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Life ^s most important questions are, for the most part, 
nothing but probability problems. 

Pierre Simon de Laplace 



Preface 

This book is based on the lecture notes that I have been using since 1988 
for the course entitled Processus stochastiques at the Ecole Polytechnique de 
Montreal. This course is mostly taken by students in electrical engineering 
and applied mathematics, notably in operations research, who are generally 
at the master's degree level. Therefore, we take for granted that the reader 
is familiar with elementary probability theory. However, in order to write a 
self-contained book, the first chapter of the text presents the basic results in 
probability. 

This book aims at providing the readers with a reference that covers the 
most important subjects in the field of stochastic processes and that is ac­
cessible to students who don't necessarily have a sound theoretical knowledge 
of mathematics. Indeed, we don't insist very much in this volume on rigor­
ous proofs of the theoretical results; rather, we spend much more time on 
applications of these results. 

After the review of elementary probability theory in Chapter 1, the remain­
der of this chapter is devoted to random variables and vectors. In particular, 
we cover the notion of conditional expectation, which is very useful in the 
sequel. 

The main characteristics of stochastic processes are given in Chapter 2. 
Important properties, such as the concept of independent and stationary in­
crements, are defined in Section 2.1. Next, Sections 2.2 and 2.3 deal with 
ergodicity and stationarity, respectively. The chapter ends with a section on 
Gaussian and Markovian processes. 

Chapter 3 is the longest in this book. It covers the cases of both discrete-
time and continuous-time Markov chains. We treat the problem of calculating 
the limiting probabilities of the chains in detail. Branching processes and birth 
and death processes are two of the particular cases considered. The chapter 
contains nearly 100 exercises at its end. 

The Wiener process is the main subject of Chapter 4. Various processes 
based on the Wiener process are presented as well. In particular, there are sub­
sections on models such as the geometric Brownian motion, which is very im-
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portant in financial mathematics, and the Ornstein-Uhlenbeck process. White 
noise is defined, and first-passage problems are discussed in the last section 
of the chapter. 

In Chapter 5, the Poisson process, which is probably the most important 
stochastic process for students in telecommunications, is studied in detail. 
Several generalizations of this process, including nonhomogeneous Poisson 
processes and renewal processes, can be found in this chapter. 

Finally, Chapter 6 is concerned with the theory of queues. The models 
with a single server and those with at least two servers are treated separately. 
In general, we limit ourselves to the case of exponential models, in which both 
the times between successive customers and the service times are exponential 
random variables. This chapter then becomes an application of Chapter 3 
(and 5). 

In addition to the examples presented in the theory, the book contains ap­
proximately 350 exercises, many of which are multiple-part problems. These 
exercises are all problems given in exams or homework and were mostly cre­
ated for these exams or homework. The answers to the even-numbered prob­
lems are given in Appendix B. 

Finally, it is my pleasure to thank Vaishali Damle, Julie Park, and Eliza­
beth Loew from Springer for their work on this book. 

Mario Lefebvre 
Montreal, November 2005 
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Review of Probability Theory 

1.1 Elementary probability 

Definition 1.1.1. A random experiment is an experiment that can be re­
peated under the same conditions and whose result cannot be predicted with 
certainty. 

Example 1,1.1. We consider the following three classical experiments: 
Ei: a coin is tossed three times and the number of "tails" obtained is recorded; 
£̂ 2- a die is thrown until a "6" appears, and the number of throws made is 
counted; 
E^: a number is taken at random in the interval (0,1). 

Remark, A closed interval will be denoted by [a, 6], whereas we write (a, b) in 
the case of an open interval, rather than ]a, 6[, as some authors write. 

Definition 1.1.2. The sample space S of a random experiment is the set 
of all possible outcomes of this experiment. 

Example 1.1.2. The sample spaces that correspond to the random experiments 
in the example above are the following: 
5i = {0,1,2,3}; 
52 = {1 ,2 , . . . } ; 
53 = (0,1). 

Definition 1.1.3. An event is a subset of the sample space S. In particu­
lar, each possible outcome of a random experiment is called an elementary 
event. 

The number of elementary events in a sample space may be finite (Si), 
countably infinite (S'2), or uncountably infinite {S^). 
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s 

Fig. 1.1. Venn diagram. 

We often use Venn^ diagrams in elementary probability: the sample space 
S is represented by a rectangle and the events ^4, S , C, etc. by circles that 
overlap inside the rectangle (see Fig. 1.1). 

Example 1.1.3. We can define, in particular, the following events with respect 
to the sample spaces associated with the random experiments of Example 
1.1.1: 
Ai = "tails" is obtained only once, that is, Ai = {1}; 
A2 = six or seven throws are made to obtain the first "6," that is, A2 = {6,7}; 
As = the number taken at random is smaller than 1/2, that is, A3 = [0,1/2). 

Notations 
Union: AUB (corresponds to the case when we seek the probability that one 
event or another one occurred, or that both events occurred). 

Intersection: AnB or AB (when we seek the probability that an event and 
another one occurred). If two events are incompatible (or mutually exclusive)^ 
then we write that A n J5 = 0 (the empty set). 
Complement: A^ (the set of elementary events that do not belong to A). 

Inclusion: A C B (when all the elementary events that belong to A also 
belong to JB). 

Definition 1.1.4. A probability measure is a function P of the subsets of 
a sample space S, associated with a random experiment E, that possesses the 
following properties: 

Axiom I; P[A] > 0 V ^ C 5 ; 

Axiom II; P[S] = 1; 

^ John Venn, 1834-1923, was born and died in England. He was a mathemati­
cian and priest. He taught at the University of Cambridge and worked in both 
mathematical logic and probability theory. 
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Axiom III; / / A i , ^2? • • • is an infinite sequence of events that are all incom­
patible when taken two at a time, then 

r CXD 

[jAA=j2nAk] (1.1) 
k=l 

In particular, 

P[AUB] = P[A] + P[B] if An 3^0 (1.2) 

If the number n of elementary events is finite and if these events are 
equiprobable (or equally likely)^ then we may write that 

^ n{A)_ ^^3^ 

n 

where n{A) is the number of elementary events in A, However, in general, 
the elementary events are not equiprobable. For instance, the four elementary 
events of the sample space Si in Example 1.1.2 have the following probabil­
ities: P[{0}] - P[{3}] = 1/8 and P[{1}] = P[{2}] = 3/8 (if we assume that 
the coin is fair), and not P[{A:}] = 1/4, for A; = 0,1,2,3. 

Remark. It is said that the French mathematician d'Alembert^ believed that 
when a fair coin is tossed twice, then the probability of getting one "tail" and 
one "head" is equal to 1/3. His reasoning was based on the fact that there 
are three possible outcomes in this random experiment: getting two "tails"; 
two "heads"; or one "tail" and one "head." It is easy to determine that the 
probability of obtaining one "tail" and one "head" is actually 1/2, because 
here there are four equiprobable elementary events: H1H2 (that is, "heads" 
on the first and on the second toss); H1T2; T1H2] and T1T2. Finally, the event 
A: getting one "tail" and one "head" corresponds to two elementary events: 
H1T2 and T1H2. 

Proposition 1.1.1. We have 

1) P[^^] - 1 - P[A] y Acs. 

2) For all events A and B, 

P[A\JB]:= P[A] + P[B] - P[AB] (1.4) 

3) For any three events A, B, and C, 

P[AVJB\JC] = P[A] + P[B] + P[C] - P[AB] - P[AC] - P[BC] + P[ABC] 
(1.5) 

^ Jean Le Rond d'Alembert, 1717-1783, was born and died in France. He was a 
prolific mathematician and writer. He published books, in particular, on dynamics 
and on the equilibrium and motion of fluids. 
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Counting 

Proposition 1.1.2. Ifk objects are taken at random among n distinct objects 
and if the order in which the objects were drawn does matter^ then the number 
of different permutations that can be obtained is given by 

nx n X ... X n = n^ (1.6) 

if the objects are taken with replacement, and by 

nx{n-l)x ...x[n~{k-l)] = —^ := P^ fork = 0,1,... ,n 

(1.7) 

when the objects are taken without replacement. 

Remark. If, among the n objects, there are n^ of type i, where i = 1,2,. . . , j , 
then the number of different permutations of the entire set of objects is given 
by (the multinomial coefficients) 

" ' (1.8) 
ni\n2\'' 'Ujl 

Example 1.1.4- The combination of a certain padlock is made up of three 
digits. Therefore, theoretically there are 10^ = 1000 possible combinations. 
However, in practice, if we impose the following constraint: the combination 
cannot be made up of two identical consecutive digits, then the number of 
possible combinations is given by 10 x 9 x 9 = 810. This result can also be 
obtained by subtracting from 1000 the number of combinations with at least 
two identical consecutive digits, namely, 10 (with three identical digits) + 
1 0 x 1 x 9 + 1 0 x 9 x 1 (with exactly two identical digits, either the first two 
or the last two digits). 

Proposition 1.1.3. Ifk objects are taken, at random and without replace­
ment, among n distinct objects and if the order in which the objects were 
drawn does not matter, then the number of different combinations that can 
be obtained is given, for k = 0,1,... ,n, by 

nx (n-l) X ... X [n- {k - 1)] _ n\ _ /n\ __ 
fc! ~ k\{n-k)\ • " \k) " ^ 

(1.9) 

Remark. If the objects are taken with replacement, then the number of different 
combinations is C^'^^~^. In this case, k may take any value in N^ := { 0 , 1 , . . . }. 

Remark. In the preceding example, according to the common use, the word 
"combinations" was used for a padlock. However, they were indeed "permu­
tations." 
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Example 1,1,5. In a> given lottery, 6 balls are drawn at random and without 
replacement among 49 balls numbered from 1 to 49. We win a prize if the 
combination that we chose has at least three correct numbers. Let 

F = we win a prize 
and 

Fk = our combination has exactly k correct numbers, for fc = 0 , 1 , . . . ,6. 
We have 

' (D(ai\) 
k=0 k=0 \ 6 ) 

(1-6,096,454) + (6 • 962,598) + (15 -123,410) 
13,983,816 

13,723,192 
= 1 - . ' J r . ^ 1 - 0.9814 = 0.0186 

13,983,816 

Notation. The expression P[A \ B] denotes the probability of the event A, 
given that (or knowing that, or simply if) the event B has occurred. 

Definition 1.1.5. We set 

Pl^\^^ = ^T^ ^/i'[s]>o (1.10) 

Proposition 1.1.4. (Multiplication rule) We have 

P[AnB] = P[A I B] X P[B] = P[B I A] x P[A] if P[A]P[B] > 0 (1.11) 

Example 1.1,6, In the preceding example, let 
Fjt = the number of the fcth ball that is drawn is part of our combination. 

Generalizing the multiplication rule, we may write that 

P[Fi n F2 n Fs] = P[Fs I Fi n F2]P[F2 I Fi]P[Fi] 

4 5 6 120 ^ . _ ^ . 
= — X — X — = ĉ  0.0011 

47 48 49 110,544 

Definition 1.1.6. The events B i , E 2 , . . . ,JB^ constitute a partition of the 
sample space S if 

i) BiOBj^d^yi^j, 

Hi) P[Bk] > 0, /or A: = 1,2,... , n. 
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If JBI, B2, • • • , 5yj is a partition of 5, then we may write, for any event A, 
that 

A = {An Bi) u {An B2) u.. .u {An En) (1.12) 

where {A n Bi) n{An Bj) = 0 V i 7̂  j . Making use of Axiom III in the 
definition of the function P , p. 2, we obtain the following result. 

Proposition 1.1.5. (Total probability rule) If A C S and the events Bi, 
B2, ..., Bn form a partition of S, then 

n n 

P[A] = J^P[>lnBfc] = ;^P[^|Bfe]P[Bfc] (1.13) 
/ e = l k=l 

Finally, we deduce from the total probability rule and from the formula 

P[A I B] = ^^^l^^p^^ iiP[A]P[B]>0 (1.14) 

the result known as Bayes ^ ^ rule (or formula, or also theorem). 

Proposition 1.1.6. (Bayes' rule) If P[A] > 0, then 

where 5 i , ^ 2 , . . . , Bn is a partition of S. 

Example LI.7. In a certain institution, 80% of the teaching staff are men. 
Moreover, 80% of the male teachers hold a Ph.D. and 90% of the female 
teachers hold a Ph.D. A teacher from this institution is taken at random. Let 

F = this teacher is a woman 
and 

D = this teacher holds a Ph.D. 
We may write, by the total probability rule, that 

P[D] = P[D I F]P[F] + P[D I F^]P[F^] = 0.9 x 0.2 4- 0.8 x 0.8 = 0.82 

Furthermore, we have 

^ ' ^ P[D] 0.82 

^ The Reverend Thomas Bayes, 1702-1761, was born and died in England. His 
works on probability theory were published in a posthumous scientific paper in 
1764. 
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Definition 1.1.7, Two events, A and B, are said to he independent if 

P[Ar\B] = P[A]P[B] (1.16) 

Remark, Let C be an event such that P[C] > 0. We say that A and B are 
conditionally independent with respect to C if 

P[AnB\C]=^ P[A I C]P[B I C] (1.17) 

If, in particular, A and C, or B and C, are incompatible, then A and B are 
conditionally independent with respect to C, whether they are independent 
or not. Moreover, A and B can be independent, but not conditionally inde­
pendent with respect to C. For instance, this may be the case if A and C, and 
B and C, are not incompatible, but AO B DC = 9. 

For events A and B such that P[^] x P[5] > 0, the next proposition could 
serve as a more intuitive definition of independence. 

Proposition 1.1.7. Two events, A and B, having a positive probability are 
independent if and only if 

P[A\B] = P[A] or P[B\A] = P[B] (1.18) 

Proposition 1.1.8. If A and B are independent, then so are A^ and B, A 
andB^, and A^ andB^. 

Remark, The preceding proposition is obviously false if we replace the word 
"independent" by "incompatible" (and if A and B are not the sample space 
S). 

All that remains to do is to generalize the notion of independence to any 
number of events. 

Definition 1.1.8. The events ^ 1 , ^ 2 , . . . , A^ are said to he independent if 
we may write that 

k 

P[A,, n A,, n . . . n A,J = J ] P[Ai.] (1.19) 

for k = 2,3,,,, , n, where the events Ai. e {Ai , . . . , An} V j are all different. 

Remark. If the preceding definition is satisfied (at least) for k = 2, we say that 
the events Ai, yl2,. . . , ^n are pairwise independent. 
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(a) (b) 

Fig. 1.2. Examples of (a) a series system and (b) a parallel system. 

Example 1.1.8. A given system is made up of n components placed m series 
and that operate independently from one another [see Fig. 1.2 (a)]. Let 

F = the system is functioning at time to 
and 

Fk = component k is functioning at time to^ for k = 1^.. .^n. 
We have 

P[F] = P[F,nF2n...nFny=-f[Pm 

Remark. To help out the reader, the justification of the equality, as here by 
independence (abbreviated as md.), is sometimes placed above the equality 
sign. 

When the components are placed in parallel, we may write that 

P[F] = 1 - P[F'] = 1 - P[F^ n . . . n F^] ^=- 1 - J ] ( 1 - P[Fk]) ind. 
i — 

/ e = l 

1.2 Random variables 

Definition 1.2.1. A r andom variable (r.v.) is a function X that associates 
a real number X{s) = x with each element s of S, where S is a sample space 
associated to a random experiment E. We denote by Sx the set of all possible 
values of X (see Fig. 1.3). 

Remark. The reason for which we introduce the concept of a random variable 
is that the elements s of the sample space S can be anything, for example, 
a color or a brand of object. Since we prefer to work with real numbers, we 
transform (if needed) each s into a real number x = X{s). 
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Fig. 1.3. Graphical representation of a random variable. 

Example 1.2.1. Consider the random experiment E^ in Example 1.1.1 that 
consists of taking a number at random in the interval (0,1). In this case, the 
elements of S are already real numbers, so that we can define the r.v. X that 
is simply the number obtained. That is, X is the identity function which with 
s associates the real number s. 

We can define other random variables on the same sample space 5, for 
example: 

Y 
1 if the number obtained is smaller than 1/2 
0 otherwise 

(called the indicator variable of the event A: the number obtained is smaller 
than 1/2) and Z{s) = Ins; that is, Z is the natural logarithm of the number 
taken at random in the interval (0,1). 

We have 

5x = *S = (0,l) , 5 y - { 0 , l } , and 5z = (-oc,0) 

Definition 1.2.2. The distribution function of the r.v. X is defined by 

Fx{x) = P[X<x] V X G M (1.20) 

Properties, i) 0 < Fx(x) < 1. 
ii) lima;^_oo Fx{x) = 0 and lima;_oo Fx{x) = 1. 
iii) If xi < X2, then Fx{xi) < Fx(x2). 
iv) The function Fx is (at least) right-continuous: 

Fx{x) = Fx(x+) :=limFxix + e) (1.21) 

Proposition 1.2.1. We have 
i) P[a < X <b]= Fx{b) - Fx{a), 
ii) P\X = x]= Fx{x) - Fx{x~), where Fx{x~) := lim^o Fx{x - e). 

Remark. Part ii) of the preceding proposition implies that P[X = x] = 0 for 
all x where the function Fx (x) is continuous. 
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Definition 1.2.3. The conditional distribution function o/^fte r.v. X, 
given an event A for which P[A] > 0, is defined by 

Remark. A marginal distribution function Fx{x) is simply the particular case 
of the preceding definition where the event A is the sample space S. 

Example 1.2.2. The distribution function of the r.v. X in Example 1.2.1 is 
given by 

( 0 if X < 0 
X if 0 < X < 1 
1 if X > 1 

It is easy to check that this function possesses all the properties of a distribu­
tion function. In fact, it is continuous for all real x, so that we can state that 
the number that will be taken at random in the interval (0,1) had, a priori, 
a zero probability of being chosen, which might seem contradictory. However, 
there are so many real numbers in the interval (0,1) that if we assigned a 
positive probability to each of them, then the sum of all these probabilities 
would diverge. 

Next, consider the event A: the number obtained is smaller than 1/2. Since 
P[A] = 1/2 > 0, we calculate 

Fx{x \A) = P[X<x\X < 1/2] = 2P[X <x] if 0 < x < 1/2 

so that we may write that 

( 0 i f x < 0 
2x if 0 < X < 1/2 
1 i f x > l / 2 

Definition 1.2.4. If the set Sx of values that the r.v. X can take is finite or 
countably infinite, we say that X is a discrete r .v. or an r .v. of discrete 
type. 

Definition 1.2.5. The probability mass function of the discrete r.v. X is 
defined by 

Px{xk) = P[X = Xk] \/xkeSx (1.23) 

Remarks, i) Properties: a) px{xk) > 0 V XA;; b) YlxkeSx P^i^k) = 1-

ii) We may write that 

Fx{x)= Yl Px{xk)u{x-Xk) (1.24) 
Xk^Sx 
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where u{x) is the Heaviside^ function^ defined by 

, , fOifa: 
^ ^ ^ ^ ^ l l i f x 

<0 
>0 

(1.25) 

iii) Generalization: the conditional probability mass function of X, given an 
event A having a positive probability, is defined by 

pxix I A) 
P[{x = x}nA] 

P[A] 
(1.26) 

Example 1.2.3. An urn contains five white balls and three red balls. We draw 
one ball at a time, at random and without replacement, until we obtain a white 
ball. Let X be the number of draws needed to end the random experiment. 
We find that 

X 

Px{x) 

1 2 3 4 

1 (i)(f) ( i )(f)( i ) (i)(l)(^) 

E 

1 

and 

Fx{x) (I)+ (§)(!) (i) + (i)(f) + {i){f)(i) 
Finally, let A: the first white ball is obtained after at most two draws. We 

have P[A] = Fx{2) = | + | x f = f2and 

X 

px{x 1 A) 

1 2 

7 3 
10 10 

E 

1 

Important discrete random variables 

i) Bernoulli^ distribution: we say that X has a Bernoulli distribution with 
parameter p, where p is called the probability of a success^ if 

Px{x) = p^{l - p)^ ^ for x = 0 and 1 (1.27) 

^ Oliver Heaviside, 1850-1925, who was born and died in England, was a physicist 
who worked in the field of electromagnet ism. He invented operational calculus to 
solve ordinary differential equations. 

^ Jacob (or Jacques) BernoulH, 1654-1705, was born and died in Switzerland. His 
important book on probability theory was published eight years after his death. 
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Remark, The term (probability) distribution is used to designate the set of 
possible values of a discrete random variable, along with their respective prob­
abilities given by the probability mass function. By extension, the same term 
will be employed in the continuous case (see p. 13). 

ii) Binomial distribution with parameters n and p: S'x = { 0 , 1 , . . . , n} and 

P x ( x ) = Q p ^ ( l - p r - ^ (1-28) 

We write X rsj B(n,p). Some values of its distribution function are given in 
Table 6.4, p. 358. 

iii) Geometr ic d is t r ibut ion with parameter p: 5 ^ = {1 ,2 , . . . } and 

px{x) = {l-pr-'p (1.29) 

We write X ~ Geom(p). 

iv) Poisson^ distribution with parameter A > 0: 5x = { 0 , 1 , . . . } and 

Pxix) = e-^^ (1.30) 

We write X ^ Poi(A). Its distribution function is given, for some values of A, 
in Table 6.4, p. 361. 

Poisson approximat ion. If n is large enough (>20) and p is sufficiently 
small (<0.05), then we may write that 

P[B(n,p) = fe] ~ P[Poi(A = np) = k] for fe = 0 , 1 , . . . ,n (1.31) 

If the parameter p is greater than 1/2, we proceed as follows: 

P[B(n, p) = k] = P[B(n, 1 - p) = n - fc] 

- P[Poi(A = n( l -p)) = n-k] (1.32) 

When p > 1/2, we also have 

P[B{n,p) <k] = P[B(n, l-p)>n-k] 

- P[Poi(A = n(l -p))>n-k] (1.33) 

^ Simeon Denis Poisson, 1781-1840, was born and died in France. He first stud­
ied medicine and, from 1798, mathematics at the Ecole Poly technique de Paris, 
where he taught from 1802 to 1808. His professors at the Ecole Polytechnique 
were, among others, Laplace and Lagrange. In mathematics, his main results 
were his papers on definite integrals and Fourier series. The Poisson distribution 
appeared in his important book on probability theory published in 1837. He also 
published works on mechanics, electricity, magnetism, and astronomy. His name 
is associated with numerous results in both mathematics and physics. 
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Example 1.2.4- Suppose that we repeat the random experiment in Example 
1.2.3 20 times and that we count the number of times, which we denote by 
X, that the first white ball was obtained on the fourth draw. We may write 
that X - B(n = 20,p = 1/56). We calculate 

The approximation with a Poisson distribution gives 

P[X < 1] ~ P[Y < 1], where Y - Poi(20/56) 

^ e - ^ / i 4 + e - ^ / i 4 ^ : ^ 0.9496 
14 

Definition 1.2.6. A continuous random variable X is an r.v. that can 
take an uncountably infinite number of values and whose distribution function 
Fx is continuous. 

Definition 1.2.7. The (probability) density function of the continuous r.v. 
X is defined (at all points where the derivative exists) by 

fx{x) = ^Fxix) (1.34) 

Remark. The function fx{x) is not the probability P[X = x] for a continuous 
r.v. since P[X = x] = 0 V a: in this case. The interpretation that can be given 
to fx {x) is the following: 

fx{x) ~ —^ 2 ^ (1.35) 

where e > 0. The equality is obtained by taking the limit as e j 0. 
Properties, i) fx{x) > 0 [by the formula (1.35), or by the formula (1.34), 
because Fx is a nondecreasing function]. 
ii) We deduce from the formula (1.34) that 

Fx{x)= r fx{t)dt (1.36) 
J — OO 

It follows that 

We also have 

J —c 

fx{x)dx=l (1.37) 

P[a < X < 6] - Fx{h) - Fx{a) = f fx{x) dx (1.38) 
J a 

Thus, the probability that X takes a value in the interval (a, b] is given by the 
area under the curve y = fx{x) from a to b. 
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Definition 1.2.8. The conditional density function of the continuous r.v. 
X, given an event A for which P[A] > 0, is given by 

fx{x i A) - -^Fxix I A) (1.39) 

Remark. We find that the function fx{x \ A) may be expressed as follows: 

fx{x\A)=^i^ (1-40) 

for all X e Sx for which the event A occurs. For example, if Sx = [0,1] and 
A = {X < 1/2}, then Sy = [0,1/2), where Y := X \ A, 

Remark. If X is an r.v. that can take an uncountably infinite number of 
values, but the function Fx is not continuous, then X is an r.v. of mixed type. 
An example of an r.v. of mixed type is the quantity X (in inches) of rain 
or snow that will fall during a certain day in a given region. We certainly 
have the following: P[X = 0] > 0, so that X is not a continuous r.v. (since 
P[X = 0] = 0 for any continuous r.v.). It is not an r.v. of discrete type either, 
because it can (theoretically) take any value in the interval [0, oc). 

Example 1.2.5. Suppose that 

( 1/4 if - 1 < a: < 1 
fx{x)= < l/(2x) if 1 < X < e 

[ 0 elsewhere 

We can check that the function fx is nonnegative and that its integral over 
R is indeed equal to 1. 

We calculate 

Fx{x) 

0 i f a : < - l 
(x + l ) /4 i f - l < x < l 

(14-lna;)/2if 1 <x<e 
1 if a: > e 

Note that the density function fxi^) is discontinuous at x = 1 (and at 
x = —1 and X = e), which is allowed, whereas the distribution function Fx is 
a continuous function, as it should be (for a continuous random variable). 

Next, we can calculate Fx{x | X < 0) and differentiate this function 
to obtain fx{x \ X < 0). It is, however, more efficient to simply calculate 
P[X < 0] = 1/4 and write that 

r / I X- ^, f 1 if - 1 < X < 0 
^ ^ ( ^ l ^ < « ) = |oe l sewl elsewhere 

Finally, note that the function fx{x \ X <0) also satisfies the two properties 
of probability density functions: it is nonnegative and its integral over R is 
equal to 1. 
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Important continuous random variables 

i) Uniform distribution on the interval [a, 6]: 

fj^{x) = {b- a)-^ for a < X < 6 (1.41) 

Notation: X ^ U[a,b], 

ii) Exponential distribution with parameter A > 0: 

fx{x)=Xe-^'^ f o r x > 0 (1.42) 

Notation: X ~ Exp(A). 

iii) Gamma distribution with parameters a > 0 and A > 0: 

fx{x) = ^^ X\ f o r x > 0 (1.43) 
r{a) 

where r ( a ) = (a - 1)! if a G N (see p. 115). Notation: X -- G(Q;,A). 

iv) Gaussian^ distribution with parameters ji and a^, where cr > 0: 

Notation: X ~ N(/x,cr^). 

Remarks, i) In the particular case where /i = 0 and a == 1 (see Fig. 1.4), X is 
called a standard Gaussian distribution. Its distribution function is denoted 
by ^: 

^{z):= r - i=e -^ ' / 2 r fx (1.45) 
J-oo V 27r 

The values of this function are presented in Table A.3, p. 370, for ^ > 0. By 
symmetry, we may write that ^{—z) = 1 - ^{z). 

ii) If we define Y = aX + 6, where X has a Gaussian distribution with pa­
rameters /i and (j^, then we find that Y ~ N(a/i + 6, a'̂ cr^). In particular, 
Z : = ( X - / / ) / a - N ( 0 , l ) . 

Transformations. If X is a r.v., then any transformation Y :— g{X), where 
^ is a real-valued function defined on R, is also a random variable. 

^ Carl Friedrich Gauss, 1777-1855, was born and died in Germany. He carried out 
numerous works in astronomy and physics, in addition to his important mathe­
matical discoveries. He was interested, in particular, in algebra and geometry. He 
introduced the law of errors, that now bears his name, as a model for the errors 
in astronomical observations. 
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4W 

Fig, 1.4. Standard Gaussian distribution. 

Proposition 1.2.2. Suppose that the transformation y = g{x) is bijective. 
Then the density function ofY := g{X) is given by 

fviy) - fx {g'Hy)) g'Hy) (1.46) 

fory e [g{a),g{b)] (respectively, [g{b),g{a)]) if g is a 5 inc% increasing (resp., 
decreasing^ function and Sx = [a, 6]. 

Example 1.2.6.U X ^ U(0,1) and we define Y = e^, then we obtain 

friy) = fx{\ny) ^ 1 
dy 

for y G (l ,e) . 

Definition 1.2.9. T/ie mathematical expectation (or the meain) E[X] of 
the r.v. X is defined by 

E[X] = 22^kPx{xk) (discrete case) 
k=i 

(1.47) 

or 

/

oo 

xfx{x)dx (continuous case) (1.48) 

-oo 

Remarks, i) Generalization: we obtain the conditional (mathematical) ex­
pectation E[X I A] of X, given an event A, by replacing px{x) by px{x \ A) 
or fx{x) by fxi^ I A) in the definition, 
ii) The mathematical operator E is linear. 

Proposition 1.2.3. The mathematical expectation of g{X) is given by 
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oo 

E[g{X)] = Y^g{xk)px{xk) (discrete case) (1.49) 
k=i 

or 

/

CO 

9{x) fx{x)dx (continuous case) (1.50) 

-oo 

Remark We can calculate the mathematical expectation of g{X) by condi­
tioning^ as follows: 

E[g{X)] = f2 E[g{X) I Bi]P[Bi] (1.51) 

where -Bi,. . . ,Bn is a partition of a sample space 5. 

The next two definitions are particular cases of mathematical expectations 
of transformations g{X) of the r.v. X. 

Definition 1.2.10. The kth moment (or moment of order k) of the r.v. 
X about the origin is given by E[X^], for A: = 0 ,1 ,2 , . . . . 

Definition 1.2.11. The variance of the r.v. X is the nonnegative quantity 

V[X] = E[{X - E[X]f] (1.52) 

Remarks, i) The standard deviation of X is defined by STD[X] = {V[X])^/'^. 
The r.v. X and STD[X] have the same units of measure, 
ii) We can also calculate the variance of X by conditioning with respect to a 
partition of a sample space S^ together with the formula (1.52): 

i=l 

iii) Generalization: the conditional variance of X, given an event A, is de­
fined by 

V[X I A] = E[{X - E[X I A]f I A] (1.53) 

Proposition 1.2.4. i) V[aX + b]= a^V[X] V a, 6 G E. 

ii)V[X] = E[X^]-{E[X])^. 

Example 1.2.7. The mean (or the expected value) of the r.v. Y in Example 
1.2.6 is given by 

E[y]= f y-dy = e-l 

We also have 
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1 
y - 2 

E[Y'\ = j\'Uy "' e2 

It follows that 

V[Y\ ^ f ! ^ - (e - 1)2 = ^ l ± ^ ^ 0 2420 

Now, let Z := In 7 . We have 

E[Z\= j^ \ 1 . (In J/)' l n y - d y = ^ -

Note that Z is identical to the r.v. X in Example 1.2.6 and that the mean of 
X ~ U(0,1) is indeed equal to 1/2. 

A very important special case of the mathematical expectation £'[^(X)] 
occurs when g{X) — e^^-^. 

Definition 1.2.12. The function 

Cx{uj) = E[e^^^] (1.54) 

where j = y/^, is called the character is t ic function of the r.v. X. 

If X is a continuous r.v., then Cx(^) is the Fourier^ transform of the 
density function fx{^)' 

/

CO 

e''^^fx{x)dx (1.55) 

-oo 

We can invert this Fourier transform and write that 
1 Z*̂  

fx{x) = — / e - ^ - ^ C x M d^ (1.56) 

Since the Fourier transform is unique., the function Cx{^) characterizes en­
tirely the r.v. X. For instance, there is only the standard Gaussian distribution 
that possesses the characteristic function Cx{^) = e~^ '̂ •̂ 

We can also use the function Cx(^) to obtain the moments of order n 
of the r.v. X, generally more easily than from the definition of E[X^] (for 
n G { 2 , 3 , . . . } ) . 

Proposition 1.2.5. / / the mathematical expectation E[X'^] exists and is fi­
nite for a// n G {1,2 , . . . }; then 

£[X" ] = ( - j ) " ^ C x ( a ; ) U o (1-57) 

^ Joseph (Baron) Fourier, 1768-1830, was born and died in France. He taught at 
the College de France and at the Ecole Poly technique. In his main work, the 
Theorie Analytique de la Chaleur, published in 1822, he made wide use of the 
series that now bears his name, but that he did not invent. 
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Table 1.1. Means, Variances, and Characteristic Functions of the Main Random 
Variables (with q := 1 — p) 

Distribution 

Bernoulli 

B(n,p) 

Geom(p) 

Poi(A) 

U[a,6] 

Exp(A) 

G(a,A) 

N(M,C7^) 

M e a n 

P 

np 

l/p 

X 

a-f-6 
2 

1 
A 

a 
A 

M 

Var iance 

pq 

npq 

q/p' 

A 

( 6 - a f 
12 

1 

A2 

a 

A2 

(7^ 

Characteristic function 

pe^'^ + q 

{pe^^ + qT 

pe^^ 
1 - qe^^ 

exp{A(e^'^ - 1)} 1 

QJ^^ _ QJ^O. 

juj(b - a) 

A 
A - j o ? 

(" ^ V 
\X-jojJ 

expljo)// - jw^cr^} 

Remark. Table 1.1 gives the mean, the variance, and the characteristic function 

of all the discrete and continuous random variables mentioned previously. 

Many authors prefer to work with the following function, which, as its 

name indicates, also enables us to calculate the moments of a random variable. 

Def in i t ion 1.2 .13. The m o m e n t - g e n e r a t i n g funct ion of the r.v. X is de­
fined, if the mathematical expectation exists, by Mx{t) = E[e*^^]. 

Remarks, i) When X is a continuous and nonnegative r.v., Mx{t) is the 
Laplace^ transform of the function / x ( x ) . 

ii) Corresponding to the formula (1.57), we find tha t 

d^ 
E[X^]=^ — Mx[t)\,^, f o r n = l , 2 . 

dt 
(1.58) 

Pierre Simon (Marquis de) Laplace, 1749-1827, was born and died in France. In 
addition to being a mathematician and an astronomer, he was also a minister and 
a senator. He was made a count by Napoleon and marquis by Louis XVIII. He par­
ticipated in the organization of the Ecole Poly technique of Paris. His main works 
were on astronomy and on the calculus of probabilities: the Traite de Mecanique 
Celeste, published in five volumes, from 1799, and the Theorie Analytique des 
Probabilites, whose first edition appeared in 1812. Many mathematical formulas 
bear his name. 
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Example 1.2.8. li X ^ Poi(A), we calculate 

Mx{t) = y e'^e-^^ = e-^ V i ^ = e'^ exp(e*A) 

We deduce from this formula and from Eq. (1.58) that 

J E ; [ X ] - M ^ ( 0 ) = A and E[X'^] = X^ + \ 

so that V[X] = Â  + A - (A)^ = A. 
Note that to obtain £'[X^], we can proceed as follows: 

k=Q k=l ^ ' fc=l "̂  ' 

-̂ 4|(̂ =«"^> )̂=^+^^ e 
k 

It is clear that it is easier to diflFerentiate twice the function e ^ exp(e*A) than 
to evaluate the infinite sum above. 

When we do not know the distribution of the r.v. X, we can use the 
following inequalities to obtain bounds for the probability of certain events. 

Proposition 1.2.6. a) (Markov's^^ inequality) IfX is an r.v. that takes 
only nonnegative values, then 

p\X>c]<W. V O O (1.59) 
c 

b) (Chebyshev's^^ inequality) If E[Y] and V[Y] exist, then we have 

P[\Y-E[Y]\>c]<^^^ V o O (1.60) 

^̂  Andrei Andreyevich Markov, 1856-1922, who was born and died in Russia, was a 
professor at St. Petersburg University. His first works were on number theory and 
mathematical analysis. He proved the central limit theorem under quite general 
conditions. His study of what is now called Markov chains initiated the theory of 
stochastic processes. He was also interested in poetry. 

^̂  Pafnuty Lvovich Chebyshev, 1821-1894, was born and died in Russia. By using 
the inequality that bears his name, he gave a simple proof of the law of large 
numbers. He also worked intensively on the central limit theorem. 
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1.3 Random vectors 

Definition 1.3.1. An n-dimensional random vector is a function X = 
( X i , . . . , Xn) that associates a vector {Xi{s),... , Xn{s)) of real numbers with 
each element s of a sample space S of a random experiment E, Each compo­
nent Xk of the vector is a random variable. We denote by Sx {cW^) the set 
of all possible values of X. 

Remark. As in the case of the random variables, we will use the abbreviation 
r.v., for random vector, since there is no risk of confusion between a random 
variable and a random vector. 

Two-dimensional random vectors 

Definition 1.3.2. The joint distribution function of the r.v. {X,Y) is 
defined, for all points (x,y) G R^; by 

FX,Y{^,y) = P[{X < a;} n {F < y}] = P[X<x,Y< y] (1.61) 

Properties, i) Fx,y(—oc,?/) = FX,Y{^^ ~^ — ^ ^^^ EX,Y{OO,OO) = 1. 

ii) Fx,Y{xi,yi) < i^x,r(^2,^2) if ^i < ^2 andyi < 1/2. 

iii) We have 

limFx,y(a: + e,y) = limFx,y(x,y + e) =Fx ,y (x ,y ) (1.62) 

Remark. We can show that 

P[a<X <b,c<Y <d]= Fx,Y{b,d) - Fx,Y{b,c) - Fx,Y{a,d) + Fx,y(a,c) 
(1.63) 

where a, 6, c, and d are constants. 

It is easy to obtain the marginal distribution function of X when the 
function FX,Y is known. Indeed, we may write that 

Fx{x) = P[X < x , y < 00] = Fx,y(x,oc) (1.64) 

Definition 1.3.3. A two-dimensional r.v., Z == {X,Y), is 0/discrete type 
if Sz is a finite or countably infinite set of points in M^; 

5z = 5 x x y = {(:^,-,2/fc),i-l,2,...;fc = l , 2 , . . . } (1.65) 

Definition 1.3.4. T/ie joint probability mass function of the discrete r.v. 
(X, Y) is defined by 

Px,Y{xj,yk) = P[X = Xj,Y = yu] (1-66) 

forj,k = 1,2,... . 
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To obtain the marginal probabiUty mass function of X, from px,Y^ we 
make use of the total probability rule: 

oo oo 

px{xj) = P\X = Xj] - Y. ^ [ { ^ = ^J} '^i^ = f̂c}] = X1P^.^(^^'2/fc) 
fc=i fc=i 

(1.67) 

Example 1.3.1. The generahzation of the binomial distribution to the two-
dimensional case is the joint probability mass function given by 

Px.x.(xi ,X2) - , ,, ""' rrPrP2=(l - P i -P2 ) ' " - ^ ' - ^^ (1.68) 
a:i!x2!(m - xi - X2)! 

where xi , X2 G { 0 , 1 , . . . , m} and xi-\-X2<me N. We say that (Xi, X2) has 
a trinomial distribution with parameters m, pi , and P2? where 0 < pfc < 1, for 
A: = 1,2. We can generalize further the binomial distribution and obtain the 
multinomial distribution (in n dimensions). 

Definition 1,3.5. ^ two-dimensional r.v., Z = {X,Y), is 0/continuous 
t ype tf Sz is an uncountably infinite subset ofR^. (We assume that X and 
Y are two continuous random variables.) 

Remark. We will not consider in this book the case of random vectors with at 
least one component being a random variable of mixed type. 

Definition 1.3.6. The joint (probability) density function of the con­
tinuous r.v. Z = {X^Y) is defined by 

fxA^^ y) = -^FX,Y{X, y) (1-69) 

for any point where the derivative exists. 

Remarks, i) Corresponding to the formula (1.67), the marginal (probabil­
ity) density function of X can be obtained as follows: 

/

oo 
fx,Yix,y)dy (1.70) 

-00 

where we integrate in practice over all the values that Y can take when X = x. 
ii) The probability of the event {Z G A}, where A C 5z, can be calculated as 
follows: 

P[Z eA]= f f fx,Y{x,y)dxdy (1.71) 
J ^J 

iii) The distribution function of the continuous r.v. (X, Y) is given by 
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/

y px 

/ fx,Y{u,v)dudv (1.72) 

-oo J — oo 

In the discrete case, the formula above becomes 

Fx,Y{x,y)-= J2 ^Px,Y{xj,yk) (1.73) 
Xj<xyk<y 

ii \ < X < e, 0 < y < X 

Example 1.3.2. The continuous r.v. {X,Y) has the joint density function 

{
Inx 

X 

0 elsewhere 

We calculate 
r Inx 

fxM = / dy = lnx if 1 < x < e 
Jo X 

and 

fviy) = < 

( r\nx , Ir 
/ ax = — 

Ji X 

rinx , In^x 
/ dx = ^ 

4 ^ 2 
0 

v. 

2 

' 1 
= - if 0 < y < 1 

1 ^ 

2 

elsewhere 

Example 1.3.3. Let 

fx,Y{x,y) = 
22/e"^ if a :>0 , 0 < | / < 1 

0 elsewhere 

First, we calculate 

Jo 
fx[x)= 2y e-"" dy = e"" if x > 0 

and 
poo 

fY{y)= 2ye-'^dx = 2y if 0 < y < 1 
Jo 

Moreover, we find that 

0 i f a : < O o r y < 0 
FX,Y{^^ y)= { (1 - e"^)2/^ if a; > 0 and 0 < y < 1 

e~^ if a: > 0 and y >1 



24 1 Review of Probability Theory 

Finally, we calculate 

P[X-^Y>1] = 1-P[X + Y <1] = 1- [ [ 2ye-''dxdy 
Jo Jo 

1- [ 2y{l~ e^-^) dy = 1-{1- 26"^) = 2e-^ 
Jo 

because 

/ ye^dy = ye'^\l - e^dy = e~ {e-1) = 1 
Jo Jo 

Definition I.3.7. Let (X^Y) be a random vector. We say that X and Y are 
independent random variables if 

Pxxi^j^Vk) = Px{xj)vY{yk) if {X, Y) is discrete (1.74) 

or 

fx,Y{x,y) = fx{x)fY{y) if{X,Y) is continuous (1.75) 

Remarks, i) More generally, X and Y are independent if (and only if) 

P[X eA,Y eB] = P[Xe A]P[Y e B] (1.76) 

where A (respectively, B) is any event that involves only X (resp., Y). In 
particular, we must have 

Fxx{x,y) = P[X<x,Y<y] = Fx{x)FY{y) ^ {x,y) (1.77) 

ii) If X and Y are independent r.v.s, then so are g{X) and h{Y). 

iii) Let Z := X + F , where X and Y are two independent r.v.s. Then [see the 
formula (1.102)], 

Mz{t) = E[e'^] = E[e*(^+^)] = E[e'^]E[e'^] = Mx{t)MY{t) (1.78) 

Similarly, CZ{(JO) = Cx(a;)Cy(a;). 

Example 1.3.4- We deduce from Eq. (1.75) that the r.v.s X and Y in Example 
1.3.2 are not independent, whereas those in Example 1.3.3 are. 

Definition 1.3.8. If Y is a discrete r.v., then the condit ional d is t r ibut ion 
function of X^ given that Y = yk, is defined by 

FxiY{x\yk)=^^^pJy'Jy^^^''^ ifP[Y = yk]>0 (1.79) 

Remark. In theory, Y can be a continuous r.v. in the preceding definition. 
However, in practice, most of the time the two random variables in the pair 
(X, Y) are of the same type. 
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Definition 1.3.9. If {X,Y) is a discrete r.v., then the conditional proba­
bility mass function of X, given that Y = yk, is defined by 

PYiVk) P[Y = Vk] 
(1.80) 

Remark. The conditional functions possess the same properties as the corre­
sponding marginal functions. 

When F is a continuous r.v., we cannot condition on the event {¥ = y} 
directly, because P[Y = ^] = 0 for all y. We must rather take the limit as 
dy decreases to zero of the functions defined by conditioning on the event 
{y <Y < y + dy}. We then obtain the following proposition. 

Proposition 1.3.1. / / (X, F) is a continuous r.v. and fyiv) > 0? then the 
conditional distribution function and the conditional density function 
of X, given that Y = y, are given, respectively, by 

Fx\Y{x\y) = j ^ ^ and fx\Y{x \ y) = ^^^^^ (1.81) 

Example 1.3.5. The conditional density function of Y, given that X = x, in 
Example 1.3.2 is 

That is, Y \ {X = x} has a uniform distribution on the interval (0,a;). Hence, 
we easily find that iV|x(2/ I 3:) = 0 if i/ < 0, 

FY\x{y\x)^~ i f O < 2 / < x 

and FY\x{y \x) = 1 iiy>x. 

Proposition 1.3.2. The r.v.s X and Y are independent if and only if the 
conditional distribution function, the conditional probability mass function, 
or the conditional density function of X, given that Y = y, is identical to the 
corresponding marginal function. 

Example 1.3.6. We say that the continuous random variables X and Y have 
a binormal (or bivariate normal) distribution with parameters /j.x ^ K, 
HY G M, ( J | > 0, a^ > 0, and p e ( -1,1) , and we write that {X,Y) ^^ 

? f^Y'i ^X5 <̂ y 5 p)? if their joint density function is 

fx,Y{x,y) =-
27rax^y( l -p2) i /2 
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1 
X exp - 2 ( 1 - p 2 ) (Jx ) \ cry ) 

{x - ixx){y - ^Y) 
(JXCTY 

(1.82) 

for (x,y) G M ^ . 

We easily find that X ~ N(//x?<^x) and Y ~ N(/xy,(jy). It follows that 

X\{Y = y}^N{i,x+p{ax/(7Y){y~I^Y),<Tl{l-p^)) (1.83) 

Since X and X \ {Y = y} have the same distribution if p = 0, we can state 
that X and Y are independent r.v.s if the parameter p is equal to zero. This 
parameter is actually the correlation coefficient of X and Y. 

Definition 1.3.10. The conditional expectation of X, given that Y ^ y, 
is defined by 

CO 

E[X \Y =^ y] = 2_]XJPX\Y{XJ \ y) (discrete case) (1.84) 

or 

/

oo 
X fx\Y{x\y)dx (continuous case) (1.85) 

-oo 

The mean E[g{X)] of a transformation p of a random variable X is a real 
constant, while E{g{X) | y = y] is a function of t/, where t/ is a particular 
value taken by the r.v. Y, We now consider E[g{X) | F] . It is a function of 
the r.v. Y that takes the value E[g{X) \Y = y] when F = y. Consequently, 
E[g{X) 1 Y] is a random variable, whose mean can be calculated. We then 
obtain the following important proposition. 

Proposition 1.3.3. We have 

E[g{X)\ = E[E\g{X) \ Y]] (1.86) 

Remarks, i) We deduce from the preceding proposition that 

{ Efcli E[X I Y = yk]PY{yk) (discrete case) 
oo 

/ ^ E[X \Y = y] friy) dy (continuous case) 
(1.87) 

ii) We can calculate the variance of X by conditioning on another r.v. Y as 
follows: 
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V[X] = E[E[X'^ I Y]] - {E[E[X \ Y]]f (1.88) 

iii) Let X i , X 2 , . . . be r.v.s that possess the same distribution as the r.v. X, 
so that E[Xk] = E[X\ and V[Xk] = F[X], for A: = 1,2,.. . , and let N be an 
r.v. independent of the XkS and taking its values in the set {1 ,2 , . . . } . By 
making use of the formula (1.86), we can show (see p. 254) that 

E 
' N 

= E[N\E[X] (1.89) 

If the r.v.s Xk are independent among themselves, we also have (see p. 254) 

N 

V 
. / c = l 

E[N\V[X\ + V[N\[E[X]Y (1.90) 

iv) Suppose that we wish to estimate a random variable X by using another 
r.v. F . It can be shown that the function g(Y) that minimizes the mean-square 
error (MSE) 

USE := E[{X - g{Y)f] (1.91) 

is g{y) = E[X I F] . If we look for a function of the form g{Y) = aY + /?, we 
can show that the constants a and (3 that minimize MSE are 

Finally, if g{Y) ~ c, we easily find that the constant c that yields the smallest 
MSE is c = E[X]. 

The function g(Y) = E[X \ Y] is the best estimator of X, in terms of Y, 
while g{Y) = oY + /5 is the best linear estimator of X, in terms of Y. If X 
and Y both have a Gaussian distribution, then the two estimators are equal 
(see Ex. 1.3.6). 

Proposition 1.3.3 also enables us to calculate the probability of the event 
{X G A} by conditioning on the possible values of an r.v. Y. We only have 
to define the r.v. W such that VT = 1 if X G A and T^ = 0 if X ^ ^ , and use 
the fact that E[W] = P[X e A]. We can then show the following proposition, 
which is the equivalent of the total probability rule for random variables. This 
proposition and Proposition 1.3.3 will be very useful in the next chapters. 

Proposition 1.3.4. We may write that 

J2Z:i P[^ eA\Y = yk]PY{yk) (discrete case) 
P[XeA]=^ { ^ (1.93) 

J^oo -^[-^ ^ ^\Y = yjfyiy) dy (continuous case) 
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Corresponding to the definition of the conditional variance y [X | 4] that 
was given in the preceding section, we now have the following definition. 

Definition 1.3.11. The conditional variance of X, given the r.v, Y, is 
defined by 

V[X I Y] = E[{X - E[X I Y]f I Y] (1.94) 

Remarks, i) We find that 

V[X I Y] = E[X^ I Y] - {E[X I Y]f (1,95) 

ii) We can show the following useful result: 

V[X] = E[V[X I Y]] + V[E[X I Y]] (1.96) 

Example 1.3.7. Instead of calculating the variance of the r.v. Y in Example 
1.3.2 from the density function fy that we obtained and from the definition of 
V[Y], we can use the fact (see Ex. 1.3.5) that Y \ X r.. U(0, X). It follows that 
E[Y I X] = X/2 and V[Y | X] = X V l 2 , and then, by the formula (1.96), 

V[Y] = ^E[X'] + \v[X]=^-E[X']-\{E[X]fc.0.42^ 

because 

E[X]= [ x\nxdx=]{e'^ + l) and E[X'^] = [ x'^ \nxdx =l{2e^+ 1) 

Remark. We can check that 

S[Y] = i(e2 + l) and E[Y^] = ^{26^ + 1) 

Remark. We can consider conditional expectations £ [X | A], or conditional 
density functions fx,Y{x^y \ A), etc., with respect to more general events 
A, like Y < y, Y > 0, etc., and also with respect to events A that involve 
both random variables, X and Y. For instance, let Xi and X2 be independent 
random variables having a U(0,1) distribution. We have 

P[Xi<xi\Xi<X2] 

= "^^^^y'^fyl ^'^ = ^ f -^[^^ ̂  "^-^^ < X. I X. := x,]. Idx, 

= ' 2 / P[Xi < xi, Xi < X2] dx2 = 2 w X2 dx2 -\- Xi dx2 \ 

Jo I JO fxi J 

ind 

= Xi(2-Xi) 
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SO that 
fxA^i I Xi < X2) = 2(1 - xi) for 0 < XI < 1 

Next, we have 

E[Xi\Xi<X2]= xi'2{l-xi)dxi = -

Actually, if we are only looking for the mean of Xi , given that Xi < X2, we 
can directly write that 

E[Xi I Xi < X2] - / xi'~— dx2dxi 
Jo Jxi ^h 

1 

1/2^^"^*^' 3 

where we used the formula 

/xi,x.(a:i,X2 I Xi < X2) = '^^V^^^^^;f^^ for 0 < xi < X2 < 1 
i^[Ai < A2J 

The following proposition is the two-dimensional version of Proposition 
1.2.2. 

Proposition 1.3.5. Lei W := gi{X,Y) and Z := g2{X,Y), where X and Y 
are two continuous r.v.s. If 
1) the system w = gi{x, y), z = g2{x, y) has the unique solution x = hi{w^ z), 
y = h2{w,z) 
and 
2) the functions gi and ̂ 2 have continuous partial derivatives V {x^y) and the 
Jacobian J{x, y) of the transformation is such that 

then 

fw,z{w, z) = fx,Y{hi{w, z), h2{w, z)) \J{hi{w, z), h2{w, z))\~^ (1.98) 

Remarks, i) The proposition can be easily generalized to the n-dimensional 
case, where n G {3,4 , . . . }. 

ii) In the particular case where X and Y are independent and Z := X + l^, we 
could use the proposition to obtain the density function of Z. We must first 
define an appropriate auxiliary variable W^ then calculate the joint density 
function of the r.v. (W^Z), and finally integrate this joint density function 
with respect to w to obtain fz{z)- We can also proceed as follows: 

/

CO pZ — U /"CO 

/ fx{u)fY{v)dv du =^ fz{z) = / fx{u)fY{z - u) du 
-00 J —00 J —00 

(1.99) 
Note that the density function of Z is the convolution product of the density 
functions of X and Y. 
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Proposition 1.3.6. The mathematical expectation of the random variable 
Z := g{X, Y) is given by 

{ Yl%.iYlV=i9{^3'>yk)Px,Y{xj,yk) (discrete case) 
(1.100) 

X!^ X!^ 9{x, y) / x , r (x, y) dx dy (continuous case) 

Remark, If the mathematical expectations E[X] and E\Y] exist, we have 

E[aX-^bY]=aE[X]^bE[Y] M a,b eR (1.101) 

Moreover, liX and Y are independent r.v.s and g{X^Y) = gi{X)g2{Y)^ then 

E[g{X,Y)] = E[gi(X)]E[g2{Y)] (1.102) 

Definition 1.3.12. The covariance of X and Y is defined by 

Cov[X,y] = E[{X - E[X]){Y - E[Y])\ = E[XY] - E[X]E[Y] (1.103) 

Remarks, i) The covariance generalizes the variance, since Cov[X,X] = V[X]^ 
but the covariance Cov[X, Y] can be negative. For example, liY — —X, then 
we have 

Cov[X, Y] = Cov[X, -X] = E[X{-X)] - E[X]E[-X] = -V[X] < 0 
(1.104) 

ii) We deduce from Eq. (1.102) that if X and Y are independent, then 
Cov[X, Y] = 0. However, the converse is not always true. 

iii) We also define the correlation coefficient of X and Y by 

Cov[X,Y] , 
^^ ' ^ = STD[X]STD[y] ^^-^^^^ 

We then deduce from Example 1.3.6 that, in the case of the bivariate normal 
distribution, the r.v.s X and Y are independent if and only if their correlation 
coefficient is equal to zero. 

An important particular case of transformations of random vectors is the 
one where the random variable Z := g{Xi,... , Xn) is a linear combination of 
the r.v.s X j , . . . ,Xn: 

Z = ao + aiXi + • • • 4- OnXn (1.106) 

where the a^'s are real constants V k. We can show the following proposition. 
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Proposition 1.3.7. Let Z he a linear combination of the r.v.s X i , . . . ^X^-
We can write (if the mathematical expectations exist) that 

E[Z] = ao + aiE[Xi] -f • • • + anE[Xn] (1.107) 

and 

V[Z] = ; ^ a | F [ X , ] + 2 ^ ^ a , - a , C o v [ X , - , X , ] (1.108) 
3 = 1 k=l k=l 

j<k 

Example 1.3.8, If X and Y are two independent r.v.s having a uniform distri­
bution on the interval [0,1] and Z := X -\-Y, then Sz = [0,2] and 

/

oo /•! 

fx (u) fy {z-u)du= / fy {z - u) du 
-oo ^0 Since 

we may write that 

fy {z-u) = 

fz{z) 

\ I 
I Jo 

f 
Jz-l 

lifz — l<u<z 
0 elsewhere 

ldu = z if 0 < z < 1 

l ( i u - 2 - ^ i f l < z < 2 

0 elsewhere 

Remark. If we define the auxiliary variable W = X, then we find that 

fw,z {w,z) = l if0<w<l,0<z<2, w<z<w-\-l 

Integrating fw,z (^^ z) with respect to w, we retrieve the function fz {z) 
above. 

Next, if Z :=X - ^ diiidW := Z^, we calculate 

Cov[Z, W] - E[ZW] - E[Z]E[W] = E[Z^] - 0 = 0 

because E[Z'^^'^^] = 0, for all k e { 0 , 1 , . . . } . However, Z and W are not 
independent, since Z = 0=^VF=:0, in particular. 

Finally, Eq. (1.108) enables us to write that 

V[Z - 3W] = V[Z] + 9 V[W] - 6 Cov[Z, W]=V X - + 9V X 
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= V[X] + 9 V[T% where T ~ t/ 

12 V180/ 15 

1 1 
2 ' 2 

because 

.1 /2 / /•1/2 N 
V[T'^] = E[T^] - ( E [ T 2 ] ) 2 = / t^'ldt-l t^'ldt 

7-1/2 \7 - l /2 J 

1 
5 x 16 3 x 4 

64 1 

80 X 144 180 

We continue with limit theorems that will be used in the subsequent chap­
ters. 

Proposition 1.3.8. Let X i , X 2 , . . . be an infinite sequence of independent 
and identically distributed (i.i.d.) r.v.s, and let Sn '-= Xi -\ -f Xn-

a) (Weak law of large numbers) If E[Xi] = /x e M, then 

lim P 
n— ôo 

«->n 

n 
- / ^ < c - 1 V O O (1.109) 

b) (Strong law of large numbers) If E[Xi] < oO; then we may write that 

1. ^n 

n-^oo n 
= 1 (1.110) 

c) (Central limit theorem) If E[Xi] = JJL eR and V[Xi\ = a'^ e (0,oo), 
then we have 

lim P 
n-^oo 

n/i 

y/na 
< z = P[N{OA) <z] (1.111) 

Remarks, i) Actually, the condition £'[Xf ] < oc is a sufficient condition for 
the strong law of large numbers to hold. It may be replaced by the weaker 
condition JEJ[|Xi|] < oo, which reduces to E[Xi] < oo in the case when Xx > 0. 

ii) The central limit theorem (CLT) implies that 

Sn « N(n/i, na^) and 
^n 

n 
N(/x,<TVn) (1.112) 

In general, from n = 30, the approximation by the Gaussian distribution 
should be rather good. 
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iii) An application of the CLT is the Moivre^'^-Laplace Gaussian approxima­
tion to a binomial distribution: 

P[B{n,p) = k\^ fz{k), where Z - N{np,np{l -p)) (1.113) 

For the approximation to be good, the minimum between np and n(l — p) 
should be at least equal to 5. 

Example 1.3.9. If Xk ~ Exp(l), for fc = 1 , . . . , 30, and if the X/^'s are inde­
pendent r.v.s, then we can show that 

5 3 o : - X i + . . , + X 3 o - G ( 3 0 , l ) 

Making use of the formula 

P[G(n, A) < x] = P[Poi(Ax) > n] (1.114) 

we obtain (from a table of the distribution function of the Poisson distribution) 
that 

-̂ [•§30 < 30] = P[Poi(30) > 30] ĉ  0.5243 

The approximation by the CLT yields 

P[5'3o < 30] - P[N(30,30) < 30] = 0.5 

Example 1.3.10. Suppose that 1% of the tires manufactured by a certain com­
pany do not conform to the norms (or are defective). What is the probability 
that among 1000 tires, there are exactly 10 that do not conform to the norms? 

Solution. Let X be the number of tires that do not conform to the norms 
among the 1000 tires. If we assume that the tires are independent, then X 
has a binomial distribution with parameters n = 1000 and p = 0.01. We seek 

P[X = 10] c:^ /z(10), where Z - N(10,9.9) 
I r 1 n n in\2 

27rV9.9 
/ i ( l ^ : i B ! U 0.1268 
\ 2 9.9 J e x p < - -

Remarks. i) In fact, we obtain that P[X = 10] 2:̂  0.1257. By using the Poisson 
approximation (see p. 12), we find that 

^̂  One of the pioneers of the calculus of probabilities, Abraham de Moivre, 1667-
1754, was born in France and died in England. The definition of independence of 
two events can be found in his book The Doctrine of Chance published in 1718. 
The formula attributed to Stirling appeared in a book that he published in 1730. 
He later used this formula to prove the Gaussian approximation to the binomial 
distribution. 
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P[X = 10] - P[Poi(10) = 10] - 0.1251 

In this example, the Poisson approximation is slightly more accurate. However, 
if we increase the value of the probability p, the Moivre-Laplace approxima­
tion should be better. 

ii) To calculate approximately a probability like P[5 < X < 10], we would 
rather use the distribution function of the Gaussian distribution. It is then 
recommended to make a continuity correction to improve the approximation. 
That is, we write that 

P[5 < X < 10] = P[4.5 <X< 10.5] - P[4.5 <Z < 10.5] 

1.4 Exercises 

Section 1.1 
Question no. 1 

In urn A^ there are four red balls and two white balls, while urn B contains 
two red balls and four white balls. We throw, only once, a coin for which the 
probability of "tails" is equal to p (0 < p <!). If we get "tails," then we will 
draw balls from urn A; otherwise, urn B will be used. 

(a) What is the probability of obtaining a red ball on any draw? 

(b) If we obtained a red ball on each of the first two draws, what is the 
probability of obtaining a red ball on the third draw? 

(c) If we obtained a red ball on each of the first n draws, what is the probability 
that we are using urn A? 

Question no. 2 
Box 1 contains 1000 transistors, of which 100 are defective, and box 2 

contains 2000 transistors, of which 100 are also defective. A box is taken 
at random and two transistors are drawn from it, at random and without 
replacement. 

(a) Calculate the probability that both transistors are defective. 

(b) Given that both transistors are defective, what is the probability that they 
come from box 1? 

Question no. 3 
Assume that there is a leap year every four years. How many (independent) 

persons must be in a room, at minimum, if we want the probability that at 
least one of these persons was born on February 29 to be greater than 1/2? 
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Question no. 4 
Object Oi moves on the x-axis between 0 and 2, while object O2 moves 

on the y-axis between 0 and 1. Suppose that the position of each object is 
completely random. What is the probability that the distance between the 
two objects is greater than 1? 

Question no. 5 
A certain user of the public transport system can take bus no. Ni or bus 

no. N2 to go to work. A bus no. Ni runs near his home every hour, from 6:00 
a.m., while a bus no. Â2 runs there d minutes after the hour, where d G (0,30]. 
The user arrives at the bus stop at a completely random time between 7:45 
a.m. and 8:15 a.m. What is the value of d if he takes a bus no. Ni thrice more 
often than a bus no. N2? 

Question no. 6 
Two sport teams play a series of (independent) games to win a trophy. The 

first team that wins four games gets the trophy. There are no draws. What is 
the probability that a team having, for each game, only a one-in-three chance 
of winning gets the trophy? 

Question no. 7 
In how many ways can we permute the numbers 1,2,... , n if we do not 

want a single number to remain in its original position? 

Question no. 8 
In the dice game called craps^ the player tosses two (fair) dice simultane­

ously. If the sum of the two numbers that show up is equal to 7 or 11, the 
player wins. If the sum is equal to 2, 3, or 12, he loses. When the sum is a 
number x different from the preceding numbers, the player must toss the two 
dice again until he gets a sum equal to x or 7. If x is obtained first, the player 
wins; otherwise, he loses. What is the probability that the player wins? 

Question no. 9 
A says that B told her that C has hed. If the three persons tell the truth 

and lie with probability p G (0,1), independently from one another, what is 
the probability that C has indeed lied? 

Question no. 10 
A man takes part in a television game show. At the end, he is presented 

with three doors and is asked to choose one among them. The grand prize is 
hidden, at random, behind one of the doors, while there is nothing behind the 
other two doors. The game show host knows where the grand prize has been 
hidden. Suppose that the man has chosen door no. 1 and that the host tells 
him that he did well in not choosing door no. 3, because there was nothing 
behind it. He then offers the man the opportunity to change his choice and, 
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therefore, to select door no. 2 instead. What is the probabihty that the man 
will win the grand prize if he decides to stick with door no. 1? 

Section 1.2 

Question no. 11 
Boxes I and II both contain n transistors. At each step, a fair coin is tossed. 

If "heads" (respectively, "tails") is obtained, we take, at random and without 
replacement, a transistor in box I (resp., II). We repeat this experiment until 
one of the two boxes is empty. Let N be the number of transistors that remain 
in the other box at that moment. If we assume that the repeated trials are 
independent, what is the probability mass function of N? 

Question no. 12 

Let X be a continuous random variable whose density function is given by 

fx{x) = c^xe'""^ f o r x > 0 

where c is a positive constant. Calculate E[X | X < 1]. 

Question no. 13 
A mathematician hesitates between three methods to solve a certain prob­

lem. With the first (respectively, second) method he will work in vain for two 
(resp., three) hours, while the third method will give him the solution at 
once. If we assume that at each step the mathematician uses a method taken 
at random among those that he still has not tried, what is the variance of the 
number of hours that he wall have to work to solve his problem? 

Question no. 14 
Let X be a random variable whose moment-generating function, Mx(t) , 

exists for t e {~c,c). Show that 

P[X > a] < e-«*Mx (t) for 0 < t < c 

and 
P[X < a] < e-^*Mx(t) for - c < t < 0 

where a is a real constant. 

Question no. 15 
Suppose that the moment-generating function of X exists for every real 

value of t and is given by 

Mx{t) = \ ^ - ^ ' ^ ' ^ ' ' 
1 iit = 0 
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Use the results of the preceding question to show that 

P[X > 1] - 0 and P[X < -1] = 0 

Question no. 16 
Let X be a continuous random variable whose set of possible values is the 

interval [a, 6], We define Y = g{X). 

(a) Calculate the probability density function of Y if g{x) = 1 — Fx{x). 

Indication. The inverse distribution function F^^ exists. 

(b) Find a transformation g(x) such that 

fY{y) = ^ iovl<y<3 

Question no. 17 
Calculate E[X | X > 1], where X is a random variable having a standard 

Gaussian distribution. 

Question no. 18 
Two players, X and F , take turns at tossing a fair coin. The first one that 

gets "tails" wins. Calculate, assuming that X starts, 

(a) the probability that X wins, 

(b) the probability that X wins, given that she did not obtain "tails" on her 
first two trials, 

(c) the average number of tosses needed to end the game, given that X lost. 

Question no. 19 
Suppose that the probability that a family has exactly n children is given 

by 
Pn=cp'' forn = l , 2 , . . . 

where c > 0 and 0 < p < 1, and PQ = I - Yl^=i ^n- Suppose also that every 
child is equally likely to be a male or a female. 

(a) Calculate the probability that a family with n children has exactly k male 
children, for fc = 0 , 1 , . . . , n. 

(b) Find the probability that a family has no male children. 

(c) What is the average number of male children per family? 

Question no. 20 
A box contains 200 brand A and 10 brand B transistors. Twenty transistors 

are taken at random. Let X be the number of brand A transistors obtained. 
(a) Calculate P[X = 20], assuming that the transistors are taken without 
replacement. 
(b) Calculate P[X — 19] if the transistors are taken with replacement. 
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(c) Use a Poisson distribution to calculate approximately P[X = 18] when 
the transistors are taken with replacement. 

Question no. 21 
The density function of the random variable X is given by 

-{' J^\^) - 1 0 elsewhere 

where fc is a positive constant. 

(a) Calculate fx{x \ X^ < 1/4). 

(b) Find the constant b that minimizes E[{X — 6)^]. 

(c) Find the constant c that minimizes E[\X — c|]. 
Indication. The value Xm for which Fx{Xm) = 1/2 is called the median of the 
continuous r.v. X. It can be shown that, for any real constant a, 

E[\x - a\] = E[\x - Xm\] + 2 / {x - a)fx{x) dx 
J a 

Question no. 22 
We say that the continuous random variable X, whose set of possible values 

is the interval [0,oo), has a Pareto^^ distribution with parameter ^ > 0 if its 
density function is of the form 

^ i f a ; > 0 
fx{x) = { (l+x)^+i 

0 elsewhere 

In economics, the Pareto distribution is used to describe the (unequal) dis­
tribution of wealth. Suppose that, in a given country, the wealth X of an 
individual (in thousands of dollars) has a Pareto distribution with parameter 
e= 1.2. 

(a) Calculate/x(2 I 1 < X < 3). 

(b) What is the median wealth (see Question no. 21) in this country? 

(c) We find that about 11.65% of the population has a personal wealth of at 
least $5000, which is the average wealth in this population. What percentage 
of the total wealth of this country does this 11.65% of the population own? 

Question no. 23 
Let 

. . X /A;x2e-^ ' /2 i fa ;>0 fx{x) = I 
0 elsewhere 

^̂  Vilfredo Pareto, 1848-1923, born in France and died in Switzerland, was an 
economist and sociologist. He observed that 20% of the Italian population owned 
80% of the wealth of the country, which was generalized by the concept of Pareto 
distribution. 
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where fc is a positive constant. 

(a) Calculate fx{x\X < 1.282). 

Indication. We have P[N(0,1) < 1.282] c:^ 0.9. 

(b) Find the value of XQ for which Fx{xo) — 0.35. 
Remark, The random variable X defined above actually has a Maxwell^^ dis­
tribution with parameter a = 1. In the general case where a > 0, we may 
write that 

We find that E[X] = 2 a y ^ and V[X] = a'^[3 - (S/TT)]. This distribu­
tion is used in statistical mechanics, in particular, to describe the velocity of 
molecules in thermal equilibrium. 

Quest ion no. 24 
Let X be a continuous random variable having the density function 

f f , / ^ e - V ( 2 . ^ ) i f x > 0 

[ 0 elsewhere 

We say that X has a Rayleigh^^ distribution with parameter ^ > 0. 

(a) Show that E[X] = e^/^ and V[X] =9'^ [2- (7r/2)]. 
(b) Let Y := InX, where X has a Rayleigh distribution with parameter 6 = 1. 
Calculate (i) / r ( l ) and (ii) the moment-generating function oiY at t = 2. 

(c) We define Z = 1/X. Calculate the mathematical expectation of Z if 6 = 1 
as in (b). 

Section 1.3 
Question no. 25 

The lifetime X (in days) of a device has an exponential distribution with 
parameter A. Moreover, the fraction of time during which the device is used 
each day has a uniform distribution on the interval [0,1], independently from 
one day to another. Let N be the number of complete days during which the 
device is in a working state. 

(a) Show that P[N >n] = {l- e-^Y/y, forn = 1,2,... . 

^̂  James Clerk Maxwell, 1831-1879, was born in Scotland and died in England. He 
was a physicist and mathematician who worked in the fields of electricity and 
magnetism. 

^̂  John WiUiam Strutt Rayleigh, 1842-1919, was born and died in England. He 
won the Nobel Prize for physics in 1905. The distribution that bears his name 
is associated with the phenomenon known as Rayleigh fading in communication 
theory. 
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Indication. Because of the memoryless property of the exponential distribu­
tion, that is, 

P[X>s^t\X>t]=P[X>s] \/s,t>0 

it is as if we started anew every day. 

(b) Calculate E[N | Â  < 2] if A = 1/10. 

Question no. 26 
Let Xi and X2 be two independent N(/x,(7^) random variables. We set Fi 

= Xi + X2 and Y2 = Xi-\- 2X3. 

(a) What is the joint density function of Yi and ^2? 

(b) What is the covariance of Yi and I2? 

Question no. 27 
Let Xi and X2 be two independent random variables. If Xi has a gamma 

distribution with parameters n/2 and 1/2, and Y := Xi + X2 has a gamma 
distribution with parameters m/2 and 1/2, where m > n^ what is the distri­
bution of X2? 

Indication, li X has a gamma distribution with parameters a and A, then (see 
Table 1.1, p. 19) 

Question no. 28 
Show that if E[{X - Y)'^] = 0, then P[X = Y] = 1, where X and Y are 

arbitrary random variables. 

Question no. 29 
The conditional variance of X, given the random variable Y, has been 

defined (see p. 28) by 

V[X\Y]=E[[X-E[X\Yf\Y] 

Prove the formula (1.96): 

V[X] = E[V[X I Y]] + V[E[X I Y]] 

Question no. 30 
Let X be a random variable having a Poisson distribution with parameter 

y , where Y is an exponential r.v. with mean equal to 1. Show that W := X-{-l 
has a geometric distribution with parameter 1/2. That is, 

pw{n) = (l/2y^ forn = l , 2 , . . . 
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Question no. 31 
Let Xi and X2 be two independent random variables, both having a stan­

dard Gaussian distribution. 

(a) Calculate the joint density function of Yi := Xf + X^ and Y2 := X2. 

(b) What is the marginal density function of Yi? 

Question no. 32 
Let X and Y be independent and identically distributed random variables. 

(a) Show that h{z) := E[X \X^Y = z]= z/2. 

(b) Evaluate E[{X - h{Z))^] in terms of V[X]. 

Question no. 33 
A company found out that the quantity X of a certain product it sells 

during a given time period has the following conditional density function: 

fx\Y{x\y) = ^xe-^^^y i f x > 0 

where y is a random variable whose reciprocal Z := 1/Y has a gamma dis­
tribution. That is, 

fz{z) = Xe-^^^-^^^ iovz>0 
r{a) 

(a) Obtain the marginal density function of X. 

(b) Calculate £"[7 \ X = x]. 

Question no. 34 
Let X and Y be continuous and independent random variables. Express 

the conditional density function of Z := X + Y, given that X = x, in terms 
o f / y . 

Question no. 35 
Show that for continuous random variables X and F , we have 

E[Y\X<x] = - i - r E[Y\X = u]fx{u 
rx[x) 7_oo 

)du 

liFxix) > 0 . 

Question no. 36 
Let X i , . . . , Xn be independent random variables such that 

for —00 < X < 00 and fc = 1,2,... , n, where a^ > 0 V fc. 

(a) Calculate the density function of the sum Z := Xi + . . . 4- X^. 
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Indication, The characteristic function of Xk is given by 

(b) Assuming that a^ = ai , for fc = 2 , 3 , . . . , can we state that fzi^) tends 
toward a Gaussian probabiUty density? Justify. 

Question no. 37 
Suppose that X ^ N(0,1) and Y ~ N(l, 1) are random variables such that 

PXY = P, where px Y is the correlation coefficient of X and Y. Calculate 
E[X^Y^]. 

Question no. 38 
Let 

e~y if X > 0^ y > X 
/x ,y(x,y) = | Q elsewhere 

be the joint density function of the random vector (X, Y). 

(a) Find the estimator g{Y) of X, in terms of F , that minimizes the mean-
square error MSB := E[{X - g{Y))'^], 

(b) Calculate the minimum mean-square error. 

Question no. 39 
The joint density function of the random vector (X, Y) is given by 

r / X r | (x2+x2 /4 -^^ ) i f - 1 < x < 1 a n d - 1 < ! / < 1 
fx,Y{x,y) = ['' 0 elsewhere 

Calculate (a) E[X \ Y = 1/2], (b) E[Y \ X], (c) the mean-square error MSB 
:= E[{Y - g{X))'^] made by using g{X) := E[Y \ X] to estimate the random 
variable Y. 

Indication. It can be shown that 

MSB - E[Y^] - E[g\X)] if g{X) = E[Y \ X] 

Question no. 40 
A number X is taken at random in the interval [0,1], and then a number 

Y is taken at random in the interval [0,X]. Finally, a number Z is taken at 
random in the interval [0,y]. Calculate (a) E[Z], (b) V[Y], (c) P[Z < 1/2]. 

Question no. 41 
An angle A is taken at random in the interval [0,7r/2], so that 

/^(a) = - for 0 < a < 7r/2 
TT 

Let X := cos A and Y := sin A. Calculate 

(a) P[X = 1\Y = 0], (b) E[Y I X], (c) E[Y], (d) E[X \ X + Y], 
(e) E[X^\X + Y], (f) E[X \ A], (g) P{X = 0\ {X = 0}U {X = V^/2}]. 
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Indication. We have 

-— arccosa: = , tor —1 < x < 1 
dx Vl-x^ 

(h) V[X I Y] if the angle A is taken at random in the interval (0,7r). 

Question no. 42 
Let 

fx\Y{x I y) = ye""^ for x > 0,0 < 2/ < 1 

Calculate, assuming that Y has a uniform distribution on the interval (0,1), 
(a)/x(a:) , (h) P[XY > 1], ic)V[X\Y], (d) E[X]. 

Question no. 43 
We suppose that the (random) number N of customers that arrive at 

an automatic teller machine to withdraw money, during a given hour, has 
a Poisson distribution with parameter A = 5. Moreover, the amount X of 
money withdrawn by an arbitrary customer is a discrete random variable 
whose probability mass function is given by 

Px(x) = 1 if X = 20, 40, 60, 80, or 100 
5 

Finally, we assume that N and X are independent random variables. Let Y 
be the total amount of money withdrawn over a one-hour period. Calculate 

(a) E[Y\N> 0], (b) P[Y = 60], (c) P[N = 3 | F = 60]. 

Question no. 44 
Let Xi and X2 be two independent random variables having a uniform 

distribution on the interval (0,1). We define Y = max{Xi,X2}. Calculate (a) 
Fvix, (y I a;i), (b) E[Y \ Xi = ^1], (c) V[E[Y | Xi]], (d) E[V[Y \ Xi]]. 

Indication. If X is a nonnegative continuous (or mixed type) random variable, 
then 

/•OO 

E[X]= / [1-Fx{x)]dx 
Jo 

Question no. 45 
We consider a system made up of two components placed in parallel and 

operating independently. That is, both components operate at the same time, 
but the system functions if at least one of them is operational. Let Ti be the 
lifetime of component i, for i = 1,2, and let T be the lifetime of the system. 
We suppose that Ti ~ Exp(l/2), for 2 = 1,2. Calculate 

( a ) E [ T | T i = l], (b) E[T I Ti > 1], ( c ) S [ T | { T i > l } U { T 2 > l } ] . 

Indication. In (c), we can use the formula 

E[X\AUB] =E[X\A] P[A\AuB]-{-E[X\B] P[B\AUB] 

- E[X \AnB]P[AnB\AuB] 



44 1 Review of Probability Theory 

Question no. 46 
Let Xi ^ U [ - l , 1], X2 ^ U[0,1], and X3 '^ U[0,2] be independent random 

variables. Calculate 

( a ) P [ X i < X 2 ] , (b) P[Xi < X2 < X3], ( c ) ^ ' " ^ ' 

where Y •.= Xi+ X2 and Z := Xi + X3. 
X2 + I 

, (d) £;[yz I Xi], 

Question no. 47 
Suppose that Xi and X2 are independent random variables such that 

where Aj is a positive constant, for i = 1,2. Calculate 

(a) P[Xi < X2], (b) V[Xi I Xi > 0], (c) E[\Xi\ \ \X^\ > 1], 
(d) E[Xi + X2 I Xi < X2] if Ai = A2. 

Question no. 48 
Calculate P[Y > X] if X - B(2,1/2) and Y - Poi(l) are two independent 

random variables. 

Question no. 49 
Use the central limit theorem to calculate (approximately) 

P[Xi + . . . + X40 < X41 + . . . + Xioo] 

where X i , . . . ,Xioo are independent random variables, each having a U[0,1] 
distribution. 

Question no. 50 
Suppose that the random variables X i , . . . , X30 are independent and all 

have the probability density function 

fx(x) = - for 1 < X < e 

X 

What is the approximate density function of the product X1X2 • • • X30? 

Question no. 51 
Let (X, Y) be a random vector having a bivariate normal distribution. 

(a) Calculate P[XY < 0] if jix = 0, /xy = 0, a^ = 1, a?^ = 4, and p = 0. 
(b) What is the best estimator of X^ in terms of Y when /ix = 0? My = 0? 
aj^ = 1, CTy = 1, and p = 0? 
(c) Calculate E*[Xy] when px = 1, Ây = 2, a'x = 1, cry = 4, and p = 1/2. 

Question no. 52 
Let X and Y be two random variables, and let g and h be real-valued 

functions. Show that 
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(a) E[g{X) I X] = g{X), 

(b) E[9{X)h{Y)] =E[h{Y)E[9{X) | Y]]. 

Question no. 53 

Letters are generated at random (among the 26 letters of the alphabet) 
until the word "me" has been formed, in this order, with the two most recent 
letters. Let N be the total number of letters that will have to be generated to 
end the random experiment, and let Xk be the fcth generated letter. It can be 
shown that E[N] = 676 and ^[A^] = 454,948. Calculate (a) E[N \ X2 = e], 
(b) E[N I Xi = m], and (c) E[N^ | Xi = m]. 

Remark. The variable Xj^ is not a random variable in the strict sense of the 
term, because its possible values are not real numbers. We can say that it is an 
example of a qualitative (rather than quantitative) variable. It could easily be 
transformed into a real random variable by defining Xk instead to be equal to 
j if the fcth generated letter is the j t h letter of the alphabet, for j = 1 , . . . , 26. 

Quest ion no. 54 
Let X^, for i = 1,2,3, be independent random variables, each having a 

uniform distribution on the interval (0,1). Calculate 

( a ) E [ X i + X 2 + X 3 | X i - h X 2 ] , 

( b ) E [ X i + i X 2 | X i + X 2 + X 3 ] , 

( C ) J E ; [ F [ X I | X I + X 2 + X3]] . 



Stochastic Processes 

2.1 Introduction and definitions 

Definition 2.1.1. Suppose that with each element s of a sample space S of 
some random experiment E, we associate a function X{t,s), where t belongs 
to T C R. The set {X{t^s),t e T} is called a stochastic (or random^ 
process. 

Remarks, i) The function X(t, s) is a random variable for any particular value 
oft. 

ii) In this book, the set T will generally be the set N° = {0 ,1 , . . .} or the 
interval [0, oc). 

Classification of the stochastic processes 

We consider the case when T is either a countably infinite set or an uncount-
ably infinite set. Moreover, the set of possible values of the random variables 
X(t, s) can be discrete (that is, finite or countably infinite) or continuous 
(that is, uncountably infinite). Consequently, there are four different types of 
stochastic processes (s.p.). 

Definition 2.1.2. If T is a countably infinite set (respectively, an interval or 
a set of intervals), then {X(t,5),t e T} is said to be a discrete-time (resp., 
continuous-time^ stochastic process. 

Remarks, i) Except in Section 2.3, it will not be necessary to write explicitly 
the argument s of the function X{t,s). Thus, the stochastic process will be 
denoted by {X{t).,t G T}. However, in the discrete case, it is customary to 
write {Xn,n e T}. 

ii) We will not consider in this book the case when T is the union of a set of 
points and of an uncountably infinite set. 



48 2 Stochastic Processes 

Fig. 2.1. Example of a random walk. 

Example 2.1.1. A classic example of a stochastic process is the one where we 
consider a particle that, at time 0, is at the origin. At each time unit, a coin 
is tossed. If "tails" (respectively, "heads") is obtained, the particle moves one 
unit to the right (resp., left) (see Fig. 2.1). Thus, the random variable Xn 
denotes the position of the particle after n tosses of the coin, and the s.p. 
{Xn^n = 0 ,1 , . . . } is a particular random walk (see Chapter 3). Note that 
here the index n can simply denote the toss number (or the number of times 
the coin has been tossed) and it is not necessary to introduce the notion of 
time in this example. 

Example 2.1.2. An elementary continuous-time s.p., {X{i).,t > 0}, is obtained 
by defining 

X{t) = Yt for t > 0 

where F is a random variable having an arbitrary distribution. 

Definition 2.1.3. The set Sx{t) of values that the r.v.s X{t) can take is called 
the state space of the stochastic process {X{t)^t G T}. If Sx{t) is finite or 
countably infinite (respectively, uncountably infinite), {X{t)^t G T} is said to 
be a discrete-state (resp., continuous-state^ process. 

Example 2.1.3. The random walk in Example 2.1.1 is a discrete-time and 
discrete-state s.p., since 5x„ = {0, ± 1 , ± 2 , . . . }. For the continuous time s.p. 
in Example 2.1.2, it is a continuous-state process, unless Y takes on the value 
0, because Sx{t) = [0, oo) if F > 0 and Sx{t) = (-oc,0] if F < 0. 

As we mentioned above, for any fixed value of t, we obtain a random 
variable X{t) (= X(t, 5)). Although many authors use the notation X(t) to 
designate the stochastic process itself, we prefer to use the notation {X{t)\t e 
T} to avoid the possible confusion between the s.p. and the random variable. 
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Definition 2.1.4. The distribution function of order k of the stochastic 
process {X{t)^t G T} is the joint distribution function of the random vector 
{X{ti),,..,X{tk)): 

F{xi, ,.,,Xk;tu.,,, tk) = P[X{ti) < : r i , . . . , X{tk) < Xk] (2.1) 

Similarly, we define the probability mass and density functions of order 

k of an s.p.: 

p{xi,... ,x/e;?2i,... ,nk) = P[Xn^ = x i , . . . ,Xnk = Xk] (2.2) 

and (where the derivative exists) 
gk 

/ ( x i , . . . ,Xk]ti,.,. ,tk) = -g —-F{xi,... ,Xk\ti,,,. ,tk) (2.3) 

Remark. When fc = 1 or 2, the preceding definitions are in fact only new 
notations for functions already defined in Sections 1.2 and 1.3. 

Example 2.1.4- If the tosses of the coin are independent in Example 2.1.1, 
then we may write, with p := P[{Tails}], that the first-order probability mass 
function (or probability mass function of order 1) of the process at time n = 2 
is given by 

p ( a : ; n - 2 ) - P [ X 2 = x] = <̂  

(2p{l-p)i{x=-0 
p2 ifa: = 2 

( l - p ) 2 ifx = - 2 
0 otherwise 

First- and second-order moments of stochastic processes 

Just like the means, variances, and covariances enable us to characterize, 
at least partially, random variables and vectors, we can also characterize a 
stochastic process with the help of its moments. 

Definition 2.1.5. The mean E[X{t)] of an s.p. {X{t),t e T} at time t is de­
noted by rux {t). Moreover, the autocorrelation function and the autoco-
variance function of the process at the point (^1,^2) are defined, respectively, 
by 

Rx{tut2) = E[X{ti)X{t2)] (2.4) 

and 

Cx{tiM) = Rx{tiM)-mx{ti)mx{t2) (2.5) 

Finally, the correlation coefficient of the s.p. at the point (^1,^2) is 

Px{hM)=,^ r. ? ^ r ' y . M V 2 (2.6) 
[Cx{tiM)Cx{t2M)Y^ ^ 
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Remarks, i) In the case of pairs of random variables, the quantity jEfXF] 
is called the correlation of the vector (X, F ) . Here, we use the prefix "auto" 
because the function is calculated for two values of the same stochastic process 
{X{t),t e T}. The function i?x,y(^1,^2) := E[X{ti)Y{t2)], where {Y{t),t G 
T*} is another s.p., is named the cross-correlation function^ etc. In fact, we 
could simply use the term correlation function in the case of the function 
Rx{tut2). 

ii) The function Rx{t^ t) = E[X'^{t)] is called the average poiuer of the stochas­
tic process {X{t),t G T}. Furthermore, the variance of the process at time t 
is 

V[X{t)]=Cx{t^t) (2.7) 

Since l^[X(t)] > 0, we then deduce from Eq. (2.6) that px{t,t) = 1. 

Two properties of stochastic processes that will be assumed to hold true 
in the definition of the Wiener^ process (see Chapter 4) and of the Poisson^ 
process (see Chapter 5), in particular, are given in the following definitions. 

Definition 2.1.6. / / the random variables X{t4) - X{t^) and X{t2) - X{ti) 
are independent ^ ti < t2 < ts < t4, we say that the stochastic process 
{X{t)^t ET} is a process with independent increments. 

Definition 2.1.7. If the random variables X{t2 + s)- X{ti + s) and X{t2) -
X{ti) have the same distribution function for all s, {X{t),t € T} is said to 
be a process with stationary increments. 

Remarks, i) The random variables X{t2 + s) - X{ti + 5) and X{t2) - X{ti) in 
the preceding definition are identically distributed. However, in general, they 
are not equal. 

ii) The Poisson process is a process that counts the number of events^ for 
instance, the arrival of customers or of phone calls, that occurred in the in­
terval [0,^]. By assuming that this process possesses these two properties, we 
take for granted that the r.v.s that designate the number of events in disjoint 
intervals are independent, and that the distribution of the number of events 
in a given interval depends only on the length of this interval. In practice, 
we can doubt these assertions. For example, the fact of having had many (or 

Norbert Wiener, 1894-1964, was born in the United States and died in Sweden. 
He obtained his Ph.D. in philosophy from Harvard University at the age of 18. 
His research subject was mathematical logic. After a stay in Europe to study 
mathematics, he started working at the Massachusetts Institute of Technology, 
where he did some research on Brownian motion. He contributed, in particular, 
to communication theory and to control. In fact, he is the inventor of cybernet­
ics, which is the "science of communication and control in the animal and the 
machine." 
See p. 12. 
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very few) customers on a given morning should give us some indication about 
how the rest of the day will unfold. Similarly, the arrival rate of customers 
at a store is generally not constant in time. There are rush periods and slack 
periods that occur at about the same hours day after day. Nevertheless, these 
simplifying assumptions enable us, for instance, to obtain explicit answers to 
problems in the theory of queues. Without these assumptions, it would be 
very difficult to calculate many quantities of interest exactly. 

Example 2.1.5. Independent trials for which the probability of success is the 
same for each of these trials are called Bernoulli trials. For example, we can 
roll some die independently an indefinite number of times and define a success 
as being the rolling of a "6." 

A Bernoulli process is a sequence Xi , X2 , . . . of Bernoulli r.v.s associated 
with Bernoulli trials. That is, X/̂  = 1 if the ki\i trial is a success and X^ — 0 
otherwise. We easily calculate 

E[Xk]=p VfcG{l , ,2 , . . .} 

where p is the probability of a success, and 

It follows that Cx(fci, ^2) = 0 if fci 7̂  A:2 and Cx(fci, ^2) = p{l -p) if fei = ^2-

Example 2.1.6. Let y be a random variable having a U(0,1) distribution. We 
define the stochastic process {X{t)^t > 0} by 

X{t) = e^t for t > 0 

The first-order density function of the process can be obtained by using Propo­
sition 1.2.2 (see Example 1.2.6): 

f{x',t)^fxit){x)=fy{Hx/t)) 

= 1-

d\n{x/t) 

dx 

— — if X G (t, te) 
X 

Next, the mean E[X{t)\ of the process at time ^ > 0 is given by 

E[X{t)] = [ eyt'ldy = t{e - 1) for t > 0 
Jo 

or, equivalently, by 

E[X{t)] = X'-dx = te-t = t(e-l) for t > 0 
Jt ^ 
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Finally, we have 

X{t)X{t + s) = e^t -e^ {t + s)= e^^ t{t + 5) 

It follows that 
p2 _ 1 

Rx{t,t + s) = E[X{t)X{t + s)] = E[e'^^t{t + s)] ^ t{t-\- s)-j- V s,t>0 

2.2 Stationarity 

Definition 2.2.1. We say that the stochastic process {X{t)^t € T} is sta­
tionary, or strict-sense stationary (SSS), if its distribution function of 
order n is invariant under any change of origin: 

F{xu,,. ,Xn; t i , . . . ,tn) = F{xi,,.. ,Xn;ii + 5 , . . . ,tn-\-s) (2.8) 

for all s, n, andti^... ^tn-

Remark. The value of s in the preceding definition must be chosen so that 
t̂ ; H- s G T, for A: = 1 , . . . , n. So, if T = [0, oo), for instance, then tk + s must 
be nonnegative for all fc. 

In practice, it is difficult to show that a given stochastic process is station­
ary in the strict sense (except in the case of Gaussian processes, as will be 
seen in Section 2.4). Consequently, we often satisfy ourselves with a weaker 
version of the notion of stationarity, by considering only the cases where n = 
1 and n = 2 in Definition 2.2.1. 

If {X{t),t e T} is a (continuous) SSS process, then we may write that 

f{x;t) = f{x;t + s) Ws,t (2.9) 

and 

f{Xi,X2]ti,t2) = f{Xi,X2\ti + S , f 2 + S) V s , t i , f 2 (2.10) 

We deduce from Eq. (2.9) that the first-order density function of the process 
must actually be independent of :̂ 

f{x;t) = f{x) Wt (2.11) 

Moreover, Eq. (2.10) implies that it is not necessary to know explicitly the 
values of ti and 2̂ to be able to evaluate /(xi,a:2;ti,^2)- It is sufficient to 
know the difference t2 — ti: 

f{xi,X2\ti,t2) = f{Xi,X2\t2-ti) V^ i , t 2 (2.12) 

In terms of the moments of the process, Eqs. (2.11) and (2.12) imply that 
mx{t) is a constant and that the autocorrelation function Rxiti^h) is, in 
fact, a function R"^ of a single variable: Rxiii^h) = R\{t2 — h)- By abuse 
of notation, we simply write that Rx{tiit2) = Rx{t2 — ii)-
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Definition 2.2.2. We say that the stochastic process {X{t),t e T} is wide-
sense stationary (WSS) if mx{t) = m and 

Rx{tut2)=Rx{t2-ti) V t i , t 2 G T (2.13) 

Remarks, i) Since mx{t) = m if {X{t),t G T} is wide-sense stationary, we 
can also write that 

Cx{tut2) = Rx{tut2) - mx{ti)m,x{t2) - Rx{t2 - h) -m^ = Cx{t2 - ti) 
(2.14) 

V f 1, 2̂ € T. Similarly, we have 

Pxih^h) = px{t2 - t i) = ^ ^ ^ (2-15) 

ii) By choosing ti = t2 = t, we obtain that E[X'^{t)] = Rxit.t) = Rx{0), for 
all t eT. Therefore, the average power of a WSS s.p. does not depend on t. 
iii) We often take ti =t and t2 = t-\-s when we calculate the function Rx (or 
Cx)' If the process considered is WSS, then the function obtained depends 
only on s. 

iv) It is clear that an SSS stochastic process is also WSS. We will see in Section 
2.4 that, in the case of Gaussian processes, the converse is true as well. 

Example 2,2.1. The most important continuous-time and continuous-state 
stochastic process is the Wiener process, {W{t),t > 0}, which will be the 
subject (in part) of Chapter 4. We will see that E'[l^(^)] = 0 and that 

Cw{t, t-^s) = Rw{t, ^ + s) = ah 

where a > 0 is a constant and s,t > 0. Since the function Rw{t^t-\-s) depends 
on t (rather than on 5), the Wiener process is not wide-sense stationary. 

Example 2.2.2. The Poisson process, that we denote by {N(t),t > 0} and that 
will be studied in detail in Chapter 5, possesses the following characteristics: 

E[N{t)] = Xt and RNihM) = Amin{^i,t2} 

for all t, fi, and 2̂ > 0, where A is a positive constant. It is therefore not 
stationary (not even in the wide sense), because its mean depends on t. If we 
define the stochastic process {X{t), t > 0} by 

X{t) = ^ f o r t > 0 

then the mean of the process is a constant. However, we find that we can­
not write that Rx{ti,t2) = Rxih — ti)- Consequently, this process is not 
stationary either. 
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Remark. By definition, the Wiener and Poisson processes have stationary in­
crements. However, as we have just seen, they are not even wide-sense sta­
tionary. Therefore, these two notions must not be confused. 

Example 2.2.3. An elementary example of a strict-sense stationary stochastic 
process is obtained by setting 

X{t) = Y f o r f > 0 

where Y is an arbitrary random variable. Since X{t) does not depend on the 
variable ,̂ the process {X{t),t > 0} necessarily satisfies Eq. (2.8) in Definition 
2.2.1. 

Definition 2.2.3. The spectral density of a wide-sense stationary sto­
chastic process, {X{t),t G T}, is the Fourier transform 5x(^) of its auto­
correlation function: 

/

oo 

e-^'^'Rx{s)ds (2.16) 
-OO 

Remarks, i) Inverting the Fourier transform, we obtain that 

1 f^ • 
^x{s) = ^ J e^^^Sx{u;)du; (2.17) 

ii) Since the autocorrelation function of a WSS process is an even function 
(that is, Rx{—s) = Rxis)), the spectral density S'x(<^) is a real and even 
function. We can then write that 

/ *00 -| pOO 

Sx{(^) = 2 / Rx{s) COS US ds and Rx{s) = - / Sx{u;)cosu;sduj 
Jo ^ Jo 

(2.18) 

iii) It can be shown (the Wiener-Khintchiv? theorem) that the spectral den­
sity Sx{^) is a nonnegative function. Actually, a function Sx{(-^) is a spectral 
density if and only if it is nonnegative. 

Suppose now that the following relation holds between the processes 
{X{t), t eT} eiud {Y{t),t eT}: 

/

oo 

X{t-s)h{s)ds (2.19) 
-OO 

^ Aleksandr Yakovlevich Khintchin, 1894-1959, was born and died in Russia. He 
contributed in a very important way to the development of the theory of stochas­
tic processes. He was also interested in statistical mechanics and in information 
theory. 
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Remark. We can interpret the process {Y{t)^t e T} as being the output of 
a linear system whose input is the process {X{t)^t € T}. We write Y{t) = 
L[X{t)]. 

We assume again that {X{t)^t G T} is stationary in the wide sense. If 
E[X{t)] = 0, we can show that {Y{t),t G T} is a WSS process with zero 
mean and such that 

SY{LJ) = Sx{uj)\H{u;)\^ (2.20) 

where 

/

oo 
e-^^'h{s) (Is (2.21) 

-OO 

We also have 

E[Y\t)] = RY{0) = — / Sx{co)\H{u;)\^du; (> 0) (2.22) 

2.3 Ergodicity 

In statistics, to estimate an unknown parameter of a distribution function, for 
example, the parameter A of an r.v. X having a Poi(A) distribution, we draw 
a random sample of X. That is, we take n observations, X i , . . . ,Xn^ of X 
and we assume that the X/^'s have the same distribution function as X and 
are independent. Next, we write that the estimator A of A (which is the mean 
of the distribution) is the arithmetic mean of the observations. Similarly, to 
estimate the mean mx{t) of a stochastic process {X{t),t G T} at time t, we 
must first take observations X{t,Sk) of the process. Next, we define 

mx{t) = -TX{t,Sk) (2.23) 

Thus, we estimate the mean mx (t) of the s.p. by the mean of a random sample 
taken at time t. Of course, the more observations of the process at time t we 
have, the more precise the estimator rnx{t) should be. Suppose, however, that 
we only have a single observation, X{t, 5i), of X{t). Since we cannot estimate 
mx{t) in a reasonable way from a single observation, we would like to use 
the values of the process for the other values of t to estimate nixit)- For this 
to be possible, it is necessary (but not sufficient) that the mean mx{t) be 
independent of t. 

Definition 2.3.1. The temporal mean of the s.p. {X{t),t G M} is defined 
by 

{X{t))s=^l ^X{t,.s)dt (2.24) 
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Remarks, i) In this section, we will suppose that the set T is the entire 
real hne. If T = [0, oo), for example, we can modify the definition above. 
Moreover, in the discrete case, the integral is replaced by a sum. Thus, when 
T = {0, ± 1 , ± 2 , . . . }, we can write that 

( ^ n > i v : = ^ ^ f2 Xnds) (2.25) 
k=-N 

where AT is a natural number. 

ii) We call a realization or trajectory of the process {X{t)^t e T} the graph 
of X(f, 5) as a function of t, for a fixed value of s. 

Definition 2.3.2. The stochastic process {X{t),t £ T} is said to be ergodic 
if any characteristic of the process can be obtained, with probability 1, from a 
single realization X{t,s) of the process. 

A stochastic process can be, in particular, mean ergodic^ distribution er­
godic (that is, ergodic with respect to the distribution function), correlation 
ergodic (with respect to the correlation function), etc. In this book, we will 
limit ourselves to the most important case, namely, the one where the process 
{X{t)^t e T} is mean ergodic (see also p. 72). 

Definition 2.3.3. An s.p. {X{t),t e T} for which mx{t) = m \/ t e T is 
called mean ergodic if 

P \ lim {X{t))s =m\=l (2.26) 

Now, the temporal mean, {X{t))s^ is a random variable. Since 

E[{X{t))s] = ^ /^-^[^C*'s)]dt = ^j^mdt = m (2.27) 

we can state that Eq. (2.26) in the definition above will be satisfied if the 
variance V[{X{t))s\ of the temporal mean decreases to 0 when S tends to 
infinity. Indeed, if lim^-^oo V[{X{^))s] = 0, then {X{t))s converges to its mean 
value when S tends to infinity. To calculate the variance V[{X{t))s]', we can 
use the following proposition. 

Proposition 2.3.1. The variance of the temporal mean of the stochastic pro­
cess {X{t),t G T} is given by 

y[{Xit))s] = -^J J Cx{h,t2)dhdt2 (2.28) 
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Corollary 2.3.1. / / the process {X{t),t G T} is wide-sense stationary, then 
we may write that 

V[{X{t))s] = ^ J ^^Cx{s) 
2S 

ds (2.29) 
5 

Often, it is not necessary to calculate V[{X{t))s\ to determine whether 
the stochastic process {X(t)^t € T} is mean ergodic. For example, when the 
process is WSS, we can use either of the sufficient conditions given in the 
following proposition. 

Proposi t ion 2.3.2. The WSS s.p, {X{t),t G T} is mean ergodic if 

Cx{0)<oo and lim Cx{s) = 0 (2.30) 
js j—>-oo 

or if its autocovariance function Cx{s) is absolutely integrable^ that is, if 

\Cx{s)\ds <oo (2.31) 
/ 
J —( 

Example 2.3,1. The elementary stochastic process defined in Example 2.2.3 is 
strict-sense stationary. However, it is not mean ergodic. Indeed, we have 

{X{t))s=^j Ydt = Y 

Thus, we may write that V[{X{t))s] = y\X]' Now, if Y is not a constant, the 
variance V\Y] is strictly positive and does not decrease to 0 when S tends to 
infinity (since V\Y] does not depend on S). Therefore, an arbitrary stochastic 
process can be mean ergodic without even being WSS (provided that mx{t) 
is a constant), and a strict-sense stationary process is not necessarily mean 
ergodic. 

Example 2.3.2. As will be seen in Chapter 5, the s.p. {X{t),t G T} called the 
random telegraph signal, which is defined from a Poisson process, is zero mean 
and its autocovariance function is given by 

Cx{s)^e -2\\s 

where A is a positive constant. Using the conditions in Eq. (2.30), we can state 
that the process is mean ergodic. Indeed, we have 

Cx(0) = l < o o and lim Cx{s) = lim e'^^l'l = 0 
|s|—*oo Isj-^oo 

Actually, we also have 
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e-2^^ ds = T <oo r \Cx{s)\ds = 2 [ 
J-oo Jo 

1 

Remarks, i) It is important to remember that the conditions in Proposition 
2.3.2 are sufficient, but not necessary, conditions. Consequently, if we cannot 
show that the process considered is mean ergodic by making use of this propo­
sition, then we must calculate the variance of the temporal mean and check 
whether it decreases to 0 or not with 5 ^ oc. 

ii) It can be shown that the random telegraph signal is an example of a strict-
sense stationary stochastic process. Therefore, we can calculate the variance 
V[{X{t))s] by using the formula (2.29): 

^25 

nw.)M = | / " e - - [ i - ^ ds 

The integral above is not difficult to evaluate. However, here, it is not even 
necessary to calculate it explicitly. It is sufficient to replace the expression 
between the square brackets by 1, because this expression is comprised of 
values between 0 and 1 when s varies from 0 to 25. It follows that 

1 _ -4A5 

vmtM < - ^ ^ 
Finally, we have 

lim F[(X(i)>5] < lim 1 - ^ ^ = 0 

Since the variance V[{X{t))s] is nonnegative, we can conclude that 

lim V[{X{t))s] = 0, 

which confirms the fact that the random telegraph signal is mean ergodic. 

2.4 Gaussian and Markovian processes 

The bivariate normal distribution was defined in Example 1.3.6. The general­
ization of this distribution to the n-dimensional case is named the multinormal 
distribution. 

Definition 2.4.1. We say that the random vector ( X i , . . . , Xn) has a mult i­
nomia l d is t r ibut ion if each random variable Xk can be expressed as a linear 
combination of independent random variables Zi,... , Z^i where Zj ^ i\r(0,1)^ 
for j = 1 , . . . , m. That is, if 

m 

Xk=Pk-^Y^CkjZj fork = l,... ,n (2.32) 

where /JL^ is a real constant, for all k. 



2.4 Gaussian and Markovian processes 59 

Just as a Gaussian distribution N(/x,cr^) is completely determined by its 
mean /x and its variance <ĵ , and a bivariate normal distribution by its pa­
rameters fix, I^Y, CTx, o-y and p, the joint density function of the random 
vector X = ( X i , . . . ,X„) is completely determined by the vector of means 
ni := (MXI, • •. il^Xr,) ^nd the covariance matrix K, where 

K::: 

V[Xi] Cov[Xi,X2] . . .Cov[Xi,Xn] 
C0V[X2, Xi] V[X2] . . . C0V[X2, Xn] 

(2.33) 

[Cov[X,,Xi] Cov[X,,X2] . . . F [ X J 

By analogy with the one-dimensional case, we write that X ~ N(m,K). 

The matrix K is symmetrical, because Cov[X, F] = Cov[y,X], and non-
negative definite: 

Y^ X^ CiCkCoy[Xi, Xk]>0 V Ci.Ck e 
i=i k=i 

If, in addition, it is nonsingular, then we may write that 

/x (x ) 
1 1 

(27r)V2(detK)V2 exp • i ( x - m ) K - i ( x ^ - m ^ ) 

(2.34) 

(2.35) 

for X := (x i , . . . ,Xn) G M"̂ , where "det" denotes the determinant and ^ 
denotes the transpose of the vector. 

Proposition 2.4.1. Let X ~ N(m,K), The joint characteristic function of 
the r.v. X; 

Z^x(^i,... ,i^n) :=£^[exp{j(a;iXi + ...-\-uJnXn)}] (2.36) 

is given by 

0x(<^) = exp < J X ] /^Xi^i - 2 X ] X I ^ik^i^k > = exp j jmu;^ - -LVKLJ^ > 

(2.37) 

where Gik := Cov[X^,Xfc] and uo := {LOI, . . . ,0;^)-

Proof. We use the fact that any linear combination of Gaussian random 
variables also has a Gaussian distribution. More precisely, we can write that 

Y := uoiXi + . . . -f ujnXn ~ N(/xy, al) (2.38) 

where 
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n n n 

liy := ^LJiiJ^Xi and cry := ^^uJiCOk(^ik (2.39) 
i = l ^ = l fe=l 

We obtain the formula (2.37) by observing (see Table 1.1, p. 19) that 

(/)x(a;) = E[e^^] = 0y( l ) = exp (jfiy - ^ 4 ) D (2-40) 

Properties, i) If CoY[Xi,Xk] = 0, then the random variables Xi and Xfc are 
independent 

ii) If y^, for i = 1 , . . . , m, is a linear combination of the random variables Xk 
of a random vector ( X i , . . . , X^) having a multinormal distribution, then the 
r.v. (Yi, . . . , Yjn) also has a multinormal distribution. 

Example 2.4-1' Let X = ( X i , . . . , Xn) be a random vector having a multinor­
mal distribution N(0,ln), where 0 := (0 , . . . ,0) and I^ is the identity matrix 
of order n. Thus, all the random variables Xk have a standard Gaussian dis­
tribution and are independent (because aij = 0 W i ^ j). It follows that the 
mathematical expectation of the square of the distance of the vector X from 
the origin is 

E{xi+xi + ...+xi] = Y:E[xiy^Y:^i 
k=l k=l 

and the variance of the squared distance is 

V[Xf +XI + ... + Xl] '"J- Y: V[Xl] '̂ - ^ 2 =. 2n 
/c=l k=l 

because if Z ~ N(0,1), then we have 

£|2l = (-.)<^e^"'' = 3 
a;=0 

SO that V[Z'^] = 3 - 12 = 2. 

Definition 2.4,2. A stochastic process {X{t),t e T} is said to be a Gaus­
sian process if the random vector (X( t i ) , . . . ,X{tn)) has a multinormal dis­
tribution, for any n and for a// t i , . . . , t^. 

Remark, Let X be a random variable whose distribution is N(jUx,o^x)- Any 
affine transformation of X also has a Gaussian distribution: 

Y :=aX + b => y - N{afxx + b, a^a\) (2.41) 
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Similarly, any affine transformation of a Gaussian process remains a Gaussian 
process. For example, if {X(t),t G T} is a Gaussian process, then the s.p. 
{ y ( 0 , ^ G T } defined by 

Y{t)=2X{t)-l or Y{t) = X{t^) (2.42) 

is Gaussian as well. We can also show that {Y{t)^t G T} is a Gaussian process 
if 

Y{t) = f X{s) ds (2.43) 

because an integral is the limit of a sum. However, the process is not Gaussian 
if 

Y{t)=X^{t) or y( t ) = e^W (2.44) 

etc. 

Proposition 2.4.2. If a Gaussian process {X{t),t G T} is such that its mean 
mx{t) is a constant mx and if its autocovariance function Cx{t-,t-{-s) depends 
only on s, then it is stationary (in the strict sense). 

Proof. Since the nth-order characteristic function of the s.p. {X{t),t G T} is 
given by [see Eq. (2.37)] 

E { n >"| ^ n ^ n n "S 

j^u;iX{ti) > = exp <̂  jmx'^uji " 9 X^ "^C^xiti - tk)LOiUJk \ (2.45) 

we can assert that the statistical characteristics of a Gaussian process de­
pend only on its mean and its autocovariance function. Now, we see that the 
function above is invariant under any change of time origin. D 

Remark. The preceding proposition means that a wide-sense stationary Gaus­
sian process is also strict-sense stationary. 

Definition 2.4.3. An s.p. {X{t),t G T} is said to be Markovian if 

P[X{tn) < Xn I X{t),t < tr^-l] = P[X{tn) < Xn \ X{tn-l)] (2.46) 

where tn-i <tn' 

Remarks, i) We say that the future^ given the present and the past, depends 
only on the present. 

ii) If {X{t),t G T} is a discrete-state process, we can write the formula (2.46) 
as follows: 
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P[Xt^s =J\Xt = i,Xt^ ^in,...,Xt,= h] = P[Xt^s =j\Xt=-i] (2.47) 

for all states u , . . . Jn^hji and for all time instants ti < ... < tn < t and 
5 > 0 . 

iii) The random walk considered in Example 2.1.1 is a typical example of a 
Markovian process, which follows directly from the fact that we assume that 
the tosses of the coin are independent. 

A Markovian, continuous-time, and continuous-state stochastic process, 
{X{t),t e T}, is completely determined by its first-order density function: 

fix;t):=^P{X{t)<x] (2.48) 

and by its conditional transition density function^ defined by 

p{x,xo]t,to)^fx{t)\xito){x\xo) (2.49) 

dxiO dx 

Since the process must be somewhere at time t, we have 

f{x; t)dx = 1 and / p{x, XQ] t, to) dx = 1 (2.50) 
-OO J— OO 

Moreover, by conditioning on all possible initial states, we may write that 

/

OO 

f{xo; h)p{x, xo; t, to) dxo (2.51) 
-OO 

Similarly, we deduce from the Chapman^-KolmogoroiP equations (see 
Chapter 3) that 

/

OO 

p{x,xi',t,ti)p{xx,xo\tiM) dxi (2.52) 
-OO 

where to < ti < t. Finally, since at the initial time the distribution of the 
process is deterministic^ we also have 

^ Sydney Chapman, 1888-1970, was born in England and died in the United States. 
He is especially known for his work in geophysics. One of the craters of the moon 
is named after him. 

^ Andrei Nikolaevich Kolmogorov, 1903-1987, was born and died in Russia. He was 
a great mathematician who, before getting his Ph.D., had already published 18 
scientific papers, many of which were written during his undergraduate studies. 
His work on Markov processes in continuous time and with continuous-state space 
is the basis of the theory of diffusion processes. His book on theoretical probability, 
published in 1933, marks the beginning of modern probability theory. He also 
contributed in an important way to many other domains of mathematics, notably 
to the theory of dynamical systems. 
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lim.p{x^xo]t^to) = 5{x — XQ) (2.53) 
tito 

where S{') is the Dirac^ delta function defined by 

5{x) = { -c c. (2.54 

so that 

/»oo 

5{x)dx=^l (2.55) 
/ 

Definition 2AA. The infinitesimal mean m(x; t) and the infinitesimal 
variance v{x; t) of the continuous-time and continuous-state stochastic pro­
cess {X{t)^t E T} are defined^ respectively, by 

rn{x; t) = Hm ^E[X{t -f e) - X{t) \ X{t) = x] (2.56) 
ej.0 € 

and 

v{x', t) = Hm -E[{X{t + e) - X{t)f \ X{t) = x] (2.57) 

Remarks, i) We can also obtain m{xo;to) and v{xo;to) as follows: 

m{xo; to) = lim i-E[X{t) \ X{to) = xo] (2.58) 

tito ut 

and 

v{xo; to) = lim ^V[X{t) \ X{to) = xo] (2.59) 

11) Suppose that the process {X{t),t e T} has infinitesimal moments m(x\t) 
= m{x) V t and i;(x; t) = i;(x) and that its state space is the interval [a, 6] (or 
[a, 6), etc.). Let 

Y{t) : - p[X(t)] for t G T (2.60) 

If the function g is strictly increasing or decreasing on the interval [a, h] and 
If the second derivative g"{x) exists and is continuous, for a < x < 6, then 

^ Paul Adrien Maurice Dirac, 1902-1984, was born in England and died in the 
United States. He was a physicist whose father was a French-speaking Swiss. He 
won the Nobel Prize for physics in 1933 for his work on quantum mechanics. He 
was a professor at the University of Cambridge for 37 years. 
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we can show that the infinitesimal moments of the process {Y{t)^t G T} are 
given by 

mriy) = m{x)g'{x) + \v{x)g"ix) (2.61) 

and 

Wiy) = v{x)[g'{x)f (2.62) 

where x = g~^(y). Moreover, the state space of the process is the interval 
b(«)?5'(^)] (respectively, [g{b),g{a)]) if ^ is strictly increasing (resp., decreas­
ing). 

It can be shown that the function p{x.xo;t,to) satisfies the following par­
tial differential equations: 

| + £Hx,<)ri-i^Wx;.)Pl = o (2.63) 

and 

| + „ ( , . , , „ , | L + l „ „ . , , „ ) g = 0 (2.64) 

These equations are called the Kolmogorov equations or the diffusion equa­
tions. The first one is the Kolmogorov forward equation (or Fokker^-Plancl? 
equation)^ and the second one is the Kolmogorov backward equation. 

Definition 2.4.5. / / the function p{x^xo;t^to) depends only on (Xj Xo and) 
the difference t — to, the stochastic process {X{t),t G T} is said to be time-
homogeneous. 

Remarks, i) If the s.p. {X{t),t e T} is time-homogeneous, then the functions 
m{x;t) and v{x;t) do not depend on t. 

ii) Note that a time-homogeneous s.p. is not necessarily (wide-sense) station­
ary, because the function / (x ; t) may depend on the variable t. On the other 
hand, if f{x]t) = / (x ) , then the process is strict-sense stationary, because it 
is completely determined by / (x ; )̂ and p{x, XQ] tj to). 

Definition 2.4.6. A stochastic process {B{t),t > 0} is called a white noise 
(process) if its raean is equal to zero and if its autocovariance function is of 
the form 

CB{tut2) = q{ti)S{t2-ti) (2.65) 

where q{ti) > 0 and S{') is the Dirac delta function (see p. 63). 

^ Adriaan Daniel Fokker, 1887-1972, was born in Indonesia and died in the Nether­
lands. He was a physicist and musician. He proved the equation in question in 
1913 in his Ph.D. thesis. 

® Max Karl Ernst Ludwig Planck, 1858-1947, born and died in Germany, was a 
renowned physicist famous for the development of quantum theory. 
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Remark. Actually, {B{t)^t > 0} is not a stochastic process in the proper sense 
of the term. 

Finally, the following important result can be shown. 

Proposition 2.4.3. A Gaussian and stationary process, {X{t),t G T}, is 
Markovian if and only if its autocorrelation function is of the form 

Rx{s)=a^e-''^'^ (2.66) 

where a and a are positive constants. 

Example 2.4-2. The Wiener process {W{t),t > 0} (see Example 2.2.1) is such 
that E[W{t) I W{to) = Wo] = WQ and V[W{t) \ W{to) = WQ] = cr^{t - to). 
It follows that its infinitesimal mean and variance are given by m{w;t) = 
0 and v{w]t) = a^. Therefore, the conditional transition density function 
p{w,Wo;t,to) satisfies the Kolmogorov forward equation 

dp 1 92 2 , ^ 

We can check that W{t) \ {W{to) — u'o} has a Gaussian distribution with 
parameters WQ and a'^{t - to). That is, the function p{w,Wo;t,to) given by 

p{w,wo;t,to) = > 0/ T ^ ^ P ^ ~ o " T 7 : — T T ( for t > to 
v/27ra2(t-to) I 2 a 2 ( t - t o ) J 

is a solution of the partial differential equation above. Moreover, we have 

lim.p{w^ Wo; t, to) = S{w — wo) 
tito 

as required. 

2.5 Exercises 

Section 2.1 
Question no. 1 

We define the stochastic process {X{t)^t > 0} by 

X{t) = e-^^ for t > 0 

where F is a random variable having a uniform distribution on the interval 
(0,1). Calculate 

(a) the first-order density function of the process {X{t),t > 0}, 

( b ) £ ; [ X ( t ) ] , f o r t > 0 , 

(c) Cx (t, t + 5), where 5, t > 0. 
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Question no. 2 
Let {Xn, n = 1,2,. . .} be a Bernoulli process. That is, the random vari­

ables X i , X 2 , . . . are independent and all have a Bernoulli distribution with 
parameter p. Calculate 

(a) the particular case p(0,1; m = 0, n2 = 1) of the second-order probability 
mass function of the process, 

(b) the correlation coefficient px(^, ^ ) of the process if p = 1/2 and n^m E 
{ 1 , 2 , . . . } . 

Question no. 3 
Calculate the first-order density function of the s.p. {X{t)^t > 0} defined 

by 

x{t) = ty +1 

where y is a random variable having a U(0,1) distribution. 

Question no. 4 
We define the stochastic process {X{t)^t > 0} by 

X{t) = ^ for f > 0 

where Y has a uniform distribution on the interval (0,2). Calculate the func­
tion / (x ; t), for X > t/2. 

Question no. 5 
We consider the process {X{t),t > 0} defined by X{t) = ( tanK)t , for 

f > 0, where F is a random variable having a uniform distribution on the 
interval (-7r/2,7r/2). Calculate the probability P[3 t € (0,1): X{t) ^ [0,1]]. 
In other words, calculate the probability that the process {X{t)^ t>0} leaves 
the interval [0,1] between 0 and 1. 

Indication. It can be shown that the r.v. W := tanY has the following density 
function: 

fwM = . o . -ix for t/; G M 
7r{w^ + 1) 

That is, W has a Cauchy^ distribution, or a Student^^ distribution with one 
degree of freedom. 

^ Augustin Louis Cauchy, 1789-1857, was born and died in France. He is considered 
the father of mathematical analysis and the inventor of the theory of functions 
of a complex variable. 

^̂  Pseudonym of William Sealy Cosset, 1876-1937, who was born and died in En­
gland. He worked as a chemist for the Guinness brewery, in Ireland, where he 
invented a statistical test for the control of the quality of beer. This test uses the 
distribution that bears his name. 
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Question no. 6 
Are the increments of the stochastic process {X{t)^t > 0} defined in Ex­

ample 2.1.6 independent? stationary? Justify. 

Question no. 7 
(a) Find the autocorrelation function of the process {X{t),t > 0} defined by 
X{t) = liiY >t and X{t) = OiiY <t, where y is a random variable having 
a U(0,c) distribution. 

(b) Calculate Rx{ti,t2) in (a) if X{t) = 5{Y - t) instead, where 5{') is the 
Dirac delta function. 

Question no. 8 
We consider the process {X{t),t> 0} defined by X{t) = e-^\ for t > 0, 

where F is a continuous random variable whose density function is /y(y) , for 
y>o, 

(a) Find f{x;t) in terms of /y(?/). 

(b) Calculate E[X{t)] and Rx{ti,t2) when Y has an exponential distribution 
with parameter 1. 

Question no. 9 
Let 

Jo Uo 
B{T)dT ds for f > 0 

where {B{t),t > 0} is the white noise process defined on p. 64. What is the 
average power of the stochastic process {X{t),t > 0}? 

Section 2.2 

Question no. 10 
Is the stochastic process {X{t), t > 0} defined in Question no. 1 wide-sense 

stationary? Justify. 

Question no. 11 
Let {X{t),t > 0} be a stochastic process whose autocorrelation and auto-

covariance functions are 

Rx{tut2) = e-^''-''^ + l and Cx{tut2) = e-^'''''^ 

Is the process wide-sense stationary? Justify. 

Question no. 12 
Let {X{t)A > 0} be a wide-sense stationary stochastic process, with zero 

mean and autocorrelation function given by Rx{s) = e-l^l. We define 

Y{t) = tX^{l/t) for ^ > 0 

Is the stochastic process {Y{t),t > 0} wide-sense stationary? Justify. 



68 2 Stochastic Processes 

Question no. 13 
We consider a stochastic process {X(f),t > 0} for which 

Is the process wide-sense stationary? Justify. 

Question no. 14 
Let y be a random variable having a uniform distribution on the interval 

(-1,1) . We consider the stochastic process {X{t),t > 0} defined by 

X{t) = YH for t > 0 

Is the process stationary? Justify. 

Question no. 15 
Let y be a random variable such that 0y( l ) = 2(f)Y{—l) and ^y(2) = 

40y( -2) , where ({>¥{') is the characteristic function of F . We set 

X{t) = cos{ujt + Y) for t > 0 

Show that the stochastic process {X{t),t > 0} is wide-sense stationary. 

Indication. We have the following trigonometric identity: 

cos(a;ti + 5) cos(a;t2 + s) = - {cosa;(;^i — ^2) + cos(a;ti H- ujt2 + 2s)} 

Question no. 16 
We set 

Y{t)^X(t\\)-X(t) fortGM 

where \X{t),t G E} is a wide-sense stationary stochastic process. Find the 
spectral density of the process {y(t), t G M} in terms of Sxi^)-

Question no. 17 
Consider the wide-sense stationary process {X{t)^t G R} whose spectral 

density is Sx{io) = 2/(1 + a;^). We set 

Y{t) = / X{s) ds for f G M 

Calculate 5y(a;). 

Indication. Write Y{t) in the form 

/

oo 
h{t-s)X{s)ds 

-00 

for an appropriately chosen function h. 
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Question no. 18 
We consider the random variable Y(t) defined by Eq. (2.19). Calculate the 

mean of X{t)Y{t) if {X{t),t € T} is a white noise process. 

Section 2.3 

Question no. 19 
Are the stochastic processes defined in Questions nos. 11, 12, and 13 mean 

ergodic? Justify. 

Question no. 20 
Is the BernouHi process defined in Example 2.1.5 mean ergodic? Justify. 

Question no. 21 
We define X{t) = 771 +B{t), for t > 0, where m is a constant and {B{t),t > 

0} is a white noise process, so that E[B{t)] = 0 and 

CB{tut2) = q{ti)S{t2-h) 

where S{') is the Dirac delta function. Show that the process {X{t)^t > 0} is 
mean ergodic if the function q is bounded. 

Question no. 22 
Let {X{t),t > 0} be a wide-sense stationary stochastic process, with zero 

mean and for which 
Rx{s) = e-''^'Uos27TLOS 

where a and LO are positive constants. Is this process mean ergodic? Justify. 

Question no. 23 
The stochastic process {X{t)^t > 0} is defined by 

X{t) = Y + B{t) 

where Y ^ N(0,1) and {B{t)^t > 0} is a white noise process whose autocor­
relation function is RB{S) = cS{s), with c > 0. We assume that the random 
variable Y and the white noise are independent. Is the process {X{t),t > 0} 

(a) wide-sense stationary? 

(b) mean ergodic? 

Question no. 24 
Let {B{t)yt > 0} be a white noise process for which the function q{ti) is 

a constant c > 0. Calculate the variance of the random variable 

••=hJlBmt 
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Question no. 25 
The standard Brownian motion is the particular case of the Wiener process 

{W{t),t > 0} (see Example 2.2.1) for which E[W{t)] = 0 and Cw{tut2) = 
min{fi,t2}. 

(a) Calculate V[{W{t))s]. 

(b) Is the process mean ergodic? Justify. 

Section 2.4 

Question no. 26 
Let ( X i , . . . ,Xn) be a random vector having a multinormal distribution 

for which m = (0 , . . . , 0) and the covariance matrix K is the identity matrix 
of order n (> 4). 

(a) Calculate the characteristic function of F := Xi 4- -^2-

Reminder. The characteristic function of a random variable X having a Gaus­
sian N(//, a^) distribution is given by (pxi^) = exp {jfiuj — ^a'^uP), 

(b) Does the random vector {Y,Z), where Z := X3 - X4, have a bivariate 
normal distribution? If it does, give its five parameters; otherwise, justify. 

Question no. 27 
Let {X{t)A > 0} be a Gaussian process such that E[X{t)] = /xt, for t > 0, 

where /i is a nonzero constant, and 

Rx{t,t^s) = 2t-\-fiH{t + s) for 5,t > 0 

We define Y{t) = X{t)-pit, for f > 0. Is the process {Y(t),t > 0} stationary? 
Justify. 

Question no. 28 
We consider a Gaussian process {X{t)A > 0} for which E[X{t)] = 0 and 

whose autocovariance function is 

Cx{t,t-{-s) = e-* iors,t>0 

Let Y{t) := X'^{t), for t > 0. Is the stochastic process {Y{t),t > 0} (a) sta­
tionary? (b) mean ergodic? Justify. 

Question no. 29 
Let {Xn^n = l , 2 , . . . } b e a discrete-time and discrete-state process such 

that 
P[Xn-]-l = j \ Xn = i^Xn-1 = «n- l , • -- •> Xi = ii] 

= P [ X „ + i =j\Xn = i, Xn-1 = in-l] 

for all states i i , . . . , i^_i, i, j and for any time instant n. This process is not 
Markovian. Transform the state space so that the process thus obtained is 
Markovian. 
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Quest ion no. 30 

Suppose that {X{t)^t > 0} is a Gaussian process such that 

E[X{t)\X{to)=^xo]=xo and V[X{t) \ X{to) = XQ] = t V ^ > 0 

Let 
Y{t) := e^^*) for t > 0 

(a) Calculate the infinitesimal parameters of the process {Y{t)^t > 0} by 
using the formulas (2.56) and (2.57). 

(b) Check your results with the help of the formulas (2.58) and (2.59). 

Quest ion no. 31 
Find a solution of the Fokker-Planck equation 

ft + ^^l"^^ - 2 a^^'"'^^ = ° (for X e M and t>t,>Q) 

where /x G R and cr > 0 are constants, for which 

limp(x, xo; t, to) = 6{x - XQ) 
tito 

Indications, i) Try the density function of a Gaussian distribution as a solution. 

ii) We can take the Fourier transform (with respect to x) of the equation and 
then invert the solution of the ordinary differential equation obtained. We 
have 

which implies that 

as well. 

lim p{x,xo;t,to) = 0 

d 
lim —-p{x,xo]t,to) = 0 

c-^±oo Ox 

Question no. 32 
Let {X{t),t G R} be a wide-sense stationary Gaussian process, with zero 

mean and Rx{s) = 26-^1^'. We define Y = X{t-\- s) and Z = X{t-s), where 
s>0. 

(a) What is the distribution of the random variable X{t)? 

(b) Calculate the mean of YZ. 

(c) Calculate the variance of F 4- Z. 

Quest ion no. 33 

The Gaussian process {X{t),t > 0} is such that E[X{t)] =0\/1 and 

i^x(ti,^2)=cie-^^l*^-*^l 

where ci,C2 > 0. 
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(a) Show that the stochastic process {X{t),t > 0} is stationary and mean 
ergodic. 

(b) We define the process {Y{t),t > 0} by 

(liiX{t)<x 
^ ^̂ ^ ~ \ 0 if X{t) > X 

We then have E\Y{t)] = F{x;t). If the process {X{t),t > 0} is stationary, 
we may write that F{x;t) = F{x). We say that the s.p. {X{t),t > 0} is 
distribution ergodic if {Y{t),t > 0} is mean ergodic. Is the stochastic process 
{X(/;),t > 0} distribution ergodic? 

(c) When the process {X{t),t > 0} is stationary, we also define the process 
{Zs{t),t > 0} by Zs{t) = X{t)X{t+s), where 5 > 0. It follows that E[Zs{t)] = 
Rx{s). We say that the s.p. {X{t)^t > 0} is correlation ergodic ii{Zs{t),t > 0} 
is mean ergodic. Can we assert that {X{t),t > 0} is correlation ergodic? 

Question no. 34 
Suppose that {X{t),t G M} is a stationary Gaussian process such that 

Cx{s) =^Rx{s) = e-2|^l for 5 G R 

(a) What is the distribution of X(t)? Justify. 

(b) We define the random variable 

Y{t) = ^[X{t)] + 1 

where ^(•) is the distribution function of the N(0,1) distribution. That is, 
^z) := P[N(0,1) < z]. What is the distribution of Y{t)? Justify. 

Indication. The inverse function (^"^ exists. 

Question no. 35 
Let {X{t),t G R} be a stationary Gaussian process whose autocovariance 

function is 
r 4 [ l - ( H / 2 ) ] i f H < 2 

< - x ( s ) - | 0 i f | s i > 2 

Is the stochastic process {X{t),t G R} 

(a) mean ergodic? 

(b) distribution ergodic (see Question no. 33)? Justify. 



Markov Chains 

3.1 Introduction 

The notion of a Markovian process was seen in Section 2.4. In the general 
case, the stochastic process {X{t),t G T} is said to be Markovian if 

P[X{tn^l) e A I X{t) =Xt,t<tn]= P[X{tn+l) G A | X{tn) = XtJ (3.1) 

for all events A and for all time instants tn < ^n+i-

Equation (3.1) means that the probability that the process moves from 
state Xt^, where it is at time tn^to a state included in A at time tn-\-i does not 
depend on the way the process reached Xt^^ from X^Q, where to is the initial 
time (that is, does not depend on the path followed by the process from Xt^ 
^o XtJ. 

In this chapter, we will consider the cases where {X{t)^t G T} is a discrete-
time process and where it is a continuous-time and discrete-state process. 
Actually, we will only mention briefly, within the framework of an example, 
the case of discrete-time and continuous-state processes. 

When {Xn, n = 0 , 1 , . . . } is a discrete-time and discrete-state process, the 
Markov property implies that 

P[Xn+l = j I Xn = i, Xn-1 = i n - 1 , . . . , XQ = io] -= P[Xn+l = j \ Xn = i] 

(3.2) 

for all states ZQ, . . . , i^- i , i , i , and for any time n. We also have 

P[^n-i-l = j I Xn-1 ~ in-i,Xn-2 = ^n-2, • • • , ^ 0 = ^o] 

= P[Xn^, = j \ Xn-l = in~l] (3.3) 

etc., which means that the transition probabilities depend only on the most 
recent information about the process that is available. 
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Remark. We call a Markov chain a discrete-time process that possesses 
the Markov property. Originally, this expression denoted discrete-time and 
discrete-state Markovian processes. However, we can accept the fact that 
the state space of the process may be continuous. By extension, we will call 
a cont inuous-t ime Markov chain a discrete-state (and continuous-time) 
Markovian stochastic process. Discrete-time and continuous-time Markov 
chains will be studied in Sections 3.2 and 3.3, respectively. 

We can generalize Eq. (3.2) as follows. 

Proposition 3.1.1. If the discrete-time and discrete-state stochastic process 
{Xn, n = 0 , 1 , . . . } possesses the Markov property^ then 

•^ [ (^n+ l?^n+2 , " ') ^ B \ Xn = in,Xn-l = ^n-l? • • • ? ^ 0 = ^o] 

- P [ ( X n + i , X ^ + 2 , . . . ) e B | X , = g (3.4) 

where B is an infinite-dimensional event. 

Remark. For example, by using the fact that 

p.,^r.^^._P[AnBnC]_P[AnBnC]P[BnC] 
^^^^^I^J-~~P[C] - P[BnC] P\cr 

= P[A\BnC]P[B\C] (3.5) 

we can easily show that 

B[{Xn-^liXn-[.2) = (^n+l?^n-f-2) | Xn = in^Xn~l = in-li - • • i XQ = io] 

= P[{Xn^i,Xn^2) = ( W l ^ W 2 ) I Xn = in] (3.6) 

We now give several examples of discrete-time and continuous-time Markov 
chains. 

Example 3.1.1. One of the simplest, but not trivial, examples of a Markovian 
process is that of the random walk (see p. 48). We can generalize the random 
walk as follows: if the particle is in state i at time n, then it will be in state 
j at time n + 1 with probability 

P[Xn^.l=j\Xn=i] = 

p'li j = i-{-l 
qiij = i - l 
r ii j = i 
0 otherwise 

where p, q^ and r are nonnegative constants such that p + ^ + r = 1. That 
is, we add the possibility that the particle does not move from the position it 
occupies at time n. 

Another way of generalizing the random walk is to assume that the prob­
abilities p and q (and r in the case above) may depend on the state i where 
the particle is. Thus, we have 
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' Piiij = i + l 
P[Xn+i =j\Xn = i]={qiiij = i - l (3.7) 

0 otherwise 

and pi~\-qi = 1, for any i G {0, ± 1 , d=2,... }. 
Finally, we can generalize the random walk to the rf-dimensional case, 

where d G N. For example, a two-dimensional {d = 2) random walk is a 
stochastic process {(X^, Yn),n = 0^1,...} iov which the state space is the set 

{{ij):ije{0,±h±2,...}} 

and such that 

P[{Xn^l^Yn^l) 

S(X,„Y,,) ' = 

— (^n+l^in+l 

[ Pi if i„4.i = in + l , in+l = in 
P2 if W l = ^njn+l = in + 1 
qi if in+1 = in - l , i n + l = in 
^̂2 if in+1 = i n , i n + l = in " 1 
0 otherwise 

where pi + P2 + Qi -h q2 = I (and Pi > 0 and ^̂  > 0, for i = 1,2). Thus, the 
particle can only move to one of its four nearest neighbors. In three dimensions, 
the particle can move from a given state to one of its six nearest neighbors [the 
neighbors of the origin being the triplets (±1,0,0), (0, dzl,0) and (0,0, ±1)], 
etc. 

Example 3.1.2. An important particular case of the random walk having the 
transition probabilities given in Eq. (3.7) is the one where 

N -i , i 

If we suppose that the state space is the finite set { 0 , 1 , . . . , N}, then we can 
give the following interpretation to this random walk: we consider two urns 
that contain N balls in all. At each time unit, a ball is taken at random from 
all the balls and is placed in the other urn. Let Xn be the number of balls in 
urn I after n shifts. This model was used by Paul and Tatiana Ehrenfest^ to 
study the transfer of heat between the molecules in a gas. 

Example 3.1.3. Suppose that we observe the number of customers that are 
standing in line in front of an automated teller machine. Let Xn be the number 
of customers in the queue at time n e { 0 , 1 , . . . } . That is, we observe the 
system at deterministic time instants separated by one time unit, for example. 

^ Paul Ehrenfest, 1880-1933, born in Austria and died in the Netherlands, was 
a physicist who studied statistical mechanics and quantum theory. His wife, of 
Russian origin, was Tatiana Ehrenfest-Afanaseva, 1876-1964. She was interested 
in the same subjects. 
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every hour, or every 10 minutes (a time unit may be an arbitrary number of 
minutes), etc. Suppose next that if a customer is using the teller machine at 
time n, then the probability that he is finished before time n 4-1 is g G (0,1). 
Finally, suppose that the probability that k customers arrive during a time 
unit is given by 

fc! 
for fc = 0 , 1 , . . . and for any n G { 0 , 1 , . . . }. That is, the number Yn of arrivals 
in the system in the interval [n, n +1) has a Poisson distribution with parame­
ter A Vn. Thus, we may write that Xn-\-i = Xn + Yn with probability p = l-q 
and Xn+i = {Xn -1)+Yn with probability q. We find that {X^, n = 0 , 1 , . . . } 
is a (discrete-time and discrete-state) Markov chain for which the transition 
probabilities are 

A^ ^fc+i 
p e~^— +q e~^——rry ii j = i-\-k and i G N 

P\Y - A I Y -4] - ) Q ^~^ iij = i - l and i G N 

e~^ —r if j = k and i = 0 
fc! 

0 otherwise 
(3.8) 

This is an example of a queueing model in discrete-time. 

Example 3.1.4- An example of a discrete-time, but continuous-state, Markov 
chain is obtained from a problem in optimal control: suppose that an object 
moves on the real line. Let Xn be its position at time n G { 0 , 1 , . . . } . We 
suppose that 

Xn-^l = CtnXn + bnUn + €n 

where On and bn are nonzero constants, Un is the control (or command) vari­
able, and Cn is the term that corresponds to the noise in the system. We 
assume that e^ ~ N(0, a^), for all n and that the random variables Xn and 
Cn are independent. The objective is to bring the object close to the origin. 
To do so, we choose 

Un = -^Xn V n (3.9) 
On 

Remark. In stochastic optimal control, the variable u„ must be chosen so as 
to minimize the mathematical expectation of a certain cost function J . If the 
function in question is of the form 

J{Xn,Un) = f^(^kXl + ^Cul) 

where c > 0 and fc are constants, then the optimal solution is indeed obtained 
by using the formula (3.9) above. 
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The s.p. {Xn, n = 0 , 1 , . . . } is a Markov chain. If fxr,.+i\xAy I ̂ ) denotes 
the conditional density function of the random variable Xn+i, given that 
Xn = X, we may write that 

/ X . . , x j . | x ) = - ^ e x p { - ^ } f o r . e R 

That is , X^+i |Xn-N(0 , (72 ) . 
We can also suppose that the noise e^ has a variance depending on Xn- For 

instance, V[en] — CF'^X'^, In this case, we have that X^+i | Xn ~ N(0, a^X^). 

Example 3.1.5. Suppose that X{t) denotes the number of customers who ar­
rived in the interval [0, t] in the example of a queueing system in discrete-time 
(see Example 3.1.3). If we assume that the time r^ elapsed until the arrival 
of a new customer into the system, when there have been n arrivals since 
the initial time, has an exponential distribution with parameter A, for all n, 
and that the random variables TQ, TI, . . . are independent, then we find that 
{X(t), t > 0} is a continuous-time and discrete-state Markovian process called 
a Poisson process. In this case, the number of arrivals in the system in the 
interval [0, t] has a Poisson distribution with parameter At. Therefore, during 
one time unit, the number of arrivals indeed has a Poi(A) distribution. 

In general, if the random variable r^ has an exponential distribution with 
parameter A ,̂ then {X{t),t > 0} is a continuous-time Markov chain. 

Example 3.1.6. In the preceding example, we considered only the arrivals in 
the system. Suppose that the time an arbitrary customer spends using the 
automated teller machine is an exponential random variable with parameter 
jjL. Now, let X{t) be the number of customers in the system at time t > 0. 
If the customers arrive one at a time, then the process {X{t)^t > 0} is an 
example of a continuous-time Markov chain called a birth and death process. It 
is also the basic model in the theory of queues, as will be seen in Chapter 6. It 
is denoted by the symbol M/M/1. When there are two servers (for example, 
two automated teller machines) rather than a single one, we write M/M/2 , 
etc. 

Remark. Actually, the Poisson process is a particular case of the so-called pure 
birth (or growth) processes. 

3.2 Discrete-time Markov chains 

3.2.1 Definitions and notations 

Definition 3.2.1. A stochastic process {X^, n = 0 , 1 , . . . } whose state space 
Sxr, ^s finite or countably infinite is a stationary (or t ime-homogeneousj 
Markov chain if 



78 3 Markov Chains 

= P[XnH-l =j\Xn=i] =PiJ 

for all states i o , . . . , in- i ,* , j and for any n > 0. 

(3.10) 

Remarks, i) In the general case, we can denote the conditional probability 
P[Xn^i = j I Xn = i] hy pi^j{n). Moreover, when there is no risk of confusion, 
we may also write pij simply as pij. 

ii) When the states of the Markov chain are identified by a coding system, we 
will use, by convention, the set N^ := { 0 , 1 , . . . } as the set space. For example, 
suppose that we wish to model the flow of a river as a Markov chain and that 
we use three adjectives to describe the flow Xn during the nth day of the year: 
low, average, or high, rather than considering the exact flow. In this case, we 
would denote the state low flow by state 0, the state average flow by 1, and 
the state high flow by 2. 

iii) Note that, in the example given above, the conditional probabilities 
P[Xn+i = j \ Xn = i] actually depend on n, since the probability of moving 
from a low flow to an average flow, in particular, is not the same during the 
whole year. Indeed, this probability is assuredly smaller during the winter and 
higher in the spring. Therefore, we should, theoretically, use a noTistationary 
Markov chain. In practice, we can use a stationary Markov chain, but for a 
shorter time period, such as the one covering only the thawing period in the 
spring. 

In this book, we will consider only stationary Markov chains. Anyhow, 
the general case is not used much in practice. Moreover, in the absence of an 
indication to the contrary, we take for granted in the formulas and definitions 
that follow that the state space of the chain is the set { 0 , 1 , . . . }. 

Definition 3.2.2. The one-step transition probability niatrix P of a 
Markov chain is given by 

0 
1 

P = 2 

0 1 2 . 
P0,0 P0,1 P0,2 ' ' 

Pl,0 Pl,l Pl,2 " 

P2,0 P2,l P2,2 ' . 
(3.11) 

Remarks, i) We have indicated the possible states of the Markov chain to the 
left of and above the matrix, in order to facilitate the comprehension of this 
transition matrix. The state to the left is the one in which the process is at 
time n, and the state above that in which the process will be at time n + 1. 

ii) Since the Pij^s are (conditional) probabilities, we have 

Pij>0 V i , j (3.12) 
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Moreover, because the process must be in one and only one state at time n + 1 , 
we may write that 

oo 

J2PiJ = ^ Vi (3.13) 

A matrix that possesses these two properties is said to be stochastic. The sum 
Yl^oPij, for its part, may take any nonnegative value. If we also have 

CO 

E P M = 1 ^J (3.14) 

the matrix P is called doubly stochastic. We will see, in Subsection 3.2.3, that 
for such a matrix the limiting probabilities^ in the case when the state space 
is finite, are obtained without our having to do any calculations. 

We now wish to generalize the transition matrix P by considering the case 
when the process moves from state i to state j in n steps. We then introduce 
the following notation. 

Notation. The probability of moving from state i to state j in n steps (or 
transitions) is denoted by 

p^j:=P[Xm+n=J\Xm = ih f o r m , n , i , i > 0 (3.15) 

From the p\j^s we can construct the matrix P^^^ of the transition prob­
abilities in n steps. This matrix and P have the same dimensions. Moreover, 
we find that we can obtain P^^^ by raising the transition matrix P to the 
power n. 

Proposition 3.2.1 (Chapman—Kolmogorov equat ions) . We have 

oo 

P 5 ' " " ' = E ^ 5 V £ form,n,i,j>0 (3.16) 

Proof. Since we consider only stationary Markov chains, we can write, using 
the total probability rule, that 

p(^+")^PlX^_^^=j\Xo = i] (3.17) 
OO 

= ^ P[Xm+n =j,X^ = k\Xo = i] (3.18) 
fc=0 

We then deduce from the formula (see p. 74) 

P[Ar\B\C] = P[A\BnC]P{B\C] (3.19) 
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that 

oo 
{m-\-n) 

PiT = E Pl^rn+n =j\Xm = k,Xo = i]P[Xm = k \ Xo = i] 

oo oo 

fc=0 k=0 

In matricial form, the various equations (3.16) are written as follows: 

p(m+n) __ p(m)p(n) (3.21) 

which implies that 

p(n) , ,3p(l)p(l) . . .p(l)^ (3.22) 

Since P^^^ = P , we indeed have 

p(n) _ p n (3.23) 

Example 3.2.1. Suppose that the Markov chain {Xn,n = 0 , 1 , . . . } , whose 
state space is the set {0,1,2}, has the (one-step) transition matrix 

We have 

0 
P = 1 

2 

p(2) ^ p2 

0 1 2 
1/3 1/3 1/3' 
0 1/2 1/2 
1 0 0 

4/9 5/18 5/18" 
1/2 1/4 1/4 
1/3 1/3 1/3 

Thus, PQQ = 4/9. Note that to obtain this result, it is sufficient to know the 
first row and the first column of the matrix P . Similarly, if we are looking for 
PQ Q, we can use the matrix P^^^ to calculate the first row of P^^^. We obtain 

p(4) =p^ = 
139/324 185/648 185/648 

Next, we have 

(5) 139 1 185 ^ 185 , 833 ^ ,̂ ^̂  

324 3 648 648 1944 
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So, in general, to obtain only the element p- j of the matrix P^^\ it suffices 
to calculate the ith row of the matrix p(^~i) and to multiply it by the j t h 
column of P . 

In Subsection 3.2.3, we will be interested in finding (if it exists) the limit 
of the matrix P^^^ when n tends to infinity. To do so, we will give a theorem 
that enables us to calculate the limiting probabilities of the Markov chain. 
By making use of a mathematical software package, we can also multiply 
the matrix P by itself a sufficient number of times to see to what matrix it 
converges. Here, we find that if n is sufficiently large, then 

p(n) _ pn ^ 
0.4286 0.2857 0.2857 
0.4286 0.2857 0.2857 
0.4286 0.2857 0.2857 

Observe that the three rows of the matrix above are identical, from which 
we deduce that whatever the state in which the process is at the initial time, 
there is a probability of approximately 0.4286 that it will be in state 0 after a 
very large number of transitions (this probability was equal to ^ 0.4285 after 
only five transitions, from state 0). By using the theorem of Subsection 3.2.3, 
we can show that the exact probability that the process is in state 0 when it 
is in equilibrium is equal to 3/7. 

Sometimes, rather than being interested in the transition probabilities in 
n steps of the Markov chain {X^.n = 0 , 1 , . . . } , we want to calculate the 
probability that the chain will move to state j , from XQ == i, for the first time 
at time n. 

Notation. The probability of moving to state j , from the initial state ?', for 
the first time at the nth transition is denoted by 

P I J := P[Xn = j , Xn-i ^j,...,Xi^j\Xo = i] forn > 1 and i,j>0 
(3.24) 

Remarks, i) When i = j , p]^) is the probability of first return to the initial 
state i after exactly n transitions. 

ii) We have the following relation between plj and plj : 

^5=E/^SM7'^ (3.25) 
k=l 

When the p^j s are known, we can use the preceding formula recursively to 

obtain the p̂ ĵ s, for A; = 1,2,... , n. 

Example 3,2.2. In some cases, it is easy to calculate directly the probabilities 
of first return in n transitions. For example, let 
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0 1 
1/3 2/3 
1 0 

be the matrix of transition probabihties in one step of a Markov chain whose 
possible values are 0 and 1. We find that 

/>g = P[Xn = l ,X„_i = 0 , . . . ,Xi := 0 I Xo = 0] - ( l /3)"- i (2/3) = ^ 

for n = 1,2,,.. . Similarly, 

p g = l and P S = 0 forn = 2 , 3 , . . . 

Next, we have 

p g - 1 / 3 , p g = (2/3) X 1 = 2/3, and 4?o = 0 forn = 3 ,4 , . . . 

Finally, we calculate p\ i = 0, p^ | = 2/3, and 

p( ; \U 1 X ( l / 3 r -2 (2 /3 ) = ^ f o r n = 3 , 4 . . . 

Note that, in this example, we have J Z ^ i Pî o ~ ^̂  S n ^ i 

n = l 

and 

n = l 

2 . A 2 

3 1 - 1 

E (n) n . ^ . V^ ^ 2 2 1 

n=l n=3 3 

These results hold true because, here, whatever the initial state, the process 
is certain to eventually visit the other state. 

Example 3.2.3. In Example 3.2.1, we calculated P^^^ We also find that the 
matrix P^^^ is given by 

0 [23/54 31/108 31/108" 
P̂ ^> = 1 5/12 7/24 7/24 

2 [ 4/9 5/18 5/18 J 

From this, we deduce from Eq. (3.25) that, for instance. 

(1) 1 
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and 

A - J 2 ) _ .(1)„(2-1) , .(2)^(2-2) 
18 

i x i + ̂ Sxl = . pg = l 

and 

1 1 _ ^(3) _ .(1)^(3-1) , . (2)J3-2) , .(3)^(3-3) 

1 1 1 1 (3) . (3) 4 

and so on. 
As in the preceding example, we can, at least for relatively small values of 

n, try to calculate directly p^l. Indeed, we have 

(1) _ (1) _ ^ (2) __ (1) (1) _ 1 
P0,l — P0,1 — 2 ' ^0,1 — ^0,0 ^ P0,1 — g 

and 
J3) _ (1) ^ (1) ^ (1) . (1) ^ (1) ^ (1) _ J_ . i _ A 
Po,i — Po,o ^ Po,o ^ Po,i +Po,2 ^ P2,o ^ Po,i "~ 27 9 ~ 27 

However, in general, the technique that consists in summing up the proba> 
bilities of all the paths leading from i to j in exactly n transitions rapidly 
becomes of little use. 

Until now, we have considered only conditional probabilities that the pro­
cess {Xn, n = 0 , 1 , . . . } finds itself in a state j at a time instant n, given that 
XQ = i. To be able to calculate the marginal probability P[Xn = j ] , we need 
to know the probability that XQ = i^ for every possible state i. 

Definition 3.2.3. The initial distribution of a Markov chain is the set 
{a^, z = 0 , 1 , . . . }; where ai is defined by 

a, = P[Xo = i] (3.26) 

Remarks, i) In many applications, the initial position is deterministic. For 
example, we often suppose that XQ = 0. In this case, the initial distribution 
of the Markov chain becomes ao = 1 and â  = 0, for z = 1,2 , . . . . In general, 
we have X^^o^^ "= ^' 

ii) The marginal probability â -̂ ^ := P[Xn = j ] , for n = 1,2,. . . , is obtained 
by conditioning on the initial state: 

oo oo 

a f ' = P[Xn =j] = J2 Pl^n =j\Xo = i]P[Xo = i] = E P ! J a , (3.27) 

When ak = 1 for some fc, we simply have a^ = p^J. 



84 3 Markov Chains 

Example 3.2.4- Suppose that a, = 1/3, for i = 0,1, and 2, in Example 3.2.1. 
Then, we may write that 

and 

It follows that 

and 

so that 

, (2) 1 / 4 1 1 
3 V 9 ' ^ 2 "^3 

23 
54 

(2) _ (2) _ 
a] = a 

1 /_5_ 1 1\ _ 31 
3 118"^ 4"^ 3 ; ~ 108 

^ . ^ 1 „ 23 , 31 „ 31 31 

^ ^^ 108 108 108 

V[X2 
155 / 3 1 
108 V 36 

899 
1296 

Particular cases 
1) A (classic) random walk is a Markov chain whose state space is the set 
{... , —2, —1,0,1,2,. . . } of all integers, and for which 

Pi,i-^i = p = I -Pi4-i fori = 0 , ± l , ± 2 , . . . (3.28) 

for some p e (0,1). Its one-step transition matrix is therefore (with ^ := 1 —p): 

P = ' 
t4 - 1 

q 0 p 
q 0 p 

(3.29) 

Thus, in the case of a classic random walk, the process can make a tran­
sition from a given state i only to one or the other of its two immediate 
neighbors: z — 1 or z + 1. Moreover, the length of the displacement is always 
the same, i.e., one unit. If the state space is finite^ say the set { 0 , 1 , . . . ,iV}, 
then these properties can be checked for each interior state: 1,2,... , AT — 1. 
When the process reaches state 0 or state AT, there are many possibilities. For 
example, if 

Po,o = PAT, AT = 1 (3.30) 
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we say that the states 0 and N are absorbing. If po,i == 1? the state 0 is said 
to be reflecting. 

Remarks, i) If pi,2 = P, Pi,i = cq, and pi,o = (1 - c)g, where 0 < c < 1, the 
boundary at 0, when po,o = 1, is said to be elastic. 

ii) We can also say that the process has a reflecting boundary at the point 
1/2 if the state space is {1 ,2 , . . . }, pi^i = q^ and pi^2 = P-

2) We can easily construct a Markov chain from a set IQ^^I^ • • • c>f i-i-d. 
random variables, whose possible values are integers, by proceeding as follows: 
let 

Xn:=Yl^^ f o r n - 0 , 1 , . . . 
k=0 

Then, {X^, n = 0 , 1 , . . . } is a Markov chain and, if 

ak:=P[Yn = k] V A: 

we have 

fn+l 

Pij:=P[Xn+l = j \ Xn = i] = P Y.n=jj:n = 

=p Yn+i =j-i 
k=0 

lk=0 

ind 

k=0 

(3.31) 

(3.32) 

(3.33) 

= ' P[Yn+i =j~i] =o^j-i 

We say that the chain, in addition to being time-homogeneous, is also homo­
geneous with respect to the state variable^ because the probability pij does 
not depend explicitly on i and j , but only on the difference j — i. 

3.2.2 Proper t i e s 

Generally, our first task in the study of a particular Markov chain is to de­
termine whether, from an arbitrary state z, it is possible that the process 
eventually reaches any state j or, rather, some states are inaccessible from 
state i. 

Definition 3.2.4. We say that the state j is accessible from i if there exists 
(n) 

an n> 0 such that p) / > 0. We write 

JO) Remark. Since we include n = 0 in the definition and since pij = 1 > 0, any 
state is accessible from itself. 

Definition 3.2.5. Ifi is accessible from j , and j is accessible from i, we say 
that the states i and j communicate, or that they are communicating. We 
write i <r-^ j . 



86 3 Markov Chains 

Remark. Any state communicates with itself. Moreover, the notion of com-
munication is commutative', i ^r-^ j =^ j ^r-^ i. Finally, since (by the Chapman-
Kolmogorov equations) 

p 5 ' ' ' ' ^ > p i ? p 5 5 f o r a l l m a n d n > 0 (3.34) 

we can assert that this notion is also transitive: ii i ^ j and j ^--^ k^ then 
i <r^ k. Actually, it is sufficient to notice that if it is possible to move from 
state i to state j in m steps, and from j to fc in n steps, then it is possible 
(by the Markov property) to go from z to fc in m + n steps. 

Definition 3.2.6. If i ^^ j , we say that the states i and j are in the same 
class. 

Remark. The transitivity property (see above) implies that two arbitrary 
classes are either identical or disjoint. Indeed, suppose that the state space is 
the set {0,1,2} and that the chain has two classes: {0,1} and {1,2}. Since 
0 ^^ 1 and 1 <-> 2, we have that 0 <^ 2, which contradicts the fact that the 
states 0 and 2 are not in the same class. Consequently, we can decompose the 
state space into disjoint classes. 

Definition 3.2.7. Let C be a subset of the state space of a Markov chain. We 
say that C is a closed set if, from any i e C, the process always remains in 
C: 

P[Xn+ieC\Xn=ieC]^l for alii eC (3.35) 

Definition 3.2.8. A Markov chain is said to be i rreducible if all the states 
communicate, that is, if the state space contains no closed set apart from the 
set of all states. 

The following result is easy to show. 

Proposition 3.2.2. Ifi -^ j or j -^ i for all pairs of states i and j of the 
Markov chain {Xn^ n = 0 , 1 , . . . }, then the chain is irreducible. 

Remark. We can also give the following irreducibility criterion: if there exists 
a path, whose probability is strictly positive, which starts from any state i 
and returns to i after having visited at least once all other states of the chain, 
then the chain is irreducible. We can say that there exists a cycle with strictly 
positive probability. 

Example 3.2.5. The Markov chain whose one-step transition matrix P is given 
in Example 3.2.1 is irreducible, because we may write that 
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2 -^ 0 is the shortest possible. However, we 

P0,2 X ^2,0 X po,l X Pi ,2 X 2)2,0 > 0 

Remark. If a Markov chain (with at least two states) has an absorbing state, 
then it cannot be irreducible, since any absorbing state constitutes a closed 
set by itself. 

Definition 3.2.9. The state i is said to be recurrent if 

ki '= P 
Ln=l 

X o - i (3.36) 

U fi4 < 1; ^e say that i is a transient state. 

Remarks, i) The quantity fi^i is the probabiUty of an eventual return of the 
process to the initial state i It is a particular case of 

fij ••= p \j{Xn=3} 
n=l 

Xo (3.37) 

which denotes the probability that, starting from state i, the process will 
eventually visit state j . We may write that 

fij^Ef^. 
in) 
J 

(3.38) 
n = l 

ii) It can be shown that the state space Sx^ ^f ̂  Markov chain can be decom­
posed in a unique way as follows: 

Sx,,=DuCiUC2UCs... (3.39) 

where D is the set of transient states of the chain and the C/^'s, fc = 1,2,.. . , 
are closed and irreducible sets (that is, the states of each of these sets com­
municate) of recurrent states. 

Proposition 3.2.3. Let Ni be the number of times that state i will be visited, 
given that XQ = i. The state i is recurrent if and only if E[Ni] = oo. 

Proof. We have 

P[Ni=n] = f^-\l-fi,i) forn=:l,2,... (3.40) 

That is, Ni ~ Geom(p := 1 — fi^i). Since E[Ni] = 1/p, we indeed have 
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E[Ni] = 
1 - k 

= 00 <;=^ / i , i D (3.41) 

Remark Since the set T = { 0 , 1 , . . . } is countably infinite, that is, time con­
tinues forever, if the probabiUty of revisiting the initial state is equal to 1, 
then this state will be visited an infinite number of times (because the process 
starts anew every time the initial state is visited), so that P[Ni = oo] = 1, 
which directly implies that E[Ni] = oo. Conversely, if i is transient, then we 
have 

P[Ni = oo] = lim P[Ni >n]= lim /f"^ = 0 (3-42) 

That is, a transient state will be visited only a finite number of times. Conse­
quently, if the state space of a Markov chain is finite, then at least one state 
must be recurrent (otherwise no states would be visited after a finite time). 

Proposition 3.2.4. The state i is recurrent if and only ^ / X ^ ^ Q ^ M ~ ^' 

Proof. Let /{x„=i} be the indicator variable of the event {Xn = i}- That is. 

We only have to use the preceding proposition and notice that, given that 
Xo = i, the random variable I{x,,=i} has a Bernoulli distribution with pa­
rameter p := P[Xn = i I Xo = i], so that 

E[Ni] = E 
l" oo 

'^kXr^=f^ 
~ 

Xo = i 
Ln=0 ' 

OO 

= E 
n = 0 

oo 

EE[I{x„=i}\Xo = i] 

= Y,P[Xr. = i\Xo = i]=J2p^ 
n = 0 

D (3.44) 
n = 0 

Remark It can also be shown that if i is transient, then 

oo 

2 J PkJ < 00 for all states k 
n = l 

The next result is actually a corollary of the preceding proposition. 

Proposition 3.2.5. Recurrence is a class property.* if states i and j commu-
nicate, then they are either both recurrent or both transient 
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Proof. It is sufficient to show that if i is recurrent, then j too is recurrent 
(the other result being simply the contrapositive of this assertion). 

By definition of communicating states, there exist integers k and I such 
that p\^^ > 0 and p^j} > 0. Now, we have 

(l+n+k) ^ Jl)Jn)(k) 

Then 

i^r^'^>mi^i^j (3.45) 

n = 0 

Thus, j is recurrent. D 

Corollary 3.2.1. All states of a finite and irreducible Markov chain are re­
current. 

Proof. This follows indeed from the preceding proposition and from the fact 
that a finite Markov chain must have at least one recurrent state (see p. 88). 

D 

Notation. Let i be a recurrent state. We denote by fii the average number 
of transitions needed by the process, starting from state z, to return to i for 
the first time. That is, 

oo 

n = l 

Definition 3.2.10. Let i be a recurrent state. We say that i is 

j positive recurrent if i^i < oo 
\ null recur rent if fx^ = oo 

Remarks, i) It can be shown (see Prop. 3.2.4) that i is a null recurrent state 

if and only if Yl'^=oPi!i ~ ^ ' but lim^-^ooP^^^ = 0- We then also have 

lim„_^.ooP^ i = 0, for all states k. 

ii) It can be shown as well that two recurrent states that are in the same 
class are both of the same type: either both positive recurrent or both null 
recurrent. Thus, the type of recurrence is also a class property. 

iii) Finally, it is easy to accept the fact that any recurrent state of a finite 
Markov chain is positive recurrent. 
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Example 3.2,6. Because the Markov chain considered in Example 3.2.1 is finite 
and irreducible, we can at once assert that the three states—0, 1, and 2—are 
positive recurrent. However, the chain whose one-step transition matrix is 
given by 

0 1 2 
o r i / 3 1/3 1/3" 

P i = 1 0 1/2 1/2 
2 [ 0 1 0 _ 

is not irreducible, because state 0 is not accessible from either 1 or 2. Since 
there is a probability of 2/3 that the process will leave state 0 on its very first 
transition and will never return to that state, we have 

/o,o < 1 - 2/3 = 1/3 < 1 (actually, /o,o 

which implies that state 0 is transient Next, 

1/3) 

Pl,2 X P2,l \>^ 

SO that states 1 and 2 are in the same class. Because the chain must have at 
least one recurrent state, we conclude that 1 and 2 are recurrent states. We 
may write that 5 x , = i? U Ci, where D = {0} and Ci = {1,2}. 

When 
0 1 2 

0 
P 2 = 1 

1/3 1/3 1/3 
0 1/2 1/2 
0 0 1 

we find that each state constitutes a class. The classes {0} and {1} are tran­
sient, whereas {2} is recurrent. These results are easy to check by using Propo­
sition 3.2.4. We have 

OO OO ^ 1 Q 

Z ^ /^0,0 - Z - / on - -I 1 - 9 ^ 
n=0 n=0 '̂  -̂  " 3 ^ 

OO CO ^ 

CXD 

n=0 n=0 

= 2 < 00 

and 

X]P2?2 = I ] l = 00 
n=0 n=0 

As we already mentioned, any absorbing state (like state 2 here) trivially 
constitutes a recurrent class. Moreover, the state space being finite, state 2 
is positive recurrent. Finally, we have that Sxr, = DUCi, where D = {0,1} 
and Ci = {2}. 
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Definition 3.2.11. A state i is said to be periodic with period d if pf^i = 0 
for any n that is not divisible by d, where d is the largest integer with this 
property. If d — 1, the state is called aperiodic. 

Remarks, i) If p^^ = 0 for all n > 0, we consider i as an aperiodic state. That 
is, the chain may start from state z, but it leaves i on its first transition and 
never returns to i. For example, state 0 in the transition matrix 

0 
P - 1 

2 

0 for all n > 0. 

0 1 2 
0 1/2 1/2' 
0 1/2 1/2 
0 0 1 

is such that p^^ 

ii) As in the case of the other characteristics of the states of a Markov chain, 
it can be shown that periodicity is a class property: if i and j communicate 
and if i is periodic with period rf, then j too is periodic with period d, 

iii) If Pi^ > 0, then i is evidently aperiodic. Consequently, for an irreducible 
Markov chain, if there is at least one positive element on the diagonal (from 
Po,o) of the transition matrix P , then the chain is aperiodic, by the preceding 
remark. 

iv) lipij > 0 and p]^^ > 0, then i is aperiodic, because for any n G {2 ,3 , . . . } 
there exist integers ki and ^2 G { 0 , 1 , . . . } such that n = 2ki + 3fc2-

v) If d = 4 for an arbitrary state i, then d = 2 too satisfies the definition of 
periodicity. Indeed, we then have 

J2n+1) 

.(^) 

0 forn = 0 , l , . . 

so that we can assert that p\/ ^ 0 for any n that is not divisible by 2. Thus, 
we must really take the largest integer with the property in question. 

Example 3,2,7. If 
01 
0 1 " 
10 

then the Markov chain is periodic with period d = 2. because it is irreducible 
and 

0̂,0̂  —0 and Po,o — 1 for n — 0 , 1 , . . . 

Note that d is not equal to 4, in particular because 2 is not divisible by 4 and 
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Example 3.2.8. Let 

0 
1 
2 

0 1 2 
" 0 1/2 1/2 
1/2 0 1/2 
1/2 1/2 0 

The Markov chain is aperiodic. Indeed, it is irreducible (since po,i xpi,2 xp2,o == 
1/8 > 0) and 

(3) p^^ (== 1/2) > 0 and p'^l (= 1/4) > 0 

Example 3.2.9. Let 
0 1 

p = 

0 
1 

= 2 
3 
4 

'0 1/2 
0 0 
0 0 
1 0 
1 0 

1/2 
0 
0 
0 
0 

0 0 
1/3 2/3 
2/3 1/3 
0 0 
0 0 

be the one-step transition matrix of a Markov chain whose state space is the 
set {0,1,2,3,4}. We have 

P0,1 X p i , 3 X P3,o X po,2 X P2,4 X ^4,0 > 0 

Therefore, the chain is irreducible. Moreover, we find that 

( n ) ^ r i i f n = 0 ,3 ,6 ,9 , . . . 
^0,0 1 0 otherwise 

Thus, we may conclude that the chain is periodic with period d = 3. 

Example 3.2.10. In the case of a classic random walk, defined on all the inte­
gers, all the states communicate, which follows directly from the fact that the 
process cannot jump over a neighboring state and that it is unconstrained., 
that is, there are no boundaries (absorbing or else). The chain being irre­
ducible, the states are either all recurrent or all transient. We consider state 
0. Since the process moves exactly one unit to the right or to the left at each 
transition, it is clear that if it starts from 0, then it cannot be at 0 after an 
uneven number of transitions. That is. 

J2n+1) 
Po,o 

0 forn = 0 , l , . 

Next, for the process to be back to the initial state 0 after 2n transitions, there 
must have been exactly n transitions to the right (and thus n to the left). Since 
the transitions are independent and the probability that the process moves to 
the right is always equal to p, we may write that, for n = 1,2,. . . , 

p(y = P[B(2n,p) = n] = (^^"^^"(l -p ) " 
n\n\ 
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To determine whether state 0 (and therefore the chain) is recurrent, we 
consider the sum 

oo oo 

n = l n = l 

However, we do not need to know the exact value of this sum, but rather 
we need only know whether it converges or not. Consequently, we can use 
Stirling's^ formula: 

n ! - n ^ + ^ e - ^ \ / 2 ^ (3.48) 

(that is, the ratio of both terms tends to 1 when n tends to infinity) to 
determine the behavior of the infinite sum. We find that 

(2„) [ 4 p ( l - p ) ] " 
Po,o ~ 

which implies that 

n=l n=l ^ 

Now, if p = 1/2, the stochastic process is called a symmetric random walk 
and the sum becomes 

:ause 

When P ¥= 1/2, we 
OO 

E 

2. 
n = ] 

oo ^ 

n = l ^ 

have 

[ 0Trn 

>-7^ 

OO 

n=l 

= 0 0 

oo ^ 

^ n 
n=l 

[4p{i~p)r 
< 00 

Thus, the classic random walk is recurrent if p = 1/2 and is transient if 
P ^ 1/2. 
Remark. It can be shown that the two-dimensional symmetric random walk 
too is recurrent. However, those of dimension k >3 are transient. This follows 
from the fact that the probability of returning to the origin in 2n transitions 
is bounded by c/n^^'^^ where c is a constant, and 

oo 

E ^ < - if^'^3 (3.49) 
n=l 

^ James Stirling, 1692-1770, who was born and died in Scotland, was a mathemati­
cian who worked especially in the field of diff'erential calculus, particularly on the 
gamma function. 
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3.2.3 Limiting probabilities 

In this section, we will present a theorem that enables us to calculate, if it 
exists, the limit limn-. K j by solving a system of linear equations, rather 
than by trying to obtain directly \imn~,oo^^^\ which is generally difficult. 
The theorem in question is valid when the chain is irreducible and ergodic^ as 
defined below. 

Definition 3.2.12. Positive recurrent and aperiodic states are called ergodic 
states. 

Theorem 3.2.1. In the case of an irreducible and ergodic Markov chain, the 
limit 

TTj := lim p£.> (3.50) 

eocists and is independent ofi. Moreover, we have 

7rj = — >0 for all j e {0,1,,..} (3.51) 

where f^tj is defined in Eq. (3.47). To obtain the ITJ ^S, we can solve the system 

TT - TTP (3.52) 
oo 

^7r , - = l (3.53) 

where TT := (TTCTTI, . . . ) . It can be shown that the preceding system possesses 
a unique positive solution. 

Remarks, i) For a given state j , Eq. (3.52) becomes 

oo 

Note that, if the state space is finite and comprises k states, then there are k 
equations like the following one: 

k-l 

TTj =Y^7riPij (3.55) 
z=0 

With the condition Yl^Zo ^i — ̂ ^ there are thus k -\-1 equations and k un­
knowns. In practice, we drop one of the k equations given by (3.55) and make 
use of the condition YljZo ^j = 1 to obtain a unique solution. Theoretically, 
we should make sure that the TTJ'S obtained satisfy the equation that was 
dropped. 
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ii) A solution {TTJJ = 0 , 1 , . . . } of the system (3.52), (3.53) is called a station­
ary distribution of the Markov chain. This terminology stems from the fact 
that if we set 

P[Xo=j]=nj Vj (3.56) 

then, proceeding by mathematical induction, we may write that 

oo 

P[Xn^l =j] = J2 ^[^-+1 =J\^n= i]P[Xn = i] 

oo 

i=0 

where the last equality follows from Eq. (3.54). Thus, we find that 

P[Xn=j]=7rj V n , i G {0 ,1 ,2 , . . . } (3.58) 

iii) If the chain is not irreducible, then there can be many stationary distri­
butions. For example, let 

0 1 
10 
0 1 

Because states 0 and 1 are absorbing, they are positive recurrent and aperi­
odic. However, the chain has two classes: {0} and {1}. The system that must 
be solved to obtain the TT '̂S is 

TTo = TTo (3.59) 

TTi = TTi (3 .60) 

TTO + TTi = 1 (3.61) 

We see that TTQ = c, TTI = 1 — c is a valid solution for any c G [0,1]. 

iv) The theorem asserts that the TT '̂S exist and can be obtained by solving 
the system (3.52), (3.53). If we assume that the TTJ'S exist, then it is easy to 
show that they must satisfy Eq. (3.52), Indeed, since liuin-^oo ̂ [ ^n+i = j] = 
limn-.oo P[Xn = i ] , we have 

P [ X , + i = j] = J2 n^n+l =j\Xn= i]P[Xn = i] 

oo 

= » lim PlXn+i = j] = lim VP[Xn+i =j\Xn= i]P[Xn = i] 
n-^oo n—j-oo ^—^ 

oo oo 

= ^ TT̂- = ^ Pi J TTi = ^ TTi Pi J (3 .62) 

i=0 
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where we assumed that we can interchange the limit and the summation. 

v) In addition to being the hmiting probabiHties, the n/s also represent the 
proportion of time that the process spends in state j , over a long period of 
time. Actually, if the chain is positive recurrent but periodic, then this is the 
only interpretation of the TTJ'S. Note that, on average, the process spends one 
time unit in state j for /ij time units, from which we deduce that TTJ = I/JJLJ^ 

as stated in the theorem. 

vi) When the Markov chain can be decomposed into subchains, we can ap­
ply the theorem to each of these subchains. For example, suppose that the 
transition matrix of the chain is 

0 
1 
2 

0 1 2 
" 1 0 0 
0 1/2 1/2 
0 1/2 1/2 

In this case, the limit limy^^oo Pij exists but is not independent of i. We easily 
find that 

hm p'J 1 if i = 0 
0 if i 7̂  0 

and (by symmetry) 

lim »^"' - lim »<") _ f 1/2 if i = 1 or 2 

(3.63) 

(3.64) 

However, we cannot write that TTQ = 1 and TTI = 7T2 = 1/2, since the TTJ'S do 
not exist in this example. At any rate, we see that the sum of the TT '̂S would 
then be equal to 2, and not to 1, as required. 

Example 3.2,11, The Markov chain {Xn^n = 0 ,1 , . . . } considered in Exam­
ple 3.2.1 is irreducible and positive recurrent (see Example 3.2.6). Since the 
probability po,o {or pi,i) is strictly positive, the chain is aperiodic, and thus 
ergodic, so that Theorem 3.2.1 applies. We must solve the system 

(7ro,7ri,7r2) = (7ro,7ri,7r2) 
1/3 1/3 1/3 
0 1/2 1/2 
1 0 0 

that is, 

(1) 1 _̂  

(2) 1 ^ 1 

(3) 1 _̂  1 
2̂ = ^^0 + 2^^ 
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(*) subject to the condition TTQ + TTI + 7r2 = 1. Often, we try to express every 
Umiting probabiHty in terms of TTQ, and then we make use of the condition (*) 
to evaluate TTQ. Here, Eq. (1) imphes that 7r2 = ITTQ, and Eq. (2) enables us 
to assert that TTI = ITTQ too [so that TTI = 7r2, which actually follows directly 
from Eqs. (2) and (3)]. Substituting into Eq. (*), we obtain: 

2 2 3 2 

We can check that these values of the TT/S are also a solution of Eq. (3), which 
was not used. 

Note finally that the TT/S correspond to the hmits of the p |^ s computed 
in Example 3.2.1 by finding the approximate value of the matrix P^^^ when 
n is large. 

When the state space Sx,, is finite, before trying to solve the system (3.52), 
(3.53), it is recommended to check whether the chain is doubly stochastic (see 
p. 79), as can be seen in the following proposition. 

Proposition 3.2.6. In the case of an irreducible and aperiodic Markov chain 
whose state space is the finite set { 0 , 1 , . . . , k}, if the chain is doubly stochastic, 
then the limiting probabilities exist and are given by 

1 
fc + 1 

/ o r j - 0 , l , . . . , A : (3.65) 

Proof. Since the number of states is finite, the chain is positive recurrent. 
Moreover, as the chain is aperiodic (by assumption), it follows that it is er-
godic. Thus, we can assert that the TTJ'S exist and are the unique positive 
solution of 

i =0 

^i = I ] ^ i P * j V j € { 0 , l , . . . , A : } (3.66) 

(3.67) 

(3.68) 

(3.69) 

Now, 

and 

if we set TTj 

k 

k 

3=0 

^l/(fc+ 

1 

•- 1 

1) >0,^ 

k 

E 

1 

we obtain 

k 
1 

^ f c + r ' " ' fc + l -^^ ' ' -^ A:+l fc + 1 

(because the chain is doubly stochastic). D 
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Example 3.2.12. The matrix 

0 1 2 
o r i / 3 1/3 1/3" 

P = 1 0 1/2 1/2 
2 [ 2 / 3 1/6 1/6_ 

is irreducible and aperiodic (because po,o > 0? in particular). Since it is doubly 
stochastic, we can conclude that nj = 1/3 for each of the three possible states. 
We can, of course, check these results by applying Theorem 3.2.1. 

Example 3.2.13. The one-step transition matrix 

0 1 
1 0 0 
0 1/2 1/2 
0 1/2 l/2_ 

is doubly stochastic. However, the chain is not irreducible. Consequently, we 
cannot write that TXJ = 1/3. Actually, we calculated the limits limn-^ooPij- in 
remark vi) on p. 96. 

When the state space { 0 , 1 , . . . } is infinite, the calculation of the Umiting 
probabilities is generally difficult. However, when the transition matrix is such 
that po,i > 0, Pj,j-i X Pjj+i > 0 V j > 0, and 

P i j = 0 i f | j - i | > l 

we can give a general formula for the TTJ'S. Indeed, we have 

TTo = 7roPo,o + 7ripi,o 

and 

^j = '^j-iPj-iJ + '^jPjJ + '^j+iPj+iJ 

ior j = 1,2,... . We find that 

_ Pog x p i , 2 X • - xpj-i,j TTo forj = l ,2 , . 

(3.70) 

(3.71) 

(3.72) 

(3.73) 
Pl,0 XP2,l X ••• Xpjj^i 

Then a necessary and sufficient condition for the existence of the TTJ 'S is that 

E PO,l Xpi,2 X ••• Xpk-i,k 
< 00 

I^^^PhO XP2,1 X ••• Xpk,k-1 

If the sum above diverges, then we cannot have that Y^jLo TTJ = 1. 

(3.74) 
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Note that this type of Markov chain includes the random walks on the 
set { 0 , 1 , . . . }, for which po,i = p = 1 ~ po,o and Pi,i-\-i = p = 1 - Pi,i-i, for 
2 = 1,2,... . We have 

OO CO 

P0,1 XPl,2 X ••• Xpk-l,k E ^pi ,o xp2,i X ••• xpfe,fe-i fr^C^-p) 
(3.75) 

and this sum converges if and only if p < 1/2. Thus, we can write (with 
g := 1 — p) that 

ToE(P/9)' = l 

and then 

/c=0 

^.7 = - TTo = 

TTo = 1 
9 

1 - ^ 

(3.76) 

(3.77) 

for i = l , 2 , . . . . 

Actually, we could have used Theorem 3.2.1 to obtain these results. Indeed, 
consider the transition matrix 

P = 

0 1 2 3 . 

'qp 
qO p 

q 0 p 

k - 2 k - 1 k 

q 0 p 

q p. 

As the Markov chain is irreducible and ergodic, we can try to solve the system 

(3.78) 

We find that 

TTO = g TTo - f g TTi 

TTj = p TTj-i + q TTj+i for j == 1 , . . . , A: - 1 

^k = P ^/c-1 + P TT/, 

TTj = ( - j TTo for j = 1 , . . . ,A: (3.79) 
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Then, the condition ^J=Q T^J = 1 enables us to write 

1 - 1 

q ' - ' ? ) 
fc+i 

(3.80) 

Taking the Umit as k tends to infinity, we obtain (in the case when p < q <=> 
P < 1/2) 

7I"0 H) "̂  ^'-C^)'H) <̂ -"' 
for j = 1,2,.. . , which effectively corresponds to the formulas (3.76) and 
(3.77). 

3.2.4 Absorption problems 

We already mentioned (see p. 87) that the state space of a Markov chain can 
be decomposed into the set D of transient states of the chain and the union 
of closed and irreducible sets C^ of recurrent states. We are interested in the 
problem of determining the probability that, starting from an element of D, 
the process will remain indefinitely in D or instead will enter one of the sets 
Cfc, from where it cannot escape. 

Notation. Let i e D and let C be a recurrent class. We set 

,(n)(C) =P[X^eC\Xo = i] = J2 PS forn = 1,2,... 

and 

n{C) = lim r'^;'\C) = P \J{Xn&C} 
n = l 

Xo = i 

(3.82) 

(3.83) 

We have the following result. 

Theorem 3.2.2. The probability ri{C) is the smallest nonnegative solution 
of the system 

n{C) = ^ Pi J rj{C) + ^ Pi J for allie D 
jeD jec 

Moreover, if D is a finite set, then the solution is unique. 

(3.84) 

Remarks, i) The system (3.84) is a system of nonhomogeneous linear equa­
tions. When D is finite, we can try to solve this system by using results from 
linear algebra. 
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ii) Actually, it is not necessary that the set C be a class. It is sufficient that 
C be a closed set of recurrent states. 

iii) We can imagine that all the states of the recurrent class C constitute a 
single absorbing state, since, once the process has entered this class, it cannot 
leave it again. 

A classic example of an absorption problem is known as the gambler ̂ s 
ruin problem and is described as follows: a player, at each play of a game, 
wins one unit (for example, one dollar) with probability p and loses one unit 
with probability q := 1—p. Assume that he initially possesses i units and that 
he plays independent repetitions of the game until his fortune reaches k units 
or he goes broke. 

Let Xn be the fortune of the player at time n (that is, after n plays). Then 
{Xny n = 0 , 1 , . . . } is a Markov chain whose state space is the set { 0 , 1 , . . . , k}. 
As states 0 and k are absorbing, we have that po,o = Pk,k = 1- Foi" all the other 
states i = l , . . . ,A; — 1, we may write that 

Pi,i+i =p=l- Pi4-i (3.85) 

This is a random walk on the set { 0 , 1 , . . . , A;}, with absorbing boundaries at 
0 and k. The chain thus has three classes: {0}, {fc}, and {1,2 , . . . , A: — 1}. The 
first two are recurrent, because 0 and k are absorbing, whereas the third one 
is transient. Indeed, we have, in particular, that 

P[Xi=0\Xo = l]=q>0 = ^ / i , i < l (3.86) 

from which we can conclude that the player's fortune will reach 0 or k units 
after a finite number of repetitions. 

Let ri({0}), for z == 0 , 1 , . . . , fc, be the probability that the player will be 
ruined, given that his initial fortune is equal to i units. That is, we write that 
C is the class {0} in Eq. (3.83). We will first consider the case when p = 1/2. 
Note that, in this case, we have 

E[Xi\Xo = i] = {i-l)x--^{i + l)x-=i fori = l , . . . ,A : -1 (3.87) 

We also have 

E[Xi I Xo = 0] = 0 and E[Xi \ XQ = k] = k (3.88) 

That is, in general, 

E[Xn+i \Xn=^i] = i for any i (3.89) 

This type of Markov chain is a martingale and is very important for the 
applications, notably in financial mathematics. 
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Definition 3.2.13. A Markov chain for which 

is called a martingale. 

Remark. We can rewrite Eq. (3.90) as follows: 

E[Xn+l\Xn]=Xn (3.91) 

Now, proceeding by induction, we may write that 

k 

i = E[Xn\Xo = i] = Y.^P^J (^-^^^ 

Indeed, if we make the induction assumption that E[Xn^i \ Xo = i] = i, then 
we have 

E[X,. I Xo = i] = Y^jpt] = EE^^^ '*" '^ 

/=0 j=0 /=0 

k 

= Y^Pi.i I = ^ [ ^ 1 \Xo = i] = i (3.93) 
/=o 

Now, we have 

lim pJ7 = 0 for all transient states j (3.94) 

(otherwise the sum X^^^p^^ would diverge, contradicting the remark on 
p. 88). It follows, taking the limit as n tends to infinity in Eq. (3.92), that 

That is, 

from which we deduce that 

lim M = T (3-96) 

„!-.«= ̂ 4 -^ rm) = l-l (3.97) 
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Thus, the more ambitious the player is, the greater is the risk that he will be 
ruined. 

In the general case where p G (0,1), the probability n({0}), which will be 
denoted by r̂  to simplify the formulas, is such that ro = 1, r/c = 0 and [see 
Eq. (3.84)] 

ri=pr2 + q (3.98) 

Vi = qvi-i + p n + i for i ==: 2 , . . . ,fe - 2 (3.99) 

and 

rk-i =qrk-2 (3.100) 

Rewriting Eq. (3.99) as follows: 

{p + q)ri = qri-i + p r i + i (3.101) 

we obtain 

n^^ -n = ^ in -n^i) for i = 2, . . . ,A:-2 (3.102) 
p 

which implies that 

n^i-n = (jj (r2 -ri) = (^^y (n -1) (3.103) 

where the last equality follows from Eq. (3.98). 
Next, since rk = 0, Eq. (3.100) can be rewritten as follows: 

rk-i =qrk-2+prk (3.104) 

We can then state that Eq. (3.103) is vahd for i = 0 , . . . , fc - 1. Adding the 
equations for each of these values of i, from 0 to j — 1, we find that 

i - i 

rj-ro = {n-l)Y,iQ/py (3.105) 

Since ro == 1, we obtain 

1 - (^/^) (3.106) 

l + j ( ^ i - l ) iip = q 

for j = 0 , 1 , . . . , fc. Finally, the fact that rk = 0 enables us to obtain an explicit 
expression for ri — 1 from the preceding formula, from which we find that 
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1 - {Q/PY :. 
{q/pf 1 - ^ ^ ^ i f P ^ ^ 

(3.107) 

1 - | \ip = q 

Note that {ox p = q — 1/2, we retrieve the formula (3.97). 
We can calculate the limit of the probability rj in the case when k tends 

to infinity. It is easy to check that 

j . ^ r(,/,)Mfp>i/2 
k-^oo -^ \ 1 if p < 1/2 

Thus, if p > 1/2, there exists a strictly positive probabihty that the process 
will spend an infinite time in the set of transient states. 

Another example for which the Markov chain may spend an infinite time 
in the set D of transient states of the chain is the following. 

Example 3.2.14- Let po,o = 1 and 

Pj,o = o^j (> 0) = 1 - pjj^i for j = 1,2,... 

be the one-step transition probabilities of a Markov chain whose state space 
is the set { 0 , 1 , . . . }. This chain has two classes: {0} (recurrent) and {1 ,2 , . . .} 
(transient). We calculate directly 

oo 

r,({0})-l-n(l-«i+^) 

It can be shown that rj({0}) < 1 if and only if the sum Yll^o ^ J+^ converges. 
For example, if a^ = (1/2)% for all i > 1, then we have 

oo oo 

J]a^+, = 5 (̂1/2)̂ +^ = (1/2)^-1 < 00 
2=0 i=0 

3.2.5 Branching processes 

In 19th-century England, some people got interested in the possibility that 
certain family names (particularly names of aristocratic families) would dis­
appear, for lack of male descendants. Galton^ formulated the problem math­
ematically in 1873, and he and Watson"* published a paper on this subject in 

^ Francis Galton, 1822-1911, was born and died in England. He was a cousin of 
Charles Darwin. After having studied mathematics, he became an explorer and 
anthropologist. 

^ The Reverend Henry William Watson, 1827-1903, was born and died in England. 
He was a mathematician who wrote many books on various subjects. He became 
a priest in 1858. 
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1874. Because Bienayme^ had worked on this type of problem previously, the 
corresponding stochastic processes are sometimes called (branching) processes 
of Bienayme-Galton-Watson. More simply, the term branching processes is 
also used. 

Definition 3.2.14. Let{Zn,j,n = 0 , 1 , . . . ; j = 1,2,... } 6e a set ofi.i.d. ran­
dom variables whose possible values are nonnegative integers. That is, Sz^,j C 
{0,1 , . . . }. A branching process is a Markov chain {Xn, n = 0 , 1 , . . . } de­
fined by 

Xn 

( X.._i 

/ > ^n- l , j if Xn-l > 0 (3.109) 

0 ifXn-l=0 

forn = 1,2,. 

Remarks, i) In the case of the application to the problem of the disappearance 
of family names, we can interpret the random variables Xn and 2^n-i,j as 
follows: Xo is the number of members of the initial generation, that is, the 
number of ancestors of the population. Often, we assume that XQ = 1, so that 
we are interested in a lineage. Zn-ij denotes the number of descendants of 
the jth member of the (n — l)st generation. 

ii) Let 

Pi := P[Zn-i,j = i] for all n and j (3.110) 

To avoid trivial cases, we assume that Pi is strictly smaller than 1, for all 
i = 0 , 1 , . . . . We also assume that po > 0; otherwise, the problem of the 
disappearance of family names would not exist. 

The state space Sxr, of the Markov chain {Xn,n = 0 ,1 , . . . } is the set 
{ 0 , 1 , . . . }. As state 0 is absorbing, we can decompose Sxr, into two sets: 

Sxr, =L)U{0} (3.111) 

where D = {1,2 , . . . } is the set of transient states. Indeed, since we assumed 
that Po > 0̂  we may write that 

P[Xn ^ i V n G {1,2 , . . . } I Xo = i] > Pi^o '=' Ph > 0 (3.112) 

Thus, fu < 1, and all the states i = 1,2,... are effectively transient. Now, 
given that a transient state is visited only a finite number of times, we can 

^ Irenee-Jules Bienayme, 1796-1878, was born and died in France. He studied at 
the Ecole Poly technique de Paris. In 1848, he was named professor of probability 
at the Sorbonne. A friend of Chebyshev, he translated Chebyshev's works from 
Russian into French. 
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assert that the process cannot remain indefinitely in the set {1,2, ...,/c}, for 
any finite k. Thus, we conclude that the population will disappear or that its 
size will tend to infinity. 

Suppose that XQ = 1. Let's now calculate the average number //^ of indi­
viduals in the nth generation, for n = 1,2,... . Note that /ii = E[Xi] is the 
average number of descendants of an individual, in general. We have 

oo 
fin = E[Xn] = ^E[Xn \ X^-l = j]P[Xn-l = j] 

oo 
= Y,jfi^P[Xn-l = j] = filElXn^i] (3.113) 

3=0 

Using this result recurrently, we obtain 

fin = filE[Xn-l] = fllE[Xn-2] = • • • = f^lE[Xo] = //? (3.114) 

Remark. Let a^ := V^[Xi]. When JJLI = 1, from Eq. (1.96), which enables us 
to express the variance of Xn in terms of E[Xn \ Xn-i] and of V[Xn \ Xn-i]^ 
we may write that 

V[Xn] = E{V[Xn I Xn-l]] + V[E[Xn \ X„_i]] 

'•= • E[Xn-iai] + V[Xn-i X 1] 

= ajxl + V[Xn-i] = 2al + V[X„^2] 

= ... = naj + V{Xo] = n(Tl (3.115) 

since V[Xo] = 0 (XQ being a constant). When /xi 7̂  1, we find that 

^2 , ,n - l / Ml "" 1 
V[Xr.]=alfir'['j^) (3.116) 

We wish to determine the probability of eventual extinction of the popu­
lation, namely, 

qo4 := lim P[Xn = 0 \ Xo = i] (3.117) 

By independence, we may write that 

qo,i = Qii (3.118) 

Consequently, it sufiices to calculate go,i5 which will be denoted simply by QQ. 
We have 

oo 

P{Xn = 0 I Xo = 1] = 1 - P[Xn > 1 I Xo = 1] = 1 -Y,P[Xn = fc | Xo = 1] 
fe=l 
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oo 
> 1 - ^ fcP[X„ = /C I Xo - 1] - 1 - E[Xn I Xo = 1] 

fc=l 
= 1-M? (3.119) 

[by Eq. (3.114)]. It follows that, if /xj € (0,1), then 

go > lira 1 - / i" = 1 = » qo = l (3.120) 
n—»oo 

which is a rather obvious result, since if each individual has less than one 
descendant, on average, we indeed expect the population to disappear. 

When /ii > 1, Eq. (3.119) implies only that qo > 0 (if /ii = 1) or that 
^0 ^ —00 (if//i > 1). However, the following theorem can be proved. 

Theorem 3.2.3. The probability qo of eventual extinction of the population 
is equal to 1 if iii < 1, while qo < '^ if l^i > 1-

Remarks, i) We deduce from the theorem that a necessary condition for the 
probability qo to be smaller than 1 is that pj must be greater than 0 for at 
least one j > 2. Indeed, if po = p > 0 and pi = 1 — p^ then we directly have 
//I = 1 - p < 1. 

ii) When po = 0 and pi — 1, we have that /xi — 1. According to the theorem, 
we should have ô = 1- Yet, if pi = 1, it is obvious that the size of the 
population will always remain equal to XQ, and then qo = 0. However, the 
theorem applies only when po > 0. 

Let F be the event defined by 

oo 

F=\J{Xn^O} (3.121) 
n=l 

so that qo = P[F | XQ = 1]. To obtain the value of qo, we can solve the 
following equation: 

oo oo 

qo = ^2^1^ I ^^=J]Pj - E ^ o P i (3-122) 
j=0 j=0 

The equation above possesses many solutions. It can be shown that when 
/jii > 1, qo is the smallest positive solution of the equation. 

Remark. Note that go == 1 is always a solution of Eq. (3.122). 

Example 3.2.15. Suppose that po = 1/3 and pj = 2/9, for j = 1,2,3. First, 
we calculate 

/ i i - 0 + ^ ( l + 2 + 3) = ^ > l 

Thus, we may assert that qo < 1- Eq. (3.122) becomes 
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1 2 7 3 
90= 3 + ^(^0 + ^0+^o) <=> 9 o + 9 0 - 2 ^ 0 + 2 = 0 

Since Q'O = 1 is a solution of this equation, we find that 

The three solutions of the equation are 1 and - 1 di >/572. Therefore, we 
conclude that QQ = -1 + y/Ej2 ^ 0.5811. 

Remark. If po = 1/2 and Pj — 1/6, for j = 1,2,3, then we have 

M i = 0 + i ( l + 2 + 3) = l 

Consequently, Theorem 3.2.3 implies that qo = 1. Eq. (3.122) is now 

90 = 2 + 6̂ ^̂  "̂  ^̂  "̂  ^̂ ^ ^ ^ ^̂ ^ ~ "̂ ^̂ ^̂ ^ + 3) = 0 

so that the three solutions of the equation are 1 (double root) and —3, which 
confirms the fact that QQ = 1. 

Similarly, if po = Pi = 1/̂ ? then we find that 

g'o = - ( l + 9 o ) <=^ 90 = 1 

in accordance with Theorem 3.2.3, since jii — 1/2 < 1. 

Assume again that XQ = 1. Let 

r„:=J^Xfc = l + f̂ Xfe (3.123) 
A;=0 k=l 

That is, Tn designates the total number of descendants of the population's 
ancestor, in addition to the ancestor himself. It can be shown that 

oo 

V p f l i m T „ = i l = g o (3.124) 
^—^ Ln—>oo J 

Thus, if ^0 < 1? then Too •= limn->cx) Tn is a random variable called defective, 
which takes the value oo with probability 1 - ^o- Moreover, if ^o < 1? the 
mathematical expectation of Too is evidently infinite. When go = 1? we have 
the following result. 

Proposition 3.2.7. The mathematical expectation of the random variable Too 
is given by 

E[To,] = -^— iffii<l (3.125) 
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Remark. We observe that when )Ui = 1, we have that P[T^ < oc] = 1, but 
E[Too] = 00. 

Example 3.2.16. If po = P G (0,1) and pi = I - p, then we know that q^ = 1, 
because fxi = 1 — p < 1. In this case, we may write that 

Xk 

Thus, we have 

J 1 wi 
\ 0 wi 

with probabihty (1 — p)^ 
with probabihty 1 — {1 — p)^ 

which is indeed equal to 1/(1 — //i). 

3.3 Continuous-time Markov chains 

3.3.1 Exponential and gamma distributions 

In the case of discrete-time Markov chains, we said nothing about the time 
the processes spend in state i before making a transition to some state j . As 
in Example 2.1.1 on random walks, we may assume that this time is determin­
istic and is equal to one unit. On the other hand, an essential characteristic of 
continuous-time Markov chains is that the time that the processes spend in a 
given state has an exponential distribution, so that this time is random. More­
over, we will show that the sum of independent exponential random variables 
(having the same parameter) is a variable having a gamma distribution. We 
already mentioned the exponential and gamma distributions in Chapter 1. In 
the present section, we give the main properties of these two distributions. 

Exponential distr ibution 

Definition 3.3.1. (Reminder) If the probability density function of the con­
tinuous random variable X, whose set of possible values is the interval [0, oc), 
is of the form 

fx{x) = l^^'l'^ ttz^^ (3.126) 
ifx < 0 

we say that X has an exponential distribution with parameter A > 0 and 
we write X ~ Exp(X). 

Remarks, i) Using the Heaviside function u{x) (see p. 11), we may write that 

f^{x) = Ae-^^ix(x) (V a: G E) (3.127) 
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Note that we have the following relation between the functions u{x) and 6{x) 
(see p. 63): 

u{x)= f S{t)dt (3.128) 
V — O O 

ii) For some authors, a random variable X having an exponential distribution 
with parameter A possesses the density function 

fxix) = ^e- - /^u(x) (3.129) 

The advantage of this choice is that we then have E[X] = A, while for us 
E[X] = 1/A, as will be shown further on. 

The distribution function of X is given by 

0 i f a : < 0 

/ Ae-^*dt = l - e - ^ ^ i f x > 0 

Note that we have the following very simple formula: 

P[X >x]= e-^^ for X > 0 (3.131) 

Some people write F{x) for the probability P[X > x]. 
The main reason for which the exponential distribution is used so much, in 

particular in reliability and in the theory of queues, is the fact that it possesses 
the memoryless property, as we show below. 

Proposition 3.3.1, (Memoryless property) Suppose that X ~ Exp{X). 
We have 

P[X>s-{-t\X>t] = P[X>s] V 5 , t > 0 (3.132) 

Proof. By the formula (3.131), we may write that 

P[X>s + t\X>t\- ^j^^-^j - ^ j^^^ j 

e 
-A(s+t) 

= e"^^ = P[X >s] D (3.133) 
c -

Remark. Actually, the exponential random variables are the only r.v.s having 
this property for all nonnegative s and t. The geometric distribution possesses 
the memoryless property, but only for integer (and positive) values of s and t. 

We can easily calculate the moment-generating function of the r.v. X ~ 
Exp(A): 



/•CX) 

Mxit) = E[e*^] = / e*^Ae-^^ dx = 
Jo 

Then 

M'xit) 

which implies that 
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A 
X-t 

A 

{x-tr 
and M'^{t) 

iit<X 

2A 

{x-tr 
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(3.134) 

(3.135) 

E[X] = M'x{0) = 
A' 

E[X^] = M'j^{0) = j ^ , and V[X] = ^ (3.136) 

Remark. Note that the mean and the standard deviation of X are equal. 
Consequently, if we seek a model for some data, the exponential distribution 
should only be considered if the mean and the standard deviation of the 
observations are approximately equal. Otherwise, we must transform the data, 
for example, by subtracting or by adding a constant to the raw data. 

Example 3.3.1. Suppose that the lifetime X of a car has an exponential dis­
tribution with parameter A. What is the probability that a car having already 
reached its expected Hfetime will function (in all) more than twice its expected 
hfetime? 

Solution. We seek 

[->! - 1 ] = p [->x] = e 0.3679 

Remark. The assumption that the lifetime of a car has an exponential distribu­
tion is certainly not entirely realistic, since cars age. However, this assumption 
may be acceptable for a time period during which the (major) failure rate of 
cars is more or less constant, for example, during the first three years of use. 
Incidentally, most car manufacturers offer a three-year warranty. 

As the following proposition shows, the geometric distribution may be 
considered as the discrete version of the exponential distribution. 

Proposition 3.3.2. Let X ^ Exp{X) and Y := int{X) -\-1, where %nV' des­
ignates the integer part. We have 

P[Y = k] = (e-^)^- i ( l - e-^) fork = 1,2,... 

That is, Y - Geom(p := 1 - e'^). 

(3.137) 

Proof. First, since int(X) G { 0 , 1 , . . . }, we indeed have that Sy = {1 ,2 , . . . }. 
We calculate 

P[Y = k]= P[int(X) = k-l]=P[k-l<X <k] (3.138) 
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= / A e - ^ ^ d a ; = - e - ^ ^ | J _ ^ = e - ^ ( ^ - i ' ( l - e - ^ ) D 

Jk-1 

Remark. If we define the geometric distribution by 

p[Y = k]=q^p for fc = 0 , l , 2 , . . . (3.139) 

(as many authors do), then we simply have that Y := int(X) ~ Geom(p = 
1 - e - ^ ) . 

We can also consider the exponential distribution on the entire real line. 

Definition 3.3.2. LetX be a continuous random variable whose density func­
tion is given by 

/x (x) = ^ e - ^ N forx€R (3.140) 

where X is a positive parameter. We say that X has a double exponential 
distribution or a Laplace^ distribution. 

Remark. We find that the mean value of X is equal to zero and that V[X] = 
2/A^. The fact that E[X] = 0 follows from the symmetry of the function fx 
about the origin (and from the existence of this mathematical expectation). 

Proposition 3.3.3. If X ^ Exp{\), then for all XQ > 0, we have 

E[X\X>XO]=^XQ^E[X] and V[X \ X > XQ]=.V\X] (3.141) 

Proof. The formula P[X > XQ] = e~^^° implies that 

fx{x \X>xo) = Ae-^(^-^°) for x > XQ (3.142) 

from which we have 

/»oo /»oo 

E[X\X>xo]= X Ae-^^^-^^'^ dx ^"=~'' ' / {y + a:o)Ae-^^ dy 
Jxo Jo 

= E[X] + xoP[X e [0, oo)] = E[X] -f xo (3.143) 

Next, we calculate 

/»oo /•oo 

E[X^ \X>xo]= x^ Xe-^(--o) dx ^==-^» / (y + xofXe'^y dy 
Jxo Jo 

= E[X'^] + 2xoE{X] + xlP[X € [0, oo)] 

= E[X^] + 2xoE[X] + xl (3.144) 

^ See p. 19. 
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Then we obtain 

V[X \X>XQ\ = ^ [ X ^ \X>XQ]- {E[X I X > xo]f 

= E[X^] - {E[X]f = V[X] D (3.145) 

Remark. The preceding proposition actually follows directly from the memo-
ryless property of the exponential distribution. 

A result that will be used many times in this book is given in the following 
proposition. 

Proposi t ion 3.3.4. Let Xi ^ Exp{Xi) and X2 ~ Exp{\2) he two independent 
random variables. We have 

P\X, < X2] = y - ^ (3.146) 

Proof. By conditioning on the possible values of Xi , we obtain 

/»oo 

P[X2 > Xi] - / P[X2 > Xi I Xi - x]fx,{x) dx (3.147) 
Jo 

poo poo 

= P[X2 > x]Xie-^'^ dx = e-^^^Aie-^i^ (ix 
Jo Jo 

Aie-<^'+^^>^cix= ^ ^ \ a (3.148) 
Ai + A2 Jo 

Remarks, i) We have that P[Xi < X2] = 1/2 if Ai = A2, which had to be the 
case, by symmetry and continuity. 

ii) The proposition may be rewritten as follows: 

P[Xi = min{Xi,X2}] = ^ 4 h - (̂ -149) 
Ai -f- A2 

Moreover, we can generalize the result: let X i , . . . , Xn be independent random 
variables, where X̂ ^ ~ EXP(AA:), for all A:. We have 

P[Xi = min{Xi, ...,Xn}]= , ^ ^ \ , (3.150) 
Ai + . . . + A^ 

To prove this formula, we can make use of the following proposition. 

Proposi t ion 3.3.5. Let Xi ~ Exp{Xi), ..., Xn ~ Exp{\n) be independent 
random variables, and let Y := min{Xi, . . . , X ^ } . The r.v. Y has an expo-
nential distribution with parameter A := Ai + . . . + An-

Proof. Since min{Xi,X2,X3} = min{Xi,min{X2,X3}}, it suffices to prove 
the result for n = 2. We have, for y >0, 



114 3 Markov Chains 

P[Y >y] = P[Xi > y,X.2 > y] '"^- P{X, > y]P[X2 > y] 

= ^ /y(j/) = (Ai+A2)e-(^'+^=)^u(2/) D (3.151) 

Example 3.3.2. Suppose that Xi, X2, and Xz are independent random vari­
ables, all of which have an Exp(A) distribution. Calculate the probability 
P [ X i < ( X 2 + X3)/2]. 

Solution. We have P\Xi < (X2 + Xi)/2] = P[Y <X2 + X3], where Y := 
2X1. Moreover, for y > 0, 

P[Y <y] = P[Xi < y/2] = 1 - e-^y/2 ^^ y^ Exp(A/2) 

Then, by the memoryless property of the exponential distribution, 

P[2Xi < X2 + X3] = 1 - P[Y > X2 + X3] 

= 1-P[Y>X2 + X3\Y> X2]P{Y > X2] 

i.d.. / A ^ 
= 1-P[Y> X3]P[Y > X2] = 1 -

= 1 - (2/3)2 = 5/9 
.̂  + t 

Finally, we would like to have a two-dimensional version of the exponential 
distribution. We can, of course, define 

/ X a , X 2 ( ^ l , ^ 2 ) = AiA2e-(^i^i+^2a:2) foj, 3:1 > Q, Xs > 0 (3 .152) 

However, the random variables Xi and X2 are then independent. To ob­
tain a nontrivial generalization of the exponential distribution to the two-
dimensional case, we can write 

P[Xi > xi,X2 > X2] = exp{-AiXi - A2a:2 — Ai2max{a:i,a:2}} (3.153) 

for xi > 0, 0̂2 > 0, where A12 is a positive constant. We indeed find that Xi ^ 
Exp(Ai), fori = 1,2. 

Another possibility is the random vector whose joint density function is 
(see Ref. [5]) 

"2(pAiA2Xia:2)^/^l r ( \ A1A2 
/Xi,X2 (^1,3:2) = :; exp 

1 - p 
Aixi + A2a:2 

\-p 
lo (3.154) 

for xi > 0, X2 > 0, where p G [0,1) is the correlation coefficient of Xi and X2, 
and 7o(-) is a modified Bessef function of the first kind (of order 0) defined 
by (see p. 375 of Ref. [1]) 

^ Friedrich Wilhelm Bessel, 1784-1846, was born in Germany and died in Konigs-
berg, in Prussia (now Kaliningrad, in Russia). He was an astronomer and mathe­
matician. The mathematical functions that he introduced in 1817 are important 
in applied mathematics, in physics, and in engineering. 
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Here, too, we find that Xi ~ Exp(Ai) and X2 ~ Exp(A2). 

Gamma distribution 

Definition 3.3.3 (Reminder). We say that the continuous and nonnegative 
random variable X has a gamma distribution with parameters a > 0 and 
A > 0, and we write that X ~ G(a^X), if 

/ x W ^ ^ ^ ^ ^ _ . 7 u{x) (3.156) 
r{a) 

where /"(•) is the gamma function, defined (for a > 0) by 

/•OO 

r{a)= / f'-^e-Ut (3.157) 
Jo 

Remarks, i) The function r{a) is strictly positive for any positive a. For 
a > 1, we have 

poo 
r{a) - -t«-ie-*|^ + (a- l ) / t'^-'e-'dt 

Jo 
^^^ 0 + (a - 1) r{a - 1) = (a - 1) r{a - 1) (3.158) 

Then, since 

/»oo 

r{l)= / e-'dt = l (3.159) 
Jo 

we have 

r{n) = {n- l ) r ( n - 1) = (n - l)(n - 2 ) r (n - 2) 

= . . . - ( n - l ) ( n - 2 ) - . - l . r ( l ) = ( n - l ) ! (3.160) 

Thus, the gamma function generaUzes the factorial function. We also have 

r ( l / 2 ) = / r i / V * d i * = i ^ / V2e-'"^Us (3.161) 

/•CO 1 

= 2 v ^ / - ^ = e - " ' / 2 (is = 2v^P[N(0,1) > 0] = v ^ 
Jo v27r 

ii) Contrary to the exponential distribution, whose density function always has 
the same form, the shape of the density function fx changes with each value of 
the parameter a, which makes it a very useful model for the applications. We 
say that the parameter a is a shape parameter^ while A is a scale parameter (see 
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Fig. 3.1. Examples of probability density functions of G{a, A = 1) random variables. 

Fig. 3.1). In reality, the shape of the function fx varies mostly when a is small. 
When a increases, the gamma distribution tends to a Gaussian distribution, 
which follows from the fact that if X ~ G(n, A), then the random variable 
X can be represented as the sum of n independent r.v.s Xk ~ Exp(A), for 
fc = 1 , . . . ,n (see Prop. 3.3.6). 
iii) If X '-̂  G(a = 1, A), we have 

/x (x ) = Ae-^M^) (3.162) 

Thus, the gamma distribution generalizes the exponential distribution, since 
G(a = l,A) = Exp(A). 

iv) The parameter a may take any real positive value. When a = n G N, 
the gamma distribution is also named the Erlan^ distribution. Moreover, we 
have that G(a = n/2,A = 1/2) = Xn- That is, the chi-square distribution 
with n degrees of freedom, which is very important in statistics, is a particular 
case of the gamma distribution, too. 

The moment-generating function of X ~ G(a, A) is 

Mx{t) 
Jo 

(Ax) a-1 

ria) 
•dx 

X" 

n 
y={\~t)x 

a roo 

a) Jo 
A" 

r{ 
\a /»oo 

a)iX-t)-Jo ^''^"''"^^^ r{a){X-t)-
r{a) 

^ Agner Krarup Erlang, 1878-1929, was born and died in Denmark. He was first 
educated by his father, who was a schoolmaster. He studied mathematics and nat­
ural sciences at the University of Copenhagen and taught in schools for several 
years. After meeting the chief engineer for the Copenhagen telephone company, 
he joined this company in 1908. He then started to apply his knowledge of proba­
bility theory to the resolution of problems related to telephone calls. He was also 
interested in mathematical tables. 
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We then calculate 

A - ^ 

a 

for f < A 

E[X]=M'^{^) = ^ and ^[X^] ^ M^(0) = ^ ^ ^ 

so that 

V[X] = a(a + l) (^\^ ^ 
A2 V A J " A 2 

(3.163) 

(3.164) 

(3.165) 

We can transform a G(a,A) random variable X into an r.v. having a 
G(a, 1) distribution, sometimes called the standard gamma distribution^ by 
setting Y = XX. Indeed, we then have 

fY{y) = fx{y/X) 
d{y/X) 

dy 
My) 

The distribution function of Y can be expressed as follows: 

FY{y)=^-^ f o r t / > 0 

where 7(0, y) is the incomplete gamma function, defined by 

7(a,?/)= I t^-'e-'dt 
Jo 

We have the following formula (see p. 272 of Ref [1]): 

7(a, y) = a - i y«e -^M( l , l+a,y) 

(3.166) 

(3.167) 

(3.168) 

(3.169) 

where M(-, •, •) is a confluent hypergeometric function, defined by (see p. 504 
of Ref. [1]) 

^(" ' ' ' ' " ^ -^ + r+6(6TTy2! + 6(?, + l)(6 + 2)3!+' 

When a = n G N, the function 7(a, y) becomes 

7(n,y) =r{n) 

which implies that 

Fy(^) = l - ^ e - ^ | ^ f o r y > 0 

n—1 V. 

fc=0 

n - l 

fe=0 

(3.170) 

(3.171) 

(3.172) 



118 3 Markov Chains 

This formula can be rewritten as follows: 

P[Y <y]=^l- P[W <n-l] = P[W > n], where W - Poi(y) (3.173) 

Remarks, i) The formula (3.173) can be obtained by doing the integral 

I \^-'e~'dt {=i{n,y)) (3.174) 

by parts (repeatedly). 

ii) We will see in Section 5.1 that, in the case of a Poisson process (with rate 
A = 1), the random variable Y represents the time needed for n events to 
occur, whereas W is the number of events that occur in the interval [0, y]. In 
other words, the relation between Y and W is expressed as follows: the nth 
event of the Poisson process occurs at the latest at time y if and only if there 
are at least n events in the interval [0, y]. 

Example 3,3,3. Suppose that the duration T (in hours) of a major power fail­
ure is a random variable having a gamma distribution with parameters a — 
2 and A = 1/2 (so that the average duration is equal to four hours). What 
is the probability that an arbitrary (major) power failure lasts more than six 
hours? 

Solution. First, we have 

P[T > 6] = P[X > 3], where X - G(2,1) 

Then, by using the formula (3.173), we can write that 

P[X > 3] = P[Poi(3) < 1] = e-^(l + 3) = 4e-^ 2=̂  0.1991 

Remarks, i) It is important not to forget that T (or X) is a continuous random 
variable, while W is discrete. 

ii) When the parameter a is small, as in this example, we can simply integrate 
by parts: 

oo o-i X /-oo /•oo 2 - 1 - X roo 

poo 

= - xe -^ l^ - f / e-''dx = 3e-^ + e-^ = 4e-^ 

We have seen that the exponential distribution is a particular case of the 
gamma distribution. We will now show that the sum of independent exponen­
tial random variables, with the same parameter, has a gamma distribution. 
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Proposition 3.3.6. Let X i , . . . ,X„ be independent random variables. If Xi 
has an exponential distribution with parameter X, for all i, then 

Proof. Let 5 := Yl"=i ^i- We have 

Ms{t) = E[e' 

(3.175) 

'^HMxAt) 
i = l 

for t < A (3.176) 

Since [A/(A —î )]̂  is the moment-generating function of an r.v. having a G(a = 
n, A) distribution, the result is then obtained by uniqueness. Indeed, only the 
G(a = n, A) distribution has this moment-generating function. D 

The exponential and gamma distributions are models that are widely used 
in reliability. Another continuous random variable, which also generalizes the 
exponential distribution and which is very commonly used in reliability and 
in many other applications, is the Weibull ^ distribution. 

Definition 3.3.4. Let X be a continuous random variable whose probability 
density function is given by 

/ 3 - 1 

exp 
X — ^ 

u{x — 7) (3.177) 

We say that X has a Weibull distribution with parameters /3 > 0, 7 G R, 
and S > 0. 

Remark. The exponential distribution is the particular case where f3 = 1, 
7 = 0, and S = 1/A. Like the gamma distribution, this distribution has a 
shape parameter, namely /?. The parameter 7 is a position parameter, while 
(5 is a scale parameter. When 7 = 0 and S = 1, we have 

fx{x) = f3x^~'e-'' u{x) (3.178) 

This variable is called the standard Weibull distribution. Its distribution func­
tion is 

Fx{x) = l-e-'' f o r x > 0 (3.179) 

E. H. Wallodi Weibull, 1887-1979, was born in Sweden and died in France. In 
addition to his scientific papers on the distribution that bears his name, he is the 
author of numerous papers on strength of materials, fatigue, and reliability. 
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Because the exponential, gamma, and WeibuU distributions are very im­
portant in rehabiHty, we will end this section with the definition of the failure 
rate of a device, or a system, etc. 

Definition 3.3.5. The failure rate (or hazard rate^ of a device^ whose 
lifetime X is a continuous and nonnegative random variable, is defined by 

Remarks, i) We have that rx{t) ^ P[X e {t,t + dt]\X > t]/dt. That is, the 
failure rate rx{t), multiplied by dt, is approximately equal to the probability 
that a device being t time unit(s) old will fail in the interval {t^t-\- dt]^ given 
that it is functioning at time t. 

ii) To each function rx{t) there corresponds one and only one distribution 
function F x ( 0 . Indeed, we have 

from which we can write (since Fx(0) = 0) that 

frx{s)ds = r - S ^ i f l d s = - l n [ l -Fx (^ ) ] | * = -ln[l-Fxit)] 
Jo Jo l--tx{s) 

=^ Fx{t) = l-expi-f rx{s)ds\ (3.182) 

Particular cases 
l ) I fX-Exp(A) , then 

rx{t) = ^^^=X yt>0 (3.183) 

Note that this result is a consequence of the memoryless property of the expo­
nential distribution. We say that the parameter A is the rate of the exponential 
distribution. 

2) In the case of the standard gamma distribution, we may write that 

3) Finally, if X has a standard WeibuU distribution, we deduce from Eqs. 
(3.178) and (3.179) that 
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rx{t) = Pt^~' (3.185) 

In practice, the function rx{t) has more or less the shape of a bathtub. 
That is, at the beginning the failure rate decreases, then this rate is rather 
constant, and finally the failure rate increases (which is equally true for the 
death rate of humans). To obtain this kind of curve, we can consider a random 
variable that is a linear combination of three Weibull distributions: 

X := ci Xi +C2X2 + cs X3 (3.186) 

with Cr> 0, for all i, and ci-f C2 + C3 = 1 (called a mixed Weibull distribution), 
where Xi has a (3 parameter smaller than 1, X2 a /? parameter equal to 1, 
and Xs di (3 parameter greater than 1. 

3.3.2 Continuous-time Markov chains 

Let {X{t),t > 0} be a continuous-time and discrete-state Markovian [see Eq. 
(3.1)] stochastic process, and let r̂  be the time that the process spends in 
state i before making a transition to some other state. We may write that 

P[ri>s + t\ri>t]=^ Pin >s] V 5,f > 0 (3.187) 

Indeed, since the process is Markovian, the time it has spent in a given state 
does not influence the future. Consequently, whatever the time that the pro­
cess has already spent in i, it is as likely that it will remain there during at 
least s additional time units than if it had just entered this state. Eq. (3.187) 
means that the continuous random variable r̂  possesses the memoryless prop­
erty. As we already mentioned (see p. 110), only the exponential distribution 
possesses this property. We can therefore conclude that r̂  has an exponential 
distribution, with parameter denoted by z/̂ , which, in general, depends on 
state i. 

Moreover, the Markov property also implies that the next state visited, j , 
is independent of r^. Thus, when the process leaves state i, it enters state j 
(7^ i) with probability pij (by definition), where 

00 

j=0 

Pi^i = 0 V i and y^Pij = 1 V ?: (3.188) 

The Pij^s are the one-step transition probabilities of the embedded (or as­
sociated) discrete-time Markov chain. Note, however, that, contrary to the 
transition matrices in the preceding section, all the terms on the main (de­
creasing from top left to bottom right) diagonal of the matrix are necessarily 
equal to zero, by definition of the Pij 's in the present case. 

The process {X{t),t > 0} is called a continuous-time Markov chain, which 
is now defined formally. 
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Definition 3.3.6. Let {X{t)^t > 0} be a continuouS'time stochastic pro­
cess whose state space is N^ — { 0 , 1 , . . . } . We say that {X{t)^t > 0} is a 
continuous-t ime Markov chain if 

P[X{t + s)=j\ X{s) = i, X{r) = Xr,0<r< s] 

= P[X{t + s)=j\X{s)=i]=pij{t) (3.189) 

\/ s,t>0 and\/ iJ.XrGN^. 

Remarks, i) As in the case of the discrete-time Markov chains, we assume that 
the chains considered have stationary or time-homogeneous transition proba-
bihties. We could treat the general case and denote the conditional probability 
P[X(t) = j I X{s) = i] by Pij{s^ t), where t > s, but since the most important 
processes for the applications are indeed such that Pij{s,t) — Pij{t — s), it 
will not be necessary. 

ii) Continuous-time Markov chains are also known as Markov jump processes. 

iii) The function p^j(t) is called the transition function of the continuous-time 
Markov chain. 

iv) The probabilities Pij{t) correspond to the p j j s in discrete-time Markov 
chains. If there exist a t > 0 for which Pij{t) > 0 and a t* > 0 for which 
PjA^*) > ^1 ^'^ say that states i and j communicate. The chain is irreducible 
if all states communicate. 

v) We may write that 

oo 

J2PiAi) = l Vi (3.190) 
3=0 

since the process must be in some state at time t + s^ regardless of the state 
it was in at time s. 

vi) For the sake of simplicity, we will assume in the sequel that the state space 
of the Markov chain {X{t),t > 0} is, save indication to the contrary, the set 
{ 0 , 1 , . . . }. However, as in the discrete case, the state space can actually be a 
set Sx{t) C { 0 , 1 , . . . }, or, more generally, a finite or countably infinite set of 
real numbers. 

Example 3.3.4- Since all the elements of the main diagonal of the matrix P 
in Example 3.2.8 are equal to zero, we can consider this matrix as the transi­
tion matrix of the embedded discrete-time Markov chain of a continuous-time 
Markov chain. The fact that pij = 1/2, for all i ^ j , does not mean that all 
the random variables r̂  have the same parameter i/̂ , for i = 0,1,2. 

The following proposition is the equivalent, in the continuous case, of 
Proposition 3.2.1. 
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Proposition 3.3.7 (Chapman-Kolmogorov equat ions (2)). For all s,t 
nonnegative, we have 

oo oo 

PiA^ + s) = ^Pij(t)p^-,fc(5) = Y^Pij{s)Pj,k{i) (3.191) 
3=0 j=0 

Proof. The proof is similar to that of Proposition 3.2.1. D 

Example 3.3.5, In general, it is not easy to calculate the functions Pij{t) ex­
plicitly. T heorems 3.3.1 and 3.3.2 provide differential equations whose solu­
tions are these pij{tys. In the case of a Poisson process (see Section 5.1), we 
find directly that 

L-^*i:^^fori-i>0 

[ 0 for j - i < 0 

where A is the rate of the process. We indeed have, for k > i, 

tpiAt)PjMs) = tpiAt)pM = E ^ - ^ * | j ^ e - ^ ^ | ^ 

j—i ^^ ^ f j=0 ' 

\k-i 

where Eq. (*) is obtained by Newton's^'^ binomial theorem. 

Notation. We denote by pj{t) the (marginal) probabihty that the process 
{X{t),t > 0} will be in state j at time t: 

Pjit):=P[X{t)=j] (3.192) 

If ai := P[X{0) == i], for i = 0 , 1 , . . . , then we may write that 

oo 

i=0 

When P[X{0) = A:] = 1 for some k e { 0 , 1 , . . . }, we simply have that Pj{t) = 
Pkj{t). 
^^ Sir Isaac Newton, 1643-1727, was born and died in England. Newton was a scholar 

who is famous for his contributions to the fields of mechanics, optics, and astron­
omy. He is one of the inventors of differential calculus. He also wrote theological 
books. 
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3.3.3 Calculation of the transition function Pijit) 

First, if state i is absorbing, which means that the parameter Ui of the random 
variable r̂  is equal to 0, we may write that 

/.\_c _ J 1 if i = j (3.194) 

for all ^ > 0. In the case of nonabsorbing states, we will obtain two systems 
of differential equations, which, when we can solve them, give us the value of 
Pij{t), for all states z, j G { 0 , 1 , . . . }. 

Remark. It can be shown that the pij{tys are continuous functions of f, for 
every pair (i, j ) . 

Definition 3.3.7. The quantities 

^i,j'=i^iPi,j V i 7̂  j G {0 ,1 , . . . } (3.195) 

are the infinitesimal parameters or instantaneous transition rates of 
the continuous-time Markov chain {X{t),t > 0}. 

Remark. We have 

^ J^ij = ^i Y^P^d = ^i (because pi^i = 0) 

We set 

It follows that 

ViA. = -l^i 

(3.196) 

(3.197) 

j = 0 

Definition 3.3.8. The matrix 

0 
1 

G = 2 

^0,0 i^O,l ^0,2 • • • 

^1,0 ^1,1 ^1,2 . . • 

^2,0 ^2,1 ^2,2 • • • 

(3.198) 

(3.199) 

is known as the generating matrix of the continuous-time Markov chain 
{X{t), t > 0}. 

Remarks, i) If we know the quantities Uij, for all i 7̂  j , then we can calculate 
the rates z/̂  and the probabilities pij from Eq. (3.195). Moreover, we will show 
in this section that the Pij{tYs depend only on the i/ '̂s and the pj,j's, from 
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which one derives the name of generator of the Markov chain for the set of all 

ii) The matrix G corresponds to the transition matrix P for a discrete-time 
Markov chain. However, note that the ^'i,j's are not probabilities and that the 
sum of the elements of each row of G is equal to 0 rather than to 1. 

Notation, If the function g{x) is such that 

liin ^ := 0 (3.200) 
x-^O X 

then we write that g{x) = o{x). 

A function g{x) that "is" o{x) must therefore tend to 0 more rapidly than 
the identity function f{x) = x when x -^ 0. Thus, gi{x) := x^ is o{x)^ while 
92{x) := y/x is not o{x). Moreover, if gi{x) = o(x), for i = 1 , . . . , n, then 

n 

J2cigi{x) = o{x) V Q G R (3.201) 
1=1 

Proposition 3.3.8. The probability that a continuous-time Markov chain, 
{X{t),t > 0}, makes two or more transitions in an interval of length 5 is 
o{S). 

Proof. We know that the time r̂  that the process spends in state i has an 
exponential distribution with parameter z/̂ , for i = 0 , 1 , . . . . Suppose first 
that Ui = 1/ y i and, without loss of generality, that X(0) = 0. Let N be the 
number of transitions of the Markov chain in the interval [0, S]. We have 

P[N > 2] = 1 - P[N = 0]- P[N = 1] 

= 1 - P[ro > 5] - V / fro{u)po.kP[rk >6-u]du 
k=i^^ 

fc=i ' -̂ 0 
OO 

= 1 - e-^* - Y^ po,k €"'^1^5 = 1 - e-'^^(l + uS) (3.202) 

Using the series expansion 

e^ = l + a ; + | j - + . . . = l + x + oix) (3.203) 

we may write that 

P[N>2] = 1- e-"\l +uS) = l-{l-u5 + o(^)](l + uS) = 0(6) (3.204) 
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Now, if the z/̂ 's are not all equal, it suffices to replace each i/i by u := 
max{z/o, 1^1,-"} to prove the result. Indeed, since E[Ti] = l/i/^, the larger ui 
is, the shorter the average time that the process spends in state i is. But, since 
for the largest Ui we can assert that P[N > 2] = o{5), this must hold true 
when Ui < i^y i. D 

Proposition 3.3.9. We may write that 

V i , j G { 0 , l , . . . } (3.205) ^ij = -^Pidi^) 
t=o 

Proof. Suppose first that i = j . We know, by the preceding proposition, that 
the probability of two or more transitions in an interval of length 5 is o{6). It 
follows that 

p,^,{6) = P[Ti >S]+ o{5) = e-^^^ + o{S) = 1-Ui6 + o(5) (3.206) 

Since Pi,z(0) = 1, we may write that 

PiA^) - PiA^J = -^i^ + o{o) <=^ --^—-z—• = -Ui + - J - (3.207) 

Taking the limit on both sides as S decreases to 0, we obtain 

Pi,M = -^i = ^i,i (3-208) 

When i ^ j , we have that Pi,j(0) = 0. Then 

Vi,j{.S) = P[Ti < 5] pij + o{S) = (1 - e-''^)pi,j + 0(6) = Vi 6pij + 0(5) 
(3.209) 

so that 

p;,,.(0) = IJmP'''^^^ ~P''^^^^ = Vip^,^ + hm ^ = u,pi,i = v,,i D (3.210) 

We now give the first system of differential equations that enables us to 
calculate the pij{tys. 

Theorem 3.3.1 (Kolmogorov backward equations). For all states i, j 
G N^, and for all t >0f we have 

oo 

k=0 

Proof. We decompose the probabihty pij {t) into two incompatible cases: 

Pi jit) = P[Ti < t,X{t) = j I X(0) = i] + P[n > t,X{t) = j I X{0) = i] 
(3.212) 
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Since P[Ti > t] = e~'̂ ^*, we may write that 

Pin > t, X{t) - j I X(0) = i]= e-'''Hij (3.213) 

Next, we have 

P[Ti<t,X{t)=j\X{0)=i]= J iyie-^^'(Ylm,kPkAt-s)ys (3,214) 

so that 

PiA^) = e-'^'Hij + / ^ie-''''(Y.ViMPkA'^ - s)]ds (3.215) 

Remark. This integral equation allows us to state that the pij{tys are continu­
ous functions of t^ as we already mentioned above. It follows that the function 
that we integrate is a continuous function as well. 

Finally, to obtain the Kolmogorov backward equations, it suffices to first 
rewrite Eq. (3.215) as follows: 

PiA^) = e-''''Sij + Uic-^^' I e''''(Y,Vi^kPkA^)\du (3.216) 

and then to differentiate this last equation: 

^ • W =̂  -i^i{e--''5ij + u,e-^'' j e^^"('X^p,,)tPfc,,(i^)V^| 

= -^iPiA^) +^^X]p^,/cP/eJ(0 = ^i,iPhj{^) -^"^^hk Pkj{t) 
k^i ky^i 

oo 

k=0 

Remark. If we set t = 0 in the Kolmogorov backward equations, we obtain 

oo 

Pi J (^) = J2 ^ '̂̂  P^^^ (^) ^ ^̂ '̂ ' P^J (0) = ^id (3.218) 
k=0 

which confirms the result in Proposition 3.3.9. Actually, from Proposition 
3.3.9, we can show directly the validity of the Kolmogorov backward equations. 
Indeed, we deduce from the Chapman-Kolmogorov equations that 
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7 OO , 

^ P i j ( s +1) = E ^^Pi,kis)PkAi) V 5,i > 0 (3.219) 

OO 

=^ KiW = E<feW^^'^W (with 5 = 0) 
/c=0 

OO 

fe=0 

where we assumed, in the first equation, that we can interchange the derivative 
and the summation. 

The second system of differential equations that we can use to calculate 
the pij{tys is valid when, as in the remark above, we can interchange the 
derivative and the summation when we differentiate the Chapman-Kolmogo-
rov equations. Now, this interchange is allowed when the state space of the 
Markov chain is finite and, also, in particular, for the birth and death processes^ 
which will be defined in the next subsection. 

Theorem 3.3.2 (Kolmogorov forward equations). Under the condition 
mentioned above, for all i^j G N^, and for any t>0, we have 

OO 

fc=0 

Proof. We have, under the condition in question, 

7 OO , 

^ft,,(i + s)^ J2PiMt) j;PkM V s,t > 0 (3.221) 
k=0 

OO 

if s=0 

/c=0 
OO 

by Proposition 3.3.9. D 

Remarks, i) Since there is a Kolmogorov equation for every pair ( i , j ) , the 
two systems of differential equations comprise m? equations each, where m 
is the number of elements in the state space of the Markov chain {X(t), 
t > 0} (which can be infinite). Thus, obtaining an explicit solution for the 
probabilities Pi,j{t) from these systems of equations is generally very difficult. 
In the next subsection, we will calculate the pij{tys when the state space has 
only two elements. 

ii) In certain particular cases, for example, in the case of the Poisson pro­
cess, we can determine the pij{tys without having to solve the Kolmogorov 
differential equations. 
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Example 3,3,6. Suppose that the Markov chain {X(t),i > 0} has state space 
{ 0 , 1 , . . . }, and that the process, from state 0, can only move to state 1. That 
is, PQI = \. We then have 

r -z/Q if A: = 0 
ô,fc = < ^0 if fc = 1 

[ 0 otherwise 

It follows that the Kolmogorov backward equation for the pair (0, j ) is given 
by 

Po, jW=-^obi , jW-po, j ( t ) ] 

If state 0 is absorbing instead, we have the following trivial result: 

Po,o(^) == 1 and poj(0 = 0 for any j ^{) 

Note that since the two functions are constant, the differential equation above, 
which becomes Po^j(t) — 0 (since ẐQ — 0), is satisfied. Conversely, the solution 
of the differential equation Po,j(0 = 0 is Poj{t) = c, and the fact that Po,i(0) = 
Soj, that is, the initial condition^ enables us to determine the value of the 
constant c. 

3.3.4 Particular processes 

A continuous-time, two-state Markov chain 

The first particular case that we consider is that for which the state space of 
the continuous-time Markov chain {X{t),t > 0} is the set {0,1}. We assume 
that these states are not absorbing, so that they communicate. Since the 
process, from state 0 (respectively, 1), can only move to state 1 (resp., 0), we 
have that po,i = Pi,o = 1- The generating matrix of the chain is given by 

G = (3.222) 

from which we deduce that the four Kolmogorov backward equations are, for 
any t > 0, 

Po,o(0 = -^oPo,o(^) + ^oPi,o(^) 

(2) 

(3) 

Pi,oW == ^1 Po,o(0 - ^1 i^i,o(^) 
(4) 

Pi,i(^) "" ^iPo,i(0 - ^iPi , iW 

Moreover, we have the following initial conditions: 
Pi,j(0) = 5ij for i , j = 0,1 

(3.223) 

(3.224) 
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Since 

Po,o(t) +Po,iW =Pi,oW +Pi , iW = 1 (3.225) 

it is sufficient to consider Eqs. (1) and (3) of the system (3.223). We deduce 
from these equations that 

Po,oit)+p'i,oit) = i''^-^o)\po,o{t)-Pi,oit)] (3-226) 

Thus, if 1^0 = ^1^ we have 

Po,oW+Pi,oW = 0 => Po,o(0+Pi,oW = c (3.227) 

a constant. The initial conditions (3.224) imply that c = 1. Eq. (1) can there­
fore be rewritten as follows: 

Po,o(0 = -^obo,o(0 - 1 + Po,o(0] '^=> Po,o(0 + 2i/oPo,o(0 = ^0 
(3.228) 

Multiplying on both sides by ê '̂̂ *, we may write that 

| (e2-»*po,o(0)=^oe2 ' ' " ' (3.229) 

The general solution of this ordinary differential equation is 

e^'"''po,o{t) = \e^'"'' + Co (3.230) 

where CQ is a constant. Making use of the condition po,o(0) = 1? we find that 
Co = 1/2, so that 

po,o(t) = ^ (1 + e-2-«*) for t > 0 (3.231) 

From this function, we can calculate the other three functions Pij{t). 

Remark. The general solution of the ordinary differential equation (o.d.e.) 

F\x)+cF{x) = Gix) (3.232) 

where c is a constant, is (for a: > 0) 

F{x) = e-^^ (F{0) 4- r e^yCiy)dy) (3.233) 

When UQ^ vi, subtracting Eq. (3) from Eq. (1) in the system (3.223), we 
find that 

Po,o(*) - Pi,o(*) = -(t 'o + ^^1)^0(0 - Pi,o(i)] (3-234) 
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Using the preceding remark with F{t) := po,o(^) — Pi,o(^) and G{t) = 0, we 
may write that the solution of this o.d.e. is 

Po,o(t) - Pi,o{t) = bo,o(0) - Pi,o(0)]e-('^«+'^^'* = e-(-o+.i)t (3.235) 

Substituting into Eq. (1), we obtain 

P'oAt) = -i/oe-<''°+'^')* (3.236) 

from which we deduce that 

f p'oAs)ds = - [ v'oe-^-0^''^^'ds 
Jo Jo 

<=^ Pofiit) = Po,o(0) - ^ — ( l - e-(-"+''^>*) (3.237) 

That is, 

po 0 W = —^^^- + -i^5_e-(^o+^i)t V ̂  > 0 (3.238) 
1^0 + ^1 J^0+ ^l 

Note that if VQ — ui in this formula, then we retrieve the formula (3.231). 

Next, by using Eq. (3.235), we find that 

ViA"^) = Vo o{t) - e-(^°+^^)^ = - ^ ! l_e-(^o+^i)t V t > 0 

(3.239) 

Finally, Eq. (3.225) implies that 

PoAt) = 1 - Po,o{t) = - ^ ^:o_e-(^o+.i)t V t > 0 (3.240) 
1^0 + ^1 î O + Ul 

and 

pii(f) = l _ p i o ( ^ ) = . - J ^ o _ + _ZL_e-(^o+^i)* V t > 0 (3.241) 

As in the discrete case, an important problem (which will be treated in the 
next subsection) is that of determining, if it exists, the limiting probability 
limt^cyo Pi,j{t)' Here, we easily find that 

if J = 0 and i = 0,1 
^0 + ^ 1 

lim p,j{t) - <; (3.242) 
if j = 1 and i = 0,1 

1^0 H-^i 

Note that the limit exists and does not depend on the initial state i. 
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Pure birth processes 

Definition 3.3.9. Let {X{t),t > 0} be a continuous-time Markov chain 
whose state space is the set {0^1,..,}. If 

Pi,i+i = l /or i = 0 , 1 , . . . (3.243) 

the process is called a pure birth process. 

Remarks, i) A pure birth process is thus a continuous-time Markov chain for 
which transitions can only be made from an arbitrary state to its right-hand 
neighbor. It is a particular case of the birth and death processes^ which will be 
treated further on. 

ii) We can also define a pure birth process by setting 

^iJ = ( n ' l r ' - ^ ^ (3.244) 
'̂  \ 0 otherwise ^ 

for a lHT^jG { 0 , 1 , . . . } . 

The Kolmogorov forward equations for a pure birth process are the fol­
lowing: 

PiAt)-~''iPiAt) (3-245) 

and 

p^jit) = lyj.ipij^iit) - UjPijit) if j = i + l , i + 2 , . . . (3.246) 

P r o p o s i t i o n 3 .3 .10 . The function Pij{t) for a pure birth process is given, 
for any t>0 and for all i G { 0 , 1 , . . . } , by Pij{t) = 0 if j < i, and 

p"~'̂  if i ^̂  i 

Uj-ie ^^M e''^'pij-.i{s)dsifj > % 

Proof. Since the process can move only to the right, we indeed have p i j (t) = 0 
if j < i . 

Next, let F be the following event: the process makes no transitions in the 
interval [0,t]. Since the process cannot move backward, we may write that 

Pi,i{t)^P[F] = P[Ti>t] = e-''^' (3.248) 

Finally, by (3.233), the solution of Eq. (3.246) is 

Pi,j{t) = e-"^* |p,,j(0) + Vj^r j e''i'pi,j-i{s) ds\ (3.249) 
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and the result follows from the fact that Pi,j{0) = 0, for j = i + 1 , i + 2 , . . . . D 

From the formulas (3.247), we can calculate Pij{t) recursively. For in­
stance, we have 

Jo 

Jo Jo 

(3.250) 
' (e-^^*-e-^^+^*)ifi/,^i/,+i 

V i^i-\-i — i^i 

^-xt {Xtl 
2 

(3.251) 

Particular cases 
1) Poisson process. This process is obtained by setting Ui = A, for all i G 
{0 ,1 , . . . } . To obtain its transition function Pij{t), we can use Eqs. (3.247) 
and (3.250), with Ui = Vi^i = A. We have 

Pi4+i{t) = A te~^' ==^ Pui+2{t) = \e-^' [ e^'X se-^'ds = 
Jo 

Proceeding recursively, we obtain the following general formula: 

Pi,i-\-k{t) = ^^e'^' for t > 0 and A: = 0 , 1 , . . . (3.252) 

That is, 

Pi,i+k(t) = P[Foi{Xt) = k] (3.253) 

The parameter A is called the rate of the process. 

We can also obtain the preceding formula without making use of the Kol-
mogorov equations, proceeding as follows: since Ui = A, the random variables 
Ti all have an exponential distribution with parameter A. Moreover, they are 
independent, by the Markov property. It follows, by Proposition 3.3.6, that 

5 : = r , + . . . + r,+fe_i-G(fc,A) V A; > 1 (3.254) 

Then, we may write that 
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for i, A: G { 0 , 1 , . . . } (since Pi^i{t) ^^'=^^ e"^*) and V t > 0. 

2) Yule^^ process. This process, studied by Yule in the framework of the 
theory of evolution, can be interpreted as follows: we consider a population 
whose members cannot die and such that each member, independently of the 
others, gives birth to descendants according to a Poisson process with rate A. 
It follows that 

i/i = a V i > 0 (3.256) 

Indeed, when X{t) = i, the time r̂  that the process spends in this state is 
given by 

r i = m i n { X i , . . . , X J (3.257) 

where the random variables X i , . . . ,Xi are independent and all have an ex­
ponential distribution with parameter A. By Proposition 3.3.5, we may write 
that Ti ^ Exp{ui = iX). 

Remark. Note that if X(0) = 0, then the process remains in this state forever. 

We can calculate the transition function of the process in various ways. 
We find that 

p^j{t) = f{ ~ J)e-^^*(1 - e-^y-' if i > i > 1 (3.258) 

To check this result, we use the fact that Eq. (3.246) becomes 

PiA^) = U-^)^Pij-i{t)-jXpiAi) fo r i = i + l,z + 2 , . . . (3.259) 

Next, from the formula (3.258), we may write that 

p,,,_i(t) = ^ ( ^ - ^ ) p , , , ( i ) (3.260) 

Moreover, we calculate [also from (3.258)] 

p'.jit) = -iXpijit) + ij - l)Ae-^*Pij-i(i) (3.261) 

We have 

- iXpi,j{t) + {j - l)Ae-^Vij-i(*) = (i - l)\Pi,j-i{t) - 3\Pi,j{t) 

<=^ {j-l){l-e-^')pij_i{t) = {j-i)pij{t) (3.262) 

^̂  George Udny Yule, 1871-1951, was born in Scotland and died in England. He 
first obtained an engineering degree. Next, he became interested in the field of 
statistics and wrote important papers on regression and correlation theory. His 
book Introduction to the Theory of Statistics, published for the first time in 1911, 
was very successful. 
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which holds true by Eq. (3.260). 

Finally, the function given in (3.258) does indeed satisfy the initial condi­
tion 

Pi,j{0) = 5ij (3.263) 

Remark. When i = 1, the formula (3.258) becomes 

p^.{t) = e-^\l - e-^y-^ if i > 1 (3.264) 

We can then write that 

p^j{t) = P[Geom{p := e"^*) = j] if j > 1 (3.265) 

Now, when X{0) = i > 1, it is as if we added i independent random variables, 
X i , . . . ,Xi, all of which have a geometric distribution with parameter p = 
e~^*. We can show that such a sum S has a negative binomial or Pascal^^ 
distribution with parameters i and p, whose probability mass function is given 
by 

P[S = 3]={^.~_^^p'{^-py-' fori = i,z + l , . . . (3.266) 

The formula for Pij{t) thus follows directly from that for Pij{t). 

Birth and death processes 

Definition 3.3.10. If the instantaneous transition rates Uij of the continuous-
time Markov chain {X{t),t > 0} are such that 

^ij=^ if\j-i\>l (3.267) 

the process is said to be a birth and death process. 

Definition 3.3.11. The parameters 

K '= J^i,i+i (for i > 0) and iii := i^i^i-i (for i>l) (3.268) 

are called, respectively, the birth and death rates of the birth and death 
process. 

^^ Blaise Pascal, 1623-1662, was born and died in France. He is one of the founders 
of the theory of probability. He was also interested in geometry and in physics, 
in addition to publishing books on philosophy and on theology. 
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Remark. Other terms used to designate the parameters Â  and jii are the fol­
lowing: growth or arrival rates, and mortality or departure rates, respectively. 

From the instantaneous transition rates Uij, we can calculate the param­
eters Ui of the random variables TJ, as well as the probabilities pij^ for all 
states i and j in the set { 0 , 1 , . . . }. We have 

^0 = -^0,0 = ^0,1 = Ao (3.269) 

and 

J^i = -i^i4 = J^i,i-^i + v'i.i-i = Xi-{- jjii if z > 1 (3.270) 

In the case when the state space is the finite set { 0 , 1 , . . . , m}, we have 

Um = —J^m,m = ^m,m-l — /^m (3.271) 

If Â  = //̂  = 0, then state i is absorbing. For all nonabsorbing states 
2 G { 0 , 1 , . . . }, we have that po,i = 1 and, using the formula (3.195), 

p,,,^i . . !^hi±l = - ^ = 1 - p , ^ , _ , iii>l (3.272) 
J^i Ai 4- iJ^i 

Remarks, i) A birth and death process is a continuous-time Markov chain for 
which transitions, from state i, can only be made to i — I (if i > 0) or i + 1. 
In a short interval, of length 5, the probability that the process moves from 
state i to i + 1 (respectively, i - 1) is equal to A^̂  + o{6) (resp., jiiS 4- o{6)). 
Thus, 1 — (Ai -f- iii)S + o{5) is the probability that the process will still be (or 
will be back) in state i after 6 unit(s) of time. 

ii) In many applications, the state of the process at a given time instant is 
the number of individuals in the system at this time instant. A birth and 
death process may then be interpreted as follows: when X{t) = i, the waiting 
time until the next arrival is a random variable Xi having an Exp(Ai) distri­
bution and which is independent of the waiting time Y ,̂ having an Exp(/Xi) 
distribution, until the next departure. We then have TQ = XQ ~ Exp(z/o = AQ) 
and 

n = min{Xi, Yi} - Exp{ui = Â  + /a) for i > 0 (3.273) 

Moreover, we indeed have po,i = 1 and 

p,,,+i = P[Xi < r,] = P[Exp(A,) < Exp(/i,)] '=' T 4 ^ '^' > 0 (^-2^4) 

Similarly, 

Pi,i-i = Y ^ i f t > 0 (3.275) 
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iii) A pure birth process is the particular case where the death rates /x̂  are 
all equal to zero. A process for which Â  = 0 for all i is called a pure death 
process. 

Particular cases 

1) The continuous-time Markov chain whose state space is the set {0,1}, 
considered at the beginning of this subsection (see p. 129), is an example of a 
birth and death process, for which 

Ao = 1^0 and /ii = ui (3.276) 

(all the other birth and death rates being equal to zero). 

2) Suppose that we modify the Yule process as follows: after an exponential 
time with parameter A, an individual either gives birth to a descendant, with 
probability p, or disappears from the population, with probability 1 — p. Let 
X{t) be the number of individuals in the population at time t. The process 
{X{t)^t > 0} is now a birth and death process whose birth and death rates 
are given by 

Xi = ipX and jii = i(l — p)A for i > 0 (3.277) 

If we assume rather that, when an individual gives birth to a descendant, 
there is a probability p (respectively, I — p) that this individual remains in 
(resp., disappears from) the population, then the process {X{t)^t > 0} is no 
longer a continuous-time Markov chain. Indeed, suppose that X{0) = 1. We 
may write that 

oo 

P[ri <t] = ^ p ( l - p ) ^ - i p [ X i + . . . + Xfc < ]̂ (3.278) 
k=l 

where the X^'s are independent random variables that all have an exponen­
tial distribution with parameter A. This result follows from the fact that we 
perform independent trials for which the probability of success, that is, the 
case when the individual remains in the population, is equal to p. Since the 
random variable TI does not have an exponential distribution, {X{t), t > 0} is 
not a continuous-time Markov chain anymore. Actually, ri is an infinite linear 
combination of independent gamma distributions. 

3) The queueing model M/M/s. This process will be studied in detail 
in Section 6.3.1. We suppose that customers arrive at a system according 
to a Poisson process with rate A. There are s servers, but the customers 
form a single queue. The service times are independent and have an Exp(/i) 
distribution. We have 

Â  = A V z > 0, iJ^i = ijj. if 1 < i < s, and jjti = s/j. if i > s (3.279) 
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(since if all the servers are occupied, then the departure rate from the system 
is equal to s//, for any number of persons in the system). 

Remark. M means that the waiting (and service) times are exponential, thus 
Markovian. 

To end this subsection, we give the Kolmogorov backward and forward 
equations for a birth and death process. First, the backward equations are 

P'ojt) = -AoPojW + AoPijW (3.280) 

pij{tf^''niPi-i,j{t) - {Xi + fii)Pi,j{t) + XiPi+ijit) (3.281) 

In the case of the Kolmogorov forward equations, we find that 

Pi,oit) = ^llP^At)-^oPiAt) (3-282) 

P L ( t ) " = ° A i - i P i j - i ( 0 - i^j+IJ^j)PiAt) + f^HiPi,J+iit) (3-283) 

3.3.5 Limiting probabilities and balance equations 

Since it is generally very difficult to solve explicitly the Kolmogorov equations 
to obtain the transition functions Pij{t), we must often content ourselves with 
the computation of the limiting probability that the process will be in a given 
state when it is in equilibrium. To obtain these limiting probabilities, we can 
try to solve a system of linear equations called the balance equations of the 
process. 

Definition 3*3.12, Let TTQ, TTI, ... be nonnegative real numbers such that 

oo 

'£nj = l (3.284) 

If the equation 

oo 

J2^iPiA^)=7rj (3.285) 

is satisfied for a// j G { 0 , 1 , . . . } and for all t >0, then TT := (TTQ, TTI , . . . ) is a 
stationary distribution. 

The expression stationary distribution is used because if we assume that 

P[X{0)=j]=7rj f o r a l l j G { 0 , l , . . . } (3.286) 

then we have 

oo 

P[X{t) - i] = ^ P[X{t) = j I X{0) = i]P[X{0) = i] 
i=0 
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oo 

= Y.PiAt)^i^' = '^^J (3-287) 

That is, 

P[X{t)=j]=P[X{0)=j]=7rj (3.288) 

V j G {0 ,1 , . . . } a n d V t > 0 . 

As in the discrete case, we can define the notion of recurrence of a state. 

Notation. We denote by Ti^i the time elapsed between two consecutive visits 
to state i of the continuous-time Markov chain {X{t)^t > 0}. 

Definition 3.3.13. We say that state i is recurrent if P[Ti^i < oo] = 1 and 
transient if P[Ti^i < oo] < 1. Moreover, let 

fH,i := E[Ti^i] (3.289) 

The recurrent state i is said to be positive (respectively, nullj recurrent if 
fii^i < 00 (resp., — 00J. 

We can prove the following theorem. 

Theorem 3.3.3. / / the continuous-time Markov chain {X{t)^t > 0} is ir­
reducible and positive recurrent, then it has a unique stationary distribution 
TT = (TTO,TTi,...), where TTJ is the limiting probability 

7Tj := lim pij{t) for all j G { 0 , 1 , . . . } (3.290) 
t—^oo 

Remarks, i) Note that the TTJ'S do not depend on the initial state i. The 
quantity TTJ is also the proportion of time that the Markov chain spends in 
state J, on the long run. 

ii) If the Markov chain is transient or null recurrent, then it does not have a 
stationary distribution. 

iii) Contrary to the discrete-time Markov chains, a continuous-time Markov 
chain cannot be periodic. This follows from the fact that the time the pro­
cess spends in an arbitrary state is a random variable having an exponential 
distribution, which is continuous. Consequently, if the limiting probabilities 
exist, then we say that the Markov chain is ergodic. 

iv) We find that 

Kj = ~ ^ - f o r a l l j G 5 x ( t ) - { 0 , l , . . . } (3.291) 
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where the state space Sx(t) niay, of course, be finite, but must comprise more 
than one state. The interpretation of this result is the following: uj^ is the 
average time that the process spends in state j on an arbitrary visit to this 
state, and JJ,JJ is the average time between two consecutive visits to state j , 
so that t/fjLjj is the average number of visits to state j over a period of length 
f, where t is large. Thus, over this long period of time, the proportion of time 
during which the chain is in state j is effectively given by the ratio ẑ J" VA^JJ* 

v) If state j is absorbing, we consider it as positive recurrent The theorem 
applies even in the case when the state space contains a single state, say 0. 
We then have, trivially, that TTQ = 1. 

Now, if we differentiate both sides of Eq. (3.285) with respect to t, we 
obtain 

Y^nip[j{t)=0 V j G {0 ,1 , . . . } and V t > 0 (3.292) 
i=0 

With t = 0, we may write, by Proposition 3.3.9, that 

oo 

Y.7riUij=0 V i G { 0 , l , . . . } (3.293) 

Remarks, i) If the number of states is finite^ we can indeed interchange the 
derivative and the summation. However, when the state space is infinite, this 
interchange, though allowed here, must be justified. 

ii) It can be shown that Eq. (3.293) is satisfied if and only if Eq. (3.285) is 
also satisfied. 

Since i^jj = —Vj^ we can rewrite Eq. (3.293) as follows: 

^j^j -Y.'^i ^i,3 V J € { 0 , 1 , . . . } (3.294) 

Definition 3.3.14. The equations above are called the balance equations 
of the stochastic process {X{t)^t > 0}. 

Remarks, i) We can interpret the balance equations as follows: the rate at 
which the process leaves state j must be equal to the rate at which it enters 
state j , for all j . Now, the rate at which transitions occur, on the long run, 
from state i to any other state j ^ i of the Markov chain is given by TTii^i^j^ 
since TT̂  is the proportion of time that the process spends in state i during the 
period considered, and i^ij is the rate at which, when it is in state i, it enters 
j . Given that the process spends an exponential time with parameter Uj in 
state j , TTjUj is the departure rate from j , and the sum of the terms TTI uij 
over all states i ^ j is the arrival rate to j . 
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ii) The Umiting probabiUties TTJ can be obtained by solving the system (3.294), 
under the condition J^JLo'^J — ̂  N ^ (3.284)]. 

We will now obtain a general formula for the TTJ'S when {X{t)^t > 0} is a 
birth and death process. First, we give a proposition that tells us when the 
TTj's do exist. 

Proposi t ion 3.3.11. Let {X{t),t > 0} be an irreducible birth and death pro­
cess, whose state space is the set { 0 , 1 , . . . }. We set 

^^^yXoXi'"X,.^ ^^^ g , ^ y - / ^ i f - / ^ ^ (3.295) 
^ /il/i2---/ife ^^XiX2'"Xk 

The Markov chain is 

positive recurrent if Si < oo 
null recurrent if Si = S2 = oo ^ (3.296) 

transient if S2 < 00 

Remark. If the state space of the irreducible birth and death process is finite, 
then we necessarily have that 5i < 00, so that the Markov chain is positive 
recurrent. 

With the help of this proposition, we can prove the following theorem. 

Theorem 3.3.4. For an irreducible and positive recurrent birth and death 
process {X{t),t > 0}, whose state space is the set { 0 , 1 , . . . } , the limiting 
probabilities are given by 

- • - "' for 3=0,1,... (3.297) 

where 

i 7 o : - l and iJ . :^ M i l l l V i forj>l (3.298) 

Proof. In the case of a birth and death process, the balance equations become 

state j departure rate from j = arrival rate to j 

0 AoTTo = /XiTTi 

1 (Ai + fll)7Ti = /X27r2 + AoTTo 

k (>1) {Xk -f M/c)7r/c = W+i^fc+1 + Xk-i7Tk-i 

Adding the equations for j — 0 and j = 1, then for j = I and j = 2, etc., we 
find that 



142 3 Markov Chains 

^'j^j = /^j+iTTj+i V j > 0 

which impUes that 

TTi = 
Xj-i'' • AIAQ 

-TTo 

Using the fact that ^ ° l o '^j — ^^ ̂ ^^ obtain 

(3.299) 

(3.300) 

TTO '+E 
k = l 

no 
EfcLo^fc 

(3.301) 

so that 

nj 
HkLo^k 

for j = 0 , 1 , . . . (3.302) 

Finally, it can be shown that TT = (TTQ, TTI, . . . ) is a stationary distribution of 
the Markov chain {X{t), t > 0}. By Theorem 3.3.3, this distribution is unique. 
Thus, the limiting probabilities are indeed given by the preceding equations. 

D 

Remark. We can rewrite the formula (3.297) as follows: 

n, 
l + 5i 

for i = 0 , 1 , . . . (3.303) 

where Si is defined in (3.295). 

Example 3.3.7. In the case of the two-state, continuous-time Markov chain 
(see pp. 129 and 137), we have 

Si 
Ao _ i^ 
Hi ui 

from which we deduce that 

TTO = 
1^1 

1 + ^ i/0 + ^1 
1 - TTi 

Note that these results correspond to those given by Eq. (3.242). 
When 1/0 = 1/1, we have that TTQ = TTI = 1/2, which had to be the case, by 

symmetry. 
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3.4 Exercises 

Section 3.2 

Quest ion no. 1 
We suppose that the probabihty that a certain machine functions without 

failure today is equal to 
0.7 if the machine functioned without failure yesterday and the day before 
yesterday (state 0), 
0.5 if the machine functioned without failure yesterday, but not the day before 
yesterday (state 1), 
0.4 if the machine functioned without failure the day before yesterday, but 
not yesterday (state 2), 
0.2 if the machine did not function without failure, neither yesterday nor the 
day before yesterday (state 3). 
(a) Find the one-step transition probability matrix of the Markov chain asso­
ciated with the functioning state of the machine. 

(b) Calculate p^l^ that is, the probability of moving from state 0 to state 1 
in two steps. 

(c) Calculate the average number of days without failure of the machine over 
the next two days, given that the Markov chain is presently in state 0. 

Quest ion no. 2 
Let {Xn, n = 0 ,1 , . . . } be a Markov chain whose state space is the set 

{0,1} and whose one-step transition probability matrix P is given by 

P = 
1/2 1/2 

P 1 - P 

where 0 < p < 1. 

(a) Suppose that p = 1 and that XQ = 0. Calculate J5 [̂X2]. 

(b) Suppose that p = 1/2 and that P[Xo = 0] = P[Xo = 1] = 1/2. We define 
the continuous-time stochastic process {Y{t)^ ^ > 0} by Y(t) = tX[t]^ for ^ > 0, 
where [t] denotes the integer part of t. 

(i) Calculate Cy(^,t + 1). 
(ii) Is the stochastic process {Y{t),t > 0} wide-sense stationary? Justify. 
(iii) Calculate hmn-^oo P[^n = 0]. 

Quest ion no. 3 
We consider a Markov chain {Xn,n = 0 ,1 , . . . } having states 0 and 1. 

On each step, the process moves from state 0 to state 1 with probability p G 
(0,1), or from state 1 to state 0 with probability 1 - p. 

(a) Calculate pH -
(b) Suppose that Xo = 0. Calculate the autocorrelation function Rxi^^ 13). 
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Quest ion no. 4 
The one-step transition probabiUty matrix P of a Markov chain whose 

state space is {0,1} is given by 

1/2 1/2 
0 1 

Calculate E[X2] if P[Xo = 0] = 1/3. 

Quest ion no. 5 
Let Yi,Y2,... be an infinite sequence of independent random variables, 

all having a Bernoulli distribution with parameter p = 1/3. We define Xn = 
S^=i Yky for n = 1,2, Then (see p. 85) the stochastic process {Xn, n = 

1,2,... } is a Markov chain. Calculate PQ 2-

Quest ion no. 6 
Let {Xn, n = 0 , 1 , . . . } be a random walk for which 

2 1 
PM+1 = 3 and pi^i_i = - for i G { 0 , ± 1 , ± 2 , . . . } 

Calculate E[X2 | Xo = 0]. 

Quest ion no. 7 
Let {Xn, n = 0 ,1 , . . . } be a Markov chain whose state space is the set 

{0,1} and whose one-step transition probability matrix is given by 

P = 
0 1 
1 0 

(a) Calculate CxihM) at ti = 0 and 2̂ = 1 if P[Xo = 0] = P[Xo = 1] = 
1/2. 

(b) Find lim^_oo P[Xn = 0 I Xo = 0]. 

Quest ion no. 8 
Let X i , X 2 , . . . be an infinite sequence of independent random variables, 

all having a Poisson distribution with parameter a = 1. We define 

n 

Yn = Y.^^ forn = l ,2 , . . . 
k=i 

Then, {Yn, n = 1,2,... } is a Markov chain (see p. 85). Calculate Pi 3, that is, 
the probability of moving from state 1 to state 3 in four steps. 

Quest ion no. 9 
The flow of a certain river can be one of the following three states: 

0: low flow 
1: average flow 
2: high flow 
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We suppose that the stochastic process {X^, n = 0 , 1 , . . . }, where Xn repre­
sents the state of the river flow on the nth day, is a Markov chain. Furthermore, 
we estimate that the probabiUty that the flow moves from state i to state j 
in one day is given by the formula 

1 
PiJ = 2 •m 

where 0 < 6>̂  < 1, for ij = 0,1,2. 

(a) Calculate the probability that the river flow moves from state 0 to state 
1 in one day. 

(b) What is the probability that the river flow moves from state 0 to state 2 
in two days? 

Question no. 10 
A machine is made up of two components that operate independently. 

The lifetime Ti (in days) of component i has an exponential distribution with 
parameter A ,̂ for i = 1,2. 

Suppose that the two components are placed in parallel and that Ai = 
A2 = ln2. When the machine breaks down, the two components are replaced 
by new ones at the beginning of the following day. Let Xn be the number 
of components that operate at the end of n days. Then the stochastic pro­
cess {Xn,n = 0 ,1 , . . . } is a Markov chain. Calculate its one-step transition 
probability matrix. 

Question no. 11 
Let {Xn,n = 0 ,1 , . . . } be a Markov chain whose state space is the set 

{0,1,2,3,4} and whose one-step transition probability matrix is 

1 0 0 0 0 
0.5 0.2 0.3 0 0 
0 0 0 10 
0 0 0 0 1 
0 0 1 0 0 

(a) Calculate the probability that the process will move from state 1 to state 
2 in four steps. 

(b) Suppose that XQ = 1. Let Â i be the number of times that state 1 will be 
visited, including the initial state. Calculate E[Ni]. 

Question no. 12 
A Markov chain {X^, n = 0 , 1 , . . . } with state space {0,1,2,3} has the 

following one-step transition probability matrix: 

1/2 1/2 0 0 
1/2 1/4 1/4 0 
0 0 1/4 3/4 
0 0 0 1 
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Assuming that XQ 
before state 3. 

1, calculate the probability that state 0 will be visited 

Question no. 13 
A Markov chain has the following one-step transition probabilities: 

Po,o = 1 

Pi4 = P • 1 -pi,i-i for i = 1,2,3,. 

Calculate the probability P\Q that the chain will move from state i to state 0 
for the first time after exactly n transitions, for i = 1,2,... 

Question no. 14 
Let 

qpOOO 
qOpOO 
OqOpO 
OOqOp 
0 00 qp^ 

where p-\-q = 1 and 0 < p < 1, be the one-step transition probability matrix 
of a Markov chain whose state space is the set {0,1,2,3,4}. 

(a) Is the chain periodic or aperiodic? Justify. 

(b) Calculate, if they exist, the limiting probabilities TT̂ . 

Question no. 15 
We perform repeated trials that are not Bernoulli trials (see p. 51). We 

suppose that the probability Pn of a success on the nth trial is given by 

1/2 forn = l ,2 

where Xn is the total number of successes obtained on the (n — 2)nd and 
(n — l)st trials. Calculate lim^-^ooPn-

Question no. 16 
In the gambler's ruin problem (see p. 101), let Yi be the number of plays 

needed to end the game (with the player being ruined or having reached his 
objective of k units), given that his initial fortune is equal to i units, for 
i = 0 , 1 , . . . , fc. Show that 

E[Yi\ = { 
( 2 p - l ) - i}i{p^l/2 

Up = 1/2 

Indication. We may write that E[Yo] = E\Yk] = 0 and (by conditioning on 
the result of the first play) 
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E[Y^ = l+pE[Yi+i]+qE[Yi^i] f o r i ^ l , . . . , f c - l 

Question no. 17 
We consider a branching process for which p^ = (1 — p)*p, for i = 0 , 1 , . . . , 

where 0 < p < 1. That is, F := Z-hl, where Z is the number of descendants of 
an arbitrary individual, has a geometric distribution with parameter p. Show 
that the probabihty qo of eventual extinction of the population is given by 

, _ / p / ( l - p ) i f p < l / 2 
^ ^ ~ \ 1 iip>l/2 

Question no. 18 
Let {X^, n = 0 , 1 , . . . } be an irreducible and ergodic Markov chain. Sup­

pose that the chain is in equilibrium, so that we can write that 

P[Xn = i] = TTi for all states i and for any n 

We can show that the process {X^, fc = . . . , n 4-1, n , . . . }, for which the time 
is reversed, is also a Markov chain, whose transition probabilities are given by 

TT • 

qij := P[Xn = j I Xn+i = i] = Pjd— for all states ij 

We say that the chain {X^, n = 0 , 1 , . . . } is time-reversible if qij = pij, for 
all i^j. Show that the Markov chain whose state space is the set {0,1,2,3} 
and with one-step transition probability matrix 

1/2 1/2 0 0 
1/2 0 1/2 0 
0 1/2 0 1/2 
0 0 1/2 1/2 

is time-reversible. 

Question no. 19 
In the urn model of P. and T. Ehrenfest for the movement of molecules 

in a gas (see p. 75), suppose that XQ = 1. Let rrin := E[Xn] be the average 
number of molecules in urn I after n shifts. Show that 

N / 2Y f, N 

for n = 1,2,... . 

Indication. Show first that m^+i = 1 + jv ^^n-

Question no. 20 
A Markov chain has the following one-step transition probabilities: po,i = 1 

and 
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Pi^i^i =ai{>0) = l - pi^o for i = 1,2,3,. 

(a) Show that all states are recurrent if and only if 

lim TT afc = 0 
k=l 

(b) Show that if the chain is recurrent, then all states are positive recurrent 
if and only if 

oo n 

X] n ^̂  "̂  ̂  
n=lk=l 

Indication. If iV is a random variable taking its values in the set N^ := 
{0 ,1 , . . . } , then we have 

oo 

E[N] = Y^ P[N > n] 
n=l 

Use this result with the variable N denoting the number of transitions needed 
to return to state 0. 

Question no. 21 
The one-step transition probabilities of a Markov chain whose state space 

is {-3, - 2 , -1 ,0 ,1 ,2 ,3} are given by 

p^,^+i=:2/3 fori = - 3 , - 2 , . . . ,2 
Pi,i_i = 1/3 for i = - 2 , - 1 , . . . ,3 
P-3,3 = 1/3 = l - P 3 , - 3 

Remark. This chain can be considered as a particular case of a random walk 
defined on a circle. 

(a) Show that the Markov chain is irreducible. 

(b) Determine the period of the chain. 

(c) Calculate the fraction of time that the process spends, over a long period, 
in state i, for i = — 3 , . . . , 3 . 

Question no. 22 
(a) Show that in a symmetric random walk {Xn,n = 0 , 1 , . . . }, starting from 
XQ = 0, the probability that state a > 0 will be visited before state —6 < 0 is 
equal to b/{a~\-b). 

(b) In a random walk starting from XQ = 0, what is the probability that there 
will be exactly one visit to state 0? 

(c) In a random walk on {0 ,1 ,2 , . . . } , starting from XQ = 0 and for which 
Po,i = 1, what is the probability that there will be exactly k € {1 ,2 . . . } 
visit(s) to state 0? 
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Question no. 23 
We consider a branching process {X^, n == 0 , 1 , . . . } for which XQ = I and 

Pi ^— for 2 = 0 , 1 , . . . 

That is, the number of descendants of an arbitrary individual has a Pois-
son distribution with parameter A. Determine the probabihty ô of eventual 
extinction of the population if (a) A == In 2 and (b) A = In 4. 

Question no. 24 
A Markov chain with state space {—2,—1,0,1,2} has the following one-

step transition probabilities: 

Pi^i^i = 3/4 
Pi^i-i = 1/4 
P-2,2 = 1/4 

fori = - 2 , - 1 , 0 , 1 
for i = - 1 , 0 , 1 , 2 

= 1 -P2,-2 

(a) Determine the classes of the Markov chain. For each class, establish 
whether it is recurrent or transient and whether it is periodic or aperiodic. 

(b) Do the limiting probabilities exist? If they do, compute them. 

(c) Is the chain time-reversible (see p. 147)? Justify. 

Question no. 25 
We consider an irreducible Markov chain whose state space is the set 

{0,1,2,3,4} and whose one-step transition probability matrix is given by 

P = 

0 1/3 2/3 0 0 
0 0 0 1/4 3/4 
0 0 0 1/4 3/4 
1 0 0 0 0 
1 0 0 0 0 

(a) What is the period of the chain? 

(b) What is the fraction of time, TTJ, that the process spends in state j on the 
long run, for j = 0,1,2,3,4? 

Question no. 26 
Let (Xn^Yn) be the position of a particle that moves in the plane. We 

suppose that {X^, ii = 0 , 1 , . . . } and {Yn, n = 0 , 1 , . . . } are two independent 
symmetric random walks such that XQ = Yo = 0. We define Dn = y/jQ + Y^. 
That is, Dn represents the distance of the particle from the origin after n 
transitions. Show that if n is large, then 

P[Dn < d] -dVi2n) ford>0 

Indication. Express X^ (and Y^) in terms of a binomial distribution, and use 
the fact that if Z i ,Z2 , . . . ,Zfc are independent random variables having a 
standard Gaussian distribution, then 
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Zî  + Z | + . . . + Z^ - G (a = fc/2, A = 1/2) 

Question no. 27 
Let Yi,Y2,... be an infinite sequence of independent random variables, 

all distributed as the discrete r.v. Y whose set of possible values is the set 
Z := {0, ±1 , ± 2 , . . . } of all integers. We know (see p. 85) that the stochastic 
process {Xn, n = 1,2,... } defined by 

Xn = Yi+Y2 + ... + Yn forn = l , 2 , . . . 

is a Markov chain and that pij = aj-i^ where a^ := P\Y = i], for any i. 
We suppose that \E[Y]\ < oo and V[Y] < oc. Show that the chain is 

transient if E[Y] ^ 0. 

Question no. 28 
We consider a Markov chain with transition probabilities given by 

fc + 1 ^ 1 

for fc = 0 ,1 ,2 , . . . . 

(a) Show that the chain is irreducible and ergodic. 

Indication. See Question no. 20. 

(b) Calculate the limiting probabilities TTĴ , for A: = 0 ,1 ,2 , . . . . 

Question no. 29 
The one-step transition probabilities of an irreducible Markov chain are 

given by 
1 k 

Po,i = 1, Pk,o = -J—I' ^^^ ^^'^+1 "" i f c ^ 

for fe = 1 ,2 , . . . . 

(a) Calculate p^ ̂ , for A; = 1,2,... . 

(b) Calculate PQ Q, for A: = 2 and 3. What is the period of the chain? 

(c) Is the Markov chain transient, positive recurrent, or null recurrent? Justify. 

Indication. See Question no. 20. 

Question no. 30 
We consider a Markov chain defined by the one-step transition probability 

matrix 
^1/2 1/4 1/4 " 

a 1 — a 0 
0 a 1 — a 

where 0 < a < 1. The state space is the set {0,1,2}. 

(a) For what values of the constant a is the Markov chain irreducible and 
ergodic? Justify. 
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(b) Calculate the limiting probabilities for the values of a found in part (a). 

Question no. 31 
A system is made up of two identical components in standby redundancy. 

That is, only one component is active at a time, and the other is in standby. 
We assume that the lifetime of each component has an exponential distri­
bution and that the probability that the active component will fail during a 
given day is equal to 0.1. The other component, if it is not also down, then 
relieves the failed one at the beginning of the following day. There is a single 
technician who repairs the components. Moreover, he only starts repairing a 
failed component at the beginning of his workday, and he needs two working 
days to complete a repair. 

Let Xn be the condition of the components at the end of the nth day. The 
process {X^, n = 0 ,1 ,2 , . . . } is a Markov chain having the following states: 

0: neither component is down 
1: a single component is down and it will be repaired one day 

from now 
2: a single component is down and it will be repaired two days 

from now 
3: both components are down (and a component will be repaired 

one day from now) 

(a) What is the matrix P of one-step transition probabilities of the chain? 

(b) For each class of the chain, determine whether it is transient or recurrent. 
Justify. 

(c) Suppose that XQ = 0. Calculate the probability that there will be a single 
component that is not down at the end of the second day. 

Question no. 32 
Let 

1/3 0 1/3 1/3 
1 0 0 0 
0 1 0 0 
0 1 0 0 

be the one-step transition probability matrix of an irreducible Markov chain 
whose state space is the set {0,1,2,3}. 

(a) What is the period of state 1? Justify. 

(b) Calculate, if they exist, the quantities TTJ, where TTJ is the proportion 
of time that the process spends in state j , over a long period of time, for 
i = 0 , l ,2 ,3 . 

(c) Suppose that the elements of the first row of the matrix P are the p/s 
of a branching process. Calculate the probability that the population will die 
out if (i) Xo = 2, (ii) Xi < 1 (and XQ = 2). 
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Question no. 33 
John plays independent repetitions of the following game: he tosses two 

fair dice simultaneously. If he gets a sum of 7 or 11 (respectively, 2, 3, or 12), 
he wins (resp., loses) $1. Otherwise, he neither wins nor loses anything. John 
has an initial fortune of $z, where i = 1 or 2, and he will stop playing when 
either he goes broke or his fortune reaches $3. Let Xn be John's fortune after 
n repetitions, for n = 0 , 1 , . . . . Then {Xn, n = 0 ,1 , . . . } is a Markov chain. 

(a) Find the matrix P of one-step transition probabilities of the Markov chain. 

(b) For each class of the chain, specify whether it is recurrent or transient. 
Justify. 

(c) Calculate the mathematical expectation of Xi if the initial distribution of 
the chain is ao = 0, ai = 1/2, a2 = 1/2, and as = 0. 

Question no. 34 
A Markov chain whose state space is the set {0,1,2} has the following 

one-step transition probability matrix: 

P = 
0 10 

1 — pO p 
0 10 

where 0 < p < 1. 

(a) Calculate P(^), for n > 2. 

(b) Find the period of every state of the Markov chain. 

(c) (i) Calculate the proportion of time that the process spends, on the long 
run, in state 0. 

(ii) Is this proportion equal to the limit lim î-^oo P1[O • Justify. 

Question no. 35 
A machine is made up of two components placed in parallel and that oper­

ate independently of each other. The lifetime (in months) of each component 
has an exponential distribution with mean equal to two months. When the 
machine breaks down, the two components are replaced at the beginning of the 
next month. Let X^, n = 0 , 1 , . . . , be the number of components functioning 
after n months. 

(a) Justify why the stochastic process {Xn, n = 0 ,1 , . . . } is a Markov chain. 

(b) Calculate the matrix P of one-step transition probabilities of the Markov 
chain. 

(c) Identify each class of the chain as recurrent or transient. Justify. 

(d) Calculate V[Xi] if the two components are functioning at time n = 0. 

Question no. 36 
A Markov chain whose state space is the set {0 ,1 , . . . } has the following 

one-step transition probabilities: 
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Pi^o = 2/3 and Pi^k = (1/4)^ for i = 0 , 1 , . . . and fc = 1,2,... 

(a) Show that the hmiting probabihties TTJ exist, and calculate them. 

(b) Suppose that the Pi^k^s are the p/^'s, fc > 0, of a branching process. Calcu­
late the probability of eventual extinction of the population if XQ = 1. 

Quest ion no. 37 
Let X i , X 2 , . . . be an infinite sequence of independent random variables, 

all having a Bernoulh distribution with parameter p e (0,1). We define 

Yn 
k=l 

for n == 1,2,... 

Then the stochastic process {Yn^ n = 1,2,... } is a Markov chain (see p. 85). 

(a) Calculate the one-step transition probability matrix P of the Markov 
chain. 

(b) For every class of the chain, find out whether it is recurrent or transient. 
Justify. 

(c) Calculate V[Yn | Xi = 1]. 

(d) Let Ti := min{n > 1: l̂ n = ! } • What is the distribution of the random 
variable Ti? 

Quest ion no. 38 
Let 

0 1 0 0 
1/2 0 1/2 0 
0 1/2 0 1/2 
0 0 1 0 

be the one-step transition probability matrix of a Markov chain {X„,n = 
0 , 1 , . . . } whose state space is the set {0,1,2,3}. 

(a) Let 7Tj be the proportion of time that the process spends in state j , over 
a long period of time. Show that the TT '̂S exist and calculate them. 

(b) Calculate the period of the Markov chain. 

(c) Let Tj := min{n > 0 : X^ = j}. Calculate P[To < Ts \ XQ = 1]. That 
is, calculate the probability that, from state 1, the process will visit state 0 
before state 3. 

Quest ion no. 39 
We define the Markov chain {F^, n = 1,2,... } by 

Yn = J2^k forn = l , 2 , . . . 
k=i 

where X i , X 2 , . . . is an infinite sequence of independent random variables 
having a binomial distribution with parameters n = 2 and p=l/2 (see p. 85). 
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(a) Calculate the transition matrix of the Markov chain. 

(b) For every class of the chain, establish whether it is recurrent or transient. 
Justify. 

(c) What is the distribution of the random variable Y2? 

(d) Let Ti := min{n > 1: F^ - 1}. Calculate 
(i) P[Ti = A;],for fc = l , 2 , . . . , 
(ii) P [ r i < oc]. 

Question no. 40 
We consider the particular case of the gambler's ruin problem (see p. 101) 

for which fc = 4. 

(a) (i) Calculate the matrix P if the gambler, on any play, actually has a 
probability equal to 

{ 1/4 of winning the play 
1/4 of losing the play 
1/2 of neither winning nor losing the play 

(ii) Do the probabilities TTJ := lim„_oo P[^n = J I -^0 = 2] exist? If they 
do, calculate these probabilities. 

(b) Suppose that the gambler, on an arbitrary play, bets 

J $1 if his fortune is equal to $1 or $3 
(̂  $2 if his fortune is equal to $2 

Calculate, under the same assumptions as in (a), the probability that the 
gambler will eventually be ruined if XQ = $3. 

Question no. 41 
We consider a population of constant size, iV, composed of individuals of 

type A and of type B, We assume that before reproducing, and disappearing 
from the population, an arbitrary individual of type A (respectively, B) is 
mutated into an individual of type B (resp., A) with probability a (resp., /3). 
Moreover, we assume that at the moment of reproduction, each individual in 
the population has a probability p of giving birth to an offspring of type A, 
where p is the mathematical expectation of the proportion of individuals of 
type A in the population after mutation. Finally, we assume that the individ­
uals are independent from one another. Let Xn be the number of individuals 
of type A in the nth generation before mutation. Then {Xn^n = 0 , 1 , . . . } is 
a Markov chain. 

(a) Calculate p {= pi) if Xn = i. 

(b) Calculate Pij, for i, j G {0 , . . . , N}. 

(c) Suppose that a = 0 and (3 G (0,1). For each class of the Markov chain, 
determine whether it is recurrent or transient. Justify. 
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(d) Suppose that there are exactly NA > 0 individuals of type A in the initial 
generation after mutation. Given that the first of these NA individuals gave 
birth to an offspring of type A, calculate, with p — NA/N^ (i) the mean and 
(ii) the variance of Xi. 

Question no. 42 
Suppose that 

["1/4 1/2 1/4 ^ 
P = a 0 1-a 

[ p 0 l - / 3 _ 

is the one-step transition probability matrix of a Markov chain with state 
space {0,1,2}. 

(a) For what values of a and /? is the Markov chain irreducible? 

(b) Suppose that a = p = 1/2. Compute, if they exist, the limiting probabil­
ities TTj, for j = 0,1,2. 

(c) Suppose that XQ = 0. Compute the probability that the process will (i) 
visit state 1 before state 2 and (ii) return to (or stay in) state 0 before visiting 
state 2. 

Question no. 43 
Let {Xn, 72 = 0 , 1 , . . . } be a Markov chain with state space {0,2} and with 

one-step transition probability matrix 

X 
1/2 1/2 
1/2 1/2 

and let {Yn^ n = 0 , 1 , . . . } be a Markov chain whose state space is {3,4} and 
whose matrix P is given by 

'or 
1 0 

Assume that the random variables Xn and Yn are independent, for all n. 
We define Zn = Xn + Yn. We can show that the stochastic process {Zn,n = 
0 , 1 , . . . } is a Markov chain whose state space is {3,4,5,6}. 

(a) Calculate the matrix P ^ of the Markov chain {Z„, n = 0 , 1 , . . . }. 

(b) For every class of the chain {Zn-,n = 0 , 1 , . . . }, determine whether it is 
recurrent or transient. Justify. 

(c) Give the period of every class of the chain {Z^, n = 0 , 1 , . . . }. 

(d) Calculate the matrix P^^^ and deduce from it the value of the limit lim^_^oo 
P[Z^ = 3 |Zo = 3]. 

Question no. 44 
Let 

P = 
0 1/2 1/2 
0 a \ — a 
f31-p 0 
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be the one-step transition probabiUty matrix of a Markov chain {Xn,n = 
0 , 1 , . . . } having state space {0,1,2}. 

(a) For what values of a and (3 is the Markov chain irreducible? 

(b) Suppose that a = 1/2 and (3 = 1/3. Calculate, if they exist, the limiting 
probabilities TTJ, for j = 0,1,2. 

(c) Give the values of a and p for which the limiting probabilities TTJ exist 
and are equal to 1/3, for j = 0,1,2. Justify. 

(d) Suppose that a = 1/2, /? = 1, and XQ = l- Let NQ be the number of 
transitions needed for the process to visit state 0 for the first time. Calculate 
E[No], 

Question no. 45 
A person buys stocks of a certain company at the price of 3 cents per share 

(what is known as a penny stock). The investor decides to sell her shares if 
their value decreases to 1 cent or becomes greater than or equal to 5 cents. 
Let Xn be the value of the shares (for the investor) after n days. We sup­
pose that {Xn, n = 0 , 1 , . . . } is a Markov chain having as state space the set 
{ 0 , 1 , . . . ,7}, and for which rows 3 to 5 (corresponding to states 2,3,4) of the 
one-step transition probability matrix P are the following: 

1/8 1/4 1/4 1/4 1/8 0 0 0 
1/12 1/7 1/4 1/21 1/4 1/7 1/12 0 

0 1/12 1/7 1/4 1/21 1/4 1/7 1/12J 

(a) Give the other rows of the matrix P . 

Indication. Once the investor has sold her shares, or their price went to zero, 
their value (for the investor) does not change anymore. 

(b) For every class of the chain {Zn,n = 0 , 1 , . . . } , establish whether it is 
recurrent or transient. Justify. 

(c) Calculate E[Xi \ {Xi = 3} U {Xi = 4}]. 

(d) What is the probability that, after exactly two days, the investor (i) sells 
his shares with a profit? (ii) sells her shares with a loss? (iii) loses all the 
money she invested? 

Question no. 46 
A Markov chain {Xn, n = 0 , 1 , . . . } with state space {0,1,2} has the fol­

lowing one-step transition probability matrix: 

1/2 0 1/2 
0 1 0 
1 0 0 

r.M Calculate limn-^oo Pij\ for all z, j € {0,1, 2}. 
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Question no. 47 
We consider the gambler's ruin problem (see p. 101). Suppose that XQ = 

$1 and that p = 1/4. However, if the player wins, he wins $2 and if he loses, 
he loses $1. His objective is to reach at least $4. Calculate the probability that 
he will achieve his objective. 

Question no. 48 
(a) Calculate the probability ^o of eventual extinction of the population in a 
branching process for which po = V^^ Pi = V^^ and p2 = 1/2-

(b) Suppose that the individuals can only give birth to twins, so that the 
probabilities in (a) become PQ = 1/4, P2 = V^, and pi = 1/2. Can we assert 
that QQ = QQ? Justify. 

Question no. 49 
Let {Xn, n = 0 ,1 , . . . } be a symmetric random walk defined on the set 

{0, ±1 , ± 2 , . . . } and such that XQ = 0. We set 

Yn=Xl forn = 0 , l , . . . 

It can be shown that {F^, n = 0 , 1 , . . . } is a Markov chain whose state space 
is {0 ,1 ,4 ,9 , . . . } . 

(a) Calculate the one-step transition probability matrix of the chain {Yn^n = 
0 , 1 , . . . } . 

(b) Is the stochastic process {Y^, n — 0 , 1 , . . . } a random walk? Justify. 

(c) For each class of the chain {F^, n = 0 , 1 , . . . }, (i) determine whether it is 
transient or recurrent and (ii) find its period. 

Question no. 50 
Let 

^1/2 0 1/4 1/4"" 
0 1 0 0 
1 0 0 0 
0 0 1/4 3/4_ 

be the one-step transition probability matrix of a Markov chain {Xn,n = 
0 ,1 , . . . } whose state space is {0,1,2,3}. Calculate the limit limŷ -̂ oo Pij •> for 
a lH,JG {0,1,2,3}. 

Question no. 51 
Suppose that XQ = %i in the gambler's ruin problem (see p. 101) and 

that p 7̂  1/2. Suppose also that if the player loses, then someone lends him 
(only once) $1 and he starts to play again, independently from what occurred 
previously. However, the probability p becomes p/2. His objective is to reach 
$A: (without taking into account the dollar that someone may have lent him), 
where k> i. Calculate the probability that he will achieve his objective. 
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Question no. 52 
(a) Calculate, assuming that XQ = 1, the probability go of eventual extinction 
of the population in a branching process for which pi = 1/4, for i = 0,1,2,3. 

(b) Find another distribution of the p^'s for which the value of the probability 
qo is the same as that in (a). 

Question no. 53 
A machine is composed of two components. The lifetime Ti of component 

i has an exponential distribution with parameter A ,̂ for i = 1,2. When the 
machine breaks down, a technician replaces the failed component(s) at the 
beginning of the next time unit. Let X^, n = 0 , 1 , . . . , be the number of 
components that are not down after n time unit(s). 

(a) Is the stochastic process {X„, n = 0 , 1 , . . . } a Markov chain if the compo­
nents are placed in series? If it is, justify and calculate the one-step transition 
probability matrix P of the chain. If it's not, justify. 

(b) Suppose that the components are placed in parallel and operate indepen­
dently from each other, but that only one component is active at a time. That 
is, the components are in standby redundancy. In this case, {Xn, n = 0 , 1 , . . . } 
is a Markov chain. Calculate its transition matrix if Ai = A2. 

Question no. 54 
Suppose that, in the preceding question, the components are placed in 

parallel and operate (independently from each other) both at the same time. 
We say that they are in active redundancy. 

(a) The stochastic process {X^, n = 0 , 1 , . . . } is a. Markov chain. Calculate its 
matrix P . 

(b) Let 
0 if neither component is operating 
l i if only component no. 1 is operating 
I2 if only component no. 2 is operating 
2 if both components are operating 

after n time unit(s), for n = 0 , 1 , . . . . Is the stochastic process {Yn^n = 
0 ,1 , . . . } a Markov chain? If it is, justify and calculate the transition matrix 
of the chain. If it's not, justify. 

Question no. 55 
A system comprises two components placed in parallel and operating (both 

at the same time) independently from each other. Component i has an expo­
nential Hfetime with parameter A ,̂ for i = 1,2. Let X^, n = 0 , 1 , . . . , be the 
number of active components after n time unit(s). 

(a) Suppose that, after each time unit, we replace the failed component(s). 
Calculate the one-step transition probability matrix P of the Markov chain 
{X^,n = 0 , l , . . . } . 

(b) It can be shown that the limiting probabilities TTJ exist in part (a). Cal­
culate these limiting probabilities. 

Yn:=< 
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(c) Suppose that Ai = A2 and that, after each time unit, we replace a single 
component, only when the system is down. Moreover, assume that XQ — 2. 

(i) Calculate the matrix P of the Markov chain {X^, n = 0 , 1 , . . . }. 
(ii) What is the number of classes of the chain? 

Question no. 56 
We consider a symmetric random walk in two dimensions (see p. 75), whose 

state space is the set {(i, j ) : i — 0,1,2; j == 0,1,2}. Moreover, we suppose that 
the boundaries are reflecting. That is, when the process makes a transition 
that would take it outside the region defined by the state space, then it returns 
to the last position it occupied (on the boundary). 

(a) Calculate the one-step transition probability matrix of the Markov chain. 

(b) Show that the limiting probabilities exist and calculate them. 

Question no. 57 
A player has only one money unit and wishes to increase his fortune to five 

units. To do so, he plays independent repetitions of a game that, in case of a 
win, yields double the sum he betted. In case of a loss, he loses his bet. On 
each play, he bets an amount that, if he wins, enables him either to exactly 
reach his objective or to get as close as possible to it (for example, if he has 
three units, then he bets only one). We suppose that the game ends when the 
player either has achieved his target or has been ruined and that he has a 
probability equal to 1/2 of winning an arbitrary play. 

(a) What is the probability that he reaches his target? 

(b) What is the average number of repetitions needed for the game to end? 

Question no. 58 
A particle moves in the plane according to a two-dimensional symmetric 

random walk (see p. 75). That is, the particle has a probability equal to 
1/4 of moving from its current position, (Xn,Fn), to any of its four nearest 
neighbors. We suppose that the particle is at the origin at time n = 0, so that 
XQ = YQ — 0. Thus, at time n = 1, the particle will be in one of the following 
states: (0,1), (0 , -1) , (1,0), or ( -1,0) . Let 

be the square of the distance of the particle from the origin at time n. Calculate 
E[Dl\. 

Question no. 59 
Show that for a symmetric random walk of dimension fc = 2 (see Question 

no. 58), the probability that the number of visits to already visited states will 
be infinite is equal to 1. Generalize this result to the case when fc G N. 
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Question no. 60 
A machine is composed of two identical components placed in series. The 

lifetime of a component is a random variable having an exponential distribu­
tion with parameter /i. We have at our disposal a stock of n — 2 new compo­
nents that we differentiate by numbering them from 3 to n (the components 
already installed bearing the numbers 1 and 2). When the machine fails, we 
immediately replace the component that caused the failure by the new com­
ponent bearing the smallest number among those in stock. Let T be the total 
lifetime of the machine, and let N be the number of the only component that, 
at time T, will not be down. Find (a) the probability mass function of N^ (b) 
the mathematical expectation of T, and (c) the distribution of T, 

Question no. 61 
We use k light bulbs to light an outside rink. The person responsible for the 

lighting of the rink does not keep spare light bulbs. Rather, he orders, at the 
beginning of each week, new light bulbs to replace the ones that burned out 
during the preceding week. These light bulbs are delivered the following week. 
Let Xn be the number of light bulbs in operation at the beginning of the nth 
week, and let Y^ be the number of light bulbs that will burn out during this 
nth week, for n = 0 , 1 , . . . . We assume that, given that Xn — f, the random 
variable Yn has a discrete uniform distribution over the set { 0 , 1 , . . . , i}: 

1 
P\Vn = j\Xn = i] = T-— for j = 0 , 1 , . . . , i and i = 0 , 1 , . . . , fc 

^ + 1 

(a) Calculate the one-step transition probability matrix of the Markov chain 
{X„,n = 0 , l , . . . } . 

(b) Show that the limiting probabilities of the chain {Xnj n = 0 , 1 , . . . } exist 
and are given by 

Question no. 62 
Electric impulses are measured by a counter that only indicates the highest 

voltage it has registered up to the present time instant. We assume that the 
electric impulses are uniformly distributed over the set {1 ,2 , . . . , N}. 

(a) Let Xn be the voltage indicated after n electric impulses. The stochastic 
process {Xn,n = 1,2,. . .} is a, Markov chain. Find its one-step transition 
probability matrix. 

(b) Let rrii be the average number of additional impulses needed for the 
counter to register the maximum voltage, AT, when the voltage indicated is i, 
fori = l , 2 , . . . , i V - l . 

(i) Obtain a set of difference equations {diS in the absorption problems, 
p. 100) for the m^'s, and solve these equations to determine m^, for all i. 
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(ii) Calculate directly the value of the m^'s without making use of the 
difference equations. 

Question no. 63 
Let Xi , X2, . . . be an infinite sequence of independent and identically 

distributed random variables, such that pxi{x) = 1/3 if x = - 1 , 0 , 1 . The 
stochastic process {y^,n = l , 2 , . . . } defined by 

n 

Yn = J2^i f o r n - 1 , 2 , . . . . 

is a Markov chain (see p. 85). 

(a) Calculate the one-step transition probability matrix P of the chain. 

(b) Give an exact formula for PQ Q, for k — 1,2, 

(c) Use the central limit theorem to obtain an approximate formula for Po,o 
when k is large enough. 

Question no. 64 
A player has $900 at his disposal. His objective is reach the amount of 

$1000. To do so, he plays repetitions of a game for which the probability 
that he wins an arbitrary repetition is equal to 9/19, independently from one 
repetition to another. 

(a) Calculate the probability that the player will reach his target if he bets 
$1 per repetition of the game. 

(b) Calculate the probability that the player will reach his target if he adopts 
the following strategy: he bets 

$(1000 - x) if 500 < X < 1000 
$x if 0 < X < 500 

where x is the amount of money at his disposal at the moment of betting. 

(c) What is the expected gain with the strategy used in (b)? 

Question no. 65 
We consider a system made up of two components placed in parallel and 

operating independently. The lifetime Ti of component no. 1 has an expo­
nential distribution with parameter 1, while that of component no. 2 is a 
random variable T2 ~ Exp(l/2). When the system fails, 50% of the time the 
two components are replaced by new ones, and 50% of the time only the first 
(of the two components) that failed is replaced. Let Xn = li (respectively, 
I2) if only component no. 1 (resp., no. 2) is replaced at the moment of the 
nth failure, and X^ = 2 if both components are replaced. We can show that 
{Xn, n = 1,2,... } is a Markov chain. 

(a) Find the one-step transition probability matrix of the chain. 
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(b) For each class of the chain, specify whether it is transient or recurrent. 
Justify. 

(c) Calculate 7)2,2? for fe = 1,2,... . 

(d) What is the period of state I2? Justify. 

Question no. 66 

In the gambler's ruin problem (see p. 101), suppose that the player has an 
infinite initial fortune and that p = 1/2. Let Xn be the gain (or the loss) of 
the player after n repetitions of the game. Suppose also that when Xn < 0, 
the player plays double or quits. That is, if Xn = — 1, then Xn+i = 0 or —2; 
if Xn = - 2 , then X^+i = 0 or - 4 , etc. The process {X„,n = 0 ,1 , . . . } is a 
Markov chain whose state space is the set {... , —4, —2, —1,0,1,2,. . . }. 

(a) Find the one-step transition probability matrix of the chain. 

(b) Suppose that the state space is {—4,-2,-1,0,1,2} and that p-4,-4 = 
P2,2 = 1/2 [the other probabilities being as in (a)]. Calculate, if they exist, 
the limiting probabilities. 

(c) Suppose now that the player decides to stop playing if his losses or his 
profits reach four units. Calculate the probability that the player will stop 
playing because his losses have reached four units, given that he won the first 
repetition of the game. 

Question no. 67 

The state space of a Markov chain {Xn, n = 0 ,1 ,2 . . . } is the set of non-
negative integers {0,1 ,2 , . . . }, and its one-step transition probability matrix 
is given by 

" 0 1 0 . . . 
1/2 0 1/2 0 ... 
1/3 1/3 0 1/3 ... 
1/4 1/4 1/4 0 1/4 0.. 

P = 

(a) Calculate p^ J . 

(b) For each class of the chain, determine whether it is transient or recurrent. 
Justify. 

(c) Find the period of each class. 

(d) Let Tij be the number of transitions needed for the process to move from 
state i to state j . Calculate P[Ti,o < ^1,3 | {^1,0 < 2} U {Ti,3 < 2}]. 

Question no. 68 
We consider a Markov chain whose state space is the set {0 ,1 ,2 , . . . } and 

for which 
PiJ =Pj > 0 V i , j G { 0 , l , 2 , . . . } 

Calculate, assuming they exist, the limiting probabilities of the chain. 
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Quest ion no. 69 

Suppose that, in the gambler's ruin problem (see p. 101), XQ = 1 and 
fc = 4. Moreover, suppose that the value of p is not constant, but rather 
increases with X^. More precisely, the one-step transition probability matrix 
of the chain {X^. n = 0,1,2 . . . } is 

1 0 0 0 0 
1/2 0 1/2 0 0 
0 1/3 0 2/3 0 
0 0 1/4 0 3/4 
0 0 0 0 1 

Calculate the probability that the player will achieve his objective. 

Quest ion no. 70 

Let {Xn^n = 0 , l , 2 . . . } b e a branching process for which XQ = 1, Suppose 
that there are two types of individuals, say A and B. Every individual (of type 
A or B) can give birth (independently from the others) to descendants of type 
A ov B according to the formula 

P[]Sf^ = rn,NB=7i] = l/9 V m, 71 G {0,1,2} 

where NA (respectively, NB) is the number of descendants of type A (resp., 
B). 

(a) Calculate E[Xi | Xi > 0]. 

(b) Show that the probability of eventual extinction of the population is 
qo ĉ  0.15417. 

Section 3.3 

Question no. 71 
Let Y := min{Xi, X2}, where Xi and X2 are two independent exponential 

random variables, with parameters Ai and A2, respectively. We know (see 
p. 113) that Y ~ Exp(Ai + A2). Find the probability density function of the 
random variable Z :=Y \ {Xi < X2}. 

Remark. We can express Z as follows: Z := Y \ {Y = Xi}. However, the 
random variables Y \ {Y = Xi} and Xi are not identical, because 

P[Y<y\Y = Xi] = P[Xi <y\Y = Xi] = P[Xi < y \ Xi < X2] 

7̂  ^ [ ^ 1 < y] 

Note that the events {Xi < y} and {Xi < X2} are not independent. 

Quest ion no. 72 
Let X i , . . . ,Xn be independent random variables having an exponential 

distribution with parameter A. 
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(a) Use the memory less property of the exponential distribution to show that 

P[X,>X2 + X^] = \ = ^ 

(b) Show, by mathematical induction, that 

1 Xi>f^Xk 2 n - l 
for n = 2 , 3 , . . . 

(c) From the result in (b), calculate the probability P[2Y > Yl'k=i ^k], where 
Y := max{Xi , . . . ,Xn}. 

Question no. 73 
A birth and death process having parameters A^ = 0 and //^ = /i, for 

all n > 0, is a pure death process with constant death rate. Find, without 
making use of the Kolmogorov equations, the transition function Pij{t) for 
this process. 

Quest ion no. 74 
Let Xi rsj Exp(Ai) and X2 ^ Exp(A2) be two independent random vari­

ables. Show that, for all x > 0, 

P [Xi < X2 I min{Xi, X2} = x] = P[Xi < X2] = ^ ' 
A1+A2 

Quest ion no. 75 
A system is made up of three components placed in standby redundancy: 

at first, only component no. 1 is active and when it fails, component no. 2 
immediately relieves it. Next, at the moment when component no. 2 fails, 
component no. 3 becomes active at once. When the system breaks down, the 
three components are instantly replaced by new ones. Suppose that the life­
time Tk of component no. k has an exponential distribution with parameter 
Afc, for A; = 1,2,3, and that the random variables Ti, T2, and Ts are indepen­
dent. Let the number of the component that is active at time t be the state 
of the system at this time instant. Write the Kolmogorov backward equations 
for this system. 

Quest ion no. 76 
A university professor cannot receive more than two students at the same 

time in her office. On the day before an exam, students arrive according to a 
Poisson process with rate A = 3 per hour to ask questions. The professor helps 
the students one at a time. There is a chair in her office where a person can 
wait his or her turn. However, if a student arrives when two other students 
are already in the professor's office, then this student must come back later. 
We suppose that the time that the professor takes to answer the questions of 
an arbitrary student is an exponential random variable with mean equal to 15 
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minutes, independently from one student to another. If we consider only the 
days preceding an exam, calculate (with the help of the limiting probabilities) 

(a) the average number of students in the professor's office, 

(b) the proportion of time, on the long run, when the professor is not busy 
answering questions. 

(c) If the professor spent twice more time, on average, with each student, what 
would be the answer in (b)? 

Question no. 77 
Let {X{t),t > 0} and {Y{t),t > 0} be two continuous-time indepen­

dent Markov chains. We consider the two-dimensional stochastic process 
{{X{t),Y{t)),t > 0}. Find the parameters V(^i^k)^ P{i,k),ij,k)^ and P(i,k),{i,i) of 
this process. 

Question no. 78 
We consider a pure birth process for which, when there are n individuals 

in the population, the average time (in hours) needed for a birth to occur is 
equal to 1/n, for n > 0. 

(a) Knowing that at time t there are two individuals in the population and 
that at time t + 1 there are still two, what is the probability that the next 
birth will take place between t 4- 2 and t -f 3? 

(b) If, at the origin, the population is composed of a single individual, what 
is the probability that there will be exactly four births during the first two 
hours? 

Question no. 79 
A factory has m machines. Each machine fails at an exponential rate /x. 

When a machine fails, it remains down during a random time having an 
exponential distribution with parameter A. Moreover, the machines are in­
dependent from one another. Let X{t) be the number of machines that are 
in working order at time t > 0. It can be shown that the stochastic process 
{X{t),t > 0} is a birth and death process. 

(a) Find the birth and death rates of the process {X{t)^t > 0}. 

(b) Show that 

lhnP[X(t)=n]^p[B(m,^) 

for n = 0 , 1 , . . . ,m. 

Question no. 80 
Let {X{t),t > 0} be a pure birth process such that Â  = jA, for j = 

0 , 1 , . . . , where A > 0. We suppose that X(0) = 1. 

(a) Let Tn := min{t > 0: X{t) = n {> 1)}. That is, Tn is the time needed for 
the number of individuals in the population to be equal to n. Show that the 
probability density function of Tn is given by 
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/ ^ J t ) = A(n - l)e-^*(l - e-^Y~^ for f > 0 

(b) Let N{t) be the number of descendants of the ancestor of the population 
at time t, so that N{t) = X{t) — 1. Suppose that the random variable r has 
an exponential distribution with parameter //. Show that 

P[N{r) = n] - ^ B ( ^ + 1, n + l ) for n = 0 , 1 , . . . 

where JB(-, •) is the beta function defined by 

B{x,y)= [ f'-^l-tyUt 
Jo 

for x,y e (0, oo). 

Remark. We can show that 

^ '^^ r{x + y) 

Question no. 81 
A birth and death process, {X{t)^t > 0}, has the following birth and death 

rates: 
An = A for n = 0,1 and jj,n = n /d for n = 1,2 

Moreover, the capacity of the system is equal to two individuals. 

(a) Calculate, assuming that A = //, the average number of individuals in the 
system at a time instant t (large enough), given that the system is not empty 
at this time. 

(b) Calculate the probability that the process will spend more time in state 
0 than in state 1 on two arbitrary visits to these states. 

(c) Suppose that /xi = 0 and that, when X{t) = 2, the next state visited will 
be 0, at rate 2/x. Write the balance equations of the system, and solve them 
to obtain the limiting probabilities. 

Question no. 82 
Let {X{t),t > 0} be a birth and death process whose rates An and /Xn are 

given by 

^n = /jin = nX for n = 0 ,1 ,2 , . . . 

We set pk{t) = P[X{t) = fe], for all k e {0 ,1 ,2 , . . .} and for all t > 0. That 
is, Pk{t) denotes the probability that the process will be in state k at time t. 
Suppose that pi(0) = 1. It can be shown that 
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(a) Calculate E[X{t) \ X{t) > 0]. 

Indication. We have E[X{t)] = 1. 

(b) Calculate the limiting probabilities TTJ and show that they satisfy the 
balance equations of the process. 

(c) Use the Kolmogorov backward equation satisfied by Pi,o{t) to obtain 
P2,oW. 
Indication. We have Pi,o(^) = Poit) above. 

Quest ion no. 83 
We consider a system composed of three components placed in parallel 

and operating independently. The lifetime Xi (in months) of component i 
has an exponential distribution with parameter A, for i = 1,2,3. When the 
system breaks down, the three components are replaced in an exponential 
time (in months) with parameter /i. Let X{t) be the number of components 
functioning at time t. Then {X{t),t > 0} is a continuous-time Markov chain 
whose state space is the set {0,1,2,3}. 

(a) Calculate the average time that the process spends in each state. 

(b) Is the process {X{t),t > 0} a birth and death process? Justify. 

(c) Write the Kolmogorov backward equation for po,o(0-

(d) Calculate the limiting probabilities of the process if A = /x. 

Quest ion no. 84 
Let {N{t),t > 0} be a counting process (see p. 231) such that A (̂0) = 0. 

When the process is in state J, the next state visited will be j + 1, for all 
j > 0. Moreover, the time TJ that the process spends in state j has the 
following probability density function: 

/^. (s) = 2{j + l)Xs e-(^'+i)^^' for 5 > 0 

Finally, the r^'s are independent random variables. 
Now, consider the stochastic process {X{u),u > 0} defined by 

(Oiiu<Ti 
2 
3 

for fe = l , 2 , . . . . 

(a) Show that the stochastic process {X{u),u > 0} is a continuous-time 
Markov chain. 

(b) Calculate P[X{2) = 1]. 

(c) Calculate, if they exist, the limiting probabilities TTJ of the stochastic pro­
cess {X{u),u > 0}. 

Quest ion no. 85 
We consider the particular case of the gambler's ruin problem (see p. 101) 

for which fc = 4 and p = 1/2. Suppose that the length T (in minutes) of 
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a play (the outcome of which is the player's winning or losing $1) has an 
exponential distribution with mean equal to 1/2. Moreover, when the player's 
fortune reaches $0 or $4, he waits for an exponential time S (in hours) with 
mean equal to 2 before starting to play again, and this time is independent of 
what happened before. Finally, suppose that the player has $1 when he starts 
to play again if he was ruined on the last play of the preceding game and that 
he has $3 if his fortune reached $4 on this last play. 

Let X{t)^ for f > 0, be the player's fortune at time t. The stochastic process 
{X(^),t > 0} is a continuous-time Markov chain. 

(a) (i) Is the process {X{t),t > 0} a birth and death process? If it is, give its 
birth and death rates. If it's not, justify. 

(ii) Answer the same question if the player always starts to play again 
with $1, whether his fortune reached $0 or $4 on the last play of the previous 
game. 

(b) (i) Write, for each state j , the Kolmogorov backward equation satisfied 
by the function po,j(^)-

(ii) Use the preceding result to obtain the value of the sum J2j=oPo,j(J')' 

(c) Calculate the limiting probabilities of the process {X{t)^t > 0}, for all 
states j . 

Question no. 86 
Let {Xn^n = 0 ,1 , . . . } be a (discrete-time) Markov chain whose state 

space is {0,1,2} and whose one-step transition probability matrix is 

a ( l - a ) / 2 ( l - a ) / 2 
( l - a ) / 2 a ( l - a ) / 2 

[ 2 ( l - a ) / 3 ( l - a ) / 3 a 

where a G [0,1]. Suppose that the process spends an exponential time with 
parameter A in state i before making a transition, with probability pij^ to 
state j , for z, j G {0,1,2}. Let X{t) be the position, that is, the state in which 
the process is, at time t. 

(a) For what value(s) of a is the stochastic process {X{t)^ ^ > 0} a continuous-
time Markov chain? Justify. 

(b) For the value(s)- of a in (a), calculate, assuming they exist, the hmiting 
probabilities TT̂ -, for j = 0,1,2. 

Question no. 87 
In the preceding question, suppose that the transition matrix P is instead 

the following: 
a I3l-a-l3' 
7 0 1 - 7 

1- /3/3 0 

where a, /3, and 7 G [0,1]. 
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(a) For what values of a, p, and 7 is the stochastic process {X{t),t > 0} a 
birth and death process? Justify and give the value of the parameters Vj, Â -, 
and /Xj, for j = 0,1,2. 

(b) For the values of a and p found in (a), and for 7 € (0,1), calculate, 
assuming they exist, the limiting probabilities TTJ, for all j . 

Question no. 88 
Let {X{t)^t > 0} be a (continuous-time) stochastic process whose state 

space is the set {0,1}. Suppose that the process spends an exponential time 
with parameter yl in a state before making a transition to the other state, 
where yl is a discrete random variable taking the values 1 and 2 with proba­
bility 1/3 and 2/3, respectively. 

(a) Is the stochastic process {X{t),t > 0} a continuous-time Markov chain? 
Justify. 

(b) Suppose that X{0) = 0. Let TQ be the time that the process spends in 
state 0 before making a first transition to state 1. Calculate the probability 
P [ y l = l | T o < l ] . 

Question no. 89 
Suppose that the continuous-time stochastic process {X{t),t > 0}, whose 

state space is {0,1}, spends an exponential time with parameter 1 in a state 
the first time it visits this state. The second time it visits a state, it stays there 
an exponential time with parameter 2. When both states have been visited 
twice each, the process starts anew. 

(a) Is the stochastic process {X(t),t > 0} a birth and death process? Justify. 

(b) Let N be the number of visits to state 0 from the initial time 0, and let 
To be the time that the process spends in state 0 on an arbitrary visit to this 
state. Calculate approximately P[N is odd | TQ < 1] if we assume that the 
most recent visit to state 0 started at a very large time t. 

Question no. 90 
A system is composed of three components operating independently. Two 

active components are suflficient for the system to function. Calculate the 
failure rate of the system if the lifetime Ti of component i has an exponential 
distribution with parameter A = 2, for i = 1,2,3. 

Question no. 91 
Let {Ni{t),t > 0} and {N2{t)^t > 0} be two independent Yule processes, 

with rates A^ = nOi and Â^ = 7192, for n = 0 , 1 , . . . , respectively. We define 

X{t) = Ni{t)^N2{t) f o r t > 0 

(a) For what values of the constants 9i and 62 is the stochastic process 
{X{t)^t > 0} a continuous-time Markov chain? Justify and give the value 
of the parameters i^n of this process. 

(b) For the values of 61 and 62 found in (a), calculate Pij{t), for jf > i > 1. 
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Question no. 92 
We define 

X{t) = \Ni{t)-N2{t)\iort>0 

where {Ni{t),t > 0} and {N2{t),t > 0} are two independent Poisson pro­
cesses, with rates Ai = A2 = A. 

(a) Show that {X{t),t > 0} is a birth and death process, and give the rates 
Xn and fin^ for n = 0 , 1 , . . . . 

(b) Calculate, if they exist, the limiting probabilities TT̂ , for j = 0,1, . . . . 

Question no. 93 
Calculate P[Xi < X2 < Xs] if Xi, X2, and Xs are independent random 

variables such that Xi ~ Exp(Ai), for i = 1,2,3. 

Question no. 94 
Let {X{t),t > 0} be a birth and death process whose state space is the 

set {0,1,2} and for which 

Ao = A, Ai = /ii = A/2, and /X2 = A 

We consider two independent copies, {Xi{t)^t > 0} and {X2{t)^t > 0}, of this 
process, and we define 

Y{t) = \Xi{t)-X2{t)\ f o r t > 0 

We can show that {Y{t),t > 0} is also a birth and death process. 

(a) Give the birth and death rates of the process {Y{t)yt > 0}. 

(b) Calculate the expected value of the random variable Y{t) after two tran­
sitions if Xi(0) = X2(0) = 0. 

(c) Calculate the limiting probabilities of the process {Y{t)^t > 0}. 

Question no. 95 
We consider a birth and death process, {X{t)^t > 0}, whose state space 

is the set {0 ,1 ,2 , . . . } and whose birth and death rates are given by 

Xn = nX and /in = n/i for n = 0 , 1 , . . . 

where A, // > 0. Suppose that X{0) = z G {1 ,2 , . . . }. Calculate E[X{t)]. 

Indication. We can use the Kolmogorov equations. 

Question no. 96 
The rates An and //n of the birth and death process {X{t)^t > 0}, whose 

state space is the set { 0 , 1 , . . . , c}, are 

An = (c — n)A and /in — ^M 

for n = 0 , 1 , . . . ,c. Suppose that X(0) = k G { 0 , 1 , . . . ,c}. Calculate the 
function Pk,c{t)' 
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Indication. In the case of a continuous-time Markov chain defined on the set 
{0,1}, and for which 

Ao = A, Ai = 0, /io = 0? aiid Ijii = fJ' 

we have (see p. 131) 

/i + A // + A 

and 

/xH-A /i +A 

Question no. 97 

Let {X{t)^t > 0} be a birth and death process for which 

Xn = 7 for n = 0 , 1 , . . . and tin = n for n = 1,2,... 
n + 1 

and let ô > 0 be the time instant at which the first birth occurred. 

(a) Suppose that we round off the time by taking the integer part. Calculate 
the probability that the first event from to will be a birth. 

Indication. If X ~ Exp(A), then 1 + int(X) ~ Geom(l - e~^), where int 
denotes the integer part. 

(b) What is the probability that there will be at least two births among the 
first three events from to? 

(c) Calculate, if they exist, the limiting probabilities of the process. 

Question no. 98 
The lifetime of a certain machine is a random variable having an expo­

nential distribution with parameter A. When the machine breaks down, there 
is a probability equal to p (respectively, 1 — p) that the failure is of type I 
(resp., II). In the case of a type I failure, the machine is out of use for an 
exponential time, with mean equal to l//i time unit(s). To repair a type II 
failure, two independent operations must be performed. Each operation takes 
an exponential time with mean equal to l//i . 

(a) Define a state space such that the process {X{t),t > 0}, where X{t) 
denotes the state of the system at time t, is a continuous-time Markov chain. 

(b) Calculate, assuming the existence of the limiting probabilities, the prob­
ability that the machine will be functioning at a (large enough) given time 
instant. 

Question no. 99 

A person visits a certain Web site according to a Poisson process with 
rate A per day. The site in question contains a main page and an internal 
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link. The probability that the person visits only the main page is equal to 
3/4 (independently from one visit to another). Moreover, when she clicks on 
the internal link (at most once per visit), the probability that she will return 
(afterward) to the main page is equal to 1/2. We define the states 

0: the person is not visiting the site in question 
1: the person is visiting the main page (coming from outside the site) 
2: the person is visiting the internal link 
3: the person is visiting the main page, after having visited the link 

Let r/e be the time (in hours) spent in state fc, for A; = 0,1,2,3. We assume 
that the random variables r^ are independent and that Tk has an exponential 
distribution with parameter i/jt, for A; = 1,2,3. 

Remark. We suppose that when the process is in state 3, the internal link is 
highlighted and that this highlighting is removed when the person leaves the 
site. 

Let X{t) be the state the process is in at time t > 0. We can show that 
{X{t)^t > 0} is a continuous-time Markov chain. 

(a) Give the probabilities pij of the process. 

(b) Is the process {X{t),t > 0} a birth and death process? If it's not, is it 
possible to rename the states so that {X{t). t>0} becomes a birth and death 
process? Justify. 

(c) Calculate the average time spent on the site in question on an arbitrary 
visit, given that ri = 1/4 for this visit. 

(d) Calculate the limiting probabilities TTJ. 



Diffusion Processes 

4.1 The Wiener process 

We already mentioned the Wiener process twice in Chapter 2. In this section, 
we will first present a classic way of obtaining this process from a random 
walk. Then we will give its main properties. 

Consider the discrete-time Markov chain {X^, n = 0 , 1 , . . . } whose state 
space is the set of all integers Z := {0, ± 1 , ± 2 , . . . } and whose one-step tran­
sition probabilities are given by 

Pi,i+i = Pi.i-i = 1/2 for alH e Z (4.1) 

This Markov chain is a symmetric random walk (see p. 48). A possible interpre­
tation of this process is the following: suppose that a particle moves randomly 
among all the integers. At each time unit, for example, each minute, a fair coin 
is tossed. If "tails" (respectively, "heads") appears, then the particle moves 
one integer (that is, one unit of distance) to the right (resp., left). 

To obtain the stochastic process called the Brownian motion, we accelerate 
the random walk. The displacements are made every 5 unit of time, and the 
distance traveled by the particle is equal to e unit of distance to the left or to 
the right, where, by convention, J > 0 and e > 0 are real numbers that can be 
chosen as small as we want. As the Wiener process is a continuous-time and 
continuous-state process, we will take the limit as 5 and e decrease to 0, so that 
the particle will move continuously, but will travel an infinitesimal distance on 
each displacement. However, as will be seen subsequently, we cannot allow the 
constants 5 and e to decrease to 0 independently from each other; otherwise, 
the variance of the limiting process is equal either to zero or to infinity, so 
that this limiting process would be devoid of interest. 

We denote by X[t) the position of the particle at time t, and we suppose 
that X(0) = 0. That is, the particle is at the origin at the initial time. Let 
N be the number of transitions to the right that the particle has made after 
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its first n displacements. We can then write that the position of the particle 
after n6 unit(s) of time is given by 

X{nS) = {2N - n) e (4.2) 

Note that if all the displacements have been to the right, so that N = n, 
then we indeed have that X{n5) = ne. Similarly, if iV = 0, then we obtain 
X{n5) = —ne, as it should be. 

Remark. Since the particle only moves at time instants 5, 25, . . . , we may 
write that its position at time t is given by 

X{t) = X{[t/5]S) f o r a l H > 0 (4.3) 

where [ ] denotes the integer part. 

Because the tosses of the coin are independent, the random variable N has 
a binomial distribution with papameters n and p = 1/2. It follows that 

E[X{n5)] = = (2 X f - n) e = 0 (4.4) 

and 

V[X{nS)] =Ae^ V[N] = A e^ x j ^ n e'^ (4.5) 

If we first let S decrease to 0, then the random walk becomes a continuous-
time process. However, given that 

V[X{t)]\,^^s = ne'=*-xe'' (4.6) 

we find that e must tend to 0 at the same time as S; otherwise, the variance 
of X{t) will be infinite. Actually, to obtain an interesting limiting process, S 
and ê  must decrease to 0 at the same speed. Consequently, we assume that 
there exists a constant a {> 0) such that 

e=^aV5 ^=> e'^=a^S (4.7) 

Thus, when we let 6 decrease to 0, we obtain a process that is also with 
continuous-state space and for which 

E[X{t)] = 0 (4.8) 

and 

V[X{t)]^cTH Wt>0 (4.9) 

Remark. By choosing e = cVS^ we directly have that y[X(/;)] = a^^, for all 
t > 0. That is, the variance of X{t) is actually equal to a'^t for any positive 
value of 5, and not only in the limit as 5 j 0. 
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From the formula (1.113), we may write that 

P[X{n 5)<x]c^ P[N(0, n e^) < x] (4.10) 

from which we deduce that 

P[W{t) < x] = P[N(0, ah) < x] (4.11) 

where 

W(t):=\imX(t) (4.12) 
510 ^ ' 

That is, the random variable W{t) has a Gaussian distribution with zero 
mean and variance equal to a'^t. This result is the essential characteristic of 
the Wiener process. Moreover, since a random walk is a process with inde­
pendent and stationary increments (see p. 50), we can assert that the process 
{W{t)^t > 0} has these two properties as well. 

Based on what precedes, we now formally define the Wiener process. 

Definition 4.1.1. A stochastic process {W{t),t > 0} is called a Wiener 
process, or a Brownian motion^ if 

i) W{0) = 0, 

ii) {W{t)^t > 0} has independent and stationary increments, 

iii)W{t)r^ N(0,a'^t) V t > 0. 

Remarks, i) The name Brownian motion is in honor of the Scottish botanist 
Robert Brown.^ He observed through a microscope, in 1827, the purely ran­
dom movement of grains of pollen suspended in water. This movement is due 
to the fact that the grains of pollen are bombarded by water molecules, which 
was only established in 1905, because the instruments Brown had at his dis­
posal at the time did not enable him to observe the water molecules. The 
Brownian motion and the Poisson process (see Chapter 5) are the two most 
important processes for the applications. The Wiener process and processes 
derived from it are notably used extensively in financial mathematics. 

ii) Let 

B{t) := ^ ^ (4.13) 

We have that F[^(t)] = t. The stochastic process {B{t),t > 0} is named 
a standard Brownian motion. Moreover, if we sample a standard Brownian 
motion at regular intervals, we can obtain a symmetric random walk. 

^ Robert Brown, 1773-1858, was born in Scotland and died in England. He was a 
member of the Royal Society, in England. 
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iii) The Wiener process has been proposed as a model for the position of the 
particle at time t. Since the distance traveled in a time interval of length 5 
is proportional to y/S, we then deduce that the order of magnitude of the 
velocity of the particle in this interval is given by 

^ = -7= —^00 when(JiO (4.14) 
0 y/S 

However, let V{t) be the average velocity (from the initial time) of the 
particle at time t > 0. It was found experimentally that the model 

V{t):=^^^ iovt>0 (4.15) 

was very good for values of t large enough (with respect to S). We will see 
another model, in Subsection 4.2.5, which will be appropriate for the velocity 
of the particle even when t is small. 

iv) We can replace condition iii) in Definition 4.1.1 by 

W{t + s)-W{s)r^N{0,a^t) \/s,t>0 (4.16) 

and then it is no longer necessary to assume explicitly that the process 
{W{t),t > 0} has stationary increments, since it now follows from the new 
condition iii). 

v) Let 

W%t):=W{t) + c (4.17) 

where c is a real constant, which is actually the value of W*{0), The process 
{W*{t),t > 0} is called a Brownian motion starting from c. We have that 
W^*(t) ^ N(c, cr^f), V t > 0. We could also consider the case when c is a 
random variable C independent of W{t), for all t >0. Then we would have 

El^it)] = E[C] and F[W*(t)] = aH + V[C] (4.18) 

vi) Wiener proved the following very important result: W{t) is a continuous 
function off (with probability 1). Figure 4.1 shows a (simplified) example of 
the displacement of a particle that would follow a Brownian motion. In reality, 
the trajectory of the particle would be much more complicated, because there 
should be an infinite number of changes of direction of the particle in any 
interval of finite length. We can thus state that the function W{t) is nowhere 
differentiable (see, however. Section 4.3). 

In general, it is very difficult to explicitly calculate the fcth-order density 
function (see p. 49) of a stochastic process. However, in the case of the Wiener 
process, {W{t),t > 0}, we only have to use the fact that this process has 
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W(t)r 

Fig. 4.1. (Simplified) example of the Brownian motion of a particle. 

independent and stationary increments. We can thus write, for ti < 2̂ < 
. . . < tfc, that 

k 

f{wi,... ,Wk\ti,,.. ,tk) = f{wi;ti)Y[f{wj -Wj-i;tj -tj-i) (4.19) 
i=2 

where 

f{w\ t) = ^̂  ^ : exp \ — ^ ^. \ for all w; € 
\/27rcr21 2aH 

(4.20) 

is the density function of a random variable having a Gaussian N(0, a'^t) dis­
tribution. Indeed, we have 

f]{Witj) =wj} (4.21) 
j = i 

= {W{h) =wi}f]lf] {W{tj) - W{tj-i) = wj - w,_i} 

and the random variables W{ti), ^^(^2) — W{ti)^ . . . are independent and 
all have Gaussian distributions with zero means and variances given by cr^ti, 
^ ^ ( ^ 2 - ^ 1 ) , . . . . 

Remark. We deduce from what precedes that the Wiener process is a Gaussian 
process (see Section 2.4). It is also a Markovian process, because it is the limit 
of a Markov chain. 

To calculate the autocovariance function (see p. 49) of the Wiener process, 
note first that 

Cov[X, Y + Z]= E[X{Y + Z)] ~ E[X]E[Y + Z] 

= {E[XY] - E[X]E[Y]} + {E[XZ] - E[X]E[Z]} 

= Cov[X, Y] + Cov[X, Z] (4.22) 
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Then we may write that 

Cw{t,t + s) = CoY[W{t),W{t + s)] 

= Coy[W{t),W{t)-hW{t + s)-W{t)] 

= CoY[W{t), W{t)] + Coy[W{t), W{t + s)- W{t)] 

ind. Jncr. ^ ^ ^ j ^ ^ ^ ) ^ ^ ( ^ ) ] ^ V[W{t)] = GH (4.23) 

for all 5, f > 0. This formula is equivalent to 

Cw (5, t) = a^ min{5, i\ for all s, t > 0 (4.24) 

Remarks, i) The random variables W{t) and W{t + s) are not independent, 
because the intervals [0, t] and [0, f + s] are not disjoint. Thus, the larger W{t) 
is, the larger we expect W{t + s) to be. More precisely, we have 

W{t + s) I W{t) - N(W^(t),a2s) y s,t> 0 (4.25) 

ii) Since the function Cwit^t -f 5) is not a function of 5 alone, the Wiener 
process is not stationary, not even in the wide sense (see p. 52). As we already 
mentioned, the notion of processes with stationary increments and that of 
stationary processes must not be confounded. 

iii) Since J5[Vr(f)] = 0, we also have 

RIY{S, t) = a^ min{5, t} for all 5, i > 0 (4.26) 

where Rw{',') is the autocorrelation function of the process {W{t),t > 0} 
(see p. 49). 

Example .^.i.i. If the random variables W{t) and W{t-\-s) were independent, 
we would have W{t) + W{t + 5) ~ N(0, a'^{2t + s)), which is false. Indeed, we 
may write that 

W{t) -^W{t-\-s) = 2 W{t) + [W{t 4- s) - W{t)] = X -f y 

where X := 2W{t) and Y := W{t + s) - W{t) are independent random 
variables, because the Wiener process has independent increments. Moreover, 
we have 

E[X] = E[Y] = 0 

and 
V[X] = 4 V[W{t)] = 4 aH and V[Y] = V[W{s)] = a'^s 

(using the fact that the Wiener process also has stationary increments). We 
thus have 

W{t) 4- W{t + 5) - N(0, (j2(4t + s)) 

which follows directly from the formula (1.108) as well. 
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Remark. As the increments of the Wiener process are stationary, the random 
variables W{t + s) - W{t) and W{s) {= W{s) - W{0)) have the same dis­
tribution. However, this does not mean that W{t -{- s) — W{t) and W{s) are 
identical variables. Indeed, suppose that t = 1^ s = 1, and W{1) = 0. We 
cannot assert that W{2) - W{1) = W{2) - 0 - 0, since P[W{2) - 0] = 0, by 
continuity. 

Given that the Brownian motion is Gaussian and that a Gaussian process is 
completely determined by its mean and its autocovariance function (see p. 59), 
we can give a second way of defining a Brownian motion: a continuous-time 
and continuous-state stochastic process, {X(t),t > 0}, is a Brownian motion 
if 

i) X(0) = 0, 

ii) {X{t)^t > 0} is a Gaussian process, 

iii) E[X{t)] = 0, 

iv) Cx{s,t) = Cov[X{s),X{t)] = cr2min{5,t} W s,t > 0, where a > 0 is a 
constant. 

It is generally easier to check whether the process {X{t),t > 0} possesses 
the four properties above, rather than trying to show that its increments are 
or are not independent and stationary. This second definition of the Brownian 
motion is particularly useful when {X{t)^t > 0} is some transformation of a 
Wiener process {W{t),t > 0}. As we saw in Section 2.4, any affine transfor­
mation of a Gaussian process is also a Gaussian process. That is, if 

X{t) = ciW{t)-\-co (4.27) 

where CQ and Ci ^ 0 are constants, then {X(t),t > 0} is a Gaussian process. 
Moreover, if we only transform the variable t, for example, if 

X{t) = W{t^) (4.28) 

then the process {X{t)^t > 0} is also a Gaussian process. 
Remark. We could drop the first condition above if we accept that a Brownian 
motion can start from any point WQ G R . Similarly, we could replace the third 
condition by E[X{t)] = fit^ where /i is a real constant. In this case, the 
stochastic process {X{t)^t > 0} would be a Brownian motion with drift JJL (see 
Subsection 4.2.1). 

Example 4-1-2. Let {W{t),t > 0} be a Brownian motion. We set 

X(0) = 0 and X{t) = tW{l/t) if ^ > 0 

At first sight, the stochastic process {X{t)^t > 0} does not seem to be a 
Wiener process. However, we have 
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E[X{t)]=tE[W{l/t)]=t'0 = 0 i f t > 0 

because E[W{t)] = 0, for any value of ^ > 0, and then 

Cx{s,t) = E[X{s)X{t)]-0x0 

= E[s W{l/s) t W{l/t)] = St Cv^(l/s, 1 A) 

=: st G^ min{l/s, Xjt) - a^ min{s, t) 

Moreover, we can assert that {X(t), t > 0} is a Gaussian process, because here 
X(t) is a linear transformation of W{\jt). Since X(0) = 0 (by assumption), 
we can conclude that {X(t),t > 0} is a Brownian motion having the same 
characteristics as {W(t),t > 0}. 

Remark We must not forget that the variable t is deterministic, and not 
random. Thus, we can consider it as a constant in the calculation of the 
moments of the process {X{t), t >0}. 

Example 4-1-3. We define the stochastic process {X{t),t > 0} by 

X{t) = B{t) \{B{t) > 0} for t > 0 

where {B{t),t > 0} is a standard Brownian motion. 

(a) Show that the probability density function of X{t) is given by 

fx{t){x) = 2 fB{t)(x) for X > 0 

(b) Calculate (i) E[X{t)] and (ii) V[X{t)], for t > 0. 

(c) Is the stochastic process {X{t),t > 0} (i) Gaussian? (ii) wide-sense sta­
tionary? Justify. 

(d) Are the random variables X{t) and Y{t) := \B{t)\ identically distributed? 

Solution, (a) We may write that 

fxit){x) = pl^^l''^^^=2fsit){x) f o r x > 0 

because B{t) ~ N(0, t) ^ P{B{t) > 0] = 1/2. 

(b) (i) We calculate 

•{2tM 1/2 -x^/2t 
oo 

{Uj-Kf^ for t > 0 
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(ii) Notice first that 

E\B^{t)] = E[B^{t) I B{t) > 0]P[B(t) >0] + E[B^{t) \ B{t) < 0] P[B{t) < 0] 
> V ' 

1/2 

Since E[B'^{t)] = V[B{t)\ = t and E[B^t) \ B{t) > 0] = E[B\t) \ B{t) < 0] 
(by symmetry and continuity), it follows that 

V[X{t)] *i' E\B'^{t) I B{t) > 0] - - = i - - for i > 0 
TT TT 

(c) (i) Since X{t) > 0 V t > 0, the stochastic process {X(t),t > 0} is not 
Gaussian. 

(ii) It is not WSS either, because E[X{t)] is not a constant. 

(d) We have 

P[y{t) < y] '^' P[-y < B{t) <y] = FBit){y) - i^B(t)(-|/) 

= ^ fY{t) (y) = 2 fB{t) [y) for y > 0 

Thus, X{t) and Y{t) are identically distributed random variables. 

4.2 Diffusion processes 

Continuous-time and continuous-state Markovian processes are, under certain 
conditions, diffusion processes. The Wiener process is the archetype of this 
type of process. One way, which can be made even more rigorous, of defining 
a diffusion process is as follows. 

Definition 4.2.1. The continuous-time and continuous-state Markovian sto­
chastic process {X(t),t > 0}, whose state space is an interval (a^b), is a 
diffusion process if 

lim -P[\X{t - h e ) - X{t)\ > S \ X{t) = x] = 0 (4.29) 

V 5 > 0 and V x G (a, 6), and if its infinitesimal parameters defined by (see 
p. 63) 

m(x; t) = lim -E[X{t + e) - X{t) | X{t) = x] (4.30) 

and 

v{x; t) = lim -E[{X{t + e) - X{t)f \ X{t) = x] (4.31) 

are continuous functions of x and oft. 
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Remarks, i) The condition (4.29) means that the probability that the process 
will travel a distance greater than a fixed constant 5 during a sufficiently short 
period of time is very small. In practice, this condition implies that X{t) is a 
continuous function oft. 

ii) We assumed in the definition that the infinitesimal mean m{x; t) and the 
infinitesimal variance v{x; t) of the process exist. 

iii) The state space Sx{t) of the stochastic process {X{t), t > 0} may actually 
be any interval: [a, 6], (a, 6], [a, 6), or (a, 6). Moreover, if the interval does 
not contain the endpoint a, then a may be equal to —CXD. Similarly, we may 
have that 6 = oo if Sx{t) = (o^^b) or [a,6). Finally, if Sx{t) — [̂ ?̂ ]» then the 
functions m(x; t) and v{x\ t) must exist (and be continuous) iov a < x < h 
only, etc. 

Example 4-2.1. In the case of the Wiener process, {W{t),t > 0}, we have that 
W{t + e) I {W{t) = w}r^ N(i/;, a^e), for all e > 0. We calculate 

lim ^P[\W{t + €)- W{t)\ > S I W{t) =w]= lim -P[\N{0,a^e)\ > 5] 

= l i m - P |N(0,1) |> ^ 
a^/e 

= lim - n - ^ 
ej.0 e ^v/i)} 

where 

^{x):= r -^e-''^Uz (4.32) 

is the distribution function of the N(0,1) distribution. We may write that 

^ ( ^ ) = l ( ^ l + e r f ( ^ ) ) (4.33) 

where erf(-) is the error function. 

Finally, making use of the formula (4.33) and of the asymptotic expansion 

erf(x) = l - ^ i - - — + . . . 
A/TT [X 2X^ 

which is valid for x > 1, we find that 

Next, we have 

lim -E[W{t + e) - W{t) | W{t) = u;] = lim i 0 = 0 
ej,0 e ejO e 
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and 

lim -E[{W{t -f e) - W{t)f \ W{t) = w] 

= \im-E[Z\ where Z - N ( 0 , a 2 e ) 

= lim-VIZ] = lim-a^e = a^ 
ejO e eiO e 

Thus, we have m{x] t) = 0 and i;(a;; t) = a'^. Because the infinitesimal param­
eters of the Wiener process are constants^ the functions m{x; t) and v{x] t) are 
indeed continuous. 

The most important case for the apphcations is the one when the diffusion 
process {X{t), t > 0} is time-homogeneous^ so that the infinitesimal moments 
of {X{t), t>0} are such that m{x; t) = m{x) and v{x; t) = v{x). We can then 
assert (see p. 64) that the process {Y{t),t > 0} defined by 

Y{t) = g[X{t)] for ^ > 0 (4.34) 

where g is a, strictly increasing or decreasing function on the interval [a, b] = 
Sx{t) and such that the second derivative g''{x) exists and is continuous, for 
all x G (a, 6), is also a diffusion process, whose infinitesimal parameters are 
given by 

mviy) = m{x)g'{x) + -v{x)g'\x) and vyiy) = v{x)[g\x)]'^ (4.35) 

where the variable x is expressed in terms of y: x = g~^{y) (the inverse 
function oi g{x)). Moreover, we have that Syn) = b(^)^^(&)] if 5' is strictly 
increasing, while 5'y(^) = [g{b),g{a)] ii g is strictly decreasing. 

Remarks, i) The function g must not be a function of the variable t. 

ii) We assume in what precedes that the process {X{t),t > 0} can move from 
any state x G (a, 6) to any other state y G (a, b) with a positive probability. 
We say that {X{t),t > 0} is a regular diffusion process. Then the process 
{y(t) , t > 0} is regular as well. 

4.2.1 Brownian motion with drift 

A first important transformation of the Wiener process is a generalization of 
this process. Let 

Y{t):=aB{t) + fit (4.36) 

where {B{t),t > 0} is a standard Brownian motion, and // and a ^ 0 are real 
constants. Note that in this case the function g would be given by 
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g{x,t) =ax + iJit (4.37) 

Thus, we cannot use the formulas (4.35) to calculate the infinitesimal param­
eters of the process {Y{t)^t > 0}. However, we have 

E[Y{t) I Y{to) = yo] = yo + f^it - k) (4.38) 

and 

V[Y{t)\Y{to) = yo]=cr\t-to) - (4.39) 

for all t > to. We then deduce from the formulas (2.58) and (2.59) that 

fT^viy) =/^ and fy(t/) = cr̂  for all y (4.40) 

Remark, If we try to calculate the function mY{y) from (4.35), treating t as 
a constant, we find that myiy) = 0, which is false, as we see in Eq. (4.40). 

Definition 4.2.2. Let {Y{t)^t > 0} 6e a diffusion process whose infinitesimal 
parameters are given bym^yiy) = /i andvyiy) = o-^- The process {Y{t)yt > 0} 
is called a Brownian motion (or Wiener process^ with drift /i. 

Remarks, i) The parameter // is the drift coefficient^ and a^ is the diffusion 
coefficient of the process. The term parameter^ rather than coefficient^ is used 
as well. 

ii) If the random walk had not been symmetric in the preceding section, we 
would have obtained, under some conditions, a Wiener process with nonzero 
drift coefficient /x. 

iii) Since the function f[B{t)] := aB{t)-\-iJ,t is an affine transformation of the 
variable B{t) ~ N(0,i), we may write 

Y{t)r^N{jjit,aH) (4.41) 

or, more generally, 

Y{t) I {Y{to) = yo} - N(2/o + f^{t - to), (j\t - to)) V t > to (4.42) 

Moreover, the process {Y{t)^t > 0} is a Gaussian process having independent 
and stationary increments. It follows (with y(0) = 0) that 

E[Y{t + s)Yit)] = E[{Y{t + s)-Y{t) + Yit))Y{t)] 

ind.̂ ncr. ^^y^^ ^ ^̂  _ Y(t)]E[Y{t)] + E[Y\t)] 

statyncr. E[Yis)]E[Y(t)] + E[Y^{t)] 

= {ns){tit) + {aH + nh'^) (4.43) 

which implies that 



4.2 Diffusion processes 185 

Crit + s,t) = Cov[Y{t + s),Y{t)] = E[Y{t + s)Y{t)] - E[Y{t + s)]E[Y{t)] 

= I?St + ah + iiH'^ - fi{t + s)iiit = aH V 5, f > 0 (4.44) 

Thus, the Brownian motion with drift has the same autocovariance function 
as the Wiener process. 

iv) The conditional transition density function p(|/, 2/o;̂ ?^o) (see p. 62) of the 
Brownian motion with drift coefficient /i and diffusion coefficient cr̂  satisfies 
the partial differential equation (see p. 64) 

dp dp a"^ d'^p ^ / . .,-N 

as well as the equation 

dp dp (j^ d'^p 

dto ^dyo 2 dy'^ 
+ ^ - ^ + ^ ^ = 0 (4.46) 

We can check that 

^"'•-"^-7s^M-l''^''m^} <"̂' 
for y,yo eM. and t >to>0. We have 

\imp{y,yo;t,to) = S{y~yo) (4.48) 
tito 

which is the appropriate initial condition. 

4.2.2 Geometric Brownian motion 

A diffusion process that is very important in financial mathematics is obtained 
by taking the exponential of a Brownian motion with drift. 

Let {X{t), ^ > 0} be a Wiener process with drift coefficient /i and diffusion 
coefficient a^. We set 

Y{t) = e^(*) for t > 0 (4.49) 

Since the function g{x) = e^ does not depend on t, we deduce from (4.35) 
that 

mviy) = fie'' + -a'^e^ = /̂ y + ^^^^ (^-^O) 

and 

VY{y)=a\e^f = aY (4.51) 
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Definition 4.2.3. The stochastic process {Y{t),t > 0} whose infinitesimal 
parameters are given by myiy) = (/x 4- |<^^)y o>i^d vyiv) = cr̂ y^ is called a 
geometric Brownian motion. 

Remarks, i) The state space of the geometric Brownian motion is the interval 
(0, oo), which follows directly from the definition Y{t) = e^^* .̂ The origin is 
a natural boundary (see Section 4.4) for this process. It is used in financial 
mathematics as a model for the price of certain stocks. 

ii) Since Y{t) > 0, for all i > 0, the geometric Brownian motion is not a 
Gaussian process. For a fixed t, the variable Y{t) has a lognormal distribution 
with parameters fit and a'^t. That is, 

iii) We can generalize the definition of the geometric Brownian motion {Y{t)^ 
^ > 0} by setting 

y ( t ) = F ( 0 ) e ^ « (4.53) 

where Y{0) is a positive constant. As in the case of the Wiener process, the 
initial value y(0) could actually be a random variable. 

iv) To obtain the conditional transition density function piy.yo'it.to) of the 
process, we can solve the Kolmogorov forward equation 

+ (''+HI;<'""-T$<''''"='' '""* 
In the particular case when to = 0, we find that the solution of this partial 
differential equation that satisfies the initial condition 

limp(y, yo] t) = S{y - yo) (4.55) 

IS 

1 f (lnf-/xt)n 

for 1/, t/o > 0 and t > 0. 

v) The geometric Brownian motion is appropriate to model the evolution of 
the value of certain stocks in financial mathematics when we assume that the 
ratios 

Xi X2 X'i . . 
A Q y^i A 2 
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where XQ is the initial price of the stock and Xk is the price after k unit(s) 
of time, are independent and identically distributed random variables. 

We have used the expression diffusion process at the beginning of this 
subsection. By definition, this means that the geometric Brownian motion 
must be a Markovian process, which we now show. 

Proposition 4.2.1. The geometric Brownian motion is a Markovian process, 
whose conditional transition density function is time-homogeneous. 

Proof. We have, in the general case when Y{t) := Y{0)e^^^\ 

Y{t + s)= y(0)e^(*+^) - y(o)e^(*+^)-^(*)+^(*) 

= ^ Y{t + 8) = y(t)e^(*+^)-^(*) (4.58) 

We then deduce from the fact that the Wiener process has independent in­
crements that Y{t + 5), given Y{t)^ does not depend on the past. Thus, the 
process {Y{t),t > 0} is Markovian. 

We also deduce from the equation above and from the independent and 
stationary increments of the Wiener process that 

P{Y{to + s)<y\ Yito) = yo] = P[y(to)e^<*°+')-^<*»' < y \ Y{to) - j/o] 

= P[e^(^) < y/yo] (4.59) 

for all t/o,?/ > 0 and for all t^.s > 0, from which we can assert that the 
function p(y, ^o; t, to) of the geometric Brownian motion is such that 

p{y^yo]t,to)=p{y,yo'^t-to) • (4.60) 

Remarks, i) Equation (4.58) implies that 

Y{t + s)= Y{t)e^^'^ (4.61) 

That is, the random variable Y{t + s) has the same distribution as Y{t)e^^^\ 

ii) To prove that the conditional transition density function of the geometric 
Brownian motion is time-homogeneous, we can also check that the function 
[see (4.56)] 

for y,yo > 0 and t > tQ>0, satisfies the Kolmogorov forward equation (4.54), 
subject to 
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limp{y,yo;t,to) = ^(y - yo) 
tito 

(4.63) 

From the formula Y{t) = e^^^\ and making use of the formula for the 
moment-generating function (see p. 19) of a random variable X having a 
Gaussian N(/i, a^) distribution, namely 

Mx{s) = E[e'^] = exp isfi + ^ s^^^ j 

we find that the mean and the variance of Y{t) are given by 

and 

y[y(t)] = exp ̂  (/i + M 2A (e-^* - l) 

(4.64) 

(4.65) 

(4.66) 

for all t>0. Note that £^[F(0)] = 1, which is correct, since Y{0) - 1 (because 
X(0) = 0, by assumption). More generally, for all t>r, we have 

E ^ ] = e x p { ( M + i . ^ ) « - r ) } (4.67) 

and 

V ^ ] == exp I (M + \<^') 2{t - r ) } (e<^^(*--) - l ) (4.68) 

We also find, using the fact that the process is Markovian, that 

E[Y{t) I Yis),0 < s < r] = E[Y{t) \ Y{T)] = Y{T)exp iL+ ^<JA (t - r ) | 

(4.69) 

and 

E[Y^{t) I Y{s),0 <S<T]= E[Y^{t) \ Y{T)] = Y^{T) exp{2{fi + a^){t - r )} 
(4.70) 

for all t>T, from which we can calculate T^[i^(t) | Y{s),0 < s <T]. 

Finally, we can write (see Ex. 4.1.1) that if Y{0) = 1, then 

E[Yit + s)Yit)] = E [e^(*+«)e^W] = E [e^(t+^)+^(*)] 

= Mx{l), where X ~ N{n{2t + s),a^{4t + s)) 
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= expLi{2t + s) + ^a^i4t + s)\ (4.71) 

from which, V s, i > 0 we have 

Cvit + s,t)= E[Y{t + s)Y{t)] - E[Y{t + s)]E[Y{t)] 

= exp I n{2t + s)+ 20-^(4^ + «) [ 

- exp I U + ^aA {t + s ) | exp lU + -aA t\ 

= exp I /x(2i + s) + ^cr^i^t + s) I - exp | U + -crM {2t + s) i 

= exp I (M + ^<T2) (2i + s) I (e""' - l ) (4.72) 

Remarks, i) Contrary to the Wiener process, the geometric Brownian motion 
is not a process with independent and stationary increments. Indeed, 

Y{t + s) - Y{s) = y(0)e^(*+"' - r(0)e^("> = y(0)(e^(*+'' - e^^^^) (4.73) 

does not have the same distribution as 

Y{t) - F(0) = y(0)e^(*> - y(0) = y(0)(e^(*> - 1) (4.74) 

for all s > 0. Moreover, the random variables 

Y{t + s)- Y{t) = r(0)e^(*+^> - y(0)e^'(*> = y(0)(e^(*+*^ - e^^^) (4.75) 

and Y{t)—Y{0) are not independent. To justify this assertion, we can calculate 
the covariance of these variables. Since Y{0) is not random, we have 

Cov[r(i + s) - Y{t),Y{t) - Y{0)] 

= {E[Y{t + s)Yit)] - Y{0)E[Y{t + s)] - E[Y\t)] + Y{0)E\Y{t)]} 

- {E[Y{t + s)] - E[Ym{E[Yit)] - Y{0)} 

= Cov[Y{t + s), Y{t)] - V[Y{t)] (4.76) 

Using the formulas (4.66) and (4.72), we may write that 

Cov[Y{t + s)-Y{t),Y{t)-Y{0)] 

= (e'^'* - l ) L p (L+ ^aA {2t + s ) | - exp I TM + 5 ^ ' ) 2 i | 

= (e"^* - 1) exp I U + ^aA 2t\ exp | L + \^ 2 ' s V - l (4.77) 

which is different from zero if s, t > 0, so that the random variables considered 
are not independent. 
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ii) If the drift coefficient jn of the Wiener process is equal to —^a^, then the 
corresponding geometric Brownian motion is such that [see the formula (4.69)] 

E[Y{t) I Y{s),0 <S<T]= Y{T) (4.78) 

Thus, the process {Y{t),t > 0} is a martingale (see p. 102). We can always 
obtain a martingale from an arbitrary Wiener process, by setting 

Y*{t) = y(0)exp | x ( i ) - (M + l<y') t\ = exp | - (M + ^ ^ ' ) *} Y{t) 

(4.79) 

where Y{t) is defined in (4.53). Indeed, we then have 

E[Y*it)\Y*{s),0<s<T] 

= exp | - L + ^aA t\ E[Yit) \ Y*{s),0< s < r] 

= exp | - L + ^aA t\ E[Y(t) | Y{s), 0 < s < r] 

= exp | - L + ^aA t\F(r)exp (L+ ^aA {t - T)J 

= Y{T)exp!^~(^^l+laAT\=Y*{T) (4.80) 

iii) There exists a discrete version of the geometric Brownian motion used, in 
particular, in financial mathematics. Let Yn := InX^, where Xn is the price 
of the shares of a certain company at time n G { 0 , 1 , . . . }. We assume that 

Yn = ^ + Yn-i+en (4.81) 

where ft is a constant and the e^'s are independent random variables. Then 
we have 

n 

Fn = n / i + ^ € , + yo (4.82) 
1=1 

If we now assume that Cn ~ N(0, a^), for all n, and that Yb is a constant, we 
obtain 

E[Yn]==nii-\-Yo and V[Yn] = n a^ (4.83) 

The discrete-time and continuous-state processes {YniTi = 0 ,1 , . . . } and 
{Xn, n ~ 0 ,1 , . . . } are called a discrete arithmetic Brownian motion and a 
discrete geometric Brownian motion, respectively. 
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4.2.3 Integrated Brownian motion 

Definition 4.2.4. Let {Y{t)^t > 0} be a Brownian motion with drift coeffi­
cient 11 and diffusion coefficient a^, and let 

Z{t) : - Z ( 0 ) + / Y{s)ds (4.84) 

The stochastic process {Z{t)^t > 0} is called an integrated Brownian mo­
tion. 

Proposition 4.2.2. The integrated Brownian motion is a Gaussian process. 

Proof. First, we use the definition of an integral as the hmit of a sum: 

Z(,) = Z(0) + £ m i f : y ( ^ ) (4.85) 
k=l ^ ^ 

Since the Wiener process is a Gaussian process, the Y{tk/nys are Gaussian 
random variables. From this, it can be shown that the variable Z{t) has 
a Gaussian distribution and also that the random vector (Z( t i ) ,Z( t2) , . . . , 
Z{tn)) has a multinormal distribution, for all t i , t 2 , . . . , t^ and for any n, so 
that the process {Z{t),t > 0} is Gaussian. D 

Remark. We can write that 

Z{tk) = {Z{tk) - Z{tk-i)) + {Z{tk-i) - Z{tk-2)) + • • • 

+ ( Z ( t 2 ) - Z ( t i ) ) + Z(^i) (4.86) 

for A; = 2 , . . . , n, where we may assume that ^i < 2̂ < • • • < t^. We have 

Z(tu) - Z{tk-i) = r Y{s)ds (4.87) 

However, even though the increments of the Wiener process are independent, 
the random variables {Z(t2) — Z{ti)) and Z(ti) , etc., are not independent, as 
will be seen further on. Consequently, we cannot proceed in this way to prove 
that the integrated Brownian motion is Gaussian. 

Assuming that Z(0) is a constant, we calculate 

E[Z{t)] = Z{0) + [ E[Y{s)] ds = Z(0) + / ( y (0) + us) ds 
Jo Jo 

= Z{0) + Y{0)t + ^ (4.88) 

For the sake of simplicity, suppose now that {Y{t)^t > 0} is a standard 
Brownian motion (starting from 0) and that Z(0) = 0. Making use of the 
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formula (see p. 178) E[Y{s)Y{t)] = min{s,t} (because E[Y{t)] = 0 and a 
1), we may write that 

E[Z{t + s)Z{t)] = E / Y{u)du / Y{v) 
Jo Jo 

dv 

=ZE\ f [ Y{u)Y{v)dudv\ 
Uo Jo J 

= [ f E[Y{u)Y{v)] dudv 
Jo Jo 

= / < / min{M, v}du+ / min{u, v} du > dv 

ft f l-V pt+S -> 

= / </ udu+ vdu> dv 

' 3 2 
(4.89) 

Prom the previous formula, we obtain, under the same assumptions as 
above, that 

Cov[Zit + s) - Z{t), Z{t)] = E {[Z{t + s) - Z{t)\Z{t)} - 0 

= E[Z{t + s)Z{t)\-E[Z'^(t)\ 

t s\ t^ t^s 
+ z: -3 2 

— 7̂  0 (4.90) 

which implies that Z{t + s) - Z{t) and Z{t) are not independent random 
variables V s > 0, and 

E [{Z{t + s)- Z(s)}2] = E[Z\t + s)] + E[Z^s)] - 2E[Z{t + s)Z{s)] 

{t + S)3 
+ • 2s' 

s t 

3 2 
+ r = ^ + t s 

^'j^ElZHt)] (4.91) 

from which we deduce that Z{t + s) - Z{s) and Z{t) are not identically dis­
tributed random variables. 

We can generalize these results and state the following proposition. 

Proposition 4.2.3. The increments of the integrated Brownian motion are 
neither independent nor stationary. 
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Next, by definition of Z(t), we may write that 

Z{t + s) = Z(0) + / ' Y{T) dr = Z(0) + / Y{T) dr-\- [ Y{T) dr 
Jo Jo Jt 
rt+s 

= Z{t)+ Y{r)dT (4.92) 

Proposition 4.2.4. The integrated Brownian motion is not a Markovian pro­
cess. However, the two-dimensional stochastic process {Y{t)^Z{t)) is Marko­
vian. 

Proof. The value of the last integral above does not depend on the past if 
Y[t) is known, because the Wiener process is Markovian. Now, if we only 
know the value of Z{t), we do not know Y{t). Thus, for the future to depend 
only on the present, we must consider the two processes at the same time. D 

When {Y{t),t > 0} is a standard Brownian motion, the joint probability 
density function of the random vector {Y{i)^Z{t))^ starting from (i/o,^o)? is 
given by 

_ P[Y{t) e {y,y-Vdy],Z{t) e {z,z + dz] \ Y{0) = yp^ZjO) = zp] 

dydz 

(4.93) 

for y, z, yo, ZQ eR and t >0. 

Remarks, i) The density function p{y.,z^yp^zp]t) is a particular case of the 
joint conditional transition density function p{y,z,yo^ZQ\t,tp). 

ii) To be more rigorous, we should take the limit as dy and dz decrease to 0 
above. However, this notation is often used in research papers. 

The function p(?/, ̂ , yp,zp\ t) is the solution of the partial differential equa­
tion (namely, the Kolmogorov forward equation) 

9 d 1 9^ 

which satisfies the initial condition 

p{y, z, yo, zp] t = 0)=5{y- yp, ̂  - ^o) = \ ^\f 
0 iiy:^ypOT z:^zp .^ ^^. 

y = yp and z = zp 

Indeed, taking the limit as t decreases to zero in the formula (4.93), we obtain 

lmp(y, z, yp, Zp] t) = 6{y -yp,z- zp) (4.96) 



194 4 Diffusion Processes 

Remark Actually, it is preferable to define the two-dimensional Dirac delta 
function by 

5{y-yo,z-zo)=0 ii{y,z)^{yo,zo) (4.97) 

and 

/

oo /»oo 

/ 6{y-yo,z-zo)dydz = l (4.98) 
-OO J — OO 

We can then write that 

S{y -yo.z- zo) = d{y - yo)S{z - ZQ) (4.99) 

Note that we also obtain the formula above, even if we set <J(0,0) = S{0) = oo, 
by assuming that 

S{0)S{z ~ Zo) = S{y - yo)S{0) = 0 ii z ̂  Zo e^nd y ̂ /^ yo (4.100) 

The formula for the function p{y, z, yo, ZQ\ t) is easily obtained by using the 
fact that it can be shown that the random vector {Y{t), Z{t)) has a bivariate 
normal distribution. Moreover, the bivariate normal distribution is completely 
characterized by the means, the variances, and the covariance of the two 
variables that constitute the random vector. Here, when {Y{t)^t > 0} is a 
standard Brownian motion starting from Y{Q) = yo? and Z(0) = zo? we deduce 
from what precedes that 

E[y{t)] = yo, V[Y{t)] = t, and E[Z{t)] = zo + yot (4.101) 

Furthermore, since E[Y{s)Y{t)] = min{5,t} + yQ when Y{0) = yo, we find 
that the generalization of the formula (4.89) is 

E[Z{t + s)Z{t)] = * ' ( ! + ! ) + Vot^ + 4 + 2^oyot (4.102) 

SO that 

V[Z{t)]=E[Z'{t)]-{E[Z{t)]}' 

= y + yot^ + -̂ 0 + 2zoyo^ - {zo + yotf = J (4.103) 

Remark. The variance of Z{t) is thus independent of the initial values Z{0) 
and Y{0), as we could have guessed. 

Next, we calculate 

E{Y{t)Z(t)] = E Y{t)^zo + l^: Y{T) dr 
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-1/0^0+ / E[Y{t)Y{r)]dT 
Jo 

ft 2̂ 
= yozo + / (r + y'o) dr - yoZo -^-^+ylt (4.104) 

which impHes that 

Cov[y(t), Z{t)] = E[Y{t)Z{t)] - E[Y{t)]E[Z{t)] 
2 f2 t t 

Y + /̂O'̂ ô + ylt - yoi^o + yot) = - (4.105) 

and 

"̂̂ '̂̂ '̂ '̂̂  Vv^[y(t)]y[z(0] t7V3 2 ^ ^ 

The expression for the function p{y^z,yo^zo;t) is obtained by substituting 
these quantities into the formula (1.82). 

We can check that if we replace ^ by t — to in the formula (4.93), then the 
function p{y, z, 2/0, ^0; ̂  ^o) thus obtained is also a solution of Eq. (4.94), such 
that 

limp(y, z, yo, ZQ; t, to) = S{y -yo^z- ZQ) (4.107) 

Consequently, we can state the following proposition. 

Proposition 4.2.5. The integrated Brownian motion is time-homogeneous. 
That is, 

p{y,z,yo,zo;t,to) = p{y,z,yo,zo]t-to) \/ t>to>0 (4.108) 

Finally, in some applications, we consider as a model the Brownian mo­
tion integrated more than once. For example, the doubly integrated Brownian 
motion 

D{t):^D{0)+ Z{s)ds = D{0) + Z{0)t-\- / Y{T)dT ds (4.109) 
Jo Jo Jo 

where {Y{t),t > 0} is a Wiener process with drift coefficient fi and diffusion 
coefficient cr̂ , is a Gaussian process for which 

E[D{t)] = £>(0) + Z(0) t+ / (y(0) + HT) dT ds 
Jo Jo 

= DiO) + Z{0)t + Y{0)*-+Hj (4.110) 

We also find that 
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V\D{t)] 
20 

(4.111) 

Moreover, the three-dimensional process {Y{t), Z{t), D{t)) has a multinor-
mal (namely, trinormal or three-variate normal) distribution whose vector of 
means m and covariance matrix K (see p. 59) are given by 

m 

r(o) + n t 
z(o) + y(o)t + /x4 

£)(0) + Z(0)t + F (0 ) f+ / i f J 

and 

K ah 
1 i/2 ^2/6 

[tV6 fVS *V20 

(4.112) 

(4.113) 

Example ^.2.2. In Example 4.1.1, we calculated the distribution of the sum 
W(i) + W(1i H- s) by using the fact that the increments of the Wiener process 
are independent. Since the integrated Brownian motion does not have this 
property, we cannot proceed in the same way to obtain the distribution of Z := 
Z(t) + Z(t 4- s). However, we can assert that Z has a Gaussian distribution, 
with mean (if // = 0 and F(0) = Z(0) = 0) 

E\Z\ = 0 + 0 = 0 

and with variance (if cr̂  = 1) 

V\Z\ = V[Z{t)] + V[Z{t + s)] + 2 Cov[Z(t), Z{t + s)] 

= 3 + 
{t+sr 

+ 2^ r- + ^ 

4t^ ^ 9 o s^ 

4.2.4 Brownian br idge 

The processes that we studied so far in this chapter were all defined for values 
of the variable t in the interval [0,oo). However, an interesting process that 
is based on a standard Brownian motion, {B{t),t > 0}, and that has been 
the subject of many research papers in the last 20 years or so, is defined 
for t G [0,1] only. Moreover, it is a conditional diffusion process, because we 
suppose that B{1) = 0. Since it is as if the process thus obtained were tied at 
both ends, it is sometimes called the tied Wiener process^ but most often the 
expression Brownian bridge is used. 
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Definition 4.2.5. Let {B{t),t > 0} be a standard Brownian motion. The 
conditional stochastic process {Z{t),0 < t < 1}, where 

Z{t) := B{t) I {B(l) = 0} (4.114) 

is called a Brownian bridge. 

Remark We deduce from the properties of the Brownian motion that the 
Brownian bridge is a Gaussian diffusion process (thus, it is also Markovian). 

Suppose that the standard Brownian motion {B{t)^t > 0} starts in fact 
from B{0) = bo and that B{s) = bg. Then, using the formula (which follows 
from the (independent and) stationary increments of the Brownian motion) 

r /7x fB{t),B{s){b,bs) fB{t){b)fB(s)-B{t){bs-b) . . . .-x 

jB(t)\{Bis)=bs}[b) = -— = jr- (4.115) 

for 0 < t < 5, we find that 

Bit) I {5(0) = bo, Bis) = 6,} ~ N f ̂  + M i Z ^ , til^) V t G (0,s) 
\ 5 S S J 

(4.116) 

Thus, when 6o = 0, 5 = 1, and 6̂  = 0, we obtain that 

B(t) I {E(O) - 0, B{\) - 0} ~ N (0, t{\ -t)) Wte (0,1) (4.117) 

so that 

E[Z{t)]=0 V ^ G ( 0 , 1 ) (4.118) 

and 
E[Z^{t)]=V[Z{t)]=t{l-t) V t G ( 0 , l ) (4.119) 

With the help of the formulas (4.116), (4.118), and (4.119), we calculate 
the autocovariance function of the Brownian bridge, for 0 < t < r < 1, as 
follows: 

Cz{t, T) = Cov[Z(0, ^M] - E[Z{t)Z{T)] - 0 X 0 

= E[E[Z{t)Z{r) I Z{r)]] = E[Z{r)E[Z{t) \ Z(r)]] 

^ r ( l - r ) 

- t ( l - r ) i f O < t < r < l (4.120) 

= E Z{r)iz{T) 

In general, we have 

Cz{t, T) = min{t, r } -tr if t, r G (0,1) (4.121) 
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We also deduce from the formula (4.116) that 

Tf 

E\Z{t + e)-Z{t)\Z{t) = x\ = -Y—^ (4.122) 

and 

E[(Z(t + 6 ) - Z ( t ) ) 2 | Z ( f ) = 4 = e 4 - o ( € ) (4.123) 

It follows that the infinitesimal parameters of the Brownian bridge are given 
by (see p. 63) 

m(x ;0 = l i m - ^ = - : p ^ (4.124) 
ejO 1 — t 1 —' t 

and 

^ ( x ; t ) = l i m l + ^ = l (4.125) 

for X G R and 0 < t < 1. 

Remarks, i) The Brownian bridge thus has the same infinitesimal variance as 
the standard Brownian motion. However, its infinitesimal mean depends on t 
and tends to infinity (in absolute value if x 7̂  0) as t increases to 1. 

ii) Since m{x;t) is a function of f, the Brownian bridge is not a time-
homogeneous process. 

As we did in the case of the Brownian motion, we can use the fact that 
the Brownian bridge is a Gaussian process to give a second definition of this 
process as being a Gaussian process with zero mean and whose autocovariance 
function is given by the formula (4.121). 

Proposition 4.2,6. Let {B{t)^t > 0} be a standard Brownian motion. The 
stochastic process {Zi{t)^0 <t<l} defined by 

Zi(t) = B{t)-tB{l) (4.126) 

is a Brownian bridge. 

Proof. We can assert that {Zi(t), 0 < t < 1} is a Gaussian process. Moreover, 
we calculate 

E[Zi{t)] = E[B{t)] - tE[B{l)] = 0 - f X 0 = 0 (4.127) 

and then, 

Cov[Zi(0,Zi(r)] = ElZi{t)Zi{T)] = E[{B{t) - tB{l)){B{T) - r5( l ) ) ] 

= E[B(t)B{T)] - T E[B{t)B{l)] - t E[B{1)B{T)] 

+ tTE[B''{l)] 
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— min{t, TJ-TXt-tXT + trxl 

= mm{t,T}-tT (4.128) 

Since the mean and the autocovariance function of the Gaussian process 
{Zi(t),0 < t < 1} are identical to those of the Brownian bridge, we can 
conclude that it is indeed a Brownian bridge. D 

Remark. In the same way, we can show that the process {Z2(t),0 < t < 1} 
defined by 

Z2{t) = {l-t)B(-^^ fovO<t<l (4.129) 

and Z2(l) = 0 is a Brownian bridge as well. 

4.2.5 The Ornstein-Uhlenbeck process 

As we mentioned in Section 4.1, the use of a Wiener process to model the 
displacement of a particle can be criticized. Indeed, for small values of the 
variable f, the Wiener process is not appropriate to represent the average ve­
locity of the particle in the interval [0, t]. Moreover, the instantaneous velocity 
cannot be calculated, because the Brownian motion is nowhere differentiable. 

To remedy this problem, in 1930 Uhlenbeck^ and Ornstein^ proposed a 
model in which they supposed that it is the velocity of the particle that is 
influenced, in part, by the shocks with the neighboring particles. The velocity 
also depends on the frictional resistance of the surrounding medium. The effect 
of this resistance is proportional to the velocity. 

As in the case of the geometric Brownian motion, we can define the 
Ornstein-Uhlenbeck (O.-U.) process from a Wiener process. Let {B{t),t > 0} 
be a standard Brownian motion. We set 

/ 2 2at\ 
U(t) = e-'^'B ( ^ y — 1 for t > 0 (4.130) 

where a is a positive constant. It is thus a particular case of the transformation 

Xit)=g{t)B{f{t)) (4.131) 

where f{t) is a nonnegative, continuous, and strictly increasing function, for 
t > 0, and g{t) is a (real) continuous function. Indeed, the exponential function 

^ George Eugene Uhlenbeck, 1900-1988, was born in Indonesia and died in the 
United States. He was a physicist and mathematician whose family, coming from 
the Netherlands, returned there when he was six years old. His main research 
subject was statistical physics. He also worked on quantum mechanics and wrote 
two important papers on Brownian motion. 

^ Leonard Salomon Ornstein, 1880-1941, was born and died in the Netherlands. 
He was a physicist who worked on quantum mechanics. He applied statistical 
methods to problems in theoretical physics. 
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is continuous and ((7^/2a)e^^* is nonnegative and strictly increasing, because 
a > 0. For any transformation of this type, the following proposition can be 
shown. 

Proposition 4.2.7. Under the conditions mentioned above, the stochastic 
process {X{t),t > 0}, where X{t) is defined in (4.131), is a Gaussian process, 
whose infinitesimal parameters are given by 

jn{x',t) = ^ x and v{x;t) = 9^{t)f'{t) (4.132) 
9{t) 

forxeR and t>0. 

Remark. The process {X{t),t > 0} is Gaussian, because the transformation 
of the Brownian motion is only with respect to the variable t (see p. 179). 
That is, we only change the time scale. 

From the formulas in (4.132), we calculate 

m{x;t)= _^^ x = -ax and v{x-t) = {e-'''f^e'^'''2a = a^ (4.133) 

Definition 4.2.6. The stochastic process {U{t)^t > 0} whose infinitesimal 
parameters are given by mu{u]t) = —au, for all t > 0, where a > 0, and 
vu{u:t) = c7̂  is called an Ornstein-Uhlenbeck process. 

Remarks, i) We see that the Wiener process can be considered as the particular 
case of the O.-U. process obtained by taking the limit as a decreases to zero. 
Conversely, if {U{t),t > 0} is an O.-U. process and if we set B{0) = 0 and 

. 2 X 1/2 1 , {2at 

2 ^ ^ H ^ for ^ > 0 (4.134) 

then {B{t),t > 0} is a standard Brownian motion. 

ii) We deduce from the definition, given in (4.130), of an O.-U. process in 
terms of {B{t),t > 0} that {U{t),t > 0} is a Markovian process. It is also a 
diffusion process. 

iii) Note that the initial value of an O.-U. process, as defined above, is a 
random variable, since 

We can arrange things so that U{0) = UQ^ a constant (see Ex. 4.2.3). 

We calculate the mean and the variance of the O.-U. process from (4.130). 
We have 



E[U{t)] = E 'B 
2a 
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= 0 (4.136) 

and 

V[U{t)] -2at V B 
2a 

2 2at 
. - 2 a t ^ ^ 

2a 2a 
for ^ > 0 (4.137) 

Next, using the formula Cov[B{s),B{t)] = min{s,t}, we calculate 

Cov[C/(t), U{t + 5)] = e-"^e-^(*+^)Cov B 

^^-2at^-as 
2a 

2a 
(j2^-as 

.B 
2a 

2a 
f o r s , t > 0 (4.138) 

Given that the mean of the process is a constant and that its autocovariance 
function Cu{t,t + 5) does not depend on t, we can assert that the O.-U. 
process is a wide-sense stationary process (see p. 53). Moreover, since it is a 
Gaussian process, we can state the following proposition. 

Proposition 4.2.8. The Ornstein-Uhlenbeck process is a strict-sense station-
ary process. 

Contrary to the Brownian motion, the increments of the O.-U. process 
are not independent. Indeed, we deduce from the formula (4.138) [and from 
(4.136)] that 

CoY[U{t + 5) - U{t), U{t) ~ U{0)] 

= E [{U(t -f 5) - U{t)}{U{t) - [/(O)}] - 0 X 0 

= E\U{t + s)U(t)\ - E[U{t + s)U{0)] - E[U\t)] + E[U{t)U{0)] 

^ ( -<^s _ p-oi{t-\-s) l+e" -"-') ^ (4.139) 

(if 5 > 0) so that we can assert that the random variables C/(t + s) — C/(t) and 
[/(t) - C7(0) are not independent for all 5, ^ > 0. 

However, as the O.-U. process is (strict-sense) stationary, its increments 
are stationary. To check this assertion, we use the fact that the O.-U. process 
is Gaussian, which implies that the random variable U{t) — U{s), where 0 < 
s < f, has a Gaussian distribution, with zero mean, and whose variance is 
given by 

V[U{t)-U{s)] = V[U{t)] + V[U{s) 

a^e-

2CoY[U{t),U{s)] 

= 2 a" 

2a 2a 
(4.140) 

Now, this variance is identical to that of the variable U{t -\- r) — U{s -h r ) , 
which also has a Gaussian distribution with zero mean, from which we can 



202 4 Diffusion Processes 

conclude that the random variables U{t) — U{s) and U{t + r ) — U{s + r) are 
identically distributed for all r > 0. 

Let us now return to the problem of modeling the displacement of a par­
ticle, for which we proposed to use a Brownian motion. If we suppose that 
U{t) is the velocity of the particle, then we may write that its position X{t) 
at time t is given by 

X{t) = X{0) -h / U{s) ds 
Jo 

(4.141) 

We can therefore assert that X{t) -X{0) has a Gaussian distribution (because 
the O.-U. process is Gaussian), with mean [see (4.136)] 

E[X{t) - X(0)] = E\ [ U{s) ds] = [ E[U{s)] ds= [ Ods = 0 (4.142) 
Uo J Jo Jo 

and variance [see (4.138)] 

V[X{t) - X(0)] = E[{X{t) - X{0)f] - 0^ 

= E\ f U{s)ds I U{T)dr 

nt pt 

= [ f E[U{S)U{T)] ds dr 
Jo Jo 

pt nt 2 

7o Jo ^ot 

^ (at - 1 + .-•»«) 
a 

Prom the series expansion of e "*: 

3-«* = l - a t + i ( a t ) 2 - ^ ( a 0 ^ + . . . 
2 o 

(4.143) 

(4.144) 

we may write that 

-t^ lit is small 

V[X{t)-X{0)] 
2a 

—rf if Hs large 

(4.145) 

Thus, the variance of the integral of the O.-U. process tends to that of a 
Brownian motion when t tends to infinity. However, for small values of t, the 



4.2 Diffusion processes 203 

variance of the integral is proportional to the square of the time t elapsed 
since the initial time instant. Now, this result is more realistic than assuming 
that the variance is always proportional to t. Indeed, let X ~ N ( 0 , ( J ^ ) . By 
symmetry, we may write that 

E[\x\]=2 r 
Jo 27Tax 

-e-^'/(^-l) dx 

= - 2 ^ ^ a i e - ^ ' / ( 2 a ? , ) 
27rax 

x/2 
^crx (4.146) 

Since the standard deviation otX{t)—X{0) is proportional to t for small values 
of t, we deduce from (4.146) that the order of magnitude of the velocity of the 
particle in a small interval of length (5, from the initial time, is a constant: 

^ ( o A p ^ ^ ^ f o r a l H > 0 (4.147) 

whereas the order of magnitude of this velocity tends to infinity in the case 
of the Brownian motion (see p. 176). 

The Kolmogorov forward equation corresponding to the O.-U. process is 
the following: 

^ = ^ a - ( . p ) + - ^ (4.148) 

The solution that satisfies the initial condition 

limp(u, Wo; ,̂ ^o) — H'^ ~ '̂ o) (4.149) 
tito 

is 

p{u,uo;t,to) = e x p ^ - — y - ( u - / x o u ) ^ \ (4.150) 
y/27Tal^ I 2ao^ J 

for uo,u eR and t > to >0, where 

liov := uo e--^'-'^^ and a^^ := ^{1 - e'^^ ^'-'^^) (4.151) 

That is, U{t) I {U{to) = uo} - N(//ou,^ou)-

We deduce from what precedes that the stochastic process defined from 
a standard Brownian motion in (4.130) is actually the stationary version of 
the Ornstein-Uhlenbeck process, obtained by taking the limit as t tends to 
infinity of the solution above. Indeed, we have 

2 

lim /iou = 0 and lim a^u — -— (4.152) 
t—>oo t-^oo 2a 
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as in (4.136) and (4.137). 

Remark. The solution (4.150) enables us to state that the O.-U. process is 
time-homogeneous. However, this version of the process is not even wide-sense 
stationary, since its mean depends out. 

Example 4.2.3. For the initial value of the O.-U. process {U{t),t > 0} to be 
deterministic, we can set, when a = I and cr̂  = 2, 

U{t) = uo + e-'B{e^') - B{1) 

We then have 

E[U{t)] =uo + e-'E[B{e^')] - E[B{1)] = uo 

and, for all t > 0, 

V[U{t)] = V[e-'B{e^') - 5(1)] 

= e-^'V[B{e^')]^V[B{l)]-2e-'CoY[B[e^'),B{l)\ 

::.e-2*e2* + l -2e -*min{e2^1} 

= 2 - 2e-* X 1 = 2(1 - e-*) 

4.2.6 The Bessel process 

Let {Bk{t),t > 0}, for k = 1 , . . . ,n, be independent standard Brownian 
motions. We set 

X{t) = Bl{t) + . . . + Bl{t) V t > 0 (4.153) 

The random variable X(t) can be interpreted as the square of the distance 
from the origin of a standard Brownian motion in n dimensions. The following 
proposition can be shown. 

Proposition 4.2.9. The stochastic process {X{t),t >Qi} is a diffusion process 
whose infinitesimal parameters are given by 

m(x; t) = n and v{x\ t) = ix for x >0 and t>0 (4.154) 

Remark. Note that the infinitesimal parameters of the process do not depend 
on the variable t. 

We now define the process {Y{t),t > 0} by 

Y{t)=g[X{t)]=X^^^{t) f o r t > 0 (4.155) 

Since the transformation g{x) = x^/^ is strictly increasing, and its second 
derivative g^'{x) = —|x~^/^ exists and is continuous for x G (0, oo), we can 
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use the formulas in (4.35) to calculate the infinitesimal parameters of the 
diffusion process {Y{t), t > 0}: 

2x1/2 y 2 V 4x3/2^ 

2yJ^ 2 \ 4yy 2y ni^] + ^-^{-^,] = '-^ (4.156) 

and 

2 

It can be shown that this process is indeed Markovian. Moreover, we can 
generaUze the definition of the process {Y{t),t > 0} by replacing n by a real 
parameter a > 0. 

Definition 4.2.7. The diffusion process {Y{t)^t > 0} whose state space is the 
interval [0, oo) and whose infinitesimal mean and variance are given, respec­
tively, by 

a ~1 
rn{y;t) = —— and v{y\t) = l fort>0 andy>0 (4.158) 

is called a Bessel^ process o /dimension a > 0. 

Remarks, i) The term dimension used for the parameter a comes from the 
interpretation of the process when a = n eN. 

ii) When a = 1, the infinitesimal parameters of the process are the same 
as those of the standard Brownian motion. However, we can represent it as 
follows: 

Y{t) = \B{t)\ ioYt>0 (4.159) 

where {B{t),t > 0} is a standard Brownian motion. It is as if the origin were 
a reflecting boundary for {B{t),t > 0}. 

The conditional transition density function of the Bessel process satisfies 
the Kolmogorov forward equation 

| = i ^ | . ( ^ ) + i ^ (4.160) 
ot 2 oy \yj 2 oy^ 

We can check that 

^ See p. 114. 
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for yo, V: and t > 0, where 

z/ := I - 1 (4.162) 

and /y(-) is a modified Bessel function of the first kind (of order v), defined 
by (see p. 375 of Ref. [1]) 

Remark. The quantity z/ defined in (4.162) is called the index of the Bessel 
process. 

Definition 4.2.8. The diffusion process {X{t),t > 0} defined by 

X{t) = Y^{t) fort>0 (4.164) 

is called a squared Bessel process of dimension a > 0. Its infinitesimal 
parameters are given by 

m{x]t)=a and v{x;t) = ix fort >0 and x>0 (4.165) 

Remarks, i) We deduce from the representation of the process {X{t),t > 0} 
given in (4.153) that if {Xi{t),t > 0} and {X2{t),t > 0} are two independent 
squared Bessel processes, of dimensions a i = ni and a2 = n2, respectively, 
then the process {S'(t), t > 0}, where 

S{t) := Xi{t) + X2{t) for t > 0 (4.166) 

is also a squared Bessel process, of dimension a := ni + ^2. Actually, this 
result is vahd for all a i > 0 and a2 > 0, and not only when a i and a2 are 
integers. 

ii) The function p(a;,xo;t,fo = 0) of the squared Bessel process of dimension 
a is given by 

, ( . . . . ; , , . = 0) = i ( ^ ) " " e . p { - ^ } / . ( ^ ) (4.16T) 

for xo, X, and f > 0, where u = (a/2) — 1. 

A diffusion process used in financial mathematics to model the variations 
of interest rates, and which can be expressed in terms of a squared Bessel 
process, is named the Cox-Ingersoi l -Ross^- (CIR) process (see Ref. [4]). 
We set 

^ John C. Cox and Stephen A. Ross are professors at the MIT Sloan School of 
Management. Jonathan E. IngersoU, Jr. is a professor at the Yale School of Man­
agement. 
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R{t) = e-^'X (^{e^' - 1)) for f > 0 (4.168) 

where 6 € M and cr > 0 are constants, and {X{t),t > 0} is a squared Bessel 
process of dimension a = Aa/a^ (with a > 0). We find that the infinitesimal 
parameters of the process {R{t),t > 0} are given by 

m{r; t) = a - br and v{r; t) = a'^r for t > 0 and r > 0 (4.169) 

From the formula (4.167), we find that 

p(r,ro;t,to = 0) = —-— exp <̂  > Ijy ' 
2k{t) \ro J ^ I 2k{t) J ^ \̂  k{t) J 

(4.170) 

for To, r, and t > 0, where 

fc(t):-^(e^*-l) and i, := ^ - 1 (4.171) 

4.3 White noise 

In Section 2.4, we defined the stochastic process called white noise as being 
a process (that we now denote by) {X{t)^t > 0} with zero mean and whose 
autocovariance function is of the form 

Cx{h,t2)=q{ti)5{t2-h) (4.172) 

where q{ti) is a positive function and S{-) is the Dirac delta function (see 
p. 63). 

When q{ti) = cr̂ , the function Cx(^i, ^2) is the second mixed derivative of 
the autocovariance function CVK(^I, ^2) — cr̂  min{ti, t2} of a Brownian motion 
(without drift and) with diffusion coefficient a^. Indeed, we have 

^c.(,„y = {;,;[;;<;̂  (4.m) 
so that 

dt 9 t -^^(^l '^2) = g ^ ^ M ^ l - ^ 2 ) = ( T 2 ^ ( ^ l - t 2 ) = ^ ' ( 5 ( t 2 - t i ) (4.174) 

where u(-) is the Heaviside function (see p. 11). 

Definition 4.3,1. The (generalized) stochastic process {X{t)^t > 0} with zero 
mean and autocovariance function 

Cx{hM) = TH{t2-h) (4.175) 

is called a Gaussian white noise (or white Gaussian noisej. 
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Remarks, i) Since E[X{t)] = 0, we also have 

Rx{tut2)=a^S{t2-ti) (4.176) 

The second mixed derivative Q^Q^ RY(ti^t2) is called the generalized mean-
square derivative of the stochastic process {Y{t)^t > 0}. We say that the 
process {X{t),t > 0} having the autocorrelation function -Q^^Rritiih) is 
a generalized stochastic process. 

ii) A white noise (Gaussian or not) is such that the random variables X{ti) 
and X{t2) are uncorrelated if ^i ^ ^2- If the variables X{ti) and ^(^2) ai*© 
independent^ the expression strict white noise is used to designate the corre­
sponding process. 

Now, we mentioned that the Brownian motion is nowhere differentiable. 
Consider, however, the process {X{t)^t > 0} defined (symbolically) by 

X W ^ l i m ^ ( ^ + - ) - ^ ( ^ ) (4.177) 

where e > 0 is a constant and {W{t)^t > 0} is a Brownian motion with 
coefficients /x = 0 and cr̂  > 0. Assume that we can interchange the limit and 
the mathematical expectation. Then 

E[X{t)]=\imE 
W{t + e) - W{t) 

limO = 0 (4.178) 
eiO 

SO that 

C x ( ^ i , t 2 ) = l i m ^ 
ej,0 

Um ^ j i ; [W{ti + €)W{t2 + t)]-E [W{ti + e)W{t2)\ 

- E [W{h)W{t2 + e)] + E [W{ti)W{t2)] \ (4.179) 

Suppose first that <i < ^2- Then, for an e small enough, we will have that 
1̂ + € < i2- It follows that 

2 2 

CxihM) = l i m ^ {{h + e)-{ti+e)-ti+h} = lim^O = 0 (4.180) 

When ti =t2^we obtain 
2 

Cx{tut2) = lim^{{ti + e)-ti-ti+ti} 
2 2 

= lira ^ e = lim — = 00 (4.181) 
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We can therefore write that 

Cxiti,t2)=a^5it2-h) (4.182) 

Thus, we interpret a Gaussian white noise as being, in a certain way, the 
derivative of a Brownian motion. From now on, we will denote the Gaussian 
white noise by {dW{t),t > 0}. We also have that dW{t) = W'{t) dt. In 
engineering, the notation dW{t)/dt = e{t) is often used. 

Even though the Brownian motion is not differentiable, we can use the 
notion of a generalized derivative, which is defined as follows. 

Definition 4.3.2. Let f be a function whose derivative exists and is continu­
ous in the interval [0,f]. The generalized derivative of the function W{t), 
where {W{t),t >0} is a Brownian motion, is given by 

[ f{s)W'{s) ds = !{iW{i) - [ W{s)f'{s) ds (4.183) 
Jo Jo 

Remarks, i) This definition of the generalized derivative of W{t) is actually a 
more rigorous way of defining a Gaussian white noise {dW{t),t > 0}. 

ii) For a deterministic function g, its generalized derivative is defined by 

/•CX) /•OO 

/ f{s)g'{s) ds = - g{s)f'{s) ds (4.184) 
Jo Jo 

where we assume that f{t) — 0 for all t ̂  [a, 6], with a > 0 and 6 < oo. 

The formula (4.183) leads us to the notion of a stochastic integral. 

Definition 4.3.3. Let f be a function whose derivative exists and is contin­
uous in the interval [a^b], where a > 0, and let {W{t),t > 0} be a Wiener 
process. We define the stochastic integral / f{t) dW{t) by 

f m dWit) = mWib) - f{a)Wia) - f W{t) df{t) (4.185) 
J a J a 

Remarks, i) We can also define a stochastic integral as follows: 

f m dWit) = lim f^ / ( i ,_ i ) [W( t i ) - W{ti_r)] (4.186) 

max{ti -ti-i} i 0 
l<i<n 

where a == to < ti < . . . < ̂ ^ == 6 is a partition of [a, b]. 

ii) The def 
by setting 
ii) The definition of J^ f{t) dW{t) follows from the formula (4.177) as well. 



210 4 Diffusion Processes 

rb W{t + e)-Wit)\ I mmt)=lim/ m^--^ - - j M 
Indeed, using the formula 

W{t-^e)-W{t) d (I ^*+' 

€ dt 

and integrating by parts, we obtain 

i l l "'̂ w ds 

(4.187) 

(4.188) 

/ m dW{t) = l i m ( [ / ( t ) i f V ( s ) ds 

•ixjr W{s) ds dt (4.189) 

Finally, since W{t) is a continuous function, we have (making use of 
THospital's^ rule) 

lim - / W(s) ds = lim -f / W{s) ds = limT^(t + e) = W{t) (4.190) 

from which we retrieve the formula (4.185). 

Properties, i) From the formula (4.185), we can assert that a stochastic 
integral has a Gaussian distribution, because it is a linear combination of 
Gaussian random variables, 
ii) We have 

E [ m dW{t) 
Ja 

= f{b)E[W{b)] - f{a)E[W{a)] - E f w{t) dm 
J a 

0 

(4.191) 

where we assumed that we can interchange the mathematical expectation and 
the integral. 

iii) To calculate the variance of a stochastic integral, we can use the formula 
(4.186) and the fact that the increments of the Brownian motion are indepen­
dent and stationary. We have 

V Y,f{ti^^)[W{ti)-W{ti.r)] 
Li=l 

Y.S\U.i)V[W{U)-W{U-^)] 
i=l 

1=1 

^ Guillaume Prangois Antoine de I'Hospital, 1661-1704, was born and died in 
Prance. He published the first textbook on differential calculus, in which the 
rule that bears his name can be found. 
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= J2f{U.,)a\U-U.i) (4.192) 

It follows (interchanging the limit and the calculation of the variance) that 

rb 

V I / f{t) dW{t) I = lim ^ / 2 ( t , _ i ) a 2 ( i , - ^,_i) 

max{ti -ti-i} I 0 
l<z<n 

= a^ fit) dt (4.193) 

J a 

iv) We can generalize the preceding formula as follows: 

0 if a < 6 < c < c i 
E [ f{t) dW{t) [ g{t) dW{t) 

J a J c ^^ / f{t)9{t) dtiia = c<b<d 
J a 

(4.194) 

where g is a function whose derivative exists and is continuous in the interval 
[c,d]. 

Let {X{t)^t > 0} be a continuous-time and continuous-state stochastic 
process whose infinitesimal parameters are m{x]t) and v{x]t). This process 
can be represented in the following way (see Ref. [16], for instance): 

X{t) = X(0) + [ m[X{s);s] ds + f v^/^[X{s);s] dB{s) (4.195) 
Jo Jo 

where {B{t),t > 0} is a standard Brownian motion. It follows that X{t) is a 
solution of the stochastic differential equation 

dX{t)=m[X{t)',t] dt + v^^^[X{t)]t] dB{t) (4.196) 

Under the condition X{t) = x, the equation above becomes 

dX{t) = m{x]t) dt + v^^^{x',t) dB{t) (4.197) 

^ ^ X{t) - m{x; t) + v^/\x; t) B{t) (4.198) 

(with the notation X{t) = ^X{t)). 

We can consider stochastic differential equations in n dimensions. A useful 
result is given in the following proposition. 

Proposition 4.3.1. Let {'X{t),t > 0} be an n-dimensional stochastic process 
defined by 
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dX{t) = {AX{t) + 3.) dt-\- N^/^ dB{t) (4.199) 

where {B{t)^t > 0} is an n-dimensional standard Brownian motion, A is a 
square matrix of order n, a is an n-dimensional vector, and N^'^ is a positive 
definite square matrix of order n. Then, given that X(to) = x, we may write 
that 

where 

and 

X{t) - N (m(t) ,K(0) for t>to (4.200) 

m(t) := ^{t) ( x + / ^-\u) a duj (4.201) 

K{t) := ^{t) ( f ^-\u)N[^-\u)y du\^'{t) (4.202) 

where the symbol prime denotes the transpose of the matrix, and the function 
^{t) is given by 

^(t) := e^^'-'^^^ = 2 A^^^""^^^" (4.203) 
n=0 

Remarks, i) A matrix M = {mi,j)i ^i ^ is positive definite if 

n n 

c'Mc = X] X!] ^i^J^hj > 0 (4.204) 

for any vector c' := (c i , . . . , Cn) that is not the null vector (0 , . . . , 0). 

ii) When n = 1, the formulas for the mean and the variance become 

( x + a{t-to) iiA = 0 

(4.205) 
| ^ ( ^ + ^ ) e ^ ( ^ - * « ) - ^ i f ^ 7 ^ 0 

m{t) = <^ 

and 

N{t -to) iiA = 0 

K{t) = { (4.206) 
i L ( e 2 ^ ( t - t o ) _ i ^ i f ^ _ ^ 0 

iii) We can generalize the proposition to the case where A = A(t), a = a(t), 
and N^/^ = N^/^(t). The function ^{t) is then obtained by solving the matrix 
differential equation 

j^^it) = A{t)^t) (4.207) 

with the initial condition ^{to) — In (the identity matrix of order n). 
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Example 4-3.1. The Brownian motion {X{t),t > 0} with drift coefficient /i ^ 
0 and diffusion coefficient a^ (> 0) is defined by the stochastic differential 
equation 

dX{t) = fidt + (jdB{t) 

According to the second remark above, the random variable X{t)^ given that 
X{0) = X, has a Gaussian distribution with parameters 

l^x{t) = m{t) =x + i.it and cr|(^) = K{t) ah 

which does correspond to the results mentioned in Subsection 4.2.2. 

In the case of the Ornstein-Uhlenbeck process, {U{t),t > 0}, we have the 
following stochastic differential equation: 

dU{t) = -a U{t) dt^a dB{t) 

so that A = —a, a = 0, and N^^"^ = a. It follows that the random variable 
Y{t) := U{t) I {U{to) = uo} has a Gaussian distribution whose parameters 
are (see p. 203) 

My(t) = ^0 e--(t-to) ^nd 4 ( , ) = ^ (e-2-(*-*'^) - l ) 

Example 4-3.2. Consider now the two-dimensional diffusion process X(f) = 
(Z(t), Y{t)) defined by the system of equations 

dZ{t) = Y{t) dt 

dY{t) = ^dt-\- adB(t) 

That is, {Y(t),t > 0} is a Brownian motion with drift coefficient fi (G E ) and 
diffusion coefficient cr̂  (> 0), and {Z{t),t > 0} is its integral. Suppose that 
(Z(0), y(0)) = (z, y). We may write that 

0 1 
0 0 a = and N^/2 0 0 

Let us first calculate the function ^{t). We have 

0 1 
0 0 

0 1 
0 0 

00 
00 

It follows that 

so that 

^{t) = l2-{-At = 
1 1 
0 1 

^'(t) = 
10 
t 1 : 

and ^-\t) 
1 -t 
0 1 
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We then have 

/ ^~^{u) a du 
Jo 

which imphes that 

Next, we have 

Jo [ ^ 
du 

\iie 

" 1 1 
0 1 { 

z 
y. + 

N 

fit J 

0 0 
0(72 

}=l 

2 

^ 4- ^t + |/it2 
y + ^t 

and 

jf'.-(.,Nr-«r.. = /{[j7][L"^] [.'.?]} 
= /[ * ' u^a^ -ua 

du 

-ua'^ a^ 
du 

~GH^J2 GH 

from which we calculate 

K(t) = 1 t 
0 1 

10 
t 1 GH^I2 GH 

Note that these results agree with those mentioned in the case of the three-
dimensional process (F(f),Z(^),P(t)) (see p. 196). 

4.4 First-passage problems 

Let Td be the random variable that designates the time needed for a standard 
Brownian motion to go from 5(0) = 0 to B(i) = d ^ 0. Symbolically, we 
write 

Td :=min{t > 0 : 5 ( t ) = d} (4.208) 

Remark. To be more rigorous, we should write that Td is the infimum (rather 
than the minimum) of the positive values of t for which B{t) = d. Indeed, in 
the case of the standard Brownian motion, we can show [see Eq. (4.218)] that 
the probability that the process will eventually hit the boundary at d is equal 
to 1, for any d eR. However, in other cases, it is not certain that the process 
will hit the boundary at d. If the stochastic process does not hit the boundary, 
the set whose minimum is to be found is then empty and this minimum does 
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not exist. On the other hand, the infimum of the (empty) set in question is, 
by definition, equal to infinity. 

Suppose first that d is a positive constant. We can obtain the distribution 
of the random variable T^ by using the fact that the distribution of B{t) is 
known, and by conditioning on the possible values of Td. We have 

P[B{t) >d]= P[B{t) >d\Td< t]P[Td <t]+ P[B{t) >d\Td> t]P[Td > t] 

(4.209) 

We deduce from the continuity of the process {B{t)^t > 0} that 

P[B{t) >d\Td>t]=0 (4.210) 

Moreover, if Td < t, then there exists a fo ^ (0,0 such that B{tQ) = d. Since 
B{t) I {5(to) = d}r^ N(d, t - to) for t > to (4.211) 

we may write (by symmetry) that 

P[B{t) >d\Td<t] = - (4.212) 

Finally, P[B{t) > d \ Td = t] = 1. However, as Td is a continuous random 
variable (which implies that P[Td = t] = 0 ) , we may conclude that 

P[Td <t]=2\l- ^{d/Vt)] , where ^(x) : - P[N(0,1) < x] (4.213) 

Remarks, i) The preceding formula is called the reflection principle for the 
Brownian motion. 

ii) We also deduce from the continuity of the Wiener process that 

max B{s) > d {> 0) 
0<s<t 

= P[Tci < t] = 2 [l - ^{d/Vt) (4.214) 

That is, the probability that the process takes on a value greater than or equal 
to d > 0 in the interval [0, t] is the same as the probability that it reaches the 
boundary at d not later than at time t. 

iii) By symmetry, T^ and T-d are identically distributed random variables. It 
follows that 

P[Td<t] = 2\l-${\d\/Vi)] Vd^O (4.215) 

iv) The density function of T^ is obtained by differentiating the function above: 

d \ ( /-l"!/^ 1 
hait) dt 27r 

e-^ /2 ^^ 
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{4} V2^ 

2*3/2 

for i > 0 (4.216) 

This density is a particular case of the inverse Gaussian or WaldJ distribution. 

Remark. The density function of a random variable X having an inverse Gaus­
sian distribution with parameters /i > 0 and A > 0 is given by 

fx {x; n, A) = ^—- exp V x > 0 (4.217) 
v27rx3 

The distribution of Td above is thus, in fact, obtained by setting A = d^ and 
by taking the limit as the parameter ji tends to infinity. 

Note that from (4.215), we deduce that 

P[Td < oo] = lim P\Td < t] = 2 [1 - <P(0)] = 2 f 1 - i ) = 1 (4.218) 

Therefore, the standard Brownian motion is certain to eventually reach any 
real value d. However, the formula (4.216) implies that 

because 

1 / ^H 1 (4.220) 

That is, the function that we integrate behaves like t ^/^ as t tends to infinity. 
Given that 

r 
J to 

t-^/'^dt = oo V f o > 0 (4.221) 

we must conclude that the mathematical expectation of the random variable 
Td is indeed infinite. 

We also deduce from the formula (4.215) that 

P[d'^Ti <t] = 2 l-^ll/y/t/d? 1 - ^ {\d\/Vi) (4.222) 

^ Abraham Wald, 1902-1950, was born in Kolozsvar, Hungary (now Cluj, in Roma­
nia) , and died (in a plane crash) in India. He first worked on geometry and then 
on econometrics. His main contributions were, however, to statistics, notably to 
sequential analysis. 
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Thus, the random variables Td and Tf := (fiTi are identically distributed. 

Finally, let X := 1/B'^{1). Since B{1) has a Gaussian N(0,1) distribution, 
we calculate, for x > 0, 

P[X < x] = P[B\l) > 1/x] = 1-P [ - l / \ / i < 5(1) < l/\/3? ] 

= 1 - (2 ^ (1 /v^) - 1) = 2 (1 - ^ ( l / v ^ ) ) (4.223) 

from which we can assert that Ti and X are also identically distributed ran­
dom variables. 

Remark. The square of a standard Gaussian random variable Z has a chi-
square distribution with 1 degree of freedom^ which is also a particular gamma 
distribution: Z^ ~ G(l /2,1/2) . The random variable Ti is thus the reciprocal 
of a variable having a gamma distribution. 

A much more general technique to obtain the distribution of a first-passage 
time T for an arbitrary diffusion process consists in trying to solve the Kol-
mogorov backward equation satisfied by the density function of this random 
variable, under the appropriate conditions. 

Let {X(t), t > 0} be a time-homogeneous diffusion process whose infinites­
imal parameters are m(x) and v{x). Its conditional transition density function, 
p(x,XQ; t, to), satisfies 

If to = 0, we can use the fact that the process is time-homogeneous, so that 

d d d 
— p ( x , xo; t, to) = -Q^p{x, xo; t-to) = --g^Pi^^ ^o; t - to) (4.225) 

to write that 

Let p{t; Xo) be the probability density function of 

Tc,d {= Tc,d{xo)) := min{t > 0: X{t) i {c,d) \ X{0) = xo e [c,d]} (4.227) 

That is, 

p{t',Xo) dt := P[T^^d e{t,t + dt] I X(0) = Xo G [c,d]} (4.228) 

We find that the function /)(t;xo) satisfies the partial differential equation 
(4.226). Moreover, since the coefficients m(xo) and ^'(xo) do not depend on 
t, we can take the Laplace transform of the equation (with respect to t) to 
reduce it to an ordinary differential equation. Let 
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/»oo 

L{xo;a):= e-'^^pit'.xo) dt (4.229) 
Jo 

where a is a real positive constant. 

Remark. The Laplace transform of the density function of the continuous and 
nonnegative random variable X is the moment-generating function Mx{—(^) 
of this random variable (see p. 19). 

We can check that the function L{xo; a) satisfies the following differential 
equation: 

l . ( x . ) g + ™ ( x . ) ^ = a i (4.230) 

This equation is valid for c < XQ < d. Indeed, we have 

J e - "*-p( t ;xo) dt = e-"V(^;xo) |^ + a y e-«V(^;a:o) dt 

= 0 + aL = aL (4.231) 

because p(0; XQ) = 0 ii XQ ^ C or d. Since Tc^d = 0 if XQ = c or d, the boundary 
conditions are 

L(xo; a)=E [e""^^-^ | X{0) = XQ] = 1 ii XQ = c or d (4.232) 

Once we have found the function L(xo;a), we must invert the Laplace 
transform to obtain the density function of Tc^d-

Example 44-i- Let {X{t),t > 0} be a Wiener process whose drift and dif­
fusion coefficients are /i and a^, respectively. We must solve the following 
differential equation: 

a^d^L dL _ 

2 DXQ dxo 

The general solution of this equation is given by 

L(xo; a) = cie^«^^(«) -f cse^"'̂ ^^"^ (4.233) 

where ci and C2 are constants, and 

r i (a) := - ^ (-/JL - ^Jp? + 2acr2 j and r^ipt) := — i-p + \/p? 4- 2acr2j 

The solution that satisfies the conditions L(c; a) = L{d\ a) = 1 is 

Ud r2(a) _ gC r2(a)^ gO^oriCa) _|_ /'gC r i (a ) _ ^d r i ( a ) \ ga;or2(a) 

^ ^' '̂  ~ gc T\{a)-\-d r2(a) __ ^c r2(a)+d r\{a) 

(4.234) 

for c < xo < d. 
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Inverting the Laplace transform above is not easy. However, in this type 
of problem, we must often content ourselves with explicitly calculating the 
moment-generating function of the first-passage time considered. 

Suppose, to simplify, that there is a single boundary, at d (which is tanta­
mount to taking c ~ -oc) and that /i = 0. Since, from Eq. (4.232), L(xo;a) 
must be in the interval [0,1], for any XQ < d, we must discard the solution 
with r i (a) in (4.233). Indeed, with /x = 0, this solution is 

^^^-V2^Xo/a ^ c i X OO a s XQ > - 0 0 

We must therefore choose the constant ci = 0. We then have 

L(xo;a)=C2e^^^«/" 

and the condition L{d\a) = 1 implies that 

L(xo; a) = eV^(^o-ci)/o- y XQ < d (4.235) 

Remark. We obtain the same result by taking the limit as c decreases to — oc 
in the formula (4.234) (with // == 0). 

We can check that the inverse Laplace transform of the function L in Eq. 
(4.235) is given by (see the inverse Gaussian distribution, p. 216) 

The density function of the random variable Td in the general case where 
/x G M is 

and the function L becomes 

L(xo;a) = e x p | ^ ^ - ^ ^ [ / x - ( / i 2 + 2a(72)V2j| for xo < d (4.237) 

After having obtained the moment-generating function of the random vari­
able Td, we can calculate the probability that this variable is finite, as follows: 

P[Td < oo] = limL(xo; ct) (4.238) 

Example 4-4-2- In the preceding example, with a single boundary and JJL = 0, 
we obtain that 

P[Td <OQ]= iime^^(^o-^)/^ = 1 
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which generahzes (in the case when d > 0) the result already mentioned 
regarding the standard Brownian motion. 

However, when /i 7»̂  0, we deduce from the formula (4.237) that 

P [ T r f < o o ] = l i m e x p < [ ^ ^ ^ ^ {^^^-(/^' + 2aaY/̂ ]} 
1 if /x > 0 

^2n{d-xo)/cT'' if /X < 0 

To obtain the moments of the random variable T^, we can use the formula 
(see p. 19) 

gn 
^lT2] = {-ir^L{xo;a)\^^o aa" 

(4.239) 

for n = 1,2,... . Thus, in Example 4.4.1, if c = -oo and fi > Q,we calculate 
[see the formula (4.237)] 

a-0 

= -L{xo;a) ( ^ - ^ ) ( - 1 ) ( M ' + 2a<72)-VV 
a=0 

d — Xo 
(4.240) 

Remark. We can also try to solve the ordinary differential equation satisfied 
by the function 

rUnAxo)'= E[T2] forn = l ,2 , . (4.241) 

namely, 

1 i2 J 

2^'(^o)^rnn,ci(a:o) + m(xo)—m„,d(xo) = -n m^_i,d(xo) (4.242) 

under the boundary condition mn,d{d) = 0. In particular, we have 

^v{xo)j-2'^iA^o) + m{xo)—mi4{xo) = - 1 (4.243) 

When there are two boundaries, if we wish to calculate the probability 
that the process will hit the boundary at d before that at c, we can simply 
solve the ordinary differential equation 

1 r72 J 

2^M-^Pd{xo) + m(xo)—Pd(xo) = 0 (4.244) 
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where 

Pd{xo) := P[X{TUxo)) - d] (4.245) 

This differential equation is obtained from Eq. (4.230) by setting a = 0, 
Indeed, we may write that 

p{t; xo) = Pc{t\ xo) + Pd{t\ XQ) (4.246) 

where pc{t\XQ) (respectively, p<i(t;xo)) is the density function of the random 
variable T^ (resp., T^) denoting the time the process takes to go from XQ to c 
(resp., d) without hitting d (resp., c). Let 

/•OO 

Ld{xo] a) := / e-"Vrf(^; ^o) dt (4.247) 
Jo 

We have 

P[X{Tc,d{xo)) =d]= P[r^(xo) < oc] = / pd{t; xo) dt = Ld{xo', 0) (4.248) 
Jo 

Now, the function Ld{xo;a) also satisfies Eq. (4.230). 
The differential equation (4.244) is valid for c < XQ < d. The boundary 

conditions are 

Pd{d) = l and pd{c)=0 (4.249) 

Example 4-4'^- If {W^(0:^ > 0} is a Wiener process with diffusion coefficient 
o"̂ , then we must solve 

We find at once that 
Pd{Xo) =CiXo+Co 

where CQ and ci are constants. The boundary conditions imply that 

Pd{xo) = —, for c < Xo < o! 
d — c 

Note that this formula does not depend on a^. Moreover, if c = —d, then we 
have that Pd{0) = 1/2, which could have been predicted, by symmetry. 

Until now, we only considered the time a diffusion process takes to reach 
a boundary or either of two boundaries. We can define these boundaries as 
being absorbing. If the boundary at c is reflecting, it can be shown that the 
boundary condition becomes 
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d 

axo^^^ '̂̂ ) 
= 0 (4.250) 

xo=c 

Finally, we can also try to calculate first-passage time distributions in two 
or more dimensions. However, the problem of solving the appropriate partial 
differential equation is generally very difficult. 

Example 4'4'4' If {B{t),t > 0} is a standard Brownian motion, starting from 
6o, and if {X{t),t > 0} is its integral, we find that the Kolmogorov backward 
equation satisfied by the function 

p{t;bo,XQ) := -j-

where 

Td{bo,xo) := mm{t > 0: X{t) = d > 0 \ B(0) = bo,X(0) = XQ < d} 

is the following: 
1 d'^p dp _ dp 

The main difficulty is due to the fact that the process {X{t),t > 0} cannot hit 
the boundary X{t) = d (for the first time) with B{t) < 0. Indeed, we deduce 
from the formula 

X{t) =xo+ [ B{s) ds => ^X{t) = B{t) 
Jo "^ 

that if B{t) takes on a negative value, then X{t) decreases. Consequently, 
the process {X{t),t > 0} can attain a value d (> 0) greater than XQ at time 
Td{bo,xo) only if B[Td{boyXo)] > 0, so that the function p is not continuous 
on the boundary. 

4.5 Exercises 

Section 4.1 
Remark, In the following exercises, the process {B{t)^t > 0} is always a stan­
dard Brownian motion. 

Question no. 1 
We define 

X{t) = B'^{t) iovt>0 

(a) Is the stochastic process {X{t),t > 0} a Wiener process? Justify. 
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(b) Is {X{t),t > 0} (i) wide-sense stationary? (ii) mean ergodic? Justify. 

Question no. 2 
We consider the stochastic process {X{t),t > 0} defined by 

X{t) - B{t) + B{t'^) for t > 0 

(a) Calculate the mean of X{t). 

(b) Calculate Cov[X(t),X(t + r)], for r > 0. 

(c) Is the stochastic process {X{t),t > 0} (i) Gaussian? (ii) stationary? (iii) a 
Brownian motion? Justify. 

(d) Calculate the correlation coefficient of B{t) and B{t^)^ for t > 0. 

Question no. 3 
Calculate the variance of the random variable X := B{t) — 2B{T)^ for 

0 < t < r . 

Question no. 4 
Let X{t) := \B{t)\, for ^ > 0. Is the stochastic process {X{t),t > 0} 

(a) Gaussian? (b) stationary? Justify. 

Question no. 5 
Let {X{t),t > 0} be the stochastic process defined by 

X{t) = B{t + 1) - B{1) for t > 0 

(a) Calculate the autocovariance function of the process {X{t)^t > 0}. 

(b) Is the process {X{t),t > 0} (i) Gaussian? (ii) a standard Brownian mo­
tion? (iii) stationary? (iv) mean ergodic? Justify. 

Question no. 6 
Calculate the variance of X := 5(4) - 2B{1). 

Question no. 7 

Is the stochastic process {X{t)^t > 0} defined by 

X{t) = -B{t) iovt>0 

Gaussian? Is it a Brownian motion? Justify. 

Question no. 8 
Let {X{t),t > 0} be a Gaussian process such that X(0) = 0, E[X{t)] = jj^t 

if ^ > 0, where /̂  7̂  0, and 

Rx{t,t + T) = 2t-{-fiH{t + T) for t , r > 0 

Is the stochastic process {Y{t),t > 0}, where Y{t) := X{t) - /it, a Brownian 
motion? Justify. 
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Quest ion no. 9 
Is the Wiener process mean ergodic? Justify. 

Quest ion no. 10 
We set 

F(t) = -S2( t ) f o r t > 0 

(a) Is the process {Y{t),t > 0} Gaussian? Justify. 

(b) Calculate the mean of Y{t), 

(c) Calculate Cov[r(s), Y{t)l iorO<s<t 

Indication, li X -^ N(0, ( j | ) and Y - N(0, a^) , then 

E[X^Y^] = E[X^]E[Y^] + 2 {E[XY]f 

(d) Is {Y{t)^t > 0} a wide-sense stationary process? Justify. 

Quest ion no. 11 

Consider the stochastic process {X{t),t > 0} defined by 

X{t) = B{t)-B{[t]) 

where [t] denotes the integer part of t. 
(a) Calculate the mean of X(t) . 
(b) Calculate Cov[X{ti),X{t2)], for 2̂ > ^i- Are the random variables X{ti) 
and X{t2) independent? Justify. 
(c) Is the stochastic process {X{t),t > 0} (i) stationary? (ii) a Brownian 
motion? Justify. 

Quest ion no. 12 
At each time unit, the standard Brownian motion {B{t),t > 0} is shifted 

to [5(n)], where [ ] denotes the integer part. Let Xn be the position at time 
n, forn = 0,1,2, Then the process {Xn, n = 0,1, • • • } is a (discrete-time) 
Markov chain. Calculate (a) pij^ for i^j > 0 and (b) P[Xi = 0,X2 = 0]. 

Quest ion no. 13 
We define 

X{t) = B{ln(t+l)) iort>0 

(a) Is the stochastic process {X{t)^t > 0} a Brownian motion? Justify. 

(b) Calculate £[X2(^) I X(t) > 0]. 

Quest ion no. 14 
Let {X{t),t > 0} be the stochastic process defined by 

Xit) = ?^ttllzm. yt>0 
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where e is a positive constant. 

(a) Calculate Cx{t^t-{- 5), for s^t >0. 

(b) Is the process {X{t),t > 0} (i) Gaussian? (ii) stationary? (iii) a Brownian 
motion? (iv) mean ergodic? Justify. 

Question no. 15 
Let Xi , X2, . . . be independent and identically distributed random vari­

ables such that pxi (x) = 1/2 if a: = - 1 or 1. We define YQ = 0 and 

n 

Yn = J2Xk f o r n - 1 , 2 , . . . 
k=i 

Then the stochastic process {Yn, n = 0 , 1 , . . . } is a Markov chain (see p. 85). 
We propose to use a standard Brownian motion, {B{t)^t > 0}, to approx­

imate the stochastic process {Yn, ri = 0 , 1 , . . . }. Compare the exact value of 
P[Yso = 0] to P[-l < B{30) < 1]. 

Indication. We have that P[N(0,1) < 0.18] 2:̂  0.5714. 

S e c t i o n 4 . 2 

Question no. 16 
Let {U{t),t > 0} be an Ornstein-Uhlenbeck process defined by 

U{t) = e-'B{e^') 

(a) What is the distribution of C/(l) + C/(2)? 

(b) We set 

V{t) = [ U{s) ds 
Jo 

(i) Calculate the mean and the variance of V{t). 
(ii) Is the process {V{t),t > 0} Gaussian? Justify. 

Question no. 17 
Suppose that {X{t)^ ^ > 0} is a Wiener process with drift coefficient M and 

diffusion coefficient cr̂  = 1, where M is a random variable having a uniform 
distribution on the interval [0,1]. 

(a) Calculate E[X{t)] and Coy[X{s),X{t)], for s,t>0. 

(b) Is the process wide-sense stationary? Justify. 

Question no. 18 
Let {Y{t),t > 0} be a geometric Brownian motion. 

(a) Show that the density function of the random variable Y{t) is given by 
the formula (4.52). 

(b) Is the process {Y{t),t > 0} stationary? Justify. 
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Question no. 19 

Let {X{t),t > 0} be a Wiener process with drift coefficient fi > 0 and 
diffusion coefficient cr̂  = 1. 

(a) (i) Calculate, as explicitly as possible, E[X{t) \ X{t) > 0] in terms of 

Q ( x ) : = P [ N ( 0 , l ) > x ] . 

(ii) Calculate E[X{t)X{t + s)], for 5,t > 0. 

(b) Let Z(0) = 0 and 

Z{t):=^-1 f o r f > 0 
^ ^ lit 

Is the stochastic process {Z{t)^t > 0} a Brownian motion? Justify. 

Section 4.3 

Question no. 20 
(a) Calculate the covariance of X and F , where 

X := f t dB{t) and Y := j f dB{t) 

(b) Are the random variables X and Y independent? Justify. 

Question no. 21 
We define the stochastic process {Y{t),t > 0} by 

Y{t) = I s dB{s) for t > 0 

(a) Calculate the autocovariance function of the process {Y{t)^t > 0}. 

(b) Is the process {Y{t)^t > 0} Gaussian? Justify. 

(c) Let {Z{t),t > 0} be the stochastic process defined by Z{t) = Y'^{t). 
Calculate its mean. 

Question no. 22 
Calculate the mean and the autocovariance function of the stochastic pro­

cess {Y{t),t > 0} defined by 

Y{t) = ê * / e-^" dW{s) for t > 0 
Jo 

where c is a real constant. 
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Section 4.4 

Question no. 23 
Let {W{t),t > 0} be a Brownian motion with infinitesimal parameters 

/x = 0 and a^ (> 0). We set 

Y{t) = W{t^) iort>0 

(a) Is the stochastic process {Y{t),t > 0} a Brownian motion? Justify. 

(b) Calculate Cov[y(s),y(t)], for 0 < 5 < t. 

(c) Let Td := min{t > 0: Y{t) = d > 0}. Calculate the probability density 
function of the random variable T^. 

Question no. 24 
Let {Y{t)^t > 0} be the stochastic process defined in Question no. 21. 

(a) Calculate the distribution of Y{1) -f- Y{2). 

(b) Let Ti := mm{t > 0:Y{t) = 1}. Calculate the probability density function 
of the random variable Ti. 

Question no. 25 

We consider the process {X{t),t > 1} defined by 

X{t) = e-i/*E(e^/*) for ^ > 1 

Suppose that B{e) = 0, so that X{1) = 0. 
(a) Calculate E[X{t)] and Cov[X(t), X{t + s)], for t > 1,5 > 0. 
(b) Is the stochastic process {X{t)^t > 1} (i) Gaussian? (ii) an Ornstein-
Uhlenbeck process? (iii) stationary? Justify. 
(c) Let Td := mm{t > 1: X{t) =d>0}. Calculate frAi). 

Question no. 26 
Let {Z(t),0 < t < 1} be a Brownian bridge. We define 

Y{t) = [ Z{T) dr for 0 < ^ < 1 

(a) Calculate E[Y{i)] and Cov[y(t), Y{t + 5)], for 0 < t < 1, 5 > 0, 5 + ^ < 1. 

(b) Is the stochastic process {y(t) ,0 < t < 1} (i) Gaussian? (n) stationary? 
(iii) a Brownian bridge? Justify. 

(c) Calculate approximately, if d > 0 is small, the probability that the process 
{y(^),0 <t<l} will reach d in the interval (0,1). 

Question no. 27 
Let Tc be the first-passage time to the origin for a standard Brownian 

motion starting from c > 0. We define S — l/Tc. 
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(a) Calculate the probability density function of S. What is the distribution 
of the random variable 5? 

(b) Find a number b (in terms of the constant c) for which we have P[S < b] 
= 0.5. 

Quest ion no. 28 
The nonstationary Ornstein-Uhlenbeck process {X(t),t > 0} is a Gaus­

sian process such that, if cr = 1 (see Subsection 4.2.5), 

1 _ e-2at 
E[X{t)]=X{0)e-^' and V[X{t)] = ^^ 

where a > 0 is a parameter. Suppose that X{0) = d > 0. We define To{d) = 
mm{t > 0: X{t) = 0}. Calculate /ro(d)(0 when a = 1/2. 

Quest ion no. 29 
Let {W{t),t > 0} be a Brownian motion with drift coefficient /x and diffu­

sion coefficient cr .̂ We assume that the flow of a certain river can be modeled 
by the process {X{t),t > 0} defined by 

X{t)=^e^^^^^^ \/t>0 

where /c is a constant. Next, let d be a value of the flow above which the risk 
of flooding is high. Suppose that X{0) = d/3: Calculate the probability that 
the flow will reach the critical value d in the interval (0,1] if /i > 0 and a — I. 

Quest ion no. 30 
Let {X{t)^t > 0} be an Ornstein-Uhlenbeck process for which a = 1 and 

(7̂  = 2, and let {Y{t),t > 0} be the process defined by 

Y{t) = [ X{s) ds 
Jo 

Finally, we set 
Z{t)=X{t) + Y{t) ioYt>0 

(a) Calculate j&[Z(^)]. 

(b) Calculate Cov[Z(t), Z{t + s)], for s, t > 0. 

Indication. We find that Cov[X{t),X{t + s)] = e~* and 

Cov[Y{t),Y{t + 5)] = 2t - 1 4- e"* - e'' + e-("+*^ for s,t>0 

(c) Is the stochastic process {Z{t),t > 0} stationary? Justify. 

(d) Let Td{z) := mm{t > 0 : Z{t) = d \ Z{0) = z {< d)}. Calculate the 
probability density function oiTd{z). 
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Question no. 31 

Let {X{t),t > 0} be a Brownian motion with drift coefScient /x and diffu­
sion coefficient a^. 

(a) Suppose that /J. = 0 and that a^ is actually a random variable V having a 
uniform distribution on the interval (0,1). 

(i) Calculate E[X{t)] and CoY[X{s),X{t)], for s,t>0. 
(ii) Is the stochastic process {X{t),t > 0} Gaussian and stationary? Jus­

tify. 

(b) Suppose now that /i > 0 and cr̂  = 1. Let T_i,i(xo) be the time the process 
takes to attain 1 or —1, starting from XQ G [—1,1]. 

(i) It can be shown that m_i4(xo) := E[T-I^I{XQ)] satisfies the ordinary 
differential equation 

Solve this differential equation, subject to the appropriate boundary condi­
tions, to obtain m-i^i{xo) explicitly. 

(ii) Similarly, the function p_i i(xo) := P[X{T^i^i{xo)) = 1] is a solution 
of 

Obtain an explicit formula for p_ij(xo). 



Poisson Processes 

5.1 The Poisson process 

We already mentioned the Poisson process in Chapters 2 and 3. It is a par­
ticular continuous-time Markov chain. In Chapter 4, we asserted that the 
Wiener process and the Poisson process are the two most important stochas­
tic processes for applications. The Poisson process is notably used in the basic 
queueing models. 

The Poisson process, which will be denoted by {N{t), t > 0}, is also a pure 
birth process (see Subsection 3.3.4). That is, N{t) designates the number of 
births (or of events, in general) that occurred from 0 up to time t. A process 
of this type is called a counting process. 

Definition 5.1.1. Let N{t) be the number of events that occurred in the inter­
val [0,t], The stochastic process {N{t),t > 0} is called a counting process. 

Counting processes have the following properties, which are deduced di­
rectly from their definition. 

Properties, i) N{t) is a random variable whose possible values are 0 , 1 , , . . . 

ii) The function N{t) is nondecreasing: N{t2) ~ N{ti) > 0 if 2̂ > ti > 0. 
Moreover, N{t2) — N{ti) is the number of events that occurred in the interval 
(^1,^2]. 

Definition 5.1.2. A Poisson process with rate A (> 0) is a counting pro­
cess {N{t)^t > 0} having independent increments (see p. 50), for which 
N{0) = 0 and 

N{T + t)~ N{r) - Poi(At) V r, t > 0 (5.1) 

Remarks. We deduce from the preceding formula that a Poisson process also 
has stationary increments (see p. 50), because the distribution of N{T + t) — 
N{r) does not depend on r. Moreover, by taking r = 0, we may write that 
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N{t) = N{0 + t)- N{0) - Poi(At) V t > 0 (5.2) 

ii) If we specify in the definition that {N{t), t > 0} is a process with indepen­
dent and stationary increments, then we may replace the formula (5.1) by the 
following conditions: 

P[N(^S) = l] = XS + o{S) (5.3) 

P[N{S) = 0] = 1 - A(5 + o{S) (5.4) 

where o{5) is such that (see p. 125) 

l i m ^ = 0 (5.5) 

Thus, the probability that there will be exactly one event in an interval of 
length 5 must be proportional to the length of the interval plus a term that is 
negligible if 5 is sufficiently small. Furthermore, we have 

P[N{S) > 2] = 1 - {P[N{S) = 0] + P[N{S) = 1]} = o{S) (5,6) 

Therefore, it is not impossible that there will be two or more events between 
an arbitrary to and to -i- S, However, it is very unlikely when S is small. 

It is not difficult to show that if N{6) ^ Poi(A5), then the conditions (5.3) 
and (5.4) are satisfied. We have 

P[Foi{X6) = 0]= e-^^ = 1 - A(5 + ^ ^ + . . . = 1 - A(5 + o{5) (5.7) 

and 

P[Poi(A(5) = 1] = \6e-^^ = XS[1 - XS + o{6)] = X5 + o{6) (5.8) 

As will be seen in Section 5.2, in the more general case where A = A(^), it can 
also be shown that if the conditions (5.3) and (5.4) are satisfied (and if the 
increments of {N{t),t > 0} are stationary), then the formula (5.1) is valid. 
Consequently, we have two ways of determining whether a given stochastic 
process is a Poisson process. 

Since the random variable N{t) has a Poisson distribution with parameter 
At, for all t > 0, we have 

E[N{t)] = Xt (5.9) 

E[N\t)] = V[N{t)] + {E[N{t)]f = Xt + XH^ (5.10) 

As we did in the case of the Wiener process, we use the fact that the incre­
ments of the Poisson process are independent (and stationary) to calculate its 
autocorrelation function. We may write, with the help of the formula (5.10), 
that 
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RN{t, t + s) :=E[N{t)N{t + s)] = E[N{t){N{t + s) - N{t)}] + E[N\t)] 

'''^•E[N{t)]E[N{t + s)- N{t)] + E[N\t)] 

- XtXs 4- {Xt + XH^) = X^t{t + s) + Xt (5.11) 

It follows that 

Civ(t, t + s)=RN{t,t + s)- Xt[X{t + s)] = Xt (5.12) 

For arbitrary values of ti and ^2, the autocovariance function of the Poisson 
process with rate A > 0 is given by 

Civ(ti,t2) = Amin{^i,t2} (5.13) 

Remarks, i) Note that the formula above is similar to that obtained for the 
Wiener process (see p. 178). Actually, the stochastic process {N*{t),t > 0} 
defined by 

N*{t) = N{t)-Xt iovt>0 (5.14) 

has zero mean and an autocovariance function identical to that of a Wiener 
process with diffusion coefficient a^ = X. We can also assert that the Poisson 
process, {N{t),t > 0}, and the Brownian motion with drift, {X{t),t > 0}, 
have the same mean and the same autocovariance function if fi = a^ = X. 
Moreover, by the central limit theorem^ we may write that 

Poi(At)^N(At,A^) (5.15) 

if Xt is sufficiently large. 

ii) Since the mean of the Poisson process depends on the variable t, this process 
is not even wide-sense stationary (see p. 53), even though its increments are 
stationary. Furthermore, its autocovariance function depends on ti and on ^2, 
and not only on 1̂2 — ^i|. 

Example 5.1.1. Suppose that the failures of a certain machine occur according 
to a Poisson process with rate A = 2 per week and that exactly two failures 
occurred in the interval [0,1]. Let t^ (> 3) be an arbitrary value of t. 

(a) What is the probability that, at time ô̂  (at least) two weeks have elapsed 
since (i) the last failure occurred? (ii) the penultimate failure occurred? 

(b) What is the probability that there will be no failures during the two days 
beginning with to if exactly one failure occurred (in all) over the last two 
weeks? 

Solution. In order to solve a problem on the Poisson process, we must first 
determine the value of the parameter of the Poisson distribution for each 
question asked. Let N{t) be the number of failures in the interval [0, t], where 
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t is measured in weeks. Since the average arrival rate of the failures is equal 
to two per week, we have 

N{t)r.Foi{2t) 

(a) (i) In this question, we are interested in the number of failures during a 
two-week interval. As the Poisson process has stationary increments, we can 
calculate the probability asked for by considering the random variable N{2) ~ 
Poi(4). We seek 

P[N{2) =0]= e-^ - 0.0183 (5.16) 

(ii) Two weeks or more have elapsed since the penultimate failure if and 
only if the number of failures in the interval [to - 2, to] is either 0 or 1. There­
fore, we seek 

P[N{2) <1] = e-^(l + 4) - 0.0916 

(b) Since the Poisson process has independent increments, the fact that there 
has been exactly one failure over the last two weeks does not matter. We are 
interested in the value of 

N {to + 2/7) - N{to) = N{2/7) - Poi(4/7) 

We calculate 
P[N{2/7) =0]= e"^/^ c:^ 0.5647 

Remarks, i) We could have written instead that A = 2/7 per day, and then, 
in (b), we would have had that N{2) ~ Poi(4/7). 

ii) In this problem, we assume that the rate of the Poisson process is the 
same for every day of the week. In practice, this rate is probably different on 
Sundays than on Mondays, for instance. It also probably varies at night from 
its value during the day. If we want to make the problem more realistic, we 
must use a parameter A that is not a constant, but rather a function of t, 
which will be done in Section 5.2. 

Proposition 5.1.1. Let {Ni{t),t > 0} and {N2{t),t > 0} be two independent 
Poisson processes, with rates Xi andX2, respectively. The process {N{t)^t > 0} 
defined by 

N{t) = Ni{t) + N2{t) V t > 0 (5.17) 

is a Poisson process with rate A := Ai 4- A2. 

Proof. First, we have 

N{0) := Ni{0) + N2{0) = 0 + 0 = 0 (5.18) 

as required. 
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Next, given that the increments of the processes {Ni{t)A > 0} and 
{N2{t)^t > 0} are independent, we can check that so are those of the pro­
cess {N{t),t > 0}. We simply have to write that 

N{tk) - iV(f,_i) = [N^{tk) - iVi(t,_i)] + mt,) - N2{tk-i)] (5.19) 

Finally, the sum of independent Poisson random variables, with parameters 
ai and a2, also has a Poisson distribution, with parameter a := a i + a2. 
Indeed, if Xi ~ Poi(ai), then its moment-generating function is given by (see 
Ex. 1.2.8) 

Mx,{t) = e-'^' exp { e ' a j (5.20) 

It follows that 

Mx,4-x.(0 ' ^ ' MxAt)MxM = e-("^+"^^exp{e^(ai + a 2 ) } (5.21) 

Thus, we may write that 

N{T + t)- N{r) = [N,{r + f) - N,{r)] + [N2{T + t)- N2{T)] 

-Poi ( (Ai4-A2)0 V T , t > 0 D (5.22) 

The preceding proposition can, of course, be generalized to the case when 
we add j independent Poisson processes, for j = 2 , 3 , . . . . Conversely, we can 
decompose a Poisson process {N{t),t > 0} with rate A into j independent 
Poisson processes with rates Â  (i = 1,2,... , j ) , where Ai + . . . + Â  = A, 
as follows: suppose that each event that occurs is classified, independently 
from the other events, of type i with probability p^, for i = 1 , . . . , j , where 
Pi + '"-{- Pj = 1. Let Ni{t) be the number of type i events in the interval 
[0,t]. We have the following proposition. 

Proposition 5.1.2. The stochastic processes {Ni{t),t > 0} defined above are 
independent Poisson processes, with rates Xi := Xpi, for i = 1 , . . . , j . 

Proof. Since N{t) = Y^j^i Ni{t), we may write that 

P[Ni{t)=ni,.., ,Nj{t) = nj] 
oo 

= ^ P [Ni{t) - n i , . . . , Nj{t) = Uj I N{t) = k] P[N{t) = k] 

= p [iVi(t) = n i , . . . , Nj{t) = Uj I N{t) = ni + . . . 4- Uj] 

X P[N{t) = m + . . . + Uj] (5.23) 

Let n := ni -h . . . + rij. The conditional probability above is given by 

I ^ 

P[iVi(t) = n i , . . . ,iV,(f) = n , I N{t)=n] = \ „ ^UP"' (5-24) 
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This is an application of the multinomial distribution (see p. 4), which gener-
ahzes the binomial distribution. It follows that 

Pmt) = n,,...,N,it)=nA=^^^,^'^:^^^,Up"\ n! 

fr^-Xpa(M^ (5.25) 

from which we find that 

P [ i V , ( t ) = n , ] = e - ^ ^ ^ ^ ^ ^ ^ ^ fori = l , . . . , i (5.26) 
nil 

and 

P[iVi(t) = m , . . . ,Nj{t) = Uj] ^llP[Ni{t) - m] (5.27) 

Therefore, we can assert that the random variables Ni{t) have Poisson distri­
butions with parameters Xpit^ for i = 1 , . , . , jf, and are independent. 

Now, given that {N{t),t > 0} has independent and stationary increments, 
the processes {Ni{t),t > 0} have independent and stationary increments V i 
as well. It follows that Ni{T + t) - A^i(r) ~ Poi(Apjt), for 2 = 1 , . , . J, 

Finally, since iV(0) = 0, we have that iVi(O) = . . . = Nj{0) = 0. Hence, 
we may conclude that the processes {Ni{t)^t > 0} satisfy all the conditions 
in Definition 5.1.2 and are independent. D 

Remarks, i) We can use the other way of characterizing a Poisson process, 
namely the one when we calculate the probability of the number of events in 
an interval of length 5. We have 

P [Ni{6) = 1] = P [Ni{5) = 1 I N{S) = 1]P [N{S) = 1] 

+P[Ni{6) - 1 I N{S) > 1]P{N{S) > 1] 

= pie-^^X5 + o{S) = Pi[X5 + o{S)] + o{5) 

= XpiS + o{S) 

Moreover, we may write that 

P {Ni{S) - 0] = 1 - XpiS + 0(6) (5.28) 

because Ni{S) < N{d), for all i, which implies that 

P [Ni{6) >2]<P [N{S) > 2] = o{S) (5.29) 

We could complete the proof and show that the processes {Ni{t),t > 0} are 
indeed independent Poisson processes, with rates Xpi, for i = 1 , . . . ,j. 
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N{t) T 

H 
^« I 1̂ I ^̂  I t^ I ^^ 

T, T2 T, T, Ts T, t 

Fig. 5.1. Example of a trajectory of a Poisson process. 

ii) The fact than an arbitrary event is classified of type i must not depend on 
the time at which this event occurred. We will return to this case further on 
in this section. 

Since a Poisson process is a particular continuous-time Markov chain, we 
can assert that the time r̂  that the process spends in state i G {0 ,1 , . . .} 
has an exponential distribution with parameter Ui > 0 (see p. 121) and that 
the random variables TQ^ TI, . . . are independent (by the Markov property). 
Furthermore, because the Poisson process has independent and stationary in­
crements, the process starts anew, from a probabilistic point of view, from 
any time instant. It follows that the r^'s, for i = 0 , 1 , . . . , are identically dis­
tributed. All that remains to do is thus to find the common parameter of the 
random variables r^. We have 

P[ro > ]̂ = P[N{t) = 0]= P[Poi(At) = 0] = e"^* (5.30) 

d /. _xt\ _ .-xt 
for t > 0 (5.31) = > fro{t)^j^{l-e-^')=Xe 

That is, To ~ Exp(A). Therefore, we can state the following proposition. 

Proposition 5.1.3. Let {N{t)^t > 0} be a Poisson process with rate X, and 
let Ti be the time that the process spends in state i, for i = 0 , 1 , . . . . The 
random variables TQ, TI, .,. are independent and Ti has an exponential Exp{\) 
distribution, for all i. 

Notation. We designate by Ti, T2. . . . the arrival times of the events of the 
Poisson process {N{t),t > 0} (see Fig. 5.1). 

Corollary 5.1.1. In a Poisson process with rate X, the time needed to obtain 
a total of n events, from any time instant, has a gamma distribution with 
parameters a = n and X. 
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Proof. The arrival time T^ of the nth event, from the initial time 0, can be 
represented as follows (because {N{t)^t > 0} is a continuous-time stochastic 
process): 

n - l 

Tn^Y^Ti forn = l , 2 , . . . (5.32) 
i=0 

Since the r^'s are independent random variables, all of which having an ex­
ponential distribution with parameter A, we can indeed assert that Tn '^ 
G(a = n, A) (see Prop. 3.3.6). Moreover, we deduce from the fact that the 
Poisson process has independent and stationary increments that 

P[Tn^k <t + tk\ N{tk) = k] = P[Tn < t] for all fc = 0,1, . . . (5.33) 

That is, if we know that at a given time tk there have been exactly k events 
since the initial time, then the time needed for n additional events to occur, 
from tk, has the same distribution as T^. D 

The preceding results and the following relation: 

N{t) >n ^=> Tn<t (5.34) 

provide us with yet another way of defining a Poisson process. This alternative 
definition may be easier to check in some cases. 

Proposition 5.1.4. Let Xi ^ Exp{X), for i = 1,2,. . . , be independent ran­
dom variables, and let TQ := 0 and 

n 

Tn:=Y,^i forn = l,2,,,, (5.35) 
^=l 

We set 

iV(t) = m a x { n > 0 : T n < t } (5.36) 

Then, {N{t)^t > 0} is a Poisson process with rate A. 

Remarks, i) Since P[Ti > 0] = 1, we indeed have 

iV(0) = max{n > 0: Tn < 0} = 0 (5.37) 

ii) We also have 

N{t) = n 4=^ {Tn <t}n {Tn+i > t} (5.38) 

from which we obtain the definition of N{t) in terms of T^ above. 

iii) To calculate the probability of the event {N{t) = n} , it suffices to notice 
that 
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P[N{t) =n]= P[N{t) > n] - P[N{t) >n + l] = P[Tn <t]- P[T^+i < t] 
(5.39) 

and to use the generalization of the formula (3.173) to the case when Y has 
a G(n, A) distribution: 

P[Y <y] = l - P[W <n-l] = P[W > n], where W - Poi(Ay) (5.40) 

We indeed obtain that 

P[N{t) =n]= P[Tn <t]- P[Tn^^ < t] (5.41) 

= P[Voi{\t) > n] - P[Poi(At) > n + 1] = P[Voi{\t) = n] 

iv) Let 

T2 := min{t > 0: N{t) > d {> 0)} (5.42) 

If d G {1,2 , . . . }, then we deduce from the relation (5.34) that TJ '^ G(d, A). 
When d ^ {1 ,2 , . . . } , we only have to replace dhy [d] + l, that is, the smallest 
integer larger than d. Note that, since Hmt->oo N{t) = oc, we may write that 
P[T^ < oc] = 1, for any real number d e (0, oc). 

A more difficult problem consists in finding the distribution of the random 
variable 

T*^ := min{^ > 0: N{t) > ct ^ d} (5.43) 

where c > 0 and d>0. 

Example 5.1.2. Suppose that the random variables Xi have a uniform distri­
bution on the interval (0,1], rather than an exponential distribution, in the 
preceding proposition. To obtain a Poisson process by proceeding as above, it 
suffices to define 

Yi = --\nXi for 2 = 1,2,... 
A 

Indeed, we then have, for y > 0: 

P[Yi <y] = P[\nXi > -Xy] =P[Xi> e"^^] - 1 - e"^^ 

so that 
fyXy) = Xe-^y f o r i / > 0 

Thus, the stochastic process {N{t),t > 0} defined by N{t) = 0, for t < Yi, 
and 

Ar(t) = max | n > l i ^ y ^ < t | hvt>Yi (5.44) 

is a Poisson process with rate A. 
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Remark. If we define YQ =0^ then we may write that 

N{t) = mBixln>0:Y,Yi<t\ V ^ > 0 (5.45) 
'̂  z=0 ^ 

Proposition 5.1.5. Let {N{t),t > 0} be a Poisson process with rate A. We 
have that Ti | {N{t) = 1} ^ U{0,t], where Ti is the arrival time of the first 
event of the process. 

Proof. For 0 < 5 < t, we have 

- PW{s) = l,N{t)-N{s) = 0] 
P[N{t) = l] 

ind. (Age-^^)e-^(^-") = £ D 
Ate--^* " t 

Remarks, i) The result actually follows from the fact that the increments of 
the Poisson process are independent and stationary. This indeed implies that 
the probability that an event occurs in an arbitrary interval must depend only 
on the length of this interval. 

ii) More generally, if T* denotes the arrival time of the only event in the 
interval (^1,^2], where 0 < 1̂ < t2, then T* is uniformly distributed on this 
interval. 

iii) The random variable Ti | {N{t) = 1} is different from Tf := Ti | {Ti < t}. 
The variable Tf has a truncated exponential distribution: 

P[T^ <s] = P[Ti <s\Ti<t] = ^J^ - i = ]~^',l iovO<s<t 

(5.46) 

Note that the occurrence of the event {N{t) = 1} implies the occurrence of 
{Ti < t}. However, {Ti < t} => {N{t) > 1}. On the other hand, we may 
write that 

T,\{N{t) = l}~Ti\{Ti<t,T2>t} (5.47) 

We would like to generalize the preceding proposition by calculating the 
distribution of (T i , . . . , r „ ) , given that exactly n events occurred in the in­
terval (0,t]. Let us first consider the case when n = 2. Let 0 < ti < t2 < t. 
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To obtain the conditional distribution function of the random vector (Ti,T2), 
given that N{t) = 2, we begin by calculating 

P[Ti<h,T2<t2,N{t) = 2] 

= P[N{ti) = l,N{t2) - N{ti) = l,N{t) - Nit2) = 0] 

+P[N{ti) = 2,N{t)-N{ti) = 0] 

= {x%{t2-h)+^-^y-^' (5.48) 

where we used the fact that the increments of the process {N{t),t > 0} are 
independent and stationary, from which we find that 

P\T <f T <t I N(,\ 91 P[Ti<h,T2<t2,Nit) = 2] 
P[Tr < h,T2 < t2 I N{t) = 2] = p[jv(0 = 2] 

i(Ai)2e-^* 

2 i i (*2 - i i ) + if 
2 

2 

t2 

so that 

fT.,T.mt){hM 12) = ̂ ^ -^ I — - — + ^ 1 

(5.49) 

2 2 
= "2 + 0 = "2 for 0 < 1̂ < 2̂ < ^ (5.50) 

Remark. From the preceding formula, we calculate 

fT,mt){ti \2) = I ~dt2 = ^ ^ ^ - ^ for 0 < ti < t (5.51) 

Note that the distribution of Ti | {N{t) = 2} is not uniform on the interval 
(0,^], contrary to that of Ti | {N{t) = 1}. We also have 

fT2\Nit){t2\2)= r ^dti = ^ iov0<t2<t (5.52) 

Finally, we may write that 

fT,J,\N{t){tlM I 2) _ 2/t^ 
fT2\Ti,N{t){h I t i ,2) = 

/T,|iV(t)(tl I 2) 2 ( t - i i ) / f 2 

for 0 < 1̂ < 2̂ < ^ (5.53) 
t-ti 
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That is, T2 I {Ti = ti,N{t) = 2} ~ \J{ti,t], from which we deduce that 
(T2 - Ti) I {Ti = t i , N{t) = 2} - U(0, t - h]. 

To obtain the formula in the general case, we can consider all the possible 
values of the random variables N{ti), N{t2) - N{ti), . . . , N{tn) - iV(tn-i), 
given that Ti < t i , T2 < ^2 , . . . , T^ < n̂̂  N{t) == ^- The total number of ways 
to place the n events in the intervals (0,ti], (^1,^2], . . . , [tn-iytn] is given 
by the multinomial coefficients (see p. 4). Moreover, N{ti) must be greater 
than or equal to 1, N{t2) must be greater than or equal to 2, etc. However, 
it suffices to notice that the only nonzero term, after having differentiated 
the conditional distribution function with respect to each of the variables 
t i , . . . , tn, will be the one for which the event 

F= {N{h) = 1} n {N{t2) - N{h) = 1} n... n {N{tn) - N{tn-i) -1} 

(5.54) 

occurs. Let 
G= {N{ti) > 1} n {N{t2) > 2} n . . . n {N{tn) > n} (5.55) 

We have 

P[Ti<tuT2<t2,...,Tn<tn,N{t) = n] 

= P[Fn {N{t) = n}] + P [ G n {N{t) = n}] 

= P[Fn {N{t) - N{tn) = 0}] + P [G n {N{t) = n}] 

+P[Gn{N{t)=n}] 

= A"fie-^* Y[{tk - tk-i) + P[Gn {N{t) = n}] (5.56) 
fc=2 

It follows that 

P[Tl<ti,T2<t2,...,Tn<tn\ N{t) = u] 
_ P [Ti <tuT2<t2:... ,Tn<tn,N{t)^n] 

P{N{t)=n] 

= ^ T & ^ | ^ + ̂ '° I "<'> = »! <'̂ -") 
Since at least one U is not present in the term P[G \ N{t) = n], we may write 
that 

fTi,T2,... ,Tr,\N{t){h,t2i • • • ,^n I ^ ) 

^" tlirk=2i^k-tk-l) 
dtidt2"'dtn f'/nl 
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n for 0 < ti < t2 < . . . < tn < t (5.58) 

We have proved the following proposition. 

Proposi t ion 5.1.6. Let {N{t)^ t >0} be a Poisson process with rate A. Given 
that N{t) = n, the n arrival times of the events, T i , . . . , Tn, have the joint 
probability density function given by the formula (5.58). 

Remarks, i) Another (intuitive) way of obtaining the joint density function of 
the random vector (Ti , . . . , Tn). given that N{t) = n, is to use the fact that, 
for an arbitrary event that occurred in the interval (0,t], the arrival time of 
this event has a uniform distribution on this interval. We can consider the n 
arrival times of the events as being the values taken by n independent U(0, ]̂ 
random variables Ui placed in increasing order (since Ti < T2 < . . . < T^). 
There are n! ways of putting the variables C/i, . . . , Un in increasing order. 
Moreover, by independence, we may write, for 0 < f 1 < t2 < - -- < tn < t^ 
that 

M,....t/„(<i,. . . , in)=n/c/.(*i)=n7=^ (5-59) 
Thus, we retrieve the formula (5.58): 

t 
i^l ^=l 

n: /Ti , . . . ,T. , |7V(t)(t i , . . . ,tn I n) =n\fu^^...,uAh."' '^n) = — (5 .60) 

if 0 < ti < f2 < . . . < n̂ < .̂ 
ii) When we place some random variables Xi , . . . , Xn in increasing order, 
we generally use the notation X( i ) , . . . ,X(^), where X(j) < X(j) if i < j . In 
the continuous case, we always have that X(^) < X(j) \i i < j . The variables 
placed in increasing order are called the order statistics of X i , . . . ^Xn- We 
have that X(i) = min{Xi, . . . , Xn} and X(„) = max{Xi, . . . , Xn}-

Let us now return to the problem of decomposing the events of a Poisson 
process, {N{t)^t > 0}, into two or more types. 

Proposi t ion 5.1.7. Suppose that an event of a Poisson process with rate X, 
{N{t)^t > 0}, that occurs at time s is classified, independently from the other 
events, of type i with probability pi{s), where i = 1,... , j and J2i=:iPii^) — ^' 
Let Ni{t) be the number of type i events in the interval [0, t]. The Ni{t) 's are 
independent random variables having Poisson distributions with parameters 

Xi{t) := X f Pi{s) ds fori = 1,2,... J (5.61) 
^0 
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Proof. We know that the arrival time of an arbitrary event that occurred in 
the interval (0, t] has a uniform distribution on this interval. Consequently, we 
may write that the probability Pi that this event is of type i is given by 

Pi= Pi{s)- ds for i = : l , 2 , . . . , j (5.62) 

Proceeding as in the proof of Proposition 5.1.2, we find that the random 
variable Ni{t) has a Poisson distribution with parameter 

K{t) = Xpit = A / pi{s) ds for i == 1,2,... , j (5.63) 
Jo 

and that the variables A^i(t), A^2(0? • • • ? ^ j ( 0 ^^^ independent. D 

Remark, The random variables Ni{t) have Poisson distributions. However, 
the stochastic processes {Ni{t),t > 0} are not Poisson processes, unless the 
functions Pi{s) do not depend on s, for all i. 

Example 5.1.3, Customers arriving at a car dealer (open from 9 a.m. to 9 p.m.) 
can be classified in two categories: those who intend to buy a car (type I) and 
those who are just looking at the cars or want to ask some information (type 
II). Suppose that 

P[Customer is of type I] = { J/^ ^^^ I p . ^ 
to 6 p.m. 

m. to 9 p.m. 

independently from one customer to another and that the arrivals constitute 
a Poisson process with rate A per day. 

(a) Calculate the variance of the number of type I customers arriving in one 
day if A = 50. 

(b) Suppose that the average profit per car sold is equal to $1000 and that 
A = 10. What is the average profit for the dealer from 9 a.m. to 6 p.m. on a 
given day, knowing that at least two cars were sold during this time period? 

Solution, (a) Let Ni(t) be the number of type I customers in the interval [0, t], 
where t is in (opening) hours. We can write that 

Ni{l2) - Poi (^ j pi{s) d^ = Poi(21.875) 

because 

/ pj{s)ds= 7:ds-\- -c /5 = 21/4 

We seek V[Ni{12)] = 21.875. 

(b) Let Ni{t) be the number of sales in t days, from 9 a.m. to 6 p.m. The 
process {Ni{t),t > 0} is a Poisson process with rate 
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A = 10x — X - = 3.75 
12 2 

We are looking for 1000E[iVi(l) | iVi(l) > 2] := lOOOo:. We have 

^[iVi(l)] =0-j-E[Ni{l) I iVi(l) = l]P[iVi(l) - 1] +xP[iVi(l) > 2] 

It follows that 

[l-e-^-'^^(l +3.75)1 3.75 = 1.3.75e-^-'^^+x 

We find that x cf 4.12231, so that the average profit is given by (approxi­
mately) $4122,31. 

Proposition 5.1.8. Let {Ni{t),t > 0} and {N2{t),t > 0} be independent 
Poisson processes, with rates Ai and X2, respectively. We define the event 
Fni,n2 — ^n events of the process {Ni{t)^t > 0} occur before n2 events of the 
process {N2{t),t > 0} have occurred. We have 

P[Fn,,n,] - P[X > m] , where X - ^ ( n = m + n2 - l ,p : - j ^ ) 

(5.64) 

That is, 

n i + n 2 - l / , i \ / \ \ ^ / \ \ ni-\-n2-l-i 

i=ni ^ ^ ^ '̂  ^ 

(5.65) 

Proof. Let N{t) := Ni{t) + N2{t), and let Ej be the random experiment that 
consists in observing whether the jth event of the process {N{t)^ t > 0} is an 
event of the process {Ni{t),t > 0} or not. Given that the Poisson process has 
independent and stationary increments, the Ej^s are Bernoulli trials^ that is, 
independent trials for which the probability that the jth trial is a success is 
the same for all j . Then the random variable X that counts the number of 
successes in n trials has, by definition, a binomial distribution with parameters 
n and (see Prop. 3.3.4) 

p := P[ri , i < T2,i] = — ^ (5.66) 
Ai + A2 

where Ti^i ~ Exp(Ai) and T2^i ~ Exp(A2) are independent random variables. 
Since Fni,n2 occurs if and only if there are at least ni events of the process 
{iVi(t), t > 0} among the first ni + 712 - 1 events of the process {N{t), t>0}^ 
we obtain the formula (5.65). D 
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Example 5.1.4- Let {X{t),0 < ^ < 1} be the stochastic process defined from 
a Poisson process {N{t)^t > 0} with rate A as follows: 

X{t) = N{t)-tN{l) ioxO<t<l 

Note that, Hke the Brownian bridge (see p. 196), this process is such that 
X(0) = X{1) = 0. We calculate 

E[X{t)] = E[N{t) - tN{l)] = E[N{t)] - tE[N{l)] = Xt - t{X • 1) = 0 

for all t G [0,1]. It follows that if 0 < t̂  < 1, for i = 1,2, then 

Cx{ti^t2) = E[Xih)X{t2)]-0^ 

= E{[N{ti)-hN{l)][N{t2)-t2N{l)]} 

= E [N{ti)N{t2)] - HE [N{l)N{t2)] - ^2^ [N{h)N{l)] 

^tit2E[N\\)] 

= \H1t2 + Amin{ti, ^2} - h {XH2 + Xt2) -12 (A^^i + Xh) 

+ tit2 (A^ + A) 

= A min{^i, ^2} — Xtit2 

where we used the formula 

RN{t\M) = CN{tiM)-^E[N{ti)]E[N{t2)]=Xmm{tiM}-^XHit2 

We can generalize the process above by defining {X(t), 0 < t < c} by 

X{t) = N{t)--N[c) f o r O < t < c 
c 

where c is a positive constant. 

Example 5.1.5. We know that the Poisson process is not wide-sense stationary 
(see p. 232). On the other hand, its increments are stationary. Consider the 
process {X(t),t > 0} defined by 

X{t)=N{t + c)-N{t) f o r t > 0 

where c is a positive constant and {N{t), t > 0} is a Poisson process with rate 
A. Note that X{0) = N{c) ^ Poi(Ac). Thus, the initial value of the process is 
random. We have 

iV(t + c) - iV(t) - Poi(Ac) = > E[X{t)] = Xc for alH > 0 

Next, by using the formula for i?iv(^i,^2) in the preceding example, we 
calculate (for s,t > 0) 

Rx {t,t + s) := E [{N{t + c) - N{t)}{N{t + s + c) - iV(t + s)}] 
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= E[N{t -j- c)N{t + 5 + c)] - E[N{t + c)N{t + s)] 

- E[N{t)N{t + 5 + c)] + E[N{t)N{t + s)] 

= X[{t + c)-t- min{c, s}--t-\-t] 

+ Â  [{t + c){t + s + c)-{t + c){t + s)~t{t-}-s + c) + t{t + s)] 

= A (c - min{c, s}) + A ĉ̂  

It follows that 

Cx(t, t ^ s ) - Rx{t, t + s)- E[X{t)]E[X{t + s)] 

- A (c - min{c, 5}) + A ĉ̂  - (Ac)^ 

if c < s 
if c > s 

= A(c-min{c,s}) = | ^ ^ / _ ^ ^ ! [ 

We can therefore write that Cx{t,t -\- s) = Cx{s). Thus, the stochastic 
process {X{t)^t > 0} is wide-sense stationary (because E[X{t)] = Ac), which 
actually follows from the stationary increments of the Poisson process. More­
over, the fact that the autocovariance function Cx{s) is equal to zero, for 
c < s, is a consequence of the independent increments of {N{t), t > 0}. 

Example 5.1.6. We suppose that the number N{t) of visitors of a certain Web 
site in the interval [0,t] is such that {N{t),t > 0} is a Poisson process with 
rate A per hour. Calculate the probability that there have been more visitors 
from 8 a.m. to 9 a.m. than from 9 a.m. to 10 a.m., given that there have been 
10 visitors from 8 a.m. to 10 a.m. 

Solution. Let Ni (respectively, Ar2) be the number of visitors from 8 a.m. 
to 9 a.m. (resp., from 9 a.m. to 10 a.m.). We can assert that the random 
variables Â i ~ Poi(5) and N2 ~ Poi(5) are independent. Furthermore, we 
have Ni \ {Ni + N2 = 10} -̂  B(n = 10,p = 1/2), for i = 1,2. We seek the 
probability x := P[Ni > N2\ Ni-\-N2 = 10]. By symmetry, we can write that 

1 = x 4- P[Ni =N2\Ni+N2 = 10]+x = 2x-}- r J (1/2)^^ ĉ  2a: 4- 0.2461 

Then x c^ 0.3770. 

Example 5.1.7. We define M{t) = N{t) - {t^/2), for t > 0, where {N{t), 
t > 0} is a Poisson process with rate A. Calculate P[l < ^i < \/2], where 
Si :=min{t > 0 : M ( 0 > 1}. 

Solution. The increments of the Poisson process being independent and sta­
tionary, we can write that 
P[l <Si<V2] 

= P[N{1) = 0, N{V2) - N{1) > 2] + P[N{1) = 1, N{V2) - N{1) > 1] 

[1 _ e - ( ^ - i ) ^ (1 + (x/2 - 1 ) A ) ] 4- Ae-^ = e-^ g - ( \ / 2 - l ) A 
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X(t) 

:5L 

Fig. 5.2. Example of a trajectory of a telegraph signal. 

5.1.1 The telegraph signal 

As we did with the Brownian motion and in Examples 5.1.4 and 5.1.5, we can 
define stochastic processes from a Poisson process. An interesting particular 
transformation of the Poisson process is the telegraph signal {X{t),t > 0}, 
defined as follows: 

X(t) = ( - l ) ^ W 
lif iV(t) = 0,2,4, 

-l ifiV(t) = 1,3,5, 
(5.67) 

An example of a trajectory of a telegraph signal is shown in Fig. 5.2. 

Remark, Note that X{0) = 1, because iV(0) = 0. Thus, the initial value of the 
process is deterministic. To make the starting point of the process random, 
we can simply multiply X{t) by a random variable Z that is independent of 
X(t) , for all t, and that takes on the value 1 or - 1 with probability 1/2. It is 
as if we tossed a fair coin at time t > 0 to determine whether X{t) = 1 or —1. 

The process {Y{t),t > 0}, where Y{t) := Z • X(t) , for all t > 0, is called 
a random telegraph signal We may write that Z = Y{0). Moreover, to be 
precise, we then use the expression semirandom telegraph signal to designate 
the process {X{t),t > 0}. We already encountered the random telegraph 
signal in Example 2.3.2. 

To obtain the distribution of the random variable X(t), it suffices to cal­
culate 

oo oo (\f\2k 

P[X{t) = 1] = Y.P{N{t) = 2k] = E ^ " ' * W 
A;=0 

At 

because 

= e 

coshAt := 

-xte^' + e -At 
k=Q 

l ^ g - 2 A t 

(2fc)! 

V t > 0 

e *̂ -f e -At oo 

— . . V 
(Xt) 2fc 

to (2̂ )' 

(5.68) 

(5.69) 
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where "cosh" denotes the hyperbolic cosine. It follows that 

P[X{t) = -1] = 1 - i ± | — = : L _ £ _ _ (5.70) 

In the case of the process {Y{t),t > 0}, we have 

P[Y{t) = l] = P[Z.Xit) = l] 

= P[X{t) = l\Z = 1]P[Z = 1] 

+ P[X{t) = -l\Z = -1]P[Z = -1] 

'"i- i {P[X{t) = 1] + P[Xit) = -1]} = i (5.71) 

Thus, P[Y{t) = 1] = P[Y{t) = -!] = 1/2, for all t>0,so that E[Y{t)] = 0, 
whereas 

E[X{t)] = l . ^ + ( _ 1 ) . : L ^ ==e-2^* V f > 0 (5.72) 

To obtain the autocorrelation function of the (semirandom) telegraph sig­
nal, we make use of the definition X{t) = {—1)^^^K If 5 > 0, we may write 
that 

Rx{t t + s):= E[X{t)X{t + s)]=E [(-l)^(*)(-l)^(*+^) 

= E 

= E 

r_l\2N{t) f^_^^N{t-\-s)-N{t)^ ^ ^ L_^'^N{t+s)-N{t) 

2\s (_l)iv(s) ^ E[X{s)] = e-'^' (5.73) 

where we used the fact that the increments of the Poisson process are station­
ary. We then have 

C^^t, t + s) = e-^^' ~ e-2At^-2A(t+s) ^ ^-2Xs (1 _ ^-4At^ V S, ^ > 0 

(5.74) 

Finally, since 

Y{t)Y{t + s) := [Z • X{t)][Z . X{t + s)] = Z^ - X{t)X{t + s) 

= 1. X{t)X{t + 5) - X{t)X{t + s) (5.75) 

we find that 

Cy(t , t + s) = RY{t,t-\- s) = Rx{t,t-\- s) = e-^^' V 5,t > 0 (5.76) 
We deduce from what precedes that the process {Y{t)^t > 0} is wide-sense 

stationary. As we mentioned in Example 2.3.2, it can even be shown that it is 
strict-sense stationary. On the other hand, {X{t)^t > 0} is not WSS, because 
its mean depends on t (and Cx{t,t -\- s) ^ Cx{s)). Furthermore, in Example 
2.3.2, we showed that the random telegraph signal is a mean ergodic process. 
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5.2 Nonhomogeneous Poisson processes 

In many applications, it is not realistic to assume that the average arrival 
rate of events of a counting process, {N{t)^t > 0}, is constant. In practice, 
this rate generally depends on the variable t. For example, the average arrival 
rate of customers into a store is not the same during the entire day. Similarly, 
the average arrival rate of cars on a highway fluctuates between its maximum 
during rush hours and its minimum during slack hours. We will generalize the 
definition of a Poisson process to take this fact into account. 

Definition 5.2.1. Let {N{t),t > 0} be a counting process with independent 
increments. This process is called a nonhomogeneous (or nonstationaryj 
Poisson process with intensity function X{t) > 0, for t > 0, if N{0) = 0 
and 

i) P[N{t + (5) - N{t) = 1] = X{t)S + o{S), 

ii) P[N{t + S)- N{t) >2]= o{6). 

Remark. The condition i) implies that the process {N{t), t > 0} does not have 
stationary increments unless X{t) = A > 0. In this case, {N{t),t > 0} becomes 
a homogeneous Poisson process, with rate A. 

As in the particular case when the average arrival rate of events is constant, 
we find that the number of events that occur in a given interval has a Poisson 
distribution. 

Proposition 5.2.1. Let {N{t),t > 0} be a nonhomogeneous Poisson process 
with intensity function X{t). We have 

N{s + t)-N{s)^Poi{m,{s + t)-m{s)) \/s,t>0 (5.77) 

where 

m{s) := f A(r) dr (5.78) 

Proof. Let 

Pn(s, t) := P[N{s +1) - N{s) = n] for n = 0 ,1 ,2 , . . . (5.79) 

Using the fact that the increments of the process {N{t),t > 0} are indepen­
dent, and using the two conditions in the definition above, we may write, for 
n = 1,2,. . . , that 

= P[N{s -f- f) - N{s) =n,N{s-^t-\-d)- N{s -\-t) = 0] 

+ P[N{s + t)- N{s) = n-l,N{s + t + S)-Nis + t) = l]+ o{S) 
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= pn{s, t)[l - X{s + t)S + o{5)] + pn-i{s, t)[X{s +1)5 + o{S)] + o{S) 

from which we find that 

Pnis,t + S)-pn{s,t) = X{s-\-t)S[pn-l{s,t)-pn{s,t)]+o{S) (5.80) 

Dividing both sides by S and taking the Umit as S decreases to zero, we obtain 

d 
Pn{s, t) = X{S + t)[pn-l{s, t) - Pn{s, t)] 

dt 

When n = 0, the equation above becomes 

d 

dt 
Po{s,t) = -X{s + t)po{s,t) 

(5.81) 

(5.82) 

The variable s may be considered as a constant. Therefore, this equation is 
a first-order, hnear, homogeneous ordinary differential equation. Its general 
solution is given by 

Po{s,t) = coexp 
f rs-j-t 

\Js • 
A(r) dT (5.83) 

where CQ is a constant. Making use of the boundary condition po{s, 0) = 1, we 
obtain CQ = 1, so that 

Po{s,t) = exp | - f A(r) dA - e'"(")-'"("+*^ for s,i > 0 

Substituting this solution into Eq. (5.81), we find that 

d_ 
dt 

Pi{s,t) = \is + t) ^m{s)-m{s-\-t) _ Pi{s,t) 

We may rewrite this equation as follows: 

§-^Pi{s,t) = [e'"W-'"(«+*) -p,(s,t)\^^[m{s + t)-mis)] 

(5.84) 

(5.85) 

(5.86) 

We easily check that the solution of this nonhomogeneous differential equation, 
which satisfies the boundary condition pi(s,0) — 0, is 

pi(s,f)=e'"(*)-'"(*+*>[m(s + i ) - m ( s ) ] f o r s , t > 0 (5.87) 

Finally, we can show, by mathematical induction, that 

Pn{s, t) = e-(«)—(«+*) [m{s + t)-m{s)r V s, i > 0 and n = 0 , 1 , . . . D 
n! 

(5.88) 
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Remarks, i) The function m{t) is called the mean-value function of the process. 

ii) Suppose that X{t) is a twice-differentiable function such that A(t) < A, 
for all t > 0. We can then obtain a nonhomogeneous Poisson process with 
intensity function X{t) from a homogeneous Poisson process {Ni{t)^t > 0}, 
with rate A, by supposing that an event that occurs at time t is counted with 
probability A(t)/A. Let 

F = exactly one of the events that occur in the interval {t^t-\-5] is counted, 
and let 

N{t)= the number of events counted in the interval [0,^]. 
We have (see Prop. 5.1.7) 

oo 

P[Nit + S)- N{t) = 1] = 5 ] P [{Ni{t + 5)- Ni{t) = k} n F] 
k=l 

= [X6 + o{6)]f ^ ^ d u + oi6) 

- [X5 + o{6)] h^LLE^ + o{6) (5.89) 
A 

for some c G (0,1), by the mean-value theorem for integrals. Since 

X{t + c5) = X{t) + cSX\t) + o{S) (5.90) 

we may write that 

P[N{t + S)- Nit) = 1] = [XS + o{S)] m + cSX^t) + oiS) ^ ^^^^ 
X 

= X{t)6 + o{5) (5.91) 

iii) If we assume that 

X{t) dt = oo for all to G [0, oc) (5.92) 
/»oo 

/ ' 

then the probability that at least one event will occur after ô is equal to 1: 

lim P[N{to + s)- N{to) > 1] = 1 - lim P[N{to + s) - N{to) = 0] 
s—»-oo s—*oo 

r rto-\-8 \ 

= 1- lim exp <̂  - / X{t) dt } 

= 1 - 0 = 1 (5.93) 

Note that the formula (5.92) is valid when X{t) = A > 0. 

Let Ti be the random variable that denotes the arrival time of the first 
event of the process {N{t),t > 0}. We will now calculate the distribution of 
Ti, given that N{t) = 1, as we did in the case of the homogeneous Poisson 
process (see Prop. 5.1.5). 
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Proposition 5.2.2. Let {N{t).t >0} be a nonhomogeneous Poisson process 
with intensity function X{t). The probability density function of the random 
variable S :=Ti\ {N{t) = 1} is given by 

fs{s) = ^ , forO<s<t (5.94) 
m\t) 

Proof. If 0 < 5 < ,̂ we may write that 

ind. (m(s)e-^(^)) e-"^W+"^W _ m{s) 

~~ m(t)e-^(^) ~ m{t) 

Since 

d_ 
ds rn{s) = X / ^(^) ^^ = ^(^) (^-^^^ 

ds JQ 

we obtain the formula (5.94). D 

Remark, The formula for the distribution function of the arrival time S of the 
single event that occurred in an arbitrary interval (r, r + t] is 

Fs{s) ^ "J"'^'^ " '^^''] , f o r O < r < . s < r + ^ (5.96) 
m{T -\-t) — m{T) 

so that 

fs{s) = , / / ' ^ , , f o r O < T < ^ < r + ^ (5.97) 
7n(r + t) - m(r) 

where S := T \ {N{r -\-t) - N{T) = 1} and T is the arrival time of the first 
event of the nonhomogeneous Poisson process in the interval {T^T +1]. 

Example 5.2.1. Let {N{t)^t > 0} be a nonhomogeneous Poisson process with 
intensity function X{t) > 0, for t >0. We set 

M{t) = N {mr\t)) f o r a l H > 0 

where m~^{t) is the inverse function of the mean-value function of the process. 

Remark This inverse function exists, because we assumed (in this example) 
that the intensity function X{t) is strictly positive, for all t, so that m{t) is a 
strictly increasing function. 

We then have 
M(0) = Â  {m-\0)) - N{0) = 0 
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Moreover, we calculate, for all r, f > 0 and n = 0 , 1 , . . . , 

P[M{T +1) - M{T) = n]=P[N {m-\T + t))~N (m-^r)) = n] 

= P [Poi (m (jn~'^{T + t)) -m (m"^(r))) = n] 

= P [Poi(r + 1 - r ) = n] = P [Foi{t) = n] 

Finally, since the function m~^{t) is strictly increasing, we may assert that 
the stochastic process {M{t),t > 0}, like {N{t),t > 0}, has independent in­
crements. We then deduce, from what precedes, that {M{t),t > 0} is actually 
a homogeneous Poisson process, with rate A = 1. 

5.3 Compound Poisson processes 

Definition 5.3.1. Let X i , X 2 , . . . be independent and identically distributed 
random variables, and let N be a random variable whose possible values are 
all positive integers and that is independent of the Xk ^s. The variable 

N 

SN '•= / ^Xk (5.98) 
fe=i 

is called a conipound random variable. 

We already gave the formulas for the mean and the variance of SN [see 
Eqs. (1.89) and (1.90)]. We will now prove these formulas. 

Proposition 5.3.1. The mean and the variance of the random variable SN 
defined above are given, respectively, by 

and 

V 

E 

N 

N 

Ê ^ 
Lfe=i 

= E[N]E[Xi 

E[N]V[Xx\ + V[N\{E[Xr]f 

Proof. First, we have 

E Ê ^ :=Y,E[Xk]= nE[Xi] 
k=i 

Then, since N is independent of the Xj^'s, we may write that 

E 
- N 

Ê ^ 
.*;=! 

N = n = E 
n 

Ê l̂ 
M=l J 

- nE[Xi] 

(5.99) 

(5.100) 

(5.101) 

(5.102) 
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so that 

follows that 

E 
- N 

Ê ^ 
. / c = l 

E 
' N ~ 

.k=l ' . 

= E 

r 

E 
' N 1 "1 

E^H^ 
.k=i J 

1 

J 

: NE[Xl (5.103) 

E[NE[Xi]] - E[N]E[Xi] (5.104) 

Remark. It is not necessary that the random variables Xk be independent 
among themselves for the formula (5.99) to be valid. 

Next, proceeding as above, we find that 

AT 

Lfe=i 
N = n 

i.i.d. 
nV[Xi V 

N 

Ê ^ 
.fc=i 

N = NVlXi] (5.105) 

With the help of the formula (see p. 28) 

V[SN] = E[V[SN I N]] + V[E[SN I N]] 

we may then write that 

JV 

(5.106) 

V Ê ^ 
.k=l 

E [NV[Xi]] + V[NE[Xi]] 

E[N]V[Xi] + {E[Xi]fV[N] D (5.107) 

Definition 5.3.2. Let {N{t),t >0} be a Poisson process with rate X, and let 
X i , X 2 , . . . be random variables that are i.i.d. and independent of the process 
{N{t),t > 0}. The stochastic process {Y{t),t > 0} defined by 

N{t) 

Y{t)=Y^Xk V t > 0 {andY{t)==OifN{t) = 0) (5.108) 
k=i 

is called a compound Poisson process. 

Remarks, i) This is another way of generalizing the Poisson process, since 
if the random variables Xk are actually the constant 1, then the processes 
{Y{t),t > 0} and {N{t),t > 0} are identical. 

ii) A Poisson process, {N{t),t > 0}, only counts the number of events that 
occurred in the interval [0,t], while the process {Y{t),t > 0} gives, for exam­
ple, the sum of the lengths of telephone calls that happened in [0,^], or the 
total number of persons who were involved in car accidents in this interval, 
etc. Note that we must assume that the lengths of the calls or the numbers 
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of persons involved in distinct accidents are independent and identically dis­
tributed random variables. We could consider the two-dimensional process 
{{N{t),Y{t)),t > 0} to retain all the information of interest. 

Using Proposition 5.3.1 with SN = y{t) and N = N{t), we obtain 

E[Y{t)] = E[N{t)]E[Xi] = XtE[Xi] (5.109) 

and 

V{Y{t)] = E[N{t)]V[Xr] + V[Nit)}{E{Xi]f 

= Xt {V[Xi] + iE[Xi]f) - XtE[Xl] (5.110) 

We can easily calculate the moment-generating function of the random 
variable Y{t). Let 

Mi{s)^Mx,is):=E[e'''^] (5.111) 

We have 

MY(t){s):=E [e*^(*)] = E Je«(^i+-+^^('))1 = E [ E [e^(^>+-+^^('))|iV(i)]] 

n=0 * n=0 

= e-^'e^'^'^^' = exp{\t[Mi{s)-l]} (5.112) 

This formula enables us to check the results obtained above. In particular, 
we have 

E[Y{t)] = £ M K W ( S ) L ^ „ = My(,){s)XtM[{s)l^^ 

= MY(t){^)XtM[{G) = lXtE[Xi] = XtE\Xi] (5.113) 

When Xi is a discrete random variable, whose possible values are 1,2,... , j , 
we may write that 

Y{t) = Y.iNi{t) (5.114) 

where Ni{t) is the number of random variables Xk (associated with some 
random events) that took on the value i in the interval [0,^]. By Proposition 
5.1.2, the processes {Ni{t),t > 0} are independent Poisson processes with 
rates Xpx^i), for i = 1 , . . . J, 

Remarks, i) This representation of the process {y{t), ^ > 0} can be generalized 
bo the case when Xi is an arbitrary discrete random variable. 
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ii) The moment-generating function of the random variable Y{t) in the case 
above becomes 

My(,)(5) = exp \xtJ2{^'' - ^)PxAi)} (5.115) 

Since lim^-^oo ^{t) = oo, we deduce from the central limit theorem the 
following proposition. 

Proposition 5.3.2. For t sufficiently large, we may write that 

Y{t) « N {XtE[Xi],XtE[Xf]) (5.116) 

Remark. For the approximation to be good, the number of variables in the 
sum must be approximately equal to 30 or more (or maybe less), depending 
on the degree of asymmetry of (the distribution of) the random variable Xi 
with respect to its mean. 

Finally, let {Yi{t)^t > 0} and {Y2{t)^t > 0} be independent compound 
Poisson processes, defined by 

Ni{t) 

Yi{t) = Y, ^i,k V t > 0 (and Yi{t) = 0 if Ni{t) = 0) (5.117) 
k=i 

where {Ni{t),t > 0} is a Poisson process with rate A ,̂ for z = 1,2. We know 
that the process {N{t),t > 0}, where N{t) := Ni{t) + A 2̂(̂ ) V f > 0, is a 
Poisson process with rate A := Ai + A2 (because the two Poisson processes are 
independent; see Prop. 5.1.1). Let Xk be the random variable associated with 
the fcth event of the process {N{t)A > 0}. We may write that 

Xi^k with probability p := 
Xk=l ^ ^'^^^ (5.118) 

I ^2,k with probability 1 — p 

(That is, Xk has the same distribution as Xi^k (respectively, X2,k) with prob­
ability p (resp., 1 - p).) Thus, we have 

P[Xk <x] = P[Xi, , < x]p-^P[X2,k < x]{l-p) (5.119) 

Since the random variables X i , X 2 , . . . are i.i.d., and are independent of the 
Poisson process {N{t),t > 0}, we may assert that the process {Y{t),t > 0} 
defined by 

Y{t) = Yi{t) + Y2{t) for t > 0 (5.120) 

is a compound Poisson process as well. 
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Example 5.3.1. Suppose that the customers of a certain insurance company 
pay premiums to the company at the constant rate a (per time unit) and 
that the company pays indemnities to its customers according to a Poisson 
process with rate A. If the amount paid per claim is a random variable, and if 
the variables corresponding to distinct claims are independent and identically 
distributed, then the capital C{t) at the company's disposal at time t is given 
by 

C{t) = C(0) + at - Y{t) 

where {Y{t),t > 0} is a compound Poisson process (if, in addition, the indem­
nity amounts do not depend on the nt^mter of indemnities paid). An important 
question is to be able to determine the risk that the random variable C(t) will 
take on a value smaller than or equal to zero, that is, the risk that the com­
pany will go bankrupt. If a < Â u, where /x := E[Xi] is the average indemnity 
paid by the company, then we find that the probability that it will eventually 
go bankrupt is equal to 1, which is logical. 

5.4 Doubly stochastic Poisson processes 

In Section 5.2, we generalized the definition of a Poisson process by allowing 
the average arrival rate of events of the process to be a deterministic function 
X{t). We will now generalize further the basic Poisson process by supposing 
that the function X{t) is a random variable A{t). Thus, the set {A{t),t > 0} 
is a stochastic process. For this reason, the process {N{t)^t > 0} is called a 
doubly stochastic Poisson process. First, we consider the case when the random 
variable A{t) does not depend on t. 

Definition 5.4.1. Let A be a positive random variable. If the counting process 
{N{t),t > 0}, given that A = X, is a Poisson process with rate A, then the 
stochastic process {N{t),t > 0} is called a conditional (or mixed) Poisson 
process. 

Proposition 5.4.1. The conditional Poisson process {N{t),t > 0} has sta­
tionary, but not independent increments. 

Proof. Consider the case when yl is a discrete random variable whose possible 
values are in the set {1 ,2 , . . . } . We have 

CX) 

P[N{T + t)- N{T) =n] = Y^ PIN{T + t)- N{T) = n\A = k]= PA{k) 
k=l 

= f:e-''^-^PAik) (5.121) 

Since iV(0) = 0, for any value of yl, we conclude that 
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P[N{T + t)- N{T) = n]= P[N{t) = n] for all r, ^ > 0 and n = 0 ,1 , . • • 
(5.122) 

Thus, the increments of the process {N{t),t > 0} are stationary. 
Next, using the formula (5.121) above, we may write that 

P[A = j\N{t) = n] 
P[N{t)=n\A = j]P[A = j] 

P[N{t) = n] 

e-^'[{jtr/n\]pA{j) 

Er=i^- '1(fcOVn!W(fc) 

(5.123) 

Therefore, the number of events that occurred in the interval [0, t] gives us 
some information about the probability that the random variable A took on 
the value j . Now, the larger j is, the larger is the expected number of events 
that will occur in the interval {t,t + r] , where r > 0. Consequently, we must 
conclude that the increments of the process {N{t), t>0} are not independent. 
D 

Remarks, i) In the case of the homogeneous Poisson process, with rate A > 0, 
we have that PAW = 1, SO that 

P[yl = A|ArW = n] = ^ ^ » g ^ = l forn = 0 , l , . . . (5.124) 

ii) The proposition above implies that a conditional Poisson process is not a 
Poisson process unless yl is a constant. 

iii) If the parameter A of the homogeneous Poisson process {N{t)^t > 0} is 
unknown, we can estimate it by taking observations of the random variable 
N{t), for an arbitrary t > 0. Suppose that we collected n (independent) ob­
servations of A^(^). Let X be the average number of events that occurred in 
the interval [0,/;]. That is, 

X := ^^=^ ^^ (5.125) 
n 

where Xk is the kth observation of N{t). The best e5 îma;̂ or of the parameter 
A is given by 

A : - — (5.126) 

Thus, the larger the number of events that occurred in the interval [0, t] is, 
the larger the estimated value of A is. However, once this parameter has been 
estimated, we start anew and we assume that the increments are independent. 
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iv) When yl is a continuous random variable, we find that 

Given that 

E[N(t) \A]=At and V[N{t) \A] = At (5.128) 

we calculate 

E[N{t)] = E[E[N{t) I A]] - tE[A] (5.129) 

and 

V[N{t)] = E[V[N{t) I yl]] + V[E[Nit) \ A]] 

= E[At] + V[At] = tE[A] + t^V[A] (5.130) 

Example 5.4-1- Suppose that the rate of a Poisson process is a continuous 
random variable A such that 

/^(A) = ^ i f A > l 

It can be shown that 

P[N{t) >n]= r P[A > X]te-^'^^ dX 

Use this formula to calculate the probability that there will be more than two 
events during an arbitrary time unit. 

Solution. First, we calculate 

P^ 2 1 
P[A>X]= - ^ d x = - r f o r A > l 

Jx x^ A2 

We seek 

/•l \ 2 poo 1 \ 2 1 Z*̂  1 

P[N{l)>2] = J^ l.e-^^dX + J^ ±e-^^dX = ^J^ X^e'^dX^-e'^ 

Doing the integral above by parts, we find that 

P[N{1) > 2] = i (2 - 5e-i + e- i ) = 1 - 2e-^ ~ 0.2642 
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Example 5,4-2. If A has a geometric distribution, with parameter p e (0,1), 
then we deduce from the formula (5.121) that 

pmt)=n] = £ e-'^*M:,'=-v=^^ E {̂ -*̂ )' ̂ " 
k=l ' ^ ' k=l 

Thus, we have 

k=l 

Moreover, let r := e~^q. We may write that 

pmt) = 1] = h±kr^ = '-tr±^r^ = ^ 4 ( - ^ ) = ^ - ^ 
^ ^^ ^ ^ fr^ ^ r :^^^ q dr\l-rj q{l-r)^ 

k=l ^ k=l 

Example 54-3 (T?he Polya^ process) . Suppose that A has a gamma distri­
bution, with parameters a = fc G N and /3 > 0. We have 

P[N{t) = n] 

= J P{Nit) =n\A = A]/A(A) dA 

Jo n\ ^^ ' ^ f c - 1 ) ! 

= * ^ ^ / e-it+0)xxn+k-i dX 
n! (A; - 1)! JQ 

^ i , ' " ' ^ " ^ ' " ' ' ^ ' ^ (withx = (t + /3)A) 

r ( n + k) 

n\ (k - l)\ it +/3) 

n ! ( f c - l ) ! ( i + ;9)»+'̂  

r ^^ 1 ^ 

n +A: - 1 \ J. 

where 

33 ' ' ( l -p)" for n = 0 , 1 , . . . 

/3 
p : = t + /3 

^ George Polya, 1887-1985, was born in Hungary and died in the United States. 
He contributed to several domains of mathematics, including probability theory, 
number theory, mathematical physics, and complex analysis. 
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We say that iV(t) has a negative binomial^ or Pascal'^ distribution^ with 
parameters k and p. Furthermore, the process {N{t), t > 0} is called a negative 
binomial process, or a Polya process. 

Remark There exist various ways of defining a negative binomial distribution. 
The version above generalizes the geometric distribution when we define it as 
being a random variable that counts the number of failures, in Bernoulli trials, 
before the first success, which can be checked by setting A; = 1. Thus, here N{t) 
would correspond to the variable that counts the number of failures before the 
fcth success. Note also that if A: = 1, then A has an exponential distribution 
with parameter /?. 

Definition 5.4.2. Let {A{t),t > 0} be a stochastic process for which A{t) 
is nonnegative, for all t > 0. If given that A{t) = X{t), for all t > 0, the 
counting process {N{t),t > 0} is a nonhomogeneous Poisson process with 
intensity function X{t), then {N{t),t > 0} is called a doubly stochastic 
Poisson process or a Cox^ process. 

Remarks, i) If the random variable A{t) does not depend on t, we retrieve 
the conditional Poisson process. Moreover, if A{t) is a deterministic function 
X{t), then {N{t),t > 0} is a nonhomogeneous Poisson process, with intensity 
function X{t). The doubly stochastic Poisson process thus includes the ho­
mogeneous, nonhomogeneous, and conditional Poisson processes as particular 
cases. 

ii) The doubly stochastic Poisson process is not a Poisson process unless the 
random variable A{t) is equal to the constant A > 0, for all t>0. 

iii) The process {A{t),t > 0} is called the intensity process. 

We can write, for alH2 > ti > 0, that 

N{t2) - N{ti) I {A{t) = X{t) V t > 0} - Poi(m(t2) - m{ti)) (5.131) 

where 

m{t) := f X{s) ds (5.132) 
Jo 

It can also be shown that 

(j''A{t)dtY 
P[N{t2) ~ N{ti) = k I {A{t),0 <ti<t< t2)] = e^^i ^^'^ ^ ' ^ ^ \ 

' (5.133) 

for A; = 0 , 1 , . . . . 

2 See p. 135. 
^ Sir David Cox, professor at the University of Oxford, in England. 
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To simplify the writing, set 

N{t) I {A{s),0 <s<t} = N{t) I yl(0, t) (5.134) 

We then have 

^0 
E[N{t) | ^ ( 0 , t ) ] = / A{s)ds (5.135) 

so that 

E[N{t)] = E[E[N{t) I ^(0,^)]] ^E\ f A{s) ds] = f E[A{s)] ds (5.136) 

Similarly, we have 

E[N^{t) I A{0,t)] = I A{s) ds+lj A{s) ds^ (5.137) 

Since 

E 
nt X 2 

/ A{s) ds = E / / A{s)A{u) ds du 
Jo Jo 

= f [ E[A{s)A{u)] ds du (5.138) 
JO Jo 

we may write that 

E[N^{t)] = E[E[N^{t) I A{0,t)]] = [ E[A{s)] ds+ [ [ RA{S.U) ds du 
Jo Jo Jo 

(5.139) 

Example 5,4-4- Suppose that {A{t)^t > 0} is a homogeneous Poisson process, 
with rate A > 0. Then 

£'[yl(^)] == \t and i?^(s, u) = Amin{s,i^} + X^su 

We calculate 

E[N{t)] = [ Xs ds = A-
Jo 

and 

E[N^{t)] = A ^ + / / [Amin{5,^} + X^su] ds du 
2 Jo Jo 

= A—+ / / Xuiin{s^u} ds du-i-X^ — 
2 Jo ^0 "* 

4-2 pt r pu /** 
= A— + A / / s ds -\- u ds 

2 Jo Uo Ju 
du + X"^ 
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'j^4^4 
It follows that 

m 0 1 = A-+A^H-A^^- A^ =A - + -

Example 5.4-5. If {A{t),t > 0} is a geometric Brownian motion, then A{t) has 
a lognormal distribution (see p. 186), with parameters //t and aH. Its mean 
is given by 

E[A{t)] = exp{/zf + -(TH} 

We then have 

E\N(t)\ = [ exp{/x5 4- lah} ds = \ Jexp{fit + - a^ t} - 1] 
Jo 2 /i + icr^ 2 

iifi+^a^^O (and E[N{t)] =ti{fi+^a^ = 0). 

5.5 Filtered Poisson processes 

After having generalized the homogeneous Poisson process in various ways, 
we now generalize the compound Poisson process. 

Definition 5.5.1. Let X i , X 2 , . . . be random variables that are i.i.d. and in­
dependent of the Poisson process {N{t)^t > 0}, with rate A > 0. We say that 
the stochastic process {Y{t)^t > 0} defined by 

N{t) 

Y{t) = J^w{t,Tk,Xk) V t > 0 {Y{t)=OifN{t) = 0) (5.140) 

where the Tk ^s are the arrival times of the events of the Poisson process and 
the function ti;(-, •, •) is called the response function, is a filtered Poisson 
process. 

Remarks, i) The compound Poisson process is the particular case obtained by 
setting w{t, T/,, Xk) = X^. 

ii) We can say that the response function gives the value at time t of a signal 
that occurred at time Tk and for which the quantity Xk has been added to 
the filtered Poisson process. The random variable Y{t) is then the sum of the 
value at time t of every signal that occurred since the initial time 0. 
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iii) An application of this type of process is the following: the variable Y{t) 
represents the flow of a certain river at time t (since the beginning of the 
period considered, for example, since the beginning of the thawing period), 
the Tfc's are the arrival times of the precipitation events (snow or rain), and 
Xk is the quantity of precipitation observed at time T^ and measured in inches 
of water or water equivalent of snow. In practice, the precipitation does not 
fall to the ground instantly. However, we must discretize the time variable, 
because the flow of rivers is not measured in a continuous way, but rather, in 
many cases, only once per day. Then, the index k represents the fcth day since 
the initial time and Xk is the quantity of precipitation observed on this fcth 
day. A classic response function in this example is given by 

w (t, Tk.Xk) = X^e-^*-^'^)/^ for t > Tj, (5.141) 

where c is a positive constant that depends on each river and must be esti­
mated. 

Suppose that we replace the random variable Tk by the deterministic vari­
able s in the function w{t^Tk,Xk). Let 0^,(9) be the characteristic function 
of the random variable w{t^s^Xk): 

CUO) {= C^{0,Us)) := E p^^C*'^'^'^)! (5.142) 

Making use of Proposition 5.1.6, we can show that the characteristic function 
of Y{t) is given by 

CY{t){0) = exp l-Xt -\-X f C^{9) ds\ (5.143) 

from which we obtain the following proposition. 

Propos i t ion 5.5.1. If E[w'^{t,s,Xk)] < CXD, then the mean and the variance 
ofY{t) are given by 

E[Y{t)] =X [ E[w{t,s,Xk)] ds (5.144) 

and 

V[Y{t)] = X [ E[w^{t,s,Xk)] ds (5.145) 

Remarks, i) When Xk is a continuous random variable, the mathematical 
expectations E[w^{t,s^Xk)], for n = 1,2, are calculated as follows: 

/

oo 

w''{t,s,x)fx,{x)dx (5.146) 
-OO 
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ii) It can also be shown that 

/•min{ti,t2} 
Coy[Y{h),Y{t2)] = X / E[w{tus,Xk)w{t2,s,Xk)] ds Vfi,t2 > 0 

Jo 
(5.147) 

Example 5.5.1. Suppose that the random variables Xk have an exponential 
distribution with parameter JJL in the formula (5.141). We can then write that 

where 
5(t,s,c):=e-(*-*)/'= 

We have 

jg' U6>p(t,s,c)Xfcj _ / ^jeg{t,s,c)x -ixx ^^ _ ^ 

L J Jo ' ii-jeg(t,s,c) 

Next, we calculate 

r c . ( ^ ) ds = f — / , — ds ^ f l^-J^9it,s,c)+mt,s,c) ^^ 
Jo Jo l^-3^9{t^s,c) JQ l^-jOg{t,s,c) 

/o li-30g(t,s,c) 
t+r.jMii^ds 

Jo 
Given that 

^^g{t,s,c) = e-^'-'^/'-^ = -j{t,s,c) 

we may write that 

= -c\n{n - jO) + cln(/i - jOe-*'") 

It follows that 

CY(t){e) = exp [-\t + A[t - cln(M - 36) + cln(/i - i^e-*/ '))} 

Using this formula, we find that 

E[Y{t)] = ^[l-e-^l^) and V[Y{t)] = ^ ( l - e-'*'<) 
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Remarks, i) In this example, we have 

^ ^ - n ( t - . ) / c A ^ + l) ^ ^ forn = 0 , l , . . . 

We then deduce from the formulas (5.144) and (5.145) that 

E[Y{t)] = X [ E[w{t,s,Xk)] ds = X [ e-^'~'^/'~ ds == — (l - e"*/^) 
Jo Jo /̂  M ^ ^ 

and 

V[Y{t)] =X [ E[w\t,s,Xk)] ds = X [ e-2(*-^)/^^ ds 
Jo Jo M 

as above. 

ii) We can check that the covariance of the random variables Y{t) and Y{t + T) 
is given by 

Ac 
Cov[y(t), Y{t + r)] = ^ e ^ / ^ ( l - e'^*/^) V ̂ , r > 0 

Finally, we can generalize the notion of filtered Poisson process by setting 

N{t) 

Y{t) = Y^ Wk{t, Tk) yt>0 (and Y{t) = 0 ii N{t) = 0) (5.148) 
k=i 

where {Wk{t^ s),t >0,s > 0} is a stochastic process (with two time parame­
ters). We assume that the processes {Wk{t,s),t > 0,s > 0} are independent 
and identically distributed and are also independent of the Poisson process 
{N{t),t > 0} (having rate A > 0). We say that {Y{t),t > 0} is a generalized 
filtered Poisson process. It can be shown that 

E[Y{t)] = X f E[Wi{t,s)] ds and V[Y{t)] =X [ ^[^1^(^,5)] ds 
Jo Jo 

(5.149) 

5.6 Renewal processes 

An essential characteristic of the Poisson process, {N{t),t > 0}, is that the 
time between consecutive events is a random variable having an exponential 



268 5 Poisson Processes 

distribution with parameter A, regardless of the state in which the process 
is. Moreover, the random variables r̂  denoting the time that {N{t)^t > 0} 
spends in state i, for z = 0 , 1 , . . . , are independent. 

We also know that the Poisson process is a particular continuous-time 
Markov chain. Another way of generalizing the Poisson process is now to 
suppose that the nonnegative variables r̂  are independent and identically 
distributed, so that they can have any distribution, whether discrete or con­
tinuous. 

Definition 5.6.1. Let {N{t),t > 0} be a counting process, and let TI he the 
random variable denoting the time that the process spends in state i, for 
i = 0 , 1 , . . . . The process {N{t)^t > 0} is called a renewal process if the 
nonnegative variables r o , r i , . . . are independent and identically distributed. 

Remarks, i) It is sometimes possible (see Ex. 5.1.2) to transform into a Poisson 
process a renewal process for which the time spent in the states 0 , 1 , . . , does 
not have an exponential distribution. 

ii) We say that a renewal has occurred every time an event of the counting 
process takes place. 

iii) Some authors suppose that the random variables T O , T I , . . . are strictly 
positive. 

iv) We can generalize the definition above by supposing that the random vari­
able To is independent of the other variables, r i , r 2 , . . . but does not necessarily 
have the same distribution as these variables. In this case, {N{t)jt > 0} is 
called a modified or delayed renewal process. 

The time Tn of the nth renewal of the (continuous-time) stochastic process 
{N{t),t > 0}, defined by [see Eq. (5.32)] 

n - l 

Tn^J^Ti forn = l , 2 , . . . (5.150) 
i=0 

satisfies the relation Tn <t ^ N{t) > n. By setting TQ = 0, we may write, as 
in Proposition 5.1.4, that 

N{t) = max{n >0:Tn<t} (5.151) 

Since 

P[N{t) =n] = P[N{t) > n] - P[N{t) > n + 1] (5.152) 

we can state the following proposition. 

Proposi t ion 5.6.1. The probability mass function of the random variable 
N{t) can be obtained from the formula 

P[N{t) = n]=P[Tn<t]-P[Tn+i<t] (5.153) 

for t>0 and for n = 0 , 1 , . . . . 
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In general, it is difficult to find the exact distribution function of the 
variable T^. We have 

CTA^) := E[e^^^-] =E oJ^ 117=0 '^i = E 
n-l 

,i=0 

,J^ri 

n - l n - l 

?̂.̂ -n [̂ê '""] = n^-(^) (5.154) 
i=0 

When Ti is a continuous random variable, the characteristic function CT^^ {UJ) 
is the Fourier transform of the probability density function /rn(^) c>f T^. We 
can then write that 

/ T . W == /ro(^o) * UAh) * . . . * / r . _ x ( t n - l ) (5.155) 

where fo + ^i + • •. + tn-i = t- That is, the density function of Tn is the 
convolution product of the density functions of TQ, . . . , T „ _ I . 

In some cases, we know the exact distribution of the random variable T^. 
For example, if r̂  ^^ Exp(A), then 

T^~G(n ,A) (5.156) 

Similarly, if Ti ~ Poi(A), we have 

Tn - Poi(nA) (5.157) 

If n is large enough, we deduce from the central limit theorem that 

Tn«N(n / i ,na2) (5.158) 

where /x := E[Ti] and cr̂  := F[r^] V i. 

Example 5.6.1. We can use the formula (5.153) to check that, for a Poisson 
process with rate A, we have 

P[N{t)=n] = e-^'^^ for t > 0 and n = 0 , 1 , . . . 

In this case, 

T „ ~ G ( n , A ) 

Let 

' A . - ' ^ -

•̂  — f e-^^x^dx forn = 0 , l , . . . 

dx 
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Integrating by parts, we obtain 

ry—\X 

Ifi — X -
A 

^ r 

i ! 

f^ (n -^tt(n-fe + l) 
n'- a-n-fe+if 

-Xx 

^ (n-
n> 

where 

It follows that 

PlTn+i < t] 

Jo 

n-k+1^ 

Â  

-^* n! 

n! + ^^0 

+ T^l0 A*̂  A" 

e-^^ da; = 
1 -e - -At 

in+1 

n! 
n! 

, f-'(n-A; + l)! 
L k=l 

n-fc+1* -̂ * n! / I 
+ A^ A^ 

-At 

l - e - ^ * - E 
(At) n-fe+1 

o-At 

Similarly, 

= 1-E^e-
z=0 

(At)^-At 

i=0 

Thus, we indeed have 

.[„<„.„,.(,-1'Me-«)_(,-|:(^e-)=M!. -At 

When Ti is a discrete random variable, the probability P[Ti = 0] may be 
strictly positive. That is, the time needed for a renewal to occur may be equal 
to zero. For example, if r̂  ^ Poi(A), then P[Ti = 0] = e~^ > 0. However, if 
the nonnegative random variable r̂  is not the constant 0, we may write that 
/i > 0. If we assume that /x < oo and cr̂  < oo, the strong law of large numbers 
(see p. 32) then implies that 

1 = P lim l^i^oJl = ^ 
n-^oo n 

lim — = /i lim Tn = oc 1 

(5.159) 

from which we deduce from the formula (5.151) that we can write 

P [N{t) = oo] = 0 for alH < 00 (5.160) 
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because the random variable T^ will eventually be larger than any finite t. 
That is, there cannot be an infinite number of renewals in a finite-time interval. 
However, given that P[T^ = CXD] = 0, we may conclude that 

lim N{t) = oc (5.161) 

Since, in most cases, it is very difficult to explicitly calculate the probability 
of the event {N{t) = n}, we must generally content ourselves with finding the 
mean of the random variable N{t). 

Definition 5.6.2. The function mN{t) := E[N{t)] is called the renewal 
function (or mean-value function^ of the renewal process {N{t)^t > 0}. 

Proposition 5.6.2. The renewal function mN{t) can be calculated as follows: 

oo 

mN{t) = Y,P[Tn<t] (5.162) 
n=l 

Proof. As N{t) is a random variable taking its values in the set N^ = 
{ 0 , 1 , . . . }, we may write (using the relation Tn <t ^ N{t) > n) that 

oo oo oo i 

E[N{t)] := J2 iP{Nit) =i] = J2 ^^[^(*) = 1̂ = E E ^[^(*) = '̂1 
i=0 i—1 i—1 n = l 
oo oo oo 

= EE^i^w = ̂ ] = E^[^w ^ "1 
n = l i—n n=l 

oo 

= X ^ P [ r „ < i ] D (5.163) 
n = l 

Remarks, i) Since it is also difficult to calculate the probability P^Tn < ]̂i ^^ 
practice the proposition does not enable us very often to obtain the function 
mjsi{t). Moreover, if we managed to calculate P[N{t) = n], for all n, then it 
is perhaps simpler to find the mean of N{t) by directly using the definition of 
E[N{t)]. 

ii) We will further discuss another technique that enables us, when the r^'s 
are continuous random variables, to calculate rn]s[{t)^ namely by solving an 
integral equation. 

Example 5.6.2. Suppose that r̂  has a Bernoulli distribution, with parameter 
p e (0,1). We then have 

n - l 

T n : = ^ T , - B ( n , p ) 
i=0 
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so that 

i—k p[r„<i]-f;(^y(i-pr 

where [t] denotes the integer part of t. Theoretically, we can calculate mN{t) 
by finding the value of the sum 

where (^) = 0 if fc > n. 

Consider the particular case when p = 1/2. We have 

o c , [t] / V V 

.(u/.) = i:{a/Tg(:)} 
We find, making use of a mathematical software package, that 5(0,1/2) = 1, 
5(1,1/2) = 3, 5(2,1/2) = 5, 5(3,1/2) = 7, etc., from which we deduce the 
formula 

5 ( t , l /2 ) = 2[t]4-l f o r a l H > 0 

Now, let t = r G { 0 , 1 , . . . }. Given that r̂  = 0 or 1, for all ?', we may write 
that N{r) > r. We find that 

N{r) 

f r with probability p'^'^^ 

• + 1 with probability f ]p^^^{l - p) 

' + 2 with probability T "̂  ̂  j p ^ + ^ l - Pf 

In general, we have 

P[iV(r) = r + fc]= r ^ ' t ^ V ^ + ^ ( l - p ) ^ for fe=:0 , l , . . . 

Remark. We have that P[N{r) = r] = p^+^, and not p^, because {N{r) = r} if 
and only if (iff) the first r 4-1 renewals each take one time unit. In particular, 
N{0) = 0 iff To = 1. Similarly, N{1) = 1 iff TQ = 1 and n = 1, etc. 

We may write that X := N{r) + 1 has a negative binomial distribution 
(see p. 135) with parameters r + 1 and p. Now, the mean of this distribution 
is given by (r + l ) /p , from which we deduce that 
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E[N{r)] = '-±^~l ^ E[iV(0] = H ± I - 1 

Note that if p = 1/2, then we retrieve the formula 5(t, 1/2) = 2[t] + 1 obtained 
previously. 

Suppose that the r^'s are continuous random variables. We then deduce 
from Eq. (5.162) that 

I OO 

-mN{t) = Y.fTAt) (5.164) 
n=l 

from which, taking the Laplace transform of both members of the preceding 
equation, we obtain 

/»00 CO /.OO 

mlf{a):= e'^*dmN{t) = Y, j e'^^frAt) dt (5.165) 
Jo „^i Jo 

OO 

E 
n = l 

m^(a ) = y ] M T j a ) (5.166) 

where Mr,, is the moment-generating function of the random variable Tn 
(see p. 19) and a is a negative constant. Since the r^'s are independent and 
identically distributed random variables, we may write that 

Mr.,, (a) '"J- n Mr, (a) '^- [M,„ (a)]" (5.167) 

The parameter a being negative, we have that Mroia) € (0,1). It follows that 

m;,(a) = f ; [ M „ ( a ) r = ^ i ^ (5.168) 

so that 

- MrM) 

m,%{a) 

By the uniqueness of the Laplace transform (and of the inverse Laplace trans­
form), we deduce from the last equation that to each renewal function mN{t) 
corresponds a different density function /ro(0- Similarly, Eq. (5.168) implies 
that the density function /TO(0 uniquely determines the function mN{t)' 
Moreover, it can be shown that these results hold true, whether the ran­
dom variables TI are discrete or continuous. We can thus state the following 
proposition. 
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Proposition 5.6.3. There is a one-to-one correspondence between the distri­
bution function of the random variables TI and the renewal function mjv(t). 

Since mN{t) = Xt in the case of the Poisson process, we have the following 
corollary. 

Corollary 5.6.1. The Poisson process is the only renewal process having a 
linear renewal function. 

Remark. The Poisson process is also the only Markovian renewal process. 

In the case when the random variables r̂  are continuous, we have 

ruNit) - E[N{t)] = E[E[N{t) \ TQ]] = / E[N{t) \ TQ = rjfroir) dr 
Jo 

(5.170) 

Moreover, the relation 

To>t ^ ^=> N{t) =0 (5.171) 

implies that 

ruNit) = [ E[N{t) I TO = T]fr,{r) dr (5.172) 
Jo 

Finally, we may write (the r^'s being i.i.d. random variables) that 

E[N{t) I To = r] = 1 + E[N{t - r)] = 1 + mN{t - r ) for 0 < r < t (5.173) 

It follows that 

mN{t) = [ [1 + ruNit - r)]fr,{T) dr (5.174) 

<=> ruNit) = Fr,{t) + / mN{t - r)fro{r) dr for t > 0 (5.175) 
Jo 

Definition 5.6.3. Equation (5.175) is called the renewal equation (for the 
renewal function) of the process {N{t), t >0}, 

To explicitly calculate the renewal function, it is often easier to solve the 
integral equation (5.175). Setting s = t — r, we can rewrite it as follows: 

mN{t) = Froit) + / mN{s)froit " s) ds for ^ > 0 (5.176) 
Jo 

Next, differentiating both members of the preceding equation, we obtain 

^'ivW = /ro(0 +^iv(0 / ro(0) + / rnN{s)f',^^{t - s) ds (5.177) 
Jo 
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When fT^^{t — 5) is a polynomial function, we can differentiate repeatedly 
the members of this equation, until we obtain a differential equation for the 
function mjv(^). We have, in particular, the boundary condition mjsf{0) = 0. 
Remark. We can also sometimes obtain a differential equation for mN{t) even 
if /7-0 {t — s) is not a polynomial function. 

Example 5.6.3. Let 
/roW = 4£^ if 0 < ^ < 1 

We have [see Eq. (5.177)]: 

m^(t) = U^ + miv(t) X 0 + / mN{s)l2{t - sf ds 
Jo 

= 4.t^+ I mN{s)12{t-sf ds for 0 < t < 1 

Note that this equation implies that m^(0) = 0. We differentiate once more: 

niN{s)2A{t — s) ds 
Jo 

from which we deduce that m^(0) = 0. Next, we have 

771^ (t) = 24t + 24 / iriNis) ds 
Jo 

so that m/l^{0) = 0. Finally, we obtain the ordinary differential equation 

m^^\t) = 24 + 24miv(t) 

The general solution of this equation is given by 

mN{t) = -1 + ci cos kt-{- C2 sin kt + cse^* + c^e'^^ 

where k := (24)^/^ and ci, . . . , C4 are constants. The particular solution that 
satisfies the conditions miv(O) = ^iv(O) == ^iv(O) = ^iv(O) = 0 is 

mN{t) = - 1 + - cos fcf 4- 7 (e^* + e'^^) for 0 < f < 1 
2 4 ^ ^ 

Note that the solution above is only valid for t G [0,1]. Moreover, since the 
random variable TQ takes its values in the interval [0,1], the mean miv(l) must 
be greater than 1. We calculate 

miv(l) = - 1 + - cos A: + - (e'' 4- e"'') ĉ  1.014 
2 4 
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Equation (5.175) is a particular case of the general renewal equation 

9{t) = h{t)+ g{t - T)dFr,{r) for t > 0 (5.178) 
Jo 

where h{t) and Froit) are functions defined for all t>0. The following propo­
sition can be proved. 

Proposition 5.6.4. The function g{t) defined by 

g{t) = h{t) + / h{t - T) dmN{r) fort>0 (5.179) 
Jo 

is a solution of the renewal equation (5.178). 

Remarks, i) Equation (5.175) is obtained from (5.178) by taking ^(t) = mN{t) 
and h{t) = F^QC^) ^^^ by noticing that mN{t) = 0 if t < 0. If h{t) is a function 
bounded on finite intervals, then g{t) is bounded on finite intervals as well. 
Moreover, g{t) is the unique solution of (5.179) with this property. Note that 
the distribution function F^o(0 {— H^)) '^^ evidently a bounded function, 
because 0 < Fr^it) < 1 W t > 0. 

ii) We can replace dmNir) by m'^ir) dr in the integral above. 

Corollary 5.6.2. / /TQ is a continuous random variable^ then the second mo­
ment of N{t) about the origin, E[N'^{t)]y is given by 

E[N'^{t)] = ruNit) + 2 / ruNit - r ) dmN{r) fort>0 (5.180) 
Jo 

Proof. We may write that 

/»oo 

E[N\t)] = / E[N\t) I TO = T]fr„{T) dr (5.181) 

= / ' E[N\t) I To = T]U,{T) dT= CE [(1 + N{t - T)f] U,{T) dr 
Jo Jo 

= f \ l + 2E[N{t - r)] + E\N\t - r)]} / ,„(r) dr 
Jo 

= Fr,{t) + 2 f m^it - T)U„{T) dr+ [ E[N\t - T)\U{T) dr 
Jo Jo 

Making use of Eq. (5.175), we obtain 

E[N\t)] = 2mN{t) - Fr,{t) -f / E[N\t - r ) ] / , , ( r ) dr (5.182) 
Jo 
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This equation is of the form of that in (5.178), with g{t) = E[N'^{t)] and 
h{t) = 2mN{t) - Froit) (since g{t) = 0 if t < 0). It follows, by Proposition 
5.6.4, that 

E[N^{t)] = 2mN{t) - Froit) + / [2m^(t - r ) - Fr,{t - r)] dmN{r) 
Jo 

(5.183) 

We have 

/ Fr,{t - T) druNir) = Fr,{t - T)mN{r)\l + [ fro{t - r)mN{r) dr 
Jo Jo 

= 0 + / fro{r)mN{t-r)dT 
Jo 

^' = '\iN{t)-Fr,{t) (5.184) 

from which we obtain Eq. (5.180). D 

Example 5.6.4- When {N{t),t > 0} is a Poisson process with rate A, we have 

E[N\t)] = V[N{t)] + {E[N{t)]f = Xt-^ {Xtf 

which is indeed equal to 

mN{t)-}-2 niNit-r) drriNir) = Xt-\-2 \{t - T ) \ dr 
Jo Jo 

Example 5.6.5. When 
froit) = 1 i f O < t < l 

we find that 
E[Nit)] =6^-1 for 0 < t < 1 

It follows that 

E[N^it)] = e* - 1 + 2 / (e*-^ - l) e^ dr 
Jo 

= e* - 1 + 2 / (e* - e^) dr = e* - 1 + 2 [te' - (e* - 1)] 

= e*(2^- l ) + l for 0 < t < 1 

As in Example 5.6.3, the fact that 0 < TQ < 1 implies that E[N^il)] > 1, 
for fc = 1,2,... . We have 

£:[A^(1)] - e - 1 and E[N^il)] = e-h I 
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We know that the sum of two independent Poisson processes, with rates Ai 
and A2, is a Poisson process with rate A := Ai + A2 (see p. 234). The following 
proposition can be proved. 

Proposition 5.6.5. Let {Ni{t),t > 0} and {N2{t),t > 0} be independent 
renewal processes. The process {N{t),t > 0} defined by 

N{t) = Ni{t)+N2{t) fort>0 (5.185) 

is a renewal process if and only if {Ni{t),t > 0} is a Poisson process, for 
i = l ,2 . 

Finally, the following result can be proved as well. 

Proposition 5.6.6. Let {N{t),t >0} be a renewal process. The kth moment 
of N{t) about the origin (exists and) is finite, for all k £ {1 ,2 ,3 , . . . } ; 

E[N^{t)] < 00 for all t< 00 (5.186) 

Remark. We deduce from the proposition that mjsfit) < 00 V t < 00. Thus, not 
only can the number of renewals in an interval of finite length not be infinite 
(see p. 270), but the mathematical expectation of the number of renewals in 
this interval cannot be infinite either. 

5.6.1 Limit theorems 

Note first that T/v(t) designates the time instant of the last renewal that 
occurred before or at time t. Similarly, T/v(t)4.i denotes the time instant of 
the first renewal after time t. 

We will show that the average number of renewals per time unit, namely 
N{t)/t^ tends to 1/// as t -^ 00, where fi := E[Ti] V i is assumed to be finite. 
The constant A := l/ju is called the rate of the process. 

Proposition 5.6.7. We have, with probability 1: 

^ - . A a s t - > o o (5.187) 

where A = 1/// > 0. 

Proof. We may write that 

TN{t) < ^ < TN{t)-\-i (5.188) 

Now, by the strong law of large numbers (since B[|Ti|] = E[Ti] < oc), we have 
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rp N{t)-1 

with probability 1. Furthermore, because N{t) ^> (X) as t -> (X), we may write 
that (with probability 1) 

Finally, given that 

deduce that 

/^< 

^iV(t)+l 

N{t) 

hm —-—- < 
t-^oo N{t) ~ 

N{t) + 1 

fjL <=> 

( -

1 
- < 

1 

lim 
t—^oo 

0 
N{t) 

t 

l i m ^ = M (5.191) 

(5.192) 

< - (5.193) 

with probability 1. D 

The next theorem, which states that the average expected number of re­
newals per time unit also converges to A, is not a direct consequence of the pre­
ceding proposition, because the fact that a sequence { X ^ } ^ ! of random vari­
ables converges to a constant c does not imply that the sequence {^[-^n]}^! 
converges to c. 

Theorem 5.6.1 (Elementary renew^al theorem). If the mean E[TO] is fi­
nite, then we have 

l i m « M . A (5.194) 
t—^OO t 

Remark i) Actually, if // = oc, the preceding result is still valid (by setting 
X := 1/fi = 0). Similarly, Proposition 5.6.7 is valid when /x = oo as well, 
ii) There is no mention of probability in the theorem, because E[N{t)] is a 
deterministic function of t (while N{t) is a random variable). 

The following two theorems can also be shown. 

Theorem 5.6.2. If fi := E[TO] < oc and cr̂  := V[TO] < CXD̂  then 

^YMA^,^^ (5.195) 

Theorem 5.6.3 (Central limit theorem for renewal processes). / / 
E[TQ] is finite, then we may write that 

N{t) ^ N (-,-^] =N (At,a'^Xh) ift is large enough (5. 196) 
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Example 5.6.6, If {N{t)^t > 0} is a Poisson process with rate AQ, then TQ ~ 
Exp(Ao), so that fi := E[TO] = I/AQ and cr̂  := V[TO] = 1/A§. We have indeed 

N{t) - Poi(Aot) « N(Aot,Xot) = N(At,X^^XH) 

where A := l//x = AQ. 

The proposition that follows can be used to show Theorem 5.6.1. 

Proposition 5.6.8. We have 

E[Tj,^t)+i] = E\To]{E[N{t)] + l} (5.197) 

Proof. By conditioning on the value taken by the random variable TQ, which 
is assumed to be continuous, we obtain 

poo 

EITNUHI] = / ElT^itH, I To = T]fr,{r) dr 
Jo 

pt poo 
= {T + E[Tr,it-r)+i]} fro (r) dr + / r / , , (r) dr 

Jo Jt 
poo pt 

= Tfroir) dr + E[TNit-r)+l]fro{T) dT 
Jo Jo 

= E[TO]+ f E[TN^t~r)^l]U{T)dT (5.198) 
Jo 

This equation is the particular case of the renewal equation (5.178), which is 
obtained with g{t) — £'[T/v(t)+i] and h{t) = £'[ro]. Dividing both members of 
the equation by E\T^ and subtracting the constant 1, we find that 

= / [5*(t - T) + 1] /X„(T) dr = Fr,{t) + [ 9*{t- T)UM dr 
Jo Jo 

Now, this equation is the same as Eq. (5.175). Therefore, by the uniqueness 
of the solution, we may write that 

mivW - ^ ^ ^ ^ | ; J | ^ - 1 ^=^ ^ [ T ^ w + i ] = ^ N [ m ^ W + l] • 

(5.200) 

Definition 5.6.4. Let t be a fixed time instant. The random variable 

A{t):=t-TNit) (5.201) 

is called the age of the renewal process at time t, while 

D{t)•.= Tr,^t)+l-t (5.202) 

is the remaining or excess lifetime of the process at time t (see Fig. 5.3). 
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A(t) D{t) 
- X — X — ^ ^ - ^ — ^ ^ ^ 

^Nit) ^ ^ Nit)+l 

Fig. 5.3. Age and remaining lifetime of a renewal process. 

By proceeding as above, we can prove the following proposition. 

Proposition 5.6.9. The distribution function of D{t) is given by 

FDit)ir) = FrAt + r)- [ [1-FrAt + r- r)] dmN{r) (5.203) 

for r >0. In the case of A{t), we find that 

P[A{t) >a] = l - Fr,{t) + / ' [1 - Fr,Xt - r)] dmN{r) ifO<a<t 
Jo 

(5.204) 

and P[A{t) >a] = Oifa>t, 

When t is large enough and TQ is a continuous random variable, we find 
that 

fDit){r) 0^ ^^[1 - Fr,{r)] f o r r > 0 (5.205) 

In fact, this formula for the probability density function of D{t) is exact if the 
renewal process {N{t)^t > 0} is stationary. 

Suppose now that at the moment of the nth renewal of the process 
{N{t)^t > 0}, we receive, or we have accumulated, a reward Rn (which may, 
actually, be a cost). Suppose also that the rewards {Rn}^=i ^^^ independent 
and identically distributed random variables. However, in general, Rn will de­
pend on Tn-i, that is, the length of the nth renewal period, called a cycle. Let 
R{t) be the total reward received in the interval [0,t]. That is. 

Nit) 

R(t) = J2^ri iR{t) - 0 if N{t) = 0) (5.206) 
n=l 

We will show that the average reward received by time unit, in the limit, is 
equal to the average reward received during a cycle, divided by the average 
length of a cycle. 

Proposition 5.6.10. If E[Ri] < oc and E[TO] < oc, then we have 

R{t) _ E[Ri] 
lim — _, , 

t^oo t E[ro] 
= 1 (5.207) 
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Proof. It suffices to use the strong law of large numbers and Proposition 
5.6.7. Since N{t) —> oo as t —> oo, we may write 

Nit) 
R„ 

lim y - ^ - E[Ri] 
t-oo - ^ Nit) ^ ' 

(5.208) 

from which we have 

nm ^(*) -
N{i) 

t—^oo t 
lim - > Rn 

t-^oo t 
n = l 

lim 
t—*oo N{t) 

lim 
t-^oo 

N{t) 

E[Ri] X 
E[TO] 

with probability 1. D 

Remarks, i) It can also be shown that 

E[R{t)] _ E[Ri] 

(5.209) 

lim 
t^^oo t E[TO] 

(5.210) 

ii) If the reward Rn may take positive and negative values, then we must 
assume that -Efli^il] is finite. 

With the help of the preceding proposition, we will prove the following 
result. 

Proposition 5.6.11. / / T Q is a continuous random variable, then we have, 
with probability 1: 

f—>-oo t t—*oo t 2il/[ToJ 
(5.211) 

Proof. Suppose that the reward received at time t is given by A{t). Then, we 
may write that 

E[Rx f 
Jo 

T dr 
r^2 

= E 
E[r^] (5.212) 

To obtain the other result, we simply have to suppose that the reward received 
at time t is rather given by D{t), and then the variable r is replaced by ro — r 
in the integral. D 

Remark. Note that we calculated the average value of the age (or of the re­
maining lifetime) of the process over a long period, which is a temporal mean^ 
and not a mathematical expectation. If E[TQ] < oo, then it can also be shown 
that 

/™^[^W]=^-^[^(*)]-2EN (5.213) 
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Example 5.6.7. If {N{t)^t > 0} is a Poisson process, then, making use of the 
fact that it has independent and stationary increments, we can assert that 
D{t) has an exponential distribution with parameter A. Thus, we have 

E[Dit)] = i 

Moreover, TQ ~ Exp(A), too, so that 

t-oo t 2/A A 

So, in this case, the temporal mean and the mathematical expectation of D{t) 
are equal, for alH > 0. 

Example 5.6.8. (a) Let {N{t),t > 0} be a counting process for which the time 
between two events has a U[0, S] distribution, where 

^ _ J 1 with probability 1/2 
2 with probability 1/2 

Explain why {N{t),t > 0} is not a renewal process. 

(b) In part (a), suppose that S is rather a random variable whose value is 
determined at time ^ = 0 and after each event by tossing a fair coin. More 
precisely, we have 

^ _ J 1 if "tails" is obtained 
1̂  2 if "heads" is obtained 

In this case, the stochastic process {N{t)^t > 0} Z5 a renewal process. 
(i) Calculate mN{t), for 0 < t < 1. 
(ii) Suppose that we receive a reward equal to $1 when the length of a 

cycle is greater than 1 (and $0 otherwise). Calculate the average reward per 
time unit over a long period. 

Solution, (a) {N{t),t > 0} is not a renewal process, because the times be­
tween the successive events are not independent random variables. Indeed, 
the smaller TQ is, the larger the probability that S* = 1 is. So, the r/^'s depend 
on To, for all k > 1. 

(b) (i) Let T be the length of a cycle. We have 

F{t) = P[T<t] = P[r<t\S = l] P[S = 1] +P[T <t\S = 2]P[S = 2] 
^ V ' 

1/2 

That is, 

i ^ W - ^ ( ^ + 0 = f forO<t<l 

It follows that the renewal equation is 
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^N{t) =^ -T+ m{t- x)- dx'^ = "" — -{• - / rriNiy) dy 

3 3 

We deduce from the initial condition miv(O) = 0 and from the formula (3.233), 
p. 130, that 

niNit) = e^'l^ U + C e-^^/4- d^ = e^'/^ - 1 for 0 < t < 1 

(ii) We have 

E[ro] = E[ro \ S = 1]P[S^+E[TO \ S = 2]P[S = 2] = ^ Q + l ) = ^ 

1/2 

and 

E[Ri] = E[Ri I 5 = 1] P [5 = 1] + E[Ri \ S = 2]P[S =^ 2] = \ 
V ^ / > ^ / 4 

0 1/2 

Therefore, the average reward per time unit (over a long period) is given by 
( l /4)/(3/4) = 1/3. 

5.6.2 Regenerative processes 

We know that the Poisson process, {N{t),t > 0}, starts anew, probabilisti­
cally, from any time instant, because it has independent and stationary incre­
ments. However, since it is a counting process, once the first event occurred, 
N{t) will never be equal to 0 again. We are interested, in this subsection, 
in processes that are certain to eventually return to their initial state and 
that, at the moment of this return, start afresh probabilistically. This type of 
stochastic process is said to be regenerative. 

Definition 5.6.5. Let TQ be the time that the discrete-state stochastic process 
{X{t)^t > 0} spends in the initial state X{0). Suppose that 
i)P[3t>To:X{t)=X{0)] = l, 
ii) the processes {X{t) - X{0)^t > 0} and {Y{t),t> 0}, where 

Y{t):=X{t-\-Ti)-X{Ti) (5.214) 

and Ti is the time of first return to the initial state, are identically distributed, 
Hi) the stochastic process {Y{t),t > 0} is independent of the process {X{t)j 
0<t<Ti}. 
The process {X{t),t > 0} is then called a regenerative process. 
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Remarks, i) Let T^ be the time of the nth return to the initial state, for 
n = 1,2,... . We assume that P[Ti < oo] = 1. It then follows that the time 
instants r2 ,T3 , . . . must also (exist and) be finite with probability 1. 

ii) A regenerative process may be a discrete-time process {Xn, n = 0 , 1 , . . . } 
as well. In this case, TQ is the time that the process takes to make a transition 
from the initial state to an arbitrary state, which may be the initial state (for 
example, if {X^, n = 0 , 1 , . . . } is a Markov chain). 

iii) The cycles of the regenerative process are the processes 

{ C o ( t ) , 0 < ^ < T i } and {C^(t),r^ < t < T^+i} f o r n - 1 , 2 , . . . 
(5.215) 

These stochastic processes are independent and identically distributed, for 
n = 0 , 1 , . . . . Similarly, the random variables XQ := Ti and Xn := T^+i — T„, 
for n = 1,2,.. . , are i.i.d. 

iv) According to the definition above, a renewal process is not regenerative, 
because it is a particular counting process. However, we can associate a re­
newal process {N{t),t > 0} with a regenerative process {X{t),t > 0}, by 
setting that N{t) is the number of times that {X{t),t > 0} came back to 
the initial state and started anew in the interval [0,t]. That is, N{t) is the 
number of cycles completed in this interval. Conversely, we can define a re­
generative process {X{t),t > 0} from a renewal process {N{t),t > 0} (for 
which Ar(0) = 0) as follows: 

N{t) if 0 < t < T !̂ 

X(t)'-l ^ ( ^ ) - ^ if T , * < t < T 4 . 
^ W - \ N{t) - 2k if T 4 < t < Tg*, ^^'^^^' 

for some fe G {2 ,3 , . . . }, where Tf, T2*,... are the arrival times of the renewals. 
Note that with k = 1, we would have that X{t) = 0. Moreover, here Ti = T^. 

Example 5.6.9, The queueing model M / M / 1 , described in Example 3.1.6 (and 
which will be studied in detail in Chapter 6), is an example of a regenerative 
process. In this model, X{t) designates the number of persons in a system at 
time t. Thus, if X(0) = 0, then we are certain that the system will eventually 
be empty again and that, from that point on, everything will start anew. 

Example 5.6.10. het {Xn,n = 0 ,1 , . . . } be a discrete-time Markov chain, 
whose state space is the set {0,1} and whose one-step transition probabil­
ity matrix is given by 

^1/2 1/2" 
1 0 

Suppose that XQ = 0. Since the chain is irreducible and has a finite number 
of states, we may assert that it is recurrent. Therefore, the probability that 
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the process will visit the initial state 0 again is equal to 1. It follows that this 
Markov chain is a regenerative process. Suppose that every transition of the 
chain takes one time unit. Then, we may write that P[Ti = 1] = P[Ti = 2] = 
1/2. Finally, let N{0) = 0 and N{t) be the number of visits to state 0 in the 
interval (0, t], for t > 0. The process {N{t)^t > 0} is then a renewal process. 

Proposition 5.6.12. / / E[Ti] < oc, then the proportion TT̂  of time that a 
regenerative process spends in state k is given, in the limit, by 

E[time spent in state k in the interval [0, Ti]] . . 
^ , = _ _ (5.217) 

Proof. Suppose that we receive an instantaneous reward of $1 per time unit 
when the process {X{t)^t > 0} is in state fc, and $0 otherwise. Then the total 
reward received in the interval [0, t] is given by 

R{t) = [ /{x(r)=fc} dr (5.218) 

where /{x(r)=/c} is the indicator variable of the event {X{T) = k} [see 
Eq. (3.43)]. If E[Ti] < oo. Proposition 5.6.10 implies that 

t->oo t E[li\ 

(with probability 1), where Ri is the time spent by the process in state k 
in the interval [0,Ti]. Now, limt_,oo R{t)/t is the proportion of time that the 
process spends in state k. D 

Remark. The proposition is valid for any type of random variable Ti. When 
Ti is a continuous variable, it can also be shown that 

lim P[X{t) = k]=7Tk (5.220) 

That is, TTk is the limiting probability that the process will be in state k at 
time t as well. 

Example 5.6.11. In the case of the process {X{t)^t > 0} defined by Eq. 
(5.216), we can directly write that TTQ = TTI = . . . = TT^-I = 1/A:, because 
the random variables Tf, T2 , . . . are independent and identically distributed. 

Example 5.6.12. In Example 5.6.10, the reward R\ is equal to 1, because the 
Markov chain spends exactly one time unit in the initial state 0 per cycle. It 
follows that 

1 _ 1 _ 2 
""̂  ~ E[Ti] ~ 3/2 ~ 3 

We can check, using Theorem 3.2.1, that the proportion TTQ is indeed equal 
to 2/3. Note that we may apply this theorem to obtain the proportion TTQ, 
whether the chain is periodic or not. Here, the chain is ergodic, since po,o = 
1/2 > 0. Then, TTQ is also the limiting probability that the process will be in 
state 0 after a very large number of transitions. 
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Example 5.6.13. We consider a discrete-time Markov chain {X^, n = 0,1, . . . } 
with state space {0,1,2} and transition matrix P given by 

P = 
0 1/2 1/2' 
1 0 0 
0 1/2 1/2 

Suppose that the initial state is 0 and that when the process enters state i, it 
remains there during a random time having mean /i^, for z = 0,1? 2, indepen­
dently from one visit to another. Calculate the proportion of time that the 
process spends in state 0 over a long period. 

Solution. The Markov chain is recurrent, because it is irreducible and has a 
finite number of states. Then the process {Xn, n = 0 , 1 , . . . } is regenerative. 
Let Ti be the time of first return to state 0 and Â  be the number of transitions 
needed to return to 0. We have 

E[Ti I AT = n] - //o + /ii + (n - 2)/i2 forn = 2 , 3 , . . . 

Since P[N = n] = ( l / 2 ) ^ - ^ forn = 2 , 3 , . . . , it follows that 

E[T,] = E[E[T, I N]] = £ [ / . o + /ii + (n - 2)^2](l/2)'^ (.10 -r jj^i -r yn - ^jfj.2l\^/^^^ 
n=2 

Finally, we can write that 

£ ( n - 2)( l /2)"- i = f^{n - l ) ( l /2 )" = S[Geom(l/2)] - 1 = 1 
n=2 n = l 

so that 
E[Ti] . . /io + Ml + /̂ 2 

The proportion of time that the process spends in state 0 over a long period 
is thus given by //O/(MO + MI + /12)' 

Remark. Since the matrix P is finite and doubly stochastic, we deduce from 
Proposition 3.2.6 (the Markov chain being irreducible and aperiodic) that the 
limiting probabilities TT/C exist and are given by 1/3, for fc = 0,1,2. Hence, we 
deduce that the proportion of time requested is indeed equal to /XO/(MO -f-/xi + 
M2). 

An important particular case of a regenerative process is the one for which 
the state space of the process {X{t), ^ > 0} contains only two elements, which 
will be denoted by 0 and 1. For example, X{t) = 0 if some machine is down, 
and X{t) = 1 if it is operating at time t. Suppose that the machine is brand-
new at the initial time 0, so that X{0) = 1, and that the time during which 
the machine operates, before breaking down, is a random variable Si. Next, 
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the repairman takes a random time Ui to set the machine going again, and 
then the system starts afresh. Let 

Tn:=Sn + Un forn = l , 2 , . . . (5.221) 

where Sn is the operating time of the machine between the (n — l)st and 
the nth breakdown, and Un is the repair time of the nth breakdown, for 
n = 2 , 3 , . . . . We assume that the random variables { 5 n } ^ i are i.i.d. and 
that so are the r.v.s {C/n}^i- However, the r.v.s Sn and Un may be dependent. 
This type of stochastic process is often called an alternating renewal process. 

Remark. Let N{t) be the number of times that the machine has been repaired 
in the interval [0,^]. The process {N{t),t > 0} is a renewal process and the 
Tn's are the arrival times of the renewals. However, the process {X{t)^ t >0} 
defined above is not a renewal process (according to our definition), because 
it is not a counting process. 

By using the renewal equation, we can show the following proposition. 

Proposition 5.6.13. Let 7ri{t) be the probability that X{t) = 1. We have 

mit) = 1 - FsAt) + / [1 - FsAt - r)] dmN{r) (5.222) 

Next, we deduce directly from Proposition 5.6.12 that 

'̂ ^ - ' - °̂ - E[s,\-^Em - Em ^^-^^^^ 
Moreover, if Tj is a continuous random variable, then 

l im7rim = 7ri (5.224) 
t—*oo 

Finally, let {N{t)^t > 0} be a renewal process and 

where a > 0 is a constant and A{t) is defined in Eq. (5.201). The process 
{X{t), t > 0} is then an alternating renewal process, and we deduce from the 
formula (5.223) that 

E[Sr] E[min{rf,a}] 

""'"^-m:]^ —W[]— ^ ^ ^ 
where T̂ * is the arrival time of the first renewal of the stochastic process 
{N{t),t>0}. 
Remark. If T^ < a, then we set Ui = 0. 
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In the continuous case, we have 

E[mm{T^,a}]= mm{t,a}fT^^{t)dt= tfT^'{t)dt+ afT^{t)dt 
Jo Jo Ja 

(5.227) 

We calculate 
r t fr , '{t)dt = IFT^{t)\l- rFT^{t)dt = aFr^(a) - /"FT,-{t)dt (5.228) 

Jo Jo Jo 

from which we obtain the formula 

i;[min{T*,a}] - aFr*(a) - / FT* {t)dt + aP[T^ > a] = a - [ FT*{t)dt 
Jo ^ Jo 

(5.229) 

We can thus write that 

_ j:p[T^>t]dt 

""' - —wf]— ^ ^ ̂  
Remark. We obtain exactly the same formula as above for TTI if we replace 
A{t) by D(t) (defined in (5.202)) in (5.225). 

Example 5.6.11 If T^ ~ Exp(A), then we have that P[T^ > A = e"^*. It 
follows that 

5.7 Exercises 

Section 5.1 
Question no. 1 

Let {N{t),t > 0} be a Poisson process with rate A. We define the stochastic 
process {X{t), 0 < t < c} by 

X{t) = N(t) - -N{c) for 0 < t < c 
c 

where c > 0 is a constant. 

(a) Calculate the mean of X{t). 

(b) Calculate the autocovariance function of the process {X(t),0 <t <c}. 

(c) Is the process {X{t),0 <t<c} wide-sense stationary? Justify. 
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Question no. 2 
We suppose that customers arrive at a bank counter according to a Poisson 

process with rate A = 10 per hour. Let N{t) be the number of customers in 
the interval [0,t]. 

(a) What is the probabiUty that no customers arrive over a 15-minute time 
period? 

(b) Knowing that eight customers arrive during a given hour, what is the 
probabiHty that at most two customers will arrive over the following hour? 

(c) Given that a customer arrived during a certain 15-minute time period, 
what is the probability that he arrived during the first 5 minutes of the period 
considered? 

(d) Let X{t) := N{t)/t, for t > 0. Calculate the autocovariance function, 
Cx{ti^t2), of the stochastic process {X{t)^t > 0}, for ^1,^2 > 0. 

Question no. 3 
The stochastic process {X{t)^t > 0} is defined by 

• , N(t + S^) - N{t) 
X{t) = —^ / — for t > 0 

0 

where {N{t),t > 0} is a Poisson process with rate A > 0, and 5 > 0 is a 
constant. 

(a) Is the process {X{t),t > 0} a Poisson process? Justify. 

(b) Calculate the mean of X{t). 

(c) Calculate the autocovariance function of the process {X(t),t > 0}, for 
ti = 1, 2̂ = 2, and 6 = 1. 

(d) Let Zn := iV(n), forn - 0 ,1 ,2 , . . . . 
(i) The stochastic process {Z^, n = 0 , 1 , . . . } is BL Markov chain. Justify 

this assertion. 
(ii) Calculate p^j , for i,j e {0 ,1 ,2 , . . . }. 

Question no. 4 
Let N{t) be the number of failures of a computer system in the interval 

[0,^]. We suppose that {N{t),t > 0} is a Poisson process with rate A = 1 per 
week. 

(a) Calculate the probability that 
(i) the system operates without failure during two consecutive weeks, 

(ii) the system will have exactly two failures during a given week, knowing 
that it operated without failure during the previous two weeks, 

(iii) less than two weeks elapse before the third failure occurs. 

(b) Let 

Z{t) := e-^W for t > 0 
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Is the stochastic process {Z{t)A > 0} wide-sense stationary? Justify. 

Indication. We have that E[e~^^] = exp [a {e~^ - 1)] if X ^ Poi(a). 

Question no. 5 
A man plays independent repetitions of the following game: at each repe­

tition, he throws a dart onto a circular target. Suppose that the distance D 
between the impact point of the dart and the center of the target has a U[0,30] 
distribution. If D < 5, the player wins $1; if 5 < JD < 25, the player neither 
wins nor loses anything; if L) > 25, the player loses $1. The player's initial 
fortune is equal to $1, and he will stop playing when either he is ruined or his 
fortune reaches $3. Let Xn be the fortune of the player after n repetitions. 
Then the stochastic process {X^, n = 0 , 1 , . . . } is a Markov chain. 

(a) Find the one-step transition probability matrix of the chain. 

(b) Calculate E[X^]. 

Suppose now that the man never stops playing, so that the state space of 
the Markov chain is the set {0, ± 1 , ± 2 , . . . }. Suppose also that the duration T 
(in seconds) of a repetition of the game has an exponential distribution with 
mean 30. Then the stochastic process {N{t),t > 0}, where N{t) denotes the 
number of repetitions completed in the interval [0, t], is a Poisson process with 
rate A = 2 per minute. 

(c) Calculate the probability that the player will have completed at least three 
repetitions in less than two minutes (from the initial time). 

(d) Calculate (approximately) the probability P[A^(25) < 50]. 

Question no. 6 
Let N{t) be the number of telephone calls received at an exchange in the 

interval [0,^]. We suppose that {N{t)A > 0} is a Poisson process with rate A 
= 10 per hour. Calculate the probability that no calls will be received during 
each of two consecutive 15-minute periods. 

Question no. 7 
The customers of a newspaper salesperson arrive according to a Poisson 

process with rate A = 2 per minute. Calculate the probability that at least 
one customer will arrive in the interval (to, to 4- 2], given that there has been 
exactly one customer in the interval (to — 1, to -f 1], where to > 1. 

Question no. 8 
The stochastic process {X{t),t > 0} is defined by 

X{t) = N{t-^l)-N{l) f o r t > 0 

where {N{t),t > 0} is a Poisson process with rate A > 0. Calculate Cx{s^t), 
for 0 < 5 < t. 
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Question no. 9 We define 

1 if iV(t) = 0 , 2 , 4 , . . . 
^^^^ \ O i f Ar(t) = l ,3 ,5 , . 

where {N{t),t > 0} is a Poisson process with rate A = 1. It can be shown that 
P[Y{t) = 1] = (1 4- e-2*)/2, for t > 0. Next, let Xn := Y{n) for n = 0 , 1 , . . . . 
Then {X^, n = 0 , 1 , . . . } i5 a Markov chain. Calculate 

(a) its one-step transition probability matrix, 

(b) the limiting probabilities of the chain, if they exist. 

Question no. 10 
The failures of a certain machine occur according to a Poisson process with 

rate A = 1 per week. 

(a) What is the probability that the machine will have at least one failure 
during each of the first two weeks considered? 

(b) Suppose that exactly five failures have occurred during the first four weeks 
considered. Let M be the number of failures during the fourth of these four 
weeks. Calculate E[M | M > 0]. 

Question no. 11 
Let {N{t),t > 0} be a Poisson process with rate A > 0. We define 

Ni{t)=N{yft), N2{t) = N{2t), and Ns{t) = N{t + 2) - N(2) 

and we consider the processes {Nk{t),t > 0}, for fc = 1,2,3. Which of these 
stochastic processes is (or are) also a Poisson process? Justify. 

Question no. 12 
The power failures in a certain region occur according to a Poisson pro­

cess with rate Ai = 1/5 per week. Moreover, the duration X (in hours) of a 
given power failure has an exponential distribution with parameter A2 = 1/2. 
Finally, we assume that the durations of the various power failures are inde­
pendent random variables. 

(a) What is the probability that the longest failure, among the first three 
power failures observed, lasts more than four hours? 

(b) Suppose that there has been exactly one power failure during the first 
week considered. What is the probability that the failure had still not been 
repaired at the end of the week in question? 

Question no. 13 
A machine is made up of two components that operate independently. 

The lifetime Xi (in days) of component i has an exponential distribution with 
parameter A ,̂ for i ~ 1,2. 

Suppose that the two components are placed in series and that as soon 
as a component fails, it is replaced by a new one. Let N{t) be the number of 
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replacements in the interval (0,t]. We can show that the stochastic process 
{N{t),t > 0} is a Poisson process. Give its rate A. 

Indication. If XQ is the time between two successive replacements, then we 
can write that XQ — min{Xi,X2}. 

Question no. 14 

We consider the process {X{t),0 <t<l} defined by 

X{t) = N{t^) - t^N{l) for 0 < t < 1 

where {N{t)^t > 0} is a Poisson process with rate A > 0. 

(a) Calculate the autocorrelation function, Rx{ti,t2), of the stochastic process 
{X(t),0 < ^ < 1} at 1̂ = 1/4 and 2̂ = 1/2. 
(b) Calculate P[X{t) > 0 | N{1) = 1], for 0 < t < 1. 

Question no. 15 
Let {N{t),t > 0} be a Poisson process with rate A. Show that, given that 

N{t) = n, N{s) has a binomial distribution with parameters n and s/t, where 
0 < 5 < ,̂ for all A (> 0). 

Question no. 16 
Travelers arrive at a bus station from 6 a.m., according to a Poisson process 

with rate A = 1 per minute. The first bus leaves T minutes after 6 a.m. 

(a) Calculate the mean and the variance of the number of travelers ready to 
board this bus if (i) T has an exponential distribution with mean equal to 15 
minutes and (ii) T is uniformly distributed between 0 and 20 minutes. 

(b) Calculate the average number of passengers on the bus if it leaves at 6:15 
and if its capacity is 20 passengers. 

Question no. 17 
We suppose that every visitor to a museum, independently from the oth­

ers, moves around the museum for T minutes, where T is a uniform random 
variable between 30 and 90 minutes. Moreover, the visitors arrive according 
to a Poisson process with rate A = 2 per minute. If the museum opens its 
doors at 9 a.m. and closes at 6 p.m., find the mean and the variance of the 
number of visitors in the museum (i) at 10 a.m. and (ii) at time to, where to 
is comprised between 10:30 a.m. and 6 p.m. 

Question no. 18 
Suppose that events occur at random in the plane, in such a way that 

the number of events in a region i? is a random variable having a Poisson 
distribution with parameter AA, where A is a positive constant and A denotes 
the area of the region R. A point is taken at random in the plane. Let D be 
the distance between this point and the nearest event. Calculate the mean of 
the random variable D. 
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Question no. 19 
The various types of traffic accidents that occur in a certain tunnel, over 

a given time period, constitute independent stochastic processes. We suppose 
that accidents stopping the traffic in the northbound (respectively, south­
bound) direction in the tunnel occur according to a Poisson process with rate 
a (resp., /3). Moreover, accidents causing the complete closure of the tunnel 
occur at rate 7, also according to a Poisson process. Let T/v (resp., Ts) be 
the time during which the traffic is not stopped in the northbound (resp., 
southbound) direction, from the moment when the tunnel has just reopened 
after its complete closure. 

(a) Calculate the probability density function of the random variable T/v-

(b) Show that 

P[TN >t,Ts>T]= e-at-/?r-7max{t,r} fo^^^ ^ > Q 

(c) Check your answer in (a) with the help of the formula in (b). 

Question no. 20 
Let {N*{t),t > 0} be the stochastic process that counts only the even 

events (that is, events nos. 2 ,4 , . . . ) of the Poisson process {N{t)^t > 0} in 
the interval [0,t]. Show that {N*{t),t > 0} is not a Poisson process. 

Question no. 21 
Let {Ni{t),t > 0} and {N2{t),t > 0} be two independent Poisson pro­

cesses, with rates Ai and A2, respectively. We define N{t) = Ni{t) — N2{t). 

(a) Explain why the stochastic process {N{t)^ i > 0} is not a Poisson process. 

(b) Give a formula for the probability P[N{t2) - N{ti) = n], for 2̂ > 1̂ > 0 
a n d n G { 0 , ± 1 , ± 2 , . . . } . 

Question no. 22 
Suppose that {N{t)^t > 0} is a Poisson process with rate A > 0 and that 

5 is a random variable having a uniform distribution on the interval [0,2]. 

(a) Obtain the moment-generating function of the random variable N{t 4- S). 

Indication. If X has a Poisson distribution with parameter a, then Mx{t) = 
exp{a(e^ — 1)}. 

(b) Calculate the mean and the variance of N{t + S). 

Question no. 23 

(a) Is the Poisson process {N{t),t > 0} an ergodic process? Justify. 

(b) Is the stochastic process {X{t),t > 0}, where X{t) := N{t)/t, mean 
ergodic? Justify. 

Question no. 24 
City buses arrive at a certain street corner, between 5 a.m. and 11 p.m., 

according to a Poisson process with rate A = 4 per hour. Let Ti be the 
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waiting time, in minutes, until the first bus (after 5 a.m.), and let M be the 
total number of buses between 5 a.m. and 5:15 a.m. 

(a) Calculate the probability P[Ti e I,M = 1], where / := [a,6] is included 
in the interval [0,15]. 

(b) What is the variance of the waiting time between two consecutive arrivals? 

(c) If a person arrives at this street corner every morning at 9:05 a.m., what 
is the variance of the time during which she must wait for the bus? Justify. 

Question no. 25 
A truck driver is waiting to join the traffic on the service road of a highway. 

The truck driver blocks the service road for four seconds when he joins the 
traffic. Suppose that vehicles arrive according to a Poisson process and that 
six seconds elapse, on average, between two consecutive vehicles. Answer the 
following questions by assuming that the truck driver makes sure that he has 
enough time to perform his maneuver before merging into the traffic. 

(a) What is the probability that the truck driver is able to join the traffic 
immediately on his arrival at the intersection with the service road? 

(b) What is the mathematical expectation of the gap (in seconds) between the 
truck and the nearest vehicle when the truck driver merges into the traffic? 

(c) Calculate the average number of vehicles that the truck driver must let go 
by before being able to merge into the traffic. 

Question no. 26 
Particles are emitted by a radioactive source according to a Poisson process 

with rate A = ln5 per hour. 

(a) What is the probability that during at least one of five consecutive hours 
no particles are emitted? 

(b) Knowing that during a given hour two particles were emitted, what is the 
probability that one of them was emitted during the first half-hour and the 
other during the second half-hour of the hour in question? 

(c) In (b), if we know that the first particle was emitted over the first half-
hour, what is the probability that the second particle was emitted during the 
first half-hour as well? 

Question no. 27 
A system is made up of two components. We suppose that the lifetime (in 

years) of each component has an exponential distribution with parameter A 
= 2 and that the components operate independently. When the system goes 
down, the two components are then immediately replaced by new ones. We 
consider three cases: 

1. the two components are placed in series (so that both components must 
function for the system to work); 
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2. the two components are placed in parallel (so that a single operating com­
ponent is sufficient for the system to function) and the two components 
operate at the same time; 

3. the two components are placed in parallel, but only one component oper­
ates at a time and the other is in standby. 

Let N{t), for ^ > 0, be the number of system failures in the interval [0, t]. 
Answer the following questions for each of the cases above. 

(a) Is {N{t), t > 0} a Poisson process? If it is, give its rate A. If it's not, justify. 

(b) What is the average time elapsed between two consecutive system failures? 

Question no. 28 
Let {N{t),t > 0} be a Poisson process with rate A = 2 per minute, where 

N{t) denotes the number of customers of a newspaper salesperson in the 
interval [0,t]. 

(a) Let Tjfc, for A: = 1,2,.. . , be the arrival time of the feth customer. Calculate 
the probability density function of Ti, given that T2 = s. 

(b) Calculate the probability that at least two minutes will elapse until the 
salesperson's second customer arrives, from a given time instant, given that 
no customers have arrived in the last minute. 

(c) Suppose that the probability that a given customer is a man is equal to 
0.7, independently from one customer to another. Let M be the number of 
consecutive customers who are men before the first woman customer arrives, 
from some fixed time instant to > 0. Calculate the mathematical expectation 
of M, given that the first customer after to was a man. 

Question no. 29 
Suppose that {N{t),t > 0} is a Poisson process with rate A = 2. 

(a) Let Tfe be the arrival time of the kth event of the process {N{t)^t > 0}, 
for A: = 1,2,... . Calculate P[Ti +T2< T3]. 

(b) Let 5 be a random variable having a uniform distribution on the interval 
[0,1] and that is independent of the process {iV(t), t > 0}. Calculate E[N'^{S)]. 

(c) We define Xn = N{n'^)^ for n = 0 ,1 ,2 , . . . . Is the stochastic process 
{Xn^ n = 0 ,1 ,2 , . . . } a Markov chain? Justify by calculating the probability 
P[^n-{-l = j \ Xn "= i,Xn-l = in-1, - •• ,-^0 = ^o]-

Question no. 30 
We denote by N{t) the number of failures of a machine in the interval [0, t]. 

We suppose that N{0) = 0 and that the time TQ until the first failure has a 
uniform distribution on the interval (0,1]. Similarly, the time r^- i between 
the {k — l)st and the kth failure has a U(0,1] distribution, for A: = 2 , 3 , . . . . 
Finally, we assume that r o , r i , . . . are independent random variables. 

(a) Calculate (i) the failure rate of the machine and (ii) P[N{1) = 1]. 

(b) (i) Let r^ := - ^ Inr^, for fc = 0 , 1 , . . . . We define (see Ex. 5.1.2) 
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n - l 

^0 = 0 and Sn = / J r^ for n > 1 
k=0 

Finally, we set 
N*{t) = m a x { n > 0 : 5 n <t} 

Show that the stochastic process {N*{t),t > 0} is a Poisson process, with 
rate A = 2, by directly calculating the probabihty density function of r^, for 
all fc, with the help of Proposition 1.2.2. 

(ii) Use the central limit theorem to calculate (approximately) the proba­
bility P[5ioo > 40]. 

Quest ion no. 31 
In the preceding question, suppose that the random variables Tk all have 

the density function 
f{s) = se-'^l'^ for 5 > 0 

(a) (i) Now what is the failure rate of the machine and (ii) what is the value 
of the probability P[N{1) = l]l 

Indication. We have 

L 
1 

te-^^-^^dt c:^ 0.5923 
0 

(b) (i) Let r^ := r | , for A: =̂  0 , 1 , . . . . We define the random variables Sn and 
the stochastic process {N*{t),t > 0} as in the preceding question. Show that 
the process {N*{t),t > 0} is then a Poisson process with rate A = 1/2. 

(ii) Calculate approximately the probability ^[525 < 40] with the help of 
the central limit theorem. 

Quest ion no. 32 
A woman working in telemarketing makes telephone calls to private homes 

according to a Poisson process with rate A = 100 per (working) day. We 
estimate that the probability that she succeeds in selling her product, on a 
given call, is equal to 5%, independently from one call to another. Let N{t) be 
the number of telephone calls made in the interval [0, t], where t is in (working) 
days, and let X be the number of sales made during one day. 

(a) Suppose that the woman starts her working day at 9 a.m. and stops 
working at 7 p.m. Let TQ be the number of minutes between 9 a.m. and the 
moment of her first call of the day, and let SQ be the duration (in minutes) of 
this call. We suppose that SQ ̂  Exp(l) and that TQ and 5o are independent 
random variables. What is the probability that the woman has made and 
finished her first call at no later than 9:06 a.m. on an arbitrary working day? 

(b) Calculate V[X \ N{1) = 100]. 

(c) Calculate (approximately) P[N{1) = 100 | X - 5]. 
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Indication, Stirling's'* formula: n! r^ \/27rn^"^2e~^. 

(d) What is the probability that the woman will make no sales at all on exactly 
one day in the course of a week consisting of five working days? 

Question no. 33 
The breakdowns of a certain device occur according to a Poisson process 

with rate A = 2 per weekday, and according to a Poisson process (independent 
of the first process) with rate A = 1.5 per weekend day. Suppose that exactly 
four breakdowns have occurred (in all) over two consecutive days. What is 
the probability that both days were weekdays? 

Question no. 34 
Let {N{t),t > 0} be a Poisson process with rate A = 2 per minute. What 

is the probability that the time elapsed between at least two of the first three 
events of the process is smaller than or equal to one minute? 

Question no. 35 
Let N{t) be the number of telephone calls to an emergency number in the 

interval [0,t]. We suppose that {N{t),t > 0} is a Poisson process with rate A 
= 50 per hour. 

(a) What is, according to the model, the probability that there are more calls 
from 8 a.m. to 9 a.m. than from 9 a.m. to 10 a.m.? 

Indication. If X ^ Poi(50) and Y ~ Poi(50) are independent random variables, 
then we have that P[X = Y]c^ 0.0399. 

(b) Suppose that 20% of the calls are redirected to another service. Knowing 
that there were 60 (independent) calls during a given hour and that the first 
of these calls was redirected elsewhere, what is the mathematical expectation 
of the number of calls that were redirected over the hour in question? 

Question no. 36 
From a Poisson process with rate A, {N{t),t > 0}, we define the stochastic 

process {M{t),t > 0} as follows: 

M{t) = N{t) -t iort>0 

Calculate P[5i < 2], where 5i := min{t > 0: M{t) > 1}. 

Question no. 37 

where {N{t),t > 0} is a Poisson process with rate A and J > 0 is a constant, 

(a) Calculate E[X{t)]. 

See p. 93. 
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(b) Calculate Cov[X(s),X(t)], for s,t>0. 

(c) Is the process {X{t),t > 0} wide-sense stationary? Justify. 

Question no. 38 
A machine is composed of three identical components placed in standby 

redundancy, so that the components operate (independently from each other) 
by turns. The lifetime (in weeks) of a component is an exponential random 
variable with parameter A = 1/5. There are no spare components in stock. 
What is the probability that the machine will break down at some time during 
the next nine weeks, from the initial time, and remain down for at least a week, 
if we suppose that no spare components are expected to arrive in these next 
nine weeks? 

Question no. 39 
Let {X{t)^ ^ > 0} be the stochastic process defined by 

X{t) = tN{t) - [t]N{[t]) for t > 0 

where {N{t)^t > 0} is a Poisson process with rate A (> 0) and [t] denotes the 
integer part of t. 

(a) Is the process {X(t),t > 0} a continuous-time Markov chain? Justify. 

(b) Calculate the probability Pij{t,t + s) :== P[X{t -}-s) = j \ X{t) = i], for 
ij G {0 ,1 , . . .} and s,t>0. 

Question no. 40 
We consider the stochastic process {X{t)^ t > 0} defined from a Poisson 

process with rate A, {N{t),t > 0}, as follows (see Ex. 5.1.4): 

X{t) = N{t) - tN{l) for 0 < t < 1 

(a) Let M be the number of visits of the stochastic process {X{t),t > 0} to 
any state Xj > 0, from any state Xi < 0, in the interval 0 < t < 1. Calculate 
P[M = n\N{l)=n]. 

(b) We define T = mm{t > 0: X{t) > 0}. Calculate the conditional probabil­
ity density function frit \ N{1) = 2). 

Question no. 41 
Consider the stochastic process {Y{t),t > 0} defined in Question no. 9, 

where {N{t),t > 0} is now a Poisson process with an arbitrary rate A (> 0). 
It can be shown that we then have that P[Y{t) = I] = (l + e~2^*)/2, for t > 0. 
Calculate 

(a) P[iV(2) - iV(l) > 1 |iV(l) = l], 

{h)P[N{t)=0\Y{t) = l], 

(c) P[Y{s) = 1 I N{t) = 1], where 0<s<t. 
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Question no. 42 
We set 

X{t) = N{t 4- c) - N{c) for t > 0 

where {N{t),t > 0} is a Poisson process with rate A and c is a positive 
constant. Is the stochastic process {X{t)yt > 0} a Poisson process? Justify. 

Question no. 43 
Let {N{t),t > 0} be a Poisson process with rate A > 0 and let {X{t), 

^ > 0} be the stochastic process defined as follows: 

X(,) = Um^^^2l4^M fo,,>0 

where S is a, positive constant. 

(a) Calculate Coy[X{ti),X{t2)l for ti,t2 > 0. 

(b) Is the process {X{t),t > 0} wide-sense stationary? Justify. 

Question no. 44 
Suppose that {N{t),t > 0} is a Poisson process with rate A. Let Xn := 

iV^(n), forn = 0 , 1 , . . . .Is the stochastic process {Xn, n = 0 , 1 , . . . } a discrete-
time Markov chain? If it is, give its one-step transition probability matrix. If 
it's not, justify. 

Question no. 45 
Let Tk be the arrival time of the kth event of the Poisson process {iV(t), 

t > 0}, with rate A, for & = 1,2,... . Calculate the covariance Cov[Ti, T2]. 

Question no. 46 

We consider a Poisson process, {iV(t),t > 0}, with rate A = 1. Let Ti, 
T2, . . . be the arrival times of the events and let Si := Ti, 52 := T2 — Ti, 
S3 '= T3 - T2, etc. 

(a) Calculate P[{Si < S2 < S3} U {53 < ^2 < Si}]. 

(b) Let X := Sl^^. Calculate (i) fx{x) and (ii) P[X < S2]. 

(c) Calculate E[N'^{1) \ TQ = 5]. 

Question no. 47 
Let {XnyTi = 0 , 1 , . . . } be a (discrete-time) Markov chain whose state space 

is the set Z of all integers. Suppose that the process spends an exponential 
time r (in seconds) with parameter A = 1 in each state before making a 
transition and that the next state visited is independent of r . Let iV(f), for 
f > 0, be the number of transitions made in the interval [0, t]. 

(a) What is the probability that the third transition took place before the 
fifth second, given that five transitions occurred during the first 10 seconds? 

(b) Calculate ^ [ |Ar (5 ) - l | ] . 
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Sections 5.2 to 5.5 

Question no. 48 
The failures of a certain device occur according to a nonhomogeneous 

Poisson process whose intensity function X{t) is given by 

. . . _ r0.2if 0 < t < 10 
^ ^ ~ \ 0 . 3 i f t > 1 0 

where t is the age (in years) of the device. 

(a) Calculate the probability that a five-year-old device will have exactly two 
failures over the next 10 years. 

(b) Knowing that the device had exactly one failure in the course of the first 
5 years of the 10 years considered in (a), what is the probability that this 
failure took place during its sixth year of use? 

Question no. 49 
Suppose that traffic accidents occur in a certain region according to a 

Poisson process with rate X = 2 per day. Suppose also that the number M of 
persons involved in a given accident has a geometric distribution with param­
eter p = 1/2. That is, 

P[M = m] = (1/2)"" for m = 1,2,... 

(a) Calculate the mean and the variance of the number of persons involved in 
an accident over an arbitrary week. 

(b) Let T be the random variable denoting the time between the first person 
and the second person involved in an accident, from the initial time. Calculate 
the distribution function of T. 

Question no. 50 
Suppose that the monthly sales of a dealer of a certain luxury car constitute 

a conditional Poisson process such that yl is a discrete random variable taking 
the values 2, 3, or 4, with probabilities 1/4, 1/2, and 1/4, respectively. 

(a) If the dealer has three cars of this type in stock, what is the probability 
that the three cars will be sold in less than a month? 

(b) Suppose that A = 3. Calculate V[M | M < 1], where M is the number of 
cars sold in one month. 

Question no. 51 
We suppose that the traffic at a point along a certain road can be described 

by a Poisson process with parameter A = 2 per minute and that 60% of the 
vehicles are cars, 30% are trucks, and 10% are buses. We also suppose that the 
number K of persons in a single vehicle is a random variable whose function 
PK is 
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C 1/2 if A; = 1 
, , . 1 1/4 if fc = 2 , ,,. r0.9iffc = l 

PK{k) = < 1/8 if;;, = 3 and pKik) - | o.l if fc = 2 
[ 1/8 if fc = 4 

in the case of cars and trucks, respectively, and pxi^) — 1/50, for k = 
1 , . . . ,50, in the case of buses. 

(a) Calculate the variance of the number of persons who pass by this point in 
the course of a five-minute period. 

Indication. We have 
y - ' u2 .._ » ( " + 1)(2" + 1) 

k=l 

(b) Given that five cars passed by the point in question over a five-minute 
period, what is the variance of the total number of vehicles that passed by 
that point during these five minutes? 

Indication. We assume that the number of cars is independent of the number 
of trucks and buses. 

(c) Calculate, assuming as in (b) the independence of the vehicles, the prob­
ability that two cars will pass by this point before two vehicles that are not 
cars pass by there. 

(d) Suppose that actually 

{ t/5 if 0 < t < 10 
2 if 10 < t < 50 

(60 - t)/5 if 50 < ^ < 60 

Calculate the probability P[N{60) = 100 | Ar(30) = 60], where iV(t) is the 
total number of vehicles in the interval [0,t]. 

Question no. 52 
Let Ar(t) be the number of accidents at a specific intersection in the interval 

[0,t]. We suppose that {iV(t),t > 0} is a Poisson process with rate Ai = 1 
per week. Moreover, the number Y^ of persons injured in the fcth accident has 
(approximately) a Poisson distribution with parameter A2 = 1/2, for all k. 
Finally, the random variables YiyY2,... are independent among themselves 
and are also independent of the stochastic process {N{t)^t > 0}. 

(a) Calculate the probability that the total number of persons injured in the 
interval [0, t] is greater than or equal to 2, given that N{t) = 2. 

(b) Calculate V[N{t)Yi]. 

(c) Let Sk be the time instant when the kth person was injured, for k = 
1,2,... . We set T = S2 - Si. Calculate P[T > 0]. 

Question no. 53 
Let {N{t)^t > 0} be a Poisson process with rate L. 
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(a) Suppose that L is a random variable having an exponential distribution 
with parameter 1 (so that {N{t),t > 0} is actually a conditional Poisson 
process). Let Ti be the arrival time of the first event of the stochastic process 
{N{t),t>0}, 

(i) Calculate the probability density function of Ti. 
(ii) Does the random variable Ti have the memoryless property? Justify. 

(b) Let L = 1/2. Calculate E[N'^{1) \ N{1) < 2]. 

(c) Let L = l. Calculate P[N{3) - N{1) > 0 | N{2) = 1]. 

Question no. 54 
Telephone calls to an emergency number arrive according to a nonhomo-

geneous Poisson process whose intensity function is given by 

r 2 i f 0 < t < 6 (by night) 
^^ \ 4 if 6 < t < 24 (by day) 

where t is in hours, and X{t) = X{t - 24), for t > 24. Furthermore, the 
duration (in minutes) of a call received at night has a uniform distribution on 
the interval (0,2], whereas the duration of a call received during the day has 
a uniform distribution on the interval (0,3]. Finally, the durations of calls are 
independent random variables. 

(a) Calculate the probability that an arbitrary telephone call received at night 
will be longer than a given call received during the day. 

(b) Calculate the variance of the number of calls received in the course of a 
given week. 

(c) Let D be the total duration of the calls received during a given day. 
Calculate the variance of D. 

Question no. 55 
Let {N{t),t > 0} be a Poisson process with rate X = 2. Suppose that all 

the events that occur in the intervals (2fc, 2k -f 1], where fc G {0,1,2 , . . . }, are 
counted, whereas the probability of counting an event occurring in an interval 
of the form {2k +1,2fc + 2] is equal to 1/2. Let Ni{t) be the number of events 
counted in the interval [0,t]. 

(a) Calculate P[iVi(2.5) > 2]. 

(b) Calculate V [̂A î(2) - 2Ari(l)]. 

(c) Let Si be the arrival time of the first counted event. Calculate 

P[Si <s\Ni{2) = l] V 5 G ( 0 , 2 ] 

Question no. 56 
In the preceding question, suppose that A = 1 and that the probability of 

counting an event occurring in an interval of the form {2k + 1,2A; -h 2] is equal 
to ( l / 2 ) ^ for fce {0 ,1 ,2 , . . . } . 
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(a) Calculate P[iVi(5) > 5 | iVi(2) = 2]. 

(b) Calculate Cov[iVi(5),Ni{2)], 

(c) Let M be the total number of counted events in the intervals of the form 
(2fc + 1,2fc + 2]. Calculate E[M]. 

(d) Let S be the arrival time of the first event in an interval of the form 
(2fc, 2fc + 1]. Calculate fs{s \ N{3) - N{2) + N{1) = 1). 

Question no. 57 
Let {Ni{t)^t > 0} be a (homogeneous) Poisson process with rate A = 1, 

and let {N2{t),t > 0} be a nonhomogeneous Poisson process whose intensity 
function is 

We suppose that the two stochastic processes are independent. Moreover, let 
{Y{^)^t > 0} be a compound Poisson process defined by 

Ni{t) 

Y{t) = Y, ^i (^^d ^(0) =^'^^ ^l(^) "= ^) 

where Xi has a Poisson distribution with parameter 1, for all i. Calculate 

(a) P[ri,2 < T2,2, Ari(l) = Ar2(l) = O], where Tm,n denotes the arrival time of 
the nth event of the process {Nm{t),t > 0}, for m = 1,2 and n = 1,2,. . . , 

(b)F[iV2(l)(Ar2(2)-iV2(l))], 

(c) (i) P[Y{1) < iVi(l) < 1]; (ii) V[Y{5) | iVi(5) < 2]. 

Question no. 58 
Suppose that the intensity function A(i) of the nonhomogeneous Poisson 

process {N{t),t > 0} is given by 

where A > 0 and t is in minutes. 

(a) Let Ti be the arrival time of the first event of the stochastic process 
{N{t), t > 0}. Calculate P[Ti < s \ N{1) = 1], for 5 G (0,1]. 

(b) Suppose that A = 2 and that N{b) > 2. Calculate the probability that, at 
time to = 10, at least five minutes have elapsed since the penultimate event 
occurred. 

Question no. 59 
In the preceding question, suppose that 

A(̂ ) = 1 + - ^ for ^ > 0 

where t is in minutes. 
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(a) Calculate frA^ \ N{1) = 1), for s G (0,1]. 

(b) Suppose that A (̂5) > 3. Calculate the probability that, at time to = 10, 
at least five minutes have elapsed since the antepenultimate (that is, the one 
before the penultimate) event occurred. 

Question no. 60 
The stochastic process {Y{t),t > 0} is a compound Poisson process defined 

by 
N{t) 

Y{t) =YlXk (and Y{t) = 0 if N{t) = 0) 

where Xk has a geometric distribution with parameter 1/4, for A: == 1,2,.. . , 
and {N{t),t > 0} is a Poisson process with rate A = 3. 

(a) Calculate E[Y{t) | Y{t) > 0], for t > 0. 

(b) Calculate approximately P[Y(10) > 100] with the help of the central limit 
theorem. 

Question no. 61 
Suppose that, in the preceding question, Xk is a discrete random variable 

such that P[Xk - 1] = P[Xk = 2] = 1/2, for A: = 1,2,.. . , and that {N{t),t > 
0} is a Poisson process with rate A = 2. 

(a) Calculate E[Y'^{t) \ Y{t) > 0], for t > 0. 

(b) Use the central limit theorem to calculate (approximately) the probability 
P[y(20) < 50]. 

Question no. 62 
The (independent) visitors of a certain Web site may be divided into two 

groups: those who arrived on this site voluntarily (type I) and those who 
arrived there by chance or by error (type 11). Let N{t) be the total number 
of visitors in the interval [0,t]. We suppose that {N{t),t > 0} is a Poisson 
process with rate A = 10 per hour, and that 80% of the visitors are of type I 
(and 20% of type II). 

(a) Calculate the mean and the variance of the number of visitors of type I, 
from a given time instant, before a second type II visitor accesses this site. 

(b) Calculate the variance of the total time spent on this site by the visitors 
arrived in the interval [0,1] if the time (in minutes) Xj (respectively, Xu) that 
a type I (resp., type II) visitor spends on the site in question is an exponential 
random variable with parameter 1/5 (resp., 2). Moreover, we assume that Xj 
and Xii are independent random variables. 

(c) Suppose that, actually, {N{t), ;t > 0} is a nonhomogeneous Poisson process 
whose intensity function is 

r s i fo<^<7 
^^' ~ 1 20 if 7 < i < 24 
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and \{t+2An) = A(t), forn = 1,2,... . Given that exactly one visitor accessed 
this site between 6 a.m. and 8 a.m., what is the distribution function of the 
random variable S denoting the arrival time of this visitor? 

Question no. 63 
At night, vehicles circulate on a certain highway with separate roadways 

according to a Poisson process with parameter A = 2 per minute (in each di­
rection). Due to an accident, traffic must be stopped in one direction. Suppose 
that 60% of the vehicles are cars, 30% are trucks, and 10% are semitrailers. 
Suppose also that the length of a car is equal to 5 m, that of a truck is equal 
to 10 m, and that of a semitrailer is equal to 20 m. 

(a) From what moment is there a 10% probability that the length of the queue 
of stopped vehicles is greater than or equal to one kilometer? 

(b) Give an exact formula for the distribution of the length of the queue of 
stopped vehicles after t minutes. 

Indication, Neglect the distance between the stopped vehicles. 

Question no. 64 
During the rainy season, we estimate that showers, which significantly 

increase the flow of a certain river, occur according to a Poisson process with 
rate A — 4 per day. Every shower, independently from the others, increases 
the river flow during T days, where T is a random variable having a uniform 
distribution on the interval [3,9]. 

(a) Calculate the mean and the variance of the number of showers that sig­
nificantly increase the flow of the river 

(i) six days after the beginning of the rainy season, 
(ii) to days after the beginning of the rainy season, where to > 9. 

(b) Suppose that every (significant) shower increases the river flow by a quan­
tity X (in m^/s) having an exponential distribution with parameter 1/10, 
independently from the other showers and from the number of significant 
showers. Suppose also that there is a risk of flooding when the increase in the 
river flow reaches the critical threshold of 310 m^/s. Calculate approximately 
the probability of flooding 10 days after the beginning of the rainy season. 

Question no. 65 
Independent visitors to a certain Web site (having infinite capacity) arrive 

according to a Poisson process with rate A = 30 per minute. The time that a 
given visitor spends on the site in question is an exponential random variable 
with mean equal to five minutes. Let Y{t) be the number of visitors at time 
t >0. The stochastic process {Y{t)^t > 0} is a filtered Poisson process. 

(a) What is the appropriate response function? 

(b) Calculate E[Y{t)] and V[Y{t)]. 
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Question no. 66 

Let {Ni{t),t > 0} and {N2{t)^t > 0} be independent Poisson processes, 
with rates Ai and A2, respectively. 

(a) We denote by T2,i the arrival time of the first event of the stochastic 
process {A^2(^),̂  > 0}. Calculate E[Ni{T2,i) \ iVi(T2,i) < 2]. 

(b) We define M{t) - Ni{t) 4- N2{t) and we set 

I' 1 if the fcth event of the process {M{t)^t > 0} 
is an event of {Ni{t), ^ > 0} 

Xk=< 
0 if the kth event of the process {M(f), t >0} 

is an event of {N2{t),t > 0} 

Calculate V[Y{t)], where 

M{t) 

Y{t) := Yl Xk (and Y{t) = 0 if M{t) - 0) 
k=l 

(c) Suppose that {iV2(t),t > 0} is rather a nonhomogeneous Poisson process 
whose intensity function is 

W,N / 1 i f O < t < l 

Calculate P\T2,i < 2], where T2,i is defined in (a). 

S e c t i o n 5 .6 

Question no. 67 
A system is composed of two components that operate at alternate times. 

When component f, for i = 1,2, starts to operate, it is active during Xi 
days, where Xi is an exponential random variable with parameter Â  and is 
independent of what happened previously. The state of the components is 
checked only at the beginning of each day. If we notice that component i 
is down, then we set the other component going, and component i will be 
repaired (in less than one day). 

(a) Let Ni be the number of consecutive days during which component i 
is responsible for the functioning of the system, for i = 1,2. What is the 
probability distribution of Â ?̂ 

(b) Suppose that the two components are identical. That is, Ai = A2 := A. At 
what rate do the components relieve each other (over a long period)? 

(c) If Ai = 1/10 and A2 = 1/12, what proportion of time, when we consider a 
long period, is component 1 responsible for the functioning of the system? 
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Question no. 68 
A woman makes long-distance calls with the help of her cell phone accord­

ing to a Poisson process with rate A. Suppose that for each long-distance call 
billed, the next call is free and that we fix the origin at the moment when a 
call has just been billed. Let N{t) be the number of calls billed in the interval 
(0,f]. 

(a) Find the probability density function of the random variables TQ, n , . . . , 
where TQ is the time until the first billed call, and r̂  is the time between the 
(i — l)st and the ith billed call, for i > 1. 

(b) Calculate the probability P[N{t) = n], for n = 0 , 1 , . . . . 

(c) What is the average time elapsed at time t since a call has been billed? 

Question no. 69 
A machine is made up of two independent components placed in series. 

The lifetime of each component is uniformly distributed over the interval [0,1]. 
As soon as the machine breaks down, the component that caused the failure is 
replaced by a new one. Let N{t) be the number of replacements in the interval 
I0,i]. 
(a) Is the stochastic process {N{t)^t > 0} a continuous-time Markov chain? 
Justify. 

(b) Is {N{t),t > 0} a renewal process? Justify. 

(c) Let 5i be the time of the first replacement. Calculate the probability 
density function of 5i . 

Question no. 70 (See Question no. 98, p. 171) 
The lifetime of a certain machine is a random variable having an expo­

nential distribution with parameter A. When the machine breaks down, there 
is a probability equal to p (respectively, 1 - p) that the failure is of type I 
(resp., II). In the case of a type I failure, the machine is out of use for an 
exponential time, with mean equal to 1/// time unit(s). To repair a type II 
failure, two independent operations must be performed. Each operation takes 
an exponential time with mean equal to 1///. 

(a) Use the results on regenerative processes to calculate the probability that 
the machine will be in working state at a (large enough) given time instant. 

(b) What is the average age of the machine at time t? That is, what is the 
average time elapsed at time t since the most recent failure has been repaired? 
Assume that A = /x. 

Question no. 71 
We consider a discrete-time Markov chain whose state space is the set 

{0,1,2} and whose one-step transition probability matrix is 

P = 
0 1/2 1/2 

1/2 0 1/2 
1 0 0 
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We say that a renewal took place when the initial state 0 is revisited. 

(a) What is the average number of transitions needed for a renewal to take 
place? 

(b) Let N{t), for ^ > 0, be the number of renewals in the interval [0, i], where 
t is in seconds. If we suppose that every transition of the Markov chain takes 
one second, calculate 

(i) the distribution of the random variable A/"(6.5), 
(ii) the probability P[Ar(90) < 40] (approximately). 

Question no. 72 
We consider a birth and death process, {X{t),t > 0}, whose state space 

is the set {0,1} and for which 

Ao — A and //i == /i 

Moreover, we suppose that X{0) = 0. We say that a renewal occurred when 
the initial state 0 is revisited. Let N{t), for t > 0, be the number of renewals 
in the interval [0,^]. 

(a) Let Tn-i be the time between the (n — l)st and the nth renewal, for 
^ > 1 (TO being the time until the first renewal). Find the probability density 
function of r^_i if A = /i. 

(b) Calculate approximately the probability P[iV(50) < 15] if A = 1/3 and 
/i = l. 

(c) Calculate the average time elapsed at a fixed time instant to since a renewal 
occurred if A — 2 and /j. = 1. 

Question no. 73 
Let {X{t),t > 0} be a birth and death process for which 

An == A V n > 0 and /xi = /i, //^ = 0 V n > 2 

We suppose that X(0) = 0 and we say that a renewal took place when the 
process revisits the initial state 0. We denote by N{t)^ for t > 0, the number 
of renewals in the interval [0,t]. 

(a) Let Ti be the time elapsed until the first renewal, and let M{t) be the 
number of deaths in the interval [0, t]. Calculate 

(i) E[T,l 
(ii) P[limt-.oo M{t) = fc], for k e {0 ,1 ,2 , . . . } . 

(b) Is the stochastic process {X{t)^t > 0} a regenerative process? Justify. 

(c) Suppose now that AQ = A and A^ = 0 if n > 1. Calculate the proportion 
of time that the process {X{t)^t > 0} spends in state 0, over a long period. 

Question no. 74 
Let {N{t),t > 0} be a renewal process for which the time r between the 

successive events is a continuous random variable whose probability density 
function is given by 
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fr{s) = se~^ f o r s > 0 

That is, T has a gamma distribution with parameters a = 2 and A = 1. 

(a) Show that the renewal function, mN{t), is given by 

1 . -2t miv(t) = T ( e " ^ + 2 t - l ) f o r i > 0 

Indication. We have 

S(SrrT5! = 5<''--) 
n=l "̂  ' 

(b) Calculate approximately the probability P[Tjv(ioo)+i < 101.5]. 

(c) Let X{t) := {-l)^^^\ for t > 0. The stochastic process {X{t),t > 0} is a 
regenerative process. Calculate the limiting probability that X{t) = 1. 

Question no. 75 
Consider the renewal process {N{t),t > 0} for which the time r between 

the consecutive events is a continuous random variable having the following 
probability density function: 

fr{s) = 2s for 0 < 5 < 1 

(a) Calculate the renewal function, m]sf{t), for 0 < t < 1. 

Indication. The general solution of the second-order ordinary differential equa­
tion y''{x) = ky{x) is 

y{x) = cie" ^ + C2e '̂  ^ 

where fc 7̂  0, and ci and C2 are constants. 

(b) According to Markov's inequality, what is the maximum value of the 
probability P[T/v(i/2)+i > 1]? 

(c) Suppose that we receive a reward of $1 per time unit when the age, A{t)^ of 
the renewal process is greater than or equal to 1/2, and of $0 when A{t) < 1/2. 
Calculate the average reward per time unit over a long period. 

Question no. 76 
The time between the successive renewals, for a certain renewal process 

{N{t),t > 0}, is a continuous random variable whose probability density 
function is the following: 

m r i / 2 i f o < s < 1/2 
\ 3/2 if 1/2 < 5 < 1 
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(a) We can show that mN{t) — e*/̂  - 1, for t G (0,1/2). Use this result to 
calculate mN{t), for ^ € [1/2,1). 

Indication. The general solution of the ordinary differential equation 

y\x) + P{x)y{x) = Q{x) 

is 

y{x) = e- 'f ̂ (^^^^ ( / Q{x)e^ ^̂ "̂ ^̂ ^ dx + constant j 

(b) Use the central limit theorem to calculate approximately P[T25 > 15], 
where T23 is the time of the 25th renewal of the process {N{t)^t > 0}. 

(c) Let {X{t),t > 0} be a regenerative process whose state space is the set 
{1,2}. We suppose that the time that the process spends in state 1 is a random 
variable Yi such that 

fniy) 
(l/2ii0<y<l/2 
\ 3/2 if 1/2 < y < 1 

while the probability density function of the time Y2 that the process spends 
in state 2 is 

r 3 / 2 i f 0 < y < l / 2 
M W - | l / 2 i f l / 2 < y < l 

Calculate limt_oo P[X{t) = 1]. 

Question no. 77 
We consider a system composed of two subsystems placed in series. The 

first subsystem comprises a single component (component no. 1), whereas the 
second subsystem comprises two components placed in parallel. Let Sk be the 
lifetime of component no. k, for k = 1,2,3. We assume that the continuous 
random variables Sk are independent. 

(a) Let N{t) be the number of system failures in the interval [0,^]. In what 
case(s) will the stochastic process {N{t),t > 0} be a renewal process if the 
random variables Sk do not all have an exponential distribution? Justify. 

(b) In the particular case when the variable Sk has an exponential distribution 
with parameter A = 1, for all k, the process {N{t),t > 0} is a renewal 
process. Calculate the probability density function of the time r between two 
consecutive renewals. 

Question no. 78 
Suppose that {N{t)^t > 0} is a renewal process for which the time r 

between two consecutive renewals is a continuous random variable such that 

if 0 < 5 < 1 
fr{s) = i e-1 

I 0 elsewhere 



312 5 Poisson Processes 

(a) Calculate the renewal function, mN{t)^ for 0 < ^ < 1. 

Remark. See the indication for Question no. 76. 

(b) If we receive a reward of $1 at the moment of the nth renewal if the 
duration of the cycle has been greater than 1/2 (and $0 otherwise), what is 
the average reward per time unit over a long period? 

Question no. 79 
We consider a system made up of two subsystems placed in parallel. The 

first subsystem is composed of two components (components nos. 1 and 2) 
placed in parallel, while the second subsystem comprises a single component 
(component no. 3). Let Sk denote the lifetime of component no. fc, for k = 
1,2,3. The continuous random variables Sk are assumed to be independent. 

(a) Suppose that components nos. 1 and 2 operate at the same time, from the 
initial time, whereas component no. 3 is in standby and starts operating when 
the first subsystem fails. When the system breaks down, the three components 
are replaced by new ones. Let N{t)., for ^ > 0, be the number of system failures 
in the interval [0,t]. Then {N{t),t > 0} is a renewal process. Let r be the 
time between two consecutive renewals. Calculate the mean and the variance 
of r if 5/c - U(0,1), for fc = 1,2,3. 

(b) Suppose that we consider only the first subsystem and that the two com­
ponents are actually placed in series. When this subsystem fails, the two 
components are replaced by new ones. As in (a), the process {N{t),t > 0} 
is a renewal process. Calculate the renewal function mN{t)^ for 0 < ^ < 1, if 
5fc-U(0,1) , for A: = 1,2. 

Indication. The general solution of the differential equation 

/ ( x ) - 2y\x) + 2y{x) + 2 = 0 

is 
2/(a:) = - 1 4-cie^ cosx + C2ê  sina: 

where ci and C2 are constants. 

(c) Suppose that in (b) we replace only the failed component when the sub­
system breaks down and that Sk ~ Exp(2), for fc = 1,2. 

(i) Calculate the mean of Tiv(t)4-i — t-
(ii) Deduce from it the value of mN{t)^ for t > 0. 

Question no. 80 
Is a nonhomogeneous Poisson process with intensity function X{t) = t, 

for all ^ > 0, a renewal process? If it is, give the distribution of the random 
variables r^. If it's not, justify. 

Question no. 81 
Use the renewal equation to find the distribution of the random variables 

Tfc, taking their values in the interval [0,7r/2], of a renewal process for which 
miv(t) = ^2/2, for 0 < t < 7r/2. 
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Question no. 82 
Let {X{t)^t > 0} be a birth and death process with state space {0,1,2} 

and having the following birth and death rates: Ao = Ai = A > 0, /^i unknown, 
and /i2 = /i > 0. For what value(s) of /ii is the process regenerative? Justify. 

Question no. 83 
Suppose that {N{t),t > 0} is a Poisson process with rate A > 0. For a 

fixed time instant f > 0, we consider the random variables A{t) and D{t) (see 
p. 280). 

(a) Calculate the distribution of both A{t) and D{t). 

(b) What is the distribution of A{t) 4- D{t)? 

(c) Suppose now that we consider the Poisson process over the entire real line, 
that is, {N{t),t e R}. What then is the distribution of A{t) + D{t)? 

(d) In (c), we can interpret the sum A{t) + D{t) as being the length of the 
interval, between two events, which contains the fixed time instant t. Explain 
why the distribution of this sum is not an exponential distribution with pa­
rameter A. 

Question no. 84 
Let {B{t)^ ^ > 0} be a standard Brownian motion, that is, a Wiener process 

with drift coefficient /i = 0 and diffusion coefficient a"^ = 1. Suppose that 
when B{t) = a {> 0) or b = —a, the process spends an exponential time with 
parameter A = 2 in this state (a or 6 — —a). Then, it starts again from state 
0. 

(a) What fraction of time does the process spend in state a or & = —a, over a 
long period? 

Indication. Let mi{x) be the average time that the process, starting from 
X G (6, a), takes to reach a or b. We can show that the function mi{x) satisfies 
the ordinary differential equation 

-m'/(x) = —1 (with mi (6) = mi (a) = 0) 

(b) Answer the question in (a) if 6 = — oc rather than —a. 

Question no. 85 

Suppose that the time between two consecutive events for the renewal process 
{N{t), t >0} is equal to 1 with probability 1/2 and equal to 2 with probability 
1/2. 

(a) Give a general formula for the probability P[N{2n) = fc], where n and k 
are positive integers. 

(b) Calculate miv(3). 

(c) Let I{t) := 1 if N{t) = [t] and I{t) = 0 otherwise, where [ ] denotes the 
integer part. Calculate the variance of I{t), 



6 

Queueing Theory 

6.1 Introduction 

In this chapter, we will consider continuous-time and discrete-state stochastic 
processes, {X{t),t > 0}, where X{t) represents the number of persons in 
a queueing system at time t. We suppose that the customers who arrive in 
the system come to receive some service or to perform a certain task (for 
example, to withdraw money from an automated teller machine). There can 
be one or many servers or service stations. The process {X(t),t > 0} is a 
model for a queue or a queueing phenomenon. If we want to be precise, the 
queue should designate the customers who are waiting to be served, that is, 
who are queueing, while the queueing system includes all the customers in 
the system. Since queue is the standard expression for this type of process, 
we will use these two expressions interchangeably. Moreover, it is clear that 
the queueing models do not apply only to the case when we are interested in 
the number of persons who are waiting in line. The customers in the system 
may be, for example, airplanes that are landing or are waiting for the landing 
authorization, or machines that have been sent to a repair shop, etc. 

Kendall^ proposed, in a research paper published in 1953, a notation to 
classify the various queueing models. The most general notation is of the form 
A/S/s/c/p/D, where 

A denotes the distribution of the time between two successive arrivals, 

S denotes the distribution of the service time of customers, 

s is the number of servers in the system, 

c is the capacity of the system, 

p is the size of the population from which the customers come, 

D designates the service policy, called the discipline, of the queue. 

^ David George Kendall, retired professor of the University of Cambridge, in Eng­
land. 
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We suppose that the times r^ between the arrivals of successive customers 
are independent and identically distributed random variables. Similarly, the 
service times Sn of the customers are random variables assumed to be i.i.d. 
and independent of the r^'s. Actually, we could consider the case when these 
variables, particularly the 5n's, are not independent among themselves. 

The most commonly used distributions for the random variables r^ and 
5n, and the corresponding notations for A or 5, are the following: 

M exponential with parameter A or /x; 

Ek Erlang (or gamma) with parameters k and A or fi; 

D degenerate or deterministic (if r^ or Sn is a constant); 

G general (this case includes, in particular, the uniform distribution). 

Remarks, i) We write M when r^ (respectively, Sn) has an exponential distri­
bution, because the arrivals of customers in the system (resp., the departures 
from the system in equilibrium) then constitute a Poisson process, which is a 
Markovian process. 

ii) We can use the notation GI for general independent^ rather than G, to be 
more precise. 

The number s of servers is a positive integer, or sometimes infinity. (For 
example, if the customers are persons arriving in a park and staying there 
some time before leaving for home or elsewhere, in which case, the customers 
do not have to wait to be served.) 

By default, the capacity of the system is infinite. Similarly, the size of the 
population from which the customers come is assumed to be infinite. If c (or 
p) is not equal to infinity, its value must be specified. On the other hand, 
when c = p = 00, we may omit these quantities in the notation. 

Finally, the queue discipline is, by default, that of first-come, first-served, 
which we denote by FCFS or by FIFO, for first-in, first-out We may also 
omit this default discipline in the notation. In all other cases, the service 
policy used must be indicated. We can have LIFO, that is, last-in, first-out. 
The customers may also be served at random {RANDOM). Sometimes one or 
more special customers are receiving priority service, etc. 

In this book, except in the penultimate subsection of the current chap­
ter and some exercises, we will limit ourselves to the case when the random 
variables r^ and Sn have exponential distributions, with parameters A and /i, 
respectively. That is, we will only study models of the form M/M. Moreover, 
in the text, the service policy will be the default one {FIFO). However, in the 
exercises, we will often modify this service policy. 

For all the queueing systems that we will consider, we may assume that 
the limit 

TTn := lim P[X{t) = n] (6.1) 
t—>-oo 
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exists^ for all n > 0. Thus, iTn designates the limiting probability that there 
are exactly n customers in the system. Moreover, TTn is also the proportion of 
time when the number of customers in the system is equal to n, over a long 
period. 

The quantities of interest when we study a particular queueing system 
are above all the average number of customers in the system, when it is in 
equilibrium (or in stationary regime)^ and the average time that an arbitrary 
customer spends in the system. We introduce the following notations: 

N is the average number of customers in the system (in equilibrium); 

NQ is the average number of customers who are waiting in line; 

Ns is the average number of customers being served; 

T is the average time that an arbitrary customer spends in the system; 

Q is the average waiting time of an arbitrary customer; 

S is the average service time of an arbitrary customer. 

Often, we must content ourselves with expressing these quantities in terms 
of the limiting probabilities TT .̂ Moreover, notice that N — NQ + Ng and 
f = Q + 5. 

Let N{t)^ for ^ > 0, be the number of customers who arrive in the system 
in the interval [0,^]. Given that the random variables Tn are independent and 
identically distributed, the process {N{t),t > 0} is a renewal process. We 
denote by AQ the average arrival rate of customers in the system. That is (see 
Prop. 5.6.7), 

A « : = l i m M ^ 1 (6.2) 
t-^oo t i^[Tn\ 

Remarks, i) If r^ ~ Exp(A), then we obtain Aa = A. 

ii) We can also define Ag, namely, the average entering rate of customers into 
the system. If all the arriving customers enter the system, then Ag = Xa-
However, if the capacity of the system is finite, or if some customers refuse 
to enter the system if it is too full when they arrive, etc., then Ag will be 
smaller than A .̂ Suppose, for example, that the customers arrive according 
to a Poisson process with rate A. If the system capacity is equal to c (<oo) 
customers, then we may write that the rate Ag is given by A (1 - TTC). Indeed, 
in this case, (1 - TTC) is the (limiting) probability that an arriving customer 
will enter the system. 

We can establish a relation between the quantities N and f by using a 
cost equation. Suppose that the customers entering the system pay a certain 
amount of money. Let Â  be the average earning rate of the system. Then, 



318 6 Queueing Theory 

after a long enough time to, the average amount of money the system earns 
is approximately equal to Â  -to. On the other hand, this quantity is also 
approximately equal to M • Ae • to, where M is the average amount of money 
a customer who enters the system pays, and Ag is defined above. The equality 
between the two expressions for the average amount of money the system 
earns, over a long period, can be justified rigorously. We then obtain the 
following proposition. 

Proposition 6.1.1. We have 

Xg = Xe'M (6.3) 

Corollary 6.1.1. If the customers pay $1 per time unit that they spend in the 
system (waiting to be served or being served), then Eq. (6,3) becomes 

N = Xe'f (6.4) 

Remarks, i) The formula above is known as Little ^s^ formula. 

ii) Little's formula may be rewritten as follows: if t is large enough (for the 
process to be in equiUbrium), then we have 

E[X{t)] = XeE[T] (6.5) 

where T is the total time that an arbitrary customer who enters the system will 
spend in this system. Actually, Eq. (6.5) is valid under very general conditions, 
in particular, for all the systems studied in this book, but in some cases it is 
not correct. Moreover, we can prove the following result: 

lim ^ [ ' X{t) dt = E[X{t)] = XeE[T] (6.6) 
to-^oo to Jo 

That is, the stochastic process {X{t),t > 0} is, in the cases of interest to us, 
mean ergodic (see p. 56). 

iii) If every customer pays $1 per time unit while being served (but not while 
she is waiting in queue) instead, then we obtain 

It follows that we also have 

Ns = Xe'S (6.7) 

NQ = Xe'Q (6.8) 

When the times between the arrivals of successive customers and the ser­
vice times of customers are independent exponential random variables, the 

^ John D.C. Little, professor at the Sloan School of Management of the Mas­
sachusetts Institute of Technology, in the United States. 
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process {X{t)^t > 0} is a continuous-time Markov chain. Moreover, if we as­
sume (which will be the case, in general) that the customers arrive one at a 
time and are served one at a time, {X{t),t > 0} is then a birth and death 
process. We may therefore appeal to the results that were proved in Chapter 
3 concerning this type of process, particularly Theorem 3.3.4, which gives us 
the limiting probabilities of the process. 

6.2 Queues with a single server 

6.2.1 The model M/M/1 

We first consider a queueing system with a single server, in which the cus­
tomers arrive according to a Poisson process with rate A, and the service times 
are independent exponential random variables, with mean equal to l//x. We 
suppose that the system capacity is infinite, as well as the population from 
which the customers come. Finally, the queue discipline is that of first-come, 
first-served. We can therefore denote this model simply by M/M/1. 

The stochastic process {X{t),t > 0} is an irreducible birth and death 
process. We will calculate the limiting probabilities TT̂  as we did in Chapter 3. 
The balance equations of the system (see p. 140) are the following: 

state j departure rate from j = arrival rate to j 

0 ATTO = /iTTi 
n (> 1) (A + /i)7r^ = ATTn-i+//7rH+i 

We have (see p. 141) 

If A < /i, the process {X{t)^t > 0} is positive recurrent, and Theorem 3.3.4 
then enables us to write that 

^ " = ^ £ 7 1 7 ^ 1 = 1 7 - ^ 7 ( 7 ^ forn = 0 , l , . . . (6.10) 

That is, 

^ y ( l _ ^ ' ) V n > 0 (6.11) 

We can now calculate the quantities of interest. We aheady know that 
S = l / /i . Moreover, because here Ae = A, we may write that 
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Fig. 6.1. State-transition diagram for the model M/M/1. 

Ns = Xe-S = 
M 

(6.12) 

Remarks, i) Since there is only one server, we could have directly calculated 
Ns as follows: 

Ns = l-7ro = l - [ l -
^ 

(6.13) 

because the random variable Ns denoting the number of persons who are being 
served, when the system is in equilibrium, here has a Bernoulli distribution 
with parameter po := 1 — TTQ. 

ii) The quantity p := A//i is sometimes called the traffic intensity of the sys­
tem, or the utilization rate of the system. We see that the limiting probabilities 
exist if and only ii p < 1, which is logical, because this parameter gives us the 
average number of arrivals in the system during a time period corresponding 
to the mean service time of an arbitrary customer. If p > 1, the length of the 
queue increases indefinitely. 

iii) From the balance equations of the system, we can draw the corresponding 
state transition diagram (and vice versa). Each possible state is represented by 
a circle, and the possible transitions between the states by arrows. Moreover, 
we indicate above or under each arrow the rate at which the corresponding 
transition takes place (see Fig. 6.1). 

Next, we have 

= f - j E[Z], where Z ~ GeomTl - ^ ) 

(6.14) 
jiJp — X p — X 

We can then write that 

A A Â  
NQ=N-NS = 

p — X p p{p — A) 
(6.15) 
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We deduce from this formula that 

« ^ $ = * ^ ' ^ • ' ^ ' 

which implies that 

f = Q + g = ^ + 1 ^ ^ (6.17) 

Generally, it is difficult to find the exact distribution of the random variable 
T that designates the total time that an arriving customer will spend in the 
system (so that f - E[T]). For the M/M/l queue, we can explicitly determine 
this distribution. To do so, we need a result, which we will now prove. 

Proposi t ion 6.2.1. Let an he the probability that an arbitrary customer finds 
n customers in the system (in equilibrium) upon arrival. If the customers 
arrive according to a Poisson process, then we have 

'Kn=Oin V n > 0 (6.18) 

Proof. It suffices to use the fact that the Poisson process has independent 
increments. Suppose that the customer in question arrives at time t. Let F^ = 
the customer arrives in the interval [t.,t + e). We have 

an = lim l i m P [ X ( r ) =n\F,]= lim lim ^ ^ ^ ^ ^ ^ ' ^ ^ i ' ' ' ^ ^ ^'^ 

-J- n ^ lin, P [ i - e ] P [ X r ) = n ] ^ ^^ ^ 

= lim P [ X ( r ) = n] =7r„ D (6.19) 
t—^OO 

Remark. It can also be shown that, for any system in which the customers 
arrive one at a time and are served one at a time, we have 

an=Sn V n > 0 (6.20) 

where 5n is the long-term proportion of customers who leave behind them n 
customers in the system when they depart. This follows from the fact that 
the transition rate from n to n 4-1 is equal to the transition rate from n + 1 
to n, over a long period. 
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Proposition 6.2.2. For an M/M/1 queue, we have T ~ Exp{ii - A). 

Proof. Let R be the number of customers in the system when a new customer 
arrives. We have 

oo 

P[T<t]=Y^P[T<t\R = r]P[R = r] (6.21) 

Moreover, by the memoryless property of the exponential distribution, we may 
write that 

T | { i ? = r } - G ( r + l,/x) (6.22) 

Finally, since the customers arrive according to a Poisson process, we have 
(by the preceding proposition) 

pifi=ri.„,=,,=Qy(i-^) (6.23) 

It follows that 

= y / (/" - A ) e - ' ' ^ ^ ds (6.24) 

Interchanging the summation and the integral, we obtain 

P[T <t]= / (/i - X)e-^'' V ^ ^ ds= [ ifi- X)e-^f'-^^' ds (6.25) 

^ V ' 

= > frit) = {fi - X)e-^^-^^^ iovt>0 D (6.26) 

We can also calculate the distribution of the waiting time, Q, of an arbi­
trary customer arriving in the system. This random variable is of mixed type. 
Indeed, if the customer arrives while the system is empty, we have that Q = 0. 
On the other hand, if there are i? = r > 1 customer(s) in the system upon his 
arrival, then Q has a G(r, //) distribution. Since P[R = 0] = TTQ = 1 - A//x, by 
proceeding as above, we find that 

oo 

P[Q<t] = J2P[Q<t\R = r]P[R = r] (6.27) 

' A ' ;)(--"-^") —G) = l _ ( l l ) + / l l W i _ ^-IM-A;t 1 _ 1 _ I i : 1 ^-(n-\)t 
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Thus, we have P[Q = 0] = 1 - A//i and 

P[0 < Q < ̂ ] = [ - ] (l - e-f"- '̂*) ift>0 (6.28) 

Moreover, we calculate 

P[Q<t\Q>0] = ^^l^ ^-*^ ^ l - e-<^-^>* i f t > 0 (6.29) 

That is, Q I {Q > 0} ~ Exp(/i - A). We may therefore write that 

Q\{Q>0} = T (6.30) 

which follows directly from the fact that 

l-TTo A//X V M / V M/ 
-7r^_i = P [ i ? = r - l ] V r > l (6.31) 

Remark, Since the random variables Q and 5 are independent (by assump­
tion), we can check that T has an exponential distribution with parameter 
jn — X by convoluting the probability density functions of Q and S. Because 
Q is a mixed-type random variable, it is actually easier to make use of the 
formula (with p = X/i^i) 

Frit) = f Fqit - s) fs{s) ds = f (l - p e-(^-^)(^-^)) pe-^' ds 

^ 1 _ e-/^* - ppe-^^-^^' [ e-^' ds 
Jo 

= 1 - e"^* - e-^^-^)* (1 - e"^*) = 1 - e'^^"^)* V t > 0 (6.32) 

The variance of the random variable Â  designating the number of cus­
tomers present in the system in equilibrium (and whose mean value is iV) is 
easily obtained by noticing [see Eq. (6.11)] that 

Â  + 1 ~ Geom(l - p) (6.33) 

It follows that 

^m = m + il = p ^ = j ^ (e.34) 

Note that the mean N can be expressed as follows: 

N = E[N] = — 1 = - ^ (6.35) 

1 - p 1-p 
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In the case of the random variable Ns^ we mentioned above that it has a 
Bernoulli distribution with parameter 1 — TTQ = p. Then we directly have 

V[Ns]=pil-p) = ̂ ( l - j ] (6.36) 

To obtain the variance of NQ , we will use the following relation between 
NQ and N: 

.r ( 0 ifiV = O o r l ,^^^. 
^ ^ = \ i V - l i f i V > 2 ^^'^^^ 

It follows that 

oo oo 

E[NQ] = E ^''^fc+i=p^Yl ^''^'^-1=^'^[^'] (6-̂ 8) 
k=l k=l 

where Z ~ Geom{l — p), from which we deduce that 

Since the mean value of NQ [see Eq. (6.15)] is given by 

\2 2 
E[NQ] = / ^, = / - (6.40) 

we obtain that 

Remark. Given that iV = iVg + iV5, we can use the formula 

V[N] = V[NQ] 4- l^[iV5] + 2 Cov[iVQ, iV^] (6.42) 

to calculate the covariance (and then the correlation coefficient) of the random 
variables NQ and Ns-

Now, we have shown that T ~ Exp(// - A). We then have 

Vm = ( ^ (6.43) 

Similarly, S ~ Exp(/i) (by assumption), so that V[S] = l//i^. Finally, by 
independence of the random variables Q and 5, we obtain that 

V[0| = nTl-V|S) = ̂ - i = ; ^ i 5 | , (6.44) 
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Remark. We can calculate V[Q] without making use of the independence of 
Q and S. We deduce indeed from the formula (6.30) that 

2p 
E[Q'] = E\Q' I Q > 0]P[Q > 0] = ^[ r^] ( l - no) = E[T']p = 

from which we obtain that 

(/x-A)2 
(6.45) 

V\Q] ^'^'^ - ^ ^ = 2hl!-^ (6.46) 

Example 6.2.1. Let K be the number of arrivals in the system during the 
service period of an arbitrary customer. We will calculate the distribution of 
K. First, we have 

P | i . = 0| = P | S < x | = ^ 

where the service time S ~ Exp(/x) and the time r needed for a customer to 
arrive, having an exponential Exp(A) distribution, are independent random 
variables. Then, by the memoryless property of the exponential distribution, 
we may write that 

That is. 

K + lr^ Geom ' ^ 
,/x + A, 

from which we deduce that 

Thus, the average number of arrivals during the service period of a given 
customer is equal to the average number of arrivals in the course of a period 
corresponding to the mean service time of an arbitrary customer (see p. 320). 
This result is also easily proved as follows: 

E[K] = E[E[K I S]] = E[XS] = XE[S] = -

Example 6.2.2. The conditional distribution of the random variable iV, namely, 
the number of customers in the system in stationary regime, knowing that 
iV < m, is given by 

T^n ^ (A//i)" 

Note that the condition N < m does not mean that the system capacity is 
equal to m. It rather means that, at a given time instant^ there were at most 
m customers in the system (in equihbrium). 

PN{n \N <m)= ^m'' __ = v^m ^^/..^k ^^^ ^ = ^ ' ^^ 
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Example 6.2.3. The queueing system M/M/1 is modified as follows: after hav­
ing been served, an arbitrary customer returns to the end of the queue with 
probability p G (0,1). 

Remark, k given customer may return any number of times to the end of the 
queue. 

(a) (i) Write the balance equations of the system. 
(ii) Calculate, if they exist, the limiting probabilities TTJ. 

(b) Calculate, in terms of the TT '̂S (when they exist), 
(i) the average time that an arbitrary customer spends in the system, 
(ii) the variance of the number of customers in the system, given that it 

is not empty. 

Solution, (a) (i) The balance equations of the system are the following: 

state j departure rate from j = arrival rate to j 

0 ATTO = ii{l - p)7ri 
n (> 1) [A + /X(l - p)]7r„ = ATTn-l + A/(l - p)7rn+l 

(ii) The process considered is an irreducible birth and death process. We 
first calculate 

^ v ^ AQAI • • • Afc-i _ Y^ \ 

The infinite sum converges if and only if A < jLt(l — p). In this case, we find 
that 

9 = — A _ _ 
' M ( I - P ) - A 

Then, the TT̂ 'S exist and are given by 

-' - A 
1 + .. \ . = - ^ T — T 1 -

for i = 0 , 1 , . . . . 

Remark. The result is obtained at once by noticing that the process considered 
is equivalent to an M/M/1 queueing system for which the service rate is 
(I-P)M. 
(b) (i) We seek T. By the preceding remark, we may write (see the formula 
(6.17), p. 321) 

f= '-
M ( I - P ) - A 

(ii) Let TV be the number of customers in stationary regime. We have (see 
the formula (6.33), p. 323) 
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A 

Let M := N \ {N > 0}. We seek V[M], By the memoryless property of the 

geometric distribution, we can write that M ~ Geom (l Tiir)) • I^ follows 
that 

v[M]= / J(i- ^ ^ ' - ^^(^-^) 

6.2.2 The model M/M/l/c 

Although the M/M/1 queue is very useful to model various phenomena, it 
is more realistic to suppose that the system capacity is an integer c < oc. 
For j = 0 , 1 , . . . , c — 1, the balance equations of the system remain the same 
as when c = oo. However, when the system is in state c, it can only leave it 
because of the departure of the customer being served. In addition, this state 
can only be entered from c — 1, with the arrival of a new customer. We thus 
have 

state j departure rate from j = arrival rate to j 

I <k < c~l ( A H - ii)7rk == ATTA;-! + /i7r/e+i 
C jllXc = ATTC-I 

The process {X{t)^t > 0} remains a birth and death process. Moreover, given 
that the number of states is finite^ the limiting probabilities exist regardless 
of the values the (positive) parameters A and // take. 

As in the case when the system capacity is infinite, we find (see p. 319) 
that 

nk= (-) forfc = 0 , l , . . . ,c (6.47) 

It follows, ii p := A//i y^ 1, that 

1 - p^+i 

k=0 k=0 ^^^ k=0 P 
(6.48) 

When A = /i, we have that p — 1, 71/̂  = 1, and Yll=o ^fe = c -f 1, from which 
we calculate 

V C+ 1 

for j = 0 , 1 , . . . ,c. 
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Remarks, i) We see that if A = )U, then the c + 1 possible states of the sys­
tem in equilibrium are equally likely. Moreover, when c tends to infinity, the 
probability TTJ decreases to 0, for every finite j . This confirms the fact that, 
in the M/M/l/oo model, the queue length increases indefinitely if A = ^, so 
that there is no stationary regime. 

ii) If A > //, the limiting probabilities exist. However, the larger the ratio p = 
A//i is, the more TTC increases to 1 (and TTJ decreases to 0, for j = 0 , 1 , . . . , c—1), 
which is logical. 

iii) Even if, in practice, the capacity c cannot be infinite, the M/M/1 model 
is a good approximation of reality if the probability TTC that the system is full 
is very small. 

With the help of the formula (6.49), we can calculate the value of iV. 

Proposi t ion 6.2.3. In the case of the M/M/l/c queue, the average number 
of customers in the system in equilibrium is given by 

N • 

' (^+')^"N/P^i 
i~p 1 - p'̂ +i 

c/2 ifp^l 

Proof. First, when p = 1, we have 

(6.50) 

iV^VfcJ- = J-Vfc^-i-£i£±il = £ (6.51) 
f̂  c+1 c + 1 f-' c+1 2 2 ^ ^ fc=0 fe=0 

When p 7̂  1, we must evaluate the finite sum 

1^—n ^^ ^ H u—{\ k=0 ^ ^ k=0 

Let X := Z — 1^ where Z has a geometric distribution with parameter 1 — p. 
We find that the probability mass function of X is given by 

pj^{k) = p^{l - p) for fc = 0 , 1 , . . . (6.53) 

It follows that 

^ / ( l - p ) = l and Y.kp'^{l-p) = ^—--l = ̂  (6.54) 
A;=0 k=0 ^ ^ 

Making use of these formulas, we may write that 

oo 

fc=0 ^ fc=c+l 
Y^kp\\-p) = ^ - Y. fc/(l-p) (6.55) 
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and 

oo oc 

J2 kp''{l-p)= J2 [k-{c+l) + {c+l)]pHl-p) 
k=c-\-l A;=c+1 

oo oo 

= Y^ lk-{c + i)]p'^{i-p)+ J2 {C + I)PHI-P) 
k=c-\-l fc=c+l 

oo oo 

= /+! X] m/>-(l - />) + (c + l)/+i E '=''"(1 - P^ 
m=0 771=0 

= / 9 ' + ' - ^ + (c+l)p'=+i (6.56) 
1 - / } 

so that 

Remarks, i) We easily find that 

^ i f p < l 
lim Â  = <̂  1 - p "̂  (6.58) 

"-"^ [ oo i f p > l 

which corresponds to the results obtained in the preceding subsection. 

ii) When the capacity c of the system is very limited (for example, when 
c = 2,3, or 4), once we have calculated the TT '̂S, we can directly obtain N 
from the definition of the mathematical expectation of a discrete random 
variable: N := Yll=^o^ ^k- We can then also calculate the variance of the 
random variable N as follows: 

V[N] := J2ik - E[N]f7rk = f^ ^'^^ " (^[^D' (6-59) 
A;=0 k=0 

iii) When p = 1, we find, using the formula 

k=0 

that 

E[N^] := ±k\, - E ^ ^ ^ = ^ ^ (6.61) 
/c=0 k=0 
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so that 

c ( 2 c + l ) / c \ 2 c(c4-2) V|Arl = 3 ^ - ( | ) =fl£±i! (6.62) 

Now, as in the case of the M/M/l/oo queue, we have 

c 

iV5 = ^ 1 . 7 r f c = l - 7 r o (6.63) 
k=l 

and 

iVQ = i V - l + 7 r o (6.64) 

Next, the average entering rate of customers into the system (in equihb-
rium) is given by 

Ae = A(l - TTe) (6.65) 

because the customers always arrive according to a Poisson process with rate 
A but can enter the system only if it is not full (or saturated), that is, if it is 
in one the following states: 0 , 1 , . . . , c — 1. Using both this fact and Little's 
formula (see p. 318), we may write that the average time that a customer 
entering the system spends in this system is equal to 

TV 
(6.66) A ( l - TTe) 

For the customers entering the system, we still have that S = l/ji (by 
assumption). Then 

- iV 1 
Q = T 7 r ^ - - (6.67) 

A(l-7rc) /x 

Remark If we consider an arbitrary customer arriving in the system, the 
average time that she will spend in it is then T = iV/A, as noted previously. 
Indeed, in this case the random variable T is of mixed type, and we may write 
that 

E[T] = E[T\T = 0]P[T = 0] 4- ^'[T I T > 0]P[T > 0] 

= 0 X TTe + , , , ^ , (1 -rrc) = ^ (6.68) 

We also have 

5 = 1 ( 1 -TTe) = > Q = ^ - 1(1 -TTe) (6.69) 
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Example 6.2.4- We consider a queueing system with a single server and finite 
capacity c = 3, in which customers arrive according to a Poisson process with 
rate A and the service times are independent exponential random variables, 
with parameter /i. When the system is full, the customer who arrived last will 
be served before the one standing in line in front of him. 

The balance equations of the system are the following: 

state j departure rate from j = arrival rate to j 

0 ATTO = yUTTi 

1 (A + jji)7Ti = ATTO + //7r2 

2 (A -I- /i)7r2 = ATTI + /XTTs 
3 /xTTs = Xn2 

Notice that these equations are the same as the ones obtained in the case of the 
M / M / 1 / 3 system, although the queue discipline is not the default one (that 
is, first-come, first-served). When /x = A, we know that the solution of these 
equations, under the condition Y^A^Q TTJ = 1, is TTJ = 1/4, for j = 0,1,2,3. 

Suppose that a customer arrives and finds exactly one person in the system. 
We will calculate the mathematical expectation of the total time Ti that this 
new customer will spend in the system if /z = A. Let K be the number of 
customers who will arrive after the customer in question but will be served 
before her (if the case may be). By the memoryless property of the exponential 
distribution, we may write that 

K + lr^ Geom(l/2) 

It follows that 

E[T,] = Y:E[T,\K = k]P[K = k]'='J2'^r-) 
k=0 k=0 ^ ^ 

Finally, let T2 be the total time that an entering customer will spend in the 
system, and let L be the number of customers already present in the system 
upon his arrival. We may write that 

2 

z=o 
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Given that (in stationary regime) 

P[L = l]=P[N = l\N<2]= ^jf^ ^ ^\ = ^ = l for / = 0,1,2 
^ ^ ^ I - J p [ i v < 2 ] 3/4 3 

we then deduce from what precedes that 

Notice that when L = 2, it is as if the customer we are interested in had 
arrived at the moment when there was exactly one customer in an M/M/1 /3 
system with service poUcy FIFO (first-in, first-out). 

6.3 Queues with many servers 

6.3.1 The model M/M/s 

An important generaUzation of the M/M/1 model is obtained by supposing 
that there are s servers in the system and that they all serve at an exponential 
rate /x. The other basic assumptions that were made in the description of 
the M/M/1 model remain valid. Thus, the customers arrive in the system 
according to a Poisson process with rate A. The capacity of the system is 
infinite, and the service policy is that by default, namely, first-come, first-
served. 

We suppose that the arriving customers form a single queue and that the 
customer at the front of the queue advances to the first server who becomes 
available. A system with this waiting discipline is clearly more efficient than 
one in which there is a queue in front of each server, since, in this case, there 
could be one or more idle servers while some customers are waiting in line 
before other servers. 

Remark. A real waiting line in which the customers stand one behind the other 
need not be formed. It suffices that the customers arriving in the system take 
a number^ or that the tasks to be accomplished by the servers be numbered 
according to their arrival order in the system. 

Since the customers arrive one at a time and are served one at a time, 
the process {X{t).t > 0}, where X{t) represents the number of customers in 
the system at time t, is a birth and death process. Note that two arbitrary 
customers cannot leave the system exactly at the same time instant, because 
the service times are continuous random variables. The balance equations of 
the system are the following (see Fig. 6.2 for the M/M/2 model): 

state j departure rate from j = arrival rate to j 

0 ATTO = jUTTi 

0 < fc < 5 (A + kljL)7Tk = {k + 1)/X7rfc4-1 -h ATTfe-l 

k> S (A -f 5/i)7rfe = S/jiTTk+l + ATTfc-l 



6.3 Queues with many servers 333 

î 2 | i 2|Li 

Fig. 6.2. State-transition diagram for the model M/M/2. 

We can solve this system of equations under the condition X/fc=o^^ ~ •̂* 
As 

in the case of the M/M/1 model, it is, however, simpler to use Theorem 3.3.4. 
We first calculate the quantities 77 ;̂, for fc = 1,2,... . The cases when k < s 
and when k > s must be considered separately. We have 

l^k = 
kjj. ii 1 < k < s 
sfi ii k > s 

(6.70) 

Then 

Hk 
A X A X • •• X A 1 /A 

lix2iix '•' xkii k\ \/j 

and, for A: = s + 1,5 + 2 , . . . , 

A x A x - - - x A x A x - - - x A 

forfc = (0 ) , l , 2 , . . . ,5 (6.71) 

nk = 
1 A 

(6.72) 

(k—s) times 

Given that the stochastic process {X{t),t > 0} is irreducible and that 

^i : = ^ i 7 f c < oo 
fc=i 

A 
p := — < s (6.73) 

we can indeed appeal to Theorem 3.3.4. We first have [see Eq. (3.301)] 

VTO 

s ji -\ - 1 

-E^- iE© -A^'n-'nn^ 
k=l 

p<s 
S—1 u „ 

/c=s+l 
-1 - 1 

lk=0 

- I - 1 

k=s 

.fc=0 
k\ s\ {s — p) 

(6.74) 

Once TTo has been calculated, we set 

TTfc == < 

— TTO if fc = 0 , l , . . . ,5 

(6.75) 

-j-r—TTo if fc = S + 1, S + 2, . . . 
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We will now calculate, in terms of TTQ, the average number of waiting 
customers in the system in stationary regime. We have 

/ c = s + l k=s+l / c = s + l 

(6.76) 

Next, 

/ c = s + l j=l 

(6.77) 

from which we obtain 
nS + l c2 ^S + 1 1 

^Q = I , ^2^0 = V 7 T - 7 T 2 ^ o (6.78) 
SIS {s — py s\s (1 — )̂"̂  

where ^ := p/s. We can also write that 

From NQ and Little's formula, we deduce all the other quantities of inter­
est. Since the average entering rate of customers into the system is Ag = A, 
we may write that 

Q . ^ ^ f = ^ ^ - l ^ . o + i (6.80) 
A As! [s-pY /i 

because S = l/p for every server (by assumption). 
Finally, we have 

iV5 = A 5 - p and N = XT = NQ + p (6.81) 

Remarks, i) We can also calculate, in particular, the probability TT̂  that all 
the servers are busy. We have 

OO j^ g OO I 

k>s k=s k=s 

^<s s \ fpY 1 sp' _ 
s\ \s/ l-(p/s) sUs - p) 

ii) If the number 5 of servers tends to infinity, then we find that 

TTo —^ e-^/^ and TT̂  —^ ihM^e'^/^ for fc = 1,2,... (6.83) 
A:! 
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That is, in the case of the M/M/oo model, we have 

TT;, = P[Y = fc], where Y - Poi(A//x) (6.84) 

Since NQ = Q = 0 (because there is no waiting time), we then directly obtain 

N = E[Y] =^- = Ns and T = S=- (6.85) 

As we did for the M/M/1 model, we can explicitly find the distribution of 
the random variable Q, namely, the time that an arbitrary customer spends 
waiting in line. This variable is of mixed type. We have 

F[Q = 0] - 1 - TTfe {6M) 

and, for ^ > 0, 

oo 

P[0 < Q < f] = ^ P[0 < Q < t I i? = r]P[R = r] (6.87) 
r=s 

where R is the number of customers in the system upon the arrival of the 
customer of interest. When at least s customers are in the system, the time 
needed for some customer to depart is a random variable having an exponen­
tial distribution with parameter sfi. It follows that 

Q\{R = r}r^G{r-s-\-1, sfi) for r = s, s + 1 , . . . {6.8S) 

because the customer must wait until r — s + 1 persons ahead of him have left 
the system before starting to be served. Making use of the fact that 

P[R =:r]=7Tr (6.89) 

(because the arrivals constitute a Poisson process) and proceeding as in the 
case when s = 1, we find that 

P[0<Q<t]= TTb ( l - e^^-^^^*) for f > 0 (6.90) 

Finally, adding the probabilities P[Q = 0] and P[0 < Q < t], we obtain the 
following proposition. 

Proposition 6.3.1. The distribution function of the random variable Q in an 
M/M/s queueing system (for which A < sfi) is given by 

Fgit) ~P[Q<t] = l - iTbe^^-'^^' fort>0 (6.91) 
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Remarks, i) With 5 = 1, we calculate 

7r5 = / - f n - - ^ ) '=p (6.92) 

so that 

P[Q<t] "=^ l - p e ^ ^ - ^ ) * {ovt>0 (6.93) 

which corresponds to the formula (6.27). 

ii) To obtain the distribution of the total time, T, that an arbitrary customer 
spends in an M/M/s system in equilibrium, we would have to compute the 
convolution product of the probability density functions of the random vari­
ables Q and S ~ Exp(/i). 

Example 6.3.1. The number K of idle servers in an M/M/s system, in sta­
tionary regime, may be expressed as follows: 

K = s-Ns 

where Ns is the number of customers being served. We then deduce from Eq. 
(6.81) that 

E[K] =s-Ns = s-p 

6.3.2 The model M/M/s/c and loss sys tems 

As we mentioned in Subsection 6.2.2, in reality the capacity c of a waiting 
system is generally finite. In the case of the M/M/s/c model, we can use the 
results on birth and death processes to calculate the limiting probabilities of 
the process. 

Example 6.3.2. Consider the queueing system M / M / 2 / 3 for which A = 2 and 
/x = 4. The balance equations of the system are 

state j departure rate from j = arrival rate to j 

0 

1 

2 

3 

27ro = 47ri 

(2 4- 4)7ri =^ 27ro + (2 x 4)7r2 

(2 + 2 X 4)7r2 ^= 27ri + (2 x 4)^3 

(2 X 4)7r3 =^ 27r2 

We can directly solve this system of linear equations. Equation (0) yields 
TTi = T̂To. Substituting into (1), we obtain 7r2 = ^TTI = ^TTO. Next, we deduce 
from Eq. (3) that TTS = |7r2 = ^TTQ. We can then write that 
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1 1 1 32 16 4 1 
7ro + -7ro + -7ro + -7ro = l =^ ^^ - ^ , ^n = - , TT̂  = : - , TTS = -

Note that this solution also satisfies Eq. (2). 
The average number of customers in the system in equilibrium is given by 

.-. V - , 16 „ 4 ^ 1 27 

k=0 

from which the average time that an entering customer spends in the system 
is 

Ae 2(1-TTs) 2(52/53) 104 

We also find, in particular, that the limiting probability that the system is 
not empty is given by 1 — TTQ = | | . 

Particular case: The model M/M/s/s 

When the capacity of the system is equal to the number of servers in the 
system, no waiting line is formed. The customers who arrive and find all the 
servers busy do not enter the system and are thus lost Such a system is called 
a no-wait system or a loss system. 

Let X(t), for ^ > 0, be the number of customers in the queueing system 
M/M/s/s at time t. We find that the balance equations of the system are 
given by 

state j departure rate from j = arrival rate to j 

0 ATTO = /XTTi 

0 < A: < 5 (A + ki2)iTk = {k-j- l)ji TT^+I + ATT^-I 

S S/J. ITs = A T T ^ - I 

The birth and death process {X{t),t > 0} is irreducible and, since 

n,= ^ ^ / ^ • • • ^ ^ =h(-)' iork = l,2,...,s (6.94) 
// X 2/i X • • • X fc/i k\ \fij 

the sum 5i is given by 

1 / A ^ ^ 

k=i k=i ^^ 

This sum is finite for all (positive) values of A and /d. Theorem 3.3.4 then 
enables us to write that 

n, = —f^^— ioik = 0,l,...,s (6.96) 
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where p := X/ji. Thus, the TT '̂S correspond to the probabihties P\Y = k] of 
a random variable Y having a truncated Poisson distribution. Indeed, if y ~ 
Poi(p), then we have 

PlY = k\Y<s]= '~'f_i''l, - S-s^'^^rl/n^ iovk=^0,h...,S 

(6.97) 

Note that in the particular case when X = fi, the hmiting probabihties TTfe 
do not depend on A (or /i): 

TTfc ^=^ ^ y ^ : , . forfc = 0 , l , . . . , s (6.98) 

Moreover, in the general case, the probability nt, that all servers are busy 
is simply 

n = 7rs=^f^'\... forallp>0 (6.99) 

This formula is known as Erlang ^s formula. 
Finally, the average entering rate of customers into the system is Ag = 

A(l — TTg). It follows that 

iV = Aef = A ( l - 7 r , ) - (6.100) 

Since there is no waiting period in this system, as in the M/M/oo model, we 
have that N = Ns,f = S, and NQ = Q = 0. 

Remarks, i) If the number of servers tends to infinity, we obtain 

lim Y p'/f- = e" = e^/" (6.101) 
3=0 

and we retrieve the formula (6.83): 

lim TTk = ^^{^} e-^l^ for A: = 0 , 1 , . . . (6.102) 

ii) Note that the limiting probabilities may be expressed as follows: 

{\E\S\flk\ forfc^oi (6.103) 

E,^=o(A£^[5])Vi! 

Now, it can be shown that the formula (6.103) is also valid for the more general 
model M/G/s/s (known as Erlang's loss system), in which the service time 
is an arbitrary nonnegative random variable. This result is very interesting, 
because it enables us to treat problems for which the service time does not 
have an exponential distribution. 
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Example 6.3.3. We consider the queueing system M/G/2 /2 in which the ar­
rivals constitute a Poisson process with rate A == 2 per hour. 

(a) What is the probabiHty TTQ that there are no customers in the system at 
a (large enough) time t if we suppose that the service time S (in hours) is an 
exponential random variable with mean equal to 1/4? What is the average 
number of customers in the system in equilibrium? 

(b) Calculate the value of TTQ if 5 is a continuous random variable whose 
probability density function is 

fs{s) = GAse-^' for 5 > 0 

Solution, (a) When S ~ Exp(/i = 4), we have the M/M/2/2 model with 
p = 2/4 = 1/2. We seek 

TTo 
E;=o(V2)Vi! 1 + ^ + i 1̂  

We also find that 

1 4 , 1 1 
^i = -7ro = - and ^2 = T̂TO = -

It follows that 

Ar==Ox— + l x — + 2 x — = — 
13 13 13 13 

(b) We can check that the density function above is that of a random variable 
having a gamma distribution with parameters a = 2 and A* == 8. It follows 
that E[S] = a/A* = 1/4. Since the mean of S is equal to that of a random 
variable having an Exp(4) distribution, we can conclude that the value of 
TTo is the same as that in (a). Actually, we can assert that all the limiting 
probabilities TT̂  are the same as the TT '̂S in (a). Consequently, we have that 
N = 6/13 as well. If we do not recognize the distribution of the service 
time 5, then we must calculate the mean E[S] by integrating by parts, or by 
proceeding as follows: 

/•OO /»00 

E[S] := / s • 64se-^'ds = / GAs'^e'^'ds 
Jo Jo 

sJo 
oo 1 91 1 

fe-^dt = ir(3) = I = i 

Remark. The queueing systems M/M/s {= M/M/s/oo) and M/M/s/s are 
the two extreme cases that can be considered. The model M/M/s/c, with 
5 < c < 00, is the one that can most often represent reality well, because there 
is generally some space where potential customers can wait until being served, 
but this space is not infinite. If the capacity of a queueing system is finite, 
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and if this system is part of a network of queues (see the next subsection), 
then we say that the possibiUty of blocking of the network exists. 

Moreover, we found that for the system M/M/s to attain a stationary 
regime, the condition X < S^JL must be satisfied. That is, the arrival rate of 
customers in the system must be smaller than the rate at which the customers 
are served when the s servers are busy. Otherwise, the length of the queue 
increases indefinitely. However, in practice, some arriving customers will not 
enter the system if they deem that the queue length is too long. Some may 
also decide to leave the system before having been served if they consider that 
they have already spent too much time waiting in line. 

To make the model M/M/s more realistic, we may therefore suppose that 
the customers are impatient A first possibility is to arrange things so that 
the probability that an arriving customer decides to stay in the system and 
wait for her turn depends on the queue length upon her arrival. For example, 
in Exercise no. 4, p. 346, we suppose that the probability r^ that an arriv­
ing customer who finds n persons in the system decides to stay is given by 
l / (n + 1). This assumption leads to a particularly simple solution. We could 
also suppose that r^ = K^, where n G (0,1], etc. 

When the potential customers decide by themselves not to enter the sys­
tem, we speak of a priori impatience. We call a posteriori impatience the case 
when the customers, once entered into the system, decide to leave before hav­
ing been served, or even before their service is completed. This situation may 
be expressed as follows: an arbitrary customer, who entered the system, de­
cides to leave it if Q > to or if T > t i , where to and ti are constants fixed 
in advance. We can also imagine that the time that an arbitrary customer is 
willing to spend in the system (or waiting in line) is a random variable having 
a given distribution (an exponential distribution, for example). 

Example 6.3.4. (a) Suppose that, in the loss system M/M/K/K, for which 
A = /x, the quantity /C is a random variable such that 

^ _ J 1 with probability 1/2 
1̂  2 with probability 1/2 

(i) Calculate the average number of customers in the system in stationary 
regime. 

(ii) For which value of K is the average profit (per time unit) larger if each 
customer pays %x per time unit and each server costs %y per time unit? 

(b) Redo question (i) of part (a) if K is instead a random variable such that 
P[K = fc] = 1/3, for fc = 1, 2, and 3, and if the capacity of the system is 
c = 3, so that potential customers can wait to be served (when iiT = 1 or 2). 

Solution, (a) (i) If K = 1, we have (see the formula (6.96) or (6.98)): 

1 A=M 1 , \/n 1 
« l + A 2 1 + A 2 
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so that E[N \K = 1] = 1/2. When K = 2, we find that 

1 A=^ 2 , 1 

It follows that E[N | /C = 2] = 4/5. Finally, we have 

N^E[N] = ^{E[N\K = 1]+E[N\K = 2]}=^^ 

(ii) If /C = 1, the average profit per time unit, Pr^ is given by $ ( | x — y), 
while P r = $ ( | x - 2 ^) when /C = 2. Therefore, the value i^ = 1 is the one 
for which the average profit is larger if and only if 

1 4 ^ 3 
-x-y> -x-2y <=^ ^ ^ I ^ ^ 

(b) First, if A" = 1 (and c = 3), we have (see the formula (6.49)) TT̂  = 1/4, for 
i = 0,1,2,3. Then E[N \ K = 1] = 3/2. Next, if X = 2, we write the balance 
equations of the system (see Ex. 6.3.2): 

state j departure rate from j = arrival rate to j 

0 ATTO = /iTTi 
(2) 

1 (A + /i)7ri = ATTO + 2/i7r2 
(3) 

2 (A + 2/i)7r2 = ATTI + 2/x7r3 
3 2/x7r3 = A7r2 

When A = /i, we find that (1) implies that TTQ == TTI. Furthermore, (2) then 
implies that 7r2 = 7ri/2. It follows, from (4), that TTS = TTi/i. Making use of 
the condition TTQ + TTI + 7r2 + TTS = 1, we obtain that 

7ro=7ri = —, 7r2 = —, and ^3 = j ^ = > E[N\K^2] = 1 

Finally, with K = 3, we calculate 

1 x=„ 6 1 , 1 
TTO = — - " 2 - — o = — , TTi = TTo, 7r2 = - T T Q , a n d TTs == - T T Q 

so that 

E(A.|A- = 31 = 0 x ^ + I x J L + 2 x A + 3 x l = 15 

The average number of customers in the system (in stationary regime) is 
therefore 

E[N] = i ( ' ^ + i + i ^ ^ = ! 5 ~ 1.146 
^ ^ 3 V 2 16 y 48 
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6.3.3 Networks of queues 

We consider a network made up of k queueing systems. In the ith system, 
there are si servers (each of them serving only one customer at a time), for 
i = 1,2,... , fc. We suppose that the capacity of each system is infinite and 
that customers, coming from outside the network, arrive in system i according 
to a Poisson process with rate 9i. The k Poisson processes are independent. 

After having left the queueing system z, an arbitrary customer goes to 
system j e {1,2,...,A:} with probability pij, so that the probability that the 
customer leaves the network (after having been served in system i) is given 
by 

k 

P i , o : = l - 5 ^ R j > 0 (6.104) 

We assume that the probability that a given customer remains indefinitely 
in the network is equal to zero. Finally, the service times are independent 
exponential random variables with rates /i^, for i = 1 , . . . ,fc, and are also 
independent of the times between the successive arrivals. 

Remarks, i) A network of this type is said to be open^ because the customers 
can enter and leave the system. We could also consider the case when the 
network is closed^ that is, the number of customers is constant, and they 
move indefinitely inside the network. 

ii) Notice that the probability pi^i may be strictly positive, for any i. That is, 
it is possible that a customer, after having departed system i, returns to this 
system immediately. 

Let X{t) := (Xi ( t ) , . . . ,Xk{t))^ where Xi{t) designates the number of 
customers in system i at time t, for i = 1 , . . . ,fc. We want to obtain the 
distribution of X(^) in stationary regime. Let Xj be the total rate at which 
customers arrive in system j . Since the arrival rate into a queueing system 
must be equal to the departure rate from this system, the Aj's are the solution 
of the system of equations 

k 

^J = ^J-^Y^>'iPiJ for j = l , 2 , . . . ,fc (6.105) 

Once this system has been solved, the next theorem, known as Jackson's^ 
theorem, gives us the solution to our problem. 

Theorem 6.3.1. Let Ni := limt-,oo Xi{t). If Xi < Siixi, for i = 1 , . . . , fe, then 

lim P[X(0 = n] = P 
k 

{^{Ni^Ui} 
i = i 

(6.106) 

^ James R. Jackson, emeritus professor at UCLA (University of California, Los 
Angeles), in the United States. 
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where n := ( n i , . . . ^Uk), and Ni is the number of customers in an M/M/si 
queueing system in stationary regime. 

Remarks, i) Under the assumption that all customers eventually leave the 
network, it can be shown that the system (6.105) has a unique solution. 

ii) The statement of the theorem is surprising, because it implies that the 
random variables Ni are independent. If an arbitrary customer cannot return 
to a system he already departed, then the arrivals in each system constitute 
Poisson processes, because the departure process of an M/M/s queue is (in 
stationary regime) a Poisson process with rate A (if A < 5/i). Moreover, these 
Poisson processes are independent. In this case, the result of the theorem is 
easily proved. However, when a customer may be in the same system more 
than once, it can be shown that the arrival processes are no longer Pois­
son processes. Indeed, then the increments of these processes are no longer 
independent. Now, according to the theorem, the random variables are nev­
ertheless independent. 

iii) When there is a single server per system, so that ŝ  = 1, the network 
described above is called a Jackson network. We then deduce from the formula 
(6.11) that 

lim P[(Xi(^) , . . . ,Xfc(^)) = ( m , . . . ,n,)] = n { ^ Y f l - ^ ) (^-^^^^ 

(if \i < jii, for all i). The average number of customers in the network in 

equilibrium is then given by 

Finally, given that the average entering rate of customers (coming from the 
outside) into the network is 

k 

\e = Y.^i (6.109) 

the average time that an arbitrary customer spends in the network is 

- N N 

Example 6.3.5. The simplest example of a Jackson network is that of a sequen­
tial system in which there are two servers and the arriving customers must 
necessarily go the first server, and next directly to the second one. Then they 
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leave the system. We suppose that the first queueing system is an M/M/l 
model, with service rate /xi. Thus, the arrivals in the netAvork constitute a 
Poisson process with rate A. Similarly, we suppose that the capacity of the 
second queueing system is infinite and that the server performs the desired 
service (to only one customer at a time) at an exponential rate jLt2. Finally, 
all the service times and the times between the successive arrivals are inde­
pendent random variables. 

Since the customers cannot find themselves more than once in front of the 
same server, we can assert, if A < /ii, that the departure process of the first 
system (in stationary regime) is also a Poisson process with rate A, so that 
the second queueing system is an M / M / l model as well. We deduce from 
Jackson's theorem that 

Tn,,n, := lim P[{Xi{t),X2{t)) = (ni,n2)] 
t—•oo 

Ml Ml /^2 
(6.111) 

for rii and n2 G { 0 , 1 , . . . }. 
We can show that the formula above is valid by checking that the joint 

limiting probabilities 7rni,n2 satisfy the balance equations of the network. Sup­
pose, to simplify further, that /xi = /X2 := M- These balance equations are then 

state (i, j ) departure rate from (i, j ) = arrival rate to (i , j) 

(0,0) 
(ni ,0) ,ni > 0 
(0 ,n2) ,n2>0 

(ni,n2),nin2 > 0 

A7ro,o =/^^o,i 
(A + /x)7rni,o =M7rni,i + A7rni-i,o 
(A 4- A*)7ro,n2 =M(7''0,n2 + l + ^Ti^na-l) 

(A -f 2jLt)7r^i,n2 = M ( ^ n i , n 2 + l + ^ n i + l , n 2 - l ) 

-hATTni-l 

When /ii = /X2 = A*, we can rewrite the formula (6.111) as follows: 

TTr, 

^ 

ni+n2 

We have, in particular. 

(6.112) 

(A + 2/i)7rni,n2 = /^(^ni,n2 + l + '^m-^l.n^-l) + ^^^711-1,712 

' \ \ ni4-n2 + l 

(A + 2 M ) ( - J =^i 
ni-}-n2 

A + 2/i = /i i i + . 
^ 

4-A 
\^ 

= A-f/i4-/x 

ni —l+n2 

(6.113) 
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By the uniqueness of the solution, under the condition X (̂̂ ĵ ^2) ^^1.^2 — 1' 
we can then conclude that the probabilities 7rni,n2 ^^^ indeed given by the 
formula (6.111). 

Remarks, i) When //i = /X2 = //, the limiting probabilities 7rni,n2 depend 
only on the sum rti + n2. However, the probability TTni,n2 is not equal to the 
probability that there will be exactly ni + n2 customers in the network in 
stationary regime. Indeed, we calculate, for example. 

lim P[Xi{t) + X2{t) = 1] '^ - ' 2 lim P[Xi{t) = l,X2{t) = 0] 

= 2 ( ^ ) ( l - - ) (6.114) 

Moreover, we have 

\\n1-hn2 / A \ 2 / x \ 2 00 / • v \ n i + n 2 

E e '-i^ - '-e E 
ni+n2=0 ^^^ \ ^J \ l^J ni+n2=0 ^ ^ 

while 

l - - V - ^ = ! - - < ! (6.115) 

Y lim P[Xi(t) + X2(<) = m + ns] = 1 (6.116) 
ni+n2=0 

ii) We can also write that 

Ml=/^2 =" ' lim P\Xx{t) = m + n2,X2(t) = 0] 

= lim P[Xi(0 = 0, X2(i) = ni + ns] (6.117) 

More generally, we have 

TTn^n, " '=" ' lim P[Xi(t) = i, X2it) - j] (6.118) 

for all nonnegative integers i and j such that i -\- j = rii + n2' Thus, when 
Ml = M2, all the possible distributions of the ni + n2 customers between the 
two servers are equally likely. 

iii) Finally, the network described in this example is different from the M/M/2 
model, even if the two service rates are equal. Indeed, when there are exactly 
two customers in this network, both these customers may stand in front of 
server 1 (or server 2), whereas, in the case of the M/M/2 model, there must 
be one customer in front of each server. 
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6.4 Exercises 

Remark In the following exercises, we assume that the service times are ran­
dom variables that are independent among themselves and are independent 
of the times between successive arrivals. 

Section 6.2 

Question no. 1 
Calculate the average number of arrivals in the system during the service 

period of an arbitrary customer for the queueing model M/M/1 /3 . 

Question no. 2 
Drivers stop to fill up their cars at a service station according to a Poisson 

process with rate A = 15 per hour. The service station has only one gasoline 
pump, and there is room for only two waiting cars. We suppose that the 
average service time is equal to two minutes. 

(a) Calculate N and NQ. Why is iV ^ iVg + 1? 

(b) If we suppose that an arriving driver who finds the three spaces occupied 
will go to another service station, what proportion of potential customers is 
lost? 

Question no. 3 
Airplanes arrive at an airport having a single runway according to a Pois­

son process with rate A = 18 per hour. The time during which the runway is 
used by a landing airplane has an exponential distribution with mean equal 
to two minutes (from the moment it receives the landing authorization). 

(a) Knowing that there is at most one airplane in the system (at a given time 
instant), what is the probability that an arriving airplane will have to wait 
before being allowed to land? 

(b) Given that an airplane has been waiting for the authorization to land for 
the last 5 minutes, what is the probability that it will have landed and cleared 
the runway in the next 10 minutes? 

Question no. 4 
We suppose that the probability that an arriving customer in an M/M/1 

queueing system decides to stay and wait until being served is given by 
l / (n + 1), where n is the number of customers in the system at the time 
when the customer in question arrives, for n = 0 ,1 ,2 , . . . . 

(a) Calculate N and NQ, 

(b) What is the percentage of customers who decide not to enter the system? 

Question no. 5 
We wish to compare two maintenance policies for the airplanes of a certain 

airline company. In the case of policy A (respectively, B), the airplanes arrive 
to the maintenance shop according to a Poisson process with rate Ayi = 1 
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(resp., XB = 1/4) per day. Moreover, when policy A (resp., B) is used, the 
service time (in days) is an exponential random variable with parameter /x^ = 
2 (resp., the sum of four independent exponential random variables, each of 
them with parameter JJ^B = 2). In both cases, maintenance work is performed 
on only one airplane at a time. 

(a) What is the better policy? Justify your answer by calculating the average 
number of airplanes in the maintenance shop (in stationary regime) in each 
case. 

Indication. The average number of customers in a queueing system M/G/1 
(after a long enough time) is given by 

2(1 - XE[S]) 

where S is the service time and A is the average arrival rate of customers. 

(b) Let N be the number of airplanes in the maintenance shop in stationary 
regime. Calculate the distribution of N if policy A is used, given that there 
are two or three airplanes in the shop (at a particular time instant). 

(c) If policy A is used, what is the average time that an airplane, which has 
already been in the maintenance shop for two days, will spend in the shop 
overall? 

Question no. 6 
We consider a queueing system in which there are two types of customers, 

both types arriving according to a Poisson process with rate A. The customers 
of type I always enter the system. However, the type II customers only en­
ter the system if there is no more than one customer in the system when 
they arrive. There is a single server and the service time has an exponential 
distribution with parameter //. 

(a) Write the balance equations of the system. 

(b) Calculate the limiting probability that an arbitrary type II customer enters 
the system if A = 1 and JJ, = 2. 

Indication. The system considered is a birth and death process. 

(c) Calculate the average time that a given arriving customer of type II will 
spend in the system if A = 1 and fi = 2. 

Question no. 7 
We consider a waiting system with a single server and finite capacity c = 

3, in which the customers arrive according to a Poisson process with rate 
A and the service times are independent exponential random variables with 
parameter // = 2A. When the system is full, a fair coin is tossed to determine 
whether the second or third customer will be the next one to be served, 
(a) Write the balance equations for this system, and calculate the limiting 
probabilities TTJ. 
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(b) Calculate the average time that an arriving customer who finds (exactly) 
one customer in the system will spend in it. 

(c) Calculate the average time that a customer who enters the system will 
spend in it. 

Quest ion no. 8 
Customers arrive at a service facility according to a Poisson process with 

rate A = 10 per hour. The (only) server is able to serve up to three customers 
at a time. The service time (in hours) has an exponential distribution with 
parameter /i = 5, regardless of the number of customers (namely 1, 2, or 3) 
being served at the same time. However, an arbitrary customer is not served 
immediately if the server is busy upon her arrival. Moreover, we suppose that 
the service times are independent random variables and that there can be at 
most three customers waiting at any time. We define the states 

0': nobody is being served 
0: the server is busy; nobody is waiting 
n: there is (are) n customer(s) waiting, for n = 1,2,3 

(a) Write the balance equations of the system. 

(b) Calculate the limiting probabilities TTJ, for all states j . 

(c) What is the probability that an arriving customer will be served alone? 

Quest ion no. 9 (Modification of the preceding question) 
Customers arrive at a service facility according to a Poisson process with 

rate A. The (only) server is able to serve up to two customers at a time. 
However, an arbitrary customer is not served immediately if the server is 
busy upon his arrival. The service time has an exponential distribution with 
parameter fit when the service is provided to i customer(s) at a time, for 
i = 1,2. Moreover, we suppose that the service times are independent random 
variables and that there can be at most two customers waiting at any time. 
We define the states 

0 : nobody is being served 
Uii there is (are) n customer(s) waiting and i customer(s) being served 

for n = 0,1,2 and i = 1,2. 

(a) Write the balance equations of the system. Do not solve them. 

(b) Calculate, in terms of the limiting probabilities, the probability that 
(i) the server is serving two customers at a time, given that he is busy, 
(ii) an arriving customer who enters the system will not be served alone. 

Quest ion no. 10 
Customers arrive into a queueing system according to a Poisson process 

with rate A. There is a single server, who cannot serve more than one customer 
at a time. However, the larger the number of customers in the system is, the 
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faster the server works. More precisely, we suppose that the service time has 
an exponential distribution with parameter fi{k) = -j^l^ when there are k 
customers in the system, for fc = 1,2,... . Moreover, we suppose that the 
service times are independent random variables and that A == 1 and // = 2. 

(a) Calculate the Umiting probabilities TT ,̂ for n = 0 , 1 , . . . . 

(b) Let X{t) be the number of customers in the system at time ,̂ for ^ > 0. 
Calculate E[X{t) \ X{t) < 2] when the system is in equilibrium. 

(c) Let To be the time spent in the system by a customer who arrived, at time 
^0, while the system was empty. Calculate the expected value of To, given that 
the following customer arrived at time ô + 1 and the customer in question 
had already left the system. 

Question no. 11 
Drivers arrive according to a Poisson process with rate A to fill up their 

cars at a service station where there are two employees who serve at the 
exponential rates /xi and 1^2, respectively. However, only one employee works 
at a time serving gasoline. Moreover, there is space for only one waiting car. 
We suppose that 

• when the system is empty and a customer arrives, employee no. 1 fills up 
the car, 

• when employee no. 1 (respectively, no. 2) finishes filling up a car and 
another car is waiting, there is a probability equal to pi (resp., P2) that 
this employee will service the customer waiting to be served, independently 
from one time to another. 

Finally, we suppose that the service times are independent random vari­
ables. 

(a) Let X{t) be the state of the system at time t. Define a state space in such 
a way that the stochastic process {X{t)^t > 0} is a continuous-time Markov 
chain. 

(b) Write the balance equations of the process. 

(c) Calculate, in terms of the limiting probabilities, the probability that 
(i) an arbitrary customer entering the system will be served by employee 

no. 2, 
(ii) two customers arriving consecutively will be served by different em­

ployees, given that the first of these customers arrived while there was exactly 
one car, being filled up by employee no. 1, in the system. 

Question no. 12 
We consider the queueing system M/M/1. However, the customers do not 

have to wait, because the server is able to serve all the customers at one time, 
at an exponential rate /i, regardless of the number of customers being served. 
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Calculate 

(a) the limiting probability, TTn, that there are n customers being served, for 
n = 0 , l , . . . , 

(b) the variance of the number of customers being served when the system is 
in equilibrium. 

Question no. 13 
Suppose that customers arrive at a service facility with a single server 

according to a Poisson process with rate A. The server waits until there are 
four customers in the system before beginning to serve them, all at once. 
The service times are independent random variables, all having a uniform 
distribution on the interval (0,1). Moreover, the system capacity is equal to 
four customers. What fraction of time, TTJ, are there i customer(s) in the 
system, over a long period? 

Indication, Use the results on renewal processes. 

Question no. 14 
Suppose that the times between the arrivals of consecutive customers in 

a certain queueing system are independent random variables uniformly dis­
tributed over the interval (0,1). The service time is exponentially distributed, 
with parameter /x. Finally, the (only) server is able to serve all the customers 
at once, so that there is no waiting. Calculate the limiting probability that 
the server is busy. 

Indication. Use the results on renewal processes. 

Question no. 15 
We modify the M/M/1 /4 queueing system as follows: the server always 

waits until there are at least two customers in the system before serving them, 
two at a time^ at an exponential rate /x. 

(a) Write the balance equations of the system. 

(b) Calculate the limiting probabilities, TT̂ I, for n — 0,1,2,3,4, in the case 
when A = /x, where A is the average arrival rate of the customers. 

(c) With the help of the limiting probabilities calculated in (b), find 
(i) the probability that the system is not empty at the moment w^hen the 

server has just finished serving two customers, 
(ii) the variance of the number X{t) of customers in the system (in equi­

librium) at time t, given that X{t) <2. 

Section 6.3 

Question no. 16 
Customers arrive according to a Poisson process with rate A at a bank 

where two clerks work. Clerk 1 (respectively, 2) serves at an exponential rate 
fjii (resp., 112)' We suppose that the customers form a single queue and that. 
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when the system is empty, an arriving customer will go to clerk 1 (resp., 2) 
with probability pi (resp., 1—pi). On the other hand, when a customer must 
wait, she will eventually be served by the first available clerk. We also suppose 
that an arbitrary customer can enter the bank only if there are no more than 
10 customers waiting in fine. We say that the system is in state n = 0 ,2 , . . . 
if there are ii customers in the bank, and in state l i (resp., I2) if there is 
exactly one customer in the bank and if this customer is being served by clerk 
1 (resp., 2). 

(a) Write the balance equations of the system. 

(b) In terms of the limiting probabilities, what is the probability that an 
entering customer will be served by clerk 1? 

Question no. 17 
In a certain garage, there are three mechanics per work shift of eight hours. 

The garage is open 24 hours a day. Customers arrive according to a Poisson 
process with rate A = 2.5 per hour. The time a mechanic takes to perform 
an arbitrary task is an exponential random variable with mean equal to 30 
minutes. 

(a) What proportion of time are all the mechanics busy? 

(b) How much time, on average, must a customer wait for his car to be ready? 

Question no. 18 
In a small train station, there are two counters where the travelers can buy 

their tickets, but the customers form a single waiting line. During the slack 
hours, only one counter is manned continuously by a clerk. When there is at 
least one customer waiting to be served, the second clerk opens his counter. 
When this second clerk finishes serving a customer and there is nobody wait­
ing, he goes back to attending to other tasks. We suppose that the clerks both 
serve in a random time having an exponential distribution with parameter fi 
and that, during the slack hours, the customers arrive according to a Poisson 
process with rate A. We also suppose that the slack period lasts long enough 
for the process to reach a stationary regime. The state X{t) of the system 
is defined as being the total number of customers present in the system at 
time t. 

(a) Calculate the limiting probabilities of the process {X{t),t > 0} if A < 2//. 

(b) Write the balance equation for the state I2 corresponding to the case when 
only the second clerk is busy (serving a customer). 

(c) What fraction of time is the second counter open? 

Question no. 19 
Customers arrive at a hairdresser's salon according to a Poisson process 

with rate A = 8 per hour. There are two chairs, and the two hairdressers' ser­
vice times are exponential random variables with means equal to 15 minutes. 
Moreover, currently, there is no room where potential customers could wait 
for their turn to have their hair cut. 
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(a) The owner considers the possibiHty of enlarging the salon, so that she could 
install an additional chair and hire a third hairdresser. This, would increase 
her operation costs by $20 per hour. If each customer pays $10, would the 
enlargement be profitable? Justify. 

Indication, Calculate the average rate at which customers enter the salon. 

(b) Another possibility the owner considered consists of enlarging the salon to 
install a chair where one potential customer could wait to be served. In this 
case, the increase in operation costs would be equal to $5 per hour. Would 
this possibility be profitable? Justify. 

Quest ion no. 20 
We consider the queueing system M/M/2 /3 (see Example 6.3.2). 

(a) Write the balance equations of the system, and calculate the limiting 
probabilities TTJ if A = 2//. 

(b) Let T* be the total time that an entering customer will spend in the 
system. Calculate the expected value of T* if // = 1. 

(c) Suppose that the customers form two waiting lines, by standing at random 
in front of either server. Calculate, with /x = 1, the average time that an 
arbitrary customer who enters the system, and finds two customers already 
present, will spend in this system if we assume that the number of customers 
in each queue is then a random variable having a binomial distribution with 
parameters n = 2 and p = 1/2. 

Quest ion no. 21 
We consider a queueing system with two servers. The customers arrive 

according to a Poisson process with rate A = 1, and the system capacity is 
equal to four customers. The service times are independent random variables 
having an exponential distribution. Each server is able to serve two customers 
at a time. If a server attends to only one customer, he does so at rate fi = 2, 
whereas the service rate is equal to 1 when two customers are served at the 
same time. 

Indication, If two customers are served together, then they will leave the 
system at the same time. Moreover, if there are two customers in the system, 
then one of the servers may be free. 

(a) Write the balance equations of the system. 

(b) Let T* be the total time that a given customer entering the system will 
spend in it. 

(i) Calculate, in terms of the limiting probabilities, and supposing that no 
customers arrive during the service period of the customer in question, the 
distribution function of T*, 

(ii) Under the same assumption as in (i), does the random variable T* 
have the memoryless property? Justify. 
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Question no. 22 
Customers arrive according to a Poisson process with rate A = 5 per hour 

in a system with two servers. The probabihty that an arbitrary customer 
goes to server no. 1 (respectively, no. 2) is equal to 3/4 (resp., 1/4). The 
service times (in hours) are independent exponential random variables with 
parameters fix = 6 and 112 — 4, respectively. A customer who goes to server 
no. 2 immediately leaves the system after having been served. On the other 
hand, after having been served by server no. 1, a customer (independently 
from one time to another) 

leaves the system with probability 1/2 
goes to server no. 2 with probability 2/5 
returns in front of server no. 1 with probability 1/10 

Moreover, there is no limit on the number of customers who can be in the 
system at any time. 

Let (n, m) be the state of the system when there are n customers in front 
of server no. 1 and m customers in front of server no. 2. 

(a) Calculate 7r(^^^), for all n, m > 0. 

(b) Calculate the average number of customers in the system at a large enough 
time instant, given that the system is not empty at the time in question. 

(c) What is the average time that an arbitrary customer who arrives in the 
system and goes to server no. 1 will spend being served by this server before 
leaving the system if we suppose that the customer in question never goes to 
server.no. 2? 

Question no. 23 
Customers arrive according to a Poisson process with rate A outside a bank 

where there are two automated teller machines (ATM). The two ATMs are 
not identical. We estimate that 30% of the customers use only ATM no. 1, 
while 20% of the customers use only ATM no. 2. The other customers (50%) 
make use of either ATM indifferently. The service times at each ATM are 
independent exponential random variables with parameter /i. Finally, there is 
space for a single waiting customer. We define the states 

0: the system is empty 
(n, m): there are n customers for ATM no. 1 and m customers 

for ATM no. 2, for 1 < n + m < 2 
3: the system is full 

(a) Write the balance equations of the system. Do not solve them. 

(b) Calculate, in terms of the limiting probabilities, 
(i) the variance of the number of customers who are waiting to use an 

ATM, 
(ii) the average time that an arbitrary customer, who enters the system 

and wishes to use ATM no. 2, will spend in the system. 



354 6 Queueing Theory 

Quest ion no. 24 
We consider a queueing system in which ordinary customers arrive accord­

ing to a Poisson process with rate A and are served in a random time having 
an exponential distribution, with parameter /i, by either of two servers. Fur­
thermore, there is a special customer who, when she arrives in the system, is 
immediately served by server no. 1, at an exponential rate jU .̂ If an ordinary 
customer is being served by server no. 1 when the special customer arrives, 
then this customer is returned to the head of the queue. We suppose that 
the service times are independent random variables and that the special cus­
tomer spends an exponential time (independent of the service times), with 
parameter A ,̂ outside the system between two consecutive visits. 

(a) Suppose that if an arbitrary customer is returned to the queue, then he 
will resume being served as soon as either server becomes available. Define an 
appropriate state space, and write the balance equations of the system. 

(b) Suppose that the system capacity is c = 2, but that if a customer is 
displaced by the special customer, then she will wait, a few steps behind, until 
server no. 1 becomes available to resume being served by this server (whether 
server no. 2 is free or not). Define a state space such that the stochastic process 
{X{t)^t > 0}, where X{t) represents the state of the system at time t, is a 
continuous-time Markov chain. 

(c) Suppose that the system capacity is c = 2 and that, if a customer is dis­
placed by the special customer, then he will go to server no. 2 only if this 
server is free upon the arrival of the special customer in the system. Other­
wise, he will wait, a few steps behind, before server no. 1 becomes available. 
Let K be the number of times that a given customer, who has started re­
ceiving service from server no. 1, will be displaced by the special customer. 
Calculate P[K = 1] in terms of the limiting probabilities of the system (with 
an appropriate state space). 

Quest ion no. 25 
Let N be the number of customers in an M/G/2/2 (loss) system after a 

time long enough for the system to be in stationary regime. 

(a) Calculate V[N \ N > 0] ii the service time, S, has a uniform distribution 
on the interval (0,1) and if the average arrival rate of customers in the system 
is A = 4. 

(b) Calculate V[N \ X = 1/A] ii S has an exponential distribution with pa­
rameter 1/X, where X ^ U(0,1) and A = 2. 

Quest ion no. 26 
Suppose that we modify the M/M/2 queueing system as follows: when a 

server is free, he assists (if needed) the other server, so that the service time, 5, 
has an exponential distribution with parameter 2/i. If a new customer arrives 
while a customer is being served by the two servers at the same time, then 
one the servers starts serving the new customer. 
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(a) Calculate the limiting probabilities if we suppose that A < 2/i. 

(b) Suppose that the system capacity is c = 2 and that A = /i. Calculate the 
average number of customers in the system in stationary regime, given that 
the system is not full. 

Question no. 27 
Let X{t) be the number of customers at time t > 0 in a queueing sys­

tem with s servers and finite capacity c, for which the time r between two 
consecutive arrivals is a random variable such that /r(^) = 2te~* , for ^ > 0. 
We assume that the times between the arrivals of customers are independent 
and identically distributed random variables. Similarly, the service times are 
independent random variables having, for each server, the same probability 
density function as r . We define the stochastic process {Y{t),t > 0} by 

Y{t) = X{g{t)) iovt>0 

where g{t) is a one-to-one function of t. Find a function g such that {Y{t), 
t > 0} is an M/M/s queueing system with A = /x = 1 (and finite capacity c). 
Justify. 

Question no. 28 
We consider the loss system M/G/2 /2 . Suppose that the service times 

have independent exponential distributions with parameter O, where 0 is a 
random variable such that 

fe{e) = l{2e^^2e^l) f o r O < ^ < l 
o 

Suppose also that the average arrival rate of customers is A = 1. Calculate, 
assuming they exist, the limiting probabilities TTJ, for i = 0,1,2. 

Question no. 29 
In the M/M/2 queueing system, we define the random variable S as being 

the first time that both servers are busy. Let 
F — exactly two customers arriving in the interval (0,t]. 

Calculate P[5 < ^ | F]. 

Question no. 30 
A hairdresser and her assistant operate a salon. There are two types of 

customers: those of type I prefer to have their hair cut by the hairdresser but 
are willing to be served by her assistant, while those of type II want to be 
served by the assistant only. The type I (respectively, type II) customers arrive 
at the salon according to a Poisson process with rate Ai (resp., A2). Moreover, 
the two Poisson processes are independent. Finally, the hairdresser (resp., 
the assistant) serves in a random time having an exponential distribution 
with parameter //i (resp., 112), and the service times are independent random 
variables. Answer the following questions, supposing that there is no room 
where potential customers can wait until being served: 
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(a) define a state space that enables you to answer part (c); 

(b) write the balance equations; 

(c) give, in terms of the limiting probabilities, 

(i) the average number of customers in the system; 
(ii) the average time that an arbitrary entering customer will spend in the 

system. 

Question no. 31 
Redo the preceding question, supposing that the system capacity is infinite 

and that 

(a) only the potential type I customers are willing to wait until being served 
(those of type II go away if the assistant is busy), 

(b) only the potential type II customers are willing to wait until being served 
(those of type I go away if the hairdresser and her assistant are busy), 

(c) all the potential customers are willing to wait until being served. 

Question no. 32 
Suppose that in the queueing system M/M/2/c , with c = 3, server no. 1 

serves only one person at a time, at rate //i , while server no. 2 can serve one 
or two persons at a time, from any time instant, at rate f^'z- Moreover, when 
server no. 1 is free, an arriving customer'will go to this server. 

(a) Let X{t) be the number of persons in the system at time t. Define a state 
space such that the stochastic process {X{t)^t > 0} is a continuous-time 
Markov chain. 

Remark. Server no. 1 may be free while server no. 2 serves two customers at a 
time. That is, the two customers finish their service period with server no. 2. 

(b) Write the balance equations of the system. Do not solve them. 

(c) In terms of the limiting probabilities, what fraction of time does server 
no. 2 serve two customers at a time, given that she is busy? 

Question no. 33 
Redo the preceding question, supposing that the system capacity is instead 

c = 4 and that server no. 2 can serve one or two persons at a time (at rate 
fi2) but only from the same time instant. 
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A.l: Distribution Function of the Binomial Distribution 
A.2: Distribution Function of the Poisson Distribution 
A.3: Distribution Function of the N(0,1) Distribution 
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Table A.l. Distribution Function of the Binomial Distribution 

n 
rT" 

3 

4 

5 

10 

15 

X 

0 
1 

0 
1 
2 

0 
1 
2 
3 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0 
1 
2 
3 

P ^ ___J 
0.05 

0.9025 

0.9975 

0.8574 

0.9927 

0.9999 

0.8145 

0.9860 

0.9995 

1.0000 

0.7738 

0.9774 

0.9988 

1.0000 

1.0000 

0.5987 

0.9139 

0.9885 

0.9990 

0.9999 

1.0000 

0.4633 

0.8290 

0.9638 

0.9945 

0.10 

0.8100 

0.9900 

0.7290 

0.9720 

0.9990 

0.6561 

0.9477 

0.9963 

0.9999 

0.5905 

0.9185 

0.9914 

0.9995 

1.0000 

0.3487 

0.7361 

0.9298 

0.9872 

0.9984 

0.9999 

1.0000 

0.2059 

0.5490 

0.8159 

0.9444 

0.20 

0.6400 

0.9600 

0.5120 

0.8960 

0.9920 

0.4096 

0.8192 

0.9728 

0.9984 

0.3277 

0.7373 

0.9421 

0.9933 

0.9997 

0.1074 

0.3758 

0.6778 

0.8791 

0.9672 

0.9936 

0.9991 

0.9999 

1.0000 

0.0352 

0.1671 

0.3980 

0.6482 

0.25 

0.5625 

0.9375 

0.4219 

0.8438 

0.9844 

0.3164 

0.7383 

0.9493 

0.9961 

0.2373 

0.6328 

0.8965 

0.9844 

0.9990 

0.0563 

0.2440 

0.5256 

0.7759 

0.9219 

0.9803 

0.9965 

0.9996 

1.0000 

0.0134 

0.0802 

0.2361 

0.4613 

0.40 

0.3600 

0.8400 

0.2160 

0.6480 

0.9360 

0.1296 

0.4752 

0.8208 

0.9744 

0.0778 

0.3370 

0.6826 

0.9130 

0.9898 

0.0060 

0.0464 

0.1673 

0.3823 

0.6331 

0.8338 

0.9452 

0.9877 

0.9983 

0.9999 

0.0005 

0.0052 

0.0271 

0.0905 

0.50 

0.2500 j 

0.7500 

0.1250 

0.5000 

0.8750 

0.0625 

0.3125 

0.6875 

0.9375 

0.0313 

0.1875 

0.5000 

0.8125 

0.9688 

0.0010 

0.0107 

0.0547 

0.1719 

0.3770 

0.6230 

0.8281 

0.9453 

0.9893 

0.9990 

0.0000 

0.0005 

0.0037 

0.0176 



Appendix A: Statistical Tables 359 

1 n 
15 

20 

X 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

, 18 

Table A.l, Continued 

P ___^__ 
0.05 

0.9994 
0.9999 
1.0000 

0.3585 
0.7358 
0.9245 
0.9841 
0.9974 
0.9997 
1.0000 

0.10 
0.9873 
0.9977 
0.9997 
1.0000 

0.1216 
0.3917 

0.6769 
0.8670 
0.9568 
0.9887 
0.9976 
0.9996 
0.9999 
1.0000 

0.20 

0.8358 
0.9389 
0.9819 
0.9958 
0.9992 
0.9999 
1.0000 

0.0115 
0.0692 
0.2061 
0.4114 
0.6296 
0.8042 
0.9133 
0.9679 
0.9900 
0.9974 
0.9994 
0.9999 
1.0000 

0.25 

0.6865 
0.8516 
0.9434 
0.9827 
0.9958 
0.9992 
0.9999 
1.0000 

0.0032 
0.0243 
0.0913 
0.2252 
0.4148 
0.6172 
0.7858 
0.8982 
0.9591 
0.9861 
0.9961 
0.9991 
0.9998 
1.0000 

0.40 
0.2173 
0.4032 
0.6098 
0.7869 
0.9050 
0.9662 
0.9907 
0.9981 
0.9997 
1.0000 

0.0000 
0.0005 
0.0036 
0.0160 
0.0510 
0.1256 
0.2500 
0.4159 
0.5956 
0.7553 
0.8725 
0.9435 
0.9790 
0.9935 
0.9984 
0.9997 
1.0000 

0.50 
0.0592 
0.1509 
0.3036 
0.5000 
0.6964 
0.8491 
0.9408 
0.9824 
0.9963 
0.9995 
1.0000 

0.0000 
0.0002 
0.0013 
0.0059 
0.0207 
0.0577 
0.1316 
0.2517 
0.4119 
0.5881 
0.7483 
0.8684 
0.9423 
0.9793 
0.9941 
0.9987 
0.9998 
1.0000 
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X 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

: 19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Tabl( 3 A.2. Distribution Function of the Poisson Dist ribution 

_ _ _ _ _ _ _ -

0.5 

0.6065 

0.9098 

0.9856 

0.9982 

0.9998 

1.0000 

1 1.5 

0.3679 0.2231 

0.7358 0.5578 

0.9197 0.8088 

0.9810 0.9344 

0.9963 0.9814 

0.9994 0.9955 

0.9999 0.9991 

1.0000 0.9998 

1.0000 

2 

0.1353 

0.4060 

0.6767 

0.8571 

0.9473 

0.9834 

0.9955 

0.9989 

0.9998 

1.0000 

5 

0.0067 

0.0404 

0.1247 

0.2650 

0.4405 

0.6160 

0.7622 

0.8666 

0.9319 

0.9682 

0.9863 

0.9945 

0.9980 

0.9993 

0.9998 

0.9999 

1.0000 

10 

0.0000 

0.0005 

0.0028 

0.0103 

0.0293 

0.0671 

0.1301 

0.2202 

0.3328 

0.4579 

0.5830 

0.6968 

0.7916 

0.8645 

0.9165 

0.9513 

0.9730 

0.9857 

0.9928 

0.9965 

0.9984 

0.9993 

0.9997 

0.9999 

1.0000 

15 

0.0000 

0.0002 

0.0009 

0.0028 

0.0076 

0.0180 

0.0374 

0.0699 

0.1185 

0.1848 

0.2676 

0.3632 

0.4657 

0.5681 

0.6641 

0.7489 

0.8195 

0.8752 

0.9170 

0.9469 

0.9673 

0.9805 

0.9888 

0.9938 

0.9967 

0.9983 

0.9991 

0.9996 

0.9998 

0.9999 

1.0000 

20 

0.0000 

0.0001 

0.0003 

0.0008 

0.0021 

0.0050 

0.0108 

0.0214 

0.0390 

0.0661 

0.1049 

0.1565 

0.2211 

0.2970 

0.3814 

0.4703 

0.5591 

0.6437 

0.7206 

0.7875 

0.8432 

0.8878 

0.9221 

0.9475 

0.9657 

0.9782 

0.9865 

0.9919 

0.9953 
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1 z 
\ ^ 
0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

Table A.3. Distribution Function of the 

+0.00 

0.5000 

0.5398 

0.5793 

0.6179 

0.6554 

0.6915 

0.7257 

0.7580 

0.7881 

0.8159 

0.8413 

0.8643 

0.8849 

0.9032 

0.9192 

0.9332 

0.9452 

0.9554 

0.9641 

0.9713 

0.9772 

0.9821 

0.9861 

0.9893 

0.9918 

0.9938 

0.9953 

0.9965 

0.9974 

0.9981 

+0.01 

0.5040 

0.5438 

0.5832 

0.6217 

0.6591 

0.6950 

0.7291 

0.7611 

0.7910 

0.8186 

0.8438 

0.8665 

0.8869 

0.9049 

0.9207 

0.9345 

0.9463 

0.9564 

0.9649 

0.9719 

0.9778 

0.9826 

0.9864 

0.9896 

0.9920 

0.9940 

0.9955 

0.9966 

0.9975 

0.9982 

+0.02 

0.5080 

0.5478 

0.5871 

0.6255 

0.6628 

0.6985 

0.7324 

0.7642 

0.7939 

0.8212 

0.8461 

0.8686 

0.8888 

0.9066 

0.9222 

0.9357 

0.9474 

0.9573 

0.9656 

0.9726 

0.9783 

0.9830 

0.9868 

0.9898 

0.9922 

0.9941 

0.9956 

0.9967 

0.9976 

0.9982 

+0.03 

0.5120 

0.5517 

0.5910 

0.6293 

0.6664 

0.7019 

0.7357 

0.7673 

0.7967 

0.8238 

0.8485 

0.8708 

0.8907 

0.9082 

0.9236 

0.9370 

0.9484 

0.9582 

0.9664 

0.9732 

0.9788 

0.9834 

0.9871 

0.9901 

0.9925 

0.9943 

0.9957 

0.9968 

0.9977 

0.9983 

+0.04 

0.5160 

0.5557 

0.5948 

0.6331 

0.6700 

0.7054 

0.7389 

0.7704 

0.7995 

0.8264 

0.8508 

0.8729 

0.8925 

0.9099 

0.9251 

0.9382 

0.9495 

0.9591 

0.9671 

0.9738 

0.9793 

0.9838 

0.9875 

0.9904 

0.9927 

0.9945 

0.9959 

0.9969 

0.9977 

0.9984 

+0.05 

0.5199 

0.5596 

0.5987 

0.6368 

0.6736 

0.7088 

0.7422 

0.7734 

0.8023 

0.8289 

0.8531 

0.8749 

0.8944 

0.9115 

0.9265 

0.9394 

0.9505 

0.9599 

0.9678 

0.9744 

0.9798 

0.9842 

0.9878 

0.9906 

0.9929 

0.9946 

0.9960 

0.9970 

0.9978 

0.9984 

N(0,1) 

+0.06 

0.5239 

0.5636 

0.6026 

0.6406 

0.6772 

0.7123 

0.7454 

0.7764 

0.8051 

0.8315 

0.8554 

0.8770 

0.8962 

0.9131 

0.9279 

0.9406 

0.9515 

0.9608 

0.9686 

0.9750 

0.9803 

0.9846 

0.9881 

0.9909 

0.9931 

0.9948 

0.9961 

0.9971 

0.9979 

0.9985 

Distribution 

+0.07 

0.5279 

0.5675 

0.6064 

0.6443 

0.6808 

0.7157 

0.7486 

0.7794 

0.8078 

0.8340 

0.8577 

0.8790 

0.8980 

0.9147 

0.9292 

0.9418 

0.9525 

0.9616 

0.9693 

0.9756 

0.9808 

0.9850 

0.9884 

0.9911 

0.9932 

0.9949 

0.9962 

0.9972 

0.9979 

0.9985 

+0.08 

0.5319 

0.5714 

0.6103 

0.6480 

0.6844 

0.7190 

0.7517 

0.7823 

0.8106 

0.8365 

0.8599 

0.8810 

0.8997 

0.9162 

0.9306 

0.9429 

0.9535 

0.9625 

0.9699 

0.9761 

0.9812 

0.9854 

0.9887 

0.9913 

0.9934 

0.9951 

0.9963 

0.9973 

0.9980 

0.9986 

+0.09 

0.5359 

0.5753 

0.6141 

0.6517 i 

0.6879 

0.7224 

0.7549 

0.7852 

0.8133 

0.8389 

0.8621 

0.8830 

0.9015 

0.9177 

0.9319 

0.9441 

0.9545 

0.9633 

0.9706 

0.9767 

0.9817 

0.9857 

0.9890 

0.9916 

0.9936 

0.9952 

0.9964 

0.9974 

0.9981 

0.9986 1 
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Table A.3. Continued 

+0.00 4-0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09 
3.0 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 

0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 

0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 

0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 

0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 

0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 

0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 



Appendix B: Answers to Even-Numbered 
Exercises 

Chapter 1 

2. (a) -0.0062; (b) ~0.80. 
4. 1 - 7r/8 (~0.6073). 
6. 379/2187 (~0.1733). 
8. 244/495 (~0.4929). 
10. 1/3. 
12. 

2 
c e'̂  - (1 + c) 

16. (a) Y ~ U[0,1]; (b) g{x) = 2Fx{x) + 1. 
18. (a) 2/3; (b) 1/3; (c) 8/3. 
20. (a) ~0.3591; (b) ~0.3769; (c) ~0.1750. 
22. (a) ~0.4354; (b) ~$781.80; (c) ~81.5%. 
24. (b) (i) 0.1837; (ii) 2; (c) y ^ -
26. (a) 

fY,X2iVu 2/2) = ^;^ ^^P I 2 ^ (^^1 + ^^2 - 62/12/2 - 2yifi + 2/i2) | 

foral l (yi ,y2)€]K^ (b) 3^2. 
32. (b) V{X]/2. 
3^.fz\xiz\x) = fYiz-x). 
36. (a) 

(b) fzi^) does noi tend to a Gaussian density. The central limit theorem does 
not apply, because V[Xk] = 00 V A; (and, actually, E[Xk] does not exist). 
38. (a) r / 2 ; (b) 1/2. 
40. (a) 1/8; (b) 7/144; (c) ~ 0.9667. 
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42. (a) 

(b) e - ^ (c) l / y 2 ; (d) c». 
44. (a) 

r 0 i f y < x i 
•FV|Xi(y \xi) = <yiixi<y <1 

[ 1 if J/ > 1 

(b) 1 (1+xf ) ; ( c ) 1/45; (d) 1/30. 
46. (a) 3/4; (b) 13/24; (c) 0; (d) Xf + fXi + i . 
48. 1 - e- i (~0.6321). 
50. 

/X1X2...X30 {x) ^ -1^-^ exp I - ^ ^ 1 for X > 0 

54. (a) Xi+X2 + \; (b) \{Xi + X2 + X3); (c) 1/18. 

Chapter 2 

2. (a) p(l — p); (b) 0 if n 7̂  m and 1 if n = m. 
4. t/(2x2). 
6. The increments are not independent, but they are stationary. 
8. (a) 

/ ( X ; < ) = / K ( ^ - ^ ) 1 for X 6(0,1] 

(b) E[X{t)] = 1/(1 + f) and RxihM) = E[X{h+t2)]. 
10. No, since E[X{t)] (= (1 - e-*)/t) depends on t. 
12. No, because £'[y(f)] (= t) depends on t. 
14. E[X{t)X{t + s)] = £'[y<'f(t + s)\ = t(t + s)/7 ^ Rxis). Consequently, the 
process is not WSS and therefore not SSS. 
16. SY{OJ) = 2(1 - cosa;)5x(a;). 
18. h{0)q{t). 
20. Cx(fci,fc2) =Cx(fe2-fci) = Oif A;2-fei 7^0andCx(A;2-fci) = p ( l - p ) if 
k^-ki = 0. Since mx{k) = p, the process is WSS. We have that Cx(0) < 00 
and Um|fe|_»oo Cx{k) = 0. It follows that the process is mean ergodic. 
22. Yes, because Cx{0) = i?x(0) = 1 < 00 and Iim|s|_oo Cx{s) = 0. 
24. c/2T. 
26. (a) e-'^"; (b) {Y,Z) ~ N(/xy = 0,/.z = 0 ; 4 = 2 , ( T | = 2;/> = 0). 
28. (a) and (b) No, because E[Y{t)] {= e~*) is not a constant. 
30. m(j/o; to) = Vo/2 and u(j/o;*o) = VQ-
32. (a) N(0,2); (b) 2e-^'; (c) 4 ( l +e-8«) . 
34. ( a )N(0 , l ) ; ( b )U( l , 2 ) . 
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Chapter 3 

2. (a) 1/4; (b) (i) 0; (ii) no, because E[Y{t)] {= t/2) is not a constant; (iii) 1/2. 
4. 11/12. 
6. 2/3. 
8. 0.1465. 
10. 

^1/4 1/2 1/4' 
1/2 1/2 0 

_l/4 1/2 l/4_ 

12. 2/3. 
14. (a) Aperiodic, because it is irreducible and PQ^Q > 0; (b) 

22. (b) g - p if p < 1/2; 0 if p = 1/2; p - q ii p > 1/2; (c) 0 if p < 1/2; 
(g/p)'^-i[l - (g/p)], for fc = 1,2,.. . , if p > 1/2. 
24. (a) A single class, which is recurrent and aperiodic; (b) TTI = 1/5, for all i; 
(c) no. 
28. (b) 

1 ^ 1 

(fc + 1)! \e-l 
30. (a) 0 < a < 1; (b) 

TTO 
4a 1 

4 a + 3 ' 
TTi = 

4 a + 3 ' 
7r2 

4 a + 3 

32. (a) 1 (because the chain is irreducible and po,o > 0); (b) TTQ = 3/7, TTI 
2/7,7r2 - TTs - 1/7; (c) (i) c^O.1716; (ii) 1. 
34. (a)P(^) =P(2) , where 

p(2) 
1 — p 0 p 

0 1 0 
1 — p 0 p 

if n is even, and P^^^ = P if n is odd; (b) d = 2; (c) (i) TTQ = (1 - p ) / 2 ; (ii) no, 
because this limit does not exist (since d = 2). 
36. (a) TTo = 2/3 and TTJ = (1/4)^ for j := 1,2,.. .; (b) 1. 
38. (a) TTo = TTs - 1/6, TTi =TT2 = 1/3; (b) d = 2; (c) 2/3. 
40. (a) (i) 

" 1 0 0 0 0 
1/4 1/2 1/4 0 0 
0 1/4 1/2 1/4 0 
0 0 1/4 1/2 1/4 
0 0 0 0 1 



366 Appendix B: Answers to Even-Numbered Exercises 

(ii) yes; TT̂  = 7r| = 1/2 and TT* = 0, for j = 1,2,3; (b) 1/4. 
42. (a) 0 < a < 1, 0 < ^ < 1; (b) TTQ = TTS = 2/5 and TTI = 1/5; (c) (i) 2/3; 
(ii) 1/4 + a/2. 
44. (a) a:^l, (3^ 0; (b) TTQ = 1/9, TTI = 5/9, and 7r2 = 1/3; (c) a = 1/2 and 
P = l; (d) 3. 
46. 

lim p[ 

and 

hm PIJ lim p^^] = { 0 if j = l 

48. (a) 1/2; (b) we have 

2KTH-Kr-47ro* + l = 0 

We can check that the value (1/2)^ = 1/4 is not a solution of the equation, 
so that TTQ ^ TTQ. 
50. 

n—»oo~ 
lim '̂*̂  ^ f 1 if j = 1 

'—̂  -- ̂ 1 'i 1̂  0 otherwise 

and 

lim p^Q^. = lim p̂ ""] lim p\ 
(n) 

f 2 / 5 i f i = 0 
0 i f j = l 

l / 5 i f i = 2 
[ 2/5 if i = 3 

52. (a) - 1 -I- \/2 (~0.4142); (b) for example, po = P2 = Ps = 1/3 and pi = 0. 
54. (a) The state space is {0,1,2}, and the matrix P is given by 

(1 - pi){l - P2) P1+P2- 2piP2 P1P2 
I — p p 0 

(1 -pi){l -P2) Pi +P2 -2piP2PlP2 

where pi := e ^*, for i = 1,2, and 

P'=Pi 
Ao 

Ai + Â  
+ P2 

Ai 

A1+A2 

(b) Yes, by the memoryless property of the exponential distribution. We cal­
culate 

^(1 - pi)(l - P2) pi{l - P2) (1 - P\)P2 P1P2 
l-pi pi 0 0 
1 - P2 0 P2 0 

[(1 - P l ) ( l -P2)pi{l -P2) (1 -Pl)P2PlP2\ 

56. (a) There are 3^ = 9 possible states: 0 = (0,0), 1 = (0,1), 2 = (0,2), 
3 = (1,0), 4 = (1,1), 5 = (1,2), 6 = (2,0), 7 = (2,1), 8 = (2,2). We find that 
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2pp0p00000' 
p p p OpO 0 0 0 
0p2p00p000 
p 0 0 ppO p 0 0 
OpO pOp OpO 
0 0 p Opp 0 0 p 
00 0p00 2pp0 
0 0 0 OpO p p p 
00000p0p2p 

where p = 1/4; (b) TT̂  = 1/9, for all i. 
58. n. 
60. (a) P[N = 1] = (1/2)^-1 and P[N = i] = ( l /2)^-^+\ for i = 2 , 3 , . . . ,n; 
(b) {n - l)/(2/x); (c) G(a = n-l,X = 2/x). 
62. (a) 

'l/N 1/N l/N ,,. 1/N 1/N l/N' 

P = 
0 2/Nl/N 

0 
0 

0 0 
0 0 

1/N 1/N 1/N 

0 {N- 1)/N 1/N 
0 0 1 

(b) (i) We have 

rrii 
i 1 

' ^"^ iV^ ' "^ iV^^'"^^ + . . . + miv) for i = l,.,. ,N -1 

We find, with TUN = 0, that m^ = N; (ii) m^ = E[Geom{p := 1/N)] = AT, for 
i = l , . . . ,N-1. 
64. (a) ~0.00002656; (b) c:̂ 0.8794; (c) ~ -$20 . 
66. (a) 

p = 

-4 
-2 
-1 
0 
1 

1/2 0 0 0 1/2 
1/2 0 0 1/2 

1/2 0 1/2 
1/2 0 1/2 

1/2 0 1/2 

(b) 7r_4 = 7r_2 = 1/16, 7r_i = 1/8, and TVQ = TTI = 7T2 = 1/4; (c) 3/8 . 
68. TTj = pj V j . 
70. (a) 9/4. 
72. (c) n /2^ -1 . 
76. (a) 30/37; (b) 16/37; (c) 4/19. 
78. (a) :^0.1170; (b) ~0.0756. 
82. (a) 1 + Xt; (b) TTQ = 1 and TTA, - 0, for A: = 1,2,...; (c) (A^)V(l + A^)^. 
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84. (b) e-'^^ie^^ - 1); (c) the TT '̂S do not exist, because {X{u),u > 0} is a 
pure birth process. 
86. (a) a = 0; (b) TTQ = 10/27, TTI = 8/27, and 7r2 = 9/27. 
88. (a) No, because the time r that the process spends in either state does not 
have an exponential distribution, since P[T > t] = ^e~* + |e~^*; (b) cr:0.2677. 
90. 12(1 - e-2*)/(3 - 2e-2). 
92. (a) Ao = 2A and A^ = yUn = A, for n = 1,2,.. . ; (b) the TT/S do not exist. 
94. (a) Ao = 2A, Ai = A/2, fn = 3A/2, and 1^2 = 2A; (b) 1/2; (c) TTQ = 3/8, 
TTi = 1/2, and 7r2 = 1/8. 
96. 

Jfr^(.e-<-....)'(,-e—.f-' 
98. (a) We define the states 

0: the machine is functioning 
1: failure of type 1 
2: failure of type 2; first repairing operation 
3: failure of type 2; second repairing operation 

(b)/x/[M + ( 2 - a ) A ] . 

Chapter 4 

2. (a) 0; (b) f + min{t2,^ + r } + min{t, (t + r)2}4-^^; (c) (i) yes; (ii) no, because 
Cov[X(t),X(t + r)] depends on t; (iii) no, since Cov[X(t),X(t + r)] 7̂  aH; 
(d) 

PB(t),B(t^) = 1^-1/2 if ^ ^ 1 

4. (a) No, because X{t) > 0; (b) no, since E[X'^{t)] (= t) is not a constant. 
6. 4. 
8. Brownian motion with a^ = 2. 
10. (a) No, because Y{t) > 0; (b) 1; (c) 2s/t: (d) no, because CoY[Y{s),Y{t)] 
is not a function of | ^ — 5 |. 
12. (a) ^{j + 1 - i) - ^{j - z), where ^ is the distribution function of the 
N(0,1) distribution; (b)-0.4659. 
14. (a) 

"2 (t 4- e - min{t + e, t + s}) 

(b) (i) yes; (ii) yes; (iii) no, because Cx{t,t + s) ^ aH] (iv) yes. 
16. (a) N(0,2(l + e-i)) ; (b) (i) E[U{t)] = 0 and V[U{t)] = 2{t -f e"* - 1); 
(ii) yes. 
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18. (b) No, because we have that E[Y{t)] = exp{(// + ^cr^)t}, which depends 
on t {ii 11 ^ - i ( j2) ; if /x =: - i a 2 , then E[Y{t)] = 1, but E[Y{t + s)Y{t)] 

(= e^ *) is not a function of s. 
20. (a) 0; (b) yes, because X and Y are Gaussian random variables and their 
covariance is equal to zero. 
22. E[Y{t)] = 0 and 

2 

CY{S,t) = — ('e'=<*+*) - e'̂ l*-"!) for s,t>0 

24. ( a )N(0 , l l /3 ) ; (b ) 

; , ( , ) = ^ , - 3 / . e x p { - i , } f o r . > 0 

26. (a) i:[y(t)] = 0 and 

Coy[Y{t), Y(t + .)] = ^ + ^ ( . - M f l ! ) 

(b) (i) Yes; (ii) no, because Cav\y{t),Y{t + s)] depends on t; (iii) no, since 
Cov[y(t), r ( i + s)] ^ t[l - (t + s)]; (c) ~ 2P[N(0,1) > V^d]. 
28. We find that 

/ro(.)(t) = — ^ e x p < | - ^ , ; \ _ , , ^ ^ ( ,̂  _ J f o r i > 0 
2d f d^e-* ) d / e-*/^ 

30. (a) 0; (b) 1 + 2i; (c) no, because Cov[Z(t), Z(i + s)] depends on t; (d) 

,̂ , I 2{d-z) i {d-zf\ , ^ ^ 

Chapter 5 

2. (a) e-2-5 (-0.0821); (b) c^O.0028; (c) 1/3; (d) 

Cx{ti,t2) = —— min{ti,t2} 
t i t2 

4. (a) (i) e-2 (-0.1353); (ii) 2.̂ 0.1839; (iii) ~0.3233; (b) no, because E[Z{t)] 
exp{^(e~^ — 1)}, which depends on t. 
6. e - ^ 
8. \s, 
10. (a) ( 1 - 6 - 1 ) 2 ; (b) -1.64. 
12. (a) -0.3535; (b) -0.0119. 
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14. (a) 3A/64; (b) t^. 
16. (a) (i) Mean = 15, variance = 240; (ii) mean = 10, variance = 520/12; (b) 
~14.785. 
18. l/{2\fX). 
20. P[iV*(5) = l] = o(.5). 
22. (a) Let 7 := A(e* - 1). We find that 

M, N(t+S) is) 
.-rti^ 1) . 

27 
if s 7^0 

if 8 = 0 

(b) E[N{t + S)] = X{t + 1) and V[N{t + S)] = X{t + 1) + fA^. 
24. (a) e - i ( 6 - a ) / 1 5 ; (b) 1/16; (c) 1/16. 
26. (a) ~0.6723; (b) 1/2; (c) 1/3. 
28. (a) U(0,s); (b) Se""* (~0.0916); (c) 10/3. 
30. (a) (i) 1/(1 - 1 ) , for 0 < < < 1; (ii) 1/2; (b) (ii) P[N(0,1) < 2] (-0.9772). 
32. (a) ~0.5590; (b) 4.75; (c) ~0.0409; (d) ~0.0328. 
34. ~0.9817. 
36. l - e - 2 ^ ( l + 2A + fA2). 
38. ~0.217. 
40. (a) nl/n''; (b) 2(1 - i) if 0 < t < i , and 2 (t - i ) if ^ < f < 1. 
42. {X{t),t > 0} is a Poisson process with rate A. 
44. Yes; we have that Pij =0 ii j <i and 

" j j \vj-Viy. 
if j > i, where i,j e {0,1 ,2 ,4 ,9 , . . . }. 

1/3; (b) (i) 2x e"*", for x > 0; (ii) ~0.45; (c) 9/5. 
~0.2565; (b) 1/5. 
~0.56; (b) 3/16. 
1 - 2e-i (~0.2642); (b) 0.75 t + 0.5 t^. 
1/3; (b) 588; (c) 232. 
~0.4562; (b) 2; (c) 2; (d) 1/2, if s e (0,1] or (2,3]. 
In(s2- |- i) / ln2; (b) ~0.6068. 
12t/(l - e-3*); (b) P[N(0,1) < 0.69] (-0.7549). 
Mean = 8 and variance = 40; (b) 401; (c) 

46. 
48. 
50. 
52. 
54. 
56. 
58. 
60. 
62. 

(a) 
(a) 
(a) 
(a) 
(a) 
(a) 
(a) 
(a) 
(a) 

'' 0 if s < 6 
s - 6 

P\S<s\ N{8) - N{6) = 1]= < 
if 6 < s < 7 

4s ^ 27 . _ 
- - - . f 7 < . < 

1 if 5 > 8 

64. (a) (i) Mean = variance = 21; (ii) mean = variance = 24; (b) ~0.1562. 



Appendix B: Answers to Even-Numbered Exercises 371 

66. (a) Ai/(2Ai + A2); (b) Ai^; (c) 1 - ^e'^ (-0.9323). 
68. (a) G(a = 2,A); that is, 

/^.(r) = A^re"^^ for r > 0 and i = 1,2,... 

(b) we find that 

P[N{t) =n]=e -xt (At)2^ (At)2^+i 

[ (2n)! (2n + l)! 
for n == 0 , 1 , . . . 

(c) 3/(2A). 
70. (a) n/[^l + (2 - a)X}; (b) (3//i)(2 - a ) / (3 - a). 
72. (a) G(a = 2, A); (b) -0 .81; (c) ~1.17. 
74. (b) - 1 / 2 ; (c) 1/2. 
76. (a) We find that 

ruNit) = exp l ^ ^ l (t + 6 /̂4 - ^ ^ - 1 for 1/2 < t < 1 

(b) F[N(0,1) < 0.48] (-0.68); (c) 5/8. 
78. (a) We calculate 

m ; v W - M e x p { ^ - 1 for 0 < f < 1 

( b ) e - e i / 2 (-1.07). 
80. No; since the number of events per time unit increases hnearly, the time 
between two consecutive events is (on the average) shorter and shorter, so 
that the random variables r^ are not identically distributed (they are not 
independent either). 
82. /ii > 0. 
84. (a) l/(2a2 + 1); (b) 0. 

Chapter 6 

2. (a) N = 11/15 andA^Q = 4/15; Â  ̂  ATg + 1 because TTQ ̂  0; (b) 1/15. 
4. (a) N = X/fi and NQ = e ' ^ ^ + ^ - 1; (b) 1 + f (e"^/^ - l ) . 
6. (a) We have 

state j departure rate from j = arrival rate to j 

0 
1 
2 

fc(>3) 

2A TTo — /i TTi 

(2A + /i) TTi = )U 7r2 + 2A TTo 

(A + /i) 7r2 = // TTs + 2A TTi 

(A H- //) TTk = fl TTk-^-l + A TTfc-i 
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(b) 1/2; (c) 3/8. 
8. (a) We have 

state j departure rate from j = arrival rate to j 

0' 
0 
1 
2 
3 

10 TTQ = 5 TTo 

(10 + 5) TTo = 10 TT̂  + 5 (TTI + 7r2 + TTs) 

(10 + 5) TTi = 10 TTo 

(10 + 5) 7r2 = 10 TTi 

5 TTs = 10 7r2 

(b) TTQ/ = 1/7, TTo = 2/7, TTi = 4/21, 7r2 = 8/63, and TTS = 16/63; (c) 5/21. 
10. (a) TTn = (n + l)(l/2)^+2^ forn == 0 , 1 , . . . ; (b) 10/11; (c) -0.4180. 
12 . (a )7^ .= ( ^ ) ( ^ ) ^ f o r n : 
14. 4/(/i + 4). 
16. (a) We have 

0 , l , . . . ; ( b ) ^ ( A + //). 

state j departure rate from j = arrival rate to j 

0 A TTo = //I TTii + M2 7̂12 
l i (A + jUi) TTi, =p iA 7ro4-/i2 7r2 
h (A + /X2) 7ri2 = (1 - p i )A TTo + Ml 7r2 
2 (A + / i i + ;x2) 7r2 = A (TTI, + T T I J + (/xi + ^ 2 ) TTS 

3 < 71 < 12 (A + / i l + /i2) TT̂  = A 7r^_i + (/Xi 4- [12) ^n-\-l 

13 (/ i i 4- 112) TTlS = A 7712 

(b) the probability requested is given by 

1 

(1 - TTis) 

18. (a) We find that 

2 / i - A 

Pi TTo + 7ri2 + 
Ml 

M l + i U 2 

12 

n=2 . 

TTo 
2/i + A 

/ A \ ^ 1 
and 7 r n = ( - j ^^[ij^o forn = l , 2 , . . 

(b) (A + /x) 7ri2 = 1^ Tr2] (c) the fraction of time that the second counter is 
open is given by 

A^(2M - A) Â  

2/i(A +/i)(2/x + A) "^/i(2/x + A) 

20. (a) We have 

state j departure rate from j = arrival rate to j 

0 
1 
2 
3 

A TTo = M TTl 
(A + M) TTi = A TTo + 2 M 7r2 

(A + 2/i) 7r2 = A TTi + 2 M TTS 

2/ji ns = \ 7r2 
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We find that if A - 2//, then TTQ = 1/7 and TTI - 7r2 = TTS = 2/7; (b) 1.2; (c) 2. 
22. (a) We find that 

2 5 \ ' ' / 1 1 \ r3b\'^ / 1 3 

(b) -5 .41; (c) 1/5. 
24. (a) We define the states 

0 : the system is empty 
n : there are n > 1 ordinary customers in the system 
77.5: there are n > 1 customers in the system and the 

special customer is being served 

The balance equations of the system are the following: 

state j departure rate from j = arrival rate to j 

0 (A + Xs) TTo = /J. TTi -\- jLLs TTi, 

1 (A 4- As -h //) TTi = A TTo + 2/i 7r2 + /X5 7r2^ 

I5 (A + /X5) TTls = A5 TTo + fl 7r2, 

n > 2 (A -f As + 2//) TTn = A T T ^ - I + 2/i TTn+l + /is 7T{n+l)s 

Us ( n > 2) (A + /is -f- IJ) Tins = ^s TTji-l + ^ '^{n-l)s + M ^ (n+1) , 

(b) we define the states (m, n) and (ms, n), where m G {0,1,2} (respectively, 
n G {0,1}) is the number of customers in front of server no. 1 (resp., no. 2) 
and s designates the special customer; there are therefore eight possible states: 
(0,0), (1,0), (0,1), (ls,0), (1,1), ( l s , l ) , (2s, 0), and (2s, 1); (c) we can use the 
state space of part (b); we find that the probability requested is given by 

As ^ 7r(i,o) I f ^s \ f__Ji_\ ^(1,1) 
fi + XsJ 7r(i,o) + 7r(î i) V/i + As/ V/̂  + ^ s / ^(i,o) + ^(1,1) 

26. (a) TTo = 1 - ^ and iTn = ( ^ J TTQ, for n = 1,2,... (this model is 

equivalent to the M/M/1 model with service rate equal to 2/i rather than /i); 
(b) 1/3. 
28. TTo = 1/4 and TTI - 7r2 -= 3/8. 
30. (a) We define the states (ij), for ij = 0,1, where i (respectively, j ) is 
equal to 1 if a customer is being served by the hairdresser (resp., the assistant), 
and to 0 otherwise; (b) the balance equations of the system are the following: 

state j departure rate from j = arrival rate to j 

(0,0) (Ai + A2) 7r(o,o) =- /ii 7r(i,o) + M2 7r(o,i) 
(1.0) (Ai + A2 + /ii) 7r(i,o) = Ai 7r(o,o) + 1^2 7r(i,i) 
(0,1) (Ai + /i2) 7r(o,i) = A2 7r(o,o) + /ii 7r(i,i) 
(1.1) (/ii + /i2) ^(1,1) = Ai 7r(o,i) + (Ai + A2) 7r(i,o) 
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(c) (i) N = 7r(o,i) + 7r(i,o) + 2 7r(i,i); (ii) f = iV/Ae, where 

Ae = Ai (1 - 77(14)) + ^̂ 2 (7r(0,0) + ^(1,0)) 

32. (a) We define the states 

0: the system is empty 
l i : there is one customer in the system, being served by server no. 1 
I2: there is one customer in the system, being served by server no. 2 
2: there are two customers in the system, one per server 

22: there are two customers in the system, being served by server no. 2 
3: there are three customers in the system, two of them being served 

by server no. 2 

(b) the balance equations of the system are given by 

state j departure rate from j = arrival rate to j 

0 A TTo = /xi TTii + 112 (7ri2 + 7r22) 
11 (A -h Ml) TTi, = A TTo 4- //2 (7r2 4- TTs) 
12 (A + M2) 7ri2 =Mi ^2 
2 (A + Ml + M2) 7r2 = A (TTII + TTIJ 

22 (A + M2) 7r22 = Ml TTs 
3 (MI + M2) TTs = A (7r2 + 7722) 

(c) the fraction of time requested is (7722 4- 7r3)/(l — TTQ — TTI J . 
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-S'c/ii/ĵ  J. L.; Normal Families 

Sengupta, J. K.: Optimal Decisions 
under Uncertainty 

Seroul, R.: Programming for 
Mathematicians 

Seydel, R.: Tools for Computational 
Finance 

ShafarevicKLR.: Discourses on Algebra 

Shajnro, J. H.: Composition Operators 

and Classical Function Theory 

Simonnet, M.: Measures and 
Probabilities 

Smith, K. E.; Kahanpm, L.; Kekdldinen, P.; 
Traves, W.: An Invitation to Algebraic 
Geometry 

Smith, K. T.: Power Series from a 
Computational Point of View 

Smoryhski, C. .Logical Number Theory I. 
An Introduction 

Stichtenoth, H.: Algebraic Function 
Fields and Codes 

Stilhvell, J.: Geometry of Surfaces 

Stroock, D. W.: An Introduction to the 

Theory of Large Deviations 

Sunder, V S.: An Invitation to von 

Neumann Algebras 

Tamme, 0.: Introduct ion to fitale 
Cohomology 

IhndcMr, P.: Foliations on Riemannian 
Manifolds 

Toth, (1: Finite M5bius Groups, 
Minimal Immersions of Spheres, and 
Moduli 

Verhulst, E: Nonlinear Differential 
Equations and Dynamical Systems 

WeintraukS.H.: Galois Theory 

Wong,M. W: Weyl Transforms 

Xamho-Descamps, S.: Block Error-
Correcting Codes 

Zaunen, A. C: Continuity, Integration 
and Fourier Theory 

Zhang, E: Matrix Theory 

Zong, C: Sphere Packings 

Zong, (1: Strange Phenomena in 
Convex and Discrete Geometry 

Zorich, VA.: Mathematical Analysis I 

Zorich,VA.: Mathematical Analysis II 


	AppliedStochasticProcesses1236_f.jpg
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf



