0,1,...} a random walk? Justify.

(c) For each class of the chain {Y,,n =0,1,...}, (i) determine whether it is
transient or recurrent and (ii) find its period.

Question no. 50
Let
1/201/41/4
010 0
P= 100 O
0 01/43/4
be the one-step transition probability matrix of a Markov chain {X,,n =

)

0,1,...} whose state space is {0, 1,2, 3}. Calculate the limit limy_ o pﬁ? , for

all 4,5 € {0,1,2,3}.

Question no. 51

Suppose that Xy = $i in the gambler’s ruin problem (see p. 101) and
that p # 1/2. Suppose also that if the player loses, then someone lends him
(only once) $1 and he starts to play again, independently from what occurred
previously. However, the probability p becomes p/2. His objective is to reach
$k (without taking into account the dollar that someone may have lent him),
where k > . Calculate the probability that he will achieve his objective.
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Question no. 52
(a) Calculate, assuming that X = 1, the probability go of eventual extinction
of the population in a branching process for which p; = 1/4, for ¢ = 0,1, 2, 3.

(b) Find another distribution of the p;’s for which the value of the probability
qo is the same as that in (a).

Question no. 53

A machine is composed of two components. The lifetime T; of component
i has an exponential distribution with parameter A;, for ¢ = 1,2. When the
machine breaks down, a technician replaces the failed component(s) at the
beginning of the next time unit. Let X,, n = 0,1,..., be the number of
components that are not down after n time unit(s).
(a) Is the stochastic process {X,,n =0,1,...} a Markov chain if the compo-
nents are placed in series? If it is, justify and calculate the one-step transition
probability matrix P of the chain. If it’s not, justify.

(b) Suppose that the components are placed in parallel and operate indepen-
dently from each other, but that only one component is active at a time. That
is, the components are in standby redundancy. In this case, {X,,n =0,1,.. .}
15 a Markov chain. Calculate its transition matrix if A\; = As.

Question no. 54

Suppose that, in the preceding question, the components are placed in
parallel and operate (independently from each other) both at the same time.
We say that they are in active redundancy.
(a) The stochastic process {X,,n = 0,1,...} is a Markov chain. Calculate its
matrix P.

(b) Let
0 if neither component is operating
1; if only component no. 1 is operating
Y, := . . .
15 if only component no. 2 is operating
2 if both components are operating
after n time unit(s), for n = 0,1,.... Is the stochastic process {Y,,n =

0,1,...} a Markov chain? If it is, justify and calculate the transition matrix
of the chain. If it’s not, justify.

Question no. 55

A system comprises two components placed in parallel and operating (both
at the same time) independently from each other. Component i has an expo-
nential lifetime with parameter A;, for i = 1,2. Let X,,, n = 0,1,..., be the
number of active components after n time unit(s).

(a) Suppose that, after each time unit, we replace the failed component(s).
Calculate the one-step transition probability matrix P of the Markov chain
{Xn,n=0,1,... }.

(b) It can be shown that the limiting probabilities 7; exist in part (a). Cal-
culate these limiting probabilities.
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(c) Suppose that A\; = Ay and that, after each time unit, we replace a single
component, only when the system is down. Moreover, assume that X = 2.
(i) Calculate the matrix P of the Markov chain {X,,n =0,1,...}.
(ii) What is the number of classes of the chain?

Question no. 56

We consider a symmetric random walk in two dimensions (see p. 75), whose
state space is the set {(¢,7):7=0,1,2;7 = 0,1, 2}. Moreover, we suppose that
the boundaries are reflecting. That is, when the process makes a transition
that would take it outside the region defined by the state space, then it returns
to the last position it occupied (on the boundary).

(a) Calculate the one-step transition probability matrix of the Markov chain.

(b) Show that the limiting probabilities exist and calculate them.

Question no. 57

A player has only one money unit and wishes to increase his fortune to five
units. To do so, he plays independent repetitions of a game that, in case of a
win, yields double the sum he betted. In case of a loss, he loses his bet. On
each play, he bets an amount that, if he wins, enables him either to exactly
reach his objective or to get as close as possible to it (for example, if he has
three units, then he bets only one). We suppose that the game ends when the
player either has achieved his target or has been ruined and that he has a
probability equal to 1/2 of winning an arbitrary play.

(a) What is the probability that he reaches his target?
(b) What is the average number of repetitions needed for the game to end?

Question no. 58

A particle moves in the plane according to a two-dimensional symmetric
random walk (see p. 75). That is, the particle has a probability equal to
1/4 of moving from its current position, (X,,Y,), to any of its four nearest
neighbors. We suppose that the particle is at the origin at time n = 0, so that
Xo =Yy = 0. Thus, at time n = 1, the particle will be in one of the following
states: (0, 1), (0,—1), (1,0), or (—1,0). Let

D2 .= X?4+Y?
be the square of the distance of the particle from the origin at time n. Calculate

Question no. 59

Show that for a symmetric random walk of dimension k = 2 (see Question
no. 58), the probability that the number of visits to already visited states will
be infinite is equal to 1. Generalize this result to the case when k € N.
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Question no. 60

A machine is composed of two identical components placed in series. The
lifetime of a component is a random variable having an exponential distribu-
tion with parameter ;. We have at our disposal a stock of n — 2 new compo-
nents that we differentiate by numbering them from 3 to n (the components
already installed bearing the numbers 1 and 2). When the machine fails, we
immediately replace the component that caused the failure by the new com-
ponent bearing the smallest number among those in stock. Let T be the total
lifetime of the machine, and let N be the number of the only component that,
at time T, will not be down. Find (a) the probability mass function of N, (b)
the mathematical expectation of T, and (c) the distribution of T

Question no. 61

We use k light bulbs to light an outside rink. The person responsible for the
lighting of the rink does not keep spare light bulbs. Rather, he orders, at the
beginning of each week, new light bulbs to replace the ones that burned out
during the preceding week. These light bulbs are delivered the following week.
Let X, be the number of light bulbs in operation at the beginning of the nth
week, and let Y,, be the number of light bulbs that will burn out during this
nth week, for n = 0,1,... . We assume that, given that X,, = ¢, the random
variable Y, has a discrete uniform distribution over the set {0,1,... ,i}:

PY,=j|X,=1]= H—Ll for j=0,1,...,tand ¢ =0,1,... ,k
(a) Calculate the one-step transition probability matrix of the Markov chain
{Xpn,n=0,1,...}.

(b) Show that the limiting probabilities of the chain {X,,,n =0,1,...} exist
and are given by

26 +1)

Y gri=0,1,...,k
k+rDk+2) 7

uy’

Question no. 62

Electric impulses are measured by a counter that only indicates the highest
voltage it has registered up to the present time instant. We assume that the
electric impulses are uniformly distributed over the set {1,2,... ,N}.

(a) Let X, be the voltage indicated after n electric impulses. The stochastic
process {X,,n = 1,2,...} is a Markov chain. Find its one-step transition
probability matrix.

(b) Let m; be the average number of additional impulses needed for the
counter to register the maximum voltage, N, when the voltage indicated is ,
fori=1,2,... , N -1.

(i) Obtain a set of difference equations (as in the absorption problems,
p. 100) for the m;’s, and solve these equations to determine m;, for all i.
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(ii) Calculate directly the value of the m;’s without making use of the
difference equations.

Question no. 63

Let Xi, Xo, ... be an infinite sequence of independent and identically
distributed random variables, such that px,(z) = 1/3 if x = —1,0,1. The
stochastic process {Y,,n = 1,2,...} defined by

Yn:iX,- forn=1,2,....

i=1

is a Markov chain (see p. 85).

(a) Calculate the one-step transition probability matrix P of the chain.

(b) Give an exact formula for pgfg, for k=1,2,....

(c) Use the central limit theorem to obtain an approximate formula for p(()’fg
when £ is large enough.

Question no. 64

A player has $900 at his disposal. His objective is reach the amount of
$1000. To do so, he plays repetitions of a game for which the probability
that he wins an arbitrary repetition is equal to 9/19, independently from one
repetition to another.

(a) Calculate the probability that the player will reach his target if he bets
$1 per repetition of the game.

(b) Calculate the probability that the player will reach his target if he adopts
the following strategy: he bets

$(1000 — ) if 500 < z < 1000
$z if 0 <z <500

where z is the amount of money at his disposal at the moment of betting.
(¢) What is the expected gain with the strategy used in (b)?

Question no. 65

We consider a system made up of two components placed in parallel and
operating independently. The lifetime T; of component no. 1 has an expo-
nential distribution with parameter 1, while that of component no. 2 is a
random variable 7> ~ Exp(1/2). When the system fails, 50% of the time the
two components are replaced by new ones, and 50% of the time only the first
(of the two components) that failed is replaced. Let X,, = 1, (respectively,
12) if only component no. 1 (resp., no. 2) is replaced at the moment of the
nth failure, and X,, = 2 if both components are replaced. We can show that
{Xn,n=1,2,...} is a Markov chain.

(a) Find the one-step transition probability matrix of the chain.
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(b) For each class of the chain, specify whether it is transient or recurrent.
Justify.

(c) Calculate pé’fQ), for k=1,2,....
(d) What is the period of state 12?7 Justify.

Question no. 66

In the gambler’s ruin problem (see p. 101), suppose that the player has an
infinite initial fortune and that p = 1/2. Let X,, be the gain (or the loss) of
the player after n repetitions of the game. Suppose also that when X, <0,
the player plays double or quits. That is, if X,, = —1, then X,; =0 or —2;
if X, = ~2, then X411 = 0 or —4, etc. The process {Xp,n = 0,1,...}isa
Markov chain whose state space is the set {...,—4,-2,~1,0,1,2,...}.

(a) Find the one-step transition probability matrix of the chain.

(b) Suppose that the state space is {—4,—2,—1,0,1,2} and that p_4 4 =
P22 = 1/2 [the other probabilities being as in (a)]. Calculate, if they exist,
the limiting probabilities. »

(c) Suppose now that the player decides to stop playing if his losses or his
profits reach four units. Calculate the probability that the player will stop
playing because his losses have reached four units, given that he won the first
repetition of the game.

Question no. 67

The state space of a Markov chain {X,,n =0,1,2...} is the set of non-
negative integers {0,1,2,...}, and its one-step transition probability matrix
is given by

0 1 ¢ .
1/2 0 1/2 0
P=|1/31/3 0 1/3 ...

1/41/41/4 0 1/4 0 ...
(a.) Calculate pf).
(b) For each class of the chain, determine whether it is transient or recurrent.
Justify.
(c) Find the period of each class.

(d) Let T}, ; be the number of transitions needed for the process to move from
state i to state j. Calculate P[Ti o < T1,3 | {T1,0 <2} U{T13 <2}

Question no. 68
We consider a Markov chain whose state space is the set {0,1,2,...} and
for which
pij=p; >0 Vi,j€ {0,1,2,...}

Calculate, assuming they exist, the limiting probabilities of the chain.
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Question no. 69

Suppose that, in the gambler’s ruin problem (see p. 101), Xo = 1 and
k = 4. Moreover, suppose that the value of p is not constant, but rather
increases with X,,. More precisely, the one-step transition probability matrix
of the chain {X,,n=0,1,2...} is

Calculate the probability that the player will achieve his objective.

Question no. 70

Let {X,,,n =0,1,2...} be a branching process for which Xy = 1. Suppose
that there are two types of individuals, say A and B. Every individual (of type
A or B) can give birth (independently from the others) to descendants of type
A or B according to the formula

P[Ny=m,Ng=n]=1/9 Vm,nc{0,1,2}

where N4 (respectively, Ng) is the number of descendants of type A (resp.,
B).
(a) Calculate E[X; | Xy > 0].

(b) Show that the probability of eventual extinction of the population is
go = 0.15417.

Section 3.3

Question no. 71

Let Y := min{X;, X5}, where X and X5 are two independent exponential
random variables, with parameters A\; and My, respectively. We know (see
p. 113) that ¥ ~ Exp(A; + A2). Find the probability density function of the
random variable Z:=Y | {X; < Xs}.

Remark. We can express Z as follows: Z := Y | {Y = X;}. However, the
random variables Y | {Y = X1} and X, are not identical, because
PY<y|Y=Xi]=PX;: <y|Y =X4]=P[X; <yl X1 <Xy
# P[X1 <y]

Note that the events {X; < y} and {X; < X»} are not independent.

Question no. 72
Let X1,..., X, be independent random variables having an exponential
distribution with parameter .
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(a) Use the memoryless property of the exponential distribution to show that

1

1
P[X1>X2+X3}=Z=F

(b) Show, by mathematical induction, that

P

n

1

X1>2Xk} =§n_—T forn=2,3,...
k=2

(¢) From the result in (b), calculate the probability P[2Y > >°r_; Xi|, where
Y = max{X;,...,Xn}.

Question no. 73

A birth and death process having parameters A\, = 0 and p, = p, for
all n > 0, is a pure death process with constant death rate. Find, without
making use of the Kolmogorov equations, the transition function p; ;(¢) for
this process.

Question no. 74
Let X; ~ Exp(A1) and X2 ~ Exp(X2) be two independent random vari-
ables. Show that, for all z > 0,

' A
P[Xy < X | min{Xy, Xo} =a] = PIX: < Xa] = 15

Question no. 75

A gystem is made up of three components placed in standby redundancy:
at first, only component no. 1 is active and when it fails, component no. 2
immediately relieves it. Next, at the moment when component no. 2 fails,
component no. 3 becomes active at once. When the system breaks down, the
three components are instantly replaced by new ones. Suppose that the life-
time T}, of component no. k has an exponential distribution with parameter
Ag, for k = 1,2, 3, and that the random variables Ty, T%, and T3 are indepen-
dent. Let the number of the component that is active at time t be the state
of the system at this time instant. Write the Kolmogorov backward equations
for this system.

Question no. 76

A university professor cannot receive more than two students at the same
time in her office. On the day before an exam, students arrive according to a
Poisson process with rate A = 3 per hour to ask questions. The professor helps
the students one at a time. There is a chair in her office where a person can
wait his or her turn. However, if a student arrives when two other students
are already in the professor’s office, then this student must come back later.
We suppose that the time that the professor takes to answer the questions of
an arbitrary student is an exponential random variable with mean equal to 15
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minutes, independently from one student to another. If we consider only the
days preceding an exam, calculate (with the help of the limiting probabilities)

(a) the average number of students in the professor’s office,

(b) the proportion of time, on the long run, when the professor is not busy
answering questions.

(c) If the professor spent twice more time, on average, with each student, what
would be the answer in (b)?

Question no. 77

Let {X(t),t > 0} and {Y(t),t > 0} be two continuous-time indepen-
dent Markov chains. We consider the two-dimensional stochastic process
{(X(#),Y(t)),t > 0}. Find the parameters v(; k), P(i.k),G,k)» 304 Pk, 00y Of
this process.

Question no. 78

We consider a pure birth process for which, when there are n individuals
in the population, the average time (in hours) needed for a birth to occur is
equal to 1/n, for n > 0.

(a) Knowing that at time ¢ there are two individuals in the population and
that at time ¢ + 1 there are still two, what is the probability that the next
birth will take place between t + 2 and ¢ + 37

(b) If, at the origin, the population is composed of a single individual, what
is the probability that there will be exactly four births during the first two
hours?

Question no. 79

A factory has m machines. Each machine fails at an exponential rate p.
When a machine fails, it remains down during a random time having an
exponential distribution with parameter A. Moreover, the machines are in-
dependent from one another. Let X (¢) be the number of machines that are
in working order at time ¢t > 0. It can be shown that the stochastic process
{X(t),t > 0} is a birth and death process.

(a) Find the birth and death rates of the process {X(¢),¢ > 0}.
{(b) Show that
lim P[X(t) =n] =P [B (m J-) = n}

t—o0
forn=0,1,...,m.

Question no. 80

Let {X(t),t > 0} be a pure birth process such that A\; = jA, for j =
0,1,..., where A > 0. We suppose that X(0) = 1.
(a) Let Ty, := min{t > 0: X(t) = n (> 1)}. That is, T}, is the time needed for
the number of individuals in the population to be equal to n. Show that the
probability density function of T, is given by
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fr.@®) =An-1De 1 -e )2 fort>0

(b) Let N(t) be the number of descendants of the ancestor of the population
at time ¢, so that N(¢) = X(¢) — 1. Suppose that the random variable T has
an exponential distribution with parameter p. Show that

P[N(T)=N]Z§B<—§-+1,n+1> forn=0,1,...

where B(-,-) is the beta function defined by

1
B(:v,y)=/0 "1 —t)vlat

for z,y € (0, c0).

Remark. We can show that

_ I'(z)I'(y)
B(=,y) = I'z+y)

Question no. 81
A birth and death process, {X (t),t > 0}, has the following birth and death
rates:
An=A forn=0,1 and pp,=npu forn=1,2

Moreover, the capacity of the system is equal to two individuals.

(a) Calculate, assuming that A = u, the average number of individuals in the
system at a time instant ¢ (large enough), given that the system is not empty
at this time.

(b) Calculate the probability that the process will spend more time in state
0 than in state 1 on two arbitrary visits to these states.

(c) Suppose that u; = 0 and that, when X (t) = 2, the next state visited will
be 0, at rate 2u. Write the balance equations of the system, and solve them
to obtain the limiting probabilities.

Question no. 82
Let {X(t),t > 0} be a birth and death process whose rates A\, and p, are
given by

A =ln=nX forn=0,1,2,...

We set pi(t) = P{X(t) = k], for all k € {0,1,2,...} and for all ¢ > 0. That
is, pr(t) denotes the probability that the process will be in state k at time ¢.
Suppose that p1(0) = 1. It can be shown that

At (At)F-1
T 2 )= T

po(t) = fork=1,2,...
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(a) Calculate E[X(t) | X(t) > 0].

Indication. We have E[X(t)] = 1.

(b) Calculate the limiting probabilities 7; and show that they satisfy the
balance equations of the process.

(¢) Use the Kolmogorov backward equation satisfied by pio(t) to obtain
p2,0(t).

Indication. We have pq o(t) = po(t) above.

Question no. 83

We consider a system composed of three components placed in parallel
and operating independently. The lifetime X; (in months) of component %
has an exponential distribution with parameter A, for i = 1,2,3. When the
system breaks down, the three components are replaced in an exponential
time (in months) with parameter u. Let X(t) be the number of components
functioning at time t. Then {X(¢),t > 0} is a continuous-time Markov chain
whose state space is the set {0,1,2,3}.

(a) Calculate the average time that the process spends in each state.
(b) Is the process {X(¢),t > 0} a birth and death process? Justify.
(c) Write the Kolmogorov backward equation for pg ¢(f).
(d) Calculate the limiting probabilities of the process if A = p.
Question no. 84 ‘
Let {N(t),t > 0} be a counting process (see p. 231) such that N(0) = 0.
When the process is in state j, the next state visited will be j + 1, for all

j > 0. Moreover, the time 7; that the process spends in state j has the
following probability density function:

fri(s) =20 +1)Xs e WA for 5> 0

Finally, the 7;’s are independent random variables.
Now, consider the stochastic process {X (u), u > 0} defined by

0ifu<td
X{u) = {kif Zl?_l'rj? <u< Z?zo‘rjz

3=0

fork=1,2,....

(a) Show that the stochastic process {X(u),u > 0} is a continuous-time
Markov chain.

(b) Calculate P[X(2) = 1].

(c) Calculate, if they exist, the limiting probabilities 7; of the stochastic pro-
cess {X(u),u > 0}.

Question no. 85

We consider the particular case of the gambler’s ruin problem (see p. 101)
for which k = 4 and p = 1/2. Suppose that the length T' (in minutes) of



168 3 Markov Chains

a play (the outcome of which is the player’s winning or losing $1) has an
exponential distribution with mean equal to 1/2. Moreover, when the player’s
fortune reaches $0 or $4, he waits for an exponential time S (in hours) with
mean equal to 2 before starting to play again, and this time is independent of
what happened before. Finally, suppose that the player has $1 when he starts
to play again if he was ruined on the last play of the preceding game and that
he has $3 if his fortune reached $4 on this last play.

Let X (t), for ¢ > 0, be the player’s fortune at time ¢. The stochastic process
{X(t),t > 0} is a continuous-time Markov chain.

(a) (i) Is the process {X(t),t > 0} a birth and death process? If it is, give its
birth and death rates. If it’s not, justify.

(ii) Answer the same question if the player always starts to play again
with $1, whether his fortune reached $0 or $4 on the last play of the previous
game.

(b) (i) Write, for each state j, the Kolmogorov backward equation satisfied
by the function pg ;(¢).

(ii) Use the preceding result to obtain the value of the sum Z;zo Po,;(t)-

(c) Calculate the limiting probabilities of the process {X(t),t > 0}, for all
states j.

Question no. 86
Let {X,,n = 0,1,...} be a (discrete-time) Markov chain whose state
space is {0, 1,2} and whose one-step transition probability matrix is

o 1-a)/2(1-a)/2
P=|(1-a)/2 a (1—a)/2
21-a)/83(1-a)/3 «

where a € [0,1]. Suppose that the process spends an exponential time with
parameter A in state ¢ before making a transition, with probability p; ;, to
state 7, for 4,5 € {0,1,2}. Let X (¢) be the position, that is, the state in which
the process is, at time ¢.

(a) For what value(s) of a is the stochastic process {X(t),t > 0} a continuous-
time Markov chain? Justify.

(b) For the value(s) of « in (a), calculate, assuming they exist, the limiting
probabilities 7;, for j = 0,1, 2.

Question no. 87
In the preceding question, suppose that the transition matrix P is instead
the following:

a Bl-a-p
P= v 0 1-—7v
1-8p 0

where a, 3, and v € [0,1].
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(a) For what values of a, 3, and v is the stochastic process {X(t),t > 0} a
birth and death process? Justify and give the value of the parameters v;, A;,
and pj, for j =0,1,2.

(b) For the values of a and 3 found in (a), and for v € (0,1), calculate,
assuming they exist, the limiting probabilities 7;, for all j.

Question no. 88

Let {X(t),t > 0} be a (continuous-time) stochastic process whose state
space is the set {0,1}. Suppose that the process spends an exponential time
with parameter A in a state before making a transition to the other state,
where A is a discrete random variable taking the values 1 and 2 with proba-
bility 1/3 and 2/3, respectively.
(a) Is the stochastic process {X(t),t > 0} a continuous-time Markov chain?
Justify.
(b) Suppose that X(0) = 0. Let 7y be the time that the process spends in

state 0 before making a first transition to state 1. Calculate the probability
PA=1]71 < 1].

Question no. 89

Suppose that the continuous-time stochastic process {X(t),t > 0}, whose
state space is {0,1}, spends an exponential time with parameter 1 in a state
the first time it visits this state. The second time it visits a state, it stays there
an exponential time with parameter 2. When both states have been visited
twice each, the process starts anew.

(a) Is the stochastic process {X(t),¢t > 0} a birth and death process? Justify.

(b) Let N be the number of visits to state 0 from the initial time 0, and let
To be the time that the process spends in state 0 on an arbitrary visit to this
state. Calculate approximately P[N is odd | 7o < 1] if we assume that the
most recent visit to state 0 started at a very large time ¢.

Question no. 90

A system is composed of three components operating independently. Two
active components are sufficient for the system to function. Calculate the
failure rate of the system if the lifetime T} of component i has an exponential
distribution with parameter A = 2, for i =1,2, 3.

Question no. 91
Let {N1(t),t > 0} and {N(t),t > 0} be two independent Yule processes,
with rates A\, = n#, and X\, = nf,, for n =0,1,..., respectively. We define

X(f) = Nl(t) + Ng(t) fort >0

(a) For what values of the constants #; and 6 is the stochastic process
{X(t),t > 0} a continuous-time Markov chain? Justify and give the value
of the parameters v, of this process.

(b) For the values of 6; and 6, found in (a), calculate p; ;(t), for j > i > 1.
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Question no., 92
We define
X(t) = lNl(t) — Ny(t)| fort >0
where {Ny(t),t > 0} and {N,(t),t > 0} are two independent Poisson pro-
cesses, with rates Ay = o = .

(a) Show that {X(t),t > 0} is a birth and death process, and give the rates
Ap and p,, forn=0,1,....

(b) Calculate, if they exist, the limiting probabilities 7;, for j = 0,1,... .
Question no. 93

Calculate P[X; < X3 < X3] if X1, Xo, and X3 are independent random
variables such that X; ~ Exp()\;), for i =1,2,3.

Question no. 94
Let {X(t),t > 0} be a birth and death process whose state space is the
set {0,1,2} and for which

A=A AM=p=2A/2, and pe=2A

We consider two independent copies, { X1 (t),t > 0} and {X,(t),t > 0}, of this
process, and we define

Y () = |X1(t) — Xa(t)] fort>0

We can show that {Y'(¢),¢ > 0} is also a birth and death process.
(a) Give the birth and death rates of the process {Y'(¢),t > 0}.

(b) Calculate the expected value of the random variable Y (¢) after two tran-
sitions if X;(0) = X2(0) = 0.
(c) Calculate the limiting probabilities of the process {Y(t),t > 0}.

Question no. 95
We consider a birth and death process, {X(¢),t > 0}, whose state space
is the set {0,1,2,...} and whose birth and death rates are given by

Apn=nA and p,=nu forn=0,1,...
where A, 4 > 0. Suppose that X (0) =i € {1,2,...}. Calculate E[X(t)].

Indication. We can use the Kolmogorov equations.

Question no. 96
The rates A\, and p, of the birth and death process {X(t),t > 0}, whose
state space is the set {0,1,... ,c}, are

An=(c—n)A and u, =np

for n = 0,1,...,c. Suppose that X(0) = k € {0,1,...,c}. Calculate the
function py . (£).
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Indication. In the case of a continuous-time Markov chain defined on the set
{0,1}, and for which

A=A A=0, pw=0, and p=4pu

we have (see p. 131)

t) = —(u+Nt B
poo(t) u+)\e hEA
and L i
t) = R P V28 2V
Pro(t) LEXN g

Question no. 97
Let {X(t),¢ > 0} be a birth and death process for which

1
An:n%—l forn=0,1,... and p,=n forn=12,...

and let tg > 0 be the time instant at which the first birth occurred.

(a) Suppose that we round off the time by taking the integer part. Calculate
the probability that the first event from tg will be a birth.

Indication. If X ~ Exp(}), then 1 + int(X) ~ Geom(l — e™?), where int
denotes the integer part.

(b) What is the probability that there will be at least two births among the
first three events from #g?

(c) Calculate, if they exist, the limiting probabilities of the process.

Question no. 98

The lifetime of a certain machine is a random variable having an expo-
nential distribution with parameter A. When the machine breaks down, there
is a probability equal to p (respectively, 1 — p) that the failure is of type 1
(resp., II). In the case of a type I failure, the machine is out of use for an
exponential time, with mean equal to 1/u time unit(s). To repair a type II
failure, two independent operations must be performed. Each operation takes
an exponential time with mean equal to 1/p.

(a) Define a state space such that the process {X(t),t > 0}, where X(¢)
denotes the state of the system at time ¢, is a continuous-time Markov chain.

(b) Calculate, assuming the existence of the limiting probabilities, the prob-
ability that the machine will be functioning at a (large enough) given time
instant.

Question no. 99

A person visits a certain Web site according to a Poisson process with
rate A per day. The site in question contains a main page and an internal
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link. The probability that the person visits only the main page is equal to
3/4 (independently from one visit to another). Moreover, when she clicks on
the internal link (at most once per visit), the probability that she will return
(afterward) to the main page is equal to 1/2. We define the states

0: the person is not visiting the site in question

1: the person is visiting the main page (coming from outside the site)
2: the person is visiting the internal link

3: the person is visiting the main page, after having visited the link

Let 74 be the time (in hours) spent in state k, for k = 0, 1,2, 3. We assume
that the random variables 7, are independent and that 7 has an exponential
distribution with parameter vy, for £ = 1,2, 3.

Remark. We suppose that when the process is in state 3, the internal link is
highlighted and that this highlighting is removed when the person leaves the
site.

Let X (t) be the state the process is in at time ¢ > 0. We can show that
{X(t),t > 0} is a continuous-time Markov chain.

(a) Give the probabilities p; ; of the process.

(b) Is the process {X(¢),t > 0} a birth and death process? If it’s not, is it
possible to rename the states so that {X(t),¢ > 0} becomes a birth and death
process? Justify.

(c) Calculate the average time spent on the site in question on an arbitrary
visit, given that 73 = 1/4 for this visit.

(d) Calculate the limiting probabilities ;.
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Diffusion Processes

4.1 The Wiener process

We already mentioned the Wiener process twice in Chapter 2. In this section,
we will first present a classic way of obtaining this process from a random
walk. Then we will give its main properties.

Consider the discrete-time Markov chain {X,,,n = 0,1,...} whose state
space is the set of all integers Z := {0,+1,+2,...} and whose one-step tran-
sition probabilities are given by

Pii+1 = Dii—1 = 1/2 foralli € Z (41)

This Markov chain is a symmetric random walk (see p. 48). A possible interpre-
tation of this process is the following: suppose that a particle moves randomly
among all the integers. At each time unit, for example, each minute, a fair coin
is tossed. If “tails” (respectively, “heads”) appears, then the particle moves
one integer (that is, one unit of distance) to the right (resp., left).

To obtain the stochastic process called the Brownian motion, we accelerate
the random walk. The displacements are made every ¢ unit of time, and the
distance traveled by the particle is equal to ¢ unit of distance to the left or to
the right, where, by convention, § > 0 and ¢ > 0 are real numbers that can be
chosen as small as we want. As the Wiener process is a continuous-time and
continuous-state process, we will take the limit as § and € decrease to 0, so that
the particle will move continuously, but will travel an infinitesimal distance on
each displacement. However, as will be seen subsequently, we cannot allow the
constants § and e to decrease to 0 independently from each other; otherwise,
the variance of the limiting process is equal either to zero or to infinity, so
that this limiting process would be devoid of interest.

We denote by X(¢) the position of the particle at time ¢, and we suppose
that X (0) = 0. That is, the particle is at the origin at the initial time. Let
N be the number of transitions to the right that the particle has made after
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its first n displacements. We can then write that the position of the particle
after nd unit(s) of time is given by

X(né) = (2N —n)e (4.2)

Note that if all the displacements have been to the right, so that N = n,
then we indeed have that X (nd) = ne. Similarly, if N = 0, then we obtain
X(nd) = —ne, as it should be.

Remark. Since the particle only moves at time instants 4, 26, ..., we may
write that its position at time ¢ is given by

X(t) = X([t/6)d) forallt>0 (4.3)

where [ ] denotes the integer part.

Because the tosses of the coin are independent, the random variable NV has
a binomial distribution with parameters n and p = 1/2. It follows that

EX(né)==(2x2-n)e=0 (4.4)
and
V[X(nd)] =4 2 V[N] =4 € x g —n e (4.5)

If we first let § decrease to 0, then the random walk becomes a continuous-
time process. However, given that

t
VIX)]lyopns =1 € = 5% €? (4.6)
we find that € must tend to 0 at the same time as §; otherwise, the variance
of X(t) will be infinite. Actually, to obtain an interesting limiting process, §
and €2 must decrease to 0 at the same speed. Consequently, we assume that
there exists a constant o (> 0) such that

e=0Vl = =02 (4.7

Thus, when we let & decrease to 0, we obtain a process that is also with
continuous-state space and for which

E[X(®t)] =0 (4.8)
and
Vixe)] 28 o2t ve>o0 (4.9)

Remark. By choosing € = /8, we directly have that V[X(t)] = o*t, for all
t > 0. That is, the variance of X(t) is actually equal to ot for any positive
value of ¢, and not only in the limit as 6 | 0.
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From the formula (1.113), we may write that
P[X(nd) < z] ~ P[N(0,n€®) < ] (4.10)
from which we deduce that
PW(t) < z] = P[N(0,0%t) < ] (4.11)
where

W(t) = lim X (1) (4.12)

That is, the random variable W(t) has a Gaussian distribution with zero
mean and variance equal to o2 t. This result is the essential characteristic of
the Wiener process. Moreover, since a random walk is a process with inde-
pendent and stationary increments (see p. 50), we can assert that the process
{W(t),t > 0} has these two properties as well.

Based on what precedes, we now formally define the Wiener process.

Definition 4.1.1. A stochastic process {W(t),t > 0} is called a Wiener
process, or a Brownian motion, if

i) W(0) =0,
i) {W(t),t > 0} has independent and stationary increments,
i) W(t) ~ NO,0%t) V> 0.

Remarks. i) The name Brownian motion is in honor of the Scottish botanist
Robert Brown.! He observed through a microscope, in 1827, the purely ran-
dom movement of grains of pollen suspended in water. This movement is due
to the fact that the grains of pollen are bombarded by water molecules, which
was only established in 1905, because the instruments Brown had at his dis-
posal at the time did not enable him to observe the water molecules. The
Brownian motion and the Poisson process (see Chapter 5) are the two most
important processes for the applications. The Wiener process and processes
derived from it are notably used extensively in financial mathematics.

ii) Let

B(t) := (4.13)

We have that V[B(t)] = t. The stochastic process {B(t),t > 0} is named
a standard Brownian motion. Moreover, if we sample a standard Brownian
motion at regular intervals, we can obtain a symmetric random walk.

! Robert Brown, 1773-1858, was born in Scotland and died in England. He was a
member of the Royal Society, in England.
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iii) The Wiener process has been proposed as a model for the position of the
particle at time t. Since the distance traveled in a time interval of length ¢
is proportional to v/3, we then deduce that the order of magnitude of the
velocity of the particle in this interval is given by

Ve L — o0 whend |0 (4.14)

ERRY
However, let V(t) be the average velocity (from the initial time) of the
particle at time ¢t > 0. It was found experimentally that the model
V(it):=—= fort>0 (4.15)
was very good for values of ¢ large enough (with respect to §). We will see

another model, in Subsection 4.2.5, which will be appropriate for the velocity
of the particle even when ¢ is small.

iv) We can replace condition iii) in Definition 4.1.1 by
W(t+s) - W(s) ~N(0,0%t) Vs,t>0 (4.16)

and then it is no longer necessary to assume explicitly that the process
{W(t),t > 0} has stationary increments, since it now follows from the new
condition iii).
v) Let

W*(#t) = W(t) +c (4.17)

where ¢ is a real constant, which is actually the value of W*(0). The process
{W*(t),t > 0} is called a Brownian motion starting from c. We have that
W*(t) ~ N(c,0%), V t > 0. We could also consider the case when c is a
random variable C' independent of W(t), for all ¢ > 0. Then we would have

E[W*(t)] = E[C] and V[W*(t)] = ¢%t + V[C] (4.18)

vi) Wiener proved the following very important result: W (t) is a continuous
function of ¢ (with probability 1). Figure 4.1 shows a (simplified) example of
the displacement of a particle that would follow a Brownian motion. In reality,
the trajectory of the particle would be much more complicated, because there
should be an infinite number of changes of direction of the particle in any
interval of finite length. We can thus state that the function W (t) is nowhere
differentiable (see, however, Section 4.3).

In general, it is very difficult to explicitly calculate the kth-order density
function (see p. 49) of a stochastic process. However, in the case of the Wiener
process, {W{(t),t > 0}, we only have to use the fact that this process has
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Fig. 4.1. (Simplified) example of the Brownian motion of a particle.

independent and stationary increments. We can thus write, for t; < & <
.. < tg, that

k
f(wla"' s Wi b1, ... 7t wlatl H — Wy ;i ¥] tj—l) (4‘19)
j=2
where
Fw;t) ! W o allwe R (4.20)
: =4 X _——— .
’ \/27T0'2te Pl 202

is the density function of a random variable having a Gaussian N(0, 02t) dis-
tribution. Indeed, we have

k
)W () = ws} (4.21)
j=1

k
= {W(t1) =wi}[) ﬂ{W(tj)~W(t]~_1) = wj — wj-1}

and the random variables W(t;), W(t2) — W(¢1), ... are independent and
all have Gaussian distributions with zero means and variances given by o2¢y,

0'2(t2 —tl), SN

Remark. We deduce from what precedes that the Wiener process is a Gaussian
process (see Section 2.4). It is also a Markovian process, because it is the limit
of a Markov chain.

To calculate the autocovariance function (see p. 49) of the Wiener process,
note first that

Cov(X,Y + Z| = E[X(Y + Z)]| - E[X]E[Y + Z]
_ {EIXY] - EIXEIY]} + {EIXZ) - E(X|E(Z]}
= Cov[X, Y]+ Cov[X, Z] (4.22)
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Then we may write that

Cw(t,t+s) = Cov[W(t),W(t+s)]
= Cov[W(t),W(t)+W(t+s)— W(t)
Cov[W (t), W (t)] + Cov[W (t), W(t +s) — W(t)]
nd- ner cov[W(t), W(t)] = VW ()] = o2t (4.23)

for all s,t > 0. This formula is equivalent to
Cw(s,t) = 0> min{s,t} for all 5,t >0 (4.24)

Remarks. i) The random variables W (t) and W(t + s) are not independent,
because the intervals [0,t] and [0, ¢+ s] are not disjoint. Thus, the larger W {(t)
is, the larger we expect W (¢ + s) to be. More precisely, we have

W(t+s) | W(t) ~N(W(t),0%s) Vs,t>0 (4.25)

ii) Since the function Cw (t,t + s) is not a function of s alone, the Wiener
process is not stationary, not even in the wide sense (see p. 52). As we already
mentioned, the notion of processes with stationary increments and that of
stationary processes must not be confounded.

iii) Since E[W (t)] = 0, we also have
Rw(s,t) = o® min{s,t} for all 5, >0 (4.26)

where Rw(-,-) is the autocorrelation function of the process {W(t),t > 0}
(see p. 49).

Ezample 4.1.1. If the random variables W (¢) and W (t + s) were independent,
we would have W (t) + W (t + s) ~ N(0,02(2t + s)), which is false. Indeed, we
may write that

W +Wit+s)=2W(Et)+[W(t+s)-W(H)]=X+Y

where X := 2W(t) and Y := W(t + s) — W(t) are independent random
variables, because the Wiener process has independent increments. Moreover,
we have

and
VIX]=4V[W(t) =4 o?t and VY] =V[W(s)] =

(using the fact that the Wiener process also has stationary increments). We
thus have
W(t) + W(t +s) ~ N(0,0%(4t + s))

which follows directly from the formula (1.108) as well.
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Remark. As the increments of the Wiener process are stationary, the random
variables W (t 4+ s) — W (t) and W(s) (= W(s) — W(0)) have the same dis-
tribution. However, this does not mean that W(t + s) — W(t) and W(s) are
identical variables. Indeed, suppose that t = 1, s = 1, and W(1) = 0. We
cannot assert that W(2) — W(1) = W(2) — 0 = 0, since P[W(2) = 0] =0, by
continuity.

Given that the Brownian motion is Gaussian and that a Gaussian process is
completely determined by its mean and its autocovariance function (see p. 59),
we can give a second way of defining a Brownian motion: a continuous-time
and continuous-state stochastic process, {X (t),t > 0}, is a Brownian motion
if
i) X(0) =0,
if) {X(t),t > 0} is a Gaussian process,

iii) E[X()] =0,
iv) Cx(s,t) = Cov[X(s),X(t)] = o?min{s,t} V s,t > 0, where 0 > 0 is a
constant.

It is generally easier to check whether the process {X(t),t > 0} possesses
the four properties above, rather than trying to show that its increments are
or are not independent and stationary. This second definition of the Brownian
motion is particularly useful when {X(t),t > 0} is some transformation of a
Wiener process {W(t),t > 0}. As we saw in Section 2.4, any affine transfor-
mation of a Gaussian process is also a Gaussian process. That is, if

Xty =ca1W(t) +co (4.27)

where cg and ¢; # 0 are constants, then {X(¢),t > 0} is a Gaussian process.
Moreover, if we only transform the variable ¢, for example, if

X(t) = W(t?) (4.28)

then the process {X(t),t > 0} is also a Gaussian process.

Remark. We could drop the first condition above if we accept that a Brownian
motion can start from any point wg € R. Similarly, we could replace the third
condition by E[X(t)] = ut, where u is a real constant. In this case, the
stochastic process {X(t),t > 0} would be a Brownian motion with drift i (see
Subsection 4.2.1).

Example 4.1.2. Let {W(t),t > 0} be a Brownian motion. We set
X(0)=0 and X(t)=tW(1/t) ift>0

At first sight, the stochastic process {X(t),t > 0} does not seem to be a
Wiener process. However, we have
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EX(®#)=tEW(1/t))=t-0=0 ift>0
because E[W (t)] = 0, for any value of ¢ > 0, and then

Cx(s,t) = E[X(s)X(t)]—-0x0
= E[s W(1/s)t W(1/t)] = st Cw(1/s,1/t)
= st min{1/s,1/t} = o min{s, t}
Moreover, we can assert that {X(t),t > 0} is a Gaussian process, because here
X(t) is a linear transformation of W(1/t). Since X(0) = 0 (by assumption),

we can conclude that {X(¢),t > 0} is a Brownian motion having the same
characteristics as {W(t),t > 0}.

Remark. We must not forget that the variable t is deterministic, and not
random. Thus, we can consider it as a constant in the calculation of the
moments of the process {X(t),t > 0}.

Ezample 4.1.8. We define the stochastic process {X (¢),t > 0} by
X(t) = B(t)|{B(t) >0} fort>0

where {B(t),t > 0} is a standard Brownian motion.
(a) Show that the probability density function of X(¢) is given by

fx@(®) =2 fpy(z) forz >0

(b) Calculate (i) E[X(t)] and (ii) V[X ()], for ¢t > 0.

(¢) Is the stochastic process {X(t),t > 0} (i) Gaussian? (ii) wide-sense sta-
tionary? Justify.

(d) Are the random variables X (t) and Y (¢) := |B(t)| identically distributed?

Solution. (a) We may write that

fB(t)(x)

fxw(z) = P—[Bm =2fpw(z) forz>0

because B(t) ~ N(0,t) = P[B(t) > 0] = 1/2.
(b) (i) We calculate

oo 1/2 o0
(a) 2 —z2/2t (2t> / x —-:1:2/2t
EX(t)] 2 dr=— 2 _TY /2 gy
[X(t)] /0 r o= M= () [ (<)

= (2t/m)"? fort>0
0

= — (2t/7r)1/2 e /2
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(ii) Notice first that

E[BX(t)] = E[BX() | B(t) > 0]P[B(t) > 0] + E[B(t) | B(t) < 0] P[B(t) < 0]

1/2
Since E[B%(t)] = V[B(t)] = t and E[B%(t) | B(t) > 0] = E[B%(t) | B(t) < 0]
(by symmetry and continuity), it follows that

VX (1) 9 E[B*(t) | B(t) > 0] - i—t =t— % fort >0

(c) (i) Since X(t) > 0V t > 0, the stochastic process {X(¢),t > 0} is not
Gaussian.

(ii) It is not WSS either, because E[X (t)] is not a constant.
(d) We have

P[Y(t) < y) "= Pl-y < B(t) < 9] = F(y) - Faw(—y)

L frl) =2fpm(y) fory>0

Thus, X(t) and Y (t) are identically distributed random variables.

4.2 Diffusion processes

Continuous-time and continuous-state Markovian processes are, under certain
conditions, diffusion processes. The Wiener process is the archetype of this
type of process. One way, which can be made even more rigorous, of defining
a diffusion process is as follows.

Definition 4.2.1. The continuous-time and continuous-state Markovian sto-
chastic process {X(t),t > 0}, whose state space is an interval (a,b), is a
diffusion process if

lsn %P[|X(t +e) = X)) > 5| X(t) =a] =0 (4.29)

Vd>0andV¥ x € (a,b), and if its infinitesimal parameters defined by (see
p. 63)

m(;) = lim %E[X(t Fe)— X(t) | X(t) = ] (4.30)
and
olw;) = lim %E[(X(t Fe) = X(1)? | X(¢) = a] (4.31)

are continuous functions of ¢ and of t.
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Remarks. 1) The condition (4.29) means that the probability that the process
will travel a distance greater than a fixed constant § during a sufficiently short
period of time is very small. In practice, this condition implies that X (¢) is a
continuous function of ¢.

ii) We assumed in the definition that the infinitesimal mean m(z;t) and the
infinitesimal variance v(x;t) of the process exist.

iii) The state space Sx 4 of the stochastic process {X(t),t > 0} may actually
be any interval: [a,b], (a,b], [a,b), or (a,b). Moreover, if the interval does
not contain the endpoint a, then a may be equal to —oco. Similarly, we may
have that b = oo if Sx(;) = (a,b) or [a,b). Finally, if Sx(;) = [a,b], then the
functions m(z;t) and v(x;t) must exist (and be continuous) for a < z < b
only, etc.

Ezample 4.2.1. In the case of the Wiener process, {W (t),t > 0}, we have that
W(t+e) | {W(t) = w} ~ N(w, o%), for all ¢ > 0. We calculate

lim %P[]W(t +6) = W(R)| > 8| W(t) =] = lim -i—P[]N(O, o%)| > 4]

= lim %p {{N(O, 1) > #} = lj{{}% {1 -2 (f%)}

where

x
&(z) = / _12.;@—*/2 dz (4.32)

is the distribution function of the N(0, 1) distribution. We may write that

P(z) = -;- (1 +erf (%)) (4.33)

where erf(-) is the error function.
Finally, making use of the formula (4.33) and of the asymptotic expansion

e (1 1
erf(x)—l——ﬁ{;—Q—xg—{—...}

which is valid for > 1, we find that
lim 2 {1 _qs(i)} ~0
el0 € o€

1 1
1 - - = =1 - = 0
lellr{)l 6E[W(t +e)—W(t) | W(t) =w] 161%1 - 0

Next, we have
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and
leiir(rjl %E[(W(t +e) — W) | W(t) = u]

= lim lE[ZQ}, where Z ~ N(0,0%€)
e€l0 €

1 1
= lim =V [Z] = lim - 0%¢ = ¢°
el0 € el0 €
Thus, we have m(z;t) = 0 and v(z;t) = 0%. Because the infinitesimal param-
eters of the Wiener process are constants, the functions m(z;t) and v(z;t) are
indeed continuous.

The most important case for the applications is the one when the diffusion
process { X (t), t > 0} is time-homogeneous, so that the infinitesimal moments
of {X(¢t),t > 0} are such that m(z;t) = m(z) and v(z;t) = v(z). We can then
assert (see p. 64) that the process {Y (¢),t > 0} defined by

Y(t)=g[X(#)] fort>0 (4.34)

where g is a strictly increasing or decreasing function on the interval [a,b] =
Sx(¢) and such that the second derivative ¢g”(x) exists and is continuous, for
all z € (a,b), is also a diffusion process, whose infinitesimal parameters are
given by

my (y) = m(z)g'(z) + sv(x)g"(z) and vy(y) =v(@)lg'(@)]*  (4.35)

where the variable x is expressed in terms of y: * = g7 !(y) (the inverse
function of g(x)). Moreover, we have that Sy () = [g(a), g(b)] if g is strictly
increasing, while Sy ;) = [g(b), g(a)] if g is strictly decreasing.

Remarks. 1) The function g must not be a function of the variable ¢.

ii) We assume in what precedes that the process {X(t),t > 0} can move from
any state x € (a,b) to any other state y € (a,b) with a positive probability.
We say that {X(¢),t > 0} is a regular diffusion process. Then the process
{Y(t),t > 0} is regular as well.

4.2.1 Brownian motion with drift

A first important transformation of the Wiener process is a generalization of
this process. Let

Y(t):=0B(t) + put (4.36)

where {B(t),t > 0} is a standard Brownian motion, and u and ¢ # 0 are real
constants. Note that in this case the function g would be given by
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g(z,t) = ox + ut (4.37)

Thus, we cannot use the formulas (4.35) to calculate the infinitesimal param-
eters of the process {Y'(t),t > 0}. However, we have

E[Y(t) | Y(to) = yo] = yo + pu(t — to) (4.38)
and
VIY () | Y(to) = yo] = o*(t — o) (4.39)

for all ¢ > t;. We then deduce from the formulas (2.58) and (2.59) that

2

my(y)=p and vy(y)=0c* forally {4.40)

Remark. If we try to calculate the function my (y) from (4.35), treating t as
a constant, we find that my (y) = 0, which is false, as we see in Eq. (4.40).

Definition 4.2.2. Let {Y (t),t > 0} be a diffusion process whose infinitesimal
parameters are given by my (y) = p and vy (y) = 0. The process {Y (t),t > 0}
is called a« Brownian motion (or Wiener process) with drift u.

Remarks. i) The parameter p is the drift coefficient, and o2 is the diffusion
coefficient of the process. The term parameter, rather than coefficient, is used
as well.

ii) If the random walk had not been symmetric in the preceding section, we
would have obtained, under some conditions, a Wiener process with nonzero
drift coefficient .

iii) Since the function f[B(t)] := o B(t) + ut is an affine transformation of the
variable B(t) ~ N(0,t), we may write

Y (t) ~ N(ut,0?t) (4.41)
or, more generally,
Y(t) | {Y(to) = yo} ~ N(yo + ul(t — to), d%(t — to)) VYt >to (4.42)

Moreover, the process {Y (t),¢ > 0} is a Gaussian process having independent
and stationary increments. It follows (with Y (0) = 0) that

E[Y(t+s)Y ()] = E[(Y(t +s)-Y(@#)+ Y)Y ()]
"I BY (84 5) - Y () E[Y ()] + E[Y2(t)]
S By ()| EY (1)) + EIY2(t)]
= (us)(ut) + (02t + ,u2t2) (4.43)

which implies that



4.2 Diffusion processes 185

Cy(t+s,t) = Cov[Y(t+3s),Y(t)] = E[Y(t + s)Y (t)] — E[Y (t + s)|E[Y(¢)]
= ulst + ot + p*? — p(t 4 s) ut = ot Vs,t>0 (4.44)

Thus, the Brownian motion with drift has the same autocovariance function
as the Wiener process.

iv) The conditional transition density function p(y, yo;t,to) (see p. 62) of the
Brownian motion with drift coefficient ;1 and diffusion coefficient o? satisfies
the partial differential equation (see p. 64)

op Op 20

op OGP _ 90D _g4 4.45
ot " Hay T 2 o (4.45)
as well as the equation
dp ap  o?0%p
9 o9  O°0P_, 4.46
Oty + uayo 2 8y5 ( )
We can check that
1 1[y—(yo+u(t—to))]2}
s ; t’ t — ——neen @K — 4.47)
P(y; Yos t, to) T P{ 5 72t — to) (
for y,yo € R and ¢ > tg > 0. We have
}ilrtnp(y, Yo; t,to) = 6(y — vo) (4.48)

which is the appropriate initial condition.

4.2.2 Geometric Brownian motion

A diffusion process that is very important in financial mathematics is obtained
by taking the exponential of a Brownian motion with drift.

Let {X(¢),t > 0} be a Wiener process with drift coefficient y and diffusion
coefficient 2. We set

Y(t) =eX® fort >0 (4.49)

Since the function g(z) = e does not depend on ¢, we deduce from (4.35)
that

1, 1
my (y) = pe® + 50%€" = py + 50y (4.50)

and

vy (y) = 0*(e”)® = o%y? (4.51)
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Definition 4.2.3. The stochastic process {Y (t),t > 0} whose infinitesimal
parameters are given by my (y) = (p + 10%)y and vy (y) = 0%y? is called a
geometric Brownian motion. '

Remarks. i) The state space of the geometric Brownian motion is the interval
(0, 0), which follows directly from the definition Y (t) = eX®). The origin is
a natural boundary (see Section 4.4) for this process. It is used in financial
mathematics as a model for the price of certain stocks.

ii) Since Y(t) > 0, for all ¢ > 0, the geometric Brownian motion is not a
Gaussian process. For a fixed t, the variable Y (¢) has a lognormal distribution
with parameters ut and o?t. That is,

1 (Iny — ut)?
= - for y > 0 4.52
Fral) = o= , P { T or y (4.52)

iii) We can generalize the definition of the geometric Brownian motion {Y'(¢),
t > 0} by setting

Y(t) = Y (0)eX® (4.53)
where Y'(0) is a positive constant. As in the case of the Wiener process, the

initial value Y'(0) could actually be a random variable.

iv) To obtain the conditional transition density function p(y, yo;t,%¢) of the
process, we can solve the Kolmogorov forward equation

dp 1,\ 8 o2 9%,
£ - - L =0 4.54
o T (N+ 59 ) ay(yp) 5 6y2(y p) (4.54)

In the particular case when ty = 0, we find that the solution of this partial
differential equation that satisfies the initial condition

lim p(y, yo; 1) = 3(y — vo) (4.55)
is
(o201 1) 1 (In L — put)? (4.56)
, , = ———eX — .
(¥, %o T e

for y,y0 >0 and t > 0.

v) The geometric Brownian motion is appropriate to model the evolution of
the value of certain stocks in financial mathematics when we assume that the
ratios :

X1 X2 X3

- (4.57)
X, X' X,
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where Xj is the initial price of the stock and X} is the price after k unit(s)
of time, are independent and identically distributed random variables.

We have used the expression diffusion process at the beginning of this
subsection. By definition, this means that the geometric Brownian motion
must be a Markovian process, which we now show.

Proposition 4.2.1. The geometric Brownian motion is o Markovian process,
whose conditional transition density function is time-homogeneous.

Proof. We have, in the general case when Y (t) := Y (0)eX{®),

Y(t +s) = Y(0)eXt+9) = y(0)eXt+s)-XH+X(®)
—  Y(t+s)=Y()eXtH)-X® (4.58)
We then deduce from the fact that the Wiener process has independent in-
crements that Y (t + s), given Y'(¢), does not depend on the past. Thus, the
process {Y'(t),t > 0} is Markovian.

We also deduce from the equation above and from the independent and
stationary increments of the Wiener process that

P[Y (o +5) <y | Y(to) = yo] = P[Y (to)eX to+)=X0) <y | V(to) = yo)
— P[ex(to-i-s)—x(tu) < y/yo)
= Ple™®) < y/yo] (4.59)

for all yp,y > 0 and for all ty,s > 0, from which we can assert that the
function p(y, yo;t,to) of the geometric Brownian motion is such that

Py, voi t,to) = p(y, yoit —to) O (4.60)
Remarks. 1) Equation (4.58) implies that
Y(t+s) LY (t)e¥® (4.61)

That is, the random variable Y (t + s) has the same distribution as Y (t)eX(®).

ii) To prove that the conditional transition density function of the geometric
Brownian motion is time-homogeneous, we can also check that the function
[see (4.56)]

1 [In X — pu(t —to))?
L Y0ittg) = ——————exp{ ——=2 4.62
P03t to) 2mo?(t —to)y P { 202(t — to) (462)

for y,yo > 0 and £ > £y > 0, satisfies the Kolmogorov forward equation (4.54),
subject to
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1ilrtr§p(y, Yo;t,to) = 6(y — o) (4.63)

From the formula Y (¢) = eX®, and making use of the formula for the
moment-generating function (see p. 19) of a random variable X having a
Gaussian N(y, 0?) distribution, namely

Mx(s) = E[e*X] = exp {su + %‘3202} (4.64)
we find that the mean and the variance of Y (t) are given by

E[Y (t)] = exp { (;1 + -3-02) t} (4.65)

and

VIY(t)] = exp { (u v %ﬁ) 2t} <e°’t - 1) (4.66)

for all ¢ > 0. Note that E[Y(0)] = 1, which is correct, since Y (0) = 1 (because
X(0) = 0, by assumption). More generally, for all ¢ > T, we have

E [—%} = exp { (u + %o—"’) (t~ 7‘)} (4.67)

v [}?/(%} = exp { (u + —;-02> 2t — T)} (e - 1) (4.68)

We also find, using the fact that the process is Markovian, that

and

EYt)|Y(s),0<s<7]=E[Y@®)|Y(7)]=Y(r)exp { (u + -;—02) (t - T)}
(4.69)

and

E[Y2(t) | Y(s),0 < s < 7] = E[Y2(t) | Y(r)] = Y2(r) exp{2(u + %) (t — 7)}
(4.70)

for all t > 7, from which we can calculate V[Y (t) | Y(s),0 < s < 7).
Finally, we can write (see Ex. 4.1.1) that if Y/(0) = 1, then

E[Y(t+s)Y(t)=E [eX(H—s)eX(t)] - E [eX(t+s)+X(t)]
= Mx(1), where X ~ N(p(2t+s),0%(4t + s))
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= exp {M(Qt +s) + 202(4t + 9)} (4.71)
from which, V s,t > 0 we have
Cy(t+s,t) = E[Y(t+s)Y(t)] — E[Y (t + s)]E[Y (¢)]

—exp{u(2t+s)+ —o%(4t + s

)
e {(ws 1) 9 e { i 207

= exp {u(m +8) + 502(415 + s)} — exp { (u + 502) (2t + s)}

= exp { (u + %ﬁ) (2t + s)} (ef’”’t -1) (4.72)

Remarks. 1) Contrary to the Wiener process, the geometric Brownian motion
is not a process with independent and stationary increments. Indeed,

Y(t+s) - Y(s) = Y(0)eXt+) — y(0)eX®) = Y (0) (Xt — X)) (4.73)
does not have the same distribution as
Y(t) — Y(0) = Y(0)eX® — Y (0) = Y(0)(eX® — 1) (4.74)
for all s > 0. Moreover, the random variables
Y(t+s) - Y(t) = Y(0)eXE) — v (0)e¥® = vy (0)(eXE+e) — X)) (4.75)

and Y (t)—Y(0) are not independent. To justify this assertion, we can calculate
the covariance of these variables. Since Y (0) is not random, we have

CovlY (¢ +5) — Y (1), Y (1) ~ Y(0)]
= {B[Y(t + )Y (1)) — Y(OE[Y (t + )] ~ E[Y*(5)] + Y (O)E[Y (1)}

— {E[Y(t+9)] - E[Y O)H{EY ()] - Y(0)}
= Cov[Y(t +5), Y ()] - V[¥(1)] (4.76)

Using the formulas (4.66) and (4.72), we may write that

Cov[Y (t +s) — Y(2),Y(t) — Y(0)]

o )} (e 2]
- (eﬂzt - 1) exp { (u + %aQ> zt} {exp { (u + %(f?> s} - 1} (4.77)

which is different from zero if s, ¢ > 0, so that the random variables considered
are not independent.
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ii) If the drift coefficient u of the Wiener process is equal to —0?, then the
corresponding geometric Brownian motion is such that [see the formula (4.69)]

EY(#)|Y(s),0<s<7]=Y(7) (4.78)

Thus, the process {Y (t),t > 0} is a martingale (see p. 102). We can always
obtain a martingale from an arbitrary Wiener process, by setting

Y*(t) = Y(0) exp {X(t) - (u + %(72) t} = exp {— (u + -;-02> t} Y(t)
(4.79)

where Y'(t) is defined in (4.53). Indeed, we then have
BIY*(t) | Y*(s),0 < s < 7]
= exp{— (,u + 1 2) t} EY(®#)|Y*(s),0<s<7]

N

= exp {- (;L + 102) t} E[Y(t)|Y(s),0<s<7]

= exp {— (u + %02> t} Y(r)exp { <u+ %Uz> (t— T)}

=Y (7)exp {~ (u + %02) T} =Y*(1) (4.80)

2]

iii) There exists a discrete version of the geometric Brownian motion used, in
particular, in financial mathematics. Let Y}, := In X,,, where X,, is the price
of the shares of a certain company at time n € {0,1,...}. We assume that

Yo=u+Y1+en (4.81)

where p is a constant and the €,’s are independent random variables. Then
we have

n
Yo=np+) e+ (4.82)
g=1

If we now assume that ¢, ~ N(0,02), for all n, and that Y; is a constant, we
obtain

EY,]=np+Y, and V[Y,]=no? (4.83)

The discrete-time and continuous-state processes {Y,,n = 0,1,...} and
{Xn,n = 0,1,...} are called a discrete arithmetic Brownian motion and a
discrete geometric Brownian motion, respectively.



4.2 Diffusion processes 191

4.2.3 Integrated Brownian motion

Definition 4.2.4. Let {Y'(¢),t > 0} be a Brownian motion with drift coeffi-
cient u and diffusion coefficient o2, and let

¢
Z(t) := Z(0) +/ Y{(s)ds (4.84)
0
The stochastic process {Z(t),t > 0} is called an integrated Brownian mo-
tion.

Proposition 4.2.2. The integrated Brownian motion is a Gaussian process.

Proof. First, we use the definition of an integral as the limit of a sum:

2() = 2(0) + lim © Sy <5'f) (4.85)
k=1

n

Since the Wiener process is a Gaussian process, the Y (tk/n)’s are Gaussian
random variables. From this, it can be shown that the variable Z(t) has
a Gaussian distribution and also that the random vector (Z(t1), Z(t2),... .
Z(tn)) has a multinormal distribution, for all t1,ts,... ,t, and for any n, so
that the process {Z(t),t > 0} is Gaussian. O

Remark. We can write that

Z(te) = (Z(tk) — Z(tk-1)) + (Z(tk=1) — Z(tk—2)) + -+~

+(Z(t2) — Z(t1)) + Z(t1) (4.86)
for kK =2,...,n, where we may assume that t; <ty < -+ < f,. We have
tx
Z(tg) = Z(tg—1) = / Y(s)ds (4.87)
th—1

However, even though the increments of the Wiener process are independent,
the random variables (Z(t2) — Z(¢1)) and Z(t1), etc., are not independent, as
will be seen further on. Consequently, we cannot proceed in this way to prove
that the integrated Brownian motion is Gaussian.

Assuming that Z(0) is a constant, we calculate

E[Z(t)] = Z(0) + /0 E[Y (s)]ds = Z(0) + /0 (Y(0) + s) ds
= Z(0) + Y(0) ¢ + ﬁ; (4.88)

For the sake of simplicity, suppose now that {Y'(¢t),t > 0} is a standard
Brownian motion (starting from 0) and that Z(0) = 0. Making use of the
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formula (see p. 178) E[Y (s)Y (t)] = min{s,t} (because E[Y(t)] =0 and ¢ =

1), we may write that

EZt+s)Z(t)=F [/OHS Y (u) du/ot Y(v) dv]

_E [ /0 t /O W)Y (v) du dv]

_ /0 t /O " B Y (W)Y ()] dud

t v t+s
:/ {/ min{u,v}du+/ min{u, v} du} dv
0 0 v
t v t+s
=/ {/ udu+/ vdu} dv
0 0 v
t (42
=/{——+v(t+s—v)}dv
o L2

= 12 (% + g) (4.89)

From the previous formula, we obtain, under the same assumptions as
above, that

CovlZ(t + ) — 2(8), Z(t)] = E{|Z(t + 5) - Z()]Z(t)} — O
_ BZ(t + 5)2()) - E{Z%(0)
t s t3

:t2(§+§)__3.=%3¢0 (4.90)

which implies that Z(t + s) — Z(t) and Z(t) are not independent random
variables V s > 0, and

E[{Z(t +s) — Z(s)}*] = E[Z%(t + 5)] + E[Z*(s)] - 2B{Z(t + 8)Z(s)]

3 3 3

t3
# = = E[Z2(t)] (4.91)

from which we deduce that Z(t + s) — Z(s) and Z(t) are not identically dis-
tributed random variables.

We can generalize these results and state the following proposition.

Proposition 4.2.3. The increments of the integrated Brownian motion are
neither independent nor stationary.
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Next, by definition of Z(t), we may write that

t+s t t+s
Z(t+s)=Z(0)—l—/0 Y(T)dT:Z(0)+/0 Y(r)dr + t Y(r)dr

= Z(t) + / t+sY(7‘) dr (4.92)

Proposition 4.2.4. The integrated Brownian motion is not a Markovian pro-
cess. However, the two-dimensional stochastic process (Y (t), Z(t)) is Marko-
vian.

Proof. The value of the last integral above does not depend on the past if
Y (¢) is known, because the Wiener process is Markovian. Now, if we only
know the value of Z(t), we do not know Y (¢). Thus, for the future to depend
only on the present, we must consider the two processes at the same time. O

When {Y'(t),t > 0} is a standard Brownian motion, the joint probability
density function of the random vector (Y (¢), Z(t)), starting from (yo, 20), is
given by

P(y,z, y[))ZO;t)
PIY(t) € (y,y + dyl, Z(t) € (2,2 + dz] | Y(0) = yo, Z(0) = 2]
dydz

V3

2 6 6
= &P {—;(y —y0)? + 2 (¥ = y0)(z — 20— yot) — 5 (2 — 20 = yot)2}
(4.93)

for y, z,y9,20 € R and t > 0.

Remarks. 1) The density function p(y, z,yo, z0;t) is a particular case of the
joint conditional transition density function p(y, 2, yo, 20; ¢, to)-

it) To be more rigorous, we should take the limit as dy and dz decrease to 0
above. However, this notation is often used in research papers.

The function p(y, z, yo, 20;t) is the solution of the partial differential equa-
tion (namely, the Kolmogorov forward equation)

o 0 1 62

adl I _p=0 4.94
a? TV P 3gE? (4.94)
which satisfies the initial condition

0 ify#£ygorz#z (4.95)

P(y,Z,yO,ZO;tZO) 25(y—y0,z——zo) = {OOlfyzyO andz:zo

Indeed, taking the limit as ¢ decreases to zero in the formula (4.93), we obtain

lglr{)lp(y, z,Y0, 20} t) = 6(y — Yo, 2 — z0) (4.96)
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Remark. Actually, it is preferable to define the two-dimensional Dirac delta
function by

8(y — Yo,z — 20) =0 if (y,2) # (Yo, 20) (4.97)

and
oo o0
/ / 6(y — Yo,z — 20) dy dz =1 (4.98)
-0 -0
We can then write that

6(y — Yo,z — 20) = 0(y — ¥0)d(z — zo) (4.99)

Note that we also obtain the formula above, even if we set §(0,0) = §(0) = oo,
by assuming that

85(0)6(z — 20) = 8(y —y0)6(0) =0 if 2 # 2zp and ¥ # yo (4.100)

The formula for the function p(y, z, yo, 20; t) is easily obtained by using the
fact that it can be shown that the random vector (Y (t), Z(¢)) has a bivariate
normal distribution. Moreover, the bivariate normal distribution is completely
characterized by the means, the variances, and the covariance of the two
variables that constitute the random vector. Here, when {Y(t),t > 0} is a
standard Brownian motion starting from Y (0) = yo, and Z(0) = 29, we deduce
from what precedes that

EY®)]=yo, V[Y(®)]=t, and E[Z(t)] =z + yot (4.101)

Furthermore, since E[Y(s)Y (t)] = min{s,t} + y when Y (0) = yo, we find
that the generalization of the formula (4.89) is

E[Z(t +5)Z(t)] = (3 L8

3 2) + y2t? + 25 + 2200t (4.102)

so that

V(z(t)] = E[Z*(t)] - {E[Z(1)]}?
3

t3 ¢
= 5 T+ g+ 2wt — (0 +p0t) = 5 (4109)

Remark. The variance of Z(t) is thus independent of the initial values Z(0)
and Y'(0), as we could have guessed.

Next, we calculate

E[Y()2(t)] = E [m) { v ‘Y d}]
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t
= Yozo +/ EY(t)Y(r)] dr
0

t . t2
= Yo2o + / (T y(z)) dr = yozo + 7 + ygt (4.104)
0

which implies that

Cov[Y (1), Z(8)] = BIY ()2(t)] - EIY (1IBIZ(2)
2 2
= % +yoz0 + Y3t — yYo(zo + yot) = % (4.105)

and

__ Cov[Y (1), Z(t)] t2/2 _\_/_§
YOIO = VRG] eIV 2 (4.106)

The expression for the function p(y, z,yo, z0;t) is obtained by substituting
these quantities into the formula (1.82).

We can check that if we replace ¢ by ¢ — ¢4 in the formula (4.93), then the
function p(y, 2, yo, 20;t, to) thus obtained is also a solution of Eq. (4.94), such
that

Plftnp(y,z Yo, 205t to) = 0(y — Yo, 2 — 20) (4.107)

Consequently, we can state the following proposition.

Proposition 4.2.5. The integrated Brownian motion is time-homogeneous.
That is,

(Y, 2, Yo, 205ty to) = p(y, 2, Yo, 20;t —tg) ViE>tg >0 (4.108)

Finally, in some applications, we consider as a model the Brownian mo-
tion integrated more than once. For example, the doubly integrated Brownian
motion

D(¢) := D(0) + /O t Z(s)ds = D(0) + Z(0)t + /O t /0 Y(r)drds  (4.109)

where {Y'(t),t > 0} is a Wiener process with drift coefficient 1 and diffusion
coefficient o2, is a Gaussian process for which

E[D(t)] = D(0)+ Z(0)t + /0 /OS(Y(O) + pr)dr ds
= D) + 2Ot + YO 5 + 4 (4110)

We also find that
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t5
VID(t)] = 0® = (4.111)
20
Moreover, the three-dimensional process (Y (t), Z(t), D(t)) has a multinor-
mal (namely, trinormal or three-variate normal) distribution whose vector of
means m and covariance matrix K (see p. 59) are given by

YO)+put
m = Z0)+Y(0 )t+u2 (4.112)
D(0) + Z(0) t + Y (0)& + pu&
and
1 t/2 t2/6
K=0c%|1t/2 t2/3 t3/8 (4.113)

t2/6 t3/8 t1/20

Ezample 4.2.2. In Example 4.1.1, we calculated the distribution of the sum
W (t) + W(t + s) by using the fact that the increments of the Wiener process
are independent. Since the integrated Brownian motion does not have this
property, we cannot proceed in the same way to obtain the distribution of Z :=
Z(t) + Z(t + s). However, we can assert that Z has a Gaussian distribution,
with mean (if 4 =0 and Y(0) = Z(0) =0)

E[Z}=0+0=0

and with variance (if 02 = 1)

V[Z] = V[Z(t)] + [Z(t+s +2Cov[Z(t), Z(t + 5)]

B (t+ o[t
=— 2
Gl o (e d)

443
=-?+2f2s+fs +

3
"3'
4.2.4 Brownian bridge

The processes that we studied so far in this chapter were all defined for values
of the variable ¢ in the interval [0, 00). However, an interesting process that
is based on a standard Brownian motion, {B(t),t > 0}, and that has been
the subject of many research papers in the last 20 years or so, is defined
for t € [0,1] only. Moreover, it is a conditional diffusion process, because we
suppose that B(1) = 0. Since it is as if the process thus obtained were tied at
both ends, it is sometimes called the tied Wiener process, but most often the
expression Brownian bridge is used.
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Definition 4.2.5. Let {B(t),t > 0} be a standard Brownian motion. The
conditional stochastic process {Z(t),0 <t < 1}, where

Z(t) .= B(t) | {B(1) =0} (4.114)
is called ¢ Brownian bridge.

Remark. We deduce from the properties of the Brownian motion that the
Brownian bridge is a Gaussian diffusion process (thus, it is also Markovian).

Suppose that the standard Brownian motion {B(t),t > 0} starts in fact
from B(0) = by and that B(s) = b,. Then, using the formula (which follows
from the (independent and) stationary increments of the Brownian motion)

_ fBw.B6)(0,0s)  f@y(0)fB(s)- Bty (bs — b)

sy=p.1(b) = 4.115)
fB@){B(s)=b.} (D) T 0] Tt (89) (
for 0 < t < s, we find that
- —t
B(t) | {B(0) = by, B(s) = b,} ~N (% N bo(sg t)7 t(ss )) Vie(0.)
(4.116)

Thus, when by = 0, s = 1, and b, = 0, we obtain that
B(t) | {B(0) = 0,B(1) =0} ~N(0,£(1 —t)) Yte(0,1) (4.117)
so that
E[Z{#)] =0 Vte(0,1) (4.118)
and
EZ*t) =V[Z®)] =t1—t) Yte(0,1) (4.119)

With the help of the formulas (4.116), (4.118), and (4.119), we calculate
the autocovariance function of the Brownian bridge, for 0 < ¢t < 7 < 1, as
follows:

Cz(t,7) = Cov]Z(t), Z(1)] = E[Z(t)Z(T)] — 0% 0
= E[E[Zz{t)Z(r) | Z(7)]] = E[Z(1)E[Z(t) | Z(7)]]

= E {Z(T)EZ(T)} =La-n
T T
—tl-7) f0<t<r<1 (4.120)
In general, we have

Cz(t,7) = min{t,7} —tr ift,r €(0,1) (4.121)
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We also deduce from the formula (4.116) that

EZ(t+e)—Z(t) | Z(t) =] = — (4.122)

and
E[(Z(t+e¢) - Z(t)?| Z(t) = z] = e+ o(€) (4.123)

It follows that the infinitesimal parameters of the Brownian bridge are given
by (see p. 63)

. x
m(z;t) = lim -7 =~ (4.124)

and
. ofe)
v(z;t) = hﬁ)l]. + - = 1 (4.125)

forreRand0<t<1.

Remarks. 1) The Brownian bridge thus has the same infinitesimal variance as
the standard Brownian motion. However, its infinitesimal mean depends on ¢
and tends to infinity (in absolute value if z # 0) as t increases to 1.

ii) Since m(z;t) is a function of ¢, the Brownian bridge is not a time-
homogeneous process.

As we did in the case of the Brownian motion, we can use the fact that
the Brownian bridge is a Gaussian process to give a second definition of this
process as being a Gaussian process with zero mean and whose autocovariance
function is given by the formula (4.121).

Proposition 4.2.6. Let {B(t),t > 0} be a standard Brownian motion. The
stochastic process {Z1(t),0 <t <1} defined by

Zi(¢) = B(t) — tB(1) (4.126)
s a Brownian bridge.

Proof. We can assert that {Z;(¢),0 < t < 1} is a Gaussian process. Moreover,
we calculate

E[Z(t)] = E[B(t)] - tE[B(1)]=0—-tx0=0 (4.127)
and then,

Cov[Z1(t), Z1(r)] = E[Z1(t)Z1(7)] = E[(B(t) — tB(1))(B(7) — 7B(1))]
= E[B(t)B(r)| - 7 E[B(t)B(1)] - t E[B(1)B(7)]
+ tTE[B%(1)]
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=min{¢, 7} —T Xt —tx T+t x1
= min{t, 7} —tr (4.128)

Since the mean and the autocovariance function of the Gaussian process
{Z1(t),0 < t < 1} are identical to those of the Brownian bridge, we can
conclude that it is indeed a Brownian bridge. O

Remark. In the same way, we can show that the process {Z(¢),0 <t < 1}
defined by

Zy(t)= (1 -t)B (ﬁ) for0<t<1 (4.129)

and Z3(1) = 0 is a Brownian bridge as well.

4.2.5 The Ornstein—Uhlenbeck process

As we mentioned in Section 4.1, the use of a Wiener process to model the
displacement of a particle can be criticized. Indeed, for small values of the
variable ¢, the Wiener process is not appropriate to represent the average ve-
locity of the particle in the interval [0, ¢]. Moreover, the instantaneous velocity
cannot be calculated, because the Brownian motion is nowhere differentiable.

To remedy this problem, in 1930 Uhlenbeck? and Ornstein® proposed a
model in which they supposed that it is the wvelocity of the particle that is
influenced, in part, by the shocks with the neighboring particles. The velocity
also depends on the frictional resistance of the surrounding medium. The effect
of this resistance is proportional to the velocity.

As in the case of the geometric Brownian motion, we can define the
Ornstein—Uhlenbeck (0.-U.) process from a Wiener process. Let {B(t),t > 0}
be a standard Brownian motion. We set

2,20t

U(t) = e B (U ¢ ) for t > 0 (4.130)

2¢x

where « is a positive constant. It is thus a particular case of the transformation
X(t) =g(t) B(f(t)) (4.131)

where f(t) is a nonnegative, continuous, and strictly increasing function, for
t > 0, and g(t) is a (real) continuous function. Indeed, the exponential function

2 George Eugene Uhlenbeck, 1900-1988, was born in Indonesia and died in the
United States. He was a physicist and mathematician whose family, coming from
the Netherlands, returned there when he was six years old. His main research
subject was statistical physics. He also worked on quantum mechanics and wrote
two important papers on Brownian motion.

3 Leonard Salomon Ornstein, 1880-1941, was born and died in the Netherlands.
He was a physicist who worked on quantum mechanics. He applied statistical
methods to problems in theoretical physics.
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is continuous and (0% /2a)e?®t is nonnegative and strictly increasing, because
a > 0. For any transformation of this type, the following proposition can be
shown.

Proposition 4.2.7. Under the conditions mentioned above, the stochastic
process { X (t),t > 0}, where X (t) is defined in (4.131), is a Gaussian process,
whose infinitesimal parameters are given by

m(z;t) = %(tt))w and v(z;t) = g2()f'(t) (4.132)

forzx e R andt > 0.

Remark. The process {X(t),t > 0} is Gaussian, because the transformation
of the Brownian motion is only with respect to the variable ¢ (see p. 179).
That is, we only change the time scale.

From the formulas in (4.132), we calculate

_ae—-at

2
m(z;t) = —Tar ¥ =-ox and v(x;t) = (e_“t)zg—aeQO‘tQa =0o? (4.133)

Definition 4.2.6. The stochastic process {U(t),t > 0} whose infinitesimal
parameters are given by my(u;t) = —au, for all t > 0, where a > 0, and
vy(u;t) = 02 is called an Ornstein—Uhlenbeck process.

Remarks. i) We see that the Wiener process can be considered as the particular
case of the O.-U. process obtained by taking the limit as a decreases to zero.
Conversely, if {U(t),t > 0} is an O.-U. process and if we set B(0) = 0 and

o2 \'/? 1 2at
= — — — t>0 4.134
B(t) <2at) U [204 In( =3 )J for t > ( )

then {B(t),t > 0} is a standard Brownian motion.

ii) We deduce from the definition, given in (4.130), of an O.-U. process in
terms of {B(t),t > 0} that {U(t),t > 0} is a Markovian process. It is also a
diffusion process.

ili) Note that the initial value of an O.—U. process, as defined above, is a
random variable, since

U(0) = ¢°B ("2220) =B (%) ~N (o, ;Z‘) (4.135)

We can arrange things so that U(0) = ug, a constant (see Ex. 4.2.3).

We calculate the mean and the variance of the O.-U. process from (4.130).
We have
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ElU{t) = E [e-“tB (U%Mﬂ

0 4.136
o (4.136)

Il

and

2,20t 2 ,2at 2
VIU(t)] = 20ty [B (U e ):l — e—Qatge_ = g—- fort >0 (4.137)
(67

20 20
Next, using the formula Cov[B(s), B(t)] = min{s,t}, we calculate
o220t g2e20(t+s)
Cov[U(t),U(t + s)]=e™ e~ *(t+9) Coy {B < > (T)}
— e 2atg-as? i = olem™ for s,t >0 (4.138)
2a 2a

Given that the mean of the process is a constant and that its autocovariance
function Cy(t,t + s) does not depend on £, we can assert that the O.-U.
process is a wide-sense stationary process (see p. 53). Moreover, since it is a
Gaussian process, we can state the following proposition.

Proposition 4.2.8. The Ornstein—Uhlenbeck process is a strict-sense station-
ary process.

Contrary to the Brownian motion, the increments of the O.-U. process
are not independent. Indeed, we deduce from the formula (4.138) [and from
(4.136)] that

Cov[U(t +s) — U(t),U(t) — U(0)]

=E{U{t+s)-UH)HU®) -U0)}—-0x0
= E[U(t+ s)U(t)] — E[U(t + s)U(0)] — E[U*(t)] + E[U(t)U(0)]
2
=7 (gmas _ g=alits) _ —at
— (e e 1te ) £0 (4.139)
(if s > 0) so that we can assert that the random variables U(t + s) — U(t) and
U(t) — U(0) are not independent for all s, > 0.

However, as the O.~U. process is (strict-sense) stationary, its increments
are stationary. To check this assertion, we use the fact that the O.-U. process
is Gaussian, which implies that the random variable U(t) — U(s), where 0 <
s < t, has a Gaussian distribution, with zero mean, and whose variance is
given by

VIUW) — Uls)] = VIU ()] + VIU(s)] - 2 CovlU (1), U(s)]
=2 (”2 _2_6—_a<j—_>) (4.140)

2¢ 2x

Now, this variance is identical to that of the variable U(t + 7) — U(s + 7),
which also has a Gaussian distribution with zero mean, from which we can
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conclude that the random variables U(t) — U(s) and U(t + 7) — U(s + 7) are
identically distributed for all 7 > 0.

Let us now return to the problem of modeling the displacement of a par-
ticle, for which we proposed to use a Brownian motion. If we suppose that
U(t) is the velocity of the particle, then we may write that its position X (t)
at time t is given by

+ /Ot U(s) ds (4.141)

We can therefore assert that X (t) — X (0) has a Gaussian distribution (because
the O.-U. process is Gaussian), with mean [see (4.136)]

E[X(t)-X(O)]:EUO U(s) ds} :/0 E[U(s)] ds:/o 0ds=0 (4.142)
and variance [see (4.138)]

V[X(t) - X(0)] = E[(X(t) - X(0))*] - 0

:E[/tU(s)ds/tU(T)dT]
//E[U () ds dr

//2a ~als=l ds dr

-z 0 {/0 (=) ds+/:e°‘("“3) ds} dr

2

o [* (r=t)
_ — QT o\T—
_EA {2—8 — € }dT

0.2
=5 (at—1+e™) (4.143)

From the series expansion of e~%:
1 1
e =1 _at+ §(at)2 - -é(at)?’ +... (4.144)

we may write that

o2
— % if £ is small
2

VIX({t) — X(0)] ~ , (4.145)
z—z—t if t is large
a

Thus, the variance of the integral of the O.-U. process tends to that of a
Brownian motion when t tends to infinity. However, for small values of ¢, the
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variance of the integral is proportional to the square of the time t elapsed
since the initial time instant. Now, this result is more realistic than assuming
that the variance is always proportional to ¢. Indeed, let X ~ N(0,0%). By
symmetry, we may write that

E[IX[] 2/00 T —-z*/(20%) d
= e X
0o Vamox
1 2 _$2/(20,2) e \/§
—_—T5e X = —— 4.146
Vemox X o VT (4140

Since the standard deviation of X (¢)—X(0) is proportional to ¢ for small values
of t, we deduce from (4.146) that the order of magnitude of the velocity of the
particle in a small interval of length §, from the initial time, is a constant:

VA(o/VIR)i _ o
VA Jra

whereas the order of magnitude of this velocity tends to infinity in the case
of the Brownian motion (see p. 176).

= =2

foralid >0 (4.147)

The Kolmogorov forward equation corresponding to the O.-U. process is
the following:

dp 0 a? 9%
A W M 4.148
o~ 5Pt T gz (4.148)
The solution that satisfies the initial condition
%ilftnp(% ug; t,to) = 6(u — uo) (4.149)
s
is
1 1 N
p(u, ug;t, to) = ——=exp —2—2(U — povu) (4.150)
for ug,u € R and ¢t > t3 > 0, where
2 a? 2a (t—t
pou = ug e~ ® 70 and g2 = 5(—)4—(1 — g2 (t=to)y (4.151)

That is, U(t) ! {U(to) = UQ} ~ N(,U,OU,O'(Q:)U).

We deduce from what precedes that the stochastic process defined from
a standard Brownian motion in (4.130) is actually the stationary version of
the Ornstein—Uhlenbeck process, obtained by taking the limit as ¢ tends to
infinity of the solution above. Indeed, we have

2
' = im o2, = = 4.152
tlirgo #ou =0 and tl-lfgo gou 2a (4.152)
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as in (4.136) and (4.137).

Remark. The solution (4.150) enables us to state that the O.-U. process is
time-homogeneous. However, this version of the process is not even wide-sense
stationary, since its mean depends on t.

Ezample 4.2.3. For the initial value of the O.-U. process {U(t),t > 0} to be
deterministic, we can set, when o = 1 and 0% = 2,

U(t) = up + e *B(e*) — B(1)
We then have
E[U(t)] =uo + e *E[B(e*)] — E[B(1)] = uo
and, for allt > 0,

VIU(t)] = Ve tB(e?*) — B(1)]
= e"*V[B(e™)] + V[B(1)] - 2¢™*Cov[B(e*), B(1)]
=e 2 % 41— 2t min{e*, 1}

=2-2tx1=2(1-¢7Y

4.2.6 The Bessel process

Let {By(t),t > 0}, for k = 1,...,n, be independent standard Brownian
motions. We set

X(t)=B:it)+...+Bit) vt=0 (4.153)

The random variable X (t) can be interpreted as the square of the distance
from the origin of a standard Brownian motion in n dimensions. The following
proposition can be shown.

Proposition 4.2.9. The stochastic process { X (t),t > 0} is a diffusion process
whose infinitesimal parameters are given by

m(z;t)=n and v(z;t)=4z forz>0andt>0 (4.154)

Remark. Note that the infinitesimal parameters of the process do not depend
on the variable £.

We now define the process {Y (¢),t > 0} by
Y(t) = g[X(#)] = XY2(t) fort>0 (4.155)

Since the transformation g(z) = x!/2 is strictly increasing, and its second
derivative g”(z) = —%x‘3/ 2 exists and is continuous for z € (0,00), we can
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use the formulas in (4.35) to calculate the infinitesimal parameters of the
diffusion process {Y (t),t > 0}:

B 1 4x 1
my(y) =n 2x1/2 +7 T 4x3/?

1 4y 1 n—1
O (T I A (U I L 4.156
n<2y>+ 2 < 4y3> 2y (4.156)
and
1 2
vy (y) =4z (——2:61/2) =1 (4.157)

It can be shown that this process is indeed Markovian. Moreover, we can
generalize the definition of the process {Y(¢),t > 0} by replacing n by a real
parameter o > 0.

Definition 4.2.7. The diffusion process {Y (t),t > 0} whose state space is the
interval [0,0) and whose infinitesimal mean and variance are given, respec-
tively, by

m(y;t) = %y_ and v(y;t)=1 fort>0andy >0 (4.158)

is called a Bessel* process of dimension o > 0.

Remarks. 1) The term dimension used for the parameter o comes from the
interpretation of the process when o =n € N,

il) When « = 1, the infinitesimal parameters of the process are the same
as those of the standard Brownian motion. However, we can represent it as
follows:

Y(t)=|B(t)] fort>0 (4.159)

where {B(t),t > 0} is a standard Brownian motion. It is as if the origin were
a reflecting boundary for {B(t),t > 0}.

The conditional transition density function of the Bessel process satisfies
the Kolmogorov forward equation

_ 2
o _1-a0 (p\ 10 (4.160)
ot 2 Oy \y 2 9y?
We can check that
1/y\" yE +y? Yoy
ttn=0)=={ L - I, (== 4.161
p(y7y07t7f0 O) t (y()) yexp{ 9% ( t ) ( )

4 See p. 114.
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for yg, y, and t > 0, where

vi= ;—" _1 (4.162)

and I,(-) is a modified Bessel function of the first kind (of order v), defined
by (see p. 375 of Ref. [1])

St zz k
I(z) = (2/2)" k; Eﬁ%%‘f) (4.163)

Remark. The quantity v defined in (4.162) is called the inder of the Bessel
process.

Definition 4.2.8. The diffusion process {X(t),t > 0} defined by
X(t)=Y?%(t) fort>0 (4.164)

is called a squared Bessel process of dimension o > 0. Its infinitesimal
parameters are given by ‘

m(z;t)=a and v(zt)=4z fort>0andx >0 (4.165)

Remarks. i) We deduce from the representation of the process {X(t),t > 0}
given in (4.153) that if {X;(t),t > 0} and {X»(t),t > 0} are two independent
squared Bessel processes, of dimensions a; = n; and ag = ng, respectively,
then the process {S(t),t > 0}, where

S(t) = Xi(t) + Xo(t) fort>0 (4.166)

is also a squared Bessel process, of dimension a := nj + ny. Actually, this
result is valid for all a; > 0 and a3 > 0, and not only when oy and a» are
integers.

ii) The function p(z,zg;t,te = 0) of the squared Bessel process of dimension
a is given by

p(@, To3t,to = 0) = + (iy/? exp{_"“’ +I}L, (\/x"_m> (4.167)

t \xo 2t t

for g, x, and t > 0, where v = (/2) — 1.

A diffusion process used in financial mathematics to model the variations
of interest rates, and which can be expressed in terms of a squared Bessel
process, is named the Cox—Ingersoll-Ross®- (CIR) process (see Ref. [4]).
We set

% John C. Cox and Stephen A. Ross are professors at the MIT Sloan School of
Management. Jonathan E. Ingersoll, Jr. is a professor at the Yale School of Man-
agement.
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0.2

R(t) =e %X < m

(¥ — 1)) for t >0 (4.168)

where b € R and o > 0 are constants, and {X(t),t > 0} is a squared Bessel
process of dimension a = 4a/o? (with a > 0). We find that the infinitesimal
parameters of the process {R(t),t > 0} are given by

m(r;t) =a—br and wv(r;t) =0 fort>0andr >0 (4.169)

From the formula (4.167), we find that

bt b\ ¥/2 bt o
p(T,To;t,t0=O):_E_<f_e_> eXp{_TO+T€ }Iu(1/r0re )

2k(t) \ 7o 2k(¢t) k(t)
(4.170)
for rg, r, and t > 0, where
2
o7 2a
() = — - = ——1 4.171
k(t) 4b(e 1) and v = ( )

4.3 White noise

In Section 2.4, we defined the stochastic process called white noise as being
a process (that we now denote by) {X(t),t > 0} with zero mean and whose
autocovariance function is of the form

Cx(tl,tg) = q(t1)5(t2 - tl) (4172)

where ¢(¢1) is a positive function and §(-) is the Dirac delta function (see
p. 63).

When q(t1) = 02, the function Cx (t1,t2) is the second mixed derivative of
the autocovariance function Cyy (¢1,t2) = o® min{¢y,¢>} of a Brownian motion
(without drift and) with diffusion coefficient o2. Indeed, we have

0 0 ift <ty
EE;CW(tlyt2) —_ {0_2 if tl Z tg (4173)
so that
&Cw(tl to) = 2—02u(t —t3) = 0%5(ty —ta) = d%6(ta —t1) (4.174)
6t18t2 72 81;1 1 2 1

where u(-) is the Heaviside function (see p. 11).

Definition 4.3.1. The (generalized) stochastic process {X (t),t > 0} with zero
mean and autocovariance function

Cx(t1,t2) = 0%0(t2 — 1) (4.175)

is called a Gaussian white noise (or white Gaussian noise).
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Remarks. 1) Since E[X (t)] = 0, we also have

Rx(t1,t2) = 028(ty — t1) (4.176)

The second mixed derivative Forav o at 22— Ry (t1,%2) is called the generalized mean-
square derivative of the stochastic process {Y(t),t > 0}. We say that the
process {X(t),t > 0} having the autocorrelation function 6t1 8t2 Ry (t1,t2) is
a generalized stochastic process.

i) A white noise (Gaussian or not) is such that the random variables X (t;)
and X(t2) are uncorrelated if t; # to. If the variables X (¢1) and X (¢2) are
independent, the expression strict white noise is used to designate the corre-
sponding process.

Now, we mentioned that the Brownian motion is nowhere differentiable.
Consider, however, the process {X(t),t > 0} defined (symbolically) by

X(#) = lim W(t+e€) —W(t)

4.177
el0 € ( )

where € > 0 is a constant and {W{(t),t > 0} is a Brownian motion with
coefficients 4 = 0 and 02 > 0. Assume that we can interchange the limit and
the mathematical expectation. Then

ElX(t)] =lmE [W(t ki GZ - W(t)] =1lim0 =0 (4.178)

so that

Wty +¢) — W(tl)) (W(t2 +¢€) — W(t2)>]

€ €

Cx(tl,tg) = lellrgE' [(
— hn(} ! { [W(tl + 6)W(t2 + 6)] - F [W(tl + E)W(tz)]
— EW ()W (t2 +¢€)] + E [W(t1)W(t2)] } (4.179)

Suppose first that ¢; < t3. Then, for an ¢ small enough, we will have that
t1 + € < tg. It follows that

Cx(tl,tg) = hm— { t1 -+ 6) - (tl + 6) - tl +t1} = hm——— 0=0 (4 180)
When t; = t9, we obtain

Cx(tl,tQ) = hm—{ tl +€) —tl -1 +t1}

2 0’2

—limZ e=lim = = o0 (4.181)
€l0 € el €
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We can therefore write that
CX(tl,tQ) :0’2(5(tg —tl) (4182)

Thus, we interpret a Gaussian white noise as being, in a certain way, the
derivative of a Brownian motion. From now on, we will denote the Gaussian
white noise by {dW(t),t > 0}. We also have that dW(t) = W'(t) dt. In
engineering, the notation dW(t)/dt = €(t) is often used.

Even though the Brownian motion is not differentiable, we can use the
notion of a generalized derivative, which is defined as follows.

Definition 4.3.2. Let f be a function whose derivative exists and is continu-
ous in the interval [0,t]. The generalized derivative of the function W(t),
where {W(t),t > 0} is a Brownian motion, is given by

/ F(s)W'(s) ds = fF(LYW(t) —/ W(s)f'(s) ds (4.183)
0 0

Remarks. 1) This definition of the generalized derivative of W({t) is actually a
more rigorous way of defining a Gaussian white noise {dW(t),t > 0}.

ii) For a deterministic function g, its generalized derivative is defined by

o0 o0
| g ds=- [ g1 ds (4184)
0 0
where we assume that f(t) = 0 for all t ¢ [a, b], with @ > 0 and b < oc.

The formula (4.183) leads us to the notion of a stochastic integral.

Definition 4.3.3. Let f be a function whose derivative exists and is contin-
uous in the interval [a,b], where a > 0, and let {W(t),t > 0} be a Wiener

process. We define the stochastic integral f: f(t) dW{(t) by
b b
| 10 awo = sowe) - rawa - [ weyae @)

Remarks. 1) We can also define a stochastic integral as follows:

b n
[ sy awe = lim St )Wt - Wti1)] (4.186)
a n—00 i=1
@f‘g"n{“ —t;_1310

where a =ty < ¢ < ... <t, = b is a partition of [a,b].

ii) The definition of [ : f(t) dW(t) follows from the formula (4.177) as well,
by setting
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/ £(&) dW () = lim / f(t)( “’E) Wm) dt (4.187)

Indeed, using the formula

WEt+e)-W(t) d (1 [t
. p (— W(s) ds) (4.188)

and integrating by parts, we obtain

1 t+€ b

/ " f(0) aw ) = lgg{ [f(t); W(s) dsL

- / Fo) (g tm W(s) ds) dt} (4.189)

Finally, since W(t) is a continuous function, we have (making use of
'Hospital’s® rule)

t+e t+e

1 d
= — =1 =W{(t) (4.190
lelg)l - W(s) ds = hm 8% ), W(s) ds 16%1 W(t+¢€) ) ( )

from which we retrieve the formula (4.185).

Properties. i) From the formula (4.185), we can assert that a stochastic
integral has a Gaussian distribution, because it is a linear combination of
Gaussian random variables.

if) We have

b
E / £(t) dW(t)} = FO)EW ()] - F(a)EW ()] — [/ W (t) df )J—o
(4.191)

where we assumed that we can interchange the mathematical expectation and
the integral.

iii) To calculate the variance of a stochastic integral, we can use the formula
(4.186) and the fact that the increments of the Brownian motion are indepen-
dent and stationary. We have

Zf(tz DW(ts) = W(ti-1)]| = ) i) VIV (E) — W(tr)]

M 10

o
Il
-

Pt VIW (E ~ tioa)]

% Guillaume Francois Antoine de P'Hospital, 1661-1704, was born and died in
France. He published the first textbook on differential calculus, in which the
rule that bears his name can be found.
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—Zf i) (b — 1) (4.192)

It follows (interchanging the limit and the calculation of the variance) that

b n
|4 / f(t) dW(t)} = lim Zf2(ti—1)02(ti —ti-1)
a n— oo =1
max {t; —ti-1} 10
=o? / (@) dt (4.193)

iv}) We can generalize the preceding formula as follows:

0 ifa<b<c<d

ydtifa=c<b<d
(4.194)

E / " fo) awe) / "ot dW(t)] - / "

where g is a function whose derivative exists and is continuous in the interval
e, d].

Let {X(t),t > 0} be a continuous-time and continuous-state stochastic
process whose infinitesimal parameters are m(z;t) and v(x;t). This process
can be represented in the following way (see Ref. [16], for instance):

/m[X de+/ 012X (s); 5] dB(s) (4.195)

where {B(t),t > 0} is a standard Brownian motion. It follows that X(t) is a
solution of the stochastic differential equation

dX(t) = m[X(t);t] dt + v'/2[X(t);t] dB(t) (4.196)
Under the condition X (t) = z, the equation above becomes

dX (t) = m(x;t) dt +v/?(z;t) dB(t) (4.197)
= X(t) = m(z;t) + 03(z;t) B(t) (4.198)
(with the notation X (t) = 4 X ().
We can consider stochastic differential equations in n dimensions. A useful
result is given in the following proposition.

Proposition 4.3.1. Let {X(t),t > 0} be an n-dimensional stochastic process
defined by
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dX(t) = (AX(t) + a) dt + N2 dB(t) (4.199)

where {B(t),t > 0} is an n-dimensional standard Brownian motion, A is a
square matriz of order n, a is an n-dimensional vector, and N'/2 is a positive
definite square matriz of order n. Then, given that X(to) = X, we may write
that

X(t) ~N(m(t),K(t)) fort>to (4.200)
where
m{t) := &(t) (x + /t &~ (u) a du) (4.201)
and

K(t) := &(¢) < / &7 (u)N[F~ 1 (w))’ du) &'(t) (4.202)

to
where the symbol prime denotes the transpose of the matriz, and the function
d(t) is given by

o
B(t) 1= eAlt=to) Z t‘t" (4.203)

Remarks. i) A matrix M = (m;;), ;_, , is positive definite if

n n
c'Mc = Z Z cicjmg; >0 (4.204)
i=1 j=1
for any vector ¢/ := (¢y,... , ¢, ) that is not the null vector (0,...,0).

ii) When n = 1, the formulas for the mean and the variance become
z +a(t — to) ifA=0
= 4.205
" (r &) etow S apo (209
and
N(t —to) ifA=0
K(t) = (4.206)

% (ezf“Ho) - 1) ifA£0

iii) We can generalize the proposition to the case where A = A(t), a = a(t),
and N/2 = N1/2(t). The function &(t) is then obtained by solving the matrix
differential equation

d
Z0(t) = A()P(1) (4.207)

with the initial condition $(tp) = I,, (the identity matrix of order n).
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Ezample 4.3.1. The Brownian motion {X(¢),t > 0} with drift coefficient u #
0 and diffusion coefficient ¢ (> 0) is defined by the stochastic differential
equation

dX(t) = pdt + odB(¢)

According to the second remark above, the random variable X (t), given that
X(0) = z, has a Gaussian distribution with parameters

tx@ =m(t) =+ put and agc(t) =K(t) =0’

which does correspond to the results mentioned in Subsection 4.2.2.

In the case of the Ornstein-Uhlenbeck process, {U(t),t > 0}, we have the
following stochastic differential equation:

dU(t) = ~a U(t) dt + o dB(t)

so that A = —q, a = 0, and NV/2 = 5. It follows that the random variable
Y(t) :== U(t) | {U(to) = uo} has a Gaussian distribution whose parameters
are (see p. 203)

2
My (¢) = Up e—a(t-—to) and 0)2/(7:) — _U_Qa (e—Qa(t—tu) _ 1)

Example 4.3.2. Consider now the two-dimensional diffusion process X(t) =
(Z(t),Y(t)) defined by the system of equations

dZ(t)y =Y (t) dt
dY (t) = p dt + odB(t)

That is, {Y(¢),t > 0} is a Brownian motion with drift coefficient 1 (€ R) and
diffusion coefficient o2 (> 0), and {Z(t),t > 0} is its integral. Suppose that
(Z(0),Y(0)) = (z,y). We may write that

|01 |0 12 _ |00
A—[OO]’ a—['u], and N _[OU]

Let us first calculate the function @(¢). We have
2 JO1}j01} |00
A= [0 o||00] |00

B(t) = Io + At = {1 t}

It follows that

01

so that

owe (] = e i3]
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t t
/ &~ (u) a du :/ [—uu} du = {_%th
0 o L H pt
which implies that

o< [ )2

Next, we have
00
N= (o7

froomeoran= [{[ 3 o] [ 23]} o
- [ [t ]

[ 0?33 —o%2)2
T =o?2/2 o

We then have

and

from which we calculate

K(t) = {1 t} [ o?t*/3 —02t2/2} tl 0} ___[02253/3 02t2/2]

01} |-02t2/2 o ti o%t?/2 o%t

Note that these results agree with those mentioned in the case of the three-
dimensional process (Y (), Z(t), D(t)) (see p. 196).

4.4 First-passage problems

Let Ty be the random variable that designates the time needed for a standard
Brownian motion to go from B(0) = 0 to B(t) = d # 0. Symbolically, we
write

T4 := min{t > 0: B(t) = d} (4.208)

Remark. To be more rigorous, we should write that Ty is the infimum (rather
than the minimum) of the positive values of ¢ for which B(t) = d. Indeed, in
the case of the standard Brownian motion, we can show [see Eq. (4.218)] that
the probability that the process will eventually hit the boundary at d is equal
to 1, for any d € R. However, in other cases, it is not certain that the process
will hit the boundary at d. If the stochastic process does not hit the boundary,
the set whose minimum is to be found is then empty and this minimum does
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not exist. On the other hand, the infimum of the (empty) set in question is,
by definition, equal to infinity.

Suppose first that d is a positive constant. We can obtain the distribution
of the random variable Ty by using the fact that the distribution of B(t) is
known, and by conditioning on the possible values of Ty. We have

P[B(t) > d)=P[B(t) > d | Ty <t]P[Ts < t]+ P[B(t) > d| Ty > t|P[Ty > t]
(4.209)

We deduce from the continuity of the process {B(t),t > 0} that
PB(t)>d|Ty>1t =0 (4.210)
Moreover, if Ty < t, then there exists a tg € (0,t) such that B(fg) = d. Since
B(t) | {B(tg) = d} ~ N(d,t —ty) fort >t (4.211)

we may write (by symmetry) that
1
PBi)=zd|Ty<t]l= 3 (4.212)

Finally, P[B(t) > d | Ty = t] = 1. However, as Ty is a continuous random
variable (which implies that P[T = t] = 0), we may conclude that

PlTy<t]=2 [1 - @(d/\/Z)] . where ®(z) := P[N(0,1) <a]  (4.213)

Remarks. i) The preceding formula is called the reflection principle for the
Brownian motion.

i) We also deduce from the continuity of the Wiener process that

P [Olzlai(tB(S) >d (> O)} =PIy <t]=2 {1 - @(d/\/f)] (4.214)
_8_

That is, the probability that the process takes on a value greater than or equal

to d > 0 in the interval [0, ] is the same as the probability that it reaches the

boundary at d not later than at time t.

iii) By symmetry, Ty and T, are identically distributed random variables. It
follows that

PlTy<t]=2 [1 - 45(|d|/\/f)] Vd#£0 (4.215)

iv) The density function of Ty is obtained by differentiating the function above:

||/ Vvt
d 211- ——1—6"22/2 dz
—o0 V2o

frt) = <
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_ 9o L 1 (_ _ld
VA B AR

|d| @
5 eXp \ ~ o fort>0 (4.216)

This density is a particular case of the inverse Gaussian or Wald" distribution.

Remark. The density function of a random variable X having an inverse Gaus-
sian distribution with parameters u > 0 and A > 0 is given by

VA Mz — p)?
. — A S 4.217
Fx(z;p,A) = G exp { o } V>0 ( )

The distribution of T above is thus, in fact, obtained by setting A = d? and
by taking the limit as the parameter y tends to infinity.

Note that from (4.215), we deduce that

P[Ty < o0] = lim P[Ty < 1] =21 - &(0)] =2 (1 - %) =1  (4.218)

Therefore, the standard Brownian motion is certain to eventually reach any
real value d. However, the formula (4.216) implies that

E[Ty] = vl B QP (4.219)
4= 0 Va2 S\ T2 U '
because

1 d2 1

That is, the function that we integrate behaves like ¢t~ /2

Given that

as t tends to infinity.

o0
/ ™2 dt =00 Vig>0 (4.221)
1

(]
we must conclude that the mathematical expectation of the random variable
Ty is indeed infinite.
We also deduce from the formula (4.215) that

Pld2T, < 1] = 2 [1 .y (1/\/%—2)] —2[1-o ([dl/\/f)} (4.222)

7 Abraham Wald, 1902-1950, was born in Kolozsvar, Hungary (now Cluj, in Roma-
nia), and died (in a plane crash) in India. He first worked on geometry and then
on econometrics. His main contributions were, however, to statistics, notably to
sequential analysis.
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Thus, the random variables Ty and T} := d?T} are identically distributed.

Finally, let X :=1/B?(1). Since B(1) has a Gaussian N(0, 1) distribution,
we calculate, for = > 0,

P[X <z]=P[B*(1) > 1/2]=1-P[-1/Vz < B(1) < 1/Vz ]
=1-(2e/Va)-1) =2(1-2(1/Va)) (1.223)

from which we can assert that 77 and X are also identically distributed ran-
dom variables.

Remark. The square of a standard Gaussian random variable Z has a chi-
square distribution with 1 degree of freedom, which is also a particular gamma
distribution: Z? ~ G(1/2,1/2). The random variable T} is thus the reciprocal
of a variable having a gamma distribution.

A much more general technique to obtain the distribution of a first-passage
time T for an arbitrary diffusion process consists in trying to solve the Kol-
mogorov backward equation satisfied by the density function of this random
variable, under the appropriate conditions.

Let {X(t),t > 0} be a time-homogeneous diffusion process whose infinites-
imal parameters are m(x) and v(z). Its conditional transition density function,
p(z, zo;t, o), satisfies

Op ap 1 9%p
_— S —= =90 4.224
at() + 7n($0) 8.’1) + 2/1)(:1:0) axg ( )

If to = 0, we can use the fact that the process is time-homogeneous, so that

9] ] a
atop(IE’xO’t:tO) ato (*vaﬂyt tO) 8tp(x7x0’t tO) ( )

to write that

1 b2
51}(:1;0)——1Z + m(xp)

dp
= = 4.226
oz ( )

9 _
drg Ot
Let p(t; zo) be the probability density function of
Ted (= Tea(xo)) := min{t > 0: X(t) ¢ (c,d) | X(0) =zo € [¢,d]} (4.227)
That is,
p(t;zo) dt := P[T. 4 € (t,t +dt] | X(0) = 20 € [¢,d]} (4.228)

We find that the function p(¢;zg) satisfies the partial differential equation
(4.226). Moreover, since the coefficients m(zg) and v(zg) do not depend on
t, we can take the Laplace transform of the equation (with respect to t) to
reduce it to an ordinary differential equation. Let
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L(zo; ) 3=/ e"*p(t; zo) dt (4.229)
0

where « is a real positive constant.

Remark. The Laplace transform of the density function of the continuous and
nonnegative random variable X is the moment-generating function Mx(—a)
of this random variable (see p. 19).

We can check that the function L(xg; ) satisfies the following differential
equation: .
1 %L oL

30(00) 57 +mlzo) 5l =l (4.230)

This equation is valid for ¢ < xy < d. Indeed, we have

o oo
/ e~ plt; o) i = €=l o)lo +a/ e~ p(t; zo) dt
0 at 0
=0+al=al (4.231)

because p(0;z0) = 0 if zg # c or d. Since T 4 = 0 if 29 = c or d, the boundary
conditions are

L{zo;a) = E [e7®T+¢| X(0) =z0] =1 ifzp=cord (4.232)

Once we have found the function L(zg;c), we must invert the Laplace
transform to obtain the density function of T¢ 4.

Ezample 4.4.1. Let {X(t),t > 0} be a Wiener process whose drift and dif-
fusion coefficients are u and o2, respectively. We must solve the following
differential equation:
0% 0°L oL
5527 Hamg

The general solution of this equation is given by

= ol

L(zo; @) = c1€°7(®) 4 gpe®orz(®) (4.233)

where ¢; and ¢, are constants, and

1 1
ri(a) == o (—u -V + 2a02> and rz(a):= p (—u +/ 2+ 2a02)
The solution that satisfies the conditions L(c;a) = L(d;a) =1 is

d ra{a) __ e re(a)) pzori{a) + (ec T (@) _ od ri(a) e.rorz(a)
L(zg:a) = (e e e (e e )

ec Ti{e@)+d r2(a) _ gc r2(a)+d ri(a)
(4.234)

forc<zg <d.
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Inverting the Laplace transform above is not easy. However, in this type
of problem, we must often content ourselves with explicitly calculating the
moment-generating function of the first-passage time considered.

Suppose, to simplify, that there is a single boundary, at d (which is tanta-
mount to taking ¢ = —oo) and that g = 0. Since, from Eq. (4.232), L(zo; @)
must be in the interval {0, 1], for any z¢ < d, we must discard the solution
with (o) in (4.233). Indeed, with p = 0, this solution is

—VZazo/o

ce — ] X OO as Ty — —%

We must therefore choose the constant ¢; = 0. We then have

L(zo; @) = cpe¥20m0/

and the condition L(d; ) = 1 implies that

L{zg;a) = eV2elmo-d/e vy g0 <4 (4.235)

Remark. We obtain the same result by taking the limit as ¢ decreases to —oo
in the formula (4.234) (with p = 0).

We can check that the inverse Laplace transform of the function L in Eq.
(4.235) is given by (see the inverse Gaussian distribution, p. 216)

_ (d - CL‘()) (d — .’170)2
fT,z(t)—mexp T fort >0

The density function of the random variable Ty in the general case where
peRis

_ (d - ) (d — zo — pt)?
fr.(t) = m XP Ty fort >0 (4.236)

and the function L becomes

L(zo;a) = exp {(i;_;fo_) [u — i+ 2a02)1/2] } forzg <d  (4.237)

After having obtained the moment-generating function of the random vari-
able Ty, we can calculate the probability that this variable is finite, as follows:

PlT; < ] = li% L(zg; o) (4.238)

Ezample 4.4.2. In the preceding example, with a single boundary and p = 0,
we obtain that
P[Ty < 0] = 1%1 oV2a(zo—d)/o _ 1
«
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which generalizes (in the case when d > 0) the result already mentioned
regarding the standard Brownian motion.
However, when g # 0, we deduce from the formula (4.237) that

P[Td < OO] = hmexp{(d——zxg_) [lJ' . (/*1’2 +2a02)1/2]}
al0 o

_ 1 ifu>0
T | emldmo)/o® if < 0

To obtain the moments of the random variable T, we can use the formula
(see p. 19)

n 0"
BT = (-1)" 5= L@oi a)lamo (4.239)
for n =1,2,.... Thus, in Example 4.4.1, if ¢ = —oc0 and p > 0, we calculate

[see the formula (4.237)]
_ __Q_ (d — o) 2 2y1/2
E|Ty] = £ exp{—ar [u— (u® + 2a0*) }

_2.’1:0) (—1)(’[12 + 2&0’2)_1/202

a=0

a=0

= (4.240)

Remark. We can also try to solve the ordinary differential equation satisfied
by the function

Mp,d(xo) := E[T}] forn=12,... (4.241)
namely,
1 d? d
Ev(ﬂfo)d zm" a(za) + m(zo) s d(@o) = —n mp_yq(wg)  (4.242)

under the boundary condition my, 4(d) = 0. In particular, we have

2

; (z0) d %ml a(xe) + m(mg)ioml d(zo) = -1 (4.243)

When there are two boundaries, if we wish to calculate the probability
that the process will hit the boundary at d before that at ¢, we can simply
solve the ordinary differential equation

Lotao L Epalan) + () - palin) =0 (4.244)
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where
pa(xo) := P{X (T, q(z0)) = d] (4.245)

This differential equation is obtained from Eq. (4.230) by setting o = 0.
Indeed, we may write that

p(t;xo) = pe(t; To) + palt; zo) (4.246)

where p.(t; xo) (respectively, pq(t; To)) is the density function of the random
variable T, (resp., T};) denoting the time the process takes to go from z to ¢
(resp., d) without hitting d (resp., ¢). Let

Lyi(xg; ) = /oo e~ % py(t; o) dt (4.247)
0
We have
P[X(Tc,d(xo)) = d} = P{Té(l?o) < OO] = /OOO pd(t;:L‘o) dt = Ld(:ro;O) (4.248)

Now, the function Lg(x¢; a) also satisfies Eq. (4.230).
The differential equation (4.244) is valid for ¢ < zp < d. The boundary
conditions are

pa(d) =1 and pulc) =0 (4.249)

Ezample 4.4.3. 1f {W(t),t > 0} is a Wiener process with diffusion coefficient
o2, then we must solve
o2 d?
i -0
2 dx%pd(xe)
We find at once that
Pa{To) = c170 + Co

where ¢g and ¢; are constants. The boundary conditions imply that

pd(wo)=zom forc<zg<d
Note that this formula does not depend on o2. Moreover, if ¢ = —d, then we

have that ps(0) = 1/2, which could have been predicted, by symmetry.

Uuntil now, we only considered the time a diffusion process takes to reach
a boundary or either of two boundaries. We can define these boundaries as
being absorbing. If the boundary at c is reflecting, it can be shown that the
boundary condition becomes
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0
—_ . = 4.250
a.’L'()L(xO’a) 0 ( )

Ty=cC

Finally, we can also try to calculate first-passage time distributions in two
or more dimensions. However, the problem of solving the appropriate partial
differential equation is generally very difficult.

Ezample 4.4.4. If {B(t),t > 0} is a standard Brownian motion, starting from
bo, and if {X (¢),t > 0} is its integral, we find that the Kolmogorov backward
equation satisfied by the function

P[Ty(bo, € (t,t+dt
p(t; bo, zo) := [Za(bo xoiit ( I

where
Td(bo,.’L’o) = min{t > 0: X(t) =d>0 1 B(O) = bo,X(O) =T < d}

is the following:

18% dp _dp

208 T oz, ot
The main difficulty is due to the fact that the process {X(¢),t > 0} cannot hit
the boundary X (t) = d (for the first time) with B(t) < 0. Indeed, we deduce
from the formula

X(t) = 2o + /0 B(s)ds — %X(t)=B(t)

that if B(t) takes on a negative value, then X(t) decreases. Consequently,
the process {X(t),t > 0} can attain a value d (> 0) greater than zy at time
Ta(bo, zo) only if B[T4(bg, o)} > 0, so that the function p is not continuous
on the boundary.

4.5 Exercises

Section 4.1

Remark. In the following exercises, the process {B(t),t > 0} is always a stan-
dard Brownian motion.

Question no. 1
We define

X(t)=B%t) fort>0

(a) Is the stochastic process {X(t),t > 0} a Wiener process? Justify.
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(b) Is {X(t),t > 0} (i) wide-sense stationary? (ii) mean ergodic? Justify.

Question no. 2
We consider the stochastic process {X(¢),t > 0} defined by

X(t) = B(t)+ B(t?) fort>0

(a) Calculate the mean of X (t).

(b) Calculate Cov|[X(t), X(t + 7)], for 7 > 0.

(¢) Is the stochastic process {X(t),t > 0} (i) Gaussian? (ii) stationary? (iii) a
Brownian motion? Justify.

(d) Calculate the correlation coefficient of B(t) and B(t?), for ¢ > 0.
Question no. 3

Calculate the variance of the random variable X := B(t) — 2B(7), for
0<t<r.

Question no. 4
Let X(t) := |B(t)|, for t > 0. Is the stochastic process {X(t),t > 0}
(a) Gaussian? (b) stationary? Justify.

Question no. 5
Let {X(t),t > 0} be the stochastic process defined by

X(t) = B(t+1) - B(1) fort>0

(a) Calculate the autocovariance function of the process {X(¢),t > 0}.

(b) Is the process {X(¢),t > 0} (i) Gaussian? (ii) a standard Brownian mo-
tion? (iii) stationary? (iv) mean ergodic? Justify.

Question no. 6
Calculate the variance of X := B(4) — 2B(1).

Question no. 7
Is the stochastic process {X (¢),t > 0} defined by

X(t)=-B(t) fort>0

Gaussian? Is it a Brownian motion? Justify.

Question no. 8
Let {X(t),t > 0} be a Gaussian process such that X(0) = 0, E{X (t)] = ut
if t > 0, where u # 0, and

Rx(t,t +71) =2t + p’t(t+ 1) fort,7>0

Is the stochastic process {Y (t),t > 0}, where Y (¢) := X (t) — ut, a Brownian
motion? Justify.
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Question no. 9
Is the Wiener process mean ergodic? Justify.

Question no. 10
We set

Y(t) = %BQ(t) fort>0

(a) Is the process {Y(t),t > 0} Gaussian? Justify.
(b) Calculate the mean of Y (¢).

(¢) Calculate Cov[Y'(s),Y (¢)], for 0 < s < .
Indication. If X ~ N(0,0%) and Y ~ N(0,0%), then

E[X?Y?) = E[X?|E[Y?] + 2 (E[XY))?

(d) Is {Y'(t),t > 0} a wide-sense stationary process? Justify.

Question no. 11
Consider the stochastic process {X(t),t > 0} defined by

where [t] denotes the integer part of t.
(a) Calculate the mean of X(t).

(b) Calculate Cov[X(t1), X (t)], for t5 > ¢;. Are the random variables X (t;)

and X (t2) independent? Justify.

(¢) Is the stochastic process {X(t),t > 0} (i) stationary? (ii) a Brownian

motion? Justify.

Question no. 12

At each time unit, the standard Brownian motion {B(t),t > 0} is shifted
to [B(n)], where [ | denotes the integer part. Let X, be the position at time
n, forn =0,1,2,.... Then the process {X,,n =0,1,...} is a (discrete-time)
Markov chain. Calculate (a) p; j, for 4,5 > 0 and (b) P[X; =0, X2 = 0].

Question no. 13
We define
X(t)=B(ln(t+1)) fort>0

(a) Is the stochastic process {X(t),t > 0} a Brownian motion? Justify.

(b) Calculate E[X2(t) | X(t) > 0].

Question no. 14
Let {X(t),t > 0} be the stochastic process defined by

=M V>0

X(t) :
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where € is a positive constant.

(a) Calculate Cx (t,t + s), for s,t > 0.

(b) Is the process {X(t),t > 0} (i) Gaussian? (ii) stationary? (iii) a Brownian
motion? (iv) mean ergodic? Justify.

Question no. 15

Let X, X, ... be independent and identically distributed random vari-
ables such that px, (z) = 1/2 if z = —1 or 1. We define Y5 = 0 and

Yn:ZXk forn=1,2,...
k=1

Then the stochastic process {Y,,n = 0,1,...} is a Markov chain (see p. 85).
We propose to use a standard Brownian motion, {B(t),t > 0}, to approx-

imate the stochastic process {Y,,n = 0,1,...}. Compare the exact value of

P[Ygo = 0] to P[—l < B(30) < 1]

Indication. We have that P[N(0,1) < 0.18] ~ 0.5714.

Section 4.2

Question no. 16
Let {U(t),t > 0} be an Ornstein-Uhlenbeck process defined by

U(t) = e *B(e*)

(a) What is the distribution of U(1) + U(2)?
(b) We set

V() = /Ot U(s) ds

(i) Calculate the mean and the variance of V'(¢).
(i) Is the process {V(t),t > 0} Gaussian? Justify.

Question no. 17

Suppose that {X (t),t > 0} is a Wiener process with drift coefficient M and
diffusion coefficient 02 = 1, where M is a random variable having a uniform
distribution on the interval [0,1].

(a) Calculate E[X(t)] and Cov[X(s), X (t)], for s, > 0.
(b) Is the process wide-sense stationary? Justify.
Question no. 18

Let {Y(t),t > 0} be a geometric Brownian motion.

(a) Show that the density function of the random variable Y (t) is given by
the formula (4.52).

(b) Is the process {Y(t),t > 0} stationary? Justify.
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Question no. 19

Let {X(t),t > 0} be a Wiener process with drift coefficient p > 0 and
diffusion coefficient ¢2 = 1.

(a) (i) Calculate, as explicitly as possible, E[X(t) | X(t) > 0] in terms of
Q(z) := PI|N(0,1) > z].

(ii) Calculate E[X ()X (t + s)], for s,t > 0.
(b) Let Z(0) = 0 and

Z(t)::w—l fort >0
ut

Is the stochastic process {Z(t),t > 0} a Brownian motion? Justify.

Section 4.3

Question no. 20
(a) Calculate the covariance of X and Y, where

1 1
X :=/ tdB(t) and Y :=/ t2 dB(t)
~1 -1

(b) Are the random variables X and Y independent? Justify.

Question no. 21
We define the stochastic process {Y(t),t > 0} by

Y(t) = /Ot.s dB(s) fort>0

(a) Calculate the autocovariance function of the process {Y(¢),t > 0}.

(b) Is the process {Y'(¢),t > 0} Gaussian? Justify.

(c) Let {Z(t),t > 0} be the stochastic process defined by Z(t) = Y2(¢).
Calculate its mean.

Question no. 22

Calculate the mean and the autocovariance function of the stochastic pro-
cess {Y'(¢),t > 0} defined by

t
Y(t) = eCt/ e % dW(s) fort>0
0

where ¢ is a real constant.
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Section 4.4

Question no. 23
Let {W(¢),t > 0} be a Brownian motion with infinitesimal parameters
p=0and o? (> 0). We set

Y(t) =Wt fort>0

(a) Is the stochastic process {Y (¢), > 0} a Brownian motion? Justify.
(b) Calculate Cov[Y (s),Y (t)], for 0 < s < t.
(c) Let Ty := min{t > 0: Y(t) = d > 0}. Calculate the probability density
* function of the random variable Ty.
Question no. 24

Let {Y'(t),t > 0} be the stochastic process defined in Question no. 21.
(a) Calculate the distribution of Y'(1) + Y (2).
(b) Let Tt := min{t > 0: Y (¢) = 1}. Calculate the probability density function
of the random variable T7.

Question no. 25
We consider the process {X(t),t > 1} defined by

X(t) =e Y B(e!/Y) fort >1

Suppose that B(e) = 0, so that X (1) = 0.
(a) Calculate E[X(t)] and Cov[X (1), X (¢t + s)], fort > 1,s > 0.

(b) Is the stochastic process {X(t),t > 1} (i) Gaussian? (ii) an Ornstein-
Uhlenbeck process? (iii) stationary? Justify.

(c) Let Ty :=min{t > 1: X(¢) = d > 0}. Calculate fr,(¢).

Question no. 26
Let {Z(t),0 <t <1} be a Brownian bridge. We define

¢
Y(t)z/ Z(t)ydr for0<t<1
0

(a) Calculate E[Y (¢)] and Cov[Y (¢),Y(t+ )], for 0<t<1,5>0,5+t <1,
(b) Is the stochastic process {Y(¢),0 < ¢ < 1} (i) Gaussian? (ii) stationary?
(iii) a Brownian bridge? Justify.

{c) Calculate approximately, if d > 0 is small, the probability that the process
{Y'(t),0 <t <1} will reach d in the interval (0,1).

Question no. 27
Let T, be the first-passage time to the origin for a standard Brownian
motion starting from c¢ > 0. We define S = 1/T.
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(a) Calculate the probability density function of S. What is the distribution
of the random variable S?

(b) Find a number b (in terms of the constant c) for which we have P[S < b|
= 0.5.

Question no. 28
The nonstationary Ornstein—Uhlenbeck process {X(t),t > 0} is a Gaus-
sian process such that, if o = 1 (see Subsection 4.2.5),

1-— e—2at

E[X(t)] = X(0)e™® and V[X(t)] = .

where a > 0 is a parameter. Suppose that X(0) = d > 0. We define Ty(d) =
min{t > 0: X(t) = 0}. Calculate fr,(q)(t) when o = 1/2.

Question no. 29

Let {W(t),t > 0} be a Brownian motion with drift coefficient 1 and diffu-
sion coefficient o%2. We assume that the flow of a certain river can be modeled
by the process {X(t),t > 0} defined by

X(t)=e"Otr yi>0

where k is a constant. Next, let d be a value of the flow above which the risk
of flooding is high. Suppose that X (0) = d/3. Calculate the probability that
the flow will reach the critical value d in the interval (0,1} if x > 0 and o = 1.

Question no. 30
Let {X(t),t > 0} be an Ornstein-Uhlenbeck process for which o =1 and
02 =2, and let {Y(¢),t > 0} be the process defined by

¢
Y@z/XMM
0
Finally, we set
Zt)y=X(t)+Y(@®) fort>0

(a) Calculate E[Z(t)].
(b) Calculate Cov[Z(t), Z(t + s)], for s,t > 0.
Indication. We find that Cov[X(t), X(t + s)] = e™* and

Cov[Y(),Y(t+s)) =2t —1+et—e®+e ) fors,t>0
(c) Is the stochastic process {Z(t),t > 0} stationary? Justify.

(d) Let Tg(z) := min{t > 0: Z(t) = d | Z(0) = z (< d)}. Calculate the
probability density function of Ty(z).



4.5 Exercises 229

Question no. 31

Let {X(¢),t > 0} be a Brownian motion with drift coefficient 1 and diffu-
sion coefficient o2.

(a) Suppose that 1 = 0 and that ¢? is actually a random variable V' having a
uniform distribution on the interval (0,1).

(i) Calculate E[X ()] and Cov[X(s), X (t)], for s,t > 0.

(ii) Is the stochastic process {X(t),t > 0} Gaussian and stationary? Jus-
tify.

(b) Suppose now that x> 0 and 02 = 1. Let T_y,1(zo) be the time the process
takes to attain 1 or —1, starting from zg € [-1,1].

(i) It can be shown that m_11(zg) := E[I-1,1(®o)] satisfies the ordinary
differential equation

1 d? d
- _m_ T L om -1
2 dl’ém 1,1(.1‘()) -+ ,U,dxo’fn 1’1(.’110)

Solve this differential equation, subject to the appropriate boundary condi-
tions, to obtain m_j 1(zo) explicitly.
(i) Similarly, the function p_11(xo) := P[X(T-1,1(x0)) = 1] is a solution
of
1 d? d
e EalIP -0
5 da:%p 1,1(zo) + PP 1,1(zo)

Obtain an explicit formula for p_; 1 (7).
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Poisson Processes

5.1 The Poisson process

We already mentioned the Poisson process in Chapters 2 and 3. It is a par-
ticular continuous-time Markov chain. In Chapter 4, we asserted that the
Wiener process and the Poisson process are the two most important stochas-
tic processes for applications. The Poisson process is notably used in the basic
queueing models.

The Poisson process, which will be denoted by {N(t),t > 0}, is also a pure
birth process (see Subsection 3.3.4). That is, IV(¢) designates the number of
births (or of events, in general) that occurred from 0 up to time ¢. A process
of this type is called a counting process.

Definition 5.1.1. Let N(t) be the number of events that occurred in the inter-
val [0,t]. The stochastic process {N(t),t > 0} is called a counting process.

Counting processes have the following properties, which are deduced di-
rectly from their definition.

Properties. i) N(¢) is a random variable whose possible values are 0,1,....

it) The function N () is nondecreasing: N(t2) — N(t1) > 0if t3 > ¢; > 0.
Moreover, N{ts) — N(t1) is the number of events that occurred in the interval
(t17t2]~

Definition 5.1.2. A Poisson process with rate A\ (> 0) is a counting pro-
cess {N(t),t > 0} having independent increments (see p. 50), for which
N(0) =0 and

N(t+1t) - N{(t) ~Poi(At) V71,t>0 (5.1)
Remarks. We deduce from the preceding formula that a Poisson process also

has stationary increments (see p. 50), because the distribution of N(7 +t) —
N(7) does not depend on 7. Moreover, by taking 7 = 0, we may write that
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N({#)=NO+1t) - N(0) ~ Poi(At) Vt=>0 (5.2)

ii) If we specify in the definition that {N(t),t > 0} is a process with indepen-
dent and stationary increments, then we may replace the formula (5.1) by the
following conditions:

PIN(6) = 1] = A6 + o(d) (5.3)
PIN(6) = 0] = 1 — A8 + o() (5.4)

where 0(d) is such that (see p. 125)
lim =~ =0 (5.5)

Thus, the probability that there will be exactly one event in an interval of
length § must be proportional to the length of the interval plus a term that is
negligible if § is sufficiently small. Furthermore, we have

PIN(8) > 2 =1-{P[N() =0] + P[N(§) = 1]} = o(8)  (5.6)

Therefore, it is not impossible that there will be two or more events between
an arbitrary to and ¢o + 6. However, it is very unlikely when 4 is small.

It is not difficult to show that if N(§) ~ Poi()\d), then the conditions (5.3)
and (5.4) are satisfied. We have

P[Poi(M) = 0] =e M =1- A5+ (—A;,)—? +...=1=X+0() (5.7)

and
P[Poi(\6) = 1] = e~ = Ad[1 — AJ + 0(0)] = Ad + o(d) (5.8)

As will be seen in Section 5.2, in the more general case where A = A(t), it can
also be shown that if the conditions (5.3) and (5.4) are satisfied (and if the
increments of {N(¢),¢t > 0} are stationary), then the formula (5.1) is valid.
Consequently, we have two ways of determining whether a given stochastic
process is a Poisson process.

Since the random variable N(t) has a Poisson distribution with parameter
At, for all t > 0, we have

E[N(t)] = Xt (5.9)
E[N%(t)] = VIN(@t)] + (E[N®)])? = At + A% (5.10)

As we did in the case of the Wiener process, we use the fact that the incre-
ments of the Poisson process are independent (and stationary) to calculate its
autocorrelation function. We may write, with the help of the formula (5.10),
that
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Ry(t,t +8):=E[N(t)N(t + s)] = E[N(t){N(t + 5) — N(t)}] + E[N?(t)]

"W EIN®EN(E + s) — N(t)] + E[N?(8)]
= AAs + (At + A2t2) = N2(t + ) + At (5.11)
It follows that
Cn(t,t+s) = Ry(t,t + s) — At At + 8)] = Mt (5.12)

For arbitrary values of t; and t,, the autocovariance function of the Poisson
process with rate A > 0 is given by

ON(tl,t2) = /\min{tl,tQ} (5.13)

Remarks. i) Note that the formula above is similar to that obtained for the
Wiener process (see p. 178). Actually, the stochastic process {N*(¢),t > 0}
defined by

N*(t) = N(t) =Xt fort>0 (5.14)

has zero mean and an autocovariance function identical to that of a Wiener
process with diffusion coefficient o2 = A. We can also assert that the Poisson
process, {N(t),t > 0}, and the Brownian motion with drift, {X(¢),t > 0},
have the same mean and the same autocovariance function if u = 0? = A.
Moreover, by the central limit theorem, we may write that

Poi{At) = N(At, At) (5.15)

if At is sufficiently large.

i1) Since the mean of the Poisson process depends on the variable ¢, this process
is not even wide-sense stationary (see p. 53), even though its increments are
stationary. Furthermore, its autocovariance function depends on ty and on ta,
and not only on |t2 — #4].

Ezample 5.1.1. Suppose that the failures of a certain machine occur according
to a Poisson process with rate A = 2 per week and that exactly two failures
occurred in the interval [0, 1]. Let ¢y (> 3) be an arbitrary value of .

(a) What is the probability that, at time ¢, (at least) two weeks have elapsed
since (i) the last failure occurred? (ii) the penultimate failure occurred?
(b) What is the probability that there will be no failures during the two days

beginning with ¢y if exactly one failure occurred (in all) over the last two
weeks?

Solution. In order to solve a problem on the Poisson process, we must first
determine the value of the parameter of the Poisson distribution for each
question asked. Let N(¢) be the number of failures in the interval [0,t], where
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t is measured in weeks. Since the average arrival rate of the failures is equal
to two per week, we have
N{(t) ~ Poi(2t)

(a) (i) In this question, we are interested in the number of failures during a
two-week interval. As the Poisson process has stationary increments, we can
calculate the probability asked for by considering the random variable N(2) ~
Poi(4). We seek

P[N(2) = 0] = e~* ~0.0183 (5.16)

(ii) Two weeks or more have elapsed since the penultimate failure if and
only if the number of failures in the interval [to — 2, o] is either 0 or 1. There-
fore, we seek

PIN(2) < 1] = e™*(1 +4) ~ 0.0916

(b) Since the Poisson process has independent increments, the fact that there
has been exactly one failure over the last two weeks does not matter. We are
interested in the value of

N (to +2/7) — N(to) £ N(2/7) ~ Poi(4/7)

We calculate
P[N(2/7) = 0] = ™7 ~ 0.5647

Remarks. i) We could have written instead that A = 2/7 per day, and then,
in (b), we would have had that N(2) ~ Poi(4/7).

ii) In this problem, we assume that the rate of the Poisson process is the
same for every day of the week. In practice, this rate is probably different on
Sundays than on Mondays, for instance. It also probably varies at night from
its value during the day. If we want to make the problem more realistic, we
must use a parameter X that is not a constant, but rather a function of ¢,
which will be done in Section 5.2.

Proposition 5.1.1. Let {N;(t),t > 0} and {Na(t),t > 0} be two independent
Poisson processes, with rates A\ and Ag, respectively. The process {N(t),t > 0}
defined by

N(t) = Ny(t) + Na(t) V>0 (5.17)
is a Poisson process with rate A := A1 + Az.
Proof. First, we have
N(0) := N1(0) + No(0) =0+0=0 (5.18)

as required.
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{Nz(t),t > 0} are independent, we can check that so are those of the pro-
cess {N(t),t > 0}. We simply have to write that

N(te) = N(tp—1) = [N1(te) — Ni(tk-1)] + [No(te) — No(tr—1)]  (5.19)

Finally, the sum of independent Poisson random variables, with parameters
o and ay, also has a Poisson distribution, with parameter o := a3 + aa.
Indeed, if X; ~ Poi(c), then its moment-generating function is given by (see
Ex. 1.2.8)

Next, given that the increments of the processes {N;(t),t > 0} and

Mx,(t) = e * exp {e'o;} (5.20)

i

It follows that
Mx, i x,(t) nd- Mx, () Mx, (t) = e~ (etes) exp {et (o + 042)} (5.21)
Thus, we may write that

N(r+1) = N(r) = [Ni(7 +t) = Ni(1)] + [No(7 + 1) — Na(7)]
~Poi((A+X)t) Vrt>0 O (5.22)

The preceding proposition can, of course, be generalized to the case when
we add j independent Poisson processes, for 7 = 2,3,... . Conversely, we can
decompose a Poisson process {N(t),t > 0} with rate A into j independent
Poisson processes with rates A\; (1 = 1,2,...,7), where Ay + ... + A; = A,
as follows: suppose that each event that occurs is classified, independently
from the other events, of type 7 with probability p;, for i = 1,...,J, where
p1+ ...+ p; = 1. Let Ni(t) be the number of type i events in the interval
[0,t]. We have the following proposition.

Proposition 5.1.2. The stochastic processes {N;(t),t > 0} deﬁned above are
independent Poisson processes, with rates \; := )xp,, fori=1,.

Proof. Since N(t) = 3°7_, Ny(t), we may write that
P[Nl(t) =MN1ye.. ,Nj(t) :nj]
=2 _PNi(t) = ..., Nj(t) = g | N(t) = K] P[N(t) = k]

:P[Nl(t)znl,...,Nj(t):nj |N(t):n1+...+nj]
X PIN(t)=n1+ ... +ny] (5.23)

Let n:=n; + ...+ n;. The conditional probability above is given by

P[Ni(t) = na,... ,Nj(t) =n; | N(t) = n] = nllx .HP (5.24)
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This is an application of the multinomial distribution (see p. 4), which gener-
alizes the binomial distribution. It follows that

PINy(t) = na,... , Ny(t) = nj) = (WX Xn;H ) S

j 7
-1 it QPit)™ (5.25)
ni!
i=1
from which we find that
P[Ni(t) =n] = e”APitQ\—g:;—?-—i fori=1,...,j (5.26)
i.
and
J
P[Ni(t) = na,... ,Nj(t) = nj] = [[ P [N:(2) = n] (5.27)
i=1

Therefore, we can assert that the random variables V;(t) have Poisson distri-
butions with parameters Ap;t, for i = 1,... , 7, and are independent.

Now, given that {N(t),t > 0} has independent and stationary increments,
the processes {N;(t),t > 0} have independent and stationary increments V 4
as well. It follows that N;(t +t) — N;(7) ~ Poi(Ap;t), for i =1,... ,7.

Finally, since N(0) = 0, we have that N1(0) = ... = N;(0) = 0. Hence,
we may conclude that the processes {N;(t),t > 0} satisfy all the conditions
in Definition 5.1.2 and are independent. O

Remarks. 1) We can use the other way of characterizing a Poisson process,
namely the one when we calculate the probability of the number of events in
an interval of length . We have

P[Ny(8) = 1] = P[Ny(6) = 1| N(é) = 1] P[N() = 1]
+P[N;(8) =1| N(8) > 1] P[N(d) > 1]
= ™06 + o(8) = S + 0(8)] + 0(6)
= Apid + o(9)

Moreover, we may write that
P[N;(8) =0] =1 — Ap;é + o(d) (5.28)
because N;(é) < N(9), for all i, which implies that
P[Ni(6) > 2] < P[N(8) =z 2] = 0(9) (5.29)

We could complete the proof and show that the processes {N; (t) t > 0} are
indeed independent Poisson processes, with rates Ap;, for i =1,...,7.
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Fig. 5.1. Example of a trajectory of a Poisson process.

ii) The fact than an arbitrary event is classified of type ¢ must not depend on
the time at which this event occurred. We will return to this case further on
in this section.

Since a Poisson process is a particular continuous-time Markov chain, we
can assert that the time 7; that the process spends in state ¢ € {0,1,...}
has an ezponential distribution with parameter v; > 0 (see p. 121) and that
the random variables 7y, 7(, ... are independent (by the Markov property).
Furthermore, because the Poisson process has independent and stationary in-
crements, the process starts anew, from a probabilistic point of view, from
any time instant. It follows that the 7’s, for i = 0,1,..., are identically dis-
tributed. All that remains to do is thus to find the common parameter of the
random variables ;. We have

Py > t] = P|N(t) = 0] = P[Poi(\t) = 0] = e~ (5.30)
=  f(t)= % (1—e™™M)=Xe™™ fort>0 (5.31)

That is, 79 ~ Exp(A). Therefore, we can state the following proposition.

Proposition 5.1.3. Let {N(¢t),t > 0} be a Poisson process with rate A, and
let 7; be the time that the process spends in state i, for i = 0,1,.... The
random variables 1o, 71, . .. are independent and 7; has an exponential Exp(\)
distribution, for all 1.

Notation. We designate by Ty, T5, ... the arrival times of the events of the
Poisson process {IN(t),t > 0} (see Fig. 5.1).

Corollary 5.1.1. In a Poisson process with rate X, the time needed to obtain
a total of n events, from any time instant, has a gamma distribution with
parameters o = n and A.
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Proof. The arrival time T, of the nth event, from the initial time 0, can be
represented as follows (because {N(t),t > 0} is a continuous-time stochastic
process):

n—1
T.=)» 7 forn=12,... (5.32)

i=0
Since the 7;’s are independent random variables, all of which having an ex-
ponential distribution with parameter A, we can indeed assert that T, ~

G(a = n, ) (see Prop. 3.3.6). Moreover, we deduce from the fact that the
Poisson process has independent and stationary increments that

PlTnik <t -+t | N(t) = k] = P[T,, <t] forallk=0,1,... (5.33)

That is, if we know that at a given time t; there have been exactly £ events
since the initial time, then the time needed for n additional events to occur,
from t;, has the same distribution as T,,.

The preceding results and the following relation:
Nt)>n <<= TT,<t (5.34)

provide us with yet another way of defining a Poisson process. This alternative
definition may be easier to check in some cases.

Proposition 5.1.4. Let X; ~ Exp()\), for i = 1,2,..., be independent ran-
dom variables, and let Ty := 0 and

To:=)» Xi forn=12,... (5.35)
i=1
We set
N(t) = max{n >0: T, <t} (5.36)

Then, {N(t),t > 0} is a Poisson process with rate \.
Remarks. i) Since P[T; > 0] = 1, we indeed have
NO0)=max{n>0:T,<0} =0 (5.37)
ii) We also have
Nit)y=n < {T,<t}nN{Tht1 >t} (5.38)

from which we obtain the definition of N(¢) in terms of T, above.

ili) To calculate the probability of the event {N(t) = n}, it suffices to notice
that
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PIN(t) = n] = P[N(t) > n] - P[N(t) 2 n+1] = P[T, < t] = P[Tuyr <1]
(5.39)

and to use the generalization of the formula (3.173) to the case when Y has
a G(n, A) distribution:

PlY <y]=1-P[W <n-1]=P[W >n|, where W ~ Poi(Ay) (5.40)
We indeed obtain that

P[N(t) =n] = P[T,, < t] = P[Tpq1 < ] (5.41)
= P[Poi(At) > n] — P[Poi(At) > n + 1] = P[Poi(At) = n]

iv) Let
T: :=min{t > 0: N(t) > d (> 0)} (5.42)

Ifd € {1,2,...}, then we deduce from the relation (5.34) that T;; ~ G(d, }).
When d ¢ {1,2,...}, we only have to replace d by [d] +1, that is, the smallest
integer larger than d. Note that, since lim;_.o N(t) = 00, we may write that
P[T} < o] = 1, for any real number d € (0, c0).

A more difficult problem consists in finding the distribution of the random
variable
T7 4 :=min{t > 0: N(t) > ct +d} (5.43)

C

where ¢ > 0 and d > 0.

Ezample 5.1.2. Suppose that the random variables X; have a uniform distri-
bution on the interval (0, 1], rather than an exponential distribution, in the
preceding proposition. To obtain a Poisson process by proceeding as above, it
suffices to define

Y;-:—%lnX,- fori=1,2,...

Indeed, we then have, for y > 0:
PY;<y]l=PlhX;> M| =P[X; >e M =1—eM
so that
fri(y) =Ae™ fory >0

Thus, the stochastic process {N(t),t > 0} defined by N(t) = 0, for t < Y3,
and

N(t)zmax{nZI:ZYigt} fort > Y; (5.44)

i=1

is a Poisson process with rate .
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Remark. If we define Yy = 0, then we may write that

N(t)=max{n20:i¥}§t} Yt>0 (5.45)

1=0

Proposition 5.1.5. Let {N(t),t > 0} be a Poisson process with rate . We
have that Ty | {N(t) = 1} ~ U(0,t], where Ty is the arrival time of the first
event of the process.

Proof. For 0 < s <t, we have

PIT <s|Ni=1 = OEsNO =]

P[N(t) =1]
_ PI[N(s) =1,N(t) — N(s) = 0]
B PIN(t) = 1]
ind. (/\se—)‘s)e_’\(t_s) s
- Me—At Tt .

Remarks. i) The result actually follows from the fact that the increments of
the Poisson process are independent and stationary. This indeed implies that
the probability that an event occurs in an arbitrary interval must depend only
on the length of this interval.

ii) More generally, if T* denotes the arrival time of the only event in the
interval (¢1,to], where 0 < #; < t5, then T* is uniformly distributed on this
interval.

iii) The random variable Ty | {N(t) = 1} is different from Ty := T3 | {T1 < t}.
The variable T} has a truncated exponential distribution:
P[Ty<s] 1-—e™

P[Tl*SS]:P[TlSs]Tlgt]:P[T“<‘t]=1 ps for0<s<t
< —
(5.46)

Note that the occurrence of the event {N(t) = 1} implies the occurrence of
{Ty < t}. However, {T1 < t} = {N(t) > 1}. On the other hand, we may
write that

L{NO)=1}=T |{Th <t, T2 >t} (5.47)

We would like to generalize the preceding proposition by calculating the
distribution of (13,...,T,), given that exactly n events occurred in the in-
terval (0,t]. Let us first consider the case when n = 2. Let 0 < t; < tp < t.
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To obtain the conditional distribution function of the random vector (T1,T3),
given that N(f) = 2, we begin by calculating
P[Ti < t1,Tz < tg, N(t) = 2]
= P[N(t1) = 1, N(ta) — N(t1) = 1,N(t) — N(t2) = 0]
+P[N(t1) =2,N(t) = N(t1) = 0]

At1)?
— (/\tle—/\tlA(tQ _ tl)e-—)\(tz—t1)e—)\(t—t2)> + << 2:;) e—At1e—/\(t—t1)>
2
= (/\2t1(t2 —t1) + —————()\;) ) e (5.48)

where we used the fact that the increments of the process {N(t),t > 0} are
independent and stationary, from which we find that

P[Ty < t1,Ty < tg, N(t) = 2]
PIN(t) = 2]
(A%t — t1) + 2(At1)%) e
T(At)2e— ¢
C 2t4(ty —ty) + T

PIT: <t;, Ty <ty | N(t) =2] =

% (5.49)
so that
9% (21(ta—t;) t2
2) = - )
I mNe(ta, t2 | 2) 51,01, { 2 T
2 2
Zt—2+0:;2- for0<t; <ty <t (550)
Remark. From the preceding formula, we calculate
t
2 2(t —ty)
fT1|N(t)(t1 f 2) = [ f_2 dte = —-tz— for0<t; <t (551)
1

Note that the distribution of Ty | {N(¢) = 2} is not uniform on the interval
(0,t], contrary to that of Ty | {N(¢) = 1}. We also have

) 2t
fTQ‘N(t)(t2 l 2) = / t—z dt; = =z for0 <ty <t (5.52)
0
Finally, we may write that
fry v (B2 | 2) 2/t?
to | t1,2) = 21 -
Frmave D) = G TD 2
1
= for 0 <t; <t <t (5.53)

t—1t1
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That is, Tp | {Th = t1,N(t) = 2} ~ U(t4,t], from which we deduce that
(T — T1) [ {T1 = t1, N(t) = 2} ~ U(0,¢ — t4].

To obtain the formula in the general case, we can consider all the possible
values of the random variables N(t1), N(t2) — N(t1), ..., N(tn) — N(ta-1),
given that T; <t,T> <tog,..., T, <t,, N(t) = n. The total number of ways
to place the n events in the intervals (0,#], (t1,t2], ..., (tn—1,ts] is given
by the multinomial coefficients (see p. 4). Moreover, N(t;) must be greater
than or equal to 1, N(t3) must be greater than or equal to 2, etc. However,
it suffices to notice that the only nonzero term, after having differentiated
the conditional distribution function with respect to each of the variables
t1,... ,tn, will be the one for which the event

F={N(t;) =1} N {N(tz) = N(t;) = 1} 1 ... 0 {N(tn) = N(tn_1) = 1}
(5.54)

occurs. Let
G={N(t;) > 1} n{N(t2) = 2} n...N{N(t,) > n} (5.55)

We have
PTy <t1,Ty <tg,... ,Tp <tn, N(t) = 1]

— PI[FN{N(t) =n}] + P[GN {N(t) =n}]
= P[FN{N(t) — N(t,) = 0}] + P[G N {N(t) = n}]

n
= Are™ x T Mty — tyog)e™MEmtemn) x g A Emtn)
k=2
+P[GN{N(t) = n}]
n

= A"tye ™ [ [ (t — te-1) + P[G N {N(t) = n}] (5.56)
k=2

It follows that

P[Tl <t1,T5<ts,..., T, <t, IN(?‘) =’Il]
Py £, Ty <tg,... , T < tn, N(t) = 1]
= PING) =1
_ )\ntle_/\t H:=2(tk —tr—1

(At)re—At /nl

) 4 PIG | N(t) = n] (5.57)

Since at least one t; is not present in the term P[G | N(t) = n], we may write
that

I Do TN (1 t2, - 0 | )
_ o b 1o (b — tr—1)
8t18t2 v 8tn tn/’ﬂ'
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n!
= for0<t;<ta<...<t, <t (5.58)

We have proved the following proposition.

Proposition 5.1.6. Let {N(t),t > 0} be a Poisson process with rate . Given
that N(t) = n, the n arrival times of the events, T, ..., Ty, have the joint
probability density function given by the formula (5.58).

Remarks. 1) Another (intuitive) way of obtaining the joint density function of
the random vector (T1,...,T,), given that N(t) = n, is to use the fact that,
for an arbitrary event that occurred in the interval (0,t], the arrival time of
this event has a uniform distribution on this interval. We can consider the n
arrival times of the events as being the values taken by n independent U(0, t]
random variables U; placed in increasing order (since Ty < Tz < ... < Tp).
There are n! ways of putting the variables Ui, ..., U, in increasing order.
Moreover, by independence, we may write, for 0 < t; <ty < ... < t, < ¢,
that

n n

1 1
fU1,..~-Un(t1)"' 7tn) :HfUi(ti) :HE = —t—": (5'59)
t=1 =1
Thus, we retrieve the formula (5.58):
n!
I Tain@e s tn |0y =nlfu v (. ) = ™ (5.60)
fo<ti<to<...<t, <t
ii} When we place some random variables X, ..., X, in increasing order,
we generally use the notation X(yy,..., X(n), where X(; < Xy if ¢ <j. In
the continuous case, we always have that X(;y < X(;) if i < j. The variables
placed in increasing order are called the order statistics of Xq,...,Xn. We

have that X(;) = min{Xy,... ,X,} and X(,) = max{Xy,... , X}

Let us now return to the problem of decomposing the events of a Poisson
process, {N(t),t > 0}, into two or more types.

Proposition 5.1.7. Suppose that an event of a Poisson process with rate A,
{N(t),t > 0}, that occurs at time s is classified, independently from the other
events, of type i with probability p;(s), wherei =1,...,j and > 1_, pi(s) = 1.
Let N;(t) be the number of type i events in the interval [0,t]. The N;(t)’s are
independent random variables having Poisson distributions with parameters

Ai(t) = )\/Ot pi(s)ds fori=1,2,...,] (5.61)
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Proof. We know that the arrival time of an arbitrary event that occurred in
the interval (0,¢] has a uniform distribution on this interval. Consequently, we
may write that the probability p; that this event is of type ¢ is given by

t
Di :/ pl(s)% ds fOI‘ 1= 1,27 s 9j (5‘62)
0

Proceeding as in the proof of Proposition 5.1.2, we find that the random
variable N;(t) has a Poisson distribution with parameter

t
Ait) = Apit = )\/ pi(s)ds fori=1,2,...,7 (5.63)
0

and that the variables N;(t), Na(t), ..., N;(t) are independent. O

Remark. The random variables N;(t) have Poisson distributions. However,
the stochastic processes {N;(t),t > 0} are not Poisson processes, unless the
functions p;(s) do not depend on s, for all i.

Ezample 5.1.3. Customers arriving at a car dealer (open from 9 a.m. to 9 p.m.)
can be classified in two categories: those who intend to buy a car (type I) and
those who are just looking at the cars or want to ask some information (type
I1). Suppose that

1/2 from 9 a.m. to 6 p.m.

P{Customer is of type I] = {1/4 from 6 p.m. to 9 p.m.

independently from one customer to another and that the arrivals constitute
a Poisson process with rate X\ per day.

(a) Calculate the variance of the number of type I customers arriving in one
day if A = 50.
(b) Suppose that the average profit per car sold is equal to $1000 and that

A = 10. What is the average profit for the dealer from 9 a.m. to 6 p.m. on a
given day, knowing that at least two cars were sold during this time period?

Solution. (a) Let Ny(t) be the number of type I customers in the interval [0, t],
where t is in (opening) hours. We can write that

12

21 18 4 21 4
/ pI(s)ds:/ —ds+/ - ds=21/4
9 9 2 18 4
We seek V[N;(12)] = 21.875.

(b) Let Ny(t) be the number of sales in ¢ days, from 9 a.m. to 6 p.m. The
process {N(t),t > 0} is a Poisson process with rate

Nr(12) ~ Poi (§9 /921 p1(s) ds) = P0i(21.875)

because
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9 1

We are looking for 1000E[N;y(1) | N1(1) > 2] := 1000x. We have
It follows that

3.75=1-3.75¢375 4 ¢ [1 —e3T(1+3.75))

We find that £ ~ 4.12231, so that the average profit is given by (approxi-
mately) $4122.31.

Proposition 5.1.8. Let {Ny(t),t > 0} and {N2(t),t > 0} be independent
Poisson processes, with rates Ay and )y, respectively. We define the event
Frin, = n1 events of the process {N1(t),t > 0} occur before ny events of the
process {Ny(t),t > 0} have occurred. We have

P[Fp, n,) = PIX > nq1], where X ~ B(n =n1+ny—1,p:= Al)j:)\z)
(5.64)

That is,

ni+nz—1 i nit+nz—1—14
ny+ng—1 M A2
P|F, =
Frmal = 2 ( i )<)\1 +)\2> (A1+)\2>

i=n1
(5.65)

Proof. Let N(t) := Ny(t)+ N2(t), and let E; be the random experiment that
consists in observing whether the jth event of the process {N(t),t > 0} is an
event of the process {N1(t),t > 0} or not. Given that the Poisson process has
independent and stationary increments, the E}’s are Bernoulli trials, that is,
independent trials for which the probability that the jth trial is a success is
the same for all j. Then the random variable X that counts the number of
successes in 7 trials has, by definition, a binomial distribution with parameters
n and (see Prop. 3.3.4)

AL
=Pl < T = ——— 5.66
p [Ty 9,1] SV ( )
where T ; ~ Exp(A1) and Ty ; ~ Exp()2) are independent random variables.
Since Fy,, n, occurs if and only if there are at least ny events of the process
{Ni(t),t > 0} among the first n; +ny — 1 events of the process {N(¢),t > 0},
we obtain the formula (5.65). O
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<t < 1} be the stochastic process defined from

Ezample 5.1.4. Let {X(t),0
),t > 0} with rate A as follows:

a Poisson process {N(t
X({t)=N({t)—tN(1) for0<t<1

Note that, like the Brownian bridge (see p. 196), this process is such that
X(0) = X(1) = 0. We calculate

EX(t)] = E[N(t) —tN(1)] = E[N(t)] - tE[N(1)] =Xt —t(A-1) =0
for all ¢t € [0,1]. It follows that if 0 < t; <1, for i = 1,2, then

Cx(t1,t2) = E[X(t1)X(t2)] — 0°
= E{[N(t1) — t:N(U)] [N(t2) — t2N(1)]}
= E[N(t))N(t)] - 1 E [N(1)N(ty)] — t2E [N(£1)N(1)]
+ tthE[Nz(l)l
= Mtita + Amin{ts, t2} — t; (N2 + At2) — b2 (A% + Aty)
+ tita (A2 +X)
= Amin{t;, ta} — M1ty

where we used the formula
RN(tl, t2) = CN(tl, tg) + E[N(tl)]E[N(tQ)] = A min{tl, tz} + /\2t1t2

We can generalize the process above by defining {X(t),0 <t < ¢} by
X(t) = N(t) - EN(C) for0<t<c

where ¢ is a positive constant.

Ezample 5.1.5. We know that the Poisson process is not wide-sense stationary
(see p. 232). On the other hand, its increments are stationary. Consider the
process {X(t),t > 0} defined by

X(t)=N({t+c)—N(t) fort>0
where ¢ is a positive constant and {N(t),¢ > 0} is a Poisson process with rate
A. Note that X(0) = N(c) ~ Poi(Ac). Thus, the initial value of the process is
random. We have

N(t+c)—N(t) ~Poi(Ae) => E[X({t)]=Xc foralt>0

Next, by using the formula for Ry(t1,%2) in the preceding example, we
calculate (for s,t > 0)

Rx(t,t+s8):=E[{N{t+c)—NOHN(Et+s+c)~ N(t+s)}]
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EINt+c)N({t+s+c)]—EN({t+c)N(t+s)]

— E[N({t)N(t +s+c)]+ E[N(t)N(t +s)]

AM(t+¢)—t —min{c, s} ~t +1]

X[t +e)(t+s+c)— (t+ )t +5) —t{t+5+¢) +t(t+ )]
= X(c—min{c, s}) + %2

It follows that

Cx(t,t+s) = Rx(t,t + s) — E[X(t)|E[X(t + s)]
= A(c— min{c, s}) + A2c? — (A¢)?

' 0 ife<s
= A(c~min{c, s}) = {/\(0—8) ife>s

We can therefore write that Cx(t,t + s) = Cx(s). Thus, the stochastic
process {X(t),t > 0} is wide-sense stationary (because E[X ()] = Ac), which
actually follows from the stationary increments of the Poisson process. More-
over, the fact that the autocovariance function Cx(s) is equal to zero, for
¢ < s, is a consequence of the independent increments of {N(¢),t > 0}.

i

Ezample 5.1.6. We suppose that the number N(t) of visitors of a certain Web
site in the interval [0,¢] is such that {N(¢),t > 0} is a Poisson process with
rate A per hour. Calculate the probability that there have been more visitors
from 8 a.m. to 9 a.m. than from 9 a.m. to 10 a.m., given that there have been
10 visitors from 8 a.m. to 10 a.m.

Solution. Let Ny (respectively, Ny) be the number of visitors from 8 a.m.
to 9 a.m. (resp., from 9 a.m. to 10 a.m.). We can assert that the random
variables N1 ~ Poi(5) and Na ~ Poi(5) are independent. Furthermore, we
have N; | {N; + N2 = 10} ~ B(n = 10,p = 1/2), for 1 = 1,2. We seek the
probability = := P[N; > N | Ni + Na = 10]. By symmetry, we can write that
10

=.’I}+P[N1:N21N1+N2=10]+£L‘=2£+(5

> (1/2)'° ~ 2z 4+ 0.2461
Then z ~ 0.3770.

Ezample 5.1.7. We define M(t) = N(t) — (t2/2), for ¢
t > 0} is a Poisson process with rate A. Calculate Pl
S1 :==min{t > 0: M(¢t) > 1}.

Solution. The increments of the Poisson process being independent and sta-
tionary, we can write that

Pl1 <8 <72
P[N(1) =0,N(V2) - N(1) > 2] + P[N(1) = 1, N(v2) - N(1) > 1]
=e [1 — e~ (V2= (1 + (V2 - l)AH +Ae™? [1 - e_(ﬁ_l))‘]

0, where {N(t),

> 0,
< 81 < V2], where

i
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Fig. 5.2. Example of a trajectory of a telegraph signal.

5.1.1 The telegraph signal

As we did with the Brownian motion and in Examples 5.1.4 and 5.1.5, we can
define stochastic processes from a Poisson process. An interesting particular
transformation of the Poisson process is the telegraph signal {X(t),t > 0},
defined as follows:

Xo=(00={ 1GN0TEs T e

An example of a trajectory of a telegraph signal is shown in Fig. 5.2.

Remark. Note that X(0) = 1, because N(0) = 0. Thus, the initial value of the
process is deterministic. To make the starting point of the process random,
we can simply multiply X (¢) by a random variable Z that is independent of
X(t), for all t, and that takes on the value 1 or —1 with probability 1/2. It is
as if we tossed a fair coin at time ¢ > 0 to determine whether X (¢) =1 or —1.

The process {Y'(t),t > 0}, where Y (t) := Z - X(t), for all £ > 0, is called
a random telegraph signal. We may write that Z = Y (0). Moreover, to be
precise, we then use the expression semirandom telegraph signal to designate
the process {X(t),t > 0}. We already encountered the random telegraph
signal in Example 2.3.2.

To obtain the distribution of the random variable X (t), it suffices to cal-
culate

= = s (AR
PX(t)=1=)> PIN{t)=2k]=) e ,
k=0 k=0 (2k)!

At eAt +e~)\t _ 1 +e—2/\t
2

Vt>0 (5.68)

because

e)\t + e—,\t st ()\t)2k
— - 5.69
coshAt 5 ,; k)] (5.69)
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where “cosh” denotes the hyperbolic cosine. It follows that

—2At 1— —2At
PIX(t) = -1] =11 +‘; - (5.70)

In the case of the process {Y'(t),t > 0}, we have

PlY(t)=1] = P[Z-X(t) = 1]
= P[X(t)=1|Z =1]P[Z = 1]
+ P[X(t)y=-1|Z = -1]P|Z = -1}
- -;- {PX(t) = 1] + P[X(t) = ~1]} = % (5.71)
Thus, P[Y(t) = 1] = PY(t) = —1] = 1/2, for all t > 0, so that E[Y (t)] = 0,

whereas

2t oAt
J1te Rl e N R CX0)

EX(t)=1 5 +(-1) 5

To obtain the autocorrelation function of the (semirandom) telegraph sig-
nal, we make use of the definition X (t) = (—~1)N®. If s > 0, we may write
that

Rx(t,t+s) = E[X()X(t+s)] = E [(—1)1"“)(—1)1\’(”3)]
- E [(_1)2N(t)(_1)N(t+8)—N(t):, = E [(_I)N(t+s)-—N(t):|
- E [(—1)N<s>] = E[X(s)] = e~ (5.73)

where we used the fact that the increments of the Poisson process are station-
ary. We then have

Cx(t,t+5) = 72 — g7 2AHs) — =2 (1 _ o=4M) Y5 ¢>0
(5.74)

Finally, since
Y)W (t+s):=[Z-XD[Z - X(t+s)] =2 X)X (t+s)
=1-XOX({t+s)=X({t)X(t+s) (5.75)
we find that

Cy(t,t +s) = Ry(t,t +s) = Rx(t,t+s) =e 2 Vs,t>0 (5.76)

We deduce from what precedes that the process {Y'(¢),t > 0} is wide-sense
stationary. As we mentioned in Example 2.3.2, it can even be shown that it is
strict-sense stationary. On the other hand, {X(t),t > 0} is not WSS, because
its mean depends on ¢ (and Cx(t,t + s) # Cx(s)). Furthermore, in Example
2.3.2, we showed that the random telegraph signal is a mean ergodic process.
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5.2 Nonhomogeneous Poisson processes

In many applications, it is not realistic to assume that the average arrival
rate of events of a counting process, {N(t),t > 0}, is constant. In practice,
this rate generally depends on the variable t. For example, the average arrival
rate of customers into a store is not the same during the entire day. Similarly,
the average arrival rate of cars on a highway fluctuates between its maximum
during rush hours and its minimum during slack hours. We will generalize the
definition of a Poisson process to take this fact into account.

Definition 5.2.1. Let {N(t),t > 0} be a counting process with independent
increments. This process is called a nonhomogeneous (or nonstationary)
Poisson process with intensity function A(t) > 0, fort >0, if N(0) =0
and

i) P[N(t+0) — N(t) = 1] = A(t)d + o(d),
ii) PIN(t + 8) — N(£) > 2] = o().
Remark. The condition i) implies that the process {N(t),t > 0} does not have

stationary increments unless A\(t) = A > 0. In this case, {N(t),t > 0} becomes
a homogeneous Poisson process, with rate A.

As in the particular case when the average arrival rate of events is constant,
we find that the number of events that occur in a given interval has a Poisson
distribution.

Proposition 5.2.1. Let {N(t),t > 0} be a nonhomogeneous Poisson process
with intensity function A(t). We have

N(s+t)— N(s) ~ Poi(m(s+t)—m(s)) Vs,t>0 (5.77)

where
m(s) 1= /Os A(T) dr (5.78)

Proof. Let
pn(s,t):= P[N(s+t)-N(s)=n] forn=0,1,2,... (5.79)

Using the fact that the increments of the process {N(t),t > 0} are indepen-
dent, and using the two conditions in the definition above, we may write, for
n=12,..., that

pn(S,t+5)
= P[N(s+t)—~ N(s)=n,N(s+t+38)— N(s+t)=0]
+ P[N(s+t)—N(s)=n—1,N(s+t+8) — N(s+t) = 1] +0(J)
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= puls, )1 — Ms +1)8 + 0(0)] + pa_i(s,1)[A(s +1)d + o(3)] + o(5)
from which we find that
Pr(s,t 4 8) — pa(s,t) = A(s + £)8[pn-1(s,t) — pa(s,t)] + o(8) (5.80)

Dividing both sides by ¢ and taking the limit as § decreases to zero, we obtain

gzpn(s,t) = A8+ t)[pn-1(s,t) — pn(s,t)] (5.81)

When n = 0, the equation above becomes

S0l ) = ~A(s + Bipo(s, ) (5.52)

The variable s may be considered as a constant. Therefore, this equation is
a first-order, linear, homogeneous ordinary differential equation. Its general
solution is given by

po(s,t) = coexp {— /s - A7) dr} (5.83)

where ¢p is a constant. Making use of the boundary condition po(s,0) = 1, we
obtain ¢y = 1, so that

s+t
po(s,t) = exp {~/ A(T) d’r} = M) =mH)  for 5,1 >0 (5.84)
S
Substituting this solution into Eq. (5.81), we find that

o]
apl(s,t) =A(s+1t) {em(s)’m(sﬂ) - pl(s,t)] (5.85)

We may rewrite this equation as follows:

%pl(s,t) = [eM<S>—m<s+t> — pl(s,t)] b% [m(s +1t) — m(s)] (5.86)

We easily check that the solution of this nonhomogeneous differential equation,
which satisfies the boundary condition py(s,0) =0, is

pi(s,t) = e s L 1) —m(s)] for s, >0 (5.87)

Finally, we can show, by mathematical induction, that

Pu(s,t) = emls)—mls+t) [m(s +4) !_ m(s)] Vs, t>0andn=0,1,... 0
n!
(5.88)
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Remarks. 1) The function m(¢) is called the mean-value function of the process.

i) Suppose that A(t) is a twice-differentiable function such that A(t) < A,
for all ¢ > 0. We can then obtain a nonhomogeneous Poisson process with
intensity function A(t) from a homogeneous Poisson process {Ni(t),t > 0},
with rate A, by supposing that an event that occurs at time ¢ is counted with
probability A(t)/A. Let

F = exactly one of the events that occur in the interval (¢,¢+4] is counted,
and let

N(t)= the number of events counted in the interval [0,¢].
We have (see Prop. 5.1.7)

WK

PIN(t+8)—N(t) =1 = S P[{Ny(t +6) — Ny(t) = k} N F]

=
il
-

t+4 w
=6 +o0)] [ M)

¢
At + ¢d)
—A__._ _I,_

for some ¢ € (0,1), by the mean-value theorem for integrals. Since

du + o(6)

Ol =

= [Aé + ()] o(6) (5.89)

At + c8) = A(t) + X' () + o(5) (5.90)

we may write that

PIN(t+6) = N(8) = 1] = |6 + o(6)] 2+ C‘”A’(t) +90) 4 o5)
= A(t)é + o(9) (5.91)
iil) If we assume that
” A(t) dt =00 for all t € [0,00) (5.92)

to

then the probability that at least one event will occur after ¢ is equal to 1:

Jim P[N(to +s) — N(to) 2 1] = 1 - lim P[N(to +s) = N(to) = 0]

to+s
=1- lim exp{—/ Alt) dt}
§—0C

to

=1-0=1 (5.93)

Note that the formula (5.92) is valid when A(t) = A > 0.

Let T be the random variable that denotes the arrival time of the first
event of the process {N(t),t > 0}. We will now calculate the distribution of
T, given that N(t) = 1, as we did in the case of the homogeneous Poisson
process (see Prop. 5.1.5).
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Proposition 5.2.2. Let {N(t),t > 0} be a nonhomogeneous Poisson process
with intensity function A(t). The probability density function of the random
variable S =Ty | {N(t) = 1} is given by

A(s)

fs(s) = ) for0<s<t (5.94)

Proof. If 0 < s < t, we may write that

PITy < s | N(t)=1] = D) =LNE) = N(s) = 0]

PIN() =1
ind. (m(s)e™m()) gmm®+mls) _ m(s)
- m(t)e_m(t) - m(t)
Since
Zomls) = 4 [ 3w du=o) (5.95)

we obtain the formula (5.94). O

Remark. The formula for the distribution function of the arrival time S of the
single event that occurred in an arbitrary interval (7,7 +¢] is

m(s) — m(r)

Fi(s) = m(T +t) — m(7)

for0<rT<s<T+1 (5.96)

so that

fs(s) = As)

= for 0 < < t 5.97
m(T +t) — m(7) orfsT<ssTH ( )

where § :=T | {N(r +t) — N(v) = 1} and T is the arrival time of the first
event of the nonhomogeneous Poisson process in the interval (7,7 + t].

Example 5.2.1. Let {N(t),t > 0} be a nonhomogeneous Poisson process with
intensity function A(¢) > 0, for t > 0. We set

M(ty=N (m~Y(t)) forallt>0

where m™1(t) is the inverse function of the mean-value function of the process.
Remark. This inverse function exists, because we assumed (in this example)
that the intensity function A(t) is strictly positive, for all ¢, so that m(t) is a
strictly increasing function.
We then have
M(0) = N (m~'(0)) = N(0) =0
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Moreover, we calculate, for all 7,t > 0 and n =0,1,...,
PM(t+t)— M(t)=n]=P {N (m_l(*r + t)) -N (m'l(T)) = n}
= P [Poi (m (m~(r +1)) —m (m~'(1))) = n]
= P[Poi(t +t — 1) = n] = P [Poi(t) = n]

Finally, since the function m~!(¢) is strictly increasing, we may assert that
the stochastic process {M(t),t > 0}, like {N(¢),t > 0}, has independent in-
crements. We then deduce, from what precedes, that {M(t),t > 0} is actually
a homogeneous Poisson process, with rate A = 1.

5.3 Compound Poisson processes

Definition 5.3.1. Let X1, Xo,... be independent and identically distributed
random variables, and let N be a random variable whose possible values are
all positive integers and that is independent of the Xy 's. The variable

N
Sy =Y Xi (5.98)

1s called ¢ compound random variable.

We already gave the formulas for the mean and the variance of Sy [see
Eqs. (1.89) and (1.90)]. We will now prove these formulas.

Proposition 5.3.1. The mean and the variance of the random variable Sy
defined above are given, respectively, by

J)aed

= E[N|E[X,] (5.99)

and
[2 Xk} ~ EINVIX] + VIN(E[X1])? (5.100)

Proof. First, we have

E [i Xk] = Xn: E[Xi) 'S nE[X] (5.101)
k=1 k=1

Then, since N is independent of the X}’s, we may write that

N n
E | XiN = n} =E [Z Xk:l = nE[X1] (5.102)
k=1
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so that

N
E ZXk
k=1

N} = NE[Xj] (5.103)
It follows that
N
E [Z Xk} = {Z X
k=1

Remark. It is not necessary that the random variables Xj be independent
among themselves for the formula (5.99) to be valid.

” E[NE[X,]] = EINE[X;]  (5.104)

Next, proceeding as above, we find that

N N
VY XN = n} Havixy) = VY Xk N] = NV[X1] (5.105)
k=1 k=1
With the help of the formula (see p. 28)
V[Sny] = E[V[Sx | N]] + V[E[Sw | N]] (5.106)

we may then write that

ZXkJ = EINVIXy]] + VINE[X,]]

— ENVIX,) + (EIX))PVIN] 0 (5.107)

Definition 5.3.2. Let {N(t),t > 0} be a Poisson process with rate A, and let
X1, Xs,... be random variables that are i.1.d. and independent of the process
{N(t),t > 0}. The stochastic process {Y (t),t > 0} defined by

N(t)
t)=> Xp Yt>0 (andY(t)=0if N(t)=0) (5.108)
k=1

is called a compound Poisson process.

Remarks. i) This is another way of generalizing the Poisson process, since
if the random variables X} are actually the constant 1, then the processes
{Y'(t),t > 0} and {N(¢),t > 0} are identical.

it) A Poisson process, {N(t),t > 0}, only counts the number of events that
occurred in the interval [0, ¢}, while the process {Y(t),t > 0} gives, for exam-
ple, the sum of the lengths of telephone calls that happened in [0,¢], or the
total number of persons who were involved in car accidents in this interval,
etc. Note that we must assume that the lengths of the calls or the numbers
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of persons involved in distinct accidents are independent and identically dis-
tributed random variables. We could consider the two-dimensional process
{(N(t),Y(t)),t > 0} to retain all the information of interest.

Using Proposition 5.3.1 with Sy = Y (t) and N = N(t), we obtain
E[Y(t)] = E[N@t)|E[X1] = ME[X;] (5.109)
and

VY (t)] = EIN®)]VIXa] + VIN()](B[X41))?
=t (VX1] + (E[X1]))?) = ME[X]] (5.110)

We can easily calculate the moment-generating function of the random
variable Y(t). Let

Mi(s) = Mx,(s) :== E [e] (5.111)
We have

My(t)(s)::E [esY(t)J = F [es(X1+...+XN(¢))] =E [E [es(X1+.,.+XN(¢))IN(t)”

iréi. iE [es(X1+...+X ] ~At ()‘t 1__: i ]n ~ At )‘t)

P nl
= e MMM _ expIN{M;(s) — 1]} (5.112)

This formula enables us to check the results obtained above. In particular,
we have

B (0] = = My(s)],_q = My (s)MM(s)],_,

= My (0)MEM(0) = IME[X,] = ME[X;]  (5.113)

When X is a discrete random variable, whose possible values are 1,2,... , 7,
we may write that

Y(t) = EJ: (5.114)

where N;(t) is the number of random variables X}, (associated with some
random events) that took on the value ¢ in the interval [0,¢]. By Proposition
5.1.2, the processes {N;( ) t > 0} are independent Poisson processes with
rates Apy, (1), fori=1,... .

Remarks. i) This representation of the process {Y (t),t > 0} can be generalized
to the case when X is an arbitrary discrete random variable.



5.3 Compound Poisson processes 257

ii) The moment-generating function of the random variable Y (t) in the case
above becomes

My )(s) = exp {)\t Z 1) px, z)} (5.115)

Since lim;_,o, N(t) = o0, we deduce from the central limit theorem the
following proposition.

Proposition 5.3.2. For t sufficiently large, we may write that

Y(t) N (ME[X:], ME[X?]) (5.116)

Remark. For the approximation to be good, the number of variables in the
sum must be approximately equal to 30 or more (or maybe less), depending
on the degree of asymmetry of (the distribution of) the random variable X
with respect to its mean.

Finally, let {Yi(t),t > 0} and {Y2(¢),t > 0} be independent compound
Poisson processes, defined by

N;(t)
t)=> Xy Yt>0 (and Yy(t)=0if Ny(t) =0) (5.117)
k=1

where {N;(t),t > 0} is a Poisson process with rate \;, for i = 1,2. We know
that the process {N(¢),t > 0}, where N(t) := Ny(t) + No(t) Vt > 0, is a
Poisson process with rate A := Ay + Ao (because the two Poisson processes are
independent; see Prop. 5.1.1). Let X}, be the random variable associated with
the kth event of the process {N(t),t > 0}. We may write that

M

X1, with probability p :=
X, < ALt A (5.118)

Xy, with probability 1 —p

(That is, X}, has the same distribution as X i (respectively, X2 ) with prob-
ability p (resp., 1 — p).) Thus, we have

PlXy <] = P[X1y <zlp+ P[Xok < z|(1 ~p) (5.119)

Since the random variables X1, Xo,... are i.i.d., and are independent of the
Poisson process {N(t),t > 0}, we may assert that the process {Y(¢),t > 0}
defined by

Y(t) = Yi(t) + Ya(t) fort>0 (5.120)

is a compound Poisson process as well.
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Ezample 5.5.1. Suppose that the customers of a certain insurance company
pay premiums to the company at the constant rate « (per time unit) and
that the company pays indemnities to its customers according to a Poisson
process with rate A. If the amount paid per claim is a random variable, and if
the variables corresponding to distinct claims are independent and identically
distributed, then the capital C(t) at the company’s disposal at time ¢ is given
by
Ct)y=C0)+at-Y{t)

where {Y(t),t > 0} is a compound Poisson process (if, in addition, the indem-
nity amounts do not depend on the number of indemnities paid). An important
question is to be able to determine the risk that the random variable C(t) will
take on a value smaller than or equal to zero, that is, the risk that the com-
pany will go bankrupt. If o < Ay, where p := E[X;] is the average indemnity
paid by the company, then we find that the probability that it will eventually
go bankrupt is equal to 1, which is logical.

5.4 Doubly stochastic Poisson processes

In Section 5.2, we generalized the definition of a Poisson process by allowing
the average arrival rate of events of the process to be a deterministic function
A(t). We will now generalize further the basic Poisson process by supposing
that the function A(t) is a random variable A(t). Thus, the set {A(¢),t > 0}
is a stochastic process. For this reason, the process {N(t),¢t > 0} is called a
doubly stochastic Poisson process. First, we consider the case when the random
variable A(t) does not depend on ¢.

Definition 5.4.1. Let A be a positive random variable. If the counting process
{N(t),t > 0}, given that A = ), is o Poisson process with rate A, then the
stochastic process {N(t),t > 0} is called a conditional (or mixed) Poisson
process.

Proposition 5.4.1. The conditional Poisson process {N(t),t > 0} has sta-
tionary, but not independent increments.

Proof. Consider the case when A is a discrete random variable whose possible
values are in the set {1,2,...}. We have

M

P[N(t+t)— N(r) =n] P[N(t+t) = N(r) =n| A=k =pa(k)

k=1
_ Ze-kt%)fm(k) (5.121)
k=1 :

Since N(0) = 0, for any value of A, we conclude that
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P[N(T+t)—~N(t)=n]=P[N(t) =n] forall7,t>0andn=0,1,...
(5.122)

Thus, the increments of the process {N(t),t > 0} are stationary.
Next, using the formula (5.121) above, we may write that

PIN(t) =n| /1 =j]P[/1 = j]
PIN(t) = n]
Itk /n'}m)
Doy ekt (k)™ /nllpa(k)

e 1 5"pA(7)
— 5.123
Yoreq e ktkrp (k) ( )

Therefore, the number of events that occurred in the interval [0,¢] gives us
some information about the probability that the random variable A took on
the value j. Now, the larger j is, the larger is the expected number of events
that will occur in the interval (¢,t + 7], where 7 > 0. Consequently, we must
conclude that the increments of the process {N(t),t > 0} are not independent.
a

PlA=j|N(t)=n]=

Remarks. i) In the case of the homogeneous Poisson process, with rate A > 0,
we have that ps{)\) = 1, so that

e M) /nl] x 1

PA=X|N({t)=n]= =M [(A\t)" /nl]

=1 forn=0,1,... (5.124)

ii) The proposition above implies that a conditional Poisson process is not a
Poisson process unless A is a constant.

iii) If the parameter A of the homogeneous Poisson process {N(t),t > 0} is
unknown, we can estimate it by taking observations of the random variable
N(t), for an arbitrary t > 0. Suppose that we collected n (independent) ob-
servations of N(t). Let X be the average number of events that occurred in
the interval [0,¢]. That is,

%o 2= Xk (5.125)
n

where X}, is the kth observation of N(t). The best estimator of the parameter
A is given by
(5.126)

Thus, the larger the number of events that occurred in the interval [0, 1] is,
the larger the estimated value of X is. However, once this parameter has been
estimated, we start anew and we assume that the increments are independent.
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iv) When A is a continuous random variable, we find that

—At/\n A
fanw( | n) = foooz'”tunj;i((u)) & VA0 (5.127)

Given that
E[N(t)| A]= At and VIN(t)|A] = At (5.128)
we calculate
E[N(t)] = E[E[N(t) | 4]] = tE[A] (5.129)
and

VIN@)] = E[VIN() | Al + VIE[N(?) | 4]}
= E[At] + V[At] = tE[A] + *V[4] (5.130)

Ezample 5.4.1. Suppose that the rate of a Poisson process is a continuous
random variable A such that

2,
fad) =55 #EA1

It can be shown that
[o ] n
PIN(t) > n] = / PlA> )\]te“’\t-(/\%')— dA
o !

Use this formula to calculate the probability that there will be more than two
events during an arbitrary time unit.

Solution. First, we calculate

P[A>/\]—/002d . for A >1
=), 78 =32 =

We seek

P[N(1)>2]—/11 Y d/\+/oo L d)\——l-/1/\2e_’\ A+ 2ot
Y A TAR R WA 2

Doing the integral above by parts, we find that

PIN(1)>2] = % (2-5e'+e7t) =1—2e"" ~0.2642



5.4 Doubly stochastic Poisson processes 261

Ezample 5.4.2. If A has a geometric distribution, with parameter p € (0,1),
then we deduce from the formula (5.121) that

o0 o
D k p d k Y4 r p tr
PNt—l——-tEk == E-— = —tp— ==
e | k=1 ' qtrk=1drr q T<1—T> q(l—r)?

Ezample 5.4.3 (The Pélyal process). Suppose that A has a gamma distri-
bution, with parameters o = k£ € N and 8 > 0. We have

PIN(t)

I

N\\“

t) =n|A=Xfa(A) dA

e _aa (BT
: ge™™) -1 P

[e o]
= —(t+B)A yntk—1
.(k—l)./o e A dA

_tr B 1
Tl (k-D!(t+8
v g 1
=G gEl k)
A 1

:m(k—l)!(t+ﬁ)n+k(n+k“1)!

= <n+k_1)pk(1—p)" forn=0,1,...

e g™l dr  (with x = (¢t + B)A\)
)n—Hc 0

n

where

B
t+ 03
! George Pélya, 1887-1985, was born in Hungary and died in the United States.

He contributed to several domains of mathematics, including probability theory,
number theory, mathematical physics, and complex analysis.

pi=



262 5 Poisson Processes

We say that N(t) has a negative binomial, or Pascal? distribution, with
parameters k and p. Furthermore, the process {N(t),t > 0} is called a negative
binomial process, or a Pélya process.

Remark. There exist various ways of defining a negative binomial distribution.
The version above generalizes the geometric distribution when we define it as
being a random variable that counts the number of failures, in Bernoulli trials,
before the first success, which can be checked by setting k = 1. Thus, here N(t)
would correspond to the variable that counts the number of failures before the
kth success. Note also that if £ = 1, then A has an exponential distribution
with parameter S.

Definition 5.4.2. Let {A(t),t > 0} be a stochastic process for which A(t)
is nonnegative, for all t > 0. If, given that A(t) = A(t), for allt > 0, the
counting process {N(t),t > 0} is a nonhomogeneous Poisson process with
intensity function A(t), then {N(t),t > 0} is called a doubly stochastic
Poisson process or a Cox® process.

Remarks. i) If the random variable A(t) does not depend on #, we retrieve
the conditional Poisson process. Moreover, if A(t) is a deterministic function
A(t), then {N(t),¢ > 0} is a nonhomogeneous Poisson process, with intensity
function A(t). The doubly stochastic Poisson process thus includes the ho-
mogeneous, nonhomogeneous, and conditional Poisson processes as particular
cases.

ii) The doubly stochastic Poisson process is not a Poisson process unless the
random variable A(t) is equal to the constant A > 0, for all ¢ > 0.

iii) The process {A(t),t > 0} is called the intensity process.
We can write, for all t2 > ¢; > 0, that

N(t2) — N(t1) | {A(t) = A(t) V t > 0} ~ Poi(m(t2) — m(t1)) (5.131)

where

t
m(t) ::/ A(s) ds (5.132)
0
It can also be shown that

k
fiz A(t) dt( ttlz A(t) dt)
PIN(ty) = N(t1) = k | {A(t),0 < t; <t < to}] = et A
(5.133)
for k =0,1,....

? See p. 135.
3 Sir David Cox, professor at the University of Oxford, in England.
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To simplify the writing, set
N(@t) | {A(5),0 < s <t} = N(t) | A(0,t) (5.134)

We then have
EIN(6) | A(0,1)] = /0 " A(s) ds (5.135)

so that

E[N(t)] = E[EIN(t) | A0, )] = [/As)ds]—/E )\ ds (5.136)

Similarly, we have

E[N?(t) | A(0,t)] = /Ot A(s) ds + (/Ot A(s) ds)2 (5.137)

(faos)] - U/ wm}
/ / ElA )| ds du (5.138)

E[N?(t)] = E[E[N?(t) | A(0,1)] / E[A ds+/0t/OtRA(s,u) ds du
(5.139)

Since

E

we may write that

Example 5.4.4. Suppose that {A(t),t > 0} is a homogeneous Poisson process,
with rate A > 0. Then

E[A®#)] =X and R(s,u) = Amin{s,u} + A?su

We calculate . )
E[N{t)] = / As ds = )\t—
o 2

and

E[N?(t)] _)\ +//Amm{s u} 4+ Asu] ds du

—/\ +///\mm{su}dsdu+)\2

t2 t u t t4
= \— +A/ / sds+/ uds} du + 22—
0 0 u 4
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2 3 ot

AT EATENTY
It follows that
23 Lt 2\’ 2 3
VIN®) =25 + A5 + 222 - (AE) —)\(—2—+§-)

Ezample 5.4.5. If {A(t),t > 0} is a geometric Brownian motion, then A(t) has
a lognormal distribution (see p. 186), with parameters ut and o?t. Its mean
is given by

EJA(t)] = exp{ut + %a%}

We then have
E[N(t)]—/tex { s+1023} ds——l—-——[ex { t+la2t}—-1]
= | eplus+3 = Ly LEleplut g

if u+ 202 #0 (and E[N(t)] =t if p+ 102 = 0).

5.5 Filtered Poisson processes

After having generalized the homogeneous Poisson process in various ways,
we now generalize the compound Poisson process.

Definition 5.5.1. Let Xy, Xo,... be random variables that are i.i.d. and in-
dependent of the Poisson process {N(t),t > 0}, with rate A > 0. We say that
the stochastic process {Y (t),t > 0} defined by

Nt
Y(t)= S wt,Te,Xs) Vt>0 (Y(£)=0ifN@E=0  (5140)
k=1

where the Ty ’s are the arrival times of the events of the Poisson process and
the function w(-,-,-) is called the response function, is a filtered Poisson
process.

Remarks. 1) The compound Poisson process is the particular case obtained by
setting w(t, T, Xi) = Xk-

ii) We can say that the response function gives the value at time ¢ of a signal
that occurred at time Ty and for which the quantity X has been added to
the filtered Poisson process. The random variable Y (¢) is then the sum of the
value at time ¢ of every signal that occurred since the initial time 0.
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ill) An application of this type of process is the following: the variable Y (t)
represents the flow of a certain river at time ¢ (since the beginning of the
period considered, for example, since the beginning of the thawing period),
the Tj's are the arrival times of the precipitation events (snow or rain), and
X}, is the quantity of precipitation observed at time T} and measured in inches
of water or water equivalent of snow. In practice, the precipitation does not
fall to the ground instantly. However, we must discretize the time variable,
because the flow of rivers is not measured in a continuous way, but rather, in
many cases, only once per day. Then, the index k represents the kth day since
the initial time and X}, is the quantity of precipitation observed on this kth
day. A classic response function in this example is given by

w(t, Ty, Xg) = Xpe~ T/ fort > T} (5.141)

where c is a positive constant that depends on each river and must be esti-
mated.

Suppose that we replace the random variable T} by the deterministic vari-
able s in the function w(t, Ty, Xi). Let Cy(6) be the characteristic function
of the random variable w(t, s, X} ):

Cul) (= Cu(0,t,5)) == E [eiew(t’Sva] (5.142)

Making use of Proposition 5.1.6, we can show that the characteristic function
of Y(t) is given by

t
Cy)(0) = exp {—At + )\/ Cw(6) ds} (5.143)
0
from which we obtain the following proposition.
Proposition 5.5.1. If Ew?(t,s, Xz)] < oo, then the mean and the variance
of Y(t) are given by
)\/ w(t, s, X¢)] ds (5.144)
and

=) /t E[w?(t,s, X1)] ds (5.145)
0

Remarks. i) When X is a continuous random variable, the mathematical
expectations E[w"(t, s, X)], for n = 1,2, are calculated as follows:

o0

Elw"™(t, s, Xp)] =/ w(t, 8, %) fx, (x) dz (5.146)

—0o0
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i1) It can also be shown that

min{tq,t2}
Cov[Y (1), Y ()] = A / Elwlts, s, Xe)w(ts, s, X¢)] ds V1,82 > 0
¢}
(5.147)

Example 5.5.1. Suppose that the random variables X3 have an exponential
distribution with parameter p in the formula (5.141). We can then write that

Cw(8) == E [ejew(t.s,Xk)] -E [ejexke—“—s)“] - E [ejOg(t,s,c)Xk]

where
g(t, s, c) = e~ (t=9)/e

We have

E [ejeg(t,s,c)Xk] — /oo ejeg(t,s,c)mue—ua: dr = ' u
0 = j89(t, s,¢)

Next, we calculate

i t t _ip t, ’ 0 t, 7
/Cw(e)ds=/ —.M——ds=/ ©— j0g( S'C)-I-J g(t, s, ¢) ds
0 o M—370g(t,s,c) o 1 — 76g(t, s, c)
t .
JOg(t, s, c)
:t+/ —— 7 s
o 1—Jbg(t, s, c)
Given that

0 1 1
— =e {t=8)c_ . Z ot
asg(i,s,c) e - cg(t,s,c)

we may write that

t .
/ jlg(t, s, c) ds = —cln[u — jbg(t, s, 0)||=4
0

H— Jgg(tv 530)
= —cln(u — j6) + cln(u — j6e7/°)
It follows that

Cy1)(6) = exp {—At + At — cln(p — 56) + cln(u — jge—t/C)]}

(u - jOe‘t/cfc
S\ p—j6

Using this formula, we find that

_)\c

Byl = (1 - e‘t/C) and V[Y(5)] = 2 (1 _e—2t/c)

:”2
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Remarks. 1) In this example, we have
E[w™(t,s,Xy)] = E [X,ge-"“—s)/C] = e~n(t=3)/c g (XT]

— e—n(t—s)/c F(n + 1)
>

We then deduce from the formulas (5.144) and (5.145) that

<oo forn=0,1,...

t . . \
E[Y(t)] = ,\/ Elw(t, s, X;)] ds = ,\/ o (t=)fel go _ 2C (1 B e"t/c)
0 0 I 7
and
t ¢ 0
ViY@ = /\/ E[w?(t, s, Xy)] ds = /\/ e—z(t—s>/cF ds
0 0
= _)‘_C _ ,—2t/c
T <1 ¢ )
as above.

il) We can check that the covariance of the random variables Y (¢) and Y (t+71)
is given by

Ac
CovlY(t),Y(t+ 7)) = —Iu—zeT/C (1 - e”Qt/C) Vi,r>0
Finally, we can generalize the notion of filtered Poisson process by setting

N(t)
Y(t)=Y Wi(t,Te) Vt>0 (and Y(t)=0if N(t) =0) (5.148)
k=1

where {Wy(t,s),t > 0,s > 0} is a stochastic process (with two time parame-
ters). We assume that the processes {Wy(t,s),t > 0,s > 0} are independent
and identically distributed and are also independent of the Poisson process
{N(t),t > 0} (having rate A > 0). We say that {Y(¢),t > 0} is a generalized
filtered Poisson process. It can be shown that

E[Y(t)] =X /0 tE[Wl(t,s)] ds and V[Y(t)] =\ /0 tE[Wf(t,s)] ds
(5.149)

5.6 Renewal processes

An essential characteristic of the Poisson process, {N(t),t > 0}, is that the
time between consecutive events is a random variable having an exponential
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distribution with parameter A, regardless of the state in which the process
is. Moreover, the random variables 7; denoting the time that {N(t),t > 0}
spends in state 4, for 2 = 0,1, ..., are independent.

We also know that the Poisson process is a particular continuous-time
Markov chain. Another way of generalizing the Poisson process is now to
suppose that the nonnegative variables 7; are independent and identically
distributed, so that they can have any distribution, whether discrete or con-
tinuous.

Definition 5.6.1. Let {N(t),t > 0} be a counting process, and let T; be the
random variable denoting the time that the process spends in state i, for
i =0,1,.... The process {N(t),t > 0} is called a renewal process if the
nonnegative variables 7o, 71,... are independent and identically distributed.

Remarks. i) It is sometimes possible (see Ex. 5.1.2) to transform into a Poisson
process a renewal process for which the time spent in the states 0,1,... does
not have an exponential distribution.

if) We say that a renewal has occurred every time an event of the counting
process takes place.

ili) Some authors suppose that the random variables 7q,71,... are strictly
positive.

iv) We can generalize the definition above by supposing that the random vari-
able 7y is independent of the other variables, 7, 72, ... but does not necessarily
have the same distribution as these variables. In this case, {N(t),t > 0} is
called a modified or delayed renewal process.

The time T, of the nth renewal of the (continuous-time) stochastic process
{N(t),t > 0}, defined by [see Eq. (5.32)]

n—-1
T,=)Y 7 forn=12,... (5.150)
i=0
satisfies the relation T, <t & N{(t) > n. By setting Ty = 0, we may write, as
in Proposition 5.1.4, that
N(t) =max{n > 0: T, < t} (5.151)
Since
P[N(t) =n] = P[N(t) > n} — P[N(t) > n+ 1] (5.152)
we can state the following proposition.

Proposition 5.6.1. The probability mass function of the random variable
N(t) can be obtained from the formula

PIN(t) = n] = P[T, <t} — P[Ty41 < {] (5.153)

fort >0 and forn=0,1,....
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In general, it is difficult to find the exact distribution function of the
variable T,,. We have

n—1
Cr, ) = B[] = B [#EE0m] = B [H }
1=0

n-1 n-1
= Bl =] cnw) (5.154)
3==0 =0

When 7; is a continuous random variable, the characteristic function Cr, (w)
is the Fourier transform of the probability density function fr, (¢) of Tp,. We
can then write that

an (t) = fT()(tO) * fﬁ (tl) ¥k an—l(t"—l) (5155)
where tg + ty + ... + ty,-1 = t. That is, the density function of T}, is the
convolution product of the density functions of 7g,... , Th—1-

In some cases, we know the exact distribution of the random variable T,,.
For example, if 7, ~ Exp{)), then

T, ~ G(n,\) (5.156)
Similarly, if 7; ~ Poi()\), we have
Ty, ~ Poi(nA) (5.157)
If n is large enough, we deduce from the central limit theorem that
Ty, ~ N(np, noz) (5.158)
where p := E[r;] and 02 := V[r;] V i.

Example 5.6.1. We can use the formula (5.153) to check that, for a Poisson
process with rate A, we have

P[N(t)zn]=e”’\t()\t3 fort >0andn=0,1,...
7!

In this case,

(Az)n—1

-1 @

i
Tn ~G(n,\) == P[T, <t :/ de™A®
0

Let .
I, ::/ e M dr forn=0,1,...
0
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Integrating by parts, we obtain

—az |t

e n
In=-z">—| + 21,4
Ay AT
t
n —Az
n! n_ki1€ n!
= ,,, = — -—_ —_— +—I
;(n—kﬂ)!”’ PO R
=— 3 _Lt"—k"*li/\t_;.l!]o
i (n—k+1) P\

where

t 1— —At
Iy = / e ™ dr = ¢
0 A

It follows that
Antl - n! e~  pl [1—e M
PIT, <t = — —tn_k+1_._ — —
O Ay [ ;(n——kJrl)! FURRED TN QY

n n—k+1 n i
=1—e M _ Z (f;\?k — 1)'6—At =1— Z (At) e~
k=1 )

Similarly,

Thus, we indeed have
n—1 i n 1
At)e T M)t (A"
P[N(t) :n] — (1 _ 2 : (Zl) e )\t) _ (1 _ ~ (z') e /\t> — — e At

When 7; is a discrete ranidom variable, the probability P[r; = 0] may be
strictly positive. That is, the time needed for a renewal to occur may be equal
to zero. For example, if 7; ~ Poi()\), then P[r; = 0] = e~* > 0. However, if
the nonnegative random variable 7; is not the constant 0, we may write that
p > 0. If we assume that 1 < 0o and 02 < oo, the strong law of large numbers
(see p. 32) then implies that

1=P

n—00 n n-—00 n—00

n—1
lim Z—ho—“zp] =P[li E=ﬂ] = P[nm Tn=oo} =1
n
(5.159)
from which we deduce from the formula (5.151) that we can write

P[N(t)=00] =0 forallt<oo (5.160)
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because the random variable T}, will eventually be larger than any finite ¢.
That is, there cannot be an infinite number of renewals in a finite-time interval.
However, given that P[r; = oo} = 0, we may conclude that

P an N(t) = oo] =1 (5.161)

—00

Since, in most cases, it is very difficult to explicitly calculate the probability
of the event {N(t) = n}, we must generally content ourselves with finding the
mean of the random variable N ().

Definition 5.6.2. The function my(t) := E[N(t)] is called the renewal
function (or mean-value function) of the renewal process {N(t),t > 0}.

Proposition 5.6.2. The renewal function my(t) can be calculated as follows:

o
my(t) :Z P[T, <] (5.162)

Proof. As N(t) is a random variable taking its values in the set N° =
{0,1,...}, we may write (using the relation 7,, <t < N(t) > n) that

Y iP[N(t) =i] =Y iPIN(t) = ZZP
=0 i=1 i=1 n=1
2

Z PIN(t) =1i] = »_P[N(t) > n]
= iP[Tn <t D (5.163)

Remarks. i) Since it is also difficult to calculate the probability P{T,, <], in
practice the proposition does not enable us very often to obtain the function
mn(t). Moreover, if we managed to calculate P[N(t) = n], for all n, then it
is perhaps simpler to find the mean of N(t) by directly using the definition of
E[N(2)].

il) We will further discuss another technique that enables us, when the 7;’s
are continuous random variables, to calculate my(t), namely by solving an
integral equation.

Ezample 5.6.2. Suppose that 7; has a Bernoulli distribution, with parameter
p € (0,1). We then have

n—1

T, := Z 7; ~ B(n,p)

i=0
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so that

ft]
P <d=Y (F)ra-nt
0
where [t] denotes the integer part of t. Theoretically, we can calculate my(t)
by finding the value of the sum

[t

S(t,p) := i 3 (Z)pk(l —p)k

n=1k=0

where (7) =0if k£ > n.

Consider the particular case when p = 1/2. We have

S(t,1/2) = fj {(1/2)" f: (Z)}

n=1 k=0

We find, making use of a mathematical software package, that 5(0,1/2) =1,
S(1,1/2) =3, S(2,1/2) = 5, S(3,1/2) = 7, etc., from which we deduce the
formula

S(t,1/2)y =2[t]+1 forallt >0

Now, let t =7 € {0,1,... }. Given that 7; = 0 or 1, for all 4, we may write
that N(r) > r. We find that

( r with probability p"*!

1
r + 1 with probability (r + )p"“(l - D)
1
N(r) =

2
r + 2 with probability (r ; ) Pt (1 - p)?

\

In general, we have
PIN(r)=r+k]= (r—;k)prﬂ(l —p)* fork=0,1,...

Remark. We have that P[N(r) = r] = p"*!, and not p", because {N(r) = r} if
and only if (iff) the first r + 1 renewals each take one time unit. In particular,
N(0) =0iff o = 1. Similarly, N(1) =1 if o =1 and 1y = 1, etc.

We may write that X := N(r) + 1 has a negative binomial distribution
(see p. 135) with parameters r + 1 and p. Now, the mean of this distribution
is given by (r + 1)/p, from which we deduce that
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r+1 [+1

E[N(r)] = ~1 = E[N@)]= 1

Note that if p = 1/2, then we retrieve the formula S(¢,1/2) = 2[t|+1 obtained
previously.

Suppose that the 7;’s are continuous random variables. We then deduce
from Eq. (5.162) that

Lonn(t) =Y fr. (1) (5.164)
n=1

from which, taking the Laplace transform of both members of the preceding
equation, we obtain

miy(a) = /0 " et dmp(t) = 3 /0 et (1) dt (5.165)
n=1
= myla)= i My, (a) (5.166)
n=1

where M7, is the moment-generating function of the random variable Tj,
(see p. 19) and « is a negative constant. Since the 7;’s are independent and
identically distributed random variables, we may write that

n—1 .
My, (o) I1 M-.() M (@) (5.167)
=0

The parameter a being negative, we have that M, (a) € (0,1). It follows that

mila) = 3 Mo @) = 122 (5.168)
n=1 To
so that
__mxy(a)
M. (a) = ﬁz—\[(—a) (5.169)

By the uniqueness of the Laplace transform (and of the inverse Laplace trans-
form}, we deduce from the last equation that to each renewal function my(t)
corresponds a different density function f,,(t). Similarly, Eq. (5.168) implies
that the density function f,, () uniquely determines the function my(t).
Moreover, it can be shown that these results hold true, whether the ran-
dom variables 7; are discrete or continuous. We can thus state the following
proposition.
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Proposition 5.6.3. There is a one-to-one correspondence between the distri-
bution function of the random variables 7; and the renewal function my(t).

Since my (t) = At in the case of the Poisson process, we have the following
corollary.

Corollary 5.6.1. The Poisson process is the only renewal process having a
linear renewal function.

Remark. The Poisson process is also the only Markovian renewal process.

In the case when the random variables 7; are continuous, we have

mn(t) = E[N(t)] = E[E[N(t) | o]] = /Ooo E[N(t) | o = 7]fr(T) dr

(5.170)
Moreover, the relation
>t < N({)=0 (5.171)
implies that
i
ma(t) = / EIN(t) | 7o = 7lfo () dr (5.172)
0

Finally, we may write (the 7;’s being i.i.d. random variables) that
ENt)|ro=7]=1+E[N{t—-7)]=1+mn(t—7) for0<7<t (5.173)
It follows that
¢
mn(t) = / R +mn(t—7)fr(7) dr (5.174)
0
<= mpy(t) = F( / my(t—7)fr(r)dr fort>0 (5.175)

Definition 5.6.3. Fquation (5.175) is called the renewal equation (for the
renewal function) of the process {N(t),t > 0}.

To explicitly calculate the renewal function, it is often easier to solve the
integral equation (5.175). Setting s = t — 7, we can rewrite it as follows:

my(t) = Fr,( / my(8)fr,(t —s)ds fort >0 (5.176)

Next, differentiating both members of the preceding equation, we obtain

M () = Fro(t) + My (£) fry (0 /mN S (t-s)ds  (5.177)
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When f,,(t — s) is a polynomial function, we can differentiate repeatedly
the members of this equation, until we obtain a differential equation for the
function my(t). We have, in particular, the boundary condition my(0) = 0.

Remark. We can also sometimes obtain a differential equation for my(t) even
if fr,(t — s) is not a polynomial function.

Ezrample 5.6.3. Let
fro(t) =483 if0<t<1

We have [see Eq. (5.177)]:
¢
miy(t) = 43 + mpy(t) x 0 +/ mp(s)12(t — s)* ds
0
t
= 4¢3 +/ my(s)12(t —s)2ds for0<t<1
0
Note that this equation implies that m/y(0) = 0. We differentiate once more:

¢
mi(t) = 12t +/ mpy(s)24(t — s) ds
0

from which we deduce that m/{(0) = 0. Next, we have

t
miy(t) = 24t + 24/ mn(s) ds
0

so that my(0) = 0. Finally, we obtain the ordinary differential equation

m{J (1) = 24 + 24mp (t)
The general solution of this equation is given by
kt

mpy(t) = —1 + ¢y coskt + cosinkt + c3et + cqe”

where k := (24)1/4 and ¢y, ..., ¢4 are constants. The particular solution that
satisfies the conditions my(0) = m/y(0) = mi (0) = mf(0) =0is

1 1
my(t) = -1+ 5 cos kt + 1 (" +e ") foro<t<i1
Note that the solution above is only valid for ¢ € [0, 1]. Moreover, since the

random variable Ty takes its values in the interval [0,1], the mean my (1) must
be greater than 1. We calculate

1 1
my(l) =-1+ 5 cosk + 1 (e’“ + e_k) ~1.014
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Equation (5.175) is a particular case of the general renewal equation
lo o]
o(t) = h(t) + / o(t = 7)dF, () fort>0 (5.178)
0

where h{t) and F (t) are functions defined for all ¢ > 0. The following propo-
sition can be proved.

Proposition 5.6.4. The function g(t) defined by
t
g(t) = h(t) + / h(t —7) dmy(r) fort >0 (5.179)
0
is a solution of the renewal equation (5.178).

Remarks. 1) Equation (5.175) is obtained from (5.178) by taking g(t) = mn(t)
and h(t) = F,,(t) and by noticing that my(t) = 0 if t < 0. If h(t) is a function
bounded on finite intervals, then g(¢) is bounded on finite intervals as well.
Moreover, g(t) is the unique solution of (5.179) with this property. Note that
the distribution function F, (t) (= h(t)) is evidently a bounded function,
because 0 < Fr (t) <1V ¢ > 0.

ii) We can replace dmy(7) by m/y(7) d7 in the integral above.

Corollary 5.6.2. If 7o is a continuous random variable, then the second mo-
ment of N(t) about the origin, E[N?(t)], is given by

E[N%(t)] = mn(t) + 2/t my{t —7) dmy(r) fort>0 (5.180)
0
Proof. We may write that
E[N%(t)] = /0 ” E[N2(t) | 7o = 7] fro(T) dr (5.181)
t t
_ / EIN*(t) | 7o = 7] (7) dr = / E[(1+N(t = 7))2] fuo(r) dr
0 0
- / {14 2BN(t - 7)] + EIN>(t — 1]} fro(7) dr
0
=Fr(t) +2 /t my(t = 7)fr(7) dT + /t E[N?(t — 7)) fr(7) dr
0 0
Making use of Eq. (5.175), we obtain

E[N(t)] = 2mn (t) — Fry(t) + / CEINYt - )fn(r) e (5182)
0



5.6 Renewal processes 277
This equation is of the form of that in (5.178), with g(t) = E[N?(t)] and

h(t) = 2mp(t) — F,(t) (since g(t) = 0 if t < 0). It follows, by Proposition
5.6.4, that

E[N?(t)] = 2mn(t) — Fp,(t) + /Ot[2mN(t ~7) = F (t — 7)] dn(7)

(5.183)
We have
t t
/ F,(t—7)dmy(r) = F(t— T)TnN(T)lé + / fro(t —T)mpy(T) dT
0 0
- _ 1) d
0 +/0 fro(T)mun(t —7) dr
L n(t) - Fo (£) (5.184)

from which we obtain Eq. (5.180). O
Ezample 5.6.4. When {N(t),t > 0} is a Poisson process with rate A, we have
E[N*(t)] = VIN@®)] + (EIN())? = M + (A)*

which is indeed equal to
t ¢
mp(t) + 2/ my(t —7) dmy(t) = At + 2/ At —7)A dr
0 0

o f o 12
= At + 2)\? (t2—~2—>

Ezample 5.6.5. When
frt)=1 H0<t<1

we find that
E[N@t)]=e' -1 for0<t<1

It follows that
1
E[N*(f)] = ¢t —1+2 / (¢ —1) ¢ dr
0

1

-——et~—1+2/ (et —e7) dr=¢" —1+2te’ — (¢! —1)]
0

=e'(2t—1)+1 for0<t<1

As in Example 5.6.3, the fact that 0 < 75 < 1 implies that E[N*(1)] > 1,
for k=1,2,.... We have

E[Nl)]=e-1 and E[N*(1)]=e+1
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We know that the sum of two independent Poisson processes, with rates A;
and Ag, is a Poisson process with rate A := A1 + Az (see p. 234). The following
proposition can be proved.

Proposition 5.6.5. Let {N;(t),t > 0} and {Na(t),t > 0} be independent
renewal processes. The process {N(t),t > 0} defined by

N(t) = Ny(t) + No(t) fort >0 (5.185)

is a renewal process if and only if {N;(t),t > 0} is a Poisson process, for
i=1,2.

Finally, the following result can be proved as well.

Proposition 5.6.6. Let {N(t),t > 0} be a renewal process. The kth moment
of N(t) about the origin (exists and) is finite, for all k € {1,2,3,...}:

E[N*t)] <00 forallt < oo (5.186)

Remark. We deduce from the proposition that my(t) < oo V't < co. Thus, not
only can the number of renewals in an interval of finite length not be infinite
(see p. 270), but the mathematical expectation of the number of renewals in
this interval cannot be infinite either.

5.6.1 Limit theorems

Note first that Ty designates the time instant of the last renewal that
occurred before or at time ¢. Similarly, T(;)+1 denotes the time instant of
the first renewal after time t.

We will show that the average number of renewals per time unit, namely
N(t)/t, tends to 1/p as t — oo, where p := E[r;] V i is assumed to be finite.
The constant A := 1/u is called the rate of the process.

Proposition 5.6.7. We have, with probability 1:

~——-Nt(t) - A ast— (5.187)

where A = 1/p > 0.

Proof. We may write that

TN(t) <t< TN(t)+1 (5188)

T <t <TN(t)+1

= NG SN® C N

(if N(t) > 0) (5.189)

Now, by the strong law of large numbers (since E[|7;]] = E[7;] < 00), we have
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Z L u o as N(t) — oo (5.190)
=0

with probability 1. Furthermore, because N(t) — oo as t — 00, we may write
that (with probability 1)

Ty
= 5.191
MmN = H (5.191)
Finally, given that
Tvon _ Inoer (), 1 (5.192)
N(t) N(t)+1 N(t)
we deduce that
. t 1 N{t) 1
< _ - im —~% < — 5.
B < tli{& 0 <p &= . < tl_l_)rrolo P S (5.193)

with probability 1. O

The next theorem, which states that the average expected number of re-
newals per time unit also converges to A, is not a direct consequence of the pre-

. ey o0 3
ceding proposition, because the fact that a sequence {X,},_; of random vari-
ables converges to a constant ¢ does not imply that the sequence {E[X,]}rey
converges to c.

Theorem 5.6.1 (Elementary renewal theorem). If the mean E|r] is fi-
nite, then we have

1o EIV@)

t—00 t

— A (5.194)

Remark. 1) Actually, if u = oo, the preceding result is still valid (by setting
A= 1/p = 0). Similarly, Proposition 5.6.7 is valid when u = oo as well.

ii) There is no mention of probability in the theorem, because E[N(t)] is a
deterministic function of ¢ (while N(t) is a random variable).

The following two theorems can also be shown.
Theorem 5.6.2. If ;1 := E[ry] < 0o and 02 := V[rp] < 0o, then

tim LEVOL 2y (5.195)
t—00 t
Theorem 5.6.3 (Central limit theorem for renewal processes). If
E[7d] is finite, then we may write that

t to?
N(t)= N (;» %) =N (/\t,02>\3t) if t is large enough (5.196)
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Ezample 5.6.6. If {N(t),t > 0} is a Poisson process with rate Ag, then 7o ~
Exp(Ao), so that p := E[rg] = 1/)A¢ and o2 := V|rp] = 1/A3. We have indeed

N(t) ~ Poi(Aot) &~ N(Aot, Aot) = N(At, Ay 2\3¢)
where A :=1/p = Ag.
The proposition that follows can be used to show Theorem 5.6.1.
Proposition 5.6.8. We have
ETn(+1] = E[n{E[N(t)] + 1} (5.197)

Proof. By conditioning on the value taken by the random variable 79, which
is assumed to be continuous, we obtain

ETnw+1] = /o E[Tn@y+1 | 70 = T)fr(T) dT
t [e'e]
= / {7+ ETn-ry+1]} fro(7) dT +/ Tfro(T) dT
0 ¢
o0 t
= [t drt [ ETwnsalfalr) dr
0 0

= Elro} + /0 E[Tn(t—ry41)fro(T) dT (5.198)

This equation is the particular case of the renewal equation (5.178), which is
obtained with g(t) = E{Tn(+1] and h(t) = E{ro]. Dividing both members of
the equation by E[ro] and subtracting the constant 1, we find that

ETnw+1] 1= /t Ellv@—r)+1]
0

g (t) = Elro] Eiro] fro (1) dr (5.199)

t

= / @ —7) + 1] fry(7) d7 = Fr, () + / g (t — 7)fr (T) d7
0 : 0

Now, this equation is the same as Eq. (5.175). Therefore, by the uniqueness
of the solution, we may write that

my(t) = Ellver) 1 <=  E[Tnw4i] = Elnlmn(t) +1] O

Efro]
(5.200)

Definition 5.6.4. Let ¢ be a fized time instant. The random variable
A(t) =t —Tng (5.201)
is called the age of the renewal process at time t, while
D(t) :=Tn@y+1 — 1t (5.202)

is the remaining or excess lifetime of the process at time t (see Fig. 5.3).
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Fig. 5.3. Age and remaining lifetime of a renewal process.

By proceeding as above, we can prove the following proposition.

Proposition 5.6.9. The distribution function of D(t) is given by
¢
Fp(r) = Fr(t +7) - / 0= Fo(t+r—n)]dnx(r)  (5.208)
0
forr > 0. In the case of A(t), we find that

PlA(t) > al=1—F, (t) + /t~a[1 ~F, (t—7) dnn(t) f0<a<lt
’ (5.204)

and P[A(t) > al =0 ifa >t

When t is large enough and 7 is a continuous random variable, we find
that

1

m[l —F(r)] forr>0 (5.205)

fo(r) =
In fact, this formula for the probability density function of D(¢) is ezact if the
renewal process {N(t),t > 0} is stationary.

Suppose now that at the moment of the nth renewal of the process
{N(t),t > 0}, we receive, or we have accumulated, a reward R,, (which may,
actually, be a cost). Suppose also that the rewards {R, }Zozl are independent
and identically distributed random variables. However, in general, R,, will de-
pend on 7,_1, that is, the length of the nth renewal period, called a cycle. Let
R(t) be the total reward received in the interval {0,%]. That is,

N(t)
R(t)=> R, (R(t)=0if N(t)=0) (5.206)
n=1

We will show that the average reward received by time unit, in the limd, is
equal to the average reward received during a cycle, divided by the average
length of a cycle.

Proposition 5.6.10. If E[R;] < oo and E[rp] < o0, then we have

. R(t)  E[R]] _
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Proof. It suffices to use the strong law of large numbers and Proposition
5.6.7. Since N(t) — 00 as t — 00, we may write

N(t)
= .208
P 3 - Eima| < 5209
from which we have
N() N(@)
R 1 o [ZMR,] N
tlinolo Tt T tll»rglo t Zl Fn = tliglo [_NW tlggo t
= B[R] X —— (5.209)
with probability 1. O
Remarks. i) It can also be shown that
. E[R(t)] _ E[Ri] .
= 210
tll>r£<> t E [To] (O )

ii) If the reward R, may take positive and negative values, then we must
assume that E[|R;|] is finite.

With the help of the preceding proposition, we will prove the following
result.

Proposition 5.6.11. If 7y is a continuous random variable, then we have,
with probability 1:

Ay dr  [ED(r)dr  E[]
tllglo t o tl—1->n;> t "~ 2E[r]

(5.211)

Proof. Suppose that the reward received at time ¢ is given by A(t). Then, we
may write that

B[R =E [ /0 ", dT] _ E[%‘i] - -E[zi] (5.212)

To obtain the other result, we simply have to suppose that the reward received
at time ¢ is rather given by D(t), and then the variable 7 is replaced by 7o ~ 7
in the integral. O

Remark. Note that we calculated the average value of the age (or of the re-
maining lifetime) of the process over a long period, which is a temporal mean,
and not a mathematical expectation. If E[r¢] < oo, then it can also be shown
that

E (78]
2E(ro]

Jm E[A(t)] = Jim E[D(t)] = (5.213)
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Ezample 5.6.7. If {N(t),t > 0} is a Poisson process, then, making use of the
fact that it has independent and stationary increments, we can assert that
D(t) has an exponential distribution with parameter X. Thus, we have

Moreover, 79 ~ Exp(}), too, so that

2
i B PO AT F ()1
t—o0 t 2/)\ A

So, in this case, the temporal mean and the mathematical expectation of D(t)
are equal, for all £ > 0.

Example 5.6.8. (a) Let {N(t),t > 0} be a counting process for which the time
between two events has a U[0, S] distribution, where

g 1 with probability 1/2
]| 2 with probability 1/2

Explain why {N(t),t > 0} is not a renewal process.
(b) In part (a), suppose that S is rather a random variable whose value is
determined at time ¢t = 0 and after each event by tossing a fair coin. More
precisely, we have
g { 1 if “tails” is obtained
7] 2if “heads” is obtained

In this case, the stochastic process {N(t),t > 0} is a renewal process.

(i) Calculate my(¢), for 0 <t < 1.

(ii) Suppose that we receive a reward equal to $1 when the length of a
cycle is greater than 1 (and $0 otherwise). Calculate the average reward per
time unit over a long period.

Solution. (a) {N(t),t > 0} is not a renewal process, because the times be-
tween the successive events are not independent random variables. Indeed,
the smaller 7y is, the larger the probability that § = 1 is. So, the 73’s depend
on g, for all kK > 1.

(b) (i) Let 7 be the length of a cycle. We have
Ft)=Plr<t]=Plr<t|S=1P[S=1]+P[r <t| S8 =2|P[S =2]
N—_——
1/2
That is,

2

It follows that the renewal equation is

1
F(t):g(t—\tz>=%4E for0<t<1
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3t ¢ 3  y=t—z3t 3 [

) == —z)2 -z 9t L 9 d

mpy(t) 4+/0m(t zv)4dx 4+4/0m1v(y)y
3 3

= my(t) =7+ 7mn()

We deduce from the initial condition my(0) = 0 and from the formula (3.233),
p. 130, that

t
my(t) = /4 <O+/ 6—3?//4% dy) =et4 -1 foro<t<1
0
(ii) We have

E[r) = Elro | S=1]P[S =1]+E[r | S =2|P[S =2] =

1/2

[N

and

ER)=E[R|S=1]P[S=1+E[R|S=2]P[S=2]=

0 1/2

1
4

Therefore, the average reward per time unit (over a long period) is given by

(1/4)/(3/4) = 1/3.

5.6.2 Regenerative processes

We know that the Poisson process, {N(t),t > 0}, starts anew, probabilisti-
cally, from any time instant, because it has independent and stationary incre-
ments. However, since it is a counting process, once the first event occurred,
N(t) will never be equal to 0 again. We are interested, in this subsection,
in processes that are certain to eventually return to their initial state and
that, at the moment of this return, start afresh probabilistically. This type of
stochastic process is said to be regenerative.

Definition 5.6.5. Let 79 be the time that the discrete-state stochastic process
{X(t),t > 0} spends in the initial state X(0). Suppose that

i) P[3t>1: X(t) =X(0)] =1,

it) the processes {X(t) — X(0),t > 0} and {Y'(¢),t > 0}, where

Y(t) = X(t+Ty) — X(T}) (5.214)

and Ty is the time of first return to the initial state, are identically distributed,
iti) the stochastic process {Y (t),t > 0} is independent of the process {X(t),
0<t<T}.

The process {X(t),t > 0} is then called a regenerative process.
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Remarks. 1) Let T, be the time of the nth return to the initial state, for
n =1,2,.... We assume that P[T; < oo] = 1. It then follows that the time
instants Ty, T3,... must also (exist and) be finite with probability 1.

ii) A regenerative process may be a discrete-time process {X,,n =0,1,...}
as well. In this case, 7y is the time that the process takes to make a transition
from the initial state to an arbitrary state, which may be the initial state (for
example, if {X,,n=0,1,...} is a Markov chain).

ifi} The cycles of the regenerative process are the processes

{Co(t),0<t<Ty} and {Cn(t),Tp <t<Tpy1} forn=1,2,...

(5.215)
These stochastic processes are independent and identically distributed, for
n=20,1,... . Similarly, the random variables Xg := T} and X, :=T,,41 — Tp,
forn=1,2,..., are i.i.d.

iv) According to the definition above, a renewal process is not regenerative,
because it is a particular counting process. However, we can associate a re-
newal process {N(t),t > 0} with a regenerative process {X(t),t > 0}, by
setting that N(t) is the number of times that {X(t),t > 0} came back to
the initial state and started anew in the interval [0,¢]. That is, N(t) is the
number of cycles completed in this interval. Conversely, we can define a re-
generative process {X(t),t > 0} from a renewal process {N(t),t > 0} (for
which N(0) = 0) as follows:

N@) #0<t<Tp
_ ) Ney -k Ty << Ty,
XO= 3 Ny~ 2k i T3, < t < T3, (5.216)

for some k € {2,3,...}, where 757, T5, ... are the arrival times of the renewals.
Note that with k& = 1, we would have that X (t) = 0. Moreover, here 17 = T}.

Ezample 5.6.9. The queueing model M/M /1, described in Example 3.1.6 (and
which will be studied in detail in Chapter 6), is an example of a regenerative
process. In this model, X (t) designates the number of persons in a system at
time ¢. Thus, if X(0) = 0, then we are certain that the system will eventually
be empty again and that, from that point on, everything will start anew.

Ezample 5.6.10. Let {X,,n = 0,1,...} be a discrete-time Markov chain,
whose state space is the set {0,1} and whose one-step transition probabil-

ity matrix is given by
_11/21/2
P- [0

Suppose that Xg = 0. Since the chain is irreducible and has a finite number
of states, we may assert that it is recurrent. Therefore, the probability that
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the process will visit the initial state 0 again is equal to 1. It follows that this
Markov chain is a regenerative process. Suppose that every transition of the
chain takes one time unit. Then, we may write that P[T3 = 1] = P[T} = 2] =
1/2. Finally, let N(0) = 0 and N(t) be the number of visits to state 0 in the
interval (0,1], for ¢t > 0. The process {N(t),t > 0} is then a renewal process.

Proposition 5.6.12. If E[T}] < oo, then the proportion m of time that a
regenerative process spends in state k is given, in the limit, by

E[time spent in state k in the interval [0, T1]]
E[T1]

T = (5.217)
Proof. Suppose that we receive an instantaneous reward of $1 per time unit
when the process {X(¢),t > 0} is in state k, and $0 otherwise. Then the total
reward received in the interval [0,¢] is given by

t
R(t) =/ Iix(ry=ky dT (5.218)
0
where Iix(ry=i} is the indicator variable of the event {X(r) = k} [see
Eq. (3.43)]. If E[T1] < oo, Proposition 5.6.10 implies that
m 2O _ Elf] (5.219)

t-l»oo t —E[Tﬂ

(with probability 1), where R; is the time spent by the process in state k
in the interval [0, T1]. Now, lim¢ o R(t)/¢ is the proportion of time that the
process spends in state k. O

Remark. The proposition is valid for any type of random variable Ty. When
T} is a continuous variable, it can also be shown that

tl_arrolo PX(t)=k]=m (5.220)

That is, 7y is the limiting probability that the process will be in state k at
time ¢ as well.

Example 5.6.11. In the case of the process {X(t),t > 0} defined by Eq.
(5.216), we can directly write that mg = 7y = ... = m—1 = 1/k, because
the random variables T5, T3, ... are independent and identically distributed.

Ezample 5.6.12. In Example 5.6.10, the reward R; is equal to 1, because the
Markov chain spends exactly one time unit in the initial state 0 per cycle. It

follows that
1 1 2

©TEM 323
We can check, using Theorem 3.2.1, that the proportion 7y is indeed equal
to 2/3. Note that we may apply this theorem to obtain the proportion 7,
whether the chain is periodic or not. Here, the chain is ergodic, since pop =
1/2 > 0. Then, 7 is also the limiting probability that the process will be in
state O after a very large number of transitions.
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Ezample 5.6.13. We consider a discrete-time Markov chain {X,,n = 0,1, ...}
with state space {0, 1,2} and transition matrix P given by

01/21/2
P=|10 0
01/21/2

Suppose that the initial state is 0 and that when the process enters state 1, it
remains there during a random time having mean y;, for i =0, 1,2, indepen-
dently from one visit to another. Calculate the proportion of time that the
process spends in state 0 over a long period.

Solution. The Markov chain is recurrent, because it is irreducible and has a
finite number of states. Then the process {X,,n = 0,1,...} is regenerative.
Let T} be the time of first return to state 0 and N be the number of transitions
needed to return to 0. We have

EMiN=nl=p+pm+m-2)pu forn=2.3,...

Since P[N =n] = (1/2)"7!, for n = 2,3,..., it follows that

BITi) = BIEIT; | N) = j:;[uo b g (0~ a1/
Finally, we can write that “
f;m g/ = fj( ~1)(1/2)" = BlGeom(1/2)] -1 =1
so that~ _

E[Ty) = po + p1 + po

The proportion of time that the process spends in state 0 over a long period
is thus given by po/(po + p1 + p2)-

Remark. Since the matrix P is finite and doubly stochastic, we deduce from
Proposition 3.2.6 (the Markov chain being irreducible and aperiodic) that the
limiting probabilities 7, exist and are given by 1/3, for k£ = 0,1, 2. Hence, we
deduce that the proportion of time requested is indeed equal to po/ (0 + p1 +
2).

An important particular case of a regenerative process is the one for which
the state space of the process {X(t),t > 0} contains only two elements, which
will be denoted by 0 and 1. For example, X (¢t) = 0 if some machine is down,
and X(t) = 1 if it is operating at time ¢. Suppose that the machine is brand-
new at the initial time 0, so that X (0) = 1, and that the time during which
the machine operates, before breaking down, is a random variable S;. Next,
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the repairman takes a random time U; to set the machine going again, and
then the system starts afresh. Let

T, =8, +U, forn=12,... (5.221)

where S, is the operating time of the machine between the (n — 1)st and
the nth breakdown, and U, is the repair time of the nth breakdown, for
n = 2,3,.... We assume that the random variables {S,},.; are iid. and
that so are the r.v.s {Up} .. However, the r.v.s S, and U, may be dependent.

This type of stochastic process is often called an alternating renewal process.

Remark. Let N(t) be the number of times that the machine has been repaired
in the interval [0,¢]. The process {N(¢),t > 0} is a renewal process and the
T,’s are the arrival times of the renewals. However, the process {X (t),t > 0}
defined above is not a renewal process (according to our definition), because
it is not a counting process.

By using the renewal equation, we can show the following proposition.

Proposition 5.6.13. Let m(t) be the probability that X (t) = 1. We have

¢
mi(t) = 1 — Fs, (£) + / (L= Fe, (¢t —7)] dmn(r) (5.222)
0
Next, we deduce directly from Proposition 5.6.12 that
m=1-mg Bl _ ElS (5.223)

T E[S]+El] ET]
Moreover, if T} is a continuous random variable, then

tll{go mi(t) = m1 (5.224)

Finally, let {N(t),t > 0} be a renewal process and

X(t) = {(1) ii ﬁgg ; “ (5.225)

where a > 0 is a constant and A(t) is defined in Eq. (5.201). The process
{X(t),t > 0} is then an alternating renewal process, and we deduce from the
formula (5.223) that

o E[Sy] _ E[min{T},a}]
LT E(T] E[Ty]

(5.226)

where T} is the arrival time of the first renewal of the stochastic process
{N(t),t = 0}.
Remark. If T} < a, then we set Uy = 0.
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In the continuous case, we have

Emin{T{,a}] = /000 min{t, a} frx(t)dt = /Oa tfr; (t)dt + /:o afry(t)dt
(5.227)

We calculate
a a a
/ thl* (t)dt = tFTl* (t)'g — ] FT; (t)dt = CLFTI*(CL) — / FTf (t)dt (5.228)
0 0 0
from which we obtain the formula

Emin{T{,a}] = aFp;(a) — /Oa Fr«(t)dt 4+ aP[T{ > a] = a — /Oa Fry(t)dt
(5.229)

We can thus write that

S PITE > t)dt

IR (5.230)

Ty =

Remark. We obtain exactly the same formula as above for m; if we replace
A(t) by D(t) (defined in (5.202)) in (5.225).

Ezample 5.6.14. If T ~ Exp()), then we have that P[Ty > t] = e M. It

follows that R
fO e_At dt Aa

My = i =1—-e"

5.7 Exercises

Section 5.1

Question no. 1
Let {N(t),t > 0} be a Poisson process with rate \. We define the stochastic
process {X(¢),0 <t <c¢} by

X(t) = N(t) - -ZN(C) for0<i<ec

where ¢ > 0 is a constant.

(a) Calculate the mean of X (t).

(b) Calculate the autocovariance function of the process {X(t),0 <t < c}.
(c) Is the process {X(t),0 < ¢ < ¢} wide-sense stationary? Justify.
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Question no. 2

We suppose that customers arrive at a bank counter according to a Poisson
process with rate A = 10 per hour. Let N(¢) be the number of customers in
the interval [0, ¢].
(a) What is the probability that no customers arrive over a 15-minute time
period?
(b) Knowing that eight customers arrive during a given hour, what is the
probability that at most two customers will arrive over the following hour?

(c) Given that a customer arrived during a certain 15-minute time period,
what is the probability that he arrived during the first 5 minutes of the period
considered?

(d) Let X(t) := N(t)/t, for t > 0. Calculate the autocovariance function,
Cx(t1,t2), of the stochastic process {X(t),t > 0}, for t1,t2 > 0.

Question no. 3
The stochastic process {X(t),¢ > 0} is defined by

N (t+6%) - N(t)
5

X(t)= fort >0

where {N(t),t > 0} is a Poisson process with rate A > 0, and § > 0 is a
constant.
(a) Is the process {X (t),t > 0} a Poisson process? Justify.
(b) Calculate the mean of X(t).
(¢) Calculate the autocovariance function of the process {X(t),t > 0}, for
t1=1,t2:2, and 6 = 1.
(d) Let Z, := N(n), forn=0,1,2,... .

(i) The stochastic process {Z,,n =0,1,...} is a Markov chain. Justify
this assertion.

(i) Calculate p; j, for i,j € {0,1,2,...}.
Question no. 4

Let N(t) be the number of failures of a computer system in the interval
[0,t]. We suppose that {N(¢),t > 0} is a Poisson process with rate A = 1 per
week.
(a) Calculate the probability that

(i) the system operates without failure during two consecutive weeks,

(ii) the system will have exactly two failures during a given week, knowing
that it operated without failure during the previous two weeks,

(iil) less than two weeks elapse before the third failure occurs.
(b) Let

Z(t) = e NO fort>0
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Is the stochastic process {Z(t),t > 0} wide-sense stationary? Justify.
Indication. We have that E[e™*X] = exp [a (e~° — 1)] if X ~ Poi(a).

Question no. 5

A man plays independent repetitions of the following game: at each repe-
tition, he throws a dart onto a circular target. Suppose that the distance D
between the impact point of the dart and the center of the target has a U[0, 30]
distribution. If D < 5, the player wins $1; if 5 < D < 25, the player neither
wins nor loses anything; if D > 25, the player loses $1. The player’s initial
fortune is equal to $1, and he will stop playing when either he is ruined or his
fortune reaches $3. Let X, be the fortune of the player after n repetitions.
Then the stochastic process {X,,n = 0,1,...} is a Markov chain.

(a) Find the one-step transition probability matrix of the chain.
(b) Calculate E[X2].

Suppose now that the man never stops playing, so that the state space of
the Markov chain is the set {0,+1,42,...}. Suppose also that the duration T’
(in seconds) of a repetition of the game has an exponential distribution with
mean 30. Then the stochastic process {N(t),t > 0}, where N(t) denotes the
number of repetitions completed in the interval {0, ¢], is a Poisson process with
rate A = 2 per minute.

(c) Calculate the probability that the player will have completed at least three
repetitions in less than two minutes (from the initial time).

(d) Calculate (approximately) the probability P[N(25) < 50].

Question no. 6

Let N(t) be the number of telephone calls received at an exchange in the
interval [0,t]. We suppose that {N(t),t > 0} is a Poisson process with rate A
= 10 per hour. Calculate the probability that no calls will be received during
each of two consecutive 15-minute periods.

Question no. 7

The customers of a newspaper salesperson arrive according to a Poisson
process with rate A = 2 per minute. Calculate the probability that at least
one customer will arrive in the interval (fg,to + 2], given that there has been
exactly one customer in the interval (g — 1,% + 1], where tp > 1.

Question no. 8
The stochastic process {X(t),t > 0} is defined by

X(#t)=N@E+1)-NQ1Q) fort>0

where {N(t),t > 0} is a Poisson process with rate A > 0. Calculate Cx(s,1),
for0<s<t.
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Question no. 9 We define

(1N
Y = {o it N ()

where {N(t),t > 0} is a Poisson process with rate A = 1. It can be shown that
PlY(t)=1] = (1 +e"%)/2, for t > 0. Next, let X, :=Y(n) for n =0,1,....
Then {Xn,n=0,1,...} is a Markov chain. Calculate

(a) its one-step transition probability matrix,

=0,2,4,...
1,3,5,...

(b) the limiting probabilities of the chain, if they exist.

Question no. 10
The failures of a certain machine occur according to a Poisson process with
rate A = 1 per week.

(a) What is the probability that the machine will have at least one failure
during each of the first two weeks considered?

(b) Suppose that exactly five failures have occurred during the first four weeks
considered. Let M be the number of failures during the fourth of these four
weeks. Calculate E[M | M > 0].

Question no. 11
Let {N(t),t > 0} be a Poisson process with rate A > 0. We define

Ni(t) = N(v/t), No(t)=N(2t), and Ns(t)= N(t+2)— N(2)

and we consider the processes {Ni(t),t > 0}, for k = 1,2,3. Which of these
stochastic processes is (or are) also a Poisson process? Justify.

Question no. 12

The power failures in a certain region occur according to a Poisson pro-
cess with rate A; = 1/5 per week. Moreover, the duration X (in hours) of a
given power failure has an exponential distribution with parameter Ap = 1/2.
Finally, we assume that the durations of the various power failures are inde-
pendent random variables.

(a) What is the probability that the longest failure, among the first three
power failures observed, lasts more than four hours?

(b) Suppose that there has been exactly one power failure during the first
week considered. What is the probability that the failure had still not been
repaired at the end of the week in question?

Question no. 13

A machine is made up of two components that operate independently.
The lifetime X; (in days) of component i has an exponential distribution with
parameter \;, for i =1,2.

Suppose that the two components are placed in series and that as soon
as a component fails, it is replaced by a new one. Let N(t) be the number of
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replacements in the interval (0,¢]. We can show that the stochastic process
{N{(t),t > 0} is a Poisson process. Give its rate \.

Indication. If X is the time between two successive replacements, then we
can write that X() = min{Xl, XQ}

Question no. 14
We consider the process {X(¢),0 <t < 1} defined by

X(t)=N(@t*)—t?N(1) for0<t<1

where {N(t),t > 0} is a Poisson process with rate A > 0.

(a) Calculate the autocorrelation function, Rx (t1,t2), of the stochastic process
{X(t),O <t< 1} at t1 = 1/4 and to = 1/2.

(b) Calculate P[X(t) >0 | N(1) =1}, for 0 <t < 1.

Question no. 15

Let {N(t),t > 0} be a Poisson process with rate A. Show that, given that
N(t) = n, N(s) has a binomial distribution with parameters n and s/t, where
0 <s <t forall A (>0).

Question no. 16
Travelers arrive at a bus station from 6 a.m., according to a Poisson process
with rate A = 1 per minute. The first bus leaves T' minutes after 6 a.m.

(a) Calculate the mean and the variance of the number of travelers ready to
board this bus if (i} 7" has an exponential distribution with mean equal to 15
minutes and (ii) T is uniformly distributed between 0 and 20 minutes.

(b) Calculate the average number of passengers on the bus if it leaves at 6:15
and if its capacity is 20 passengers.

Question no. 17

We suppose that every visitor to a museum, independently from the oth-
ers, moves around the museum for T minutes, where T is a uniform random
variable between 30 and 90 minutes. Moreover, the visitors arrive according
to a Poisson process with rate A\ = 2 per minute. If the museum opens its
doors at 9 a.m. and closes at 6 p.m., find the mean and the variance of the
number of visitors in the museum (i) at 10 a.m. and (ii) at time %y, where g
is comprised between 10:30 a.m. and 6 p.m.

Question no. 18

Suppose that events occur at random in the plane, in such a way that
the number of events in a region R is a random variable having a Poisson
distribution with parameter AA, where X is a positive constant and A denotes
the area of the region R. A point is taken at random in the plane. Let D be
the distance between this point and the nearest event. Calculate the mean of
the random variable D.
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Question no. 19

The various types of traffic accidents that occur in a certain tunnel, over
a given time period, constitute independent stochastic processes. We suppose
that accidents stopping the traffic in the northbound (respectively, south-
bound) direction in the tunnel occur according to a Poisson process with rate
o (resp., 3). Moreover, accidents causing the complete closure of the tunnel
occur at rate v, also according to a Poisson process. Let T (resp., Ts) be
the time during which the traffic is not stopped in the northbound (resp.,
southbound) direction, from the moment when the tunnel has just reopened
after its complete closure.

(a) Calculate the probability density function of the random variable Ty.
(b) Show that

P[Ty >t,Ts > 7] = e~ F7=7 max{t.7}  for t. 7 >0

(c) Check your answer in (a) with the help of the formula in (b).

Question no. 20

Let {N*(t),t > 0} be the stochastic process that counts only the even
events (that is, events nos. 2,4,...) of the Poisson process {N(t),t > 0} in
the interval [0,¢]. Show that {N*(t),t > 0} is not a Poisson process.

Question no. 21

Let {Ni(t),t > 0} and {N3(t),t > 0} be two independent Poisson pro-
cesses, with rates A\; and Ay, respectively. We define N(t) = Ny(t) — Na(t).
(a) Explain why the stochastic process {IN(t),t > 0} is not a Poisson process.
(b) Give a formula for the probability P[N(t2) — N(t1) =n}, for t; >t >0
and n € {0,£1,£2,...}.
Question no. 22

Suppose that {N(t),t > 0} is a Poisson process with rate A > 0 and that
S is a random variable having a uniform distribution on the interval [0, 2.
(a) Obtain the moment-generating function of the random variable N (¢t + S).
Indication. If X has a Poisson distribution with parameter o, then Mx(t) =
exp{a(et — 1)}.
(b) Calculate the mean and the variance of N(t + 5).
Question no. 23
(a) Is the Poisson process {N(t),t > 0} an ergodic process? Justify.
(b) Is the stochastic process {X(t),t > 0}, where X(t) := N(t)/t, mean
ergodic? Justify.

Question no. 24
City buses arrive at a certain street corner, between 5 a.m. and 11 p.m.,
according to a Poisson process with rate A\ = 4 per hour. Let T} be the
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waiting time, in minutes, until the first bus (after 5 a.m.), and let M be the
total number of buses between 5 a.m. and 5:15 a.m.

(a) Calculate the probability P[Ty € I, M = 1], where I := [a,b] is included
in the interval [0, 15].

(b) What is the variance of the waiting time between two consecutive arrivals?

(c) If a person arrives at this street corner every morning at 9:05 a.m., what
is the variance of the time during which she must wait for the bus? Justify.

Question no. 25

A truck driver is waiting to join the traffic on the service road of a highway.
The truck driver blocks the service road for four seconds when he joins the
traffic. Suppose that vehicles arrive according to a Poisson process and that
six seconds elapse, on average, between two consecutive vehicles. Answer the
following questions by assuming that the truck driver makes sure that he has
enough time to perform his maneuver before merging into the traffic.

(a) What is the probability that the truck driver is able to join the traffic
immediately on his arrival at the intersection with the service road?

(b) What is the mathematical expectation of the gap (in seconds) between the
truck and the nearest vehicle when the truck driver merges into the traffic?

(c) Calculate the average number of vehicles that the truck driver must let go
by before being able to merge into the traffic.

Question no. 26
Particles are emitted by a radioactive source according to a Poisson process
with rate A\ = In5 per hour.

(a) What is the probability that during at least one of five consecutive hours
no particles are emitted?

(b) Knowing that during a given hour two particles were emitted, what is the
probability that one of them was emitted during the first half-hour and the
other during the second half-hour of the hour in question?

(c) In (b), if we know that the first particle was emitted over the first half-
hour, what is the probability that the second particle was emitted during the
first half-hour as well?

Question no. 27

A system is made up of two components. We suppose that the lifetime (in
years) of each component has an exponential distribution with parameter A
= 2 and that the components operate independently. When the system goes
down, the two components are then immediately replaced by new ones. We
consider three cases:

1. the two components are placed in series (so that both components must
function for the system to work);
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2. the two components are placed in parallel (so that a single operating com-
ponent is sufficient for the system to function) and the two components
operate at the same time;

3. the two components are placed in parallel, but only one component oper-
ates at a time and the other is in standby.

Let N(t), for t > 0, be the number of system failures in the interval [0, ].
Answer the following questions for each of the cases above.

(a) Is {N(t),t > 0} a Poisson process? If it is, give its rate A. If it’s not, justify.
(b) What is the average time elapsed between two consecutive system failures?

Question no. 28

Let {N(t),t > 0} be a Poisson process with rate A = 2 per minute, where
N{(t) denotes the number of customers of a newspaper salesperson in the
interval [0, ].
{(a) Let Ty, for k = 1,2,..., be the arrival time of the kth customer. Calculate
the probability density function of Ty, given that To = s.

(b) Calculate the probability that at least two minutes will elapse until the
salesperson’s second customer arrives, from a given time instant, given that
no customers have arrived in the last minute.

(c) Suppose that the probability that a given customer is a man is equal to
0.7, independently from one customer to another. Let M be the number of
consecutive customers who are men before the first woman customer arrives,
from some fixed time instant tg > 0. Calculate the mathematical expectation
of M, given that the first customer after ¢ was a man.

Question no. 29

Suppose that {N(t),t > 0} is a Poisson process with rate A = 2.
(a) Let Ty be the arrival time of the kth event of the process {N(t),¢ > 0},
for k =1,2,.... Calculate P{T} + T» < T3].
(b) Let S be a random variable having a uniform distribution on the interval
[0,1] and that is independent of the process {N(t),t > 0}. Calculate E[N?(S)].
(¢) We define X, = N(n?), for n = 0,1,2,.... Is the stochastic process
{Xn,n =0,1,2,...} a Markov chain? Justify by calculating the probability
P[Xn+1 =j I Xn = i,Xn_1 =in_1,--- ,Xo = Zo}
Question no. 30

We denote by N(t) the number of failures of a machine in the interval [0, £].
We suppose that N(0) = 0 and that the time 79 until the first failure has a
uniform distribution on the interval (0,1]. Similarly, the time 74x_; between
the (k — 1)st and the kth failure has a U(0, 1] distribution, for k = 2,3,....
Finally, we assume that 79, 71,... are independent random variables.

(a) Calculate (i) the failure rate of the machine and (ii) P[N(1) = 1].
(b) (i) Let 7§ := —% In, for k= 0,1,... . We define (see Ex. 5.1.2)
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n—1
So=0 and Sn:ZT,’: forn>1
k=0

Finally, we set
N*(t) = max{n > 0: S, <t}

Show that the stochastic process {N*(t),t > 0} is a Poisson process, with
rate A = 2, by directly calculating the probability density function of 73, for
all k, with the help of Proposition 1.2.2.

(ii) Use the central limit theorem to calculate (approximately) the proba-
bility P{Slgg > 40].

Question no. 31
In the preceding question, suppose that the random variables 75 all have
the density function

f(s) = se™ /% fors>0

(a) (i) Now what is the failure rate of the machine and (ii) what is the value
of the probability P[N(1) = 1]?
Indication. We have

1
/ te=+t it ~ 0.5923
0

(b) (i) Let 73 := 72, for k =0, 1,... . We define the random variables S,, and
the stochastic process {N*(t),t > 0} as in the preceding question. Show that
the process {N*(t),t > 0} is then a Poisson process with rate A = 1/2.

(ii) Calculate approximately the probability P[S2s < 40] with the help of
the central limit theorem.

Question no. 32

A woman working in telemarketing makes telephone calls to private homes
according to a Poisson process with rate A = 100 per (working) day. We
estimate that the probability that she succeeds in selling her product, on a
given call, is equal to 5%, independently from one call to another. Let N(t) be
the number of telephone calls made in the interval [0, t], where ¢ is in (working)
days, and let X be the number of sales made during one day.

(a) Suppose that the woman starts her working day at 9 a.m. and stops
working at 7 p.m. Let 19 be the number of minutes between 9 a.m. and the
moment of her first call of the day, and let Sy be the duration (in minutes) of
this call. We suppose that Sy ~ Exp(1) and that 7o and Sy are independent
random variables. What is the probability that the woman has made and
finished her first call at no later than 9:06 a.m. on an arbitrary working day?

(b) Calculate V[X | N(1) = 100].
(c) Calculate (approximately) P[N(1) = 100 | X = 5].
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.. . L
Indication. Stirling’s* formula: n! ~ v/2rn"tze~".
t=3

(d) What is the probability that the woman will make no sales at all on exactly
one day in the course of a week consisting of five working days?

Question no. 33

The breakdowns of & certain device occur according to a Poisson process
with rate A = 2 per weekday, and according to a Poisson process (independent
of the first process) with rate A = 1.5 per weekend day. Suppose that exactly
four breakdowns have occurred (in all) over two consecutive days. What is
the probability that both days were weekdays?

Question no. 34

Let {N(t),t > 0} be a Poisson process with rate A = 2 per minute. What
is the probability that the time elapsed between at least two of the first three
events of the process is smaller than or equal to one minute?

Question no. 35

Let N(t) be the number of telephone calls to an emergency number in the
interval [0,t]. We suppose that {N(t),t > 0} is a Poisson process with rate A
= 50 per hour.

(a) What is, according to the model, the probability that there are more calls
from 8 a.m. to 9 a.m. than from 9 a.m. to 10 a.m.?

Indication. If X ~ Poi(50) and Y ~ Poi(50) are independent random variables,
then we have that P[X = Y] ~ 0.0399.

{(b) Suppose that 20% of the calls are redirected to another service. Knowing
that there were 60 (independent) calls during a given hour and that the first
of these calls was redirected elsewhere, what is the mathematical expectation
of the number of calls that were redirected over the hour in question?

Question no. 36
From a Poisson process with rate A, {N(¢),t > 0}, we define the stochastic
process {M(t),t > 0} as follows:

M@#) =N({)—t fort>0

Calculate P[S; < 2], where S} := min{t > 0: M(t) > 1}.

Question no. 37
Let

X = N+ 5; ~ N(t)

where {N(t),t > 0} is a Poisson process with rate A and § > 0 is a constant.
(a) Calculate E[X (t)].

fort >0

4 See p. 93.
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(b) Calculate Cov[X(s), X(t)], for s, > 0.
(c) Is the process {X(t),t > 0} wide-sense stationary? Justify.

Question no. 38

A machine is composed of three identical components placed in standby
redundancy, so that the components operate (independently from each other)
by turns. The lifetime (in weeks) of a component is an exponential random
variable with parameter A = 1/5. There are no spare components in stock.
What is the probability that the machine will break down at some time during
the next nine weeks, from the initial time, and remain down for at least a week,
if we suppose that no spare components are expected to arrive in these next
nine weeks?

Question no. 39
Let {X(t), t > 0} be the stochastic process defined by

X(t) = tN(t) — [[]N([t]) fort>0

where {N(t),t > 0} is a Poisson process with rate A (> 0) and [¢] denotes the
integer part of t.

(a) Is the process {X (t),t > 0} a continuous-time Markov chain? Justify.

(b) Calculate the probability p; ;(t,t + s) := P[X(t +s) = j | X(t) = i], for
i,j€{0,1,...} and s,t > 0.

Question no. 40

We consider the stochastic process {X(¢), t > 0} defined from a Poisson
process with rate A, {N(¢),t > 0}, as follows (see Ex. 5.1.4):

X({#)=N({)—tN(1) for0<t<1

(a) Let M be the number of visits of the stochastic process {X(t),t > 0} to
any state x; > 0, from any state z; < 0, in the interval 0 < ¢ < 1. Calculate
P[M =n|N(1)=n].

(b) We define T' = min{¢ > 0: X(¢) > 0}. Calculate the conditional probabil-
ity density function fr(t| N(1) = 2).

Question no. 41

Consider the stochastic process {Y'(¢),t > 0} defined in Question no. 9,
where {N{t),t > 0} is now a Poisson process with an arbitrary rate A (> 0).
It can be shown that we then have that P[Y'(t) = 1] = (1+e~?)/2, for t > 0.
Calculate
(a) P[N(2) - N(1) > 1| N(1) =1],
(b)P[N() 0Y(t)=1],
(c) P[Y(s) =1| N(t) = 1], where 0 < s < t.
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Question no. 42
We set
X({t)=N({t+c)—N{(c) fort>0

where {N(t),t > 0} is a Poisson process with rate A and c is a positive
constant. Is the stochastic process {X(t),t > 0} a Poisson process? Justify.

Question no. 43
Let {N(t),t > 0} be a Poisson process with rate A > 0 and let {X(¢),
t > 0} be the stochastic process defined as follows:

X(0) = 1 NCE8) =N )

f >
310 ) ort =0

where 0 is a positive constant.
(a) Calculate Cov|[X (t1), X (t2)], for t1,t2 > 0.
(b) Is the process {X(t),t > 0} wide-sense stationary? Justify.

Question no. 44

Suppose that {N(t),t > 0} is a Poisson process with rate X. Let X, :=
N2%(n),forn = 0,1,... .Is the stochastic process {X,,n = 0,1,... } a discrete-
time Markov chain? If it is, give its one-step transition probability matrix. If
it’s not, justify.

Question no. 45
Let T be the arrival time of the kth event of the Poisson process {N(t),
t > 0}, with rate \, for k = 1,2,... . Calculate the covariance Cov|T1, T3]

Question no. 46

We consider a Poisson process, {N(t),t > 0}, with rate A = 1. Let T1,
T5, ... be the arrival times of the events and let S; := Ty, Sy := Ty — 17,
S3 1= T3 — Ty, etc.
(a) Calculate P[{S; < Sz < S3} U {S3 < S2 < S1}].
(b) Let X := S}/2. Calculate (i) fx(z) and (ii) P|X < Sa.
(c) Calculate E[N%(1) | Tg = 5).

Question no. 47

Let {Xn,n =0,1,...} be a (discrete-time) Markov chain whose state space
is the set Z of all integers. Suppose that the process spends an exponential
time 7 (in seconds) with parameter A = 1 in each state before making a
transition and that the next state visited is independent of 7. Let N(t), for
t > 0, be the number of transitions made in the interval [0,¢].

(a) What is the probability that the third transition took place before the
fifth second, given that five transitions occurred during the first 10 seconds?

(b) Calculate E[|N(5) — 1]].
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Sections 5.2 to 5.5

Question no. 48
The failures of a certain device occur according to a nonhomogeneous
Poisson process whose intensity function A(t) is given by

0.2if0 <t <10
A(t)“{o.:aifwlo

where t is the age (in years) of the device.

(a) Calculate the probability that a five-year-old device will have exactly two
failures over the next 10 years.

(b) Knowing that the device had exactly one failure in the course of the first
5 years of the 10 years considered in (a), what is the probability that this
failure took place during its sixth year of use?

Question no. 49

Suppose that traffic accidents occur in a certain region according to a
Poisson process with rate A = 2 per day. Suppose also that the number M of
persons involved in a given accident has a geometric distribution with param-
eter p = 1/2. That is,

PM=m]=(1/2)" form=1,2,...

(a) Calculate the mean and the variance of the number of persons involved in
an accident over an arbitrary week.

(b) Let T be the random variable denoting the time between the first person
and the second person involved in an accident, from the initial time. Calculate
the distribution function of 7.

Question no. 50

Suppose that the monthly sales of a dealer of a certain luxury car constitute
a conditional Poisson process such that A is a discrete random variable taking
the values 2, 3, or 4, with probabilities 1/4, 1/2, and 1/4, respectively.
(a) If the dealer has three cars of this type in stock, what is the probability
that the three cars will be sold in less than a month?

(b) Suppose that A = 3. Calculate V{M | M < 1], where M is the number of
cars sold in one month.

Question no. 51

We suppose that the traffic at a point along a certain road can be described
by a Poisson process with parameter A = 2 per minute and that 60% of the
vehicles are cars, 30% are trucks, and 10% are buses. We also suppose that the
number K of persons in a single vehicle is a random variable whose function

Pk is
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1/2if k=1

1/4if k=2 09ifk=1
pr(k) = 1§8ifk=3 and pK(k):{O.lifk=2

1/8if k =4

in the case of cars and trucks, respectively, and pg(k) = 1/50, for k =
1,...,50, in the case of buses.

(a) Calculate the variance of the number of persons who pass by this point in
the course of a five-minute period.

Indication. We have

2 K = n(n +1)(2n +1)
2 ;

(b) Given that five cars passed by the point in question over a five-minute
period, what is the variance of the total number of vehicles that passed by
that point during these five minutes?

Indication. We assume that the number of cars is independent of the number
of trucks and buses.

(c) Calculate, assuming as in (b) the independence of the vehicles, the prob-
ability that two cars will pass by this point before two vehicles that are not
cars pass by there.

(d) Suppose that actually

t/5 f0<t<10
A=At) = 2 if10<t<50
(60 —t)/5 if 50 < t < 60

Calculate the probability P{N(60) = 100 | N(30) = 60], where N(t) is the
total number of vehicles in the interval [0, t].

Question no. 52

Let N(t) be the number of accidents at a specific intersection in the interval
[0,t]. We suppose that {N(t),t > 0} is a Poisson process with rate A\; = 1
per week. Moreover, the number Y}, of persons injured in the kth accident has
(approximately) a Poisson distribution with parameter Ay = 1/2, for all k.
Finally, the random variables Y7,Y5,... are independent among themselves
and are also independent of the stochastic process { N(t),t > 0}.

{(a) Calculate the probability that the total number of persons injured in the
interval [0, t] is greater than or equal to 2, given that N(t) = 2.

(b) Calculate V[N()Y:].

(c) Let Si be the time instant when the kth person was injured, for k =
1,2,.... Weset T = Sy — Sy. Caleulate P[T > 0].

Question no. 53
Let {N(t),t > 0} be a Poisson process with rate L.
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(a) Suppose that L is a random variable having an exponential distribution
with parameter 1 (so that {N(t),¢ > 0} is actually a conditional Poisson
process). Let T be the arrival time of the first event of the stochastic process
{N(t),t > 0}.

(i) Calculate the probability density function of 7.

(ii) Does the random variable T; have the memoryless property? Justify.

(b) Let L = 1/2. Calculate E{N?(1) | N(1) < 2].
(c) Let L = 1. Calculate P{N(3) — N(1) > 0| N(2) = 1].

Question no. 54
Telephone calls to an emergency number arrive according to a nonhomo-
geneous Poisson process whose intensity function is given by

) = 2if0<t <6 (bynight)
T 4if 6 <t < 24 (by day)

where t is in hours, and A(¢t) = A(t — 24), for ¢ > 24. Furthermore, the
duration (in minutes) of a call received at night has a uniform distribution on
the interval (0, 2], whereas the duration of a call received during the day has
a uniform distribution on the interval (0, 3]. Finally, the durations of calls are
independent random variables.

(a) Calculate the probability that an arbitrary telephone call received at night
will be longer than a given call received during the day.

(b) Calculate the variance of the number of calls received in the course of a
given week.

(c) Let D be the total duration of the calls received during a given day.
Calculate the variance of D.

Question no. 55

Let {N(t),t > 0} be a Poisson process with rate A = 2. Suppose that all
the events that occur in the intervals (2k, 2k + 1], where k € {0,1,2,...}, are
counted, whereas the probability of counting an event occurring in an interval
of the form (2k + 1,2k + 2] is equal to 1/2. Let IN;(t) be the number of events
counted in the interval [0, ¢].

(a) Calculate P[N{(2.5) > 2].
(b) Calculate V[N1(2) — 2N (1)].

(c) Let Sy be the arrival time of the first counted event. Calculate

P[S1 <s|Ni(2)=1] Vse(0,2]

Question no. 56

In the preceding question, suppose that A = 1 and that the probability of
counting an event occurring in an interval of the form (2k + 1, 2k + 2] is equal
to (1/2)*, for k € {0,1,2,...}.
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a) Calculate P[N1(5) > 5| N;(2) = 2].
b) Calculate Cov[Ny(5), N1(2)].

¢) Let M be the total number of counted events in the intervals of the form
2k +1, 2k + 2]. Calculate E[M].

d) Let S be the arrival time of the first event in an interval of the form
2k, 2k + 1]. Calculate fs(s | N(3) — N(2) + N(1) =1).
Question no. 57

Let {N1(t),t > 0} be a (homogeneous) Poisson process with rate A = 1,
and let {Na(t),t > 0} be a nonhomogeneous Poisson process whose intensity

function is ¢
1ifo0<t<1
)‘(t)_{2ift>1

(
(
(
(
(
(

We suppose that the two stochastic processes are independent. Moreover, let
{Y(t),t > 0} be a compound Poisson process defined by

Ni(t)
Y(t)= > X; (and Y(0)=0if Ni(t) =0)
i=1

where X; has a Poisson distribution with parameter 1, for all 4. Calculate

(a) P[T1,2 < Ta9,N1(1) = No(1) = 0], where Ty, ,, denotes the arrival time of
the nth event of the process {N,,(t),t > 0}, form=1,2andn=1,2,...,

(b) VIN2(1)(N2(2) — N2(1))],
(c) (i) P[Y(1) < N1(1) < 1]; (i) VY (5) | N1(5) < 2].
Question no. 58

Suppose that the intensity function A(t) of the nonhomogeneous Poisson
process {N(t),t > 0} is given by

t
where A > 0 and ¢ is in minutes.

(a) Let T1 be the arrival time of the first event of the stochastic process
{N(t),t > 0}. Calculate P[T} < s | N(1) = 1], for s € (0,1].

(b) Suppose that A = 2 and that N(5) > 2. Calculate the probability that, at
time ty = 10, at least five minutes have elapsed since the penultimate event
occurred.

Question no. 59
In the preceding question, suppose that

1
= —— fort>0
A(t) 1+t+1 ort >

where t is in minutes.
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(a) Calculate fr,(s| N(1) = 1), for s € (0,1].
(b) Suppose that N(5) > 3. Calculate the probability that, at time ¢t = 10,

at least five minutes have elapsed since the antepenultimate (that is, the one
before the penultimate) event occurred.

Question no. 60
The stochastic process {Y(t),t > 0} is a compound Poisson process defined
by
N(t)
Y(t)=> Xi (and Y(t) =0if N(t) =0)
k=1

where X, has a geometric distribution with parameter 1/4, for k = 1,2,...,
and {N(t),t > 0} is a Poisson process with rate A = 3.

(a) Calculate E[Y (t) | Y(t) > 0], for t > 0.

(b) Calculate approximately P[Y (10) > 100] with the help of the central limit
theorem.

Question no. 61

Suppose that, in the preceding question, X} is a discrete random variable
such that P[X = 1] = P[X}, = 2] = 1/2,for k = 1,2,..., and that {N(t),t >
0} is a Poisson process with rate A = 2.
(a) Calculate E[Y2(t) | Y(t) > 0], for t > 0.
(b) Use the central limit theorem to calculate (approximately) the probability
P[Y(20) < 50].

Question no. 62

The (independent) visitors of a certain Web site may be divided into two
groups: those who arrived on this site voluntarily (type I) and those who
arrived there by chance or by error (type II). Let N(¢) be the total number
of visitors in the interval [0,t]. We suppose that {N(t),¢ > 0} is a Poisson
process with rate A = 10 per hour, and that 80% of the visitors are of type I
(and 20% of type II).

(a) Calculate the mean and the variance of the number of visitors of type I,
from a given time instant, before a second type II visitor accesses this site.

(b) Calculate the variance of the total time spent on this site by the visitors
arrived in the interval [0, 1] if the time (in minutes) X (respectively, X;;) that
a type I (resp., type II) visitor spends on the site in question is an exponential
random variable with parameter 1/5 (resp., 2). Moreover, we assume that X;
and Xy; are independent random variables.

(c) Suppose that, actually, {N(t),t > 0} is a nonhomogeneous Poisson process
whose intensity function is

B0<t<T
A<t)_{20i£7<t<24
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and A(t+24n) = A(t), for n = 1,2,... . Given that exactly one visitor accessed
this site between 6 a.m. and 8 a.m., what is the distribution function of the
random variable S denoting the arrival time of this visitor?

Question no. 63

At night, vehicles circulate on a certain highway with separate roadways
according to a Poisson process with parameter A = 2 per minute (in each di-
rection). Due to an accident, traffic must be stopped in one direction. Suppose
that 60% of the vehicles are cars, 30% are trucks, and 10% are semitrailers.
Suppose also that the length of a car is equal to 5 m, that of a truck is equal
to 10 m, and that of a semitrailer is equal to 20 m.

(a) From what moment is there a 10% probability that the length of the queue
of stopped vehicles is greater than or equal to one kilometer?

(b) Give an exact formula for the distribution of the length of the queue of
stopped vehicles after ¢ minutes.

Indication. Neglect the distance between the stopped vehicles.

Question no. 64

During the rainy season, we estimate that showers, which significantly
increase the flow of a certain river, occur according to a Poisson process with
rate A = 4 per day. Every shower, independently from the others, increases
the river flow during T' days, where T is a random variable having a uniform
distribution on the interval (3, 9].

(a) Calculate the mean and the variance of the number of showers that sig-
nificantly increase the flow of the river

(i) six days after the beginning of the rainy season,

(ii) to days after the beginning of the rainy season, where tg > 9.

(b) Suppose that every (significant) shower increases the river flow by a quan-
tity X (in m®/s) having an exponential distribution with parameter 1/10,
independently from the other showers and from the number of significant
showers. Suppose also that there is a risk of flooding when the increase in the
river flow reaches the critical threshold of 310 m?/s. Calculate approximately
the probability of flooding 10 days after the beginning of the rainy season.

Question no. 65

Independent visitors to a certain Web site (having infinite capacity) arrive
according to a Poisson process with rate A = 30 per minute. The time that a
given visitor spends on the site in question is an exponential random variable
with mean equal to five minutes. Let Y'(¢) be the number of visitors at time
t > 0. The stochastic process {Y (t),t > 0} is a filtered Poisson process.

(a) What is the appropriate response function?
(b) Calculate E[Y (t)] and V[Y (t)].
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Question no. 66
Let {Ny(t),t > 0} and {Ny(t),t > 0} be independent Poisson processes,
with rates A\; and Ag, respectively.

(a) We denote by Ty ; the arrival time of the first event of the stochastic
process {Na(t),t > 0}. Calculate E[N1(T2,1) | Ni(T>,1) < 2].

(b) We define M (t) = Ny(t) + No(t) and we set

1 if the kth event of the process {M (t),t > 0}
is an event of {Ny(t),t > 0}
X =
0 if the kth event of the process {M(t),t > 0}
is an event of {Ny(t),t > 0}

Calculate VY (t)], where

M(t)
Y(t):= > X¢ (and Y(t) = 0if M(t) = 0)
k=1

(c) Suppose that {Na(t),t > 0} is rather a nonhomogeneous Poisson process
whose intensity function is

1 fo<t<l
)‘2(t):{1+t‘lift21

Calculate P[T;; < 2], where Ty ; is defined in (a).

Section 5.6

Question no. 67

A system is composed of two components that operate at alternate times.
When component i, for i = 1,2, starts to operate, it is active during X;
days, where X; is an exponential random variable with parameter A; and is
independent of what happened previously. The state of the components is
checked only at the beginning of each day. If we notice that component i
is down, then we set the other component going, and component ¢ will be
repaired (in less than one day).
(a) Let N; be the number of consecutive days during which component i
is responsible for the functioning of the system, for ¢ = 1,2. What is the
probability distribution of N;?
(b) Suppose that the two components are identical. That is, Ay = Az := A. At
what rate do the components relieve each other (over a long period)?
(c) If Ay = 1/10 and Az = 1/12, what proportion of time, when we consider a
long period, is component 1 responsible for the functioning of the system?
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Question no. 68

A woman makes long-distance calls with the help of her cell phone accord-
ing to a Poisson process with rate A. Suppose that for each long-distance call
billed, the next call is free and that we fix the origin at the moment when a
call has just been billed. Let N(t) be the number of calls billed in the interval
(0,1].
(a) Find the probability density function of the random variables 79, 71,...,
where 7 is the time until the first billed call, and 7; is the time between the
(7 — 1)st and the ith billed call, for ¢ > 1.

(b) Calculate the probability P[N(t) = n], for n =0,1,....
(c) What is the average time elapsed at time ¢ since a call has been billed?

Question no. 69

A machine is made up of two independent components placed in series.
The lifetime of each component is uniformly distributed over the interval [0, 1].
As soon as the machine breaks down, the component that caused the failure is
replaced by a new one. Let N(t) be the number of replacements in the interval
[0,1].
(a) Is the stochastic process {N(t),t > 0} a continuous-time Markov chain?
Justify.

(b) Is {N(t),t > 0} a renewal process? Justify.

(c) Let S be the time of the first replacement. Calculate the probability
density function of Sj.

Question no. 70 (See Question no. 98, p. 171)

The lifetime of a certain machine is a random variable having an expo-
nential distribution with parameter \. When the machine breaks down, there
is a probability equal to p (respectively, 1 — p) that the failure is of type 1
(resp., II). In the case of a type I failure, the machine is out of use for an
exponential time, with mean equal to 1/p time unit(s). To repair a type II
failure, two independent operations must be performed. Each operation takes
an exponential time with mean equal to 1/p.

(a) Use the results on regenerative processes to calculate the probability that
the machine will be in working state at a (large enough) given time instant.

(b) What is the average age of the machine at time ¢? That is, what is the
average time elapsed at time ¢ since the most recent failure has been repaired?
Assume that A = p.

Question no. 71
We consider a discrete-time Markov chain whose state space is the set
{0,1,2} and whose one-step transition probability matrix is

0 1/21/2
P=[1/2 0 1/2
1 0 0
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We say that a renewal took place when the initial state 0 is revisited.

(a) What is the average number of transitions needed for a renewal to take
place?
(b) Let N(t), for t > 0, be the number of renewals in the interval [0,t], where
t is in seconds. If we suppose that every transition of the Markov chain takes
one second, calculate

(i) the distribution of the random variable N(6.5),

(ii) the probability P[N(90) < 40] (approximately).

Question no. 72
We consider a birth and death process, {X(t),t > 0}, whose state space
is the set {0,1} and for which

A=A and p=pu

Moreover, we suppose that X(0) = 0. We say that a renewal occurred when
the initial state 0 is revisited. Let N(t), for t > 0, be the number of renewals
in the interval [0,1].

(a) Let 7,—1 be the time between the (n — 1)st and the nth renewal, for
n > 1 (1 being the time until the first renewal). Find the probability density
function of 7,,_; if A = p.

(b) Calculate approximately the probability P[N(50) < 15] if A = 1/3 and
n=1

(c) Calculate the average time elapsed at a fixed time instant o since a renewal
occurred if A =2 and pu = 1.

Question no. 73
Let {X(t),¢ > 0} be a birth and death process for which

A=A Vn>0 and py=p, =0 Vn>2

We suppose that X(0) = 0 and we say that a renewal took place when the
process revisits the initial state 0. We denote by N(¢), for ¢t > 0, the number
of renewals in the interval [0, ¢].

(a) Let Ty be the time elapsed until the first renewal, and let M(t) be the
number of deaths in the interval |0,t]. Calculate

(ii) Pllimy_oo M(t) = k], for k € {0,1,2,...}.
(b) Is the stochastic process {X(¢),t > 0} a regenerative process? Justify.
(c) Suppose now that A\g = X and A\, = 0 if n > 1. Calculate the proportion
of time that the process {X(t),¢ > 0} spends in state 0, over a long period.

Question no. 74

Let {N(¢),t > 0} be a renewal process for which the time 7 between the
successive events is a continuous random variable whose probability density
function is given by
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fr(s)=se”® fors>0
That is, 7 has a gamma distribution with parameters « =2 and A = 1.

(a) Show that the renewal function, my(t), is given by

my(t) = %(e_zt +2t—-1) fort>0

Indication. We have

i l.2n—1 B 1(6.1: e_l‘)
RN
= (2n —1)! 2

(b) Calculate approximately the probability P[Ty(100)4+1 < 101.5].

(c) Let X(t) := (=1)N®  for t > 0. The stochastic process {X(t),t > 0} is a
regenerative process. Calculate the limiting probability that X (f) = 1.

Question no. 75

Consider the renewal process {N(t),t > 0} for which the time 7 between
the consecutive events is a continuous random variable having the following
probability density function:

fr(s)=2s for0<s<1

(a) Calculate the renewal function, my(t), for 0 <¢ < 1.
Indication. The general solution of the second-order ordinary differential equa-
tion y"(x) = ky(z) is

1/2 _1/2
y(z) = cref T 4 cpeH T

where k # 0, and ¢; and ¢ are constants.

(b) According to Markov’s inequality, what is the maximum value of the
probability P[Tn(/2)41 > 1]?

(c) Suppose that we receive a reward of $1 per time unit when the age, A(t), of
the renewal process is greater than or equal to 1/2, and of $0 when A(t) < 1/2.
Calculate the average reward per time unit over a long period.

Question no. 76

The time between the successive renewals, for a certain renewal process
{N(t),t > 0}, is a continuous random variable whose probability density
function is the following:

_[1/2if0<s<1/2
f(s)_{3/21f1/2§s<1
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(a) We can show that my(t) = e¥/? — 1, for ¢ € (0,1/2). Use this result to
calculate my(t), for t € [1/2,1).

Indication. The general solution of the ordinary differential equation

y'(z) + P(2)y(z) = Q(z)
is

y(z) =€ I P<z)d$</Q(z)ef P(@)dz g 4 Constant)

(b) Use the central limit theorem to calculate approximately P[Tzs > 15],
where 755 is the time of the 25th renewal of the process {N{t),t > 0}.

(c) Let {X(t),t > 0} be a regenerative process whose state space is the set
{1, 2}. We suppose that the time that the process spends in state 1 is a random
variable Y7 such that

_[12if0<y<1/2
Fraly) = {3/2 if1/2<y<1

while the probability density function of the time Y» that the process spends

in state 2 is /
_ [3/2if0<y<1/2
Frly) = {1/2 if1/2<y<1

Calculate lim; o, P[X(t) = 1].

Question no. 77

We consider a system composed of two subsystems placed in series. The
first subsystem comprises a single component (component no. 1), whereas the
second subsystem comprises two components placed in parallel. Let Sy be the
lifetime of component no. k, for £ = 1,2,3. We assume that the continuous
random variables Sy, are independent.

(a) Let N(¢t) be the number of system failures in the interval [0,t]. In what
case(s) will the stochastic process {N(t),t > 0} be a renewal process if the
random variables S do not all have an exponential distribution? Justify.

(b) In the particular case when the variable S; has an exponential distribution
with parameter A = 1, for all k, the process {N(t),t > 0} is a renewal
process. Calculate the probability density function of the time 7 between two
consecutive renewals.

Question no. 78
Suppose that {N(t),t > 0} is a renewal process for which the time 7
between two consecutive renewals is a continuous random variable such that

es
0 elsewhere
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(a) Calculate the renewal function, mp(t), for 0 <t < L.
Remark. See the indication for Question no. 76.

(b) If we receive a reward of $1 at the moment of the nth renewal if the
duration of the cycle has been greater than 1/2 (and $0 otherwise), what is
the average reward per time unit over a long period?

Question no. 79

We consider a system made up of two subsystems placed in parallel. The
first subsystem is composed of two components (components nos. 1 and 2)
placed in parallel, while the second subsystem comprises a single component
(component no. 3). Let S denote the lifetime of component no. k, for k =
1,2,3. The continuous random variables Sj are assumed to be independent.

(a) Suppose that components nos. 1 and 2 operate at the same time, from the
initial time, whereas component no. 3 is in standby and starts operating when
the first subsystem fails. When the system breaks down, the three components
are replaced by new ones. Let N(t), for ¢ > 0, be the number of system failures
in the interval [0,¢]. Then {N(t),t > 0} is a renewal process. Let 7 be the
time between two consecutive renewals. Calculate the mean and the variance
of T if S ~ U(0,1), for k =1,2,3.

(b) Suppose that we consider only the first subsystem and that the two com-
ponents are actually placed in series. When this subsystem fails, the two
components are replaced by new ones. As in (a), the process {N(t),t > 0}
is a renewal process. Calculate the renewal function my(t), for 0 <t < 1, if
Sk~ U(0,1), for k =1, 2.

Indication. The general solution of the differential equation
y'(z) — 2/ (z) + 2y(z) +2=0
is
y(z) = =1+ c1e" cosx + coe”sinz
where ¢; and ¢y are constants.

(c) Suppose that in (b) we replace only the failed component when the sub-
system breaks down and that Sy ~ Exp(2), for k =1,2.

(i) Calculate the mean of T (41 —t.

(ii) Deduce from it the value of my(t), for ¢t > 0.

Question no. 80

Is a nonhomogeneous Poisson process with intensity function A(t) = ¢,
for all t > 0, a renewal process? If it is, give the distribution of the random
variables 7. If it’s not, justify.

Question no. 81

Use the renewal equation to find the distribution of the random variables
Tk, taking their values in the interval [0, 7 /2], of a renewal process for which
mn(t) =t2/2,for 0 <t < m/2.
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Question no. 82

Let {X(t),t > 0} be a birth and death process with state space {0, 1,2}
and having the following birth and death rates: \g = A1 = A > 0, u1 unknown,
and py = g > 0. For what value(s) of yy is the process regenerative? Justify.

Question no. 83 .

Suppose that {N(t),t > 0} is a Poisson process with rate A > 0. For a
fixed time instant ¢ > 0, we consider the random variables A(¢) and D(t) (see
p. 280).

(a) Calculate the distribution of both A(t) and D(t).

(b) What is the distribution of A(¢) + D(¢)?

(c) Suppose now that we consider the Poisson process over the entire real line,
that is, {V(¢),¢t € R}. What then is the distribution of A(t) + D(¢)?

(d) In (c), we can interpret the sum A(t) + D(t) as being the length of the
interval, between two events, which contains the fixed time instant ¢. Explain
why the distribution of this sum is not an exponential distribution with pa-
rameter \.

Question no. 84

Let {B(t),t > 0} be a standard Brownian motion, that is, a Wiener process
with drift coefficient ;1 = 0 and diffusion coefficient 02 = 1. Suppose that
when B(t) =a (> 0) or b = —a, the process spends an exponential time with
parameter A = 2 in this state (a or b = —a). Then, it starts again from state
0.

(a) What fraction of time does the process spend in state a or b = —a, over a
long period?

Indication. Let m(z) be the average time that the process, starting from
z € (b,a), takes to reach a or b. We can show that the function mq(z) satisfies
the ordinary differential equation

%m’l’(m) =-1 (with mq(b) = mi(a) = 0)

(b) Answer the question in (a) if b = —oo rather than —a.

Question no. 85

Suppose that the time between two consecutive events for the renewal process
{N(t),t > 0} is equal to 1 with probability 1/2 and equal to 2 with probability
1/2.

(a) Give a general formula for the probability P[N(2n) = k], where n and k
are positive integers.

(b) Calculate my(3).

(c) Let I(t) :=1if N(t) = [t] and I(t) = 0 otherwise, where [ | denotes the
integer part. Calculate the variance of I(t).
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Queueing Theory

6.1 Introduction

In this chapter, we will consider continuous-time and discrete-state stochastic
processes, {X(t),t > 0}, where X (t) represents the number of persons in
a queueing system at time t. We suppose that the customers who arrive in
the system come to receive some service or to perform a certain task (for
‘example, to withdraw money from an automated teller machine). There can
be one or many servers or service stations. The process {X(¢),t > 0} is a
model for a queue or a queueing phenomenon. If we want to be precise, the
queue should designate the customers who are waiting to be served, that is,
who are queueing, while the queueing system includes all the customers in
the system. Since queue is the standard expression for this type of process,
we will use these two expressions interchangeably. Moreover, it is clear that
the queueing models do not apply only to the case when we are interested in
the number of persons who are waiting in line. The customers in the system
may be, for example, airplanes that are landing or are waiting for the landing
authorization, or machines that have been sent to a repair shop, etc.
Kendall! proposed, in a research paper published in 1953, a notation to
classify the various queueing models. The most general notation is of the form

A/S/s/c/p/D, where
A denotes the distribution of the time between two successive arrivals,
S denotes the distribution of the service time of customers,
s is the number of servers in the system,
¢ is the capacity of the system,
p is the size of the population from which the customers come,
D designates the service policy, called the discipline, of the queue.

! David George Kendall, retired professor of the University of Cambridge, in Eng-
land.
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We suppose that the times 7,, between the arrivals of successive customers
are independent and identically distributed random variables. Similarly, the
service times S, of the customers are random variables assumed to be i.i.d.
and independent of the 7,’s. Actually, we could consider the case when these
variables, particularly the S,,’s, are not independent among themselves.

The most commonly used distributions for the random variables 7,, and
Sn, and the corresponding notations for A or S, are the following:

M exponential with parameter A or u;
Ej Erlang (or gamma) with parameters k and A or y;
D degenerate or deterministic (if 7, or Sy is a constant);

G general (this case includes, in particular, the uniform distribution).

Remarks. i) We write M when 7, (respectively, S,) has an exponential distri-
bution, because the arrivals of customers in the system (resp., the departures
from the system in equilibrium) then constitute a Poisson process, which is a
Markovian process.

il) We can use the notation GI for general independent, rather than G, to be
more precise.

The number s of servers is a positive integer, or sometimes infinity. (For
example, if the customers are persons arriving in a park and staying there
some time before leaving for home or elsewhere, in which case, the customers
do not have to wait to be served.)

By default, the capacity of the system is infinite. Similarly, the size of the
population from which the customers come is assumed to be infinite. If ¢ (or
p) is not equal to infinity, its value must be specified. On the other hand,
when ¢ = p = 00, we may omit these quantities in the notation.

Finally, the queue discipline is, by default, that of first-come, first-served,
which we denote by FCFS or by FIFO, for first-in, first-out. We may also
omit this default discipline in the notation. In all other cases, the service
policy used must be indicated. We can have LIFO, that is, last-in, first-out.
The customers may also be served at random (RANDOM). Sometimes one or
more special customers are receiving priority service, etc.

In this book, except in the penultimate subsection of the current chap-
ter and some exercises, we will limit ourselves to the case when the random
variables 7, and S,, have exponential distributions, with parameters A and p,
respectively. That is, we will only study models of the form M /M. Moreover,
in the text, the service policy will be the default one (FIFO). However, in the
exercises, we will often modify this service policy.

For all the queueing systems that we will consider, we may assume that
the limit

T = tl_lg)lc P[X(t) = n] (6.1)
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exists, for all n > 0. Thus, m, designates the limiting probability that there
are exactly n customers in the system. Moreover, 7, is also the proportion of
time when the number of customers in the system is equal to n, over a long
period.

The quantities of interest when we study a particular queueing system
are above all the average number of customers in the system, when it is in
equilibrium (or in stationary regime), and the average time that an arbitrary
customer spends in the system. We introduce the following notations:

N is the average number of customers in the system (in equilibrium);
Ny is the average number of customers who are waiting in line;

N is the average number of customers being served;

T is the average time that an arbitrary customer spends in the system,
Q is the average waiting time of an arbitrary customer;

S is the average service time of an arbitrary customer.

Often, we must content ourselves with expressing these quantities in terms
of the limiting probabilities 7,. Moreover, notice that N = Ng + Ng and
T=Q+38.

Let N(t), for t > 0, be the number of customers who arrive in the system
in the interval [0, ¢]. Given that the random variables 7, are independent and
identically distributed, the process {N(t),t > 0} is a renewal process. We
denote by A, the average arrival rate of customers in the system. That is (see
Prop. 5.6.7),

Ao o= lim — = = (6.2)

Remarks. i) If 7, ~ Exp()\), then we obtain A\, = A.

ii) We can also define A, namely, the average entering rate of customers into
the system. If all the arriving customers enter the system, then A, = Ag4.
However, if the capacity of the system is finite, or if some customers refuse
to enter the system if it is too full when they arrive, etc., then A, will be
smaller than A,. Suppose, for example, that the customers arrive according
to a Poisson process with rate A. If the system capacity is equal to ¢ (<o0)
customers, then we may write that the rate A, is given by A (1 — 7). Indeed,
in this case, (1 — 7.) is the (limiting) probability that an arriving customer
will enter the system.

We can establish a relation between the quantities N and T by using a
cost equation. Suppose that the customers entering the system pay a certain
amount of money. Let A\; be the average earning rate of the system. Then,
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after a long enough time tg, the average amount of money the system earns
is approximately equal to A4 - to. On the other hand, this quantity is also
approximately equal to M - A, - ty, where M is the average amount of money
a customer who enters the system pays, and ). is defined above. The equality
between the two expressions for the average amount of money the system
earns, over a long period, can be justified rigorously. We then obtain the
following proposition.

Proposition 6.1.1. We have
Ag=Ae - M (6.3)

Corollary 6.1.1. If the customers pay $1 per time unit that they spend in the
system (waiting to be served or being served), then Eq. (6.3) becomes

N=X-T (6.4)

Remarks. i) The formula above is known as Little’s* formula.

ii) Little’s formula may be rewritten as follows: if ¢ is large enough (for the
process to be in equilibrium), then we have

E[X ()] = AE[T] (6.5)

where T is the total time that an arbitrary customer who enters the system will
spend in this system. Actually, Eq. (6.5) is valid under very general conditions,
in particular, for all the systems studied in this book, but in some cases it is
not correct. Moreover, we can prove the following result:
1 to
lim — X (t) dt = E[X(t)] = AE[T] (6.6)
0

to—oo tg

That is, the stochastic process {X(t),t > 0} is, in the cases of interest to us,
mean ergodic (see p. 56).

iil) If every customer pays $1 per time unit while being served (but not while
she is waiting in queue) instead, then we obtain

Ng=2X.-5 (6.7)
It follows that we also have

No=X-Q (6.8)

When the times between the arrivals of successive customers and the ser-
vice times of customers are independent exponential random variables, the

2 John D.C. Little, professor at the Sloan School of Management of the Mas-
sachusetts Institute of Technology, in the United States.
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process {X(t),t > 0} is a continuous-time Markov chain. Moreover, if we as-
sume (which will be the case, in general) that the customers arrive one at a
time and are served one at a time, {X(¢),¢ > 0} is then a birth and death
process. We may therefore appeal to the results that were proved in Chapter
3 concerning this type of process, particularly Theorem 3.3.4, which gives us
the limiting probabilities of the process.

6.2 Queues with a single server
6.2.1 The model M/M/1

We first consider a queueing system with a single server, in which the cus-
tomers arrive according to a Poisson process with rate A, and the service times
are independent exponential random variables, with mean equal to 1/u. We
suppose that the system capacity is infinite, as well as the population from
which the customers come. Finally, the queue discipline is that of first-come,
first-served. We can therefore denote this model simply by M/M/1.

The stochastic process {X(t),t > 0} is an irreducible birth and death
process. We will calculate the limiting probabilities m,, as we did in Chapter 3.
The balance equations of the system (see p. 140) are the following:

state j departure rate from j = arrival rate to j

0 )\71'0 = Umy
n (2 1) ()‘ + ﬂ)ﬂ-n = ATp_1 + Ulnt1

We have (see p. 141)

Iy:=1 and Hzi’\""\:G) forn=1,2,... (6.9)
Pt - I
N, s’
X

If A < p, the process {X(t),¢ > 0} is positive recurrent, and Theorem 3.3.4
then enables us to write that

SN Y/ ) R Y/ O o
RS s TR T Eo gt s 0be (610)

Tn = (2>n (1 - %) Vn>0 (6.11)

_ We can now calculate the quantities of interest. We already know that
S = 1/u. Moreover, because here A, = A, we may write that

That is,
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A A A
B K i

Fig. 6.1. State-transition diagram for the model M/M/1.

Ns=X-5= % (6.12)

Remarks. i) Since there is only one server, we could have directly calculated
Ng as follows:

stl-m):l—(l——):):i\- (6.13)
w) B

because the random variable Ns denoting the number of persons who are being
served, when the system is in equilibrium, here has a Bernoulli distribution
with parameter py := 1 — 7g.

ii) The quantity p := A\/u is sometimes called the traffic intensity of the sys-
tem, or the utilization rate of the system. We see that the limiting probabilities
exist if and only if p < 1, which is logical, because this parameter gives us the
average number of arrivals in the system during a time period corresponding
to the mean service time of an arbitrary customer. If p > 1, the length of the
queue increases indefinitely.

ili) From the balance equations of the system, we can draw the corresponding
state transition diagram (and vice versa). Each possible state is represented by
a circle, and the possible transitions between the states by arrows. Moreover,
we indicate above or under each arrow the rate at which the corresponding
transition takes place (see Fig. 6.1).

Next, we have

v Sen (5 () (-2)

n=0 n=1

= (2) E[Z], where Z ~ Geom(l - %)
A I A

= {2}y =2 _ - 6.14

(u) B=A  p—A (6149

We can then write that
2

No=N-RNg=2__A__X (6.15)
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We deduce from this formula that
- N A
Q e
e lU'(:u - /\)

(6.16)

which implies that

. A 1 1
T = +S:—+_:—— 6.17
9 pp—=2A) g op—A (6.17)

Generally, it is difficult to find the exact distribution of the random variable
T that designates the total time that an arriving customer will spend in the
system (so that T = E[TY). For the M/M/1 queue, we can explicitly determine
this distribution. To do so, we need a result, which we will now prove.

Proposition 6.2.1. Let o, be the probability that an arbitrary customer finds
n customers in the system (in equilibrium) upon arrival. If the customers
arrive according to a Poisson process, then we have

Tp =0, Vn>0 (6.18)

Proof. It suffices to use the fact that the Poisson process has independent
increments. Suppose that the customer in question arrives at time ¢. Let F, =
the customer arrives in the interval [¢,£ + €). We have

PEX(t") =n}nF.

anp = limImPX(t7)=n|F]= hm lim

t=r00 €}0 t—s00 €10 P[F]
e PIE | X(T) =n]PX(t7) = n
= fim lim PIE,
ind. Fe )=
2 lim lim PIEJPIX () = 1) = lim lim P[X(t7) = n]

t—00 €0 PlF] t—00 €10
= tlim PXt )=n]l=m, O (6.19)
—00

Remark. It can also be shown that, for any system in which the customers
arrive one at a time and are served one at a time, we have

=é, Vn2>0 (6.20)

where 6, is the long-term proportion of customers who leave behind them n
customers in the system when they depart. This follows from the fact that
the transition rate from n to n + 1 is equal to the transition rate from n + 1
to n, over a long period.
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Proposition 6.2.2. For an M/M/1 queue, we have T ~ Ezp(p — N).

Proof. Let R be the number of customers in the system when a new customer
arrives. We have

P[T <t = i P[T<t|R=r|P[R=1] (6.21)
r=0

Moreover, by the memoryless property of the exponential distribution, we may
write that

T|{R=r}~G(r+1,u) (6.22)

Finally, since the customers arrive according to a Poisson process, we have
(by the preceding proposition)

PlR=r|za,=m=(2) (1-3) (6.23)

7
It follows that

rsn=E[[oo-ta () ()
= 2 /0 t(u - A)e‘”é‘(—’\;!—): ds (6.24)

Interchanging the summation and the integral, we obtain

00 t
P[T<t]= / (= Ne Z = / (u—A)e BN ds  (6.25)
r= 0
;’,__,
ers
= frt)=(u—XNe N for¢>0 0O (6.26)

We can also calculate the distribution of the waiting time, @, of an arbi-
trary customer arriving in the system. This random variable is of mized type.
Indeed, if the customer arrives while the system is empty, we have that Q = 0.
On the other hand, if there are R = r > 1 customer(s) in the system upon his
arrival, then @ has a G(r, u) distribution. Since P[R = 0] =79 =1— A/, by
proceeding as above, we find that

PlQ<t]= i [Q<t|R=r|P[R=r] (6.27)

) ()i G
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Thus, we have P{Q =0] =1 — A/u and

Po<Q<t= (%) (1 - e—W—W) if£>0 (6.28)

Moreover, we calculate

P[QStIQ>O]=%%OS]—t]=1—e_(“"\” ift>0 (6.29)

That is, Q | {Q > 0} ~ Exp(u — A). We may therefore write that
QU{Q>0ET (6.30)
which follows directly from the fact that
A " 1— A r—1 A
PlR=r|R>0] = 2 @) “):(i> (1__)

1—mo A 1t 7
=mp_1=PR=r-1 Vr>1 (6.31)

Remark. Since the random variables @ and § are independent (by assump-
tion), we can check that T has an exponential distribution with parameter
4 — A by convoluting the probability density functions of @ and S. Because
Q is a mixed-type random variable, it is actually easier to make use of the
formula (with p = A/u)

00 t
Fr(t) = /(; Fo(t—s) fs(s) ds = /0 (1 —p e—(“_’\)(t“s)) pe #° ds

¢
=1—e " — pue_(“_)‘)t/ e ds
0
=l-e Mg WM (1 M) =1 WM vt>0 (632
The variance of the random variable N designating the number of cus-

tomers present in the system in equilibrium (and whose mean value is N) is
easily obtained by noticing [see Eq. (6.11)] that

N+ 1~ Geom(1l — p) (6.33)

It follows that

VINI=VIN+1] = 5 _pp)z 7 i“A)z (6.34)

Note that the mean N can be expressed as follows:

_ 1 P
= 1= 6.35
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In the case of the random variable Ng, we mentioned above that it has a
Bernoulli distribution with parameter 1 — mg = p. Then we directly have

vwa=mrqn=§@~§) (6.36)

To obtain the variance of Ng, we will use the following relation between
Ng and N:

0 fN=0orl
NQ:{N—lifN22 (6-37)
It follows that
x> o<
E[N3] = Z Frepr = p* Y k*me_1 = p?E[Z7] (6.38)
k=1 k=1
where Z ~ Geom(1 — p), from which we deduce that
1
E[N3] = 2( A ) (6.39)
Nl =P\t aop
Since the mean value of Ng [see Eq. (6.15)] is given by
)\2 p2
E[Ng] = = 6.40)
Vel pp—A) 1-p (
we obtain that
1+p o pP(L+p—p%)
V[Ng] = p? ( > _ - 6.41)
Nel=r\GT=F) T2~ a-on (
Remark. Given that N = Ng + Ng, we can use the formula
VIN] = V[NQ] + VI[Ng]+2 COV[NQ, Ns] (6.42)

to calculate the covariance (and then the correlation coefficient) of the random
variables Ng and Ng.

Now, we have shown that 7' ~ Exp{(y — A). We then have

VIT] = (6.43)

Similarly, S ~ Exp(u) (by assumption), so that V[S] = 1/u?. Finally, by
independence of the random variables @ and S, we obtain that
1 1 2\ — A2

ViQ) = VI[T]-V[s] = G- BT Ruoae (6.44)
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Remark. We can calculate V[Q] without making use of the independence of
Q@ and S. We deduce indeed from the formula (6.30) that

BQ*) = EIQ* | @ > 01PIQ > 0] = BIT?|(1 = mo) = BIT%)p = =5
, (6.45)
from which we obtain that
vig) 20 22 X 2=V (6.46)

(L =22 @2(u—=A? w2(p— N>
Ezample 6.2.1. Let K be the number of arrivals in the system during the
service period of an arbitrary customer. We will calculate the distribution of
K. First, we have

I
Ht A
where the service time S ~ Exp(u) and the time 7 needed for a customer to
arrive, having an exponential Exp()\) distribution, are independent random
variables. Then, by the memoryless property of the exponential distribution,
we may write that

k
It 1
PIK=kK=[1- for k=1,2,...
: ] ( u+A> <M+A> o ‘

PK=0]=P[S<7]=

That is,
U
K+1~ Ge —
eom (M n )\)
from which we deduce that

- (12) 122

Thus, the average number of arrivals during the service period of a given
customer is equal to the average number of arrivals in the course of a period
corresponding to the mean service time of an arbitrary customer (see p. 320).
This result is also easily proved as follows:

E[K] = E[E[K | S]] = E[AS] = AES] = %

Ezample 6.2.2. The conditional distribution of the random variable IV, namely,
the number of customers in the system in stationary regime, knowing that
N < m, is given by

pn(n| N <m)= ™ _ W forn=0,1,...,m

Z?:o ™ Z?:o()‘//‘)k
Note that the condition N < m does not mean that the system capacity is
equal to m. It rather means that, at a given time instant, there were at most
m customers in the system (in equilibrium).
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Ezample 6.2.3. The queueing system M /M /1 is modified as follows: after hav-
ing been served, an arbitrary customer returns to the end of the queue with
probability p € (0,1).

Remark. A given customer may return any number of times to the end of the
queue.

(a) (i) Write the balance equations of the system.
(if) Calculate, if they exist, the limiting probabilities =;.

(b) Calculate, in terms of the m;’s (when they exist),

(i) the average time that an arbitrary customer spends in the system,

(ii) the variance of the number of customers in the system, given that it
is not empty.

Solution. (a) (i) The balance equations of the system are the following:

state j departure rate from j = arrival rate to j

0 Amo = p(l — p)m
n(>1) A (1 = p)lmn = Moy + (1 — p)nta

(ii) The process considered is an irreducible birth and death process. We
first calculate

[e @)

YO VRS VPR A
51 = =
' ,; Jta oK ;u’“(l—p)’c

The infinite sum converges if and only if A < (1 — p). In this case, we find

that
A

S op(l-p) -
Then, the m;’s exist and are given by

" wuAi Py (1 T —Ap) - A)—l B (ﬁm) (1 B R%—p—))

fori=0,1,....

Remark. The result is obtained at once by noticing that the process considered
is equivalent to an M/M/1 queueing system for which the service rate is
(1-p)p.

(b) (i) We seek T. By the preceding remark, we may write (see the formula
(6.17), p. 321)

S

__
p(l—p)—A

(i1) Let N be the number of customers in stationary regime. We have (see
the formula (6.33), p. 323)

T=
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N+1~Geom(1——u—/\—>

(1-p)
Let M := N | {N > 0}. We seek V[M]. By the memoryless property of the
geometric distribution, we can write that M ~ Geom (1 ~ W/\—zﬁ) It follows
that

A R ().
V[M]*/x(l—p)/<1 u(l—p)> [u(l —p) — AJ?

6.2.2 The model M/M/1/c

Although the M/M/1 queue is very useful to model various phenomena, it
is more realistic to suppose that the system capacity is an integer ¢ < 0.
For j =0,1,...,¢c— 1, the balance equations of the system remain the same
as when ¢ = oo. However, when the system is in state c, it can only leave it
because of the departure of the customer being served. In addition, this state
can only be entered from ¢ — 1, with the arrival of a new customer. We thus

have
state j departure rate from j = arrival rate to j

0 AT = pm
1<k<c¢-1 (A4 @) = ATg—1 + pTg41
c [Te = ATe—1

The process {X(t),t > 0} remains a birth and death process. Moreover, given
that the number of states is finite, the limiting probabilities exist regardless
of the values the (positive) parameters A and p take.

As in the case when the system capacity is infinite, we find (see p. 319)
that

A k
I, = (;) for k=0,1,...,¢c (6.47)

It follows, if p:= A/u # 1, that

hd ¢ k ¢ _ pctl
S m=% (i) N 1% (6.48)
k=0 k=0 H k=0 P
When A = p, we have that p =1, Il = 1, and Y ;_, ITy = ¢+ 1, from which
we calculate
P-p) .
I T e HP71
j

=gl = (6.49)
=0

j

ifp=1
c+1 te

for j=0,1,...,c.
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Remarks. i) We see that if A = u, then the ¢ 4+ 1 possible states of the sys-
tem in equilibrium are equally likely. Moreover, when ¢ tends to infinity, the
probability 7; decreases to 0, for every finite j. This confirms the fact that,
in the M/M/1/00 model, the queue length increases indefinitely if A = p, so
that there is no stationary regime.

ii) If A > u, the limiting probabilities exist. However, the larger the ratio p =
A/p is, the more 7, increases to 1 (and 7; decreases to 0, for j = 0,1,... ,e—1),
which is logical.

iii) Even if, in practice, the capacity c cannot be infinite, the M/M /1 model
is a good approximation of reality if the probability 7. that the system is full
is very small.

With the help of the formula (6.49), we can calculate the value of N.

Proposition 6.2.3. In the case of the M/M/1/c queue, the average number
of customers in the system in equilibrium is given by

p_ (c+1)pt! ifp#1

N={l-p 1-pH (6.50)
c/2 ifp=1
Proof. First, when p = 1, we have
N1 1< 1 cle+l) ¢
N=S"% = > k= = (6.51)
= c+1 c—i—llc=0 c+1 2 2
When p # 1, we must evaluate the finite sum
[+ k [+
T prl—p) 1 k
N = kl_ch _1_pc+12kp (1-p) (6.52)
k=0 k=0

Let X := Z — 1, where Z has a geometric distribution with parameter 1 — p.
We find that the probability mass function of X is given by

px(k) =p*(1 —p) fork=0,1,... (6.53)
It follows that
YA -p)=1 and Y kpF(1-p)=——-1=— (654
k=0 k=0 1= 1-»¢

Making use of these formulas, we may write that

. K _ b - K
> kp =P =7~ > ket -p) (6.55)
k=0 k=c+1
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and

Yook —p)= > [k—(c+1)+(c+ 1)1 -p)

k=c+1 k=c+1

= Z [k = (c+1)p i (c+1)p*(1 - p)

k=c+1
o0
=p" > mp™ (1~ p) + (e +1)pH Z P (1= p)
m=0 m=0
~ pett L (c+1)p=tt (6.56)
I-p
so that
N, 1 P P 1
N=—> _J_ 7 e+l 1)t
e (T e - e

Remarks. 1) We easily find that

if p <1
we< (6.58)

~ 14
Im N=¢ 1-—
€m0 o ifp>1
which corresponds to the results obtained in the preceding subsection.

il) When the capacity ¢ of the system is very limited (for example, when
¢ = 2,3, or 4), once we have calculated the m;'s, we can directly obtain N
from the definition of the mathematical expectation of a discrete random
variable: N := Y°7_,k m. We can then also calculate the variance of the
random variable N as follows:

V[N] := i(k — E[N)?m = Z k*m, — (E[N])? (6.59)

k=0 k=0

iii) When p = 1, we find, using the formula
Zkg c(e+1)( 2c+1) (6.60)

that

. © c 1 e(2c+1
E[N2]1=Zk27rk:2k2c+1: ( = ) (6.61)
k=0
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so that

v = R (5) = 0 06

Now, as in the case of the M/M/1/c0 queue, we have

C
Ng=> 1m=1-mp (6.63)
k=1
and
No=N-1+mp (6.64)

Next, the average entering rate of customers into the system (in equilib-
rium) is given by

Ae = A1 — ) (6.65)

because the customers always arrive according to a Poisson process with rate
A but can enter the system only if it is not full (or saturated), that is, if it is
in one the following states: 0,1,... ,¢ — 1. Using both this fact and Little’s
formula (see p. 318), we may write that the average time that a customer
entering the system spends in this system is equal to

N

Te o 6.66
A1 —7w.) (6.66)
For the customers entering the system, we still have that S = 1/u (by

assumption). Then

- N 1
- .= 6.67
@ Ml—m) i (6.67)
Remark. If we consider an arbitrary customer arriving in the system, the
average time that she will spend in it is then T = N/, as noted previously.
Indeed, in this case the random variable T is of mixed type, and we may write

that

ET}=E[T|T=0|P[T=0]+E[T|T>0P[T >0
=0ch+ﬁ(l—wc)=1—;’- (6.68)

We also have

(1— ) (6.69)
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Ezample 6.2.4. We consider a queueing system with a single server and finite
capacity ¢ = 3, in which customers arrive according to a Poisson process with
rate A and the service times are independent exponential random variables,
with parameter ;1. When the system is full, the customer who arrived last will
be served before the one standing in line in front of him.

The balance equations of the system are the following:

state j departure rate from j = arrival rate to j

ATg = pmy
A+ p)my = Amg + pmeo
(A + p)mg = Amy + pms
UTg = ATy

LN = O

Notice that these equations are the same as the ones obtained in the case of the
M/M/1/3 system, although the queue discipline is not the default one (that
is, first-come, first-served). When u = X, we know that the solution of these
equations, under the condition Z?:o n;=1,ism; =1/4, for § =0,1,2,3.

Suppose that a customer arrives and finds exactly one person in the system.
We will calculate the mathematical expectation of the total time 77 that this
new customer will spend in the system if 4 = A. Let K be the number of
customers who will arrive after the customer in question but will be served
before her (if the case may be). By the memoryless property of the exponential
distribution, we may write that

K +1~ Geom(1/2)

It follows that

(]2
=
op
=
!

I
3
~
|
i)

=

1
>
L[]8
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>l+
o
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> 0o
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Finally, let T3 be the total time that an entering customer will spend in the
system, and let L be the number of customers already present in the system
upon his arrival. We may write that

E[Ty)] :iETQIL—l |PL =]
=0
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Given that (in stationary regime)

p[L=l]=P[N=l|NSQ]:?};{UJ\\f[—:§]—:$=

we then deduce from what precedes that

=21/1 3 2) 2
E[Tz]“=)‘—(—+—+—)=—

for!=0,1,2

Wl =

3\A A A A

Notice that when L = 2, it is as if the customer we are interested in had
arrived at the moment when there was exactly one customer in an M/M/1/3
system with service policy FIFO (first-in, first-out).

6.3 Queues with many servers

6.3.1 The model M/M/s

An important generalization of the M/M/1 model is obtained by supposing
that there are s servers in the system and that they all serve at an exponential
rate . The other basic assumptions that were made in the description of
the M/M/1 model remain valid. Thus, the customers arrive in the system
according to a Poisson process with rate A\. The capacity of the system is
infinite, and the service policy is that by default, namely, first-come, first-
served.

We suppose that the arriving customers form a single queue and that the
customer at the front of the queue advances to the first server who becomes
available. A system with this waiting discipline is clearly more efficient than
one in which there is a queue in front of each server, since, in this case, there
could be one or more idle servers while some customers are waiting in line
before other servers.

Remark. A real waiting line in which the customers stand one behind the other
need not be formed. It suffices that the customers arriving in the system take
a number, or that the tasks to be accomplished by the servers be numbered
according to their arrival order in the system.

Since the customers arrive one at a time and are served one at a time,
the process {X(t),t > 0}, where X(t) represents the number of customers in
the system at time ¢, is a birth and death process. Note that two arbitrary
customers cannot leave the system exactly at the same time instant, because
the service times are continuous random variables. The balance equations of
the system are the following (see Fig. 6.2 for the M /M /2 model):

state j departure rate from j = arrival rate to j

0 ATg = pmy
O<k<s ()\ + kp)m, = (k -+ 1)H7Tk+1 + Amp_1
k>s (N + sp)mp = spmpp1 + ATg—1
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A A A
i 2u 2u

Fig. 6.2. State-transition diagram for the model M/M/2.

We can solve this system of equations under the condition y ;o o7 = 1. As
in the case of the M /M /1 model, it is, however, simpler to use Theorem 3.3.4.

We first calculate the quantities ITg, for k = 1,2,... . The cases when k < s
and when & > s must be considered separately. We have
_ fkpif1<k<s
'uk_{suifk>s (6.70)
Then

kz/tXpr---xk,u_H

k
AXAX e XA 1@) for k= (0),1,2,...,s  (6.71)

M

and, fork=s+1,s4+2,...,

AXAX o XAXAX - XA 1 AN\ F
k= = - (6.72)
X 2 X e X S X S X - X s slskTs \ u
S—_— ——r’
(k—s) times

Given that the stochastic process {X(t),t > 0} is irreducible and that
— A
Spi=Y Iy <oo <= pi=s<s (6.73)
k=1

we can indeed appeal to Theorem 3.3.4. We first have [see Eq. (3.301)]

s k s & -1 s—1 r s 00 P E -1
e nged 5 O] -[SE 520

= =3 k=0 =
s—1 p s s -1
P [ % + p_' } (6.74)
pard st (s—p)
Once 7 has been calculated, we set
k
%m ifk=0,1,...,s
ﬂ'k = ' (6.75)
k

Stk =s s 42,
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We will now calculate, in terms of my, the average number of waiting
customers in the system in stationary regime. We have

_ >, > o k
No= Y (k=s)m= Y (k= s)ghmm ——m) Z -5 (%)
k=s+1 k=s+1 k=s+1
(6.76)
Next
oo o0 .
p k p s+1 . p j-1 p s+1 p -1 1
_ Py (2 Ld —(Z 1-& .
Z (k=) (s) (s) ZJ (3) (s) ( s) 1 (p/s)
k=s+1 J=1
(6.77)
from which we obtain
~ ptl g2 st
= = 6.78
No sls (s — p)27r0 sls (1-—- 5)271'0 (6.78)
where £ := p/s. We can also write that
_ 1 ¢
= = 6.79
Y= figg™n ~ g (&1

From NQ and Little’s formula, we deduce all the other quantities of inter-
est. Since the average entering rate of customers into the system is A = A,
we may write that

5 _ Mo ot s 1
== T = 6.80
Q@ T = ol 52 0+ (6.80)
because S = 1/u for every server (by assumption).
Finally, we have
Ns=AS=p and N=XT=Ng+p (6.81)

Remarks. 1) We can also calculate, in particular, the probability 7, that all
the servers are busy. We have

s el k
B o S S0
=3

k>s
p<s s® P\ ® 1 sp®
= 6.82
st O(s) 1-(p/s) s!(s—p)7r0 (6.82)

ii) If the number s of servers tends to infinity, then we find that

k
mo — e M# and Ty — %e")‘/” fork=1,2,... (6.83)
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That is, in the case of the M /M /oo model, we have
7 = PlY = k], whereY ~ Poi(A/pu) (6.84)
Since NQ = Q = 0 (because there is no waiting time), we then directly obtain

N:E[Y]:%ZNS and T:S:% (6.85)

As we did for the M/M /1 model, we can explicitly find the distribution of
the random variable @, namely, the time that an arbitrary customer spends
waiting in line. This variable is of mixed type. We have

PlQ=0=1-m (6.86)
and, for t > 0,
P[0<Q_<_t]:iP[O<Q§t|R=r]P[R:r] (6.87)

where R is the number of customers in the system upon the arrival of the
customer of interest. When at least s customers are in the system, the time
needed for some customer to depart is a random variable having an exponen-
tial distribution with parameter su. It follows that

QI{R=r}~G(r—s+1,sp) forr=s.s+1,... (6.88)

because the customer must wait until 7 — s + 1 persons ahead of him have left
the system before starting to be served. Making use of the fact that

PR=1]=m, (6.89)

(because the arrivals constitute a Poisson process) and proceeding as in the
case when s = 1, we find that

Po<Q<t]=m (1 . e“-w)t) for t >0 (6.90)

Finally, adding the probabilities P[Q = 0] and P[0 < Q < t], we obtain the
following proposition.

Proposition 6.3.1. The distribution function of the random variable Q) in an
M/M/s queueing system (for which X < su) is given by

Fot) = PlQ <t]=1—meP Mt fort >0 (6.91)
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Remarks. 1) With s = 1, we calculate

-1
my = 2 (1+ pp) =p (6.92)

so that

1

PlQ<t] = 1-pePMt fort>0 (6.93)

which corresponds to the formula (6.27).

ii) To obtain the distribution of the total time, T, that an arbitrary customer
spends in an M/M/s system in equilibrium, we would have to compute the
convolution product of the probability density functions of the random vari-
ables @ and S ~ Exp(u).

Ezample 6.3.1. The number K of idle servers in an M/M/s system, in sta-
tionary regime, may be expressed as follows:

K =s5— Ng

where Ng is the number of customers being served. We then deduce from Eq.
(6.81) that )
EK|=s—Ns=s—p

6.3.2 The model M/M/s/c and loss systems

As we mentioned in Subsection 6.2.2, in reality the capacity ¢ of a waiting
system is generally finite. In the case of the M/M/s/c model, we can use the
results on birth and death processes to calculate the limiting probabilities of
the process.

Example 6.3.2. Consider the queueing system M/M/2/3 for which A = 2 and
= 4. The balance equations of the system are

state j departure rate from j = arrival rate to j

2mg (g) 4m
@+ 4)m 2 2mg + (2 x 4
2+2x 4)ms 2 21y + (2 x )73
2 x 43 & 2my

W N = O

We can directly solve this system of linear equations. Equation (0) yields
Ty = %wo. Substituting into (1), we obtain 7o = %m = —é—wo. Next, we deduce

from Eq. (3) that 73 = 73 = g3mo. We can then write that
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7r+17r+17r+1 1 = 32 167r 1 T !
- —_ — M0 = = —, M1 = —. = -0, = —
0T g gre T RN =5y M TR 2T 53 0T 53
Note that this solution also satisfies Eq. (2).

The average number of customers in the system in equilibrium is given by

3
_ 16 4 1 27
N=) km=g+2xm+3xg=m0

from which the average time that an entering customer spends in the system
is _
e
No__21/E8 20758 2T 9sgg
Xe  2(1—-m3) 2(52/53) 104
We also find, in particular, that the limiting probability that the system is

not empty is given by 1 — gy = %

T =

Particular case: The model M/M/s/s

When the capacity of the system is equal to the number of servers in the
system, no waiting line is formed. The customers who arrive and find all the
servers busy do not enter the system and are thus lost. Such a system is called
a no-watt system or a loss system.

Let X(t), for t > 0, be the number of customers in the queueing system
M/M/s/s at time t. We find that the balance equations of the system are
given by

state j departure rate from j = arrival rate to j

0 Amg = pmy
O<k<s ()\+k,u)7rk:(k+1)u Th+1 + A1
s Sp Ty = ATs—1

The birth and death process {X (¢),t > 0} is irreducible and, since

AXAX oo X A 1()\
k

k
= = — -_— f :1,2,..., 694
wX2ux - xkuy k! u) or k : (6.94)

the sum S is given by

s s 1 A k

SI:=§:IQ::§:%T(;> (6.95)
k=1 k=1

This sum is finite for all (positive) values of A and p. Theorem 3.3.4 then

enables us to write that

Pr/K!

W fOI’k':O,l,... y 8 (696)
g=0 17"

T =
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where p := A\/u. Thus, the m’s correspond to the probabilities P[Y = k] of
a random variable Y having a truncated Poisson distribution. Indeed, if Y ~
Poi(p), then we have

~p sk /1 k /L1
Py —k|Y<s=—ctf/B PR ko0,
Ym0 PP Y0 P/

(6.97)

Note that in the particular case when A = u, the limiting probabilities 7
do not depend on A {or p):
A=p 1 / k!

Tk = = fork=0,1,...,s (6.98)
Zj:()l/?!

Moreover, in the general case, the probability 7 that all servers are busy
is simply

pe/s!
0 P /5!

This formula is known as Erlang’s formula.

Finally, the average entering rate of customers into the system is A, =
Al — 7). It follows that

Tp = Mg = forall p>0 (6.99)

_ ) 1
N =T =M1-m) (6.100)

Since there is no waiting period in this system, as in the M/M /oo model, we
have that N = Ng, T =S, and Ng =Q =0.
Remarks. 1) If the number of servers tends to infinity, we obtain

S
lim > pf/jl = e = Mk (6.101)
=0

8§—+00 4

and we retrieve the formula (6.83):

k
lim 7 = —(—/V?—l")——e_”\/” for k=0,1,... (6.102)

§—00
ii) Note that the limiting probabilities may be expressed as follows:
(\E[S])* /k!

TE = =3 7 fork=01,...,s (6.103)
Y=o (AELS])Y /3!

Now, it can be shown that the formula (6.103) is also valid for the more general
model M/G/s/s (known as Erlang’s loss system), in which the service time
is an arbitrary nonnegative random variable. This result is very interesting,
because it enables us to treat problems for which the service time does not
have an exponential distribution.
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Ezample 6.3.3. We consider the queueing system M/G/2/2 in which the ar-
rivals constitute a Poisson process with rate A = 2 per hour.

(a) What is the probability 7 that there are no customers in the system at
a (large enough) time ¢ if we suppose that the service time S (in hours) is an
exponential random variable with mean equal to 1/47 What is the average
number of customers in the system in equilibrium?

(b) Calculate the value of my if S is a continuous random variable whose
probability density function is

fs(s) = 64se™8 for s >0

Solution. (a) When S ~ Exp(u = 4), we have the M/M/2/2 model with
p=2/4=1/2. We seek

o 1 18
DY (/2 1+i+E 13
We also find that
T ! 4 d = i
1—271'0—13 an T = =T 13

It follows that 5 4 1 6
N—Oxﬁ+1xﬁ+2xi§—13
(b) We can check that the density function above is that of a random variable
having a gamma distribution with parameters a = 2 and A* = 8. It follows
that E[S] = a/A* = 1/4. Since the mean of S is equal to that of a random
variable having an Exp(4) distribution, we can conclude that the value of
wo is the same as that in (a). Actually, we can assert that all the limiting
probabilities 7y are the same as the m’s in (a). Consequently, we have that
N = 6/13 as well. If we do not recognize the distribution of the service
time S, then we must calculate the mean E[S] by integrating by parts, or by
proceeding as follows:

o oo
ElS] = / s-64se_gsds:/ 64s%e~8ds
0 0

mss 1 [P0 . 1 2 1
=2 [ e tdt=-r(3) =2 ==
8/0 Al =3B =g =7

Remark. The queueing systems M/M/s (= M/M/s/oc) and M/M/s/s are
the two extreme cases that can be considered. The model M/M/s/c, with
s < ¢ < 00, is the one that can most often represent reality well, because there
is generally some space where potential customers can wait until being served,
but this space is not infinite. If the capacity of a queueing system is finite,
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and if this system is part of a network of queues (see the next subsection),
then we say that the possibility of blocking of the network exists.

Moreover, we found that for the system M/M/s to attain a stationary
regime, the condition A < sy must be satisfied. That is, the arrival rate of
customers in the system must be smaller than the rate at which the customers
are served when the s servers are busy. Otherwise, the length of the queue
increases indefinitely. However, in practice, some arriving customers will not
enter the system if they deem that the queue length is too long. Some may
also decide to leave the system before having been served if they consider that
they have already spent too much time waiting in line.

To make the model M /M /s more realistic, we may therefore suppose that
the customers are impatient. A first possibility is to arrange things so that
the probability that an arriving customer decides to stay in the system and
wait for her turn depends on the queue length upon her arrival. For example,
in Exercise no. 4, p. 346, we suppose that the probability r, that an arriv-
ing customer who finds n persons in the system decides to stay is given by
1/(n +1). This assumption leads to a particularly simple solution. We could
also suppose that r, = k™, where s € (0, 1], etc.

When the potential customers decide by themselves not to enter the sys-
tem, we speak of a priori impatience. We call a posteriori impatience the case
when the customers, once entered into the system, decide to leave before hav-
ing been served, or even before their service is completed. This situation may
be expressed as follows: an arbitrary customer, who entered the system, de-
cides to leave it if @ > ty or if T > t{, where tg and t; are constants fixed
in advance. We can also imagine that the time that an arbitrary customer is
willing to spend in the system (or waiting in line) is a random variable having
a given distribution (an exponential distribution, for example).

Example 6.3.4. (a) Suppose that, in the loss system M/M/K/K, for which
A =, the quantity K is a random variable such that

K= 1 with probability 1/2
" ] 2 with probability 1/2

(i) Calculate the average number of customers in the system in stationary
regime. ,

(il) For which value of K is the average profit (per time unit) larger if each
customer pays $x per time unit and each server costs $y per time unit?

(b) Redo question (i) of part (a) if K is instead a random variable such that
P[K = k] = 1/3, for k = 1, 2, and 3, and if the capacity of the system is
¢ = 3, so that potential customers can wait to be served (when K =1 or 2).

Solution. (a) (i) If K =1, we have (see the formula (6.96) or (6.98)):

_ Me

1A
and w =

1+

=H —

1
=
1+p 2

o 1
0= 2

® >
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so that E[N | K = 1] = 1/2. When K = 2, we find that

1 >‘=H2 1
W= ——————"5— = T T =7, and 7!'22—2-7I'0

P} )
A, (A1 5
1+ ot <E> 3
It follows that E[N | K = 2| = 4/5. Finally, we have

- 1 : 13
NEE[N]:§{E[NIK=1]+E[N]K=2}}:%

(ii) If K = 1, the average profit per time unit, Pr, is given by $ (3z — y),
while Pr = § (%:L‘ — 2 y) when K = 2. Therefore, the value K =1 is the one
for which the average profit is larger if and only if
L > 4 2 = > > z
gt TV T T T
(b) First, if K =1 (and ¢ = 3), we have (see the formula (6.49)) m; = 1/4, for
i1=0,1,2,3. Then E[N | K = 1] = 3/2. Next, if K = 2, we write the balance
equations of the system (see Ex. 6.3.2):

state j departure rate from § = arrival rate to j

Amo @ 7%}
2
A+ p)m @ Ao + 2ums
(A + 2u)ms @ Ay + 2ums

w N = O

2/17(3 (-i—) )\71'2

When A = u, we find that (1) implies that mg = m;. Furthermore, (2) then
implies that w2 = m;/2. It follows, from (4), that 73 = m; /4. Making use of
the condition mg + 71 + 7 + 73 = 1, we obtain that

7r0=7r1=%, WQZ%, and 7r3:% = E[N|K=2]=1
Finally, with K = 3, we calculate
my = 12 3 = —6—, T = 7o, Ty = l71'0, and w3 = éﬂo
OO 2
so that

. 6 6 3 1 15

The average number of customers in the system (in stationary regime) is

therefore 1 /3 5 o
Nl=={- — ) =-—=~1.146
BIN] 3<2+1+16> 48
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6.3.3 Networks of queues

We consider a network made up of k& queueing systems. In the ith system,
there are s; servers (each of them serving only one customer at a time), for
i =1,2,...,k. We suppose that the capacity of each system is infinite and
that customers, coming from outside the network, arrive in system ¢ according
to a Poisson process with rate ;. The k Poisson processes are independent.

After having left the queueing system 4, an arbitrary customer goes to
system j € {1,2,...,k} with probability p; j, so that the probability that the
customer leaves the network (after having been served in system %) is given
by

k

pioi=1-) pi;>0 (6.104)
j=1

We assume that the probability that a given customer remains indefinitely
in the network is equal to zero. Finally, the service times are independent
exponential random variables with rates y;, for ¢ = 1,...,k, and are also
independent of the times between the successive arrivals.

Remarks. 1) A network of this type is said to be open, because the customers
can enter and leave the system. We could also consider the case when the
network is closed, that is, the number of customers is constant, and they
move indefinitely inside the network.

ii) Notice that the probability p; ; may be strictly positive, for any i. That is,
it is possible that a customer, after having departed system ¢, returns to this
system immediately.

Let X(t) := (X1(t),...,Xk(t)), where X;(¢t) designates the number of
customers in system ¢ at time ¢, for ¢ = 1,...,k. We want to obtain the
distribution of X(t) in stationary regime. Let A\; be the total rate at which
customers arrive in system j. Since the arrival rate into a queueing system
must be equal to the departure rate from this system, the A;’s are the solution
of the system of equations

k
N=0;+Y Nipy; forj=1,2... .k (6.105)

i=1

Once this system has been solved, the next theorem, known as Jackson’s®
theorem, gives us the solution to our problem.

Theorem 6.3.1. Let N; := limy oo X;(t). If Ay < s34, fori=1,...,k, then

lim PIX(t) =n] = P V]{Ni = n,-}} (6.106)
i=1

8 James R. Jackson, emeritus professor at UCLA (University of California, Los
Angeles), in the United States.
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where n = (ny,...,ng), and N; is the number of customers in an M/M/s;
queueing system in stationary regime.

Remarks. i) Under the assumption that all customers eventually leave the
network, it can be shown that the system (6.105) has a unique solution.

ii) The statement of the theorem is surprising, because it implies that the
random variables N; are independent. If an arbitrary customer cannot return
to a system he already departed, then the arrivals in each system constitute
Poisson processes, because the departure process of an M/M/s queue is (in
stationary regime) a Poisson process with rate A (if A < su). Moreover, these
Poisson processes are independent. In this case, the result of the theorem is
easily proved. However, when a customer may be in the same system more
than once, it can be shown that the arrival processes are no longer Pois-
son processes. Indeed, then the increments of these processes are no longer
independent. Now, according to the theorem, the random variables are nev-
ertheless independent.

iif) When there is a single server per system, so that s; = 1, the network
described above is called a Jackson network. We then deduce from the formula
(6.11) that

SN by
lim P[(Xi(t),...,Xk(t)) = (n1,... ,nx)] = = 1-=) (6.107)
S ¢ o) E(u) < )

t-00 Hi

(if A; < py, for all 7). The average number of customers in the network in
equilibrium is then given by

N=) N;=Y_ As 4 (6.108)

k
i=1 i1 Hi T As

Finally, given that the average entering rate of customers (coming from the
outside) into the network is

k
Ae = 0; (6.109)
i=1
the average time that an arbitrary customer spends in the network is

7= Rj\l N (6.110)

Ezample 6.3.5. The simplest example of a Jackson network is that of a sequen-
tial system in which there are two servers and the arriving customers must
necessarily go the first server, and next directly to the second one. Then they
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leave the system. We suppose that the first queueing system is an M/M/1
model, with service rate py. Thus, the arrivals in the network constitute a
Poisson process with rate A. Similarly, we suppose that the capacity of the
second queueing system is infinite and that the server performs the desired
service (to only one customer at a time) at an exponential rate ys. Finally,
all the service times and the times between the successive arrivals are inde-
pendent random variables.

Since the customers cannot find themselves more than once in front of the
same server, we can assert, if A < uy, that the departure process of the first
system {in stationary regime) is also a Poisson process with rate A, so that
the second queueing system is an M/M/1 model as well. We deduce from
Jackson’s theorem that

Tny,ng = tlirgo P[(Xl(t)7X2(t)) = (nl’n2)]

G O-DEC-2) e

for ny and ne € {0,1,...}.

We can show that the formula above is valid by checking that the joint
limiting probabilities 7, », satisfy the balance equations of the network. Sup-
pose, to simplify further, that p; = g := u. These balance equations are then

state (1, 5) departure rate from (i, j) = arrival rate to (4, j)

(0,0) ATg,0 = [To,1
(n1,0),m1 >0 (A4 )Ty 0 =Ty ,1 + ATpy—1,0
(0,m2),n2 >0 (A + p)Tony =(To,na+1 + Tng—1)
(nla n?)’ ning > 0 (A + 2“)7rn1,n2 =N(7rn1,n2+1 + 7Tn1+1,n2—1)
+)\7rn1—1,n2

When p; = po = u1, we can rewrite the formula (6.111) as follows:

ny4+ne 2
Tnimg = <5> (1 = 5) (6.112)
7 7

We have, in particular,

()\ + 2/")7rn1 g /l(ﬂ-nl,nz-*-l + Wn1+1,n2—1) + ’\ﬂ'nl-l,nz
>

A ni+ng ni4na+1 ni+nz A ny—1l4+n2
) 0
7 7 u 7

—

/\+2u=u[<%>+1]—iw\(%)_l:/\—!—u—{—,u (6.113)
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By the uniqueness of the solution, under the condition Z(nlm) Tring = 1y
we can then conclude that the probabilities 7y, n, are indeed given by the
formula (6.111).

Remarks. i) When p; = po = u, the limiting probabilities my,, », depend
only on the sum n; + ny. However, the probability 7, n, is not equal to the
probability that there will be exactly n; + no customers in the network in
stationary regime. Indeed, we calculate, for example,

Jim PXy(t) + Xa(t) = 1] L 2 lim P[X:(t) =1, Xa(t) = 0]

2
=2 @) (1 - 3) (6.114)
H H
Moreover, we have

2,600 20

n1+n2=0 ny+nz2=0
2
- (1—3> L —1-2<1 (s
1 1-2 7
M
while
o
> lim PIXy(t) + Xa(t) = ng +no] =1 (6.116)
n1+ne=0 tmoo

il) We can also write that

Tny,ng HZE2 i P[Xy(t) = ny + ng, Xa(t) = 0]

t—00
= lim PXy(t) = 0, Xa(t) = n1 + me] (6.117)
More generally, we have
Tnyng | = Jim PXy(t) =i, Xa(t) = ] (6.118)

for all nonnegative integers ¢ and j such that i + j = ny + ng. Thus, when
1 = pa, all the possible distributions of the ny + no customers between the
two servers are equally likely.

iii) Finally, the network described in this example is different from the M /M /2
model, even if the two service rates are equal. Indeed, when there are exactly
two customers in this network, both these customers may stand in front of
server 1 (or server 2), whereas, in the case of the M/M/2 model, there must
be one customer in front of each server.
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6.4 Exercises

Remark. In the following exercises, we assume that the service times are ran-
dom variables that are independent among themselves and are independent
of the times between successive arrivals.

Section 6.2

Question no. 1
Calculate the average number of arrivals in the system during the service
period of an arbitrary customer for the queueing model M/M/1/3.

Question no. 2

Drivers stop to fill up their cars at a service station according to a Poisson
process with rate A = 15 per hour. The service station has only one gasoline
pump, and there is room for only two waiting cars. We suppose that the
average service time is equal to two minutes.

(a) Calculate N and Ng. Why is N # Ng + 1?7

(b) If we suppose that an arriving driver who finds the three spaces occupied
will go to another service station, what proportion of potential customers is
lost?

Question no. 3

Airplanes arrive at an airport having a single runway according to a Pois-
son process with rate A = 18 per hour. The time during which the runway is
used by a landing airplane has an exponential distribution with mean equal
to two minutes (from the moment it receives the landing authorization).

(a) Knowing that there is at most one airplane in the system (at a given time
instant), what is the probability that an arriving airplane will have to wait
before being allowed to land?

(b) Given that an airplane has been waiting for the authorization to land for
the last 5 minutes, what is the probability that it will have landed and cleared
the runway in the next 10 minutes?

Question no. 4

We suppose that the probability that an arriving customer in an M /M/1
queueing system decides to stay and wait until being served is given by
1/(n + 1), where n is the number of customers in the system at the time
when the customer in question arrives, for n =0,1,2,....

(a) Calculate N and Ng.

(b) What is the percentage of customers who decide not to enter the system?

Question no. 5

We wish to compare two maintenance policies for the airplanes of a certain
airline company. In the case of policy A (respectively, B), the airplanes arrive
to the maintenance shop according to a Poisson process with rate Ay = 1
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(resp., Ap = 1/4) per day. Moreover, when policy A (resp., B) is used, the
service time (in days) is an exponential random variable with parameter p4 =
2 (resp., the sum of four independent exponential random variables, each of
them with parameter up = 2). In both cases, maintenance work is performed
on only one airplane at a time.

(a) What is the better policy? Justify your answer by calculating the average
number of airplanes in the maintenance shop (in stationary regime) in each
case.

Indication. The average number of customers in a queueing system M/G/1
(after a long enough time) is given by

- A2 E[S?
N = AE[S] -+ m

where S is the service time and A is the average arrival rate of customers.

(b) Let N be the number of airplanes in the maintenance shop in stationary
regime. Calculate the distribution of N if policy A is used, given that there
are two or three airplanes in the shop (at a particular time instant).

(c) If policy A is used, what is the average time that an airplane, which has
already been in the maintenance shop for two days, will spend in the shop
overall?

Question no. 6

We consider a queueing system in which there are two types of customers,
both types arriving according to a Poisson process with rate A. The customers
of type I always enter the system. However, the type II customers only en-
ter the system if there is no more than one customer in the system when
they arrive. There is a single server and the service time has an exponential
distribution with parameter u.

(a) Write the balance equations of the system.

(b) Calculate the limiting probability that an arbitrary type II customer enters
the system if A =1 and p = 2.

Indication. The system considered is a birth and death process.

(c) Calculate the average time that a given arriving customer of type II will
spend in the system if A =1 and pu = 2.

Question no. 7

We consider a waiting system with a single server and finite capacity ¢ =
3, in which the customers arrive according to a Poisson process with rate
A and the service times are independent exponential random variables with
parameter u = 2A. When the system is full, a fair coin is tossed to determine
whether the second or third customer will be the next one to be served.

(a) Write the balance equations for this system, and calculate the limiting
probabilities ;.
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(b) Calculate the average time that an arriving customer who finds (exactly)
one customer in the system will spend in it.

(c) Calculate the average time that a customer who enters the system will
spend in it.

Question no. 8

Customers arrive at a service facility according to a Poisson process with
rate A = 10 per hour. The (only) server is able to serve up to three customers
at a time. The service time (in hours) has an exponential distribution with
parameter u = 5, regardless of the number of customers (namely 1, 2, or 3)
being served at the same time. However, an arbitrary customer is not served
immediately if the server is busy upon her arrival. Moreover, we suppose that
the service times are independent random variables and that there can be at
most three customers waiting at any time. We define the states

0': nobody is being served
0: the server is busy; nobody is waiting
n: there is (are) n customer(s) waiting, for n =1,2,3

(a) Write the balance equations of the system.
(b) Calculate the limiting probabilities 7;, for all states j.
(c) What is the probability that an arriving customer will be served alone?

Question no. 9 (Modification of the preceding question)

Customers arrive at a service facility according to a Poisson process with
rate A. The (only) server is able to serve up to two customers at a time.
However, an arbitrary customer is not served immediately if the server is
busy upon his arrival. The service time has an exponential distribution with
parameter u; when the service is provided to ¢ customer(s) at a time, for
i = 1,2. Moreover, we suppose that the service times are independent random
variables and that there can be at most two customers waiting at any time.
We define the states

0 : nobody is being served
n;: there is (are) n customer(s) waiting and ¢ customer(s) being served

forn=0,1,2andi=1,2.
(a) Write the balance equations of the system. Do not solve them.

(b) Calculate, in terms of the limiting probabilities, the probability that
(i) the server is serving two customers at a time, given that he is busy,
(ii) an arriving customer who enters the system will not be served alone.

Question no. 10

Customers arrive into a queueing system according to a Poisson process
with rate A. There is a single server, who cannot serve more than one customer
at a time. However, the larger the number of customers in the system is, the
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faster the server works. More precisely, we suppose that the service time has
an exponential distribution with parameter u(k) = kiﬂ,u when there are k
customers in the system, for k = 1,2,.... Moreover, we suppose that the
service times are independent random variables and that A =1 and p = 2.

(a) Calculate the limiting probabilities 7, for n = 0,1,....

(b) Let X(t) be the number of customers in the system at time ¢, for ¢t > 0.
Calculate E[X(t) | X(t) < 2] when the system is in equilibrium.

(c) Let Tp be the time spent in the system by a customer who arrived, at time
to, while the system was empty. Calculate the expected value of Tp, given that
the following customer arrived at time tg + 1 and the customer in question
had already left the system.

Question no. 11

Drivers arrive according to a Poisson process with rate A to fill up their
cars at a service station where there are two employees who serve at the
exponential rates p; and g, respectively. However, only one employee works
at a time serving gasoline. Moreover, there is space for only one waiting car.
We suppose that

e when the system is empty and a customer arrives, employee no. 1 fills up
the car,

e when employee no. 1 (respectively, no. 2) finishes filling up a car and
another car is waiting, there is a probability equal to p; (resp., p2) that
this employee will service the customer waiting to be served, independently
from one time to another.

Finally, we suppose that the service times are independent random vari-
ables.

(a) Let X (t) be the state of the system at time ¢. Define a state space in such
a way that the stochastic process {X(t),t > 0} is a continuous-time Markov
chain.

(b) Write the balance equations of the process.

(c) Calculate, in terms of the limiting probabilities, the probability that

(i) an arbitrary customer entering the system will be served by employee
no. 2,

(ii) two customers arriving consecutively will be served by different em-
ployees, given that the first of these customers arrived while there was exactly
one car, being filled up by employee no. 1, in the system.

Question no. 12

We consider the queueing system M /M /1. However, the customers do not
have to wait, because the server is able to serve all the customers at one time,
at an exponential rate u, regardless of the number of customers being served.
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Calculate

(a) the limiting probability, 7,, that there are n customers being served, for
n=01,...,

(b) the variance of the number of customers being served when the system is
in equilibrium.

Question no. 13

Suppose that customers arrive at a service facility with a single server
according to a Poisson process with rate A. The server waits until there are
four customers in the system before beginning to serve them, all at once.
The service times are independent random variables, all having a uniform
distribution on the interval (0, 1). Moreover, the system capacity is equal to
four customers. What fraction of time, =;, are there 7 customer(s) in the
system, over a long period?

Indication. Use the results on renewal processes.

Question no. 14

Suppose that the times between the arrivals of consecutive customers in
a certain queueing system are independent random variables uniformly dis-
tributed over the interval (0,1). The service time is exponentially distributed,
with parameter p. Finally, the (only) server is able to serve all the customers
at once, so that there is no waiting. Calculate the limiting probability that
the server is busy.

Indication. Use the results on renewal processes.

Question no. 15

We modify the M/M/1/4 queueing system as follows: the server always
waits until there are at least two customers in the system before serving them,
two at a time, at an exponential rate .

(a) Write the balance equations of the system.
(b) Calculate the limiting probabilities, m,, for n = 0,1,2,3,4, in the case
when A =y, where X is the average arrival rate of the customers.
(c) With the help of the limiting probabilities calculated in (b), find

(i) the probability that the system is not empty at the moment when the
server has just finished serving two customers,

(ii) the variance of the number X(t) of customers in the system (in equi-
librium) at time #, given that X(¢) < 2.

Section 6.3

Question no. 16

Customers arrive according to a Poisson process with rate A at a bank
where two clerks work. Clerk 1 (respectively, 2) serves at an exponential rate
1 (resp., pu2). We suppose that the customers form a single queue and that,
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when the system is empty, an arriving customer will go to clerk 1 (resp., 2)
with probability p; (resp., 1 — p1). On the other hand, when a customer must
wait, she will eventually be served by the first available clerk. We also suppose
that an arbitrary customer can enter the bank only if there are no more than
10 customers waiting in line. We say that the system is in state n = 0,2,...
if there are n customers in the bank, and in state 1; (resp., 12) if there is
exactly one customer in the bank and if this customer is being served by clerk
1 (resp., 2).

(a) Write the balance equations of the system.

(b) In terms of the limiting probabilities, what is the probability that an
entering customer will be served by clerk 17

Question no. 17

In a certain garage, there are three mechanics per work shift of eight hours.
The garage is open 24 hours a day. Customers arrive according to a Poisson
process with rate A = 2.5 per hour. The time a mechanic takes to perform
an arbitrary task is an exponential random variable with mean equal to 30
minutes.

(a) What proportion of time are all the mechanics busy?

(b) How much time, on average, must a customer wait for his car to be ready?

Question no. 18

In a small train station, there are two counters where the travelers can buy
their tickets, but the customers form a single waiting line. During the slack
hours, only one counter is manned continuously by a clerk. When there is at
least one customer waiting to be served, the second clerk opens his counter.
When this second clerk finishes serving a customer and there is nobody wait-
ing, he goes back to attending to other tasks. We suppose that the clerks both
serve in a random time having an exponential distribution with parameter u
and that, during the slack hours, the customers arrive according to a Poisson
process with rate A\. We also suppose that the slack period lasts long enough
for the process to reach a stationary regime. The state X(t) of the system
is defined as being the total number of customers present in the system at
time ¢.

(a) Calculate the limiting probabilities of the process {X(t),t > 0} if A < 2p.

(b) Write the balance equation for the state 1, corresponding to the case when
only the second clerk is busy (serving a customer).

{c) What fraction of time is the second counter open?

Question no. 19

Customers arrive at a hairdresser’s salon according to a Poisson process
with rate A = 8 per hour. There are two chairs, and the two hairdressers’ ser-
vice times are exponential random variables with means equal to 15 minutes.
Moreover, currently, there is no room where potential customers could wait
for their turn to have their hair cut.
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(a) The owner considers the possibility of enlarging the salon, so that she could
install an additional chair and hire a third hairdresser. This would increase
her operation costs by $20 per hour. If each customer pays $10, would the
enlargement be profitable? Justify.

Indication. Calculate the average rate at which customers enter the salon.

(b) Another possibility the owner considered consists of enlarging the salon to
install a chair where one potential customer could wait to be served. In this
case, the increase in operation costs would be equal to $5 per hour. Would
this possibility be profitable? Justify.

Question no. 20
We consider the queueing system M/M/2/3 (see Example 6.3.2).

(a) Write the balance equations of the system, and calculate the limiting
probabilities 7; if A = 2u.

(b) Let T* be the total time that an entering customer will spend in the
system. Calculate the expected value of T* if = 1.

(c) Suppose that the customers form two waiting lines, by standing at random
in front of either server. Calculate, with 1 = 1, the average time that an
arbitrary customer who enters the system, and finds two customers already
present, will spend in this system if we assume that the number of customers
in each queue is then a random variable having a binomial distribution with
parameters n = 2 and p = 1/2.

Question no. 21

We consider a queueing system with two servers. The customers arrive
according to a Poisson process with rate A = 1, and the system capacity is
equal to four customers. The service times are independent random variables
having an exponential distribution. Each server is able to serve two customers
at a time. If a server attends to only one customer, he does so at rate p = 2,
whereas the service rate is equal to 1 when two customers are served at the
same time.

Indication. If two customers are served together, then they will leave the
system at the same time. Moreover, if there are two customers in the system,
then one of the servers may be free.

(a) Write the balance equations of the system.

(b) Let T* be the total time that a given customer entering the system will
spend in it.

(i) Calculate, in terms of the limiting probabilities, and supposing that no
customers arrive during the service period of the customer in question, the
distribution function of T*.

(ii) Under the same assumption as in (i), does the random variable T
have the memoryless property? Justify.



6.4 Exercises 353

Question no. 22

Customers arrive according to a Poisson process with rate A = 5 per hour
in a system with two servers. The probability that an arbitrary customer
goes to server no. 1 (respectively, no. 2) is equal to 3/4 (resp., 1/4). The
service times (in hours) are independent exponential random variables with
parameters p; = 6 and s = 4, respectively. A customer who goes to server
no. 2 immediately leaves the system after having been served. On the other
hand, after having been served by server no. 1, a customer (independently
from one time to another)

leaves the system with probability 1/2
goes to server no. 2 with probability 2/5
returns in front of server no. 1 with probability 1/10

Moreover, there is no limit on the number of customers who can be in the
system at any time.

Let (n,m) be the state of the system when there are n customers in front
of server no. 1 and m customers in front of server no. 2.

(a) Calculate ), for all n,m > 0.

(b) Calculate the average number of customers in the system at a large enough
time instant, given that the system is not empty at the time in question.

(¢) What is the average time that an arbitrary customer who arrives in the
system and goes to server no. 1 will spend being served by this server before
leaving the system if we suppose that the customer in question never goes to
server no. 27

Question no. 23

Customers arrive according to a Poisson process with rate A outside a bank
where there are two automated teller machines (ATM). The two ATMs are
not identical. We estimate that 30% of the customers use only ATM no. 1,
while 20% of the customers use only ATM no. 2. The other customers (50%)
make use of either ATM indifferently. The service times at each ATM are
independent exponential random variables with parameter p. Finally, there is
space for a single waiting customer. We define the states

0: the system is empty
(n,m): there are n customers for ATM no. 1 and m customers
for ATM no. 2, for1<n4m <2
3: the system is full

(a) Write the balance equations of the system. Do not solve them.

(b) Calculate, in terms of the limiting probabilities,

(i) the variance of the number of customers who are waiting to use an
ATM,

(i) the average time that an arbitrary customer, who enters the system
and wishes to use ATM no. 2, will spend in the system.
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Question no. 24

We consider a queueing system in which ordinary customers arrive accord-
ing to a Poisson process with rate A and are served in a random time having
an exponential distribution, with parameter u, by either of two servers. Fur-
thermore, there is a special customer who, when she arrives in the system, is
immediately served by server no. 1, at an exponential rate ;. If an ordinary
customer is being served by server no. 1 when the special customer arrives,
then this customer is returned to the head of the queue. We suppose that
the service times are independent random variables and that the special cus-
tomer spends an exponential time (independent of the service times), with
parameter As, outside the system between two consecutive visits.

(a) Suppose that if an afbitrary customer is returned to the queue, then he
will resume being served as soon as either server becomes available. Define an
appropriate state space, and write the balance equations of the system.

(b) Suppose that the system capacity is ¢ = 2, but that if a customer is
displaced by the special customer, then she will wait, a few steps behind, until
server no. 1 becomes available to resume being served by this server (whether
server no. 2 is free or not). Define a state space such that the stochastic process
{X(t),t > 0}, where X(t) represents the state of the system at time ¢, is a
continuous-time Markov chain.

(c) Suppose that the system capacity is ¢ = 2 and that, if a customer is dis-
placed by the special customer, then he will go to server no. 2 only if this
server is free upon the arrival of the special customer in the system. Other-
wise, he will wait, a few steps behind, before server no. 1 becomes available.
Let K be the number of times that a given customer, who has started re-
ceiving service from server no. 1, will be displaced by the special customer.
Calculate P[K = 1] in terms of the limiting probabilities of the system (with
an appropriate state space).

Question no. 25
Let N be the number of customers in an M/G/2/2 (loss) system after a
time long enough for the system to be in stationary regime.

(a) Calculate V[N | N > 0] if the service time, S, has a uniform distribution
on the interval (0,1) and if the average arrival rate of customers in the system
isA=4.

(b) Calculate V[N | X = 1/4] if S has an exponential distribution with pa-
rameter 1/X, where X ~ U(0,1) and A = 2.

Question no. 26

Suppose that we modify the M/M/2 queueing system as follows: when a
server is free, he assists (if needed) the other server, so that the service time, S,
has an exponential distribution with parameter 2u. If a new customer arrives
while a customer is being served by the two servers at the same time, then
one the servers starts serving the new customer.
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(a) Calculate the limiting probabilities if we suppose that A < 2.

(b) Suppose that the system capacity is ¢ = 2 and that A = u. Calculate the
average number of customers in the system in stationary regime, given that
the system is not full.

Question no. 27

Let X(t) be the number of customers at time ¢t > 0 in a queueing sys-
tem with s servers and finite capacity ¢, for which the time 7 between two
consecutive arrivals is a random variable such that f-(t) = 2te=t", for t > 0.
We assume that the times between the arrivals of customers are independent
and identically distributed random variables. Similarly, the service times are
independent random variables having, for each server, the same probability
density function as 7. We define the stochastic process {Y (¢),t > 0} by

Y(t) = X(g(t)) fort>0

where g(t) is a one-to-one function of ¢. Find a function g such that {Y'(¢),
t >0} is an M/M/s queueing system with A = u = 1 (and finite capacity c).
Justify.

Question no. 28

We consider the loss system M/G/2/2. Suppose that the service times
have independent exponential distributions with parameter ©, where O is a
random variable such that

fo(8) = 2(292+20+1) for0<6<1

Suppose also that the average arrival rate of customers is A = 1. Calculate,
assuming they exist, the limiting probabilities 7;, for ¢ =0,1,2.

Question no. 29

In the M/M /2 queueing system, we define the random variable S as being
the first time that both servers are busy. Let

F = exactly two customers arriving in the interval (0, t].
Calculate P[S <t | F].

Question no. 30

A hairdresser and her assistant operate a salon. There are two types of
customers: those of type I prefer to have their hair cut by the hairdresser but
are willing to be served by her assistant, while those of type II want to be
served by the assistant only. The type I (respectively, type 11} customers arrive
at the salon according to a Poisson process with rate A; (resp., A2). Moreover,
the two Poisson processes are independent. Finally, the hairdresser (resp.,
the assistant) serves in a random time having an exponential distribution
with parameter uq (resp., us), and the service times are independent random
variables. Answer the following questions, supposing that there is no room
where potential customers can wait until being served:
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(a) define a state space that enables you to answer part (c);
(b) write the balance equations;

(c) give, in terms of the limiting probabilities,

(i) the average number of customers in the system;

(ii) the average time that an arbitrary entering customer will spend in the
system.

Question no. 31
Redo the preceding question, supposing that the system capacity is infinite
and that

a) only the potential type I customers are willing to wait until being served
those of type II go away if the assistant is busy),

(
(
(b) only the potential type II customers are willing to wait until being served
(those of type I go away if the hairdresser and her assistant are busy),

(

¢) all the potential customers are willing to wait until being served.

Question no. 32

Suppose that in the queueing system M/M/2/c, with ¢ = 3, server no. 1
serves only one person at a time, at rate py, while server no. 2 can serve one
or two persons at a time, from any time instant, at rate p. Moreover, when
server no. 1 is free, an arriving customer will go to this server.

(a) Let X (t) be the number of persons in the system at time ¢t. Define a state
space such that the stochastic process {X(t),t > 0} is a continuous-time
Markov chain.

Remark. Server no. 1 may be free while server no. 2 serves two customers at a
time. That is, the two customers finish their service period with server no. 2.

(b) Write the balance equations of the system. Do not solve them.

(¢) In terms of the limiting probabilities, what fraction of time does server
no. 2 serve two customers at a time, given that she is busy?

Question no. 33

Redo the preceding question, supposing that the system capacity is instead
¢ = 4 and that server no. 2 can serve one or two persons at a time (at rate
f12) but only from the same time instant.
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A.1: Distribution Function of the Binomial Distribution
A.2: Distribution Function of the Poisson Distribution
A.3: Distribution Function of the N(0, 1) Distribution
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Appendix A: Statistical Tables

Table A.1. Distribution Function of the Binomial Distribution

p
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0.10

0.20
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0.9025
0.9975

0.8574
0.9927
0.9999

0.8145
0.9860
0.9995
1.0000

0.7738
0.9774
0.9988
1.0000
1.0000

0.5987
0.9139
0.9885
0.9990
0.9999
1.0000

0.4633
0.8290
0.9638
0.9945

0.8100
0.9900

0.7290
0.9720
0.9990

0.6561
0.9477
0.9963
0.9999

0.5905
0.9185
0.9914
0.9995
1.0000

0.3487
0.7361
0.9298
0.9872
0.9984
0.9999
1.0000

0.2059
0.5490
0.8159
0.9444

0.6400 0.5625

0.9600

0.5120
0.8960
0.9920

0.4096
0.8192
0.9728
0.9984

0.3277
0.7373
0.9421
0.9933
0.9997

0.1074
0.3758
0.6778
0.8791
0.9672
0.9936
0.9991
0.9999
1.0000

0.0352
0.1671
0.3980
0.6482

0.9375

0.4219
0.8438
0.9844

0.3164
0.7383
0.9493
0.9961

0.2373
0.6328
0.8965
0.9844
0.9990

0.0563
0.2440
0.5256
0.7759
0.9219
0.9803
0.9965
0.9996
1.0000

0.0134
0.0802
0.2361
0.4613

0.3600
0.8400

0.2160
0.6480
0.9360

0.1296
0.4752
0.8208
0.9744

0.0778
0.3370
0.6826
0.9130
0.9898

0.0060
0.0464
0.1673
0.3823
0.6331
0.8338
0.9452
0.9877
0.9983
0.9999

0.0005
0.0052
0.0271
0.0905

0.2500
0.7500

0.1250
0.5000
0.8750

0.0625
0.3125
0.6875
0.9375

0.0313
0.1875
0.5000
0.8125
0.9688

0.0010
0.0107
0.0547
0.1719
0.3770
0.6230
0.8281
0.9453
0.9893
0.9990

0.0000
0.0005
0.0037
0.0176
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Table A.1. Continued

p
n| x| 005 0.10 0.20 0.25 0.40 0.50
15 | 4 ] 0.9994 0.9873 0.8358 0.6865 0.2173 0.0592
5 | 0.9999 0.9977 0.9389 0.8516 0.4032 0.1509
6 | 1.0000 0.9997 0.9819 0.9434 0.6098 0.3036
7 1.0000 0.9958 0.9827 0.7869 0.5000
8 0.9992 0.9958 0.9050 0.6964
9 0.9999 0.9992 0.9662 0.8491
10 1.0000 0.9999 0.9907 0.9408
11 1.0000 0.9981 0.9824
12 0.9997 0.9963
13 1.0000  0.9995
14 1.0000
20 | 0 | 0.3585 0.1216 0.0115 0.0032 0.0000
1 {0.7358 0.3917 0.0692 0.0243 0.0005 0.0000
2 | 09245 0.6769 0.2061 0.0913 0.0036 0.0002
3 109841 0.8670 0.4114 0.2252 0.0160 0.0013
4 09974 0.9568 0.6296 0.4148 0.0510 0.0059
5 | 0.9997 0.9887 0.8042 0.6172 0.1256 0.0207
6 | 1.0000 0.9976 0.9133 0.7858 0.2500 0.0577
7 0.9996 0.9679 0.8982 0.4159 0.1316
8 0.9999 0.9900 0.9591 0.5956 0.2517
9 1.0000 0.9974 0.9861 0.7553 0.4119
10 0.9994 0.9961 0.8725 0.5881
11 0.9999 0.9991 0.9435 0.7483
12 1.0000 0.9998 0.9790 0.8684
13 1.0000 0.9935 0.9423
14 0.9984 0.9793
15 0.9997 0.9941
16 1.0000 0.9987
17 0.9998
18 1.0000

359
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Table A.2. Distribution Function of the Poisson Distribution
A

T 0.5 1 1.5 2 5 10 15 20
0 | 0.6065 0.3679 0.2231 0.1353 0.0067 0.0000
1 | 0.9098 0.7358 0.5578 0.4060 0.0404 0.0005
2 | 0.9856 0.9197 0.8088 0.6767 0.1247 0.0028 0.0000
3 | 0.9982 0.9810 0.9344 0.8571 0.2650 0.0103 0.0002
4 |1 09998 0.9963 0.9814 0.9473 0.4405 0.0293 0.0009 0.0000
5 | 1.0000 0.9994 0.9955 0.9834 0.6160 0.0671 0.0028 0.0001
6 0.9999 0.9991 0.9955 0.7622 0.1301 0.0076 0.0003
7 1.0000 0.9998 0.9989 0.8666 0.2202 0.0180 0.0008
8 1.0000 0.9998 0.9319 0.3328 0.0374 0.0021
9 1.0000 0.9682 0.4579 0.0699 0.0050
10 0.9863 0.5830 0.1185 0.0108
11 0.9945 0.6968 0.1848 0.0214
12 0.9980 0.7916 0.2676 0.0390
13 0.9993 0.8645 0.3632 0.0661
14 0.9998 0.9165 0.4657 0.1049
15 0.9999 0.9513 0.5681 0.1565
16 1.0000 0.9730 0.6641 0.2211
17 0.9857 0.7489 0.2970
18 0.9928 0.8195 0.3814
19 0.9965 0.8752 0.4703
20 0.9984 0.9170 0.5591
21 0.9993 0.9469 0.6437
22 0.9997 0.9673 0.7206
23 0.9999 0.9805 0.7875
24 1.0000 0.9888 0.8432
25 0.9938 0.8878
26 0.9967 0.9221
27 0.9983 0.9475
28 0.9991 0.9657
29 0.9996 0.9782
30 0.9998 0.9865
31 0.9999 0.9919
32 1.0000 0.9953
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Table A.3. Distribution Function of the N(0, 1) Distribution
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0.6
0.7
0.8
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1.0
1.1
1.2
1.3
14

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
24

2.5
2.6
2.7
2.8
2.9

0.5000 0.5040
0.5398 0.5438
0.5793 0.5832
0.6179 0.6217
0.6554 0.6591

0.6915 0.6950
0.7257 0.7291
0.7580 0.7611
0.7881 0.7910
0.8159 0.8186

0.8413
0.8643
0.8849
0.9032
0.9192

0.8438
0.8665
0.8869
0.9049
0.9207

0.9332 0.9345
0.9452 0.9463
0.9554 0.9564
0.9641 0.9649
0.9713 0.9719

0.9772
0.9821
0.9861
0.9893
0.9918

0.9778
0.9826
0.9864
0.9896
0.9920

0.9938
0.9953
0.9965
0.9974
0.9981

0.9940
0.9955
0.9966
0.9975
0.9982

0.5080
0.5478
0.5871
0.6255
0.6628

0.6985
0.7324
0.7642
0.7939
0.8212

0.8461
0.8686
0.8888
0.9066
0.9222

0.9357
0.9474
0.9573
0.9656
0.9726

0.9783
0.9830
0.9868
0.9898
0.9922

0.9941
0.9956
0.9967
0.9976
0.9982

0.5120
0.5517
0.5910
0.6293
0.6664

0.7019
0.7357
0.7673
0.7967
0.8238

0.8485
0.8708
0.8907
0.9082
0.9236

0.9370
0.9484
0.9582
0.9664
0.9732

0.9788
0.9834
0.9871
0.9901
0.9925

0.9943
0.9957
0.9968
0.9977
0.9983

0.5160
0.5557
0.5948
0.6331
0.6700

0.7054
0.7389
0.7704
0.7995
0.8264

0.8508
0.8729
0.8925
0.9099
0.9251

0.9382
0.9495
0.9591
0.9671
0.9738

0.9793
0.9838
0.9875
0.9904
0.9927

0.9945
0.9959
0.9969
0.9977
0.9984

0.5199
0.5596
0.5987
0.6368
0.6736

0.7088
0.7422
0.7734
0.8023
0.8289

0.8531
0.8749
0.8944
0.9115
0.9265

0.9394
0.9505
0.9599
0.9678
0.9744

0.9798
0.9842
0.9878
0.9906
0.9929

0.9946
0.9960
0.9970
0.9978
0.9984

0.5239 0.5279
0.5636 0.5675
0.6026 0.6064
0.6406 0.6443
0.6772 0.6808

0.7123 0.7157
0.7454 0.7486
0.7764 0.7794
0.8051 0.8078
0.8315 0.8340

0.8554 0.8577
0.8770 0.8790
0.8962 0.8980
0.9131 0.9147
0.9279 0.9292

0.9406 0.9418
0.9515 0.9525
0.9608 0.9616
0.9686 0.9693
0.9750 0.9756

0.9803 0.9808
0.9846 0.9850
0.9881 0.9884
0.9909 0.9911
0.9931 0.9932

0.9949
0.9962
0.9972
0.9979
0.9985

0.9948
0.9961
0.9971
0.9979
0.9985

0.5319
0.5714
0.6103
0.6480
0.6844

0.5359
0.57563
0.6141
0.6517
0.6879

0.7190 0.7224
0.7517 0.7549
0.7823 0.7852
0.8106 0.8133
0.8365 0.8389

0.8599
0.8810
0.8997
0.9162
0.9306

0.8621
0.8830
0.9015
0.9177
0.9319

0.9441
0.9545
0.9633
0.9706
0.9767

0.9429
0.9535
0.9625
0.9699
0.9761

0.9812 0.9817
0.9854 0.9857
0.9887 0.9890
0.9913 0.9916
0.9934 0.9936

0.9951
0.9963
0.9973
0.9980
0.9986

0.9952
0.9964
0.9974
0.9981
0.9986
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Table A.3. Continued

+0.00

-+0.01

+0.02

+0.03

+0.04

+0.05

+0.06

+0.07

+0.08

+0.09

3.0
3.1
3.2
3.3
34

3.5
3.6
3.7
3.8
3.9

6.9987
0.9990
0.9993
0.9995
0.9997

0.9998
0.9998
0.9999
0.9999
1.0000

0.9987
0.9991
0.9993
0.9995
0.9997

0.9998
0.9998
0.9999
0.9999
1.0000

0.9987
0.9991
0.9994
0.9995
0.9997

0.9998
0.9999
0.9999
0.9999
1.0000

0.9988
0.9991
0.9994
0.9996
0.9997

0.9998
0.9999
0.9999
0.9999
1.0000

0.9988
0.9992
0.9994
0.9996
0.9997

0.9998
0.9999
0.9999
0.9999
1.0000

0.9989
0.9992
0.9994
0.9996
0.9997

0.9998
0.9999
0.9999
0.9999
1.0000

0.9989
0.9992
0.9994
0.9996
0.9997

0.9998
0.9999
0.9999
0.9999
1.0000

0.9989
0.9992
0.9995
0.9996
0.9997

0.9998
0.9999
0.9999
0.9999
1.0000

0.9990
0.9993
0.9995
0.9996
0.9997

0.9998
0.9999
0.9999
0.9999
1.0000

0.9990
0.9993
0.9995
0.9997
0.9998

0.9998
0.9999
0.9999
0.9999
1.0000




Appendix B: Answers to Even-Numbered
Exercises

Chapter 1

2. (a) ~0.0062; (b) ~0.80.
4.1-m/8 (~0.6073).
6. 379/2187 (~0.1733).
8. 244/495 (~0.4929).
10. 1/3.
12.

2 c

¢ e —(l+c)

16. (a) Y ~ U[O 1]; (b) g(z) = 2Fx () + 1.
18. (a) 2/3; (b) 1/3; (c) 8/3.

20. (a) ~0.3591; (b) ~o 3769; (c) ~0.1750.
22. (a) ~0.4354; (b )~$781 80; (c) ~81.5%.
24. (b) (i) 0.1837; ( /2.

26. (a)

1
vy, 92) = exp{ 557 5y1 +2y2 6y1y2 — 2y1p + 24 )}
for all (y1,y2) € R%; (b) 302
32. (b) V[X]/2.
34. faix(z | z) = fy(z — ).
36. (a)
—————————————(Zkzlfk) /[ 5 forzeR

22 + (Ekzl ak)

(b) fz(z) does not tend to a Gaussian density. The central limit theorem does
not apply, because V[X;] = oo V k (and, actually, F{X]| does not exist).
38. (a) Y/2; (b) 1/2.
40. (a) 1/8; (b) 7/144; (c) ~ 0.9667.

fz(z) =
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0ify <z

Fyix,(y|z) =S yifr1 £y <1
lity > 1

(b) 3(1 +23); (c) 1/45; (d) 1/30.

46. (a) 3/4; (b) 13/24; () 0; (d) X? + 3 X, + 3.
48.1— e~ ! (~0.6321).

50.

5
54. (a) X1+ X2+ 3; (b) 3(X1 + X2 + X3); (c) 1/18.

1 Inz —15)?
fX1X2---X30($)2\/§xeXP{"L——)} forz >0

Chapter 2

2. (a)p(l—p); (b)0ifn#mandlifn=m.
4. t/(2z%).
6. The increments are not independent, but they are stationary.
8. (a)

Inz\ 1

flz;t) —fy( ; ) o forze (0,1]

(b) E[X(1)] = 1/(1 +t) and Rx(t1,t2) = E[X(t1 +t2)].
10. No, since E[X (t)] (= (1 — e™*)/t) depends on t.
12. No, because E[Y (t)] (= t) depends on ¢.
14. E[X(t)X (¢t + s)] = E[YSt(t + s)] = t(t + 5)/7 # Rx(s). Consequently, the
process is not WSS and therefore not SSS.
16. Sy {w) = 2(1 — cosw)Sx (w).
18. h(0)q(t).
20. Cx(kl,kz) = Cx(kz —kl) =0 if k‘g —k1 7é 0 and Cx(kz —k‘l) = p(l —p) if
ka — k1 = 0. Since mx (k) = p, the process is WSS. We have that Cx(0) < oo
and limg| o, Cx (k) = 0. It follows that the process is mean ergodic.
22. Yes, because Cx(0) = Rx(0) =1 < oo and limjs_0c Cx(s) = 0.
24. ¢/2T.
26. (a) e™"; (b) (¥, Z) ~ N(uy = 0,uz = 0;0% = 2,0% = 2p=0).
28. (a) and (b) No, because E[Y (t)] (= e™*) is not a constant.
30. m(yo; to) = yo/2 and v(yo; to) = ¥p.
32. (a) N(0,2); (b) 2¢78%; (c) 4 (1 +e789).
34. (a) N(0,1); (b) U(1, 2).
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Chapter 3

2. (a) 1/4; (b) (i) 0; (ii) no, because E[Y (t)] (= t/2) is not a constant; (iii) 1/2.
4.11/12.

6. 2/3.

8. 0.1465

10.
1/41/21/4
1/21/2 0
1/41/21/4

12. 2/3.

14. (a) Aperiodic, because it is irreducible and pg g > 0; (b)
i
wf:<?> <i—13@%> for i =0,1,2,3,4
¢/ \1-(p/9)

22. b)g—pifp<1/2;0ifp=1/2;p—qifp>1/2(c) 0if p < 1/2;
(g/p)¥ Y1 —(g/p)), for k=1,2,...,if p> 1/2.
24. (a) A single class, which is recurrent and aperiodic; (b) 7; = 1/5, for all 4;

(c) no.
28. (b)
1 1
(k+1)! (m)
4o 2 1

Td013 M Tidaxr3 ™ T w+3

32. (a) 1 (because the chain is irreducible and pgo > 0); (b) mo = 3/7,71 =
2/7, 7y = w3 = 1/7; (c) (i) ~0.1716; (ii) 1.

34. (a) P™ = P® where
1-pOp
PD=1{ 0 10

1-p0p

30. (a) 0 < <15 (b)

To

if  is even, and P(™ = P if n is odd; (b) d = 2; (c) (i) mp = (1 —p)/2; (ii) no,
because this limit does not exist (since d = 2).
36. (a) mp = 2/3 and 7; = (1/4)7, for j = 1,2,...; (b) 1.
38.(a) mp=m3 =1/6,m =m2 =1/3; (b) d=2; {¢) 2/3.
40. (a) (1)

1 0 0 0 O

1/41/21/4 0 0

0 1/41/21/4 0

0 0 1/41/21/4

6 0 ¢ 0 1
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(ii) yes; mg = mf = 1/2 and 7} = 0, for j = 1,2,3; (b) 1/4.

42. (a) 0<a<1,0< B8 <1;(b) mg = m = 2/5 and m = 1/5; (¢) (i) 2/3;
(i) 1/4 + /2.

4. (a)a#1,8#0; (b) mg =1/9, m =5/9, and m2 = 1/3; (c) « =1/2 and

B=1; (d) 3.
46.
. omy [lifj=1
Aim Py = {0 if j =0 or 2
and
2/3ifj=0
lim pgfj) = lim pgfj) =¢ 0 ifj=1
noee nmee 1/3if j =2

48. (a) 1/2; (b) we have
2(m)t + ()2 —4ns +1=0

We can check that the value (1/2)? = 1/4 is not a solution of the equation,
so that n§ # w2.

50. '
o _ [lifj=1
nh_{go pi; = {O otherwise
and

2/5if j =0
) ) _ o o)) 0 ifj=1
Jim py; = lim py 5 = lim pg; 1/5if j = 2
2/5if j =3

52. (a) —1 + v/2 (~20.4142); (b) for example, pp = po = p3 = 1/3 and p; = 0.
54. (a) The state space is {0,1,2}, and the matrix P is given by

(1 —p1)(1 —p2) p1 + P2 — 2p1p2 P1D2
1-p P 0
(1 = p1)(1 —p2) p1+ P2 — 2p1p2 P1P2

where p; := e, for i = 1,2, and

pi=pr2 4 gy
TN T SVEW

(b) Yes, by the memoryless property of the exponential distribution. We cal-
culate
(1 = p1)(1 = p2) p1(1 — p2) (1 = p1)p2 P1P2
P= 1- 4! Y41 0 0
1 —p2 0 P2 0
(1 =p1)(X = p2) p1(1 - p2) (1 — p1)p2 P12

56. (a) There are 3> = 9 possible states: 0 = (0,0), 1 = (0,1), 2 = (0,2),
3=(1,0), 4= (1,1), 5= (1,2), 6 = (2,0), 7 = (2,1), 8 = (2,2). We find that
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SOV OO O
VR o oo oo

N
=

oV oo oo

where p = 1/4; (b) m; = 1/9, for all i.
58. n.
60. (a) P[N =1] = (1/2)""! and P[N =] = (1/2) "}, for i = 2,3,... ,n;
(b) (n —1)/(2u); (c) Gl =n —1,A =2p).
62. (a)

I/N1/N1/N...1/N 1/N 1/N

0o 2/N1/N...1)N 1/N 1/N

P=| ... ... ...
0 0 0 .. 0 (N-1)/N1/N
0 0 0 ... 0 0 1

(b) (i) We have

7 1 .
m; =1+—]\7mi+ﬁ(mi+1+...+mN) fori=1,...,N—-1
We find, with my = 0, that m; = N; (ii) m; = E[Geom(p := 1/N)] = N, for
i=1,... N—1.
64. (a) ~0.00002656; (b) ~0.8794; (c) ~—$20.
66. (a)

—4| 1/2 0 0 0 1/2

—2 1/2 0 0 1/2
P=-1 1/2 0 1/2
0 1/2 0 1/2

1 1/2 0 1/2

(b) m_y =m_9=1/16, 7_1 = 1/8, and 7wy = m; = w2 = 1/4; (c) 3/8.

68. T; = Pj Y _]

70. (a) 9/4.

72. (c) n/2" 1,

76. (a) 30/37; (b) 16/37; (c) 4/19.

78. (a) ~0.1170; (b) ~0.0756.

82. (a) 1+ At; (b) mp =1 and mp = 0, for k = 1,2,...; (c) (At)?/(1 + At)2



368 Appendix B: Answers to Even-Numbered Exercises

84. (b) e=*e?* — 1); (c) the 7;’s do not exist, because {X(u),u > 0} is a
pure birth process.

86. (a) a = 0; (b) mp = 10/27, m; = 8/27, and w2 = 9/27.

88. (a) No, because the time 7 that the process spends in either state does not
have an exponential distribution, since P{r > t] = 1e~t + 2e~%; (b) ~0.2677.
90. 12(1 — e~%)/(3 — 2¢~2).

92. (a) Ao =2X and A\, = up, = A, for n =1,2,...; (b) the 7;’s do not exist.

94. (a) Ao = 2\, A1 = A/2, p1 = 3)/2, and pz = 2X; (b) 1/2; (c) mo = 3/8,
w1 =1/2, and 7 = 1/8.

96.
uc—k —k

(A + p)e (Ae—(uﬂ)t + u)k (1 _ e-(u+)\)t>c

98. (a) We define the states

0: the machine is functioning

1: failure of type 1

2: failure of type 2; first repairing operation
3: failure of type 2; second repairing operation

() p/lp+ (2 — o).
Chapter 4

2. (a) 0; (b) t+min{#2, ¢+ 7} +min{t, (t+7)%} +t%; (c) (i) yes; (ii) no, because
Cov]X(t), X(t + 7)] depends on ¢; (iii) no, since Cov[X(t), X (t + 7)] # o*¢;
(d)

t1/2 ifo<t<1
PB(t),B(t?) = t—1/2 ift>1

4. (a) No, because X(t) > 0; (b) no, since E[X?(t)] (= ¢) is not a constant.
6. 4.
8. Brownian motion with o2 = 2.

10. (a) No, because Y (¢) > 0; (b) 1; (c) 2s/t; (d) no, because Cov[Y(s), Y (t)]
is not a function of |t — s |.

12. (a) ®(j + 1 — i) — &(j — i), where @ is the distribution function of the
N(0,1) distribution; (b) ~0.4659.

14. (a)

1
gz-(t—i-e—min{t—}—e,t—{—s})
(b) (i) yes; (ii) yes; (iii) no, because Cx (¢, + s) # gt; (iv) yes.

16. (a) N(0,2(1 + e~1)); (b) (i) E[U(t)] = 0 and V[U(t)] = 2(t + et — 1);
(ii) yes.
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18. (b) No, because we have that E[Y( )] = exp{(x + 10?)t}, which depends
on ¢ (if p # —30?); if p = —40?, then E[Y(t)] = 1, but E[Y(t + s)Y (t)]
(= €°’t) is not a function of s.

20. (a) 0; (b) yes, because X and Y are Gaussian random variables and their

covariance is equal to zero.
22. E[Y(t)] =0 and

a® c(s+t) cl|t—s|
C’y(s,t):2—c(e —e ) for s,t > 0

24. (a) N(0,11/3); (b)

fry(t) = f/2£t—5/2 {2%3} fort >0

26. (a) E[Y(t)] =0 and

Cov[Y(t),Y(t+ )] = g + g (s (¢ 4—25)2>

(b) (i) Yes; (ii) no, because Cov|Y (t),Y (¢t + s)] depends on t; (iii) no, since
Cov]Y (1), Y (t + 8)] # t[1 — (t + 5)]; (c) = 2P[N(0,1) > v/12d].
28. We find that

2d d*et \ d 42 fort> 0
_—\/Q_ﬂ_exp {—————————2(1_6_]5)}& (—————____l_e_t> ort >
30. (a) 0; (b) 1+ 2¢; (c) no, because Cov[Z(t), Z(t + s)] depends on ¢; (d)

1 2(d — z) (d—z)2
de(Z)() T(l—l-—Qt?’/_jeXp{_M} fort >0

fro@)(t) =

Chapter 5

2. (a) €725 (~0.0821); (b) ~0.0028; (c) 1/3; (d)
10 .
CX(t]_,tg) = n‘— mln{tl,tQ}
1t2

4. (a) (i) e72 (=0.1353); (ii) ~0.1839; (iii) ~0.3233; (b) no, because E[Z(t)] =
exp{t(e~! — 1)}, which depends on ¢.

6. 5.

8. As.

10. (a) (1 —e~1)2; (b) ~1.64.

12. (a) ~0.3535; (b) ~0.0110.
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14. (a) 31/64; (b) 2.
16. (a) (i) Mean = 15, variance = 240; (ii) mean = 10, variance = 520/12; (b)
~14.785.

18. 1/(2vV\).

20. P[N*(8) = 1] = o(d)-

22. (a) Let v := X(e® — 1). We find that

&Y

ifs#0
1 ifs=0

¢ (621 ~1)
My@rs)(s) = { 2

(b) EIN(t+8)] = A(t +1) and V[N(t + S)] = At + 1) + $A%

24. (a) e 1(b - a)/15; (b) 1/16; (c) 1/16.

26. (a) ~0.6723; (b) 1/2; (c) 1/3.

28. (a) U(0, s); (b) 5e~* (~0.0916); (c) 10/3.

30. (a) (i) 1/(1 —t), for 0 < ¢ < 1; (i) 1/2; (b) (ii) P[N(0,1) < 2] (~0.9772).
32. (a) ~0.5590; (b) 4.75; (c) ~0.0409; (d) ~0.0328.

34. ~0.9817.

36. 1—e 2 (1+2X+ 2)2).

38. ~0.217.

40. (a) n!/n™; (b) 21 —t) f 0 <t < 1, and 2(t — 3) fi<t<l
42. {X(t),t > 0} is a Poisson process with rate A.

44. Yes; we have that p;, ; =0 if j < 7 and

p = e AT
NV EYOI

if j > 4, where ¢,5 € {0,1,2,4,9,... }.

46. (a) 1/3; (b) (i) 2z =%, for z > 0; (ii) ~0.45; (c) 9/5.
48. (a) ~0.2565; (b) 1/5.

50. (a) ~0.56; (b) 3/16.

52. (a) 1 — 2e~! (~0.2642); (b) 0.75 t + 0.5 2.

54. (a) 1/3; (b) 588; (c) 232.

56. (a) ~0.4562; (b) 2; (c) 2; (d) 1/2, if s € (0,1] or (2,3].
58. (a) In(s? + 1)/1n2; (b) ~0.6068.

60. (a) 12t/(1 — e=3t); (b) P[N(0,1) < 0.69] (~0.7549).
62. (a) Mean = 8 and variance = 40; (b) 401; (c)

0 if s<6

5=8 ite<s<7
P[S<s|N@—-N(®6)=1=4 45 ° o7
— ——if7<s<8
5 5
1 ifs>8

64. (a) (i) Mean = variance = 21; (ii) mean = variance = 24; (b) ~0.1562.
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66. (a) A1/(2A1 + A2); (b) A1t (¢) 1 — Je™2 (~0.9323).
68. (a) G(a = 2, )); that is,

fr(r) = Nre ™™ forr>0andi=1,2,...
(b) we find that

()\t)Zn (At)2n+1
@)l T2t

forn=0,1,...

(e) 3/(2N).
70. (a) p/[p + (2 = )AL (b) (3/u)(2 - a)/(3 — ).
72. (a) G(a = 2,)); (b) ~0.81; {¢) ~1.17.
74 (b) ~1/2; (c) 1/2.
6. (a) We find that

1
mp(t) :exp{g—él—l} <t+el/4— —2-) -1 forl/2<t<1

(b) P[N(0,1) <0.48] (~0.68); (c) 5/8.
78. (a) We calculate

1 t
mN(t)zg(exp{ee_l}——1> for0<t<1

(b) e — /2 (~1.07).

80. No; since the number of events per time unit increases linearly, the time
between two consecutive events is (on the average) shorter and shorter, so
that the random variables 75, are not identically distributed (they are not
independent either).

82. uy > 0.

84. (a) 1/(2a% +1); (b) 0.

Chapter 6

2. (a) N = 11/15 and Ng = 4/15; N#NQ—I—l because mp # 0; (b) 1/15.
4. (a) N=Mpand No =™t 42 —1; (b) 1+ § (e ¥ —1).
6. (a) We have

state j departure rate from j = arrival rate to j

0 2\ mg = p ™

1 A+ p) T = p w2+ 2X Mo

2 (A+p) mp = p w3+ 24 my

> 3) (M) T = B Tpg1 + A -1
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(b) 1/2; (c) 3/8.
8. (a) We have

state j departure rate from j = arrival rate to j

0’ 10y =5 7o
0 (10 4+ 5) mp = 10 7§ + 5 (71 + 72 + 73)
1 (10+5) T =10 o
2 (10+5)7T'2=107Z'1
3 57T3=107T2

(b) mor =1/7, mg = 2/7, my = 4/21, my = 8/63, and 73 = 16/63; (c) 5/21.
10. (a) mp = (n + 1)(1/2)"*2, for n = 0,1,...; (b) 10/11; (c) ~0.4180.
12. (a) 7, = (Xﬁ)(ﬁ)n, for n=0,1,...; (b) ;’}(A + ).

14. 4/(pn + 4).

16. (a) We have

state j  departure rate from j = arrival rate to j

0 A Mo = py T, + P2 T,
L (A p1) 71y = p1A mo + p2 T2
12 A+ p2) 71, = (1 = p1)A mo + g 72
2 (A4 p1+ pg) w2 = A (m1, +71,) + (1 + p2) 73
3<n<12 (At p1 + pi2) T = X Ty + (1 + B2) Tns
13 (1 + p2) T3 = A w12
(b) the probability requested is given by
1 i 12
1
s [p1 o + 1, 4 | —— 7
(1 —m3) [pl 0 (u1+ﬂ2> 7; n}

18. (a) We find that

22— A
TS

A f =1,2
0 and Ty = ; 57-{-_—1-71'0 Or 0 = L, 2y...

(b) (A + p) w1, = p m2; (c) the fraction of time that the second counter is
open is given by
A2(2u — \) N A2
2pA+ ) (2u+A) - p2u+A)

20. (a) We have

state j departure rate from j = arrival rate to j

ATy =pmy
A+ p) 7 =Ame+ 20 m
(A+2u) mg = Ay + 20 73
2/17('3‘—‘)\7(‘2

W= O
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We find that if A = 2u, then 7y = 1/7 and 71 = mp = w3 = 2/7; (b) 1.2; (c) 2.
22. (a) We find that

T(n,m) = ZE E § E for all n,m >0
’ 36 36 48 48
(b) ~5.41; (c) 1/5.
24. (a) We define the states

0 : the system is empty

n : there are n > 1 ordinary customers in the system

ng: there are n > 1 customers in the system and the
special customer is being served

The balance equations of the system are the following:

state j departure rate from j = arrival rate to j

0 A+ X)) mo = p w1 + ps 71,
1 A+ As + ) 71 = A mo + 20 T2+ pg T,
1s (At ) 1, = As mo + p T2,
n22 (A+ X5 +20) Tp = A Tp—1 + 20 Tng1 + fs T(n+1).

ns (n > 2) (A pts + 1) Ty = Ag Tpe1 + A T(no1), + M T(nt1),

(b) we define the states (m,n) and (mg, n), where m € {0,1,2} (respectively,
n € {0,1}) is the number of customers in front of server no. 1 (resp., no. 2)
and s designates the special customer; there are therefore eight possible states:
(0,0), (1,0), (0, 1), (1,,0), (1,1), (L,,1), (2,,0), and (2, 1); (c) we can use the
state space of part (b); we find that the probability requested is given by

(o) ) () 2
p+As ) w0t T pAA ) \p+As ) T+ T

26. (a) mp = 1 — —2% and 7, = (ﬁ n7r0, for n = 1,2,... (this model is
equivalent to the M/M/1 model with service rate equal to 2u rather than p);
(b) 1/3.

28. mp = 1/4 and m = w2 = 3/8.

30. (a) We define the states (i,5), for i,j = 0,1, where i (respectively, j) is
equal to 1 if a customer is being served by the hairdresser (resp., the assistant),
and to 0 otherwise; (b) the balance equations of the system are the following:

state j departure rate from j = arrival rate to j

(0,0) (A1 + A2) To0) = 1 Ta,0) + B2 T(0,1)
(1,0) (M + A2+ p1) ma,0) = A1 To,0) + K2 T(1,1)
(0,1) (A1 + p2) T0,1) = A2 T0,0) + M1 T(1,1)
(1,1) (1 + p2) T,y = A1 70,1y + (AL + A2) m(1,0)
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(c) (i) N =mo,) + 71,0y + 2 m(a,1); (i) T = N/Ac, where
Ae = A1 (1 —m(1,1) + A2 (m0,0) + 7(1,0))

32. (a) We define the states

0: the system is empty
1;: there is one customer in the system, being served by server no. 1
1: there is one customer in the system, being served by server no. 2
2: there are two customers in the system, one per server
2 : there are two customers in the system, being served by server no. 2
3: there are three customers in the system, two of them being served
by server no. 2

(b) the balance equations of the system are given by

state j departure rate from j = arrival rate to j

0 A o = p1 7y, + p2 (T, +72,)
L (A1) 71y = A mo + p2 (72 + 73)

12 (A + p2) T1, = p1 T2

2 A+ p1 + p2) mo = A (1, +71,)

25 (A4 po) ma, = p1 T3

3 (1 + p2) T3 = A (w2 + m2;)

(c) the fraction of time requested is (g, + m3)/(1 — mg — m1,)-
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process, 201
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state transition, 320, 333
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Distribution 12
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double, 112
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geometric, 12
Laplace, 112
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Maxwell, 39
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Pareto, 38
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Poisson, 12
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trinomial, 22
uniform, 15

discrete, 160
Wald, 216
Weibull, 119

standard, 119
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Equation(s)
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Chapman-—
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for the Bessel process, 205
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renewal, 274
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ERLANG, 116
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elementary, 1
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conditional, 16, 26
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motion, 188
of a compound random variable, 254
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of a random sum of random variables,
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of a transformation, 30
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FOKKER, 64
Formula
Erlang’s, 338
Little’s, 318, 318
Stirling’s, 93
FOURIER, 18
Function
autocorrelation, 49
of the integrated Brownian
motion, 192
of the Poisson process, 233
of the telegraph signal,
249, 249
autocovariance, 49
of the Brownian
motion, 178
of the Brownian
motion with drift, 184
of the Poisson process, 233
Bessel, 115
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beta, 166
characteristic, 18
joint, 59
conditional transition density, 62
of the Bessel process, 205
of the Brownian motion
with drift, 184
of the Cox-Ingersoll-Ross
process, 207
of the geometric Brownian
motion, 186
of the Ornstein—Uhlenbeck
process, 203
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confluent hypergeometric, 117
cross-correlation, 50
Dirac, 63
two-dimensional, 194
distribution, 9
conditional, 10, 24, 25
joint, 21
marginal, 21
of order &, 49
of the N(0, 1) distribution, 15, 182
error, 182
gamma, 115
incomplete, 117
Heaviside, 11
intensity, 250
mean value, 271
moment-generating, 19
of the Gaussian distribu-
tion, 188
o(z), 125
probability density, 13
conditional, 14, 25
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of order k, 49
marginal, 22
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conditional, 11, 25
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renewal, 271
response, 264
transition, 122

GALTON, 104

Gambler’s ruin problem, 101

GAUSS, 15

Generalized derivative, 209
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GOSSET, 66
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a posteriori, 340
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by pairs, 7

conditional, 7

global, 7

of random variables, 24
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Markov, 20
Infinitesimal parameters, 181

of a Markov chain, 124

of a transformation, 200
INGERSOLL, 206
Initial distribution, 83

JACKSON, 342

KENDALL, 315
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KOLMOGOROV, 62
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Law of large numbers
weak, 32
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Linear combination of random
variables, 30
LITTLE, 318

MARKOV, 20
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with two states, 129

discrete-time, 121
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stationary, 77
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covariance, 59
generating, 124
stochastic, 79

doubly, 79
transition, 78
in n steps, 80
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Mean, 16
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temporal, 55
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POISSON, 12
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Process
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Random variable(s), 8
compound, 254
continuous, 13
discrete, 10
iid., 32
independent, 24
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Random vector, 21
continuous, 22
discrete, 21
Random walk, 48, 84
generalized, 75
two-dimensional, 75
Rate(s)
birth and death, 135
failure, 120
hazard, 120

instantaneous transition, 124

utilization, 320
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