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ELCOME TC THE RANDOM WORLD OF HAPPY HARRY—

famed restaurateur, happy hour host, community figure, former
semi~pro basketball player, occasional software engineer, talent agent, bud-
ding television star, world traveller, nemesis of the street gang called the
Mutant Creepazoids, theatre patron, supporter of precise and elegant use
of the English language, supporter of the war on drugs, unsung hero of the
fairy tale Sleeping Beauty, and the target of a vendetta by the local chap-
ter of the Young Republicans. Harry and his restaurant are well known
around his Optima Street neighborhood both to the lovers of fine food and
the public health service. Obviously this is a man of many talents and
experiences who deserves to have a book written about his life.
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Preface

While this is a book about Harry and his adventurous life, it is primarily
a serious text about stochastic processes. It features the basic stochas-
tic processes that are necessary ingredients for building models of a wide
variety of phenomena exhibiting time varying randomness.

The book is intended as a first year graduate text for courses usually
called Stochastic Processes {perhaps amended by the words “Applied” or
“Introduction to ... ") or Applied Probebility, or sometimes Stochastic
Modelling. It is meant to be very accessible to beginners, and at the same
time, to serve those who come to the course with strong backgrounds. This
flexiblity also permits the instructor to push the sophistication level up or
down. For the novice, discussions and motivation are given carefully and in
great detajl. In some sections beginners are advised to skip certain devel-
opments, while in others, they can read the words and skip the symbols in
order to get the content without more technical detail than they are ready
to assimilate. In fact, with the numerous readings and variety of prob-
lems, it is easy to carve a path so that the book challenges more advanced
students, but remains instructive and manageable for beginners. Some
sections are starred and come with a warning that they contain material
which is more mathematically demanding, Several discussions have been
modularized to facilitate flexible adaptation to the needs of students with
differing backgrounds. The text makes crystal clear distinctions between
the following: proofs, partial proofs, motivations, plausibility arguments
and good old fashioned hand-waving.

Where did Harry, Zeke and the rest of the gang come from? Courses in
Stochastic Processes tend to contain overstuffed curricula. It is, therefore,
useful to have quick illustrations of how the theory leads to techniques for
calculating numbers. With the Harry vignettes, the student can get in
and out of numerical illustrations quickly. Of course, the vignettes are not
meant to replace often stimulating but time consuming real applications.
A variety of examples with applied appeal are sprinkled throughout the
exposition and exercises. Our students are quite fond of Harry and enjoy
psychoanalyzing him, debating whether he is “a polyester sort of guy”
or the “jeans and running shoes type.” They seem to have no trouble
discerning the didactic intent of the Harry stories and accept the need
for some easy numerical problems before graduating to more serious ones.
Student culture has become so ubiguitous that foreign students who are
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not native English speakers can quickly get into the swing. I think Harry
is a useful and entertaining guy but if you find that you loathe him, he is
easy to avoid in the text.

Where did they come?
I can’t say.
But I bet they have come e long long way.!

To the instructor: The discipline imposed during the writing was that
the first six chapters should not use advanced notions of conditioning which
involve relatively sophisticated ideas of integration. Only the elementary
definition is used: P(A|B) = P(A N B)/P(B). Instead of conditioning
arguments we find independence where we need it and apply some form
of the product rule: P{AN B) = P{A)P(B) if A and B are independent.
This maintains rigor and keeps the sophistication level down.

No knowledge of measure theory is assumed but it is assumed that the
student has already digested a good graduate level pre—measure theoretic
probability course. A bit of measure theory is discussed here and there
in starred portions of the text. In most cases it is simple and intuitive
but if it scares you, skip it and you will not be disadvantaged as you
Journey through the book. If, however, you know some measure theory,
you will understand things in more depth. There is a sprinkling of refer-
ences throughout the book to Fubini’s theorem, the monotone convergence
theorem and the dominated convergence theorem. These are used to jus-
tify the interchange of operations such as summation and integration. A
relatively unsophisticated student would not and should not worry about
justifications for these interchanges of operations; these three thecrems
should merely remind such students that somebody knows how to check
the correctness of these interchanges.

Analysts who build models are supposed to know how to build mod-
els. So for each class of process studied, a construction of that process
is included. Independent, identically distributed sequences are usually as-
sumed as primitives in the constructions. Once a concrete version of the
process is at hand, many properties are fairly transparent. Another benefit
is that if you know how to construct a stochastic process, you know how
to simulate the process. While no specific discussion of simulation is in-
cluded here, I have tried to avoid pretending the computer does not exist.
For instance, in the Markov chain chapters, formulas are frequently put in
matrix form to make them suitable for solution by machine rather than by
hand. Packages such as Minitab, Mathematica, Gauss, Matlab, etc., have
been used successfully as valuable aids in the solution of problems but local
availability of computing resources and the rapidly changing world of hard-
ware and software make specific suggestions unwise. Ask your local guru

1Dr. Seuss, One Fish, Two Fish, Red Fish, Blue Fish
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for suggestions. You need to manipulate some matrices, and find roots of
polynomials; but nothing too fancy. If you have access to a package that
does symbolic calculations, so much the better. A companion disk to this
book is being prepared by Douglas McBeth which will allow easy solutions
to many numerical problems.

There is much more material here than can be covered in one semester.
Some selection according to the needs of the students is required. Here
is the core of the material: Chapter 1: 1.1-1.6. Skip the proof of the
continuity theorem in 1.5 if necessary but mention Wald’s identity. Some
instructors may prefer to skip Chapter 1 and return later to these topics,
as needed. If you are tempted by this strategy, keep in mind that Chapter
1 discusses the interesting and basic random walk and branching processes
and that facility with transforms is worthwhile. Chapter 2: 2.1-2.12,2.12.1.
In Section 2.13, a skilled lecturer is advised to skip most of the proof of
Theorem 2.13.2, explain coupling in 15 minutes, and let it go at that. This
is one place where hand-waving really conveys something. The material
from Section 2.13.1 should be left to the curious. If time permits, try to
cover Sections 2.14 and 2.15 but you will have to move at a brisk pace.
Chapter 3: In renewal theory stick to basics. After all the discrete state
space theory in Chapters 1 and 2, the switch to the continuous state space
world leaves many students uneasy. The core is Sections 3.1--3.5, 3.6, 3.7,
and 3.7.1. Sections 3.8 and 3.12.3 are accessible if there is time but 3.9~
3.12.2 are only for supplemental reading by advanced students. Chapter 4:
The jewels are in Sections 4.1 to 4.7. You can skip 4.3.1. If you have a group
that can cope with a bit more sophistication, try 4.7.1, 4.8 and 4.9. Once
you come to know and love the Laplace functional, the rest is incredibly
casy and short. Chapter 5: The basics are 5.1-5.8. If you are pressed for
time, skip possibly 5.6 and 5.8; beginners may aveid 5.2.1, 5.3.1 and 5.5.1.
Section 5.7.1 is on queueing networks and is a significant application of
standard techniques, so try to reserve some time for it. Section 5.9 is nice
if there is time. Despite its beauty, leave 511 for supplemental reading
by advanced students. Chapter 6: Stick to some easy path properties,
streng independent increments, reflection, and some explicit calculations.
I recommend 6.1, 6.2, 6.4, 6.5, 6.6, 6.7, and 6.8. For beginners, a quick
survey of 6.11-6.13 may be adequate. If there is time and strong interest
in queueing, try 6.9. If there is strong interest in statistics, try 6.10. I like
Chapter 7, but it is unlikely it can be covered in a first course, Parts of it
require advanced material.

In the course of teaching, I have collected problems which have been
inserted into the examples and problem sections; there should be a good
supply. These illustrate a variety of applied contexts where the skills mas-
tered in the chapter can be used. Queueing theory is a frequent context
for many exercises. Many problems emphasize calculating numbers which
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seems to be a skill most students need these days, especially considering
the wide clientele who enroll for courses in stochastic processes. There is
a big payoff for the student who will spend serious time working out the
problems. Failure to do do will relegate the novice reader to the status of
VOYEeur.

Some acknowledgements and thank you’s: The staff at Birkh&user has
been very supportive, efficient and colleagal, and the working relationship
could not have been better. Minna Resnick designed a stunning cover and
logo. Cornell’'s Kathy King probably does not realize how much cumu-
lative help she intermittently provided in turning scribbled lecture notes
into something I could feed the TEX machine. Richard Davis (Calorado
State University), Gennady Sammorodnitsky (Cornell) and Richard Ser-
fozo {Georgia Institute of Technology} used the manuscript in classroom
settings and provided extensive lists of corrections and perceptive sugges-
tions. A mature student perspective was provided by David Lando (Cor-
nell) who read almost the whole manuscript and made an uncountable
number of amazingly wise suggestions about organization and presenta-
tion, as well as finding his quota of mistakes. Douglas McBeth made useful
comments about appropriate levels of presentation and numerical issues.
David Lando and Eleftherios Iakavou helped convince me that Harry could
become friends with students whose mother tongue was different from Eng-
lish. Joan Lieberman convinced me even a lawyer could appreciate Harry.
Minna, Rachel and Nathan Resnick provided a warm, loving family life
and generously shared the home computer with me. They were also very
consoling as I coped with two hard disk crashes and a monitor melt-down.

While writing a previous book in 1985, I wore out two mechanical pen-
cils. The writing of this book took place on four different computers.
Financial support for modernizing the computer equipment came from the
National Science Foundation, Cornell’'s Mathematical Sciences Institute
and Cornell’s School of Operations Research and Industrial Engineering.
Having new equipment postponed the arrival of bifocals and made that
marvellous tool called TEX almost fun to use.

CHAPTER 1

Preliminaries
Discrete Index Sets
and/or Discrete State Spaces

HIS CHAPTER eases us into the subject with a review of some useful

techniques for handling non-negative integer valued random variables
and their distributions. These techniques are applied to some significant
examples, namely, the simple random walk and the simple branching pro-
cess. Towards the end of the chapter stopping times are introduced and
applied to obtain Wald’s identity and some facts about the random walk.
The beginning student can skip the advanced discussion on sigma-fields
and needs only a primitive understanding that sigma fields organize infor-
mation within probability spaces.

Section 1.7, intended for somewhat advanced students, discusses the
distribution of a process and leads to a more mature and mathematically
useful understanding of what a stochastic process is rather than what is
provided by the elementary definition: A stochastic process is o collection
of random wariables {X(t),t € T} defined on a common probability space
indezed by the index set T which describes the evolution of some system.
Often T = [0,00) if the system evolves in continuous time. For example,
X(t) might be the number of people in a queue at time ¢, or the accu-
mulated claims paid by an insurance company in [0,¢]. Alternatively, we
could have T' = {0,1,... } if the system evolves in discrete time. Then X (n)
might represent the number of arrivals to a queue during the service interval
of the nth customer, or the socio-economic status of a family after n gen-
erations. When considering stationary processes, T = {...,—1,0,1,...} is
a common index set. In more exotic processes, T might be a collection of
regions, and X (A), the number of points in region A.

1.1. NON-NEGATIVE INTEGER VALUED RANDOM VARIABLES.

Suppose X is a random variable whose range is {0,1,... ,00}. (Allowing a
possible value of 0o is a convenience. For instance, if X is the waiting time
for a random event to occur and if this event never occurs, it is natural to
think of the value of X as co.) Set

PX=kl=ps k=01, .,
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so that
[+ o]
PlX < oc]l= ZP’“‘ X:oo}zlfz_pk::pm.
k=0
(Note that the notation “=:" means that a definition is being made. Thus

1~ 5% Pk =1 Poo means that pe is defined as 1 — 3,2 px. In general
A =: Borequivalently B := A means B is defined as A.} If P[X = oo] > 0,
define E(X) = oo; otherwise

X)= Z kpk.
k=0
If f:{0,1,... ,00} — [0,c0] then in an elementary course you probably
saw the derivation of the fact that
EfiX)= > [l
0<k<oo

If f:{0,1,..., 00—
f~ by

[—o0, 00] then define two positive functions f* and
fP=max{f,0}, [~ =-min{f,0}
so that EfT(X) and Ef~(X) are both well defined and

Ef¥(X)= Y [=(km

D<k<oo
Now define
Ef(X)=EfT{X) - Ef7(X)

provided at least one of EfT(X) and Ef~(X) is finite. In the contrary
case, where both are infinite, the expectation does not exist. The expecta-
tion is finite if 3 ) oo ()P < 00

fpe=0and

Jk)Yy = k" thenEf( X} = EX™ = nth moment;
f{R) = (k — E(X))", then Ef(X) = E(X - E(X}))"

= mth central moment.
In particular, when i = 2 in the second case we get

Var(X) = B(X - B(X))* = EX? - (B(X))*.

1.1, INTEGER VALUED VARIABLES 3

Some examples of distributions {px} that you should review and that
will be particularly relevant are

1. Binomial, denoted b(k; n, p), which is the distribution of the number
of successes in n Bernoulli trials when the success probability is p. Then

P[X = k| =blk;n,p) := (:);)k(l —p)"k 0<k<n0<pLl,
and E(X) = np, Var(X) = np(1 — p).
2. Poisson, denoted p(k; A). Then for k= 0,1,..., A>0
PIX = k] =p(k,\) =e *XX/E
and F(X) = A Var(X) = A
3. Geometric, denoted g(k;p), so that for k =0,1,...
PIX =k =g{k,p) = (1-p)p, 0<p<],

which is the distribution of the number of failures before the first success
in repeated Bernoulii trials. The usual notation is to set g =1 — p. Then

and reversing the order of summation yields

—pZqu —pij/(l - q)

j=1k=j

(1.1.1) => d=q/(1-q)=g/p

=1

Alternatively, we could have computed this by summing tail probabili-
ties:

Lemma 1.1.1. If X is non-negative integer valued then

(1.1.2) E(X) = iP[X > k.
k=0



4 PRELIMINARIES

Proof. To verify this formula invelves reversing the steps of the previous
computation:

=] =] oo o fi-1
SNPX>E=Y Y p=> (Zl)pj
k=0 k=0 j=k+1 F=1 \k=0

=Y jpj=E(X). m
i=1

In the multivariate case we have a random vector with non-negative
integer valued components X' = (X,,... , Xk) with a mass function

PX)=d1, - Xk =Gkl = ps i
for non-negative integers j1,...,J%. If
F:{0,1,...,00} = [0, 00]

then
Ef(X],...,Xk) = Z f(Jl: :jk)pjh---,jk'

(J1,-0,38)

Iff:{0,1,...,00}* — R then
Ef(Xla"':Xk) :Ef+(X17"'7Xk) _Ef-(X17"'7Xk)

as in the case k = 1 if at least one of the expectations on the right is finite.
Now recall the following properties:

1. For ay,... ,ar € R

k k
FE (Z a,-Xi) = Z%E(Xi}
=1 i=1

(provided the right side makes sense; no co — oc pleasel).

2. If X5,..., X, are independent so that the joint mass function of
X1,..., X% factors into a product of marginal mass functions, then for
any bounded functions fi, ..., fk with domain {0,1,...,0c} we have

k k
(1.1.3) EHfi(Xi) = HEfi(Xi)-
i=1 i=1

1.2. CONVOLUTION 5

The proof is easy for non-negative integer valued random variables based
on the factorization of the joint mass function.

3. FEX? < o00,i=1,... kand
then

fore; € R,i=1,... k.

1.2. CONVOLUTION.

Suppose X and Y are independent, non-negative, integer valued random
variables with

PX=k=ay, PlY==k=b k=01

Sinece for n > 0

[X-i-Y:n}:O[X:i,Y:n—i]

i=0

we get
P[X-w‘-Y—n]:P{O{X:i)Y:nAi]}
=0

n
=> PIX=iY=n—4
=0

n
= Za«bnq =: Pn.
i=0

This operation on sequences arises frequently and is called convolution:

Definition. The convolution of the two sequences {a,,n > 0} and
{bn,n > O} is the new sequence {c,,n > 0} whose nth element c, is

defined by
Ch = Z Ailtn. -
i=0
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We write
{en} = {an} * {ba}.

Although this definition applies to any two sequences defined on the
non-negative integers, it is most interesting to us because it gives the dis-
tribution of a sum of independent non-negative integer valued random vari-
ables. The calculation before the definition shows that

{PIX +Y = nl} = {PX = nl} + {P]Y =n]}.
For the examples, the following notational convention is convenient:

Write X ~ {pi} to indicate the mass function of X is {px}. The notation

X 4 Y will be used to mean that X and Y have the same distribution. In
the case of non-negative integer valuied random variables, the mass func-
tions or discrete densities are the same.

Example 1.2.1. If X ~ plk;)) and ¥ ~ p(k;p)} and X and Y are
independent then X + Y ~ p(k; A + p).

Example 1.2.2. If X ~ b(k;n,p) and ¥ ~ b(k;m,p) and X and Y are
independent then X +Y ~ b{k;n + m,p) since the number of successes in
1 Bernoulli trials coupled with the number of successes in m independent
Bernoulli trials yields the number of successes in n + m Bernoulli trials.

The results of both examples have easy analytic proofs using just the
definition and a bit of manipulation. Easier proofs using generating func-
tions are soon forthcoming.

Some obvious properties of convolution are:

1. The convolution of two probability mass functions or the non-
negative integers is a probabelity mass function.

2. Convolution is a commutative operation (which corresponds to the
probability statement that X +V Ly 4 X). Thus

{an} * {bn} = {ba} * {an}.

3. Convolution is an associative operation so that the order in which
three or more sequences are convolved is immaterial. Thus

{an} » ({n} * {en}) = ({an} * {ba}) * {ca}.
The last assertion corresponds to the probability statement that
X+{¥Y+ D)2 (X+Y)+Z

where X,Y, and Z are independent non-negative integer valued random
variables.

1.3. GENERATING FUNCTIONS 7

It is convenient to have a power notation when we convolve a sequence
with itself repeatedly; thus we define

{pa}? i={pn} * {pn}

so that if Xy, X5 are independent, identically distributed (iid) with common
density {pi} we get

X1+ Xy~ {p-n}z*-
Similarly for Xq,..., X iid we get

X1+--'+Xk’\’{pn}k* Z={pn}*"'*{pn}

and recall that it does not matter in what order we perform the convolu-
tions on the right side since the operation is associative.

1.3. GENERATING FUNCTIONS.

Let ag, a1, as,... be a numerical sequence. If there exists sy > 0 such that

Als) = Z a;8

=0

converges in |s| < sp, then we call A(s) the generating function (gf) of the
sequence {a;}.

We are most interested in generating functions of probability densi-
ties. Let X be a non-negative integer valued random variable with density
{pk, k > 0}. The generating function of {px} is

oo
P(s)= 3 pist
k=0

and by an abuse of language this is also called the generating function of
X. Note that

P(s)= Es¥

and that P(1) = 3°% i px < 1 so the radius of convergence of P(s) is at

least 1 (and may be greater than 1). Note P(1) =1 iff PX <] =1.
We will sce that a generating function, when it exists, uniquely de-

termines its sequence (and in fact we will give a differentiation scheme
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which generates the sequences from the gf). There are five main uses of
generating functions:

(1)

(2)

Generating functions aid in the computation of the mass func-
tion of a sum of independent non-negative integer valued ran-
dom variables.

Generating functions aid in the caleulation of moments. Mo-
ments are frequently of interest in stochastic models because
they provide easy {but rough) methods for statistical estima-
tion of the parameters of the model.

Using the continuity theorem (see Section 1.5), generating
functions aid in the calculation of limit distributions,
Generating functions aid in the solution of difference equa-
tions or recursions. Generating function techniques convert
the problem of solving a recursion into the problem of solving
a differential equation.

Generating functions aid in the solution of linked systems of
differential-difference equations. The generating function tech-
nique necessitates the solution of a partial differential equa-
tion. This technique is applied frequently in continuous time
Markov chain theory and is discussed in Section 5.8.

Example 1.3.1. X ~ p(k;A). Then

o e“/\/\k oo (As)k
P = k = =4
(s) 2 T e kgo o
:e/\(s_l)
for all s > 0.
Example 1.3.2. X ~ b{k;n,p). Then
P(s) = Z ((:)pkq"—k) s
k=0
. (n
=3 (F)wste =t por
k=0

for all s > 0.

Example 1.3.3. X ~ g(k;p). Then

P(s) =Y _(¢*p)s* =p (gs)*
k=0 k=0

=p/(1 —qs)

for 0 <s < g 1.
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1.3.1. DIFFERENTIATION OF GENERATING FUNCTIONS.

A generating function P(s) is a power series with radius of convergence at
least equal to 1. P can be differentiated as many times as desired by the
interchange of summation and differentiation to obtain

%P(s) =Y k(k—1)...(k—n+)pes*"

k=n

k!
: k—n
(1.3.1.1) _kE _(k )!pks

for 0 € s < 1. For instance we may readily verify formula (1.3.1.1) for the
case n = 1 with the following argument. (Novices may skip this argument
and resume reading at the next paragraph.) We have that

P'(s) = lim(P(s + k) - P(s))/h

— E_ _k
_Alﬂ%zp"((s + Rk — 55)/h.
For s € (0, 1), there exist 5 < 1,k > 0 such that for |h| < hg
|s+hivs<m

Now

s+h
(s + R)* — 5) /] =|h*i/ ket~ du|

<|h " Yken® s+ h — s = kn*!
independent of h. Since

(o u] e o]
Skt < St <o
k=1 k=1

by dominated convergence we get,

m;pk((s +h)F —s*)/h =§m lim ((s + B)" — s%)/h

= ]
=Zpkk3k_1,
k=1

which gives (1.3.1.1) for n = 1. The procedure just outlined and induction
yield the general case.

If we evaluate (1.3.1.1) at s = 0 we get
dﬂ
ds™
and we conclude that the following result must be true.

(1.3.1.2) P(s)s=0o =nlp,, n=0,1,2...,
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Proposition 1.3.1. A generating function uniquely determines {or gen-
erates) its sequence.

1.3.2. GENERATING FUNCTIONS AND MOMENTS.

As a lead in to the subject of finding moments of non-negative integer
valued random variables, consider the following relation between the gf of
{pr} and the gf of the tail probabilities {P[X > k]} .

Proposition 1.3.2. Let X have mass function {p;} = {P{X = k|, k > 0}
satisfying 50 . px = 1. Define
P(s) = Es*®,
=PX >k, k=01,...

and
Qs) =Y ars®.
k=0
Then
(1.3.2.1) Qs) = %, D<s <1

Proof. Follow your nose: Since gx = 3.~ 7 we have
oo oc oo i—-1
S a)e-2 (T
k=0 \i=k+1 i=1 \k=0

and summing the geometric terms shows that ((s) equals

(%)
-3 (5=5)

=(1- 971~ P(s)). m

n (1.3.2.1) let & 7 1. On the one hand, by menotone convergence, we
get

li =i k=
ﬁ?Q(s) ;ﬁ)kzﬂ)qjcs kZ_qu

:ip[x > k] = E(X)

k=0

1.3. GENERATING FUNCTIONS i1

the last step following from Lemma 1.1.1. On the other hand
i =lm(1 - P 1-
imQ(s) =lim(1 — P(s))/(1 - 5)
=lim(P(1) — P(s))/(1 = 5) = P'(1}.
(Strictly speaking, P'(1} is the left derivative of P at 1.) We conclude that
(1.3.2.1) E(X)= P'(1).

Of course, this would also follow from {1.3.1.1).
For example, if X ~ g(k; p) then

P(s)=p/(1 —g¢s)
P'(5) = pa/(1— gs)*
and
E(X)=P'(1) =pg/(L - q)* = pg/p* = q/p

in agreement with (1.1.1).
Higher order derivatives of P(s) may be used to calculate higher order
moments. From (1.3.1.1) we have

adinp(s) ;(k(k—l)(k 2. (k- nt 1))pest"

=5 (k(k = 1){k = 2)..(k —n+ 1)) prs™

so that letting s 7 1, from monotone convergence, we get

sTl dasm

ip() P ik k—1{k-2)...(k—n+ lpx
k=0
=E(X(X-1...(X—-n+1)).

In particular, when n = 2 we get

P'(1 Zk(k—lpk—z pk—zkpk

50 that
P'1) = E(X)2 —EX
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and therefore
(1.3.2.3) Var(X) = P{1)+P(1) - (P’(l))z.

For example, continuing with the case that X ~ g(k;p), we found
P(s) = p/(1 - ¢s) and P'(s) = gp/(1 — gs)? so that

P(s)=2¢°p(1 — ¢5)/(1 — gs)".
Thus
P(1)y=q/p
P"(1) = 2¢*/p”
and from (1.3.2.3)
Var(X) =P"(1) + P/(1) — (P'(1))?
=2¢°/p" + q/p— ¢*/P"
22 949
=q°* /v’ +q/p= » (p+1>
=q/p".

1.3.3. GENERATING FUNCTIONS AND CONVOLUTION.

Convolution is an awkward operation to perform on sequences. Asshown in
FProposition 1.3.3 below, convolution is converted into an ordinary product
by the process of taking generating functions. The price paid for this gain in
simplicity is the work that must be expended in recovering the convolution
sequence from the product of gf’s. For emphasis, the statement and proof
contain redundancies.

Proposition 1.3.3. The gf of a convolution is the product of the gf’s.

(1) If X;,i = 1,2 are independent non-negative integer valued
random variables with gf’s (i = 1,2)

Px.(s) = EsSs, 0<s<1,
then

le+x2(s) = le(S)Px‘z(S)‘

(2) If{a;} and {b;} are two sequences with gf’s A(s}, B(s), then
the gf of {an} * {b,} is A(s)B(s).

1.3. GENERATING FUNCTIONS 13

Note that if in (1), X, < X3 in addition to X7, X» being independent,
we have

PX1+X2(S) = (PX1(5))2‘

Proof. Although (2) implies (1), there is something to be learned by prov-
ing each separately.
(1) We have

Px,ix,(8) = BsX11Xz = Es%r gz

=Es*1Es™? = Py, (s)Px,(s)

X
1.s

since 8 X2 are independent random variables.

{2) Suppose for concreteness that the radius of convergence of both
A(s) and B(s) is sg. The gf of the convolution is

(= =) v
5 (zb) 5l <o
n=0 \k=0

and, since Fubini’s Theorem allows us to reverse the order of summation,
we get

i i apbp_js™ = iaksk i b ixs" % = A(s)B{s). &
k=0 n=k

k=0n=k

We now consider some examples illustrating the techniques involved.

Example 1.3.4. If X; ~ p(k; A), X5 ~ p(k; ) and X, X are independent
then

Px,4+x,(s) :PXI(S)PXZ(S) = Mo uls-1)
:e(r\ﬂ.t)(s—l),

so we conclude
Xu+ Xg ~plk; A+ p)

Example 1.3.5. If X; has range {0,1} with
PlX1=1=p=1-P[X =9

then
Px (5) = Es™* = qs" + ps* = g+ ps.
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If X ~ b(k;n,p), think of X as the number of successes in n Bernoulli

trials and let X; be 1 if the ith trial is a success and 0 otherwise. Thus
X=X+ +X,

and

Px(s) =[] Px.(s) = (Px,(s))" = (g + ps)"

tez]
in agreement with Example 1.3.2.
Example 1.3.6. Let X;,... , X, be iid, ~ g(k;p) and set

X=Xy 4+ X,

so that X is the number of failures necessary to obtain r successes in re-
peated independent Bernoulli trials. The density of X is called the negative
binomial distribution, and we now derive its form using gf’s. Since we know

Px,(s) =p/(1—gs)

we have

Px(s) =HPX.-(S) = {(Px,;(s))

= (/1 - gs))" = 3 PIX = Hs".

k=0

The plan is to expand (p/(1 — ¢s})" as a power series in 5, and then the
coefficient of s* is P[X = k|. We tequire the binomial theorem: For a € R,

1+t = i (Z)tk

k=0
for |t| < 1. Recall that the definition of (}) is
(i) = (a)i/H = afa - 1).(a — k + 1)/K.

Using this with ¢ = —r, we get

(p/(1—gs)) =p (1—gs)™"
T -r (—1)%gks*
p féo(k) s

from which
—r
PX =k = (—1)’“( § )p’qk-
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1.3.4. GENERATING FUNCTIONS, COMPOUNDING AND RANDOM SuMs.

There is a useful and simple generalization of Proposition 1.3.3 which will
prove basic to our study of branching processes. Let {X,,n > 1} be inde-
pendent, identically distributed (iid) non-negative integer valued random
variables and suppose X3 ~ {px} and

Es%r = Py, (s), 0<s<1l.

Let N be independent of {X,,n > 1} and suppose N is non-negative
integer valued with

PIN=jl=a;j>0; Es" =Py(s),0<s<1.
Define

Sp=0
Sn=X1+-"+Xn, n21

Then Sy is a random sum with a cornpound distribution: For j > 0

P[Sy = 4] =§:P[SN =j,N =}
Jo=

=3 PiSi=j,N=kl=Y_ PiS =jlPIN = k|
k=0 k=0

where P[S, = j] = pf* is the jth element of the kth convolution power of
the sequence {pn}. Thus the gf of Sy is

P, (s)=> P[Sy =3¢’
3=0
=2 (pr*ak) o= (Z?’f*s""
5=0 \k=0 k=0 7=0
=ch ZP[Sk =gl | = Zak (Px,(s)"
k=0 =0 k=0

(from Proposition 1.3.3)
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=PN(PX1(3)}!

and we conclude

(1341) PSN(S) ZPN(PX1(5))'

Note the gf of the random index is on the outside of the functional com-
position.

In the special case where N ~ p(k; A} we get a compound-Poisson
distribution with gf given by (1.3.4.1): Since Pnx(s) = exp{A(s — 1)}

(1.3.4.2) Pg,, (8) = exp{MPx,(s) - 1)}.

Example. Harry Delivers Pizzas. Harry’s restaurant has a delivery
service for pizzas. Friday night Harry goes on a drinking binge, which
causes him to be muddled all day Saturday while answering the phone at
the restaurant. A Poisson(A ) number of orders are phoned in on Saturday
but there is only probability p that Harry notes the address of a caller
correctly. What is the distribution of the number of pizzas successfully
delivered?

Let

X { 1, if the address of the ith caller is correctly noted,;
i =

0, otherwise.

Let N ~ p(k,)). The number of successful deliveries is Sy with gf
Psy{s) =Pn{Px,(s)) = Pn(q+ ps)
and from (1.3.4.2) this is
= exp{AMg +ps — 1)}
= exp{AMps — p)} = exp{dp(s — 1)}
so we recognize that

Sn ~ p(k; Ap). W

The effect of compounding has been to reduce the parameter from A to
Ap, a phenomenon which is called thinning in Poisson process theory. The
Poisson compounding of Bernoulli variables occurs often, and the previous
simple example serves as a paradigm. Other examples: Imagine a Poisson
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number of customers have arrived at a service facility to be served in turn.
Each customer has probability p of being satisfied with the service received
so that Sy s the number of satisfied customers. Alternatively, imagine
telephone traffic arriving at a gateway are of two types, I and II. Type
I traffic gets routed through trunk line I and type II traffic gets routed
through trunk line IL If 100p% of the calls are of type II and if the net
number of calls to arrive in an hour is Poisson distributed with parameter
X then the number of calls routed to trunk line I is Poisson with parameter
p. This thinning procedure is further discussed in Chapter 4.

Example. Harry Drives Cross-Country. For a vacation Harry drives
cross-crountry. Because of his lead foot he encounters a seemingly infinite
sequence of patrolling police cars which stop him. Half of the time he is
stopped, he has to pay a fine of $50 and the other half he pays a fine of
$100. However when it comes to dealing with the police, Harry is a smart-
aleck with an uncontrollable mouth. So whenever he is stopped, there is
probability p that not only will he have to pay a fine but he will foolishly
make some sarcastic and rude comment which will result in his license
being taken away. What is the distribution of the total fines assessed until
his license is revoked?

Let {X,,n > 1} be iid with

PX; =50 =1/2,

and let N be independent of {X,,,n > 1} with
PIN=k=¢"1p, k=1
(Note this N has range {1,2,...}. Earlier we considered the geometric

distribution which concentrates on {0,1,2,...}.) The total fines paid is
Sy and since

o0 oo
Py(s) =Y q"lps* =ps ) (gs)¥?
k=1 k=1
=ps/(1 - gs)
we get

1 1
P (s) = Pn(Px,(s})) = PN(ESE'O + 53100)_ -
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Note from {1.3.4.1)
ESy =P§_(s)se=1 = Py(Px, ()P, (8)|s=1

(remember how to differentiate the composition of two functions?) and
assuming Py, (1) = 1 this gives

= Py (Px, (1))Px, (1) = Py (1)P%, (1)
50
(1.3.4.3) ESn = E(N)E(X1).

The pattern of this expectation will repeat itself when we discuss Wald’s
Identity in Section 1.8.1.
In the second example, EX; = 3(50 + 100) = 75 and

Pl =R O tpn

=(p — pg +pg)/p’ = p/p* = 1/p=E(N)

therefore
E(Sy)="T5/p.

1.4. THE SIMPLE BRANCHING PROCESS.

We now discuss a significant application of generating functions. The sim-
ple branching process {sometimes called the Galton-Watson-Bienymé Pro-
cess) uses generating functions in an essential manner.

Informally the process is described as follows: The basic ingredient is
a density {px} on the non-negative integers. A population staris with a
progenitor who forms generation number (). This initial progenitor splits
into k offspring with probability px. These offspring constitute the first
generation. Each of the first generation offspring independently split into
a random number of offspring; the number for each is determined by the
density {py}. This process continues until extinction, which occurs when-
ever all the members of a generation fail to produce offspring.

Such an idealized model can be thought of as the model for population
growth in the absence of environmental pressures. In nuclear fission exper-
iments, it was an early model] for the cascading of neutrons. Historically,
it first arose from a study of the likelihood of survival of family names:
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How fertile must a family be to insure that in no future generation will the
family name die out? The branching process formalism has also been used

in the study of queues; the offspring of a customer in the systemn are those
who arrive while the customer is in service.

Here is a formal definition of the model: Let {Z, ;,n > 1,7 > 1} be iid
non-negative integer valued random variables, with each variable having
the common distribution {p;}. For what follows, interpret a random sum
as 0 when the number of summands is 0. Define the branching process

{Zn,n >0} by
Zy=1
Zy =2y,
Zy=Loy++ Zo g

Iy = m,1 + -+ Zn.Zn—u

so that Zn ; can be thought of as the number of members of the nth
generation which are offspring of the jth member of the {n—1)st generation.

Note that Z,, = 0 implies Znyy = 0 so that once the process hits 0 it
stays at 0. Also observe that Z,., is independent of {Z,,,7 > 1} which

i(s crucial to what follows, since we will need this independence to apply
1.3.4.1).

For n > 0 define P,(s) = Fs?~ and set
oo
P(s) = Es® = Zpksk, 0<s<1,
k=0

Thus Py(s) = s, Py(s) = P{s), and from (1.3.4.1) we get
Pa(s) = Po_1(P(s)).
And therefore

Po(s) = P(P(s})
Pa(s) = Pa(P(s)) = P(P(P(s))) = P(Pa(s))

Fuls) = Faor(P(s)) = P(Pr-a(s)).

Thgs, the analytic equivalent of the branching effect is functional com-
position. In general, explicit calculations are hard, but in principle this
determines the distribution of Z, for any i > 0. One case where some
explicit calculations are possible is the case of binomial replacement.
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Example. Binomial replacement: If P(s) = ¢+ ps then

Pa(s)=q+plg+ps) = g+pg+p’s
Py(s) =g +pq+p°(g+ps) = q+pg+p°q+p’s

Poii(s)=q+pg+pig+ - +p"g+p s

For later purposes note that for 0 <s <1
oo .
lim Poyi(s) =g 9 =¢/1-p) =1
n—od =0

Moments: Although the distribution of Z, is determined by the awk-
ward process of functional iteration of generating functions, certain explicit
expressions are possible for moments. These are generally obtained by solv-
ing difference equations. Set

oG
m =E(Z1) =Y kpk
k=0
02 :Var(Zl)

and assume m < oo and o2 < oco. To compute E(Z,) =: m, we note
ma = P1(1), and since P, (s) = Pnp-1(P{s)} we get

Pr(s) = Py 1(P(s))P'{(s).

Letting s T 1 yields
My = Mp-1TM

and iterating back gives

3 n—1 _
My = mn—zm2 = Mp_-3M" = ="T1h =m

since m; = m.

In the special case of binomial replacement where P(s) = q+ ps, we
have m = p and E{(Z,)} = ™. -

For the general case, we may calculate Var(Z,) by a similar but more
tedious procedure starting with the relation

Pn(s) = P(anl(s))-
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The procedure yields (if you do not make an algebraic error)

1—m

c*(n+1),

2.1 { 1—m"*tl :
Lm™)  fm £
Var(Zn_,_l):{Um ( ) ifm

fm=1.

Extinction Probability: Define the event

[ extinction | = U [Z, = 0].
n=1
We seek to compute
7 = P[ extinction ].
Since
{Zn = 0] - [Zn+1 = 0]

we have

n=P{J(2e =0} = Jim P{| J(Z: = 0}
k=1 k=1

= lim P[Z, =0\ = lim P,(0)

n—00

=: lim 7,
T— OO

= lim P[ extinction on or before generation n |.

n—od

This yields = in principle, but the goal is to be able to calculate it without
having to compute all the functional iterates P,(s). The method to do
this is given in the next result. To prevent degeneracies, assume that
0<po<l. fpo=0,7=0;if pg =1,7=1.) We will need to use the
fact that P(s) is convex on [0, 1].

Theorem 1.4.1. If m = E(Z;) < 1 thenw=1. If m > 1, then 7w < 1
and is the unique non-negative solution to the equation

s = P(s)
which is less than 1.

Proof. STEP 1: We first show 7 is a solution of the equation s = P(s).
Since the events {[Z, = 0]} are non-decreasing,

(Zn = 0] C [Zny1 =0

we have
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is & non-decreasing sequence converging to . Since

Pria(s) = P(Pu(s)),
we get, by setting s =0, that
Tny1 = Plan).
Letting n — oo and using the continuity of P(s) yields
7 = P(m).

STEP 2: We show 7 is the smallest sclution of s = P(s) in [0,1].
Suppose ¢ is some solution of the equation s = P(s) satisfying 0 < ¢ < 1.
Then, since 0 < g,

m =P(0) < Plg)=g¢

and therefore
Tg = P‘Z(O) = P(Wl) < P(Q) =q

and, continuing in this manner one more step,
m3 = P3(0) = P(m) < P(g) = ¢.

In general we obtain
T < g

Letting n — oo yields m < ¢ showing 7 is minimal among solutions in [0, 1}.
STEP 3: Note P(s) is convex since

P(s) = k(k—1)pks*~ >0,
k=2

Because of convexity and the fact that P(0} = pg > 0, the graphs

for 0 < s < 1 have at most two points in common. One of these is s = 1.
If P/(1) = m < 1, then in a left neighborhood of 1 the graph of y = P(s)
cannot be below that of y = s and hence by convexity of P(s) the only
intersection is s = 1. In the contrary case, if P’(1) = m > 1 then in a left
neighborhood of 1 the graph of ¥ = P(s) is below the diagonal and there
must be an additional intersection to the left of 1 of the two graphs. See
Figure1.4.1. W
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m > 1 m<1
Ficure 1.4.1

Note in the binomial replacement example that s = P(s) yields the
equation

s=q+ps

whose only solution is s = 1 which agrees with the fact that m = p < 1.

We now give the following complement, which ties in with the conti-
nuity theorem of the next section.

Complement. For0 <s<1

(1.4.1) lim P,(s) = .

T— 00

Verification. First suppose that s < 7. Then P(s) < P{m) =7 and
P(s) < .
Therefore Pa(s) = P{P(s)) < P(x) = m; thus
Pyls) < 7.
In general, by continuing this procedure we get
P.s)<m
from which, for 0 < s < 7,
Tn = Po(0) < Pa(s) <.

And, since m, — 7, by letting n — co we get that Pols) — =
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To finish the complement we must suppose 7 < 1 and investigate what
happens on the domain 7 < s < 1. We have for this range

7 = P{n) < P(s) <s,

the last inequality following from the fact that the graph of y = P(s) must
be under the diagonal on the set {s : ¥ < s < 1} (See Figure 1.4.1 for the
case m > 1.} Since P(s) is non-decreasing, from the previous inequalities
we get

P(r)=m < Pa(s) < P(s) <s.

Continuing in this manner, for the general case we obtain
T < P(s) € Paq(5) €--- < P(s) <.

Thus we conclude that {F,{s)} is non-increasing for # < s < 1. Let
Po,is) = limp—00 Pn(s). Suppose for some sp € (7,1) we have Py (sg) =
a > m. Then

Pla)= lim P(P.(sp)) = lim P,ti(s) =«

and on the domain (7, 1) we have P(s) < s. If P(s) is linear then P(s) = s
on (m,1). But then we would have py = 0fork>2andm < 1lsonr =1
against our supposition that = < 1. If P(s) is not linear, then by convexity,
P(s) < s for s € {x,1). Thus we have

7T<CkiPOO(SQ)SP(So)<Sg<1

but also
a = Pla),

which contradicts the fact that there are no solutions of s = P(s) in (m, 1).
The contradiction arose because of the supposition o > 7. M

What P,(s) — 7 says is that
oC o2
S PlZn=ks* s w=ns"+) 0s".
k=0 k=1

Anticipating the Continuity Theorem for generating functions presented in
the next section, this implies that

PlZ, =0 -,
PlZ,=k —0, fork>1
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1n fact, using Markov Chain or martingale methods, we can get a stronger
result, namely that

PlZ,—0 orZ, —ox]=1

and
m=P{Z, =0 =1-P[Z, — o0].

The simple branching process exhibits an instability: Either extinction
occurs or the process explodes.

Example. Harry Yearns for a Coffee Break. In order to help some
friends, Harry becomes the east coast sales representative of B & D Soft-
wore. The software has been favorably reviewed and demand is heavy.
Harry sets up a sales booth at the local computer show and takes orders.
FEach order takes three minutes to fill. While each order is being filled there
is probability p; that j more customers will arrive and join the line. As-
sume pg = .2,p1 = .2 and p; = .6. Harry cannot take a coffee break until
a service is completed and no one is waiting in line to order the software.
[f present conditions persist, what is the probability that Harry will ever
take a coffee break?

Consider a branching process with offspring distribution given by
(po,p1,p2). Harry can take a coffee break if and only if extinction occurs
in the branching process. We have

P(s) = 2+ 2s + .65°

and
m= {21+ (0)(2)=14>1,

80 8 = P(s) yields the equation
§=.2+4 .2s+ .65
Therefore we must solve the quadratic equation
B5° — Bs+.2=0,
and the two roots

8+/(8)2—-4(6)(2) .8—/(8)?-4(6)(2)
2(.6} ’ 2(.6)

yield the numbers 1, §, and thus m = 1. Thus the probability that Harry
can ever take a coffee break if present conditions persist is 1/3. B
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When P(s) is of degree higher than two, solution by hand of the equa-
tion s = P(s) may be difficult, while a numerical solution is easy. The
procedure is first to compute m = ZE’;O kpg. If m <1, then # = 1 and
we are done. Otherwise we must solve numerically. Root finding packages
are common. A program such as Mathematica makes short work of finding
the solution. Typing

Solve[P(s) — s =0, 5]

will immediately yield all the roots of the equation and the smallest root
in the unit interval can easily be identified. Alternately, = can be found by
computing 7 = limp_, o Pr{0}. The recursion

Ty = P(O)’ Tntl = P(Wn)

can be easily programmed on a computer and the solution will converge
quickly. In fact the convergence will be geometrically fast since for some

p € (0,1}
0<T—mp, <p™ — 0.

The reason for this inequality is that by the mean value theorem and the
monotonicity of P’

T — 7 = Po(m) — Po{0) < Pi(m).
We need to check that
Plx)=(P'{m))" and P'(m) < 1.

Since

Py (s) = PL(P(s))P'(s)

we get
Bryi(m) = Py (m)P'(m).

The difference equation when iterated shows the desired power solution.
It remains to check that P’(x) < 1. If this were false and P'(#) > 1, then
for § > 7, by monotonicity and the mean value theorem, we get

P(s)— P(z) 2 Pl{m)(s —m) > (s — 7),

i.e.,
Plsy>nm+s—m=s

which for s > 7 is a contradiction since on (7,1) we have P(s} < s (as
surning F(s) is not linear}.
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1.5. LimviT DISTRIBUTIONS AND THE CONTINUITY THEOREM.

Let {Xn,n > 0} be non-negative, integer valued random variables with
{n=0,k=>0)

(1.5.1) PX, =kl =p™, Pu(s) = Es*~.

Then X,, converges in distribution to Xy, written X,, = X, if

(1.5.2) lim pf:) = pgco)

n—0o0
for k=10,1,2,.... As the next result shows, this is equivalent to
(1.5.3) Fr(s) — Po(s)

for0<s<1asn— co.

Theorem 1.5.1. The Continuity Theorem. Suppose for each n =

1,2,... that {pfcn),k > 0} is a probability mass function on {0,1,2,...} so
that

o0
P z0, > =1
k=0
Then there exists a sequence {pECD) .k > 0} such that

(15.4) Jm g =p”, k20

H

iff there exists a function Py(s),0 < s < 1 such that

(1.5.5) lim Py(s) = lim 3" p"s* = Ry(s).
k=0

ffJF 0 < s < 1. In this case Po(s) = Y 1oy piﬁ)sk and Z?;Upgco) =1if
limgy; Py(s) = Py(1) = 1.

Remarks. As we will see, this provides an alternative to brute force when
Proving convergence in distribution. Frequently it is easier to prove that the
generating functions converge rather than trying to show the convergence
of a sequence of mass functions.

From (1.5.4) we have

(15.6) 0<p™ <1
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(n

since the same is true for p; ) and limn, oo pﬁ") = pg)). But it does not
follow that 3 zeo pg)} = 1 since mass can escape to infinity. As a graphic

example suppose
P ™ 5 = 1, fk=n
P m%n= N0, ifk#n

For any fixed &,

(1.5.7) Jim p{™ =0,

n—00

from which o
(PD P 7) = (0,0,)

This phenomenon arises because we consider the state space {0,1,2,... }.
If we enlarge the state space to {0,1,2,... ,00} then X, = oo and the
limit distribution concentrates all mass at oo.

Proof. Suppose (1.5.2). Fix s € (0,1) and for any € > 0 we may pick m so
large that

]

Z Si‘ < E.

i=m+1

We have
IPa(s) — Pa(s) <D el — o
1

SO
k=m+1

k
M O

k=
m
<> Ip
k=1
m
<>Ip
k=1
Letting n — oo, we get

limsup |P(s) — Po(s)| < ¢

n—oQ

and because ¢ is arbitrary we obtain (1.5.5).

The proof of the converse is somewhat more involved and is deferred to
the appendix at the end of this section, which can be read by the interested
student or skipped by a beginner.
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Example. Harry and the Mushroom Staples.* Each morning, Harry
buys enough salad ingredients to prepare 200 salads for the lunch crowd
at his restaurant. Included in the salad are mushrooms which come in
small boxes held shut by relatively large staples. For each salad, there
is probability .005 that the person preparing the salad will sloppily drop
a staple into it. During a three week period, Harry’s precocious twelfth
grade niece, who has just completed a statistics unit in high school, keeps
track of the number of staples dropped in salads. (Harry’s customers are
not reticent about complaining about such things so detection of the sin
and collection of the data pose no problem.) After drawing a histogram,
the niece decides that the number of salads per day containing a staple is
Poisson distributed with parameter (200)(.005) =1. H

Harry’s niece has empirically rediscovered the Poisson approximation
to the binomial distribution: If X, ~ b(k;n,p(n)) and

(1.5.8) lim np(n) = lim EX, = X € (0, co),
n—0o0 n—o0
then
Xn = XU
as i — oo where Xp ~ p(k; A).
The verification is easy using generating functions. We have

nlin;lo P.(s) :nlin;c Es%n -—-nllngo(l —p{n)+p(n)s)”

- lim (1 . (s - 11)1”:0('-'1)) = pAMe-1)

n-—0o

using (1.5.8).
Appendix: Continuation of the Proof of Theorem 1.5.1.

We now return to the proof of Theorem 1.5.1 and show why convergence
of the generating functions implies convergence of the sequences.

Assume we know the following fact: Any sequence of Mass functions
{{f;"),j > 0}, n > 1} has a convergent subsequence {{f;n),j > 0}}
meaning that for all j

lim £
n —oc
exists. If {pL")} has two different subsequential limits along {n’} and {n"},
by the first half of Theorem 1.5.1 and hypothesis (1.5.3), we would have

Jim 37 p(sk = tim Pu(s) = Pofs)

n'—oo
k=0

*A semi-true story.
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and also

oo

n’l'l—l?oo ij(cn Yok — nflrEHm P.(s) = Po(s).
k=0

Thus any two subsequential limits of {psc")} have the same generating func-

tion. Since generating functions uniquely determine the sequence, all sub-

sequential limits are equal and thus limp, .o p.(h") exists for all k. The limit

has a generating function Po(s).

It remains to verify the claim that a sequence of mass functions
{1/ j(n),j > 0}, n > 1} has a subsequential limit. Since for each n we
have

{5 > 0} Cfo, 1],

and [0, 1]° is a compact set {being a product of the compact sets [0, 1)),
we have an infinite sequence of elements in a compact set. Hence a subse-
quential limit must exist.

If the compactness argurnent is not satisfying, a subsequential limit can
be manufactured by a diagonalization procedure. (See Billingsley, 1986,
page 566.)

1.5.1. THE Law oF RARE EVENTS.

A more sophisticated version of the Poisson approximation, sometimes
called the Law of Rare Events, is discussed next.

Proposition 1.5.2. Suppose we have a doubly indexed array of random
variables such that for each n = 1,2,..., {Xnk, k 2 1}, is a sequence of
independent (but not necessarily identically distributed ) Bernoulli random
variables satisfying

(1.5.1.1) P[Xn,k = 1} =p(n)=1- PlXpx= 0],
(1.5.1.2) \ piln) = 8(n) =0, n— oo
1<k<n
(1.5.1.3) Y () =EY Xpp— A€ (0,00, n— oo,
k=1 k=1

If PO()) is a Poisson distributed random variable with mean A then

> Xnx = PO(A)
k=1
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Remarks. The effect of (1.5.1.2) is that each X, 4,k = 1,... ,n has a
uniformly small probability of being 1. Think of X, ;. as being the indicator
of the event Ak, viz X, x = 14, , in which case

L L
Z KXok = Z 14, , = the number of A, x,1 < k < n which ocecur.
k=1 k=1

So when each of a large number of independent events has a small proba-
bility of occurring (i.e. events are rare), the number of events which occur
is approximately Poisson distributed.

A stochastic process version of this result is frequently used as one
of the justifications for assuming a queueing model has input determined
by a Poisson process: Imagine several different streams of customers from
independent sources converging on a service facility. Each stream is fairly
sparse. If the different inputs are combined, then the arrival pattern ob-
served by the service facility is approximately that of a Poisson process.
The Poisson process will be defined in Chapter 3 and studied carefully
in Chapter 4, but for now you should understand by this that the total
number of arrivals in time [0, 7] to the service facility from all the different
sources is approximately Poisson distributed.

Example. Traffic to Harry’s Restaurant. Harry’s restaurant is sur-
rounded by 25 small Mom and Pop shops (i.e., small family owned and
operated businesses). Between noon and 1 p.m., each Pop has his lunch
break, but for the ith Pop there is only the small probability p; that he
will eat at Happy Harry's. (Alternatives include the sprouts bar across the
street or a low cholesterol lunch of jogging.) The number of Pops to come to
Happy Harry’s between noon and 1 PM is approximately plk; A) = 21221 ;.

|

Proof. The gf of S.7_, X is

H Px, () = H(l — px(n) + pe(n}s).
k=1 k=1

So it suffices to show (take logarithms)
(1.5.1.4) lim " log(1— pe(n)(1 —s)) = Als = 1)
for 0 < s < 1 since this would imply after exponentiating that

PE:=1xn,k (S) — el
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To prove this we need the following estimate. For 0 <z < 1

(1.5.1.5) —log(l — z) = z + R(z),
where R(x) is non-decreasing and
(1.5.1.6) R(zy<2z%, O0<z<1/2

To check these inequalities, use the infinite series representation: For
O<z<l

o xP X o
~log(l—z} = E ?=I+ E o
n=1 n=2

and set R(z) =3 o ,z™/n. Since z™/n < ™ we have
B(zx) <Z:c =z?/(1-z).

Next, if 0 <z < 1/2, (1 —x)~! < 2, giving (1.5.1.6).
So multiplying the left side of (1.5.1.4) by —1, and using {1.5.1.6) yields

lim Z—log(l—pk( )(1—s)—Zpk(n)(1—s +ZRpk(n) (1-9).

k=1 k=1
Since

n
,}Lngo;pk(n)(l —5) = M1~ s},
the desired result will be proved if we show

lim Y R(pe{n)(1—5)) =0.

k=1
For 0 < s < 1 and n so large that
V pe(n) <8(n) <1/2,
1<k<n

we get from the monotonicity of R and {1.5.1.6)

ZRm n)(1-35)) <Y R(pa(n)) <2 (pr(n)’
k=1 k=1 k=1

SQ\/Pk Z n)
k=1

T

<28(n) D pr(n) =2 0-A=0.

k=1
Thus (1.5.1.4) is true, W
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1.6. THE SiMPLE RaNpoM WALK.

Let {Xa,n > 1} be independent, identically distributed random variables
with only two possible values {—1,1} and

PXi=1=p=1-PX;=-1=1-g,

0 <pg=lptg=
{Sn,n > 0} by

1) and define the simple random walk process

Sp=0,8,=X1 4+ X,,n>1.

Such a process is important didactically and as a source of examples. It
is often used in the following primitive gambling model: Toss a coin. If the
outcome is heads, you win one dollar; if the outcome is tails you lose one
dollar. S, is the fortune after n plays. Many of the problems encountered
in the study of {5,} are typical of those with more sophisticated models.

There are powerful martingale and Markov chain methods for the study
of {S,}. Here we emphasize generating function methods.

Define

=inf{n>1:8,=1}

to be the first time the random walk hits 1, i.e., the first time the gambler
is ahead. We wish to derive the distribution of N. The plan is to write a
difference equation and solve it using generating functions. Set

¢ =P[N=n],n>0

so that @9 = 0, ¢y = p. What equations do we expect for {¢,}? If n > 2,
then in order for the random watk to go from 0 to 1 in n steps the first step
must be to —1 (which has probability ¢). From —1 the walk must make its
way back up to 0. Say this takes j steps. Then it seems reasonable that
the probability of the walk going from —1 to 0 in j steps is ¢;. From 0
the random walk still must get up to 1. Say this takes & steps. Then this
probability should be ¢ and the constraint on j and kisthat 1+j+k=n
where the 1 is used for the initial step to —1. Thus the equation should be

n—2

= Z qbifn—j_1, m>2.

i=1

The argument just given seems plausible and we now make it precise.
(Those who found the argument convincing can skip to (1.6.2).)
For n > 2 we have

(1.6.1) [N =n}= U[X1 1N A; N Brejy



34 PRELIMINARIES
where

A; =[the random walk makes a first return from —1 to 0 in j steps]

=[inf{n : Z-Xi+l =1} = j]

and

By—j—1 =[the random walk makes a first passage from 0 to 1 in
n — j — 1 steps}
T
=finf{n: > Xjpp=1}=n-j-1].

i=1

When n = 2, interpret the right side of (1.6.1) as @, the empty set. Note
A; is determined by Xp,. .., X;41, and similarly B, ;1 is determined by
Xit2,..-Xn Thus, the three events

[X1=-1], A;, Bn_j

are independent because they depend on disjoint blocks of the X’s. Since
the union in {1.6.1) is a union of disjoint events we have

n-2

P[‘N = n] = by = ZqP(Aj)P(Bn—j—l)'

=1

Now P
{XlaXQ:---}: {X2)X33X4s”'}

meaning the finite dimensional distributions of both sequences are identi-
cal; i.e., for any m and sequence ki, ..., kq, of elements chosen from {—1,1}
we have

P[XIZ)'C]_,...,Xmka}ZP[XQZkl,...,Xm+1:km]

since both sequences are just independent, identically distributed. There-
fore,

P(A;) = Plinf{n: ) X; =1} =j]=¢;
=1

and similarly
PBn—j—l = an-‘j*lr
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from which we get the recursion

¢D = 05 ¢1 =p
n—2
(1.6.2) $n= qbiPn j-1, N2
=1

This difference equation summarizes the probability structure.
To solve, multiply (1.6.2) by s™ and sum over n. Set ®(s) =
E:’;D @n5". We have

] oo n—2
(1.6.3) S hnsm =) | D aditns1 | "
n=2 n=2 \ j=1
o n—2
= quﬁj%—jq s".
n=2 j=0

Reversing the summation order (note n — 2 > j > 0 implies n > j+ 2}, we
get the above equal to

The Ieft side of (1.6.3) is

Y bus™ ~ 15 = &(s) - ps,

n=1

and we conclude
®(s) — ps = gs®?(s).
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Solve the quadratic for the unknown ®(s). We get
B(s) = (1 +4/1— 4pq32) /2gs.

The solution with the “+” sign is probabilistically inadmissible. We know
®(0) < 1 but the solution with the “+” sign has the property

l++4/1—4dpgs® 1+1 2

2gs 2gs 2qs

— OQ

as s — 0 (where a(s) ~ b(s) as s — 0 means lim,_,p a(s)/b(s) = 1). So we
conclude

- — 2
(1.6.4) sy = 1V oy

2qs ’

We can expand this to get an explicit solution for {¢,} using the Binomial
Theorem. On the one hand we know

d(s) = Z Pns”
n=1

and on the other, by expanding 1.6.4, we also have

25 = [ 1= () -0tamas?y | 2

=0

The “1” and the “j = 0” terms cancel; taking the minus sign in front of
the sum inside the sum yields

sy =) (1/2)(-—1)j+1(4pq)fszi/2qs

=17

= (1/2 _ 41 (dpg)? $2i-1
1;( j )( ST
(Vs+(1+ ()P +....

‘We conclude
1/2 ‘ . }
$rj-1 = ( ﬁ )(—1)J+1(4pq)3/29, iz

and, for the even indices, we have for j > 1
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(}52_:,' = 0.

For obtaining qualitative conclusions, it may be easier to extract in-
formation from the generating function. For instance, from (1.6.4)

PIN < o0] =8(1) = (1 — /1 —4p(1 —p)) /2q
= (1 — V1= 4p+4p2) /2g = (1 NTE 1)2) /2q

=(1-|2p-1))/2¢=(1-2p~p—ql)/2g
=(1—|p—ql)/2g,

and we summarize

PIN < ool =(1-1|p—4ql)/2q
_{L ifp>q
p/e, ifp<q
Note that if p < g, Le., the pressure pushing the random walk in the
positive direction is weak so that
PN =w]=1-p/qg>0.
In this case P[5, <0, for all n > 0] > 0 and on the set of positive proba-
hility
ﬂ?f:o [Sn S D]

the gambler is never ahead.
When P[N = oc] > 0 we have by definition EN = 00. When p > ¢ we
compute EN = ®'(1) by differentiating in (1.6.4)

p(s) < a0~ 4pgs?)~Y/%(=8pgs) — (1 — /1 — 4pgs®)2g

4g?s?

(ugly but correct), and letting s T 1 yields

EN = (2(] (%) —2q(1— \/TE;E) ra

bividing numerator and denominator by 2q we get

4pq
BN = (ot -l 1)) /2
2p (I-p—gl)

T lp—al 2q

H
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and so
o, fp=qg=1/2

ENz{ _
{p_q)—lv lfp)q'

An extension of these techniques can be used to analyze the distribu-
tion of the first return time to 0. Define

Ny =inf{n >1:8, =0},

set fo =0 and
fon =P[Ny=2n],n > 1.
Also
.03
F(s)= ngnszn, 0<s<1
n=0

Now we have

{ 1+inf{n: 3" | X =1} on [X; = —1]
NO =

1+inf{n: 3 ", X;1=-1} on[X; =1]

Set

n
Nt =inf{n; ZXHI =1}

i=1

n
N™ :mf{n . ZXH-I = —1}
i=1

and observe that because {X;,i > 1} 4 {X;,i > 2} we have N L N+,
Also N7 is determined by {X;,,i > 1} and is therefore independent of
X,. Similarly N~ is independent of X;. We have

F(S) = ESNG = ESNO].[Xl:_]] + ESN01[X1=1]

+ -
=Es't 1[X1=—1] + EsttV 1[X1=1]-
By independence this is

=sEs"TP(X, = ~1] + sEsY T P[X, =1]
(1.6.7) =s®(s)g+ spEs? .
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Note

n k)
N™=inf{n:Y Xy =-1}Einffn:> X; = -1}
i=1 i=1

= inf{n: Z(——X,-) =1} =inf{n: Zn:Xl# =1}.

i=1

Moreover, the process {37, X,n > 1} is a simple random walk with
step distribution

PXF =1=P-X,=1=P[X; =-1=¢
To get
@~ (s) = Es™7,

we simply use the formula (1.6.4) with p and ¢ reversed. Consequently,
from (1.6.7),

F(s) =sq (1—\/1—4pq52) +sp (1—\/1—4pqs2)

2gs 2ps

(1.6.8) =1—+/1—4pgs2.

Further,
F(1) = P{Np <00l =1-+/T—4pg=1—|p—q
so0
1, ifp=gq
P[Ny <ool=1{ 29, ifp>gq
2p, ifp<yg

and only in the balanced case p = ¢ = 1/2 does the random walk return to
0 with probability 1. However, even in the balanced case when p = q = 1/2
and P[Ny < oo] = 1 we have

Fls)=1-+1~4s2
from which ]
F'(s) = —5(1 -9 M2
a5 s — 1 so that
ENO = F’(S)]5=1 = Q.

Thus, a return to the origin is certain but only after a random amount of
time whose expectation is infinite.
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1.7. THE DISTRIBUTION OF A PROCESS*.

Given a probability space ({2,.4, P), a random variable is a measurable
mapping X : (2, A) — (R, R) where R are the Borel subsets of R; i.e., the
sigma. field generated by open sets (or open intervals). This mneans that for
every Borel subset B € R we have

X YB):={w: X(w} e B} € A

Define
o(X) =X R)y={X"YB): BeR}C A

This is the o-algebra generated by X. It is the smallest o-algebra contain-
ing all sets of the form

{w: X{(w)eB}=[XeB],BeR.

Think of ¢(X) as that portion of the information in the probability space
obtainable from a knowledge of X.

The distribution of X is the probability measure on (R, R) defined by
P o X~1 50 that for B € R we have

PoX~Y(B)=P|X € B).

The sets {{—o0, z}, z € R} are closed under finite intersection and generate
R; hence by a set induction result called Dynkin's Theorem (Billingsley,
1986, p. 37, 38) Po X! is determined by its values on semi-infinite in-
tervals. This is the familiar statement that the distribution of a random
variable is determined by

F(z)=Po X !(~o00,z] = PIX < 7]

z € R; i.e., the distribution is determined by the distribution function.
The distribution of X is important because it determines all probabilities
pertaining to X since the distribution of X determines probabilities of all
sets in X1 (R) =o(X) C A

Now we generalize the previous discussion. Let (£2,.4, P) be a prob-
ability space as before and let (5,5) be a measurable space where S is a
complete, separable metric space and & is the o-algebra generated by open
subsets of 5. A measurable mapping

X 1 (2, 4) — (S, 8)

is called a random element of S. Reaching into our (-bag, we pull out
an w, put it into the map X and out comes an element of 5. Important
examples are:

* This section contains advanced material which may be skipped on first
reading by beginning readers.
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(1) If S = R then X is a random variable.

(2) If S = R?for d > 2, then X is a random vector.

(3) If § = R, then X is a stochastic sequence; i.e., a stochastic
process with a discrete index set. So a stochastic process with
index set {0,1,...} is a random element of R*.

(4) If § =C, the space of continuous functions on [0, co), then X
is a continuous path stochastic process. A prominent example
of such a process is Brownian motion.

(5) I § = M,(FE), the space of all point measures on some nice
space F, then X is a stochastic point process. Some promi-
nent examples when E = [0, 00) are the Poisson processes and
renewal processes.

Other examples abound.

The distribution of the random element X is the probability measure
on (8, 8) induced by X, namely P o X~! so that for B S

Po X~Y(B)= P[X € B].

As before, the distribution of X determines the probabilities of all events
determined by X, namely X 1(S).

Usually it is convenient to find a small class of sets, as we did in the
case of random variables, so that P o X! is determined by its values on
this small class. Recall that the relevant technique is the consequence of
Dynkin’s Theorem {Billingsley, 1986, p. 38) given next.

Proposition 1.7.1. If C is a class of subsets of § which is closed under
finite intersections and generates 8, i.e., if o(C) = &, and if two probability
measures Py, Py agree on C, then P, = P, on S.

Sequence Space: We now concentrate attention on
R® ={x:x=(21,22,...)and z; € R, i > 1}

since this class is most appropriate for discrete time stochastic processes.
Let C be the class of finite dimensional rectangles in BR*; ie, A € C if
there exist real intervals Iy,... , I, for some k and

A={xeR®:z;el;, i=1,... k}.

Note that C is closed under intersections, and it is also true that R, the
o-algebra generated by the open sets in R®, is generated by the finite
dimensional rectangles in C (cf. for example, Billingsley, 1968). So we
have the important conclusion that any measure on (R®°, R®) is uniquely
determined by its values on the finite dimensional rectangles C.
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Suppose X = {X;, X5, ... ) is a random element of R* defined on the
probability space (2,.4, P). Its distribution P o X~ is determined by its
values on the finite dimensional rectangles C. This can be expressed another
way. We say two random elements X and X’ are equal in distribution

(written X £ X') if Po X~! = Po (X')~! on R®. X' is then called a
version of X.

Proposition 1.7.2. If X and X' are two random elements of R* then

X<x

if
forevery k> 1: (Xa,... . Xo) 2 (XC,... , XL) € R*.

Proof. Define the projections IT; : R~ — R* by
He(z1,20,...) = (z1,.-. , T)-
Fach II; is continuous and hence measurable. If X 2 X’ then also
(X)) = (X3, Xi) = IR(X) = (X1, , X})
as desired. Conversely if
for every k> 1: (Xy,...,X) S (X],... . X}) e R*

then the distributions of X and X’ agree on C and hence everywhere. B
Call the collection of distributions
PoX 1olli() = P[(X1,...,Xx) € ]
on R* (k > 1) the finite dimensional distributions of the process X and our
proposition may be phrased as the distribution of a process is determined

by the finite dimensional distributions.
Define a new class €’ as follows: A set A’ is in £’ if it is of the form

A’={y€Rw-'y‘zSIt,i:1,.’k}

for some k > 1,{z1,...,xx) € R%. Note that ' is still closed under
intersections and still generates R°°; also

PoX YA =PX, <zy,..., Xk < zg),
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which is a k-dimensional distribution function. The analogue of Proposition
1.7.1 is that the distribution of the process i1s determined by the finite
dimensional distribution functions.

Two random elements X, X' in R* which are equal in distribution
will be probabilistically indistinguishable. This last statement is somewhat
vague. What is meant is that any probability calculation done for X yields
the same answer when done for X'. {This rephrases the statement

P[X e Bj=P[X’' € B], YBeR>)

In succeeding chapters we frequently will construct a convenient represen-
tation of the stochastic process X = {X,}. (This was already done with
the branching process.) We are assured that any other version X' = {X/,}
will have the same properties as the constructed X.

Here is one last bit of information: Define the coordinate map g :
R*®— Rby

(21, 22, .. ) = Tk

for k > 1. The following shows there is nothing mysterious about a mea-
surable map from €} to R*™.

Proposition 1.7.3. If X js a random element of R™ then foreach k > 1
we have that m¢(X) is & random variable. Conversely, if X1, X,,... are
random variables defined on 1, then defining X by

X(w) = (X1(w), Xa(w), ...}

Vields a random element of R®.
A random element then is just a sequence of random variables,

Proof. 7, is continuous and hence measurable. Therefore if X is a random
element of R>,

mroX : 0 R
being the composition of two measurable maps is measurable and hence is
a random variable,
For the converse, we must show
X~ HR®)C A

However, R® = ¢(C) and

X~ o(C) = a(XHO)).
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But for a typical A €,

k
XA =X elie A

3=1
since X1,..., X are random variables. Hence
X HOyc A

and

(X)) c A

as desired. H
1.8. SToPPING TIMES. *

Information in a probability space is organized with the help of o-fields.
If we have a stochastic process {X,,n > 1} we frequently have to know
what information is available if we hypothetically observe the process for n
time units. Imagine that you will observe the process next week for n time
units. The information at our disposal today from this hypothetical future

experiment is the o-algebra generated by X, ..., X, which we denote as
o(Xy,...,X,). Another way to think about this is that a(Xy,..., Xn)
consists of those events such that when we know the value of Xy,..., X,

we can decide whether or not the events occurred. Note for n > 0
O’(Xl,. .. ,Xn) C O'{Xl,‘ N an+1)
and the information from hypothetically observing the whole process is
oo
o(X;,3 >V =o{| ) o(Xy,..., Xn)}.
n=_

In general, suppose we have a probability space (€, A, P} and an in-
creasing family of o-fields F,,n > 0; ie., F, T Frn CT A Define

s

Foo =\ Fui=0l

n>0 mn

Fu)
0

* This section contains advanced material which may be skipped on first
reading by beginning readers.
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so that Fp C Feo C A. Think of {F,,0 < n < oo} as a history; as time
goes on, more information accumulates. Note if F,, = ¢(X,,... , X,) then
Foo = U('X.‘f!j 2 1)

Anp important technical and conceptual concept is that of a stopping
time. A tandom variable o : 2 ++ {0,1,... ,00} is a stopping time with
respect to {Fy,,n > 0} if for every n > 0 we have

(1.81) [a=n] € Fn,

or equivalently

(1.8.2) la <n] €F,.

In the case F, = o(X1,...,Xy), the event [@ = n] is determined by
Xy, .., Xn. It is necessary to allow oo as a possible value of & since
when ¢ is the waiting time for an event to oceur, it may be possible that
the event will never occur, in which case the waiting time is infinite. The

terminology “stopping time” suggests a gambler whose decision when to
stop playing must be based on past events and not on future ones.

Example 1.8.1. Let {X;,j > 1} be iid,
PX,=1=p=1-PX, =-1],
0 < p<1andlet {S,} be the associated random walk. Then
N=inf{rn>1:5,=1}

is a stopping time. Note the convention: The infimum of an empty set is
+00. S0

[Sn<l, foralln|=[{n>1:5,=1}=0]= [N =]
We have that N is a stopping time with respect to {F,,n > 0} where
Fo=1{0,Q}, Fo=o(X1,...,Xn)n>1.
The reason is that forn > 1

[N=n]=[5 <1,..,8-1<1,5, =1] € F..

Example 1.8.2. A slight generalization shows hitting times are stopping
times. Let {£;,j > 0} be a process on (§2,.4, P} and define

Fo=0(0,--r&n),n > 0.
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Suppose the state space of the process is (5, §) and let B € S be a subset
of the state space. Define the hitting time of B to be

g =inf{n > 0:¢, € B}.
Then Tg is a stopping time with respect to {F,,} since for n > 1
ire =n}=[ € B%,... ,&u_1 € B%, £, € Bl € Fr.

In Markov chain models, the state space may be {0,1,... }. A typical
case is that B = {0}. We are interested in 7 where

T0 =inf{k >0:& =0}.

Back to the general discussion. If o is a stopping time with respect to
{F.}, the information up to time « is contained in the o-field

Fo={AeFu:ANfja=nle F, forall 1 <n < co}.

Thus A € F, if, when imposing the additional restriction that [a = n],
the resulting set is placed in F,. Check that F, is a o-field and that F,
consists of sets of the form

U le=nlNA,

0<n<oo

where A, € F,,0 < n < 0.
Suppose {&-,n > 0} is a process on {1, A, P) with state space (5,5)
so that each £ has domain £ and range §. Suppose

U(EO}' - :E'n) - -7:11,-
The post-a process is the process

{Ea+ﬂ}n 2 1}

which is only defined on [ < co]. The definition of £,4, is that, at w €
lar < 00], the value of the function £aqr 15 £auy+n(w). If [@ < 00} = 2 then
£, is F, measurable, written &, € F,, sincefor BeSand 0 < n < oo

[, € Bln[a=n]= [ € BlN|a=n] € Fxr.
If @ < o0] C 9 but [@ < oo} # £, then one can check that either
&al[a<oo] €EFqoréy € [Oc < 00] N Fa,

the latter considered in the trace space (2N [a < =], [a < o] N A). The
post-ar field F), is the subfield of [@ < oo] N Fy generated by the post-a
process {£4.n, % > 1}. It is the information available after time o.
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1.8.1. WaLD’s IDENTITY.

Wald's identity and its generalizations are special cases of martingale stop-
ping theorems. They are useful for computing moments of randomly
stopped sums, although checking the validity of moment assumptions nec-
essary for the identities to hold can be tricky. We have already seen an
identity like Wald’s in (1.3.4.3).

If you did not read Section 1.7, think of a stopping time o with respect
to the sequence {X,,n > 1} as a random variable such that the set [o = m}
is determined only by X,..., X, for any m > 1. Thus o takes on the
value m regardless of future (beyond time ) values of the process.

Proposition 1.8.1. Suppose {X,,,n > 1} are independent, identically
distributed with E|X1| < oco. Suppose o is a stopping time with respect
to {X,,n > 1} and

Ea < 0o,

Then o
E() " Xi) = E(X,)Ea.
i=1

Proof. We have
o (o]
EQ X)=EY  Xiljza.
i=1 i=1

If we can interchange expectation and the infinite sum, then the above is

> EXiljca)-

i=1

Since [{ < af = [a < 1]¢ = [@ < i — 1]° depends only on X1,...,X;_1, we
have that X; and ljicq) are independent. The above then equals

oo o0 o0
Y BX Bl = B(X3) S Pla 2 i = B(X))S Pla > i] = E(X))Ea
i=1 =1 i=0

from Lemma 1.1.1.

The rest of the proof justifying the interchange of E and 3 .o, requires
a bit of measure theory. A student who does not have this background
should skip the rest of the proof and proceed to the example below. For
those who continue, note

oo oo
EZ | Xilp<ayl = EZ 1Xilljga)-
i=1

i=1
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Since all terms are positive, Fubini or monotone convergence justify the
interchange and

oo
> E|Xi|ljca) = E|X1|Ea < 00

i=1
by assumption. Therefore the function of two variables ¢ and w
Xi (W)l icqy(w)
is absolutely integrable with respect to the product of P and counting

measure. This justifies a Fubini interchange of the iterated integration. W

Example. Consider the simple random walk {5, } with Sy = 0 and set
N=inf{n >1: 85, =1}.

Recall P[X; =1 =p=1—P[X; = —1] so that EX; =p—gq. On IN < o0
we have Sy = 1. If EN < 0o then Wald's identity holds and

ESy = E(X1)EN = (p— @)EN.

If p = ¢, we get a contradiction: If EN < oo then PN < ] = L
morecver, on the one hand

ESy=FE1=1 (since Sy=1)

and on the other, by Wald
1 1
E =|- — — = .
Sn (2 2)EN 0

Hence EN = co. If EN < co and p < ¢ then Wald implies 1 = (p—g)EN <
0, a contradiction. So we get the weak conclusion EN = oo, whereas we
know from (1.6} that in fact P[N = oo] > 0. If p > ¢ and EN < oo we
conclude from Wald EN = (p ~ ¢)~!, in agreement with (1.6.6), but this
argument does not prove EN < oa.

1.8.2. SPLITTING AN IID SEQUENCE AT A STOPPING TIME*.

Suppose {X,,n > 0} are ild random elements and set

.7'-,1 ZU(XQ, e ,Xn),
f;-; :U(Xﬂ+11Xﬂ+2J R )
*This section contains advanced material which may be skipped on first

reading by beginning readers. However, the main result Proposition 1.8.2 is easy
to understand in the case that «a is finite a.s.
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F, represents the history up to time n and FI is the future after n. For
iid random elements, these wo o-fields are independent. The same is true
when n is replaced by a stopping time o; however care must be taken to
handle the case that Pla = oo} > 0. As before, we must define

o0 [e2]
Fo=\ Fa=0oll) 7).
n=0 =0

If @ = oo it makes no sense to talk about splitting {X,} into two
pieces——the pre- and post-a pieces. Instead we restrict attention to the
trace probability space. If (2,4, P) is the probability space on which
{Xn} and « are defined, the trace probability space is

(QF, A%, P*) = (QN o < 00, AN [ < o0, P{-]a < o0})

(assuming Pla < oo] > 0). If Pla < o] = 1, then there is no essential
difference between the original and the trace space.

Proposition 1.8.2. Let {X,,n > 0} be iid and suppose o is a stopping
time of the sequence {i.e., with respect to {F,}). In the trace probability
space (0¥, F# P#), the pre- and post-o o-fields F,, F/, are independent
and

{Xn,n 2 0} £ {Xopr, k > 1}

in the sense that for B € R™
(1.8.2.1) P#¥[(Xa4k, k> 1) € Bl = P[(X,,n > 0) € B].
Proof. Suppose A € F,. Then

P{AN fo < 0] N [{ Xask, k = 1} € B}

(1.8.2.2) - i P{AN @ =n]N[(Xnsxk 2 1) € B]}.

n=0

From the definition of F, we have
ANfa=n] € F,.

Since [( Xngk, k > 1) € B] € F}, which is independent of F,, we get (1.8.2.2)
equal to

i PlAN|e = nllP[{Xnik k 2 1} € B]
=0

:iP{Aﬂ[a:n]]P[{Xk,kEO} € B

;[Ozm e < 00]} P[{Xx.k > 0} € B.

It
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By dividing (1.8.2.2) by Pla < oo] we conclude
(1.8.2.8)  P*ANH{Xatr, k>1} € B]] = P*(A)P{ X,k = 0} € B).

Let A = 2. We conclude that (1.8.2.1} is true. Once we know (1.8.2.1) is
true we may rewrite (1.8.2.3) as

(1.8.2.4) P#[AN[{Xoik,k > 1} € B)| = PRA)YP#[{ X,k > 1} € B]
which gives the required independence. ®
Example. Let {X,,n > 1} be iid Bernoulli,
PX,=1=p=1-P[X; = 1]
and let the associated simple random walk be
5% =05 =X+ +Xa,n2L
We derive the quadratic equation for ®{s) = Es" where
N=mf{n>1:5, =1}
without first deriving a recursion for {P[N = k], k > 1}. We have

®(s) :ESNI[XI:” + ESN1[X1=_1]
:Sp+ ESNI[Xii__I].

Define

Ny=inf{n>1: ZXH;E =1}
i=1

and on [Ny < oc] define

n
Npy=inf{n>1: > Xn,4145 =1}

j=1
so that on [N} < 00, X; = —1]
N =14 Ny + No.

Define P# = P{:|N; < co). Now on [N1 < oc], N is the same functional
of {Xwn,+145,7 2 1} as Ny is of {X14;,7 = 1}. So from the previous
results, for any k,

P{Nl = k} = P#[Ng = ]C]
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Thusfor 0 < s <1
Ele[Xlz«-li = E31+N1+N21[x1=_1,N:<°o]

(since on [X; = —1,N; = oo] we have N = oo and sV = 0). Let E# be
expectation with respect to the measure P¥. Then

ESNI[Xlz_I] :qusN1+N21[NJ<°°]
=sgE#sN1 N2 PIN) < 0,
and since Ny, N, are independent with respect to P# (by 1.8.2.4), this is
=sqE* sN1E#* N2 P|N; < ).
Using (1.8.2.1) we get
=sqE*sVN1 EsN1 PN, < oo
=sqEs™ 1N, <OO}E3N1
=3qEs™N1 EsV1
=s5q®*(s)
and we conclude as in Section (1.6) that

B(s) = sp + sg®*(s).

EXERCISES

1.1. {a) Let X be the outcome of tossing a fair die. What is the gf of X7
Use the gf to find EX.

(b) Toss a die repeatedly. Let p, be the number of ways to throw die
until the sum of the faces is n. (So g; = 1 (first throw equals 1), pp = 2
(either the first throw equals 2 or the first 2 throws give 1 each), and so
on. Find the generating function of {u,,n > 1}.

1.2. Let {X,,,n > 1} be iid Bernoulli random variables with

and let S, = 3" | X; be the number of successes in n trials. Show S, has
a binomial distribution by the following method:

(1) Proveforn>0,1<k<n+1
P[Sp41 = k| = pP[Sn = k — 1] + qP[S, = k|-

(2) Solve the recursion using generating functions.
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1.3. Let {X,,n = 1} be iid non-negative integer valued randem variables
independent of the non-negative integer valued random variable N and
suppose

E(X1) < oo, Var(X;) < 00, EN < oo, Var(N) < oc.
Set S, = Y., X:. Use generating functions to check

Var(Sy) = E(N)Var(X,) + (EX:)?Var(N).

1.4. What are the range and index set for the following stochastic pro-
cesses:

(a) Let X; be the quantity of beer ordered by the ith customer at Happy
Harry’s and let N{t) be the number of customers to arrive by time ¢. The
process is {X (t) = Z,fi(lt) X;,t > 0} where X|(t) is the quantity ordered by
time {.

(b) Thirty-six points are chosen randomly in Alaska according to some
probability distribution. A circle of random radius is drawn about each
point yielding a random set S. Let X(A) be the value of the oil in the
ground under region AN S, The process is {X(B), B C Alaska}.

(c) Sleeping Beauty sleeps in one of three positions:

(1) On her back looking radiant.

(2} Curled up in the fetal position.

(3) In the fetal position, sucking her thumb and looking radiant only
to an orthodontist.

Let X (&) be Sleeping Beauty's position at time t. The process is
{X(t),t = 0}

(d) For n =10,1,..., let X, be the value in dollars of property damage
to West Palm Beach, Florida and Charleston, South Carolina by the nth
hurricane to hit the coast of the United States.

1.5. If X is a non-negative integer valued random variable with

X ~{pc}, P(s)=Es*,
express the generating functions if possible, in terms of P{s)}, of (a) P[X <
n|, {b) P[X < n], (c) P[X = n].

1.6. (Karlin and Taylor, 1975, p. 38) Let X and Y be jointly distributed
non-negative integer valued random variables. For [s| < 1,|t| < 1, define
the joint generating function

o0
Px y{s,t) = Z s'HP[X =4, = 3.
4,320
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Prove that X and Y are independent iff

Px v(s,t) = Px(s)Py(t) Y, t.

1.7. A Skip Free Negative Random Walk. Suppose {X,,n > 1} is
independent, identically distributed. Define Sy = Xg=1and forn > 1

Spn=Xg+ X1+ + X,..
For n > 1 the distribution of X, is specified by
P[Xﬂ:J_l]:pjr j=0y1""

where
o0 o0
dopi=1, flsy=> p;s0<s< L
=0 =0

(The random walk starts at 1; when it moves in the negative direction,
it does so only by jumps of —1. The walk cannot jump over states when
moving in the negative direction.) Let

N =inf{n: S, =0}.

If P(s) = Es™, show P(s) = sf(P(s)). (Note what happens at the first
step: Either the random walk goes from 1 to 0 with probability pg or from 1
to 7 with probability p;.) If f(s) = p/(1— ¢s) corresponding to a geometric
distribution, find the smallest solution.

1.8. In a branching process
P(s)=as®* +bs+c

where a > 0,6 > 0,c > 0, P(1) = 1. Compute 7. Give a condition for sure
extinction.

1.9. In a binomial replacement branching model with P(s) = ¢ + ps, let
T'=inf{n: Z, = 0}.

(1) Find P[T =nl forn > 1.

(2) Find P[T = n] assuming Zp =1 > 0.

1.10. Harry lets his health habits slip during a depressed period and
discovers spots growing between his toes according to a branching process
with generating function

P(s) = .15+ 055+ .03s% + .07s% + .4s* + .255° + .05s°.
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Will the spots survive? With what probability?

1.11. A Point Process. Let N(A) be the number of points in re-
gion A. Assume that for any n, the set A can be decomposed, A =

n_ A™, such that AT, ..., ALY are disjoint, N(4) = S N (AP
and N(AP), ..., N(A{M) are independent. Assume

PIN(A) = 0] = exp{-3/n), PIN(AT™) 22 < 26(2)

where 8(z) is a positive function such that §(x) -+ 0 as z — 0. Show N (4)
has a Poisson distribution.

1.12. For a branching process {Z,}, let § =14 37", Z, be the total
population ever born. Find a recursion which is satisfied by the generating
function of §. Solve this in the case P(s) = g+ ps and P(s) = p/(1 — gs).
‘What is E(5)7

1.13. Let [z] be the greatest integer < x. Check by integral comparison
or another such method that

[Ne]
li it = =1
A Z j loge
i=N+1

Let {X;,j > 1} be independent random variables with
PIX;=1=1/j =1- P[X; = 0]
andset S, =%, Xi, n>1
(1) What is the generating function of

[ve]
Spe =S =Y X;7

=N+1
(2) Use the continuity theorem for generating functions to show
lim P[Sine — Sy = k] =p(k,1) = e~ L/kL
N—oo
(3) Define
L) =mf{j >1:X; =1}.

Compute the generating function of {P[L(1) > nj,n > 2}. What
. is EL{1)?
(4) If {Z,,n = 1} is a sequence of iid random variables with a contin-
uous distribution, show that

d .
{1[Zn>v,7‘;1‘z.-]=” >1}={X;,i 21}
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1.14. Harry comes from a long line of descendents who do not get along
with their parents. Consequently each generation vows to be different
from their elders. Assume the offspring distribution for the progenitor has
generating function f(s) and that the offspring distribution governing the
number of children per individual in the first generation has generating
function g(s). The next generation has offspring governed by f(s) and the
next has g(s) so that the functions alternate from generation to generation.
Determine the extinction probability of this process and the mean number
of individuals in the nth {assume n is even) generation.

1.15. (a) Suppose X is a non-negative integer valued random variable.
Conduct a compound experiment. Observe X items and mark each of the
X items independently with probability s where 0 < s < 1. What is the
probability that all X items are marked?

(b) Suppose X is a non-negative integer valued random variable with
mass function {p,}. Suppose T is a geometric random variable independent
of X with

PTznl=s* 0<s<l.

Compute P[T > X].

1.16. Stopping Times. {a) If ¢ is a stopping time with respect to the
o-fields {F,} then prove F, is a o-field.

{b) If ag,k > 1 are stopping times with respect to {F,}, show Vioy
and Agay are stopping times. (Note V means “max” and A means “min”.)
If {v } is a monotone increasing family of stopping times then limy_ o0 ck
15 a stopping time.

(¢) If 1 < avp show Fy, C Fa,-

L.17. For a simple random walk {5, } let uo = 1 and for n > 1, let
un = P[S, = 0].

Compute by combinatorics the value of u,. Find the generating function
Uls) = 2;‘;0 U, 8" in closed form. To get this in closed form you need the

identity ,
2n on nl—3
(n) = ()

1.18. Happy Harry’s Fan Club. Harry's restaurant is located near
Orwell University, a famous institution of higher learning. Because of the
Crucial culinary, social and intellectual role played by Harry and the restau-
rant in the life of the University, a fan club is started consisting of two types
of members: students and faculty. Due to the narrow focus of the club,
Membership automatically terminates after one year. Student members of
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the Happy Harry’s Fan Club are so fanatical they recruit other members
when their membership expires. Faculty members never recruit because
they are too busy. A student recruiter will recruit two students with prob-
ability 1/4, one student and one faculty member with probability 2/3 and
2 faculty with probability 1/12. Assume the club was started by one stu-
dent. After n years, what is the probability that no faculty will have yet
been recruited? What is the probability the club will eventually have no
members?

1.19. At 2 AM business is slow and Harry contemplates closing his estab-
lishment for the night. He starts flipping an unfair coin out of boredom and
decides to close when he gets r consecutive heads. Let T be the number of
flips necessary to obtain r consecutive heads. Suppose the probability of a
head is p and the probability of a tail is ¢. Define p = P[T = k] so that
pr=0for k<,

(1) Provefor k > r
=Pl =kl=pql—po—pr — - = pr—r—1].

(2) Compute the generating function of T and verify P(1) = 1.
(3) Compute ET. If you are masochistic, try Var{T).

The next night at midnight, Harry is bored, so again he starts flipping
coins. To vary the routines he looks for a pattern of HT (head then tail).
Forn > 2, let

fn = P| the pattern HT first appears at trial number n ].

Compute the generating function of {f} and find the mean and variance.
1.20. In a branching process, suppose P(s) = g+pst,0< ¢,p<l,9+p=
1. Let T be the time the population first becomes extinct:

T=inf{n>1: 2, =0}

(1} Find the probability of eventual extinction.
(2} Suppose the population starts with one individual. Find P[T > n].

1.21. Let {N{t), t > 0} be a process with independent increments which
means that for any 4 and times 0 < ¢; < --- < t& N(t1), N(t2) -
Nit1),...,N{tx) — N(tg_,) are independent random variables. Suppose
for each t that N(t) is non-negative integer valued with

Pi(s) = EsV®),
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For T < t express Es™V{)=N() in terms of P, (s), P.(s).

1.22. Harry and the Mutant Creepazoids. The neighborhood where
Harry’s restaurant is located starts to deteriorate, largely due to the rise
of a weird teenage gang called the Mutant Creepazoids. By eavesdropping
in the bar of the restaurant and similar techniques, Harry learns of the
gang’s plans for neighborhood domination. Each week, every creepazoid
is required to recruit new members. The number recruited per member is
random with generating function P(s). (Note that this number includes
the recruiter; if the number is zero, this means the recruiter died or left
the gang.) However, each week a certain proportion of the recruits and
members, namely ¢,0 < ¢ < 1, drop out since they apparently decide the
weird life style is not for them. Let Z,, be the number of gang members in
the nth generation.

{1} Assuming the gang started with one member. What is the gener-
ating function of the number of gang members after a week; i.e.,
what is the gf of Z,7

(2) If we start with one recruit (someone who is not sure he will stay
with the group), what is the distribution of the number of recruits
rounded up by the initial recruit after one week?

(3) Show the means of the two distributions found above are the same.
When is the variance the same? If the variance is the same, are
the distributions the same?

(4) Under what conditions is the disturbance to the neighborhood
transitory?

(5) Finding that the gang strains his nerves, Harry decides to leave for
Florida every other week. He therefore observes the population of
the gang to be {Za,,n > 0}. Is this a branching process? If so,
what is the offspring distribution which generates this process?

1.23. For a branching process with offspring distribution
pn=pg", n20p+g=10<p<l,

find the extinction probability and give conditions for sure extinction.

1.24. Branching in Varying Environments. This is the same model as
the simple branching process except that individuals in the nth generation
reproduce according to a reproduction law {p.x, k& > 0} with generating
function ¢n(s} = 3., paxs®. As before, let Z, be the number in the nth
generation.

(1) Construct a model for this population analogous with the con-
struction of Section 1.4.
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(2) Express the generating function
fn{s) = Es%n

in terms of ¢i(s),k > 0 where ¢gy(s) = s.
(3} Express m, = EZ,, in terms of pu;,1 > 0 where y; = ¢ (1).

1.25. Harry and the Management Software. Eager to give Happy
Harry’s Restaurant every possible competitive advantage, Harry writes in-
ventory management software that is supposedly geared to restaurants,
Harry, sly fox that he is, has designed the software to contain a virus that
wipes ont all computer memnory and results in a restaurant being unable to
continue operation. He starts by crossing the street and giving a copy to
the trendy sprouts bar. The software is presented with the condition that
the recipient must give a copy to two other restaurateurs, thus spreading
the joy of technology. The time it takes a recipient to find someone else
for the software is random. Upon receipt of the software, the length of
time until it wipes out a restaurant’s computer memory is also random.
Of course, once a restaurant’s computer memory is wiped out, the owner
would not continue to disburse the software. Thus a restaurateur may
distribute the software to 0, 1 or 2 other restaurants.
For j =0,1,2, define

p; = Pl a restaurateur distributes the software to j other restaurants |.
Suppose pg = .2,pp = .1,pp = .7. What is the probability that Harry’s

plans for world domination of the restaurant business will succeed?

1.26.* Suppose X;, X3 are independent, N{0, 1) random variables on the
space (£, A, P).

Ea% Prove X, L ~X,; e, prove that Po X;* = Po(—-X,) 1 on R.
b) Prove

(X1, X1+ X3) A (X1, X1 — Xo)
in R?%; ie., prove
Po(X), X1+ Xg)™h = Po (X1, X1 — Xo)7!

on R2.

Now suppose { X,,,n > 1} is an iid sequence of N(0, 1) random variables.

* This problem requires some advanced material which should be skipped on
the first reading by beginning readers.
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(c) Prove

(X1, X1+ Xa, .. ) & (=X, X1 — Xo,...)

in B*=,
(d) f X,Y are random elements of a metric space S,and g: § — ' is
a mapping from S to a second metric space S’, show that X iy implies

g(X) 2 g(¥).

1.27. ¥ X, has a negative binomial distribution with parameters p,r (cf.
Example 1.3.6, Section 1.3.3), show that if r — oo and r¢ — A > 0, then
the negative binomial random variable X, converges in distribution to a
Poisson random variable with parameter .

1.28. Consider the simple branching process {Z,} with offspring distribu-
tion {p;} and generating function P{s).

{(a) When is the total number of offspring > o Zn < cof

{b) When the total number of offspring is finite, give the functional
equation satisfied by the generating function (s} of }°7° o Z,, < co.

(¢) Zeke initiates a family line which is sure to die out. Lifetime earnings
of each individual in Zeke’s line of descent (including Zeke) constitute iid
random variables which are independent of the branching process and have
common distribution function F(z), where F concentrates on [0, co). Thus
to each individual in the line of descent is associated a non-negative random
variable. What is the probability H(x) that no one in Zeke’s line earns more
than z in his/her lifetime, where of course 2 > 0.

(d) When :

1-.5s

P(s) =
find ¥(s). If in addition,
Flzy=1-e™™, x>0,

find H(z).



CHAPTER 2

Markov Chains

N TRYING to make a realistic stochastic model of any physical situation,

one is forced to confront the fact that real life is full of dependencies. For
example, purchases next week at the supermarket may depend on satis-
faction with purchases made up to now. Similarly, an hourly reading of
pollution concentration at a fixed monitoring station will depend on pre-
vious readings; tomorrow’s stock inventory will depend on the stock level
today, as well as on demand. The number of customers awaiting service
at a facility depends on the number of waiting customers in previcous time
periods.

The dilemnma is that dependencies make for realistic models but also for
unwieldy or impossible probability calculations. The more independence
built into a probability model, the more possibility for explicit calcula-
tions, but the more questionable is the realism of the model. Imagine the
absurdity of a probability model of a nuclear reactor which assumes each
component of the complex system fails independently. The independence
assumptions would allow for calculations of the probability of a core melt-
down, but the model is so unrealistic that no government agency would be
so foolish as to base policy on such unreliable numbers—at least not for
long.

When constructing a stochastic model, the challenge is to have depen-
dencies which allow for sufficient realism but which can be analytically
tamed to permit sufficient mathematical tractability. Markov processes
frequently balance these two demands nicely. A Markov process has the
property that, conditional on a history up to the present, the probabilistic
structure of the future does not depend on the whole history but only on
the present. Dependencies are thus manageable since they are conditional
on the present state; the future becomes conditionally independent of the
past. Markov chains are Markov processes with discrete index set and
countable or finite state space.

We start with a construction of a Markov chain process {X,,n > 0}.
The process has a discrete state space denoted by S. Usually we take
the state space S to be a subset of integers such as {0,1,...} (infinite
state space) or {0,1,...,m} (finite state space). When considering sta-
tionary Markov chains, it is frequently convenient to let the index set be
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{ . ,—1,0,1,...}, but for now the non-negative integers suffice for the
index set.

How does a Markov chain evolve? To fix ideas, think of the following
scenario. During a decadent period of Harry's life he used to visit a bar
every night. The bars were chosen according to a random mechanism.
Harry’s random choice of a bar was dependent only on the bar he had
visited the previous night, not on the choices prior to the previous night.
Wwhat would be the ingredients necessary for the specification of a model
of bar selection? We would need an initial distribution {a,} so that when
Harry's decadent period commenced he chose his initial bar to be the kth
with probability az. We would also need transition probabilities p;; which
could determine the probability of choosing the jth pub if on the prior
night the ith was visited.

Section 2.1 begins with a construction of a Markov chain and a discussion
of elementary properties. The construction also describes how one would
simulate a Markov chain.

2.1. CONSTRUCTION AND FIRST PROPERTIES.

Let us first recall how to simulate a random variable with non-negative
integer values {0,1,...}. Suppose X is a random variable with

oc
PlX=k=ar, k20, ) a;=1
i=0

Let U be uniformly distributed on [0, 1]. We may simulate X by observing
U, and if U falls in the interval (Ei:ol a;, Zf:o a;] then we pick the value

k. {As a convention here and in what follows, set Ei_zlo a; = 0.) Now if we
define

Y= kZH(zr;;m.zr:Da.-](U)
=0

sothat YV = kiff U € (Zf;ol ai, Zi;n a;], then ¥ has the same distribution
as X, and we have simulated X.

We now construct a Markov chain. For concreteness we assume the
state space S is {0,1,...}. Only minor modifications are necessary if the
state space is finite, for example S = {0,1,... ,m}. We need an initial
distribution {ax} where ax > 0,3 4., ex = 1 to govern the choice of an
initial state. We also need a transition matrix to govern transitions from
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state to state. A transition matrix is a matrix which in the infinite state
space case is P = (py;,1 > 0,7 > 0) or, written out,

Poo Por
P=|Pio P1n

and where the entries satisfy
o0
pij 20, ZP:‘;':L i=0,1,....
—

(In the case where the state space S is finite and equal to {0,1,... ,m}, P
is (m +1) x (m + 1) dimensional.)

We now construct a Markov chain {X,,n > 0}. We need a scheme
which will choose an initial state k with probability a, that will generate
transitions from i to § with probability p;;. Let {U,,n > 0} be iid uniform
random variables on (0,1). Define

XO = Z kl(E?;.;ﬂi,ELDGi] (UD)
k=0

This is the construction given above, which produces a random variable
that takes the value k with probability ar. The rest of the process is defined
inductively. Define the function f(i, ) with domain § x {0,1] by

Jliw) = kz_% kl(Ef;SPij:ELnPijl(u)

so that f(i,u) = k iff u € (Y52 Pij» Lneo Pij). Now for n > 0 define

Xn.+1 = f(th Un+1)'

Note that if X,, = 4, we have constructed X, so that it equals k with
probability p;x. Also observe that Xy is a function of Uy, X is a function
of Xy and U7 and hence is a function of Uy and Uy, and so on so, that in
general we have X, is a function of Up, U1, ..., Upq1.

Some elementary properties of the construction follow.
1. We have

(2.1.1) PlXo=k=ar, k20

¥
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and for any n > 0

(2.1.2) PiXon1 = j|Xn =i = piy.

This follows since the conditional probability in (2.1.2) is equal to

Pf(Xn,Unt1) = §1Xn = 4] = P{f(i,Un41) = §iXn =]
= P[f(4,Uns1) = j)
since U,y and X, are independent. By the construction at the beginning
of Section 2.1, this probability is pi;.

2. As a generalization of (2.1.2) we show we may condition on a history
with no change in the conditional probability provided the history ends in
state i. More specifically we have

(2.1.3) PXnt1=31Xo =d0,... , Xn_1 =in—1, Xn = 1] = py
for integers ip,éy,...,én_1,%,7 in the state space (provided P[X, =
i,y Xne1 =1, Xn = 7'] > 0)
As with property 1, this conditional probability is
Pf{i,Ups1) = j|Xo = t0,--- , Xn = j]
and since Xp,..., X, are independent of U, 11, the foregoing probability
is
Plf(i, Uns1) = j] = pyj-

Processes satisfying (2.1.2) and (2.1.3) possess the Markov property
Imeaning

PlXniy =jlXo=140,... , Xno1 =tin_1,Xn =1]

= Pf(Xn,Uns1) = j|Xn =1

3. As a generalization of (2.1.3), we show that the probability of the
future subsequent to time n given the history up to 7, is the same as the
probability of the future given only the state at time »; and this conditional
Probability is independent of n (but dependent on the state). Precisely, we
have for any integer m and any states ki, ..., kn

P{Xn+1 =ki,.. ., Xntm = k‘mIXD =1ip,.-- s Kp1 = A1, X = 1]
=P[Xn+1 =ky,... ,Xn-}—m = klen = "'4]
(2.1.4) =P[X; = k1, ., X = k| Xo = 4.
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In shorthand notation, denote the event (X1 = k1,..., Xntm = km]
by [(X;j,j > n+ 1) € B]. Note that in the probability of (2.1.4) we can
replace X, 11 by f{z,U.1), and we can replace X,, 12 by f(Xuy1,Uns2) =
F(f (i, Uny1), Unyo) and so on. Thus in the probability of (2.1.4) we can
replace (X;,j > n+1) by something depending only on Uj, j > n+1 which
is independent of Xg, ..., Xn- Therefore the conditional probability is

P(f (i, Uns1), F(F (5, Uns1), Una), ...) € B].

Since this also equals

P[(f(?., Ul)! f(f(z: Ul)) U2)1 .- } € B]1
the result follows.

The three properties above are the essential characteristics of a Markov
chain.

Definition. Any process {Xn,n > 0} satisfying (2.1.2}—(2.1.3) is called
a Markov chain with initial distribution {ax} and transition probability
matrix P.

Sometimes a transition probability matrix is called a Markov or a sto-
chastic matrix.

The constructed Markov chain has stationary trensition probabilities

since the conditional probability in {2.1.2) is independent of n. Sometimes
a Markov chain with stationary transition probabilities is called homo-
geneous.
Warning. Although the constructed process possesses statlonary transition
probabilities, the process in general is not stationary. For the process {X,,}
to be stationary, the following condition, describing a translation property
of the finite dimensional distributions, must hold: For any non-negative
integers m, v and any states kg, ..., kn we have

PXo = ko ..., Xm = km] = P[X, = ko, ..., Xyim = kum].

{Roughly speaking, this says the statistical evolution of the process over an
interval is the same as that of the process over a translated interval.) The
concept of a Markov chain heing a stationary stochastic process and having
stationary transition probabilities should not be confused. Conditions for
the Markov chain to be stationary are discussed in Section 2.12.

The process constructed above will sometimes be referred to as the sim-
uleted Markov chain. We will show in Proposition 2.1.1 that any Markov
chain {X# n > 0} satisfying (2.1.1), (2.1.2) will be indistinguishable from
the simulated chain {X,,} in the sense that

(X >0} 2 {X# n>0},
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that is, the finite dimensional distributions of both processes are the same.
Together, the ingredients {a;} and P in fact determine the distribution of
the process as shown next.

Proposition 2.1.1. Given a Markov chain satisfying (2.1.1)-(2.1.3), the
finite dimensional distributions are of the form

(21.8)  P[Xo =10, X1 =11,..., Xk = k]| = GicPicir Piria " " Pix—1in

for o, - - - ik integers in the state space and k > 0 arbitrary. Conversely
given a density {ax} and a transition matrix P and a process {X,} whose
finite dimensional distributions are given by (2.1.5), we have that {X,,} is
a Markov chain satisfying (2.1.1)—(2.1.3}.

So the Markov property, i.e., (2.1.2)-(2.1.3), can be recognized by the
form of the finite dimensional distributions given in (2.1.5).

Proof. Recall the Chain Rule of conditional probability. If Ag,... , Ax are
events then

k k-1 k-2
P([)As) = P(Ax] [} A)P(Ak-1| [] 4s) .- P(A1]Ao) P(Ao)
i=1 i=0 i=0

provided P((Y_, A:) > 0,7 =0,1,...,.k — 1.
Suppose {2.1.1)—(2.1.3) hold and set A; = [X; = i;] so that if

(2.1.6) PXg=1ip,....X;=1%]>0,j=0,..,k -1
then

PlXy=1g,..., Xk =ik
k
= HP[XJ = ile(} = ?:0, e ,Xj_l = ij_l]P[Xg = 1:0]
i=1

and applying (2.1.3) to the right side we get
k k
T PIXs = 451X = d51)as, = ai |
i=1 i=1

What if (2.1.8) fails for some j? Let

j‘=inf{j20:P[X0=io,___ ,XJ' =!J]=O}
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If j* = 0 then a;, = 0 and (2.1.5) holds trivially. If ¥ > 0 then by what Example 2.2.2. The Simple Branching Process. Consider the sim-
was already proved ple branching process of Section 1.4. Recall {Z,,;} are iid with common
distribution {pi} and Zp = 1 and
PlXo =10, , Xjo-1} = QigPigiy -~ Pije_sije, > 0.

Ly = n,l +..+ Zn.,Zn_l-

Consequently,
Piyesiye = P[Xo =io,... , Xjo = igs)/P[Xo =g, ... , Xoeoy =ige_] =0 So
so again (2.1.5) holds. PlZy =in|Z0 =0, ..., Zn-1=in-1]
: . . s
For Conversely, suppose for all k and choices of 4q, . . . , 7 that (2.1.5) holds. _ P[z Ty = o= oo T = ]
@igPigiy " Pigozixey =~ 0 =1

th—1

=P} Zn; =inl,
=1

we have

PXe =ig|Xo =10, .. , Xec1 = ig-1)
=P[Xo =0, .. , Xk = ]/ P[Xo =dg,... , Xp—1 = te—1] giving the Markov property since this depends only on i5,_; and i,. Thus

=AigPigi, - - 'pih_ﬂk/a‘iopinh ceePig_pig—1 = Pig_qix

showing that the Markov property holds. B PlZ, =jlZp.1 =1 =P [Z Zng =J]=p;'
k=1

where #; denotes i-fold convolution.

Example 2.2.3. Random Walks. Let {X,,n > 1} be iid with

2.2. EXAMPLES.

Here are some examples of Markov chains. Some will be used to illustrate
concepts discussed later and some show the range of applications of Markov
chains.

PX,=Fk =ar, -—o0o<k<oo.

Define th d lk b
Example 2.2.1. Independent Trials. Independence is a special case of fié the random walk by

Markov dependence. If {X,} are iid with

PXp=kl=ar, k=0,1,...,m, i=1
then Then {S,,} is a Markov chain since
PlXpt1=tnr1lXo =to, .1 Xn = tn] =P[Xny1 = inp1] = a4, PlSpi1 = in411S0 = 0,8, =1d1,... ,5: = 1a)
=P[X, 41 =tn+1|Xn = in] =P[Xps1+in =ins1|So=0,...,5 = in]

a‘nd =P[Xﬂ+1 = z‘ﬂ+1 - iﬂ.] = ain+]—in

ap a1 - 2778 =P[Sn+1 - iﬂ+l|Sn — zn]

P = : Y. .
Gy a1 - Om since X, is independent of Sg, ... ,Sn.
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A common special case is where only increments of £1 and 0 are al-
lowed and where 0 and m are absorbing barriers. The transition matrix is
then of the form

1 0 0 0 ... 0 0

i onop;p 0 ... D 0

0 g r2 p2 ... 0O O
p| .2 -2

0 ... 0 0 gn T™m Dm

0o 0 0 0O ... 0 1

The tri-diagonal structure is indicative of a random walk with steps +1, 0.
Note

PlSp, =0|S,_1 =0 = P[S, =m|Sp_1 =m] =1,
which models the hypothesized absorbing nature of states 0 and m and
P[-Xn+1 = ?. -+ ].an = 1.] =D
PlXnp1=i—1|X, =i =¢
PXp+1 =1|X,

il

'b] =Tj

forl1<:i<m-—1.

The case where r; = 0,p; = p,¢; = ¢ is the Gamblers Ruin: Harry
starts with initial fortune 1 and his opponent Zeke has m —i. A coin tossing
game is played and the state of the system is Harry’s fortune. When Harry
wins on a toss, his fortune increases by 1; when he loses a toss, his fortune

decreases by 1. If the process enters state m, Zeke is ruined; if the process
enters state 0, Harry is ruined.

Example 2.2.4. Success Runs. This is marvelous as a source of ex-

amples. The state space is {0,1,2,...} and the transition matrix is of the
form
0 po 0 0O O

@1 0 pp 0O O
P=1g 0 0 p 0

To see why the name success run chein is suitable, concentrate on
the case where p; = p for all ¢ > 0. During Harry’s semi-pro basketball
days, his free-throw shooting constituted independent Bernoulli trials with
success probability p. Given a success run of n shots, Harry can extend this
success run to length n+ 1 if he makes the next foul shot (with probability
p); but if he misses the next foul shot {with probability ¢) the length of
the current success run becomes 0.
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Example 2.2.5. The Deterministically Monotone Markov Chain.
This example in the context of discrete time seems hopelessly trivial but
supplies useful counterexamples and turns out to be not so trivial when we
discuss birth processes in continuous time in Chapter 5. The state space is
{1,2,...}. a1 = P{Xo = 1] =1, and, for i > 1, we have p; ;+1 =1, so that
the process marches deterministically through the integers towards -+occ.

A common method for generating Markov chains with state space S,
discussed in Exercise 2.6, is the following: Suppose {V,,n > 0} are iid
random elements in some space E. For instance, E could be R or R? or
RB°. Given two functions

gi:SxEw § i=1,2
define
Xo =014, Vo),
andforn >1

Xn :g2(Xn—1y Vn)

The branching process and random walks follow this paradigm, as do the
following examples.

Example 2.2.6. An Inventory Model. Let I(t) be the inventory level
of an item at time t. Stock levels are checked at fixed times Tp, 71,75, .. ..
A commonly used restocking policy is that there be two critical values of
inventory s and S where 0 < 5 < S. If at time T}, the inventory level
I{T,) =: X, is less than or equal to s, immediate procurement is done to
bring the stock level up to level S. If the stock level X,, = I{T,,) € (s, 5],
then no replenishment is undertaken. Let D, be the total demand during
the time interval [T,_1,T,), n =1,2,..., assume {D,,n > 1} is iid and
independent of X, and suppose Xy < §. Then

(2.2.1) X ={ (X — Dnt1)y, ifs<X, <8,
- s (S - Dn+1)+: if X, <s,
where as usual (a ia>0,
T+= 0, z<o.

This follows the paradigm X, 11 = ¢(Xn, Dnt1), 7 = 0, and hence {X,.}
is a Markov chain.
For this inventory model, descriptive quantities of interest include:
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1. Long run average stock level

N
: -1
A N2 X
=0
From the law of large numbers for Markov chains (Section 2.12.1) this will
turn out to be calculated as

s
RILH;OZJP[XR =j].

F=1
In Sections 2.13 and 2.14 we discuss how to calculate lim,, o P[X, = j].

2. Long run cumulative unsatisfied demand. For n > 1 let {/,, be the
unsatisfied demand in period {T,_1,7},), » > 1 so that

3 { (Dp ~ Xa1) A0, ifs<X,_; <38,
"l (Da-98) A0, if Xooy < 5.

We are interested in Z_‘;V:l U; for large N.

3. Long run fraction of periods when demand is not satisfied. This
can be represented as

N
: -1
Jm N7V g5
i=1
Inventory models are further discussed in Exercises 2.58 and 2.59. A
simple example of a calculation of the long run average stock level is given
in Example 2.14.2 of Section 2.14.

Example 2.2.7. The Moran Storage Model. Consider a reservoir of
capacity ¢. The levels {X,} of the reservoir are observed at time points
0,1,.... During the interval [n,n + 1) there is random input An4; to the
reservoir. This input may result in spillage. At the end of the interval
[n,n + 1), m units of water (if available) are instantaneously removed.
These m units include material not stored due to spillage and we assume
m < c. If the reservoir contains less than m units of water, the total
contents are removed. The inputs {A,} are assumed to be iid and inde-

pendent of the initial level Xp. Thus the contents process {X,} satisfies
the recursion

(2.22) Xn+1 = (Xn + An+l - m)+ A,

where ¢ A b means the minimum of a and 5. Thus the contents process
satisfies a recursion of the type

Xn+1 = Q(Xm Vn+1)
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and, therefore, is Markov. The state space is {0,1,...,¢}. Note that the
recursion merely says that the new contents level equals the old contents
level plus input minus outflow with some adjustments for the boundary
conditions at 0 and c.

If

P{Al = ﬂ'] = Iy, P[Al S n] = a’Snv P[Al 2 n‘] =Q>n,

then we can write the transition matrix of the contents process as

d<m Qm+1 Gm42 .- G oo Qegm-1 A>ectm
G<m—1 Im m4yr -+ Qg1 -+ Qegm-1 G2eim—1
P=
0 0 ap PN Am—1 A>m
Note that the column with entries (ac, @c—1,...,0p) is column number
c—m+ L

Further material on storage models is discussed in Section 2.13 and in
Exercises 2.60, 2.61, 2.62.

Example 2.2.8. Discrete Queueing Models. There are two types of
models which we will categorize roughly as type M/G/1 type and type
G/M/1. This reason for this terminclogy will not be clear until the next
chapter.

Customers arrive at a facility and wait for service on a first-come first-
served basis. Assume there is one server. Let X(t) be the number of
customers in the systern at time #, that is, the number waiting or in service.

For the queueing model of type M/G/1, we assume that service com-
pletions occur at times Ty, 71, ... so these times are when departures from
the system occur. Set X, = X(T,+) where the “+” reminds us that we
measure the number in the system just subsequent to a departure. Let
Any1 be the number of arrivals during the service period of the customer
who departs at time T5,+1. Thus {X,,} satisfies the recursion

Xn+1 = (-Xn - 1)+ + An-i—la

since the number in the system at T,,,, is the number at T}, plus arrivals
minus the customer who departed when his service was completed. If
the assumptions on input to the system and service times make {A4n}
independent and identically distributed and independent of Xp, then {X,}
is a Markov chain. If

P[Alzk]:Gk, kZU,
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then one readily checks that the transition matrix P of this chain is

gy @i {Q»

ag @1 as
P=t0 g a

0 0 ag a;

Stationary distributions and recurrence criteria for this model are stud-
ied in Section 2.15. See also Exercise 2.6.

Now we consider the queueing system of type G/M/1. As before, let
X{(t) be the number in the system at time ¢t and suppose customers arrive at
epochs 70,71, . ... Let S,41 be the number of potential service completions
in the interval [7,, 7,41) and let X, = X {7r,—) be the number in the system
just prior to the nth arrival. Then

Xny1=(Xn — Snj1+1)4,

since the number in the system prior to the (n + 1)st arrival is 1 plus the
number in the system prior to the nth arrival minus the number who have
completed service and left, Assume assumptions on input and service have
been made to assure that the variables {5, } are iid and independent of X
and assume

PS5, =jl=a;.

Then one readily calculates the transition matrix P as

o0
EE{EI a; ap 0
Diceti a1 ap 0
— o
P Ei:a a; az a4 ap

2.3. HiGHER ORDER TRANSITION PROBABILITIES.

The tractability of Markov chain models is based on the fact that proba-
bilities of interest may be computed by matrix manipulations.

Let P = (p;;) be the transition matrix of a Markov chain {X,,n > 0}
and suppose the initial probabilities are P[Xy = j] = a;. Matrix powers of
P are defined as usual by

P’=P-P
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with the (i, j)th-entry p? given by

2
p,gj) = Z PikPk;-
k

(Note that when the state space S is infinite, the series above converges
since 3., PikPkj < Yo Pik = 1.) Similarly P* = P2 - P = P P? has the

(4, f)th-entry
2
P = pPprs =D pupy
k k
and in general P"*! = P? . P = P - P" has the (i, j)th-entry

1 n 71)
P = 3o = 3 opunl -
k k

Finally, define P? to be the identity matrix.
Define the n-step transition probabilities for the Markov chain by (n >
1, %,k in the state space)

P[X,, = k| Xo =i,

and it follows immediately from the second equality of (2.1.4) that for any
m>0

(2.3.1) P(X,, = k|Xo = i] = P[Xnym = k| Xm = i}.

So the probability that a path started at i ends at j after n steps does not
depend on the time at which the path is initiated.

Proposition 2.3.1. We have for alln > 0, and 4, in the state space
(2.3.2) 2} = P[X, = j1Xo = .

We compute the transition probabilities by taking matrix powers.

Proof. The formula is obviously true for » = 0, 1 and as a warm-up, let us
check it for n = 2. We have

PXa=j|Xp=1] =) P[Xz = j, X1 = k| Xo = 1]
k

Assuming P|Xg = 1] = a; > 0, this is
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ZP[Xz =5, X1 =k, Xo = i]/a;

= Z Q;DikPrj /at Zptkpkj p?,_? .

Now suppose (2.3.2) is true for n = 0,1,...
N+ 1:

, VN and verify it for n =

P[Xpy1 = jlXo =]

= ZP[XN+1 =5X1 =k X =i]/ai
k

= P[Xny1 =jiX1 =k, Xo = i|P{X1 = k, Xo = i]/as.
k

From {2.1.4} this is

> " P[Xy = j|Xo = KP[Xy = k| Xo = 1],
k

which, by the induction hypothesis, is
N 1
mep( = pltY,

as required. W

The obvious matrix identity
Pn.-i-m Pn
for n,m > 0, when written in component form

+
it ZPE??&T

is sometimes called the Chapman-Koelmogorov equation. It expresses the
fact that a transition from i to j in 7+ m steps can be achieved by moving
from ¢ to an intermediate state k in n steps (with probability pl(-:)}, and then
given that the process is in state k (the Markov property allows indifference
to the arrival route), a transition from k to j in m-steps must be achieved
(with probability p(m)). For the computation of the probability of the

n + m step transntlon the law of total probability requires summing over
the intermediate states k.

2.3. HIGHER ORDER TRANSITION PROBABILITIES 75

Corollary 2.3.2. The unconditional probabilities P[X, = j] are com-

puted from

(2.3.4) af™ = P[X,=j] = Za,p

Proof. We have

PlX, =j] = ZP{X —JzXo—elP[Xo—z]~2a,p(“) n

We now pause and collect some conventions.

1. For the purposes of matrix manipulations, vectors are column vee-
tors or a matrix with a single column. Thus we write

al®) = {ag"),a,gn),.. .)', a= (00,01,- ‘e )’ .

and (2.3.4) can be rewritten in equivalent matrix form
(2.3.4") (al™y = a'P™.
Since (a(»~1) = a’P™~! an alternate form of (2.3.4') is the recursion

(a(n))f — (a(n—l))JP.

2. Write

Fi(-) = P{|Xo =1}
for the probability measure conditioned by X = 4. Alternatively we may
imagine

a; =1, akZD,k}éi,

or, equivalently, a; = &;;.

Caleulation of P™ must either be done by a computer or by using
eigenvalue expansions. In the 2 x 2 case elementary means suffice as shown
next.

Proposition 2.3.3. Suppose 0 <a <1, 0 <b< 1 andlet

l1-a a
P= ( b1 b)
be a transition matrix corresponding to a Markov chain with state space
{05 1} Then

P"=(a+b)_1{(g a)-l—(l—a—b)"( ) —ba)}_



76 MARKOV CHAINS

Proof. Let the initial probability vectors be (ap, a1) and note that if

(a0, a1) = (1,0) then P[Xny41 = 0] = pip*?

while if
(@g, a1) = (0,1) then P{X,. 4, =0} = pg16+1)

Proceed recursively. We have

P[Xp41 = 0] =P[Xns1 = 0, Xy = 0] + P[Xpp1 =0, X, = 1]
=P{Xn11 = 0|X = 0]P{X, = 0]
+ P[Xne1 = O|X = 1]P[X = 1]
=pooP[Xn = 0] + p1oP[Xn = 1]
=({1+ a)P[X, =0] +bP[X, = 1]
=(1—a)P[X, =0]+b(1 - P[X, = 0]},

which is where the assumption of only two states is used. We then get
PXpi1=0=(1-a-b)P[X,=0+b
Therefore
PXur1=0=b+(1—a-t{d+(1—a—-b)P[X._1=0]}
=b+b(1—a—>b)+(1—a—b2P[X,_1 =0

=b+b(l—a-b0)+{1—a—b*{b+ (1 —a—b)P[Xn_2 =0}

=bi(1 ~a—by + (1 ~a~b)*!
=0
PlXo = 0]

from which, replacing n + 1 by n, we get

P =0 =1 —a e + b T =200

=(1—a-—b" b
( @ )a0+( a+b

giving

2.4. DECOMPOSITION OF THE STATE SPACE i
(2.3.6)
PIX, =0=—— —I—b +{l1—-a-b) (ao——-—a+b.
Since P[Xn =01+ P[X, =1]=1
N PXa=1=— —(l-a—b(a0— —).
{2.3. ) n=H= ag oy
Setting (ao,a1) (1,0) yields
b b b
(n) — l—a-b"(1- —a—b)"
oy = gt el —) = b (et

and setting (ag, a1) = (0,1) yields

n b
The remaining values in the second column of P™ follow from (2.3.7). W

Note,if 0 <a <1, O<b<lthen0<l-a<land|l-a—b <1,

so, for the 2 x 2 case,
-1 b a
—{a+b) (b a)'

A limiting matrix exists and has constant columuns. This is noteworthy and
we will later explore the relation between existence of a limit matrix and
stationary distributions for more general chains. Also note that the above
calculations show that convergence to a limit is geometrically fast with

—= 1 -(l-a-8".

sup WPE?) —7;| < ( const ){(1—a—b)",
E%)

{n)

where m; = hmnﬁmp .

2.4. DECOMPOSITION OF THE STATE SPACE.

Let {X,.,n > 0} be a Markov chain with discrete state space S. To un-
derstand the evolution of the system it is critical to understand which
paths through the state space are possible and to understand the allowable
movements of the process. For B C § let

(2.4.1) 78 =inf{n > 0: X,, € B}

be the hitting time of B. Abuse the notation a bit and set 7; = (5.
To understand which states can be reached from a starting state ¢, the
following is basic.
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Definition. For 1,7 € 5§ we say j is accessible from 1, written 1 — 7§, if
Bir; <o) > 0.

In other words, starting from i, with positive probability the chain hits
state j. Synonyms: j is a consequent of 1, ¢ leads to 7, 7 can be reached
Jrom i.

Because n = 0 is allowed in (2.4.1), we get ¢ — i for all ¢ € 5 since
Pi[T,', < OO] = 1, in fa.ct, P,,;[‘T,' = 0] = P,;[XO = '1‘.] =1.

Here is the most useful criterion for accessiblility. We have ¢ — j§ iff

(2.4.2) An>0: pg-‘) > 0.
The sufficiency of (2.4.2) is easy. Note

[Xn =4l Cr; <0 Clry < o0,

so that
0<p{y < Bilr; < o],

Conversely, if for all n > 0, pg‘) =0, then
Pifr; < o] = lim Pifr; <n] = lim Pi{Ujmq[Xe = 5]}

SlimsupZPi{Xk =j]

n—oc k=0

k1%
= lim sup z pg.“) = 0.
k=0

H— oo

Here are some simple examples which illustrate the notion of accessi-
bility:

{1) The deterministically monotone Markov chain: Since for ¢ >
0, piizr = 1, we have ¢ —» 44+ 1, and, in fact, for any j > 4,
we get 1 — 7.

(2) Gamblers ruin on {0,1,...,m}. We have m — m, 0 — 0.
No other consequents of 0, m exist. 0 is a consequent of every
state except m.

(3} Simple branching: 0 — 0, and 0 has no other consequents.

The notion of accessibility tells us which states can ultimately be
reached from a given state 1. The following definition addresses the ques-
tion: If a path of positive probability exists from one state to a second, is
there a return path from the second state to the first?
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Definition. States i and j communicate, written i « j, ifi — j and j — 1.
Communication is an equivalence relation which means
(1) i« i (the relation is reflexive) since i — 1,
(2) i< jiff j « ¢ (the relation is symmetric)
(3) Ifi«s jandj e ktheni— k (the relation is transitive).
Only the last property needs comment: If ¢ «» j and § — k we show
i — k . If £ — 7 there is n such that 'pg-‘) > 0; similarly pg’;’:} > 0 for some
i since k — j. So by Chapman-Kolmogorov:

P = STl 2 el > 0
174

so that 1 — k.

The state space S may now be decomposed into disjoint exhaustive
equivalence classes modulo the relation “—”. We pick a state, say 0, and
we put 0 and all states communicating with 0 in a class, say Co. Then
we pick a state in S\Cj, call it i, and put it and all states communicating
with ¢ into another class which we name ;. Continue on in this manner
until all states have been assigned. We have

C’iﬂCj =@,?:7éj, and UC,' =S

The sets Cp, C1, ... are called {equivalence) classes.
Here are some examples:
{1) The Deterministically Monotone Markov chain: C; = {i},
i>0.
(2) Gambler’s ruin on {0,1,2, 3} with matrix

1 0 0 0

/2 0 1/2 0

0 1/2 0 1/2
o 0 0 1

There are three classes: {0}, {3}, {1,2}.
(3) Consider the Markov chain with matrix

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 172

P =

P=

on states {1, 2, 3,4}. There are two classes

C: ={1,2}, C>={34}.
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A Markov chain is irreducible if the state space consists of only one
class; i.e., for any £, € 5 we have ¢ — j.

None of the Markov chains in the three previous examples is irre-
ducible. The success run chain is irreducible if 0 < p; < 1. There is a finite
path of positive probability linking any two states. For example, 3 — 2
since

pg;!) = P3[X1 :D:XZ = 1’X3 = 2] = qzpop1 > 0.

Now we discuss which sets of states lead to other sets of states. The
key concept is closure. A set of states C C § is closed if for any 1 € C we
have

PFjlrge =] =1,

So if the chain starts in C, it never escapes outside C. If {j} is closed, we
call state j absorbing.
Here are two criteria which are useful:

(1} C is closed iff

{2.4.3) forallie C,7 € C°: py =0.
(2) jis absorbing iff

(2.4.4) pi; = 1.

Note that (2.4.4) is a special case of (2.4.3) with € = {j}. Observe that if
{2.4.3) holds, then for i € C, we have

Plrce=1= ) pi; =0.
jece

Similarly

Pi[rge € 2] =Fj[1ge = 1] + Bi[rge = 2]
=0+ F[X, € C, X5 € C

= Z Zpikpkj =0.

jeCe keC

Continuing on by induction, we get Pi[rge < n] = 0, and letting n — oo
gives Pi[rge < oo] = 0, showing C is closed.

Note that it is possible to enter a closed set, but it is impossible to
leave. In the deterministically monotone Markov chain, {n,n+1,...} is
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closed but n—1 — n. Similarly in the gamblers ruin on {0, 1,2, 3} we have
0 absorbing but 1 — 0. Consider the example on {0,1,2,3}:

1/2 1/2 0 O
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

P =

Here C1 = {0,1} is closed as is Co = {2,3}. It is impossible to exit C; or
C», and, in this case, it is also impossible to enter C; from C; or to enter
C, from C;. So if {X,} starts in C, it stays there forever. The same holds
for Cz. The two pieces of the state space ignore each other.

Note if C is closed then (p;;,i € C,j € C) is a stochastic matrix: We
have p;; > 0, B.Ild, forie C,

Zpij =1,

jec

Z Pij =0.

JEC*

since

‘We close this section with two remarks:

1. There may be an infinite number of closed sets in the state space
and closed sets need not be disjoint. In the deterministically monotone
Markov chain, the set {n,n+1,...} is closed for every n.

2. A class of states need not be closed. As remarked for the gamblers
ruin on {0,1,2,3} with {0}, {3} absorbing, we have 1 — 0 but pgpy = 1.
Hence {1,2} is a class but it is not closed.

2.5. THE DISSECTION PRINCIPLE.

In preparation for a study of recurrence we have to think about how to
decompose the process into independent, identically distributed blocks.
The blocks consist of the pieces of path between consecutive visits to a
fixed state, say ¢. It is frequently useful to think of the process as these iid
pieces knitted together.

Let {X,,n > 0} be a Markov chain, and suppose P{Xy =] = 1, so
that we assume the process starts from state . Define 7,(0) = 0 and

(1) =inf{m > 1: X =1i}.

On [1:(1) < o] define
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7:(2) =inf{m > (1) : Xp, = i}.
Continuing in this way, on [1;(1) < 00,...,7i(n) < oo define
Ti(n+1) =inf{m > n(n) : X, =i}

The times {7;(n}} are the times the Markov chain hits state i. We will
prove that successive excursions between visits to state ¢ are iid. Define
ap =0, a1 = (1), and on [ri(1} < 0o] define ap = 7;(2) — 7:(1) and so on.
The mth excursion between visits to state i is the block

(X.,-i(m-1)+1, v er,-(m)):

assuming 7;(m — 1) < co. Define
fl :(a].)Xh v :X'n(l)):
and on (a3 = 7;(1) < oo] define

€2 =(oz2, Xr;0)410-- - Xry(2) )

Continuing, define

£n+l :(an+1’XTi(n)+lv s HXTg(n-Fl))

on [(1) < 00,...,m(n) < o0
In order to give precision to the statement “{£,,} is independent, identi-

cally distributed” we must see in which space the £ ’s are random elements.
Define N = {0,1,...} and

E = (U2 ({k) x N¥)) U ({oo} x N°*°)

so F is all finite vectors of integers with the length of the vector appended

as well as infinite sequences of integers with oo appended. The &;’s live in
E.

We now prove that the Markov path can be broken into iid pieces.

Proposition 2.5.1. With respect to
PF = Pi(|n(1) < o0,..., m{k) < o0),

we have that &q,. .., are iid random elements of E.

Remark. In the important case that the Markov chain is irreducible and
recurrent (cf. Section 2.6), we will see that P; = P¥.
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Proof. For typographical ease, suppose k = 2. Consider

Rn,[gl = (k1 ila-- -y’ik)a£2 = (E,j]r' ‘1j£)aTi(1) < OO,T.,'(2) < OO}
=Poy=kX1=4,..., Xk =ik, 00 =4, Xps1 =71, -, Xkt = Jo,
{251) ) < 00,0 <OO].

This probability is (0 unless
k=1, je=1

and unless
B FE by gl F G E e o1 £ 1
and these are the only cases of interest. Therefore, the probability is
BiXy =41, s X1 = -1, X& = 4,
Xit1 =10 > Xert—1 = Je—1, Xpgr = i
= P[X] =141,..., Xk =1]
P Xks1 =01, Xete =iX; =1d1,..., X =]
=P[X;=4,.... Xe=iR[X; =j1,...,X¢ = i,

the last step following by the Markov property (2.1.4). The last product
can be written

R{Xl =4, X1 = i1, Xk = t.a'r'i(]-) = k]

(2.5.2) i ) . )
xP[X1 =51, Xeo1 = Je-1, Xe =1, m(1) = €.

Sum over ),... 4 and j1,...,j¢ in {2.5.1) and (2.5.2) to get
(2.5.3) Pilay = k,az = €] = Biloy = k| Pila; = ¢,
50 we conclude
Pjlay < 00,0 < 0] = Pr(1) < o0, 5(2) < o] = (Pifen < o0])?.
Divide this through in (2.5.1) and {2.5.2) to get

'Pq,#[gl = (k!?:h"' :ik)?§2 = (E'»jl)' sjf)]
= JDz[El = (kaih"' :ik)lal < OO]P;[ 1= (Esjla' v :jf)lal < OO]

Since the joint distribution of (£), £2) factors, this becomes
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Pi,#[fl = (k:il:-“)ik)]Pi#[gl = (E)jls"'!jf)L

and this identity suffices to give the desired result. B

Optional Exercise. Try proving this using the construction in Section
2.1 and Proposition 1.8.2.

There is a fairly obvicus extension which is needed when the process
does not start in state ¢: If the Markov chain starts in state j # ¢, or,
equivalently, if P; is replaced by F;, then, with respect to

PF = BLn(1) < oo, (k) < o],

we have £,. .., & independent, identically distributed random elements of
E and independent of &, but it is no longer true that & 2 &2
Here is a useful corollary.

Corollary 2.5.2. With respect to Pi#,
(o, .- ok = (1), w(2) —n(1),... , (k) — (k= 1))

are independent, identically distributed {1,2,...}-valued random vari-
ables. In particular,

k
(2.5.3) Pl =1, o = &] = | [ PFles = 2],

i=1

and

Pin(1) = k(X )40, 1 S €< p) = (ma, -, 1))
(2.5.4) = Pln(l) = k)B[Xe =ne, £=1,... 7]
for any k,p,n1,... ,fip.

The method of proof of (2.5.4) is the same and is thus omitted.
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2.6. TRANSIENCE AND RECURRENCE.

We now discuss several classifications of states which lead to useful de-
compositions of the state space. As we shall see, the most fundamental
classification of a state depends on how often the chain returns to that
state.

A state i is called recurrent if the chain returns to ¢ with probability 1
in a finite number of steps. Otherwise the state is transient. If we recall the
hitting time variables {r;(n),n > 1} introduced previously, we can define
these concepts precisely as follows: State 4 is recurrent if

Pln(1) < oo] = 1.

In the contrary case,
By[r(1) = o] > 0

and state 4 is transient; in this case there is positive probability of never
returning to state i. State i is positive recurrent if

E; (T;(l)) < 00.

So for a positive recurrent state, not only is the return time finite almost
surely, but the expected return time is finite.
For n > 1 define
5% = Blme(1) =]
to be the distribution of the hitting time of k starting from j. Note that
since 1¢(1) > 1, we have f}g) = (. We have that

o )

fik = Zf_,(:) = Pj[rx(1) < o9

n=0

is the probability of hitting k in finite time starting from j. In particular,
state i is recurrent iff f;; = 1, and a recurrent state i is positive recurrent
iff

o0
ma = Ei(n(1) = Y nf{ < cc.
n=0
It is important to have the best possible criteria for transience and
recurrence and to interpret the meaning of these concepts as fully as pos-
sible. As a start to a better understanding of these concepts, define the
following generating functions for 0 < s < 1:

o0

Fyls) =Y fs"

n=0
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Zp(“) n

n=0

and notice that the last generating function is not the generating function
of a probability mass function.

Proposition 2.6.1. (a) We have fori € S

T k
By = Z Pt nza,

and for0 <s <1 1

Piu(s) = 1 Fia Fuls)’

(b) We have for i # j

pgj _ngk} (n k)ﬁ n201
k=0

and for 0 <5 <1
Pij(s) = Fi;(s}Py;(s).
In principle, this determines the first passage probabilities F};(s) from
P. However, the relation between the generating functions does not always
provide a practical scheme for obtaining the first passage probabilities. A

technique which helps to compute the f’s will be given at the end of this
section.

Proof. (a) Since [X,, = i] C [r:(1) < n] we have that

n
PP =PXn=i=Y PlX.=i,7(l) =K

k=1
—ZP['r2

From Proposition 2.5.1 we can split this probability at 7;(1} to get

> Bilri(l) = k|Fi[Xn-k = i) = Zf(")pf? ",
k=1

k=1

=k, X () n-k = -

as desired. To obtain the generating function statement, multiply through
by s™ and sum from 1 to oo:

_1ﬁzpt?) ™.

Since fi(,-o) = 0 this is the same as
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= f: o

n=0 k=0

Zp{" k) nwk)fuk) k

k=0 n
= E‘i(s)Pfii (s).

from which comes the result.
The proof of (b) is similar. B

An easy corollary of these relations is next.

Proposition 2.6.2. We have
(=]
i is recurrent iff fi; = 1 iff Z p,@;‘) ==
a=0

s0 that

i is transient iff fi; < 1 iff Zp(n) < 00.

n=0
Proof. We have i recurrent iff Fj;(1) =1 iff
l B } 1 =00
im wi(8) = im T Fale) \

and since Py (1) = 320 ™ we are done. W

This resuit has the following illuminating interpretation. Define for

JES
N; = Z 1[X,,=j]
n=1

to be the number of visits by the process to state ;7 after time 0 so that for
any 1,5 we have

oo oo
N; = ZEil[Xn=j] = Z;R[Xn = j] Zp(n)-
n=1 n=

Letting j = 4, the previous result says that when i is the initial state, 7 is
recurrent iff the expected number of visits by the chain to state 1 is infinite.

More can be said about the connection between recurrence/transience
and the number of visits to a state.
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Proposition 2.6.3. We have for any i,j € § and non-negative integer k

P[Nj=k|Xo==‘]={1_f_"; e
fiifi (L= f35), k=1
Thus, if j is transient, then for all states i
Pi[N; < 0] =1,
and -
Ei(N;) = fis /(L= f33) = X;P%%) < o,
n=
and N; is geometrically distributed with respect to P;:
B[Ny = k) = (1~ fy)(fi)¥, k20
If § is recurrent, then
Fj[N; = o0] =1,

and, for any 1,
Fi[N; = o] = fij.

Proof. Observe that for states i, §

R,'[Nj > 1] = P,’_[Tj(l) < 00] = f,;j.
From Proposition 2.5.1 (cf. 2.5.3), for any k& > 1,

FiIN; > k| = Pi[ry(k} < o0] = Bi[r3(1) < 00,... ,75(k) < o0
= Piry(1) < ool [r(1) < ool
(2.6.1) = fui{ £
In particular, with respect to P;j, we see that for k > 1
P[N; > K] = (£;;)*.
Suppose j is transient. We have
R[Nj =OO] = lim .P-,,[NJ Z k]
k—00

= lim Filf5) =0
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gince fj; < 1. Also from Lemma 1.1.1

E(N) = 3 Rl > m

m=0

=" ffin)™ = fis/ (1 = f5)- M
m=0

So if the chain starts from a recurrent state 4, then it visits 4 infinitely
often, which can also be written

PA[Xn =1 ko } =1,

and if ¢ is transient then the chain visits ¢ finitely often.
Although the generating function relationships provide a link between
pE?)} and { f,-(;‘)}, it is primarily of theoretical use. In practice, if the
quantities { f,.(;‘ )} are needed, one can use a recursive scheme for computa-

tion. For ¢,j € & we have f,-(;) = pij, while for n > 1 we have, by a first
jump decomposition,

f1(_-;n) :R[Xl 75.7? 1Xﬂ-—1 :IéJaX‘n =J}

= Y PBlXi=kXo#j.., Xn1# 5, Xn =]l
k#j, keS

=Y RilXz #j,..., Xac1 # 5, Xa = j1X1 = K| P[X1 = K],
k7T

which from (2.1.4) is

=3 PX1# ], Xaa # § Xno1 = §1 B[ X1 = K]
k#j

— S paf Y.
k#j

To summarize,

Pisy fn=1
(2.6.2) ™= (ne1)
Zk;éjpikfkj , fn>1

This is best expressed as a matrix recursion. Set U)P = (W)p;,), where

; pik, HkF]
26.3 Ulpy =
( ) Pik { 0, itk = J ,
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so that we get YP by setting the jth column of P equal to 0. For fixed
j € § define the column vector

£ = (£, i e 5).

tj

Then (2.6.2) becomes

(2-6.3’) £in) — { (pij?'i € S)’? ifn=1

Opsn-1 ifn>1,
which can also be expressed

fim) o Gpn-1p01)

Example 2.6.1. A famous UK. study of occupational mobility across
generations was conducted after World War II. Three occupational levels
were identified:

{1} upper level (executive, managerial, high administrative, pro-
fessional)

(2) middle level (high grade supervisor, non-manual, skilled man-
ual)

(3) lower level (semi-skilled or unskilled).

Transition probabilities from generation to generation were estimated to
be

1 /.45 48 .07
P=2{.05 .70 .25
3 v01 5 49

We are interested in (f”,i = 1,2,3)". We have

0 .48 .07
Wp=1{0 70 .25
0 5 .49
and
£ = (.45, .05, .01)".
Thus

£ =W p sl = (0247,.0375, .0299)
£ =P £ = ( 02009, .03372,.0334)

and by powering up (VP we find
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£ = (NP)*F = (.01519, .02644, .0279)".

Because all entries of P are positive, the chain is irreducible. As we shall
see, the state space being finite implies that all states are recurrent and
thus, as will be checked later, f;) = Fi[n(l) < o0] = 1, i = 1,2,3; ie,
the chain reaches state 1, the highest economic level, in a finite time.
Remember the time scale here is generations. By contimiing the recursive
scheme we find

5
(Pn(1) <8li=1,2,3 =(3 15V, i=1,2,3)

me=1
45 0247 .02009 0185261 0176657
=1.05]+1].0375 | + | .03372 | + { 0319577 | + | .0306777
01 .0299 0334 033229 0322611
530985
=| .183860
138791

Note P3fri(1) < 5] is small.

2.7. PERIODICITY.

The concept of periodicity is necessary for understanding the motion of a
stochastic system. It may well be the case that certain movements of the
system can only be completed in paths whose lengths are multiples of, say,
a certain number d. As a paradigm, think of the simple randem walk where
steps are 1. Returns to 0 can only occur along paths whose lengths are
even since every positive step must be compensated for by a negative step.

We now explain how to classify states as either periodic or aperiodic.
Define the period of state i to be

d(i) i= ged{n > 1: p > 0},

where ged means greatest common divisor. (If {n > 1 : pg?) >0} =0,
then set d(i) = 1.) If d(¢) = 1, call i aperiodic and if d(i} > 1 call i periodic
with period d{). The definition means that if pg?) > 0 then n is an integer
multiple of d(1), and d{4) is the largest integer with this property. Returns
to state i are only possible via paths whose lengths are multiples of d(z).
Example 2.7.1. (1) Unrestricted simple random walk (see Section 1.6)
{5 = > k=1 Xi,m > 0} with state space {...,—1,0,1,...}. The period
of 0 is 2 since pgg) = (} unless n is even.
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(2) Random walk with steps {X,} having possible values +1,0 and
satisfying

PXn=1=p>0, PXp=0=r>0, PX,=-1=¢>0.
Then d(0) = 1 since pgo = r > 0 and therefore 1 e {n > 1: ptgg) > 0}.

Note that whenever p;; > 0, 7 is aperiodic.
(3) Consider the chain on {1,2,3} with matrix

1/0 1 0
=201/2 0 1/2
3\t 0 0

Then pi; - =0, Pu Z p1zpa1 > 0, Pu = p12P23pa > 0 s0
{2,3} c{n :'pg?) > 0},

and, since ged{2,3} = 1, we have d(1) = 1, even though pﬂ) = 0.

Remark. It is possible to leave a periodic state and never return. For
example, in gamblers ruin on {0, 1,2, 3}, states 1 and 2 have period 2.

2.8, SOLIDARITY PROPERTIES.

A property of states is called a solidarity or class property if whenever i
has the property and ¢ « 7, then j also has the property. Put another
way, if C' is an equivalence class of states and ¢ € ( has the property, then
every state j € C has the property.

The good news:

Proposition 2.8.1. Recurrence, transience and the period of a state are
solidarity properties.

The practical impact is that these properties need to be checked for
only one representative of a class, not every element of the class. Thus, for
example, if ¢ « j then d(i) = d(j)

Proof. Suppose i — j and 7 is recurrent. Since i — 7 there exists n such

that pl(ﬂ) > ) and since § — 4 there exists m such that p(m) > 0. From the
matrix identity

Pm+n+k — PmPkPn,
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we get
(n+m+k) _ (m)_ (k)
(2.8.1) Pjj Z Pja paﬁpﬁj
a,fes
k k
2 = (p70) ol
&
- Cp»fl )7

where ¢ > 0. Since i is recurrent we have from Proposition 2.6.2 that
Sk pg) = oo, and therefore

ZPE? > ZPE"‘*“““) > chﬁf =
= k=

from which j is also recurrent.

This argument is symmetric in 1, 7, so if 1 «+ § then 7 is recurrent if and
only if j is recurrent. Since transient means not recurrent, we also have
that if 2 < j, then ¢ transient if and only if j is transient.

Suppose i «+ j and i has period d(¢) and j has period d(7). From (2.8.1)
we have for ¢ > 0

k
(2.8.2) p ) > P

(nbm)

Now p(m =1, so from (2.8.2} we get p;; > 0, which means n + m =

k1 d(7) for some positive integer k;. For any k > 0 such that p(k) > 0, we

have p§"+m+k} > cp(k) > 0 so that
n+m+ k= kad(j)

(k)

for a positive integer ky. Now for & such that p;;” > 0 we have

k=n+m+k—(n+m)=kd(f) — kad(j) = (k2 — k1)d(j)-

So d(j) is a divisor of
{n>1:p >0}

Since the greatest common divisor of this set is by definition d(%), we know
that d(j) is a divisor of d(i) and hence d(i) > d(j). By the symmetry of
this argument between ¢, j we also get that d(i) is a divisor of d{j) so that
d(i} < d(j). Hence d(z) = d(j). &
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2.9. EXAMPLES.

Here we consider some examples and obtain criteria for recurrence or tran-
sience using the basic definitions. More sophisticated techniques for decid-
ing on recurrence or transience will be considered later.

First a reminder about the significance of the concept of recurrence.
Recurrence may be thought of as a stability property for a stochastic sys-
tem. It describes the strong tendency of the model to return to the center
of the state space. Transience may be associated with a tendency toward
the extremes of the state space: Queue lengths build up without bound,
busy periods may become infinite, branching processes explode, random
walks drift to infinities, etc.

Example 2.9.1. Success Run Chain. Recall the transition matrix for
this chain is of the form

g po 0 O
i 0 py 0
p|® 1

gz 0 0 po

where 0 < p; < 1,7 > 0. When is a state recurrent? This chain is irreducible
and therefore i > 0 is recurrent iff 0 is recurrent and thus it suffices to
determine a criterion for the recurrence of 0. We have féé) = qp, and for
n > 2 we get

M opxi=1,X=2,...
=P - Pn-20n—1.

an—-l =n- l}X'ﬂ:O}

Write "
un=[[p, n20,
i=0
and we obtain from ¢,—1 =1 — pn—y

S =upp—uply, n22

from which
N41

Z Joo —90+ up —ur}+ (w —ug)+ - Fun-1 —uN

_q0+’LLD—UN=1-UN.

So 0 is recurrent iff uy = Hﬁr__opi -  as N — oc. A condition for this
can be obtained by the the following lemma from our toolbox.
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Lemma 2.9.1. If0 < p; <1, fori > 0 then

uN—le_’OIEZg: Z(l—pi)=00

i=0

and

HP‘>OJEZQ“_Z 1—p;) < oo.

=0 1

Proof. Recall that if a,, ~ b, as n — oo, then 3 a, < oo iff 3, b, < 00,
since ap ~ by, means that lim,, .. an/by = 1. Equivalently, for any € > 0,
we have for all large n that (1 — €)b, < an < {1+ €)by.

le>01ff Z—log(l—ql ) < oo iff th<oo

i=0

The last equivalence follows from
—log(l—z}~z, x—0
since by L'Hépital’s rule or Taylor expansion

lim —log(l — z)
z—0 €

=1

Note, both 3, —log(l1 — ¢;) < oc and ¥, g; < oo imply ¢; — 0. B

We conclude 0 is recurrent iff 3 ;(1—p;) = oo, which says that the p;’s
are not too close to 1; the ¢;’s, measuring pressure toward 0, are substantial.

Example 2.9.2. Simple Random Walk. Recall the setup in Section
L.6. Let {X,} be iid, and

Sa=Y X;, PXi=1l=p=1-P[X,=-1]
i=1

Ifp > q then by the strong law of large numbers

P[lim Su =EX;] =1

L—O0 TN

Since EX; = p— ¢ > 0, we have

P[lim S, =] =1,
n— OO
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so there is a last visit to D almost surely, and 0 is transient. Similarly, if
P < q, we find 0 transient. If p = ¢, we have already seen in the discussion
of the simple randem walk in Section 1.6 that Fy[mp(1} < oo] = 1, hence 0
is recurrent in this case.

Alternatively, note that when p =g = %, we have p[(,%”“) ={, and

(2n) 2n 1\" /1N .
oo ={, )13 5 = P[n steps right, n steps left ].

Pull Stirling’s formula from youwr toclbox:
n! ~V21e " n™ 2 n s o,

from which we get

2
( n) ~ ()72 s oo
n

p(2n) — 2n\ (1 "N(vm)-uz
00 n 4 3

we have 507 ) pgf)) = 00, and therefore 0 is recurrent.

These methods generalize to multidimensional random walks. Let

Since

X, = (X, X{9)

7 1t

be a d-dimensional random walk step and define as before Sy =0, S8, =
Xi+...+X,. If

EX, =(ExDY,. .. Ex1¥) #o,

then again the argument using the strong law of large numbers shows 0 is
hit finitely often. Suppose the range of X; is {—1,1}¢ and that EX; = 0.
Suppose each value {—1,1}¢ is equally likely with

1

PIXy = (i1,...,8q)] = o

for (i;,...,44) € {-1, 1}¢. This implies the components Xgl),...,Xﬁd) of
X, are iid and have a symmetric distribution P[X{‘7 ) = +1)=1/2, j =

1,...,d. Therefore
S, = (SM,..., 8,
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where {Sﬁl},n > 0},... ,{.S’,(.d) ,n > 0} are independent symmetric, sirmple
random walks. Thus

P = P[Sz, = 0] = P =0,... , S{¥ = q]

ot (()r)

—d/2

~{mn) as n — co,

by Stirling’s formula. So, since

<ocford>3,

we find

oQ
Zpgg) =poford=1,2
n=1

<o for d > 3.

Therefore for the simple symmetric random walk in B¢ we have that 0 is
recurrent if d = 1,2 and transient if d > 3.

Example 2.9.3. Simple Branching Process. Assume to avcid a de-
generate situation that p; # 1. Since 0 is absorbing, 0 is recurrent. As
we now demonstrate, however, 1,2,... are transient. If pg = 0, then the
number of offspring per individual is at least 1, and therefore {Z,} is non-
decreasing. If we start in state k, the only possible way to return to state
k is if each of the k members of the current generation have exactly one
offspring. Thus for £ > 1

fxx = P[ eventual return to k]
= P Zpy1 = k| Z, = K]
=P[Zns1;=1,7=1,... K
=p} <1,
so that in the case py = 0 we have k transient. For the next case consider

Po = 1. Then prg = 1 50 frx = 0 < 1 and again state k is transient. Finally
consider the case where 0 < pp < 1. Since 0 is absorbing,

fek SR #0=1-PRfZ =0 =1-pf < 1.
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So for this case too, k > 1 is transient.

‘We now consider the instability property remarked on in Section 1.4,
Pick M. Since the states 1,2,...,N are all transient, there is a last time
{Z,} visits these states. So eventually either Z, = 0 or Z, > N, whence
PlZ, — 0 or Z,, — oo] = 1. Since

PlZ, - Qor Z, = 0] = P[Z, — 0]+ P[Z, — ool

and since
P[Z, — 0] = P[ extinction | = ,

we get
PiZ,—ool=1-m.

Compare this with the results proven by the methods of Section 1.4.

2.10. CANONICAL DECOMPOSITION.

For studying a Markov chain with a large state space, it is helpful to
decompose the state space into subclasses and then to study each class
separately. We first prove that a recurrent class (a class such that all
states are recurrent) is closed. This will allow us to decompose the state
space as

S=TuU (UiC,;),

where T consists of transient states (T is not necessarily one class) and
1, Ca, . .. are closed, recurrent, disjoint classes.

Proposition 2.10.1. Suppose 7 € § is recurrent and for k # § we have
j-— k. Then

(1) k is recurrent,
(2) jek
(3) fix=/ =1
This proposition implies that a recurrent class is closed: If j is recur-

rent, any consequent is in the same class {from (2}). Repeated use of this
argument shows that it is impossible to exit from this class.

Proof. (1) follows from (2} and solidarity. We concentrate on {2), and we
need to prove & — 7. In order to get a contradiction, suppose j is not a
consequent of k, which means

PlXp.#j, ¥n21 =1
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Since § — Kk, there exists m such that pg.:l) > (. Since § is assumed

recurrent, the chain visits state 7 infinitely often starting from j, and thus

0=F;[Xy#j, VI 2 m]
>PlXi#4, VI2m Xn = k|

Conditioning on the path up to time m and applying (2.1.4), we get

=p§‘:)Pk[XI #i,1>1]

= ;’:) >0,

which yields the required contradiction.
Now focus on (3). Assume j — k and thus there exists m such that

PiXh# i s X # 5, Xm = k] > 0.
Then we have from the recurrence of j that

0=1-fj; = P;[r;(1) = o]
ER‘,"[T:{(I) =00, X = k}

Again, conditioning on the path up to time m and applying (2.1.4) gives

=PX1 # 5, Xmo1 # §, Xm = K] Pefr(1) = o0

:PJ[XI #j)-"aXm—l ?é]me = k](l _fkj)u
and therefore we get 1 — fi; = 0, which is the desired result. Symmetry
also gives fjr =1. B

The result just proved quickly gives the decomposition of the state
space promised in the beginning of the section.

Corollary 2.10.2. The state space S of a Markov chain may be decom-
Dosed as
S’—‘TUC} UCQU...,

where T' consists of transient states (but T' is not necessarily one class),

C1,Cy, ... are closed, disjoint classes of recurrent states, and if j € C,
then
1, ifkeCy
fik = .
0, ifké¢C,.
Fhrthermore, if we relabel the states so that for i = 1,2,... states in C;

have consecutive labels, with states in C' having the smallest Jabels, those
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of Cp having the next smallest, etc., then the transition matrix P can be
rewritfen as

P 0 0 0
60 P 0 0

1 Q2 @
where P, Py, ... are square stochastic matrices with transitions within C;

being governed by P;. Transitions from states in T are governed by the
matrices ;.

If § contains an infinite number of states, it is possible for § = T so
that there are no closed, recurrent classes. The deterministically monotone
Markov chain is a good example. If 5 is finite, however, not all states can
be transient, as shown by the next result.

Proposition 2.10.3. If S is finite, not all states can be transient.

oo (n)

Proof. Suppose S = {1,2,... ,m}, m <oc.Ifj € T weknow 3_ 7 p;.” <
(n)

iy
1 —-jii ) 0
i=1

if all states are transient. B

oo for any i. Therefore, as n — oo, p;;’ — 0. Summing over j gives

For a Markov chain, a basic task is deciding which states are transient
and which are recurrent. For a finite Markov chain, the results of this
section provide a clasgification method:

{1) Decompose S into equivalence classes.
(2) The closed classes are recurrent.
{3) The classes which are not closed consist of transient states.

Decomposing S into equivalence classes can be accomplished by the
following steps:

(1) Pick a state i and find all consequents of i and all consequents
of the consequents of i, and so on. This will give cl{z), the
smallest closed set containing i. Find & ¢ cl{3), and determine
cl(k). Keep this up until 5 is exhausted.

{2) The resulting closed sets may contain more than one equiva-
lence class. Non-closed classes which are subsets of closed sets
will contain transient states.

(3) Writing down directed graphs of the states may help if the
number of states is reasonable.
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(4) Teaching the computer to do this may be wise if the number
of states is large,

Example 2.10.1. Gamblers Ruin on {0,1,2,3,4). We have

0/s1 0000
1{g 0 p 0 0
P=210q 0 p 0
310 0 g 0 p
4 \0 0 0 0 1
In canonical form this is
0,10 000
410 1 0 0 0
P=1|q 0 0 p 0],
210 0 ¢ 0 p
3\0 p 0 g 0

so Gy = {0},C2 = {4}, T = {1,2,3}.
Example 2.10.2. Let § = {1,2,...,5} with
1/1/2 0 172 0 0
2{ 0 1/4 0 3/4 0
P=3 0 0 1/3 0 2/3
al1/4 12 0 1/4 0
5\1/3 0 1/3 0 1/3

The directed graph is given in Figure 2.1.

m
C«/ \53

Co2D

FIGURE 2.1
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Note that cl{1)} = {1, 3,5}, and this is a class. Further, {2,4} is also
a class, but it is not closed. Hence § = TUC) where T = {2,4} and
Cy = {1,3,5}. In canonical form the matrix is

1/1/2 1/2 0 0 0
3{ 0 1/3 2/3 0 0
P=5|1/3 1/3 1/3 0 0
210 0 0 1/4 3/4
4\1/4 0 0 1/2 1/4

£

2.11. ABSORPTION PROBABILITIES.

Frequently we are interested in the time until the system goes from some
initial state to some terminal critical state. Such a terminal state may
represent “breakdown” in a reliability context, bankruptcy in a financial
or business context, or simply a state of interest. For instance, in the
occupational mobility example at the end of Section 2.6, we are interested
in the number of steps necessary to go from the lowest economic class to
the highest.

Such problems can often be cast as absorption problems with the fol-
lowing sort of formulation: Let § = T 4 U Cz U ... be the canonical
decomposition of the state space. T consists of the transient states and
the classes C; are closed and recurrent. Define

r=inf{n>0: X, ¢T}

to be the exit time of T. Note that there are cases where P{r = oc] > 0.

For example, in the deterministically monotone Markov chain we have

Plr=o00]=1foralli € S, since T = 3. For now, however, assume that

Pi[r < 00] =1 for all i. We shall see that this is the case if the state space

is finite. Note that when 7 is finite, X, is the first state hit outside T
Partition the transition matrix P as

Q R
p=(5 )

where Q is the restriction of the matrix P to the states corresponding to
T; that is,

and
R= (R, kel el =(py, kT, cT).
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Now define for ¢ € T and k € T
uig = B[ X, = k).

Recall that we assume 7 is finite for all starting states ¢. Once the chain
leaves T, it will hit one of the closed recurrent classes and hence can never
return to T. Thus, we can interpret u;; as the probability that the chain
leaves T because of absorption at state k in the closed, recurrent class when
the initial state is 7. Quantities related to absorption are easily computed
from the {wu:}. For example,

w(C) =FBlX, cCl= > ua,
kel

the probability that absorption takes place at class O}, is easily computed
by summing the absorption probabilities corresponding to the states in €.

We now give some properties of the matrix @. For4,jeT andn = 0
we have

(211.1) iy = Q.

To check this, observe that

o= X

leTv---njn—leT
(2.11.2) =F[X,=j,7r>nl

PinPirje -+ - Pin1d

However, since for j € T
[Xn=j]Clr>n),

we get the right side of (2.11.2) is just pg?), and thus we have verified
(2.11.1). A consequence of (2.11.1) is

oo o
(2.11.3) 3P =B Y 1x, <0,
n=x0 n=0

80 that S QE;‘) is the expected number of visits to the transient staie
J starting from transient state 1.
Keep in mind the following two examples:

1. Gambler’s ruin on {0,...,m}. Here T = {1,... ,m — 1} and the
absorption probabilities of interest are

uzg = P;| Harry goes broke], 1<i<m -1,
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and

Uim = P;| Zeke goes broke and Harry wins ], 1<i<m -1

2. Occupational mobility. Recall the state space was {1,2,3} with 1
representing the highest economic class and 3 the lowest. The matrix is

45 48 .07
P=105 7 .25
01 5 49

We are interested in calculating the expected time to go from 3 to 1. At
first glance this problem seems to have little to do with absorption. The
matrix has all entries positive and hence is irreducible; because the state
space is finite the irreducible class is recurrent and there are no transient
states. However, by changing P to

1 0 0
PP=[.05 .7 .25
.01 .5 49

and analyzing the expected time to absorption in state 1 starting from 3
for this modified chain, the problem is indeed cast as one of absorption.
If we are interested in the expected first passage time to 1, changing the
probabilities of how the system leaves 1 does not affect the absorption
times. For the Markov chain corresponding to the modified matrix, T =
{2,3} and interest centers on

wy -—*E,-T, 1= 2,3
where for this problem 7 =inf{n > 0: X;, = 1}.

To compute u;; we use first step analysis and decompose the event
[X- = j] according to what happens at the first transition:

[Xr=J] = UlX, =3, X1 = &].

This gives a recursion for the u;;’s. In the finite state space case this
recursion can be neatly solved via matrix manipulations. We have for
1 €T,7eTe,

'Lﬁ-ij = Pi[X-r = ]] = ZP;[XT :j,X] =k‘]
kes
=3 R, =5,X1=K+ Y R[X,=jX =kl
keT keTe
=A+ B
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To analyze B, observe that if £ € T° then the events X, =jl and [X) = K]

are disjoint unless j = k, so we have B = py;. For A we have that 7 > 2,
and by conditioning on X and using the Markov property,

A=S S Pfr=nX,=jX =k

keT n>2

=S N RAXeT,...  Xo €T, Xn =5, X1 = 4]
keET n22

=S S Pl eT,... Xa1 €T, Xn =j|X1 = K| P[Xy = K]
keT n>2

=3 Y paBlX1€T,... , Xoy € T, Xno1 =]
kel n>2

=35 puPlr=n-1,X. =}
kET n>2

= Zp-ikpk (X, =4] = Zpikukj-
keT keT

Since for 4,k € T' we have p;x = Qix. By combining A + B, we get that
the recursion becomes (i € T, j € T¢)

(2.11.4) iy =Y Qiruk;j + Pij-
keT

This recursion, of course, merely says that absorption by a recurrent state
j can take place in two ways: Either absorption is accomplished in one
step (with probability p;;), or, if not in one step, then a transition must
be made to an intermediate transient state k (probability () and then
from % the chain must be absorbed by state 7 (probability ux;).

If we set U = (u;;,1 € T,j € T¢), then in matrix notation (2.11.4)
becomes

(211.4') U=QU+R

which is the same as U — QU = U(I — Q) = R. If I — Q has an inverse,
we get the matrix solution

U=(-Q 'R

The matrix

-



106 MARKOV CHAINS

arises frequently in absorption calculations and is known as the fundamen-
tal matriz. When the state space is finite (or when 7 is finite) f — € indeed
has an inverse, which can be represented as

I-Q7'=> "

n=0

so that from (2.11.3) we have that

(- i3 =E Y Lixamy):

n=0

Example. Amateur Night at Happy Harry’s. Friday night is ama-
teur night at Happy Harry’s Restaurant where a seemingly infinite stream
of performers dreaming of stardom perform in lieu of the usual profes-
sional floor show. The quality of the performers falls into five categories
with “1” being the best and “5” being unspeakably atrocious, representing
for Harry’s discriminating clientele an exceedance of the threshold of pain
which may cause a riof. The probability a class 5 performer will cause the
crowd to riot is .3. After the riot is quelled, performances resume—the
show must go on. Since performers tend to bring along friends of similar
talent to perform, it is found that the succession of states on Friday night at
Happy Harry’s can be modelled as a six-state Markov chain, where state 6
represents “riot” and state “i” represents a class “¢” performer, 1 < ¢ <5.
The transition matrix for this chain is

05 15 3 3 2 0
0 3 3 3 05 0
p= 00 2 3 35 1 0
0502 3 3 1 0
o1 101 .39 03
2 2 2 2 2 0

To play it safe Harry starts the evening off with a class 2 performer. What
is the probability that a star is discovered (a class 1 performer) before a riot
is encountered? What is the expected number of performers seen before
the first riot?
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To solve this problem we make states 1 and 6 absorbing and solve for
ugy. Although it is a bit pedantic, we first write the modified matrix in
canonical form so that states 1 and 6 correspond to the last two rows and
columns:

2 /3 3 3 05 05 O

312 .3 3 1 05 0

P = 4 1.2 3 35 1 .05 0

511 1 a1 39 01 3

110 0 0 0 1 0

6 \0O 0 O 0 0 1

Thus we have

3 3 3 .05 .05 0
2.3 35 1 {05 0
Q= 2 3 35 1) R= 05 0
1 1 1 .39 .01 3

With the help of a package like Minitab we find

3.68 340 3.76 1.48
1 {251 432 372 1.52

- = 251 331 472 152 |’
1.43 181 200 2.38

from which
BT 443
i m—tp_ | D42 457
U_(I Q) R= 543 457 )’
285 .T14

and the required probability is u; = .557. B

In order to analyze the expected number of performers seen in this
example we first need to develop some new equations. Suppuose

g:8—R
18 a function on the state space, and define for i € T

(211.5) w; = E (TZ—: g(Xn)) -

n=0

Think of g as a reward for being in state 4; then w; is the cumulative reward
Starting from i € T until absorption in 7. Some useful examples of g are
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(1} Ifg=1 then
Wi = Ei'r,
the expected absorption time.

If g(i) = ;5 fori,j € T (that is, g(4) = 1if 1 = § and g(i) =0
if 7 £ 5), then

(2)

wi=Fi ) =),
n=0

the expected number of visits to transient state 7, starting from

1. We already know this is the (4, 7)th entry of the fundamental
matrix, if 5 is finite.

We now derive a recursion for {w;} in a manner similar to the way we
obtained the recursion for the absorption probabilities. We have that

=1 -1
wi=Ei Yy g(Xa) = g(@) + E: Y 9(Xa)lyrsa,
n=0 n=1

where the first term on the right results from the reward from being in
state Xy = 7. The second term on the right is
(2.11.6)

o0 e <]
E; ZQ‘(Xn)l[n<r] = Z B (Z Q(Xn)]-[XleT,... XeeT)| X1 = .’f) Pij.
n=1 n=1

JET

Now define f: §+— R*™ by

flzr,zs, .. ) = Z 9(za)liz 6T .. 2neT)

n=1

and the right side of (2.11.6) becomes

ZEi (f(X1, Xo,. . X1 = ) pij.
JjeT
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From the Markov property (2.1.4) this equals
Z EJf(XU, Xl, e )p13
JET
o0

= Z E; Z 9 Xn 1)1lixser.... Xo_1€TIPij
jJET n=1
o0

= Z E; Z 9(Xm) [ XoeT, .. XmeTIPij
JjET m=0

=2 Bi ) 9(Xm)iromppi

We conclude that w; satisfies

wy = g(z) + Zp«;j’u.’j, 1eT.
JET

(2.11.7)

In the case when S or T is finite, a matrix solution is again possible in
terms of the fundamental matrix. Define the column vectors

w = (w,t € T)la g=(g(i),i € T)’1
and then (2.11.7) becomes
w=g+ Quw
which has the solution
w=(I-Q) .
Recall that in the case g = 1,
(Bi(r)ieTY = (1 -Q)7'1,
where 1 = (1,1, .. -
Example continued. To find the expected number of performers starting
from state 2 seen before the first riot, make state 6 absorbing. We have

05 15 3 3 2

.Y is a column vector of 1’s.

05 3 3 3 05
o=0 2 3 35 1/,
05 2 3 35 .1
n 1 .1 1 .39
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and the desired answer is {7 — ))711. Using Minitab, we find that the
fundamental matrix is

2068 4854 6.541 7.220 3.333
1152 6.389 7.046 7.78% 3.333
(I-Q)'=]1123 5149 7.869 7.644 3.333
1122 5149 6.869 8.644 3.333
0591 2815 3.678 4.066 3.333

Multiplying by the column vector (1,1,1,1,1) yields
(r- Q)_ll = (24.026, 25.710, 25.119, 25.119, 14.484)"

and the desired expected value is 25.710.

‘We now discuss the general solution to the famous gamblers ruin prob-
lem on the states {0,...,m}.

Example 2.11.1. Gambler’s Ruin. Suppose p # ¢ (if p = ¢ modifica-
tions are necessary te prevent dividing by 0 in what follows) and set

’U,I'ZP.,‘[X-,-=O]='U.,‘0, 1<i<m-1

for the probability that Harry loses and Zeke wins. Here 7' = {1,...,m—1}.
The equations (2.11.4) become

Uy = Zpikuk +pio, t€T,
keT

so that

Uy = puz +4¢
U = qui—y + Puiyy, 2<i<m -2

Um—1 = Um-2
If we set up = 1, u,, = 0, these equations can be combined into the system

g =1,uUm =10
(2.11.8) Ui == qu;_1 +PUip1, 1Zi<m-—1.

This becomes pu; + qu; = gu;_1 + Puiy1, so that

P(Ui+1 - ui) = Q('U-z' - ui—l)-
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Let p= g¢/p # 1, and we have
(2119) Uil — W = p(ui — 'U.i'_]_), 1 Sl S m— 1.

Tterating back, we see that

(2.11.10) Upgy —u; = p(ug —up) = pluy — 1), 1<ism-—1
By inspection, the equation holds also for i = 0. Sum over %:

m~1 m—1 .

S (s —w) = 3w - 1),

i=0 i=0

The left side telescopes so
m—1 )
Up —Ug =0 —1=~—1= (Z pt) {u; —1)
i=0

from which

m—1
1—u1=1/ Z Pi-

i=0
From (2.10.10) we get
—nt
B agismot
Ej:o p‘l

and summing again yields (0 < j <m —1)

Uil — U =

m—1
Z (g1 — W) =Um — Uj = U
i)
-1
_‘Z?:j 4
e
2?:0 4
from which
(211.11) ujz%, 0<jsm

We now discuss the case when (2.11.4) has a unique solution and the
fundamental matrix exists. When S is finite, we have already remarked

that
(e =]
Sorm,
n=0
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and it is easy to see from this that
(-Q@t=3 Q"
n=0

This covers most of the elementary and usual applications. The rest of this
section discusses the uniqueness of the solution to (2.11.4) and the existence
of the fundamental matrix in more general contexts. This discussion may
contain more detail than is necessary for the beginning student; therefore
some readers may wish to skip the rest of this section and continue reading
at the beginning of Section 2.12.

When § is infinite, (2.11.4) need not have a unique solution, and this
case will now be considered in some detail.

Example 2.11.2. Consider the transient suceess run chain with

g po O
aq 0 m 0

P=lg 0 0 pp

and [T2,pi > 0, 3,(1 ~ ps} < oo. (Refer to Lemma 2.9.1.) Make 0
absorbing so the matrix becomes

1 0 8 0
@1 0 pr O
Pr=1g 0 0 p
Ignoring the initial row and column gives
0m 0 O
0 0 p O
Q=10 0

0 p3

Thus the system (2.11.4) becomes (I > 1,u;0 = u;)
(2.11.12) Uy = Pitlip) + .

Set 1] = 1 — u; and we get

(21113) uT;:p,-ui_,_l.

2.11. ABSORPTION PROBABILITIES 113

One readily checks that for any 0 < ¢ < 1, a solution of (2.11.13) is

oD
w=c]]pe
k=1

and thus a solution of (2.11.12) is

o0
U{=1—CHPA:

k=1

for any 0 < ¢ < 1. Note that if ¢ = 1 we have

l—HPk=1—-Pi[T:OQl:P‘i[T<OO]!
k=1

which seems to be the desired solution of (2.11.12).
The most useful solution of (2.11.4) is what turns out to be the minimal

solution:
od

Ut =3 Q"R

n=0

where for i € T, 7 € T° we have

(Z Q”R) =3 QWRy
i

n=0 n=0keT

oo
=EZP¢[X1 eET,..., Xn ET,Xn=k,Xn+1 =.7]
n=0keT

PIX,€T,..., X0 € T, Xns1=J]

s

3
1]
=

s

Pi[T=T1+1,X1— =_ﬂ
0
i[T < OO,X-,— =J]

n

This last calculation shows that the infinite series defining U™ converges.
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To check that U” is indeed a solution of (2.11.4), simply observe
oo o
S Q"R=R+Y Q"R
n=>0 n=1

=R+§:Q"“R

n=0

=R+iQQ“R

e
=R+Q) Q"R
n=0

So U” is a solution of (2.11.4'), and, moreover, we can show it is
the minimal solution satisfying 0 < w; < 1. To see this, suppose U

is some other solution satisfying the inequalities 0 < I/ < 1 interpreted
componentwise, Then

U=QU+R>R
so that
U=QU+R>QR+ R
Repeating this procedure

U>QQR+R)+R=Q*R+ QR+ R.

In general, after N applications of this procedure, we have
N
U>y Q"R
n=0

Letting N — oo shows that U/ > U",

There is a unique solution to {2.11.4) bounded between 0 and 1 iff for
any UV satisfying (2.11.4") and 0 < U <1 we have

0<U-U=QU~-U")implies U - U" = 0.
To understand the last implication, we examine the system of equations

(2.11.14) > Quzi=wi, 0<z,<1, i€T,

JeT
or, in matrix form,

(2.11.14")
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Observe first that
(z),i € T):= (Bt =oc]i € T)
satisfies (2.11.14"), since for 1 € T we have

Plr ==Y PRy =k7=0o]

EET

= Z Py[r = 00| X1 = k| B[X, = K]
keT

= ZPikPJe[T = oo).
keT

Also z¥ has the analytical expression (i € T)
2y = Pj[r = o] = lim Br > n}

= L an:kaT>n
Jim, ) P 1

keT
(2.11.15) = lm > QR
keT

the last line following from (2.11.2). We have shown

gV = lim Q"1

TI— 00

In fact, ¥ is the mazimal solution of (2.11.14'}. This is easily seen ais
follows: If z is some other solution of (2.11.14%) therf z < 1, so that mul-
tiplying by @ we get z = ¢z < Q1; repeating this procedure n times
yields

r=0Q"%r <"1

and letting n — oo and using (2.11.15) we get

z < lim Q"1 =:z".

n—oo

We summarize these findings.

Proposition 2.11.1. There is & unique solution of

Rk . o
(211.4) Uiy = Z Qikuk; +Pij, 0<uiy =1, 0€ T,jeT”

keT
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or, equivalently, in matrix notation

(2.11.4") U=QU+R, 0<U <1,

iff the system
(2.11.14) Y Qurj=uz, 0<z <1, €T,
J€T

or, in matrix form,
(2.11.14%) Qz=z, 0<z<1,
has only the solution x; = 0,¢ € T. This last condition is equivalent to

Bir = oo} = B[ {X,.} stays forever in T)=0, i€T

Proof. We have already checked that if the only solution of (2.11.4'} is
z = 0 then {2.11.4') has a unique solution. We only need show that if
(2.11.4) has a unique solution, then the only solution of (21114} isx = 0.
If (2.11.14') has a non-zero solution then zV +# 0. Note if i € T, keTe,

D QuWUR +5))+ Ra =3 QuUp + Rin+ Y Qua
leT leT leT

Also,
OSU{?+J:,V:R[T<m,XT=l]+H[T=m]Sl

by definition of U} and zY, so (U4, 1) + 2Y,1 € T°,i ¢ T) is another
solution of (2.11.4). W

2.12. INVARIANT MEASURES AND STATIONARY DISTRIBUTIONS.

In this section we begin the study of stationary distributions for Markov
chains. Stationary distributions are a crucial characteristic of a Markov
chain because, as we will see, they control the long run behavior of the
chain in many ways. When a stationary distribution exists and is used
as the initial distribution of a Markov chain, the Markov chain becomes a
stationary stochastic process (cf. Proposition 2,12.1); we thus remind the
reader of the definition of stationarity: A stochastic process {Y,,n > 0} is
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stationary (sometimes called strictly stationary) if for any integers m >0
and k& > 0 we have

(YD) e }Ym) g (Yk1 tety Y‘H’l+k)3

that is, the two vectors have the same joint dis.tributions whatever the
length m of the vector and whatever the translation k& may be.

We now present the basic definition. Let m = {r;,j € S} be a prob-
ability distribution. It is called a stationary distribution for the Markov
chain with transition matrix P if

7 =aP

2

i.e, Tj = Y ke TkPkjr J €. _ _ o
We now check that if we start the chain with a stationary distribution,
we get a stationary process. Denote by P, the distribution of the Markov

chain when the initial distribution is 7. Thus
Pr(:) =3 P{(:)|Xo = i}mi.
i€S
Proposition 2.12.1. With respect to P, we have that {X,,,n > 0} isa

stationary stochastic process. It follows that

PolXn =i0, Xnp1 =01, o, Xtk = bk = TigPigi, *** Pin_in
(2.12.1) = Py(Xo =io,..., Xe = ix]

for any n > 0 and k > 0 and ig, ...,1x € S. In particular ,
Pr[Xn = j] = m

foranyn > 0,7 € .5.
Proof. Since the initial distribution is w, the left side of (2.12.1) is

Z Wipz('?o)pioil T Py gk

€S
Now 7' = 7’ P implies (right multiply by P successively} ©’ = n'P™, so the
foregoing is

TigPigiy ** Pig_ias

which is the right side of {2.12.1). B

Questions about the uniqueness and existence of stationary distribu-
tions must be resolved. For now we concentrate on interpretations.



118 MaRKOvV CHAINS

If v = {v;,; € S} is a sequence of non-negative constants (think of v
determining a measure on the subsets of §), we call v an tnvarient measure
if

V=P
If » is invariant and also a probability distribution, then it is a station-
ary distribution. There are invariant measures v, however, such that
Eje g¥j = 00, so that it is impossible to scale such a measure to get a
probability distribution.

When a recurrent state exists, the following is useful in manufacturing
invariant measures.

Proposition 2.12.2. Leti € S be recurrent, and define for j € S
o0
(2.12.2) =B Y ==Y BlXa=jm(1)>n]
DEn<r (1)-1 n=0

Then v is an invariant measure. Ifi is positive recurrent so that E;r;(1) <
oo, then

, E; 1ix s
(2.12.3) SN/ B i 20gngr(1)-1 1Xa=]
Ei(r;(1)) Ei(r(1))

is a stationary distribution.

Remark. v; given in (2.12.2) is the expected number of visits to j between
two visits to i and 7y is this expected number normalized by the expected
cycle length F;(m(1)).

Proof. We begin by showing v/ = +/P. In the next proposition, we check
that 1; < oc. We have that 1; = 1, and, with respect to F;, we have
Xo = Xr,1) = ¢ (note 73;(1) < oo since { is recurrent) so, for j # 1,

1€n<r:i(1) n=1

=pij+ Y PilXa=347m(1) 21|

n=2
oo
=ps+ > > PBlXa=35m)2n Xoy =k
k€S, k#in=2

o0
=pij + Z ZP,-{Xn =jlm(l) 2 n, X1 = &
keS, k#in=2

Pi[Ti(l) = n:Xn—l = k]
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Since [i(1) >, Xpy =k =[X1 #4,.., Xa1 FhAp1 = k], we have
from v; = 1 and the Markov property

[s %)
vi=vipg+ D 2 PriPilm(l) 20, Xa =]
keS, katin=2

oo
= V;Pij + Z Z _'pijé[Ti(l) >m-+ l,Xm = k]
k€S, k#im=1

oc
= Vipij + Z Pri £ Z Liri(1)>m X m=k]
kES, k#i m=1

Ti(l)—l

=Uipij+zpkjE£ Z U =k

ki m=1
Since k # {, this is

1',‘(1)—1

=Vipij+zpkjEi Z lix,, =k

ki m=0

= VD + Z VgPrs
ki

= viPij

kes

as desired.
If ¢ is positive recurrent then

Svi=2 B ) e

jes JES  0sngn{l}-1

=5y 2 lx.-)

ogn<r()—1J€S
=F; Z 1= E,;Ti(l) < 00,
OSHST,'(l)—l
s0 {v5/F;(r;(1)),1 € S} is a probability distribution. H
Now we consider the existence and uniqueness of invariant measures.

Proposition 2.12.3. If the Markov chain is irreducible and recurrent,
then an invariant measure v exists and satisfies 0 < v; < o0,Vj € 5,
v is unique up to multiplicative constants: If v; = viP, i = 1,2, then
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there exists ¢ > 0 such that 11 = cvy. Furthermore, if the Markov chain is
positive recurrent and irrecducible, we set m; := E(r;(1)), and there exists
& unique stationary distribution m where

7wy = 1/E5(7;(1)) = 1/m;.

Remarks.

(1) The most effective method of computing m; is to solve 7’ =
7’P. Do not overlook this computational recipe given in
Proposition 2.12.3.

(2} Without irreducibility, uniqueness of # cannot be expected.

Remark (2) is illustrated by Examples 2.12.1 and 2.12.2.
Example 2.12.1. Gamblersruinon {0,1,...,m}. Set 7y = (2,0,...,0,1-
@) for any 0 < a < 1. Since 7, concentrates on absorbing states, the pic-

ture at time 0 is frozen for all time, so not only is the stationary distribution
not unique, there are uncountably many stationary distributions.

Example 2.12.2. Consider the Markov chain on {1,2, 3,4}, where
(A 0
P (% &)

nen- (3 12)

and where

For each P; we have {1/2,1/2) is a stationary distribution. For any ,0 <
a < 1, we have
(a a l-a l- a)
2’2" 2 2
is a stationary distribution for P.

Remark. In a positive recurrent, irreducible Markov chain,

T,'(I)—l
'JTj/‘?T.; = TI'jEi(T.;(].)) = Ei, Z l[X“:j]

n=0

is the expected number of visits to j between two visits to 1.

The proof of Proposition 2.12.3 does not use any advanced tools. How-
ever, it is a bit long and somewhat tedious. Beginning students may skip
to the beginnhing of Section 2.12.1. For the more mature student, here is
the proof,
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Proof. Existence follows from the construction in Proposition 2.12.2. For
y constructed there, v; = 1 and for any j € 8, there exists m such that

p(,‘.“) > 0 (by irreducibility). Since v’ = 'P implies v = v P™, we have
J‘I
vi=1= Z uka‘;“) 2 VjP_(,-T),
kES

sov; < oo, To check v; > 0, note that the irreducibility assumption implies
i — 7, and therefore there exists an integer m guch that pg-") > 0. Since
/' = V' P implies v’ = v/ P™ we get
)
v; = Z Vkpg:;} 2 uipg?) = lp,E}n > 0.
keS

Now let y = {uj,7 € S} be another positive sequence satigfying uo=
i/ P. A modification of the foregoing shows (rule out p; =0, Vj)

O<pj<oo, Yi€esS.
We may divide through by u; to get a new sequence also called p with the

property y; = 1, y' = p'P. We need to show v = p.
We begin by showing p; > v; forall j € S. Note that

pi=1
pi= D MkPrj J# %
kes

These two statements can be summarized by

(2.12.4) =8+ > kg,
keS

where @ P is the P-matrix with its ith column set equal to 0. Note also

that
()

and keep in mind that

k_:Pk[Xn:jsTi(1)>n]: k#J)
IV

oo

(2.12.5) b= PlX, =) >0 =3 (9PP).

a=0 n=0 s
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Let §; = {6;;,7 € §8), and the translation to vector notation of (2.12.4) is

po=8+u0p
=8+ 8+ OPYOP =6+ 5OP 4 (1D P)?

N
= Z 5;((i)p)n +Mf((=‘)P)N+1_

n=0

Neglect the last term, and let N — oo to get

MBI (SIS

=0

S0 -
w2 (@Pr) =v
n=0 "

from {2.12.5).

To show that p; = v;, let Ay = y; —v; > 0, and observe A’ = A’P.
Since A; = p; — ¥, =1—-1=10, we have A; = 0 for all §, since otherwise,
if there were some jy such that Aj, > 0, we would find that A; > 0 for all
4, which would contradict A; = 0.

If the chain is positive recurrent, the invariant distribution is unique

up to the multiplicative constants. There can be only one stationary prob-
ability distribution. We see that

Ty = l/mt- = l/E,‘T,;(].).

Since the reference state i is arbitrary, the results follow. W

A simple numerical illustration of the results in this section is given
in the example of Section 2.14. A nice theoretical application of these
results is contained in Exercise 2.57, where the law of large numbers for
Markov chains provides just the right tool for proving almost sure consis-

tency of non-parametric maximum likelihood estimators for the transition
probabilities.

2.12.1. TIME AVERAGES.

Here we consider the strong law of large numbers for a Markov chain, so it
is wise to recall the strong law of large numbers for independent, identically

2.12. INVARIANT MEASURES AND STATIONARY DISTRIBUTIONS 123

distributed random variables. Suppose {Y;} are iid random variables with
EY1} < co. Then
n
g £
P[ lim Lot EY) =1
n—0o n

Sometimes this is written
i Y
=izl 2, E(YY) as,
n

where a.s. stands for almost surely, meaning with probability 1. .
Now for the application to Markov chains. Suppose f has domain S:
f:5— R,

and suppose [ is well behaved; say f = 0or fis bounded. Think of F(%)
as a reward for being in state i. We are interested in

N
;@ﬂZﬂf(&)/M

which is the average long run reward rate or the rate at which the system

earns, N _ N
Observe that if f(k} = 8k, then 3_ o lx =i I8 the number of visits

to %, and HmMy_ioo Ef:o f(X,)/N is the relative frequency that the chain
visits €. '
Proposition 2.12.4. Suppose the Markov chain is irreducible and posi-
tive recurrent, and let m be the unique stationary distribution. Then

N
im 3 F(X)/N = 7(f) =3 S
N—oo n=0 jeSs
almost surely for any initial distribution.

Remark. For later purposes, it is more convenient to have the limit in a
different form: From (2.12.3)
T:{1)—-1

S fim =Y f0E Y lpe=/Edn)
n=>0

JES je9

:Eiz > FUN X =)/ Biln(1)

FES 0gn<Ti(l)

=B Y | Y f x| [E(1)

0<n<ri{1) \JES
(2.12.1.1)

B ognenmy SR _ o
B E(m:(1)) ' Z

0<n<ri(l)
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since 3_jcs f(7)lix=5 = f(Xn)-

Remark. If f(k) = & then the long run frequency of being in state i is
2jes FU)ms = ma

Proof. The proof follows readily from the dissection principle Proposition
2.5.1 and the strong law of large numbers for iid random variables. For
simplicity, suppose f > 0; the case where f is bounded is not much harder,
Define

B(N)=sup{k > 0: ry(k) € N},

then B{N) is the number of blocks one can squeeze into [0, N].

{ Il
T + L

n{(B(V)) N ~(B(N) + 1)

Figure 2.2. TIME LINE.

Since the variables

7i(k+1)
me= 3. f(Xa), k21
n=ri{k)+1
are iid, we have
Litd Ti'(k'i'l 'r‘-(l)

(2.12.1.2)

)
S Y HX)m—EY f(Xa)
n=1

k=1 n=r;(k)+1

almost surely as m — oo. Now write

T (B(N)) N i (B(N)+1}
(2.12.1.3) SOHXD Y FXD S D f(Xa)
n=0 n=0 n=0
The left side of (2.12.1.3) is
B(N-1) B(N-1)

Z f(Xa) + Z e = J + Z ks
k=1 k=1

0gn<Ti(1)
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the right side is
nd s (N}
T+ Y ™

k=1
where J is a finite random variable, and hence J/N — 0, as N — oo. Now
we have

Ty M _ oy e BN}
N B(N) N

and, provided you can be convinced that B(N)/N — 1/E;(n(1)), we get
from (2.12.1.3) and (2.12.1.2) and the strong law of large pumbers the

following:

N B(N)
. —1 T -1
31050 = i 2
B(N—1)
= Lk -1 = Eym/E:7i(1
= Jim N > om m/E:7i(1)
k=1
=3 f()m;.
JES

Tt remains to show

(2.12.1.4) B(N)/N — I/Eq;(ﬂ'(l)).

Now, from the time line,
(2.12.1.5) n(B{(N)) SN < 7i( B{N) +1).

=3 i dent and aq,.-. ,0n
Recall 73(n) = 3_x_q @k Where co,...,Qx 3I€ indepen ,

are iid with E;ay = Eimi(1). So mi(n}/n — E;7:(1) asn — 0. In (2.12.1.4)
divide by B{N) and let N — o0 (which implies B{NV} — oa} and

r:( B(N)) < N n(B(N)+1) B(N) + 1.
B(N) — B(N)~ B(N)+1 B(N)

Both extremes of these inequalities converge to Ei{7{1)) and hence
(2.12.1.4) follows. W

Corollary 2.12.5. If f is bounded,

N
fim NS Ef(Xa) =n(f), i€ S.

N—co
n=1
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In particular, for f(k) = &; we have E;f(X,) = P[X, =jl= pl(-;‘) 50

N—oo

N
im NS p =7y, ies
n=1

or, in matrix notation,

N—oo

N
lim N1 EP" =TI,
n=1

where I1;; = 7; Is a matrix with constant columns.

Proof. If | f(i)] £ M then

N

1> HXIIN <M

n=1

and the result follows from dominated convergence. W
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We saw in Section 2.3 that for ¢ € (0,1),b€ (0,1)

n b _a
lim (l_a a ) __}(a-ti’-b a+b)
—_ a N
moeo\ b 10 o ath
We wonder when such behavior is true in general; i.e., when is it true that

: () ;o . -
(2.13.1) nli’rrgopi; =n;, 4,JESmT > O,Zﬂj =17
JES
If the m;"s were easy to obtain by means other than evaluating limits, they
could serve as approximations to the hard-to-obtain entries of P* and
allow rapid qualitative conclusions. A sequence # satisfying (2.13.1) will

be called a limit distribution. How easy is it to find limit distributions?
The foHowing helps.

Proposition 2.13.1. A limit distribution is a stationary distribution.

Proof. We have

. 1 .
= lim pii" = lim 3 plps.
kes
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1t is tempting to interchange limit and sum, but dominated convergence
does not apply when § is infinite since {pkj, k € S} is not a probability
distribution in k. If § = {0,1,2,... }, we proceed in an elementary way as
follows:

M
m > im S pej
k=0

Z (n)
- ™
=2 Jm pi’pes
k=0

M
= Z‘Trkpkj.
k=0
Since for all M,j € 5, o
T§ 2 Z"Tkpkja
k=0

we let M — oc to conclude

8]
(2.13.2) T > Zﬂkpkj,vj €5
k=0

If for some jo we had the strict inequality
(2.13.3) Tjo > 9 TkPkio;
=0

then summing (2.13.2) over j € S yields

Z Ty > z 2 Tk Pki

JES JESkES
DRSNS
k j k
= 1,

a contradiction. Hence (2.13.3) can happen for no jo. B

If the limits exist in (2.13.1), we know how to calculate them: Solve
7' = 7' P. The question is when the limits exist.
Support for the existence of limits is provided by Corollary 2.12.5,

which tells us N

o SN =

n=%
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when the chain is irreducible and pesitive recurrent. This Cesaro average
lirnit is weaker than the desired P™ -+ II. Sinceif j € T we have > p(")

oo, which implies p( . 0, and since p{ ) =0ifie Cao, j € Cpyix &
3 where C,,Cg are closed, recurrent classes, it is sensible to focus on
irreducible recurrent chains.

It is too much to expect that P* — II will always be true. In a chain
with period 2, for instance, p§§n+1) = 0 for all n and for all j € S. We focus
therefore on aperiodic, recurrent, irreducible chains.

Theorem 2.13.2. Suppose the Markov chain is irreducible and aperiodic
and that a stationary distribution 7 exists:

7' = 7' P, Z?Tj =1,m; > 0.
jes
Then

(1} The Markov chain is positive recurrent
(2) w is a limit distribution:

lim p{) =m;, Vi,jes.
(3) Forallje S, m >0.
(4) The stationary distribution is unique.

Remark. One of the most useful things about this result is that it pro-
vides a practical test for an irreducible chain to be positive recurrent: If a
stationary distribution exists, then the chain is positive recurrent. We will
give examples of how to apply this in Section 2.15.

Proof. If the chain were transient, then for alli,5 € §

P — 0, n — o0,

and so for all j

i = Z rip(n)

€S
by dominated convergence. Thus m; = 0 for all j € S, which contradicts
the fact that 3, m; = 1. Therefore, the chain must be recurrent.
Since the chain is irreducible and recurrent, an invariant measure,

unique up to multiplicative constants, must exist (Proposition 2.12.3).
From Proposition 2.12.2 for some ¢ > 0

vi=E ) L. = cmy,

0<n<re{1)
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and therefore

OO>ZVJ =ZE1 Z 1[)(“:_7‘]

j€S JjES 0<n<Ti(1)

= Fj Z Zl[xn:

0<n<ry (1) JES

=E1-ZI

0<n<T(1)
= E;ni(1),

from which we obtain positive recurrence. (Note that this argument did not
use aperiodicity.) So (1) follows, and (3} and (4) are covered by Proposition
2.12.2.

For (2) we need the following lemma. Beginning students should note
the staternent of the lemma and skip the proof.

Lemma 2.13.3. Let the chain be irreducible and aperiodic. Then for
i,j € S, there exists ng = no(i, j) such that

Yn > ng: pf;) >0.

Proof of the Lemma. Let
={n: pg?) > 0}.

Some important properties of A are the following:

(1) ged A = 1 since the chain is aperiodic.
(2) m,n € A implies m +n € A since

P = 2o wes 2 e > 0.
ke§

Now, (1) and (2) imply A contains all sufficiently large integers (a
cheery number theoretic fact; of. Billingsley, 1986, p. 569, for example),
N > ni, say.

Given i,j € S, there exists v such that pg) > 0. Then forn > r +mny

pg‘) sz iy 1”)—-I’J'SJJ'PE'J 7>0

by choice of r and due ton ~r > n;. B
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Proof of (2) by the “coupling method”. Let {X,} be the original Markov
chain. Let {Y,} be independent of {X,} and have transition matrix P
and initial vector « so that {¥,} is stationary and P[Y; = j] = m;. Define
En = (Xn, ¥3) so that {£,} is a Markov chain on § x § with the transition
matrix

P[€n+1 = (kaf)léﬂ = (7'!.7)] = DikPj¢
(see Exercise 2.2) and

Plén = (k. 0)ff0 = (i,9)] = P27y

From the previous lemma, given any (%, £) and (2, j) € 5 x S we have for
all sufficiently large n that pgz)pgn) > 0. Thus {£,} is irreducible.
A stationary probability distribution exists for {£,}, namely m g =

w7 To check this, note

> Pl = kOl = GGl = Y mimspipse

(i,j)eSx8 (i.))esx8

= Z TiPik Z TiPje = RETe = T(k,f)
i j
as required. We have an irreducible chain with a stationary distribution,
hence (£,) is positive recurrent.

Pick a state ip and let

T(’t'ogio) = 1nf{n 2 0: 61'1 = (‘ig, '1‘,())}
be the hitting time of (ig,ip). Since (£,) is recurrent,
P[En = (io,io) Lo ] =1,

and thus P[7i,, < o0] = 1. (Recall that 1.0 stands for infinitely often.)

The idea is this: Imagine two frogs, Sam and Suzie, hopping from rock
to rock. Sam hops according to Markov chain {X,,} and Suzie follows chain
{Y¥,.}, but there is a wrinkle. If they both land at rock ip together (at time
Tip,ia), then Sam jumps on Suzie’s back and follows {¥,} from time 7,
onward (the coupling time). Since X,, . =Y¥r, ., Sam’s total evolution
should be equal in distribution to what it would have been if he followed
{Xn}, but since after ., Sam rides Suzie on a stationary sequence of
states, his state probabilities at time n > 7,4, should be governed by
7. To make this precise, let P be the probability measure conditional on
Plto = (k,8)] = bpimy (i€, {X,,} starts at ¢ and {¥,,} starts according to
). Write T = T, 4, for the coupling time. QObserve

PlX,=j7<n]= ZP[Xn =j,T=m]:ZZ Plén = (4, k), 7 =m].
m=0

k m=0D
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Applying dissection t0 the Markov chain {£,} at the state (ip,%0), we have
the last expression equal to

S i Plr = m)Piiglin-m = G RN =3 ) Pl = mlp{ ™ plne ™

k m=0 k m=0
=3 Plr = miply; ™.
m=0
Similarly,

PlYa =7 <n) =3 3 Plén = (k,3),7 =)
k

m=0

which by dissection of {&n} I8

n

n—m)_ (n—m)
Z iP[‘T:m]-Pioin[&n—m :ksj] =Zz P[T:m]pgok Pioj "

k m=0 k m=0
n

=3 Plr=mpl; ™

m=0

We conclude '
PlX, =j,7 <n]=PYa=471 <0l

s0 the state probabilities after coupling are identical. Therefore,

P -y =|PXn = j] = P[Yn =7l
<|P[Xp=7j,7<n) = PlYa=471<7]
4 P[Xn =47 >n]— PlYa=4,7 > 7l
= |P[Xp=j,7 >n) - PYa=57>7l
= | E(x = ] = Ly =it lirsnl)!
<E|l[x,=) — Lyva=illr>a) £ Bliroa)
=Plr>n}—0,asn >

since Plr <ocl=1 B

The connection between stationary distributions, limit distributions
and positive recurrence is summarized next.
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Corollary 2.13.4. Assume the Markov chain is irreducible and aperiodic,
A (the) stationary distribution exists iff the chain is positive recurrent iff 4
limit distribution exists. If the chain is irreducible and periodic, exdstence
of a stationary distribution is equivalent to positive recurrence.

Proof. We merely put the pieces together. If the chain is aperiodic, we have
positive recurrence equivalent to the existence of a stationary distribution
(Proposition 2.12.3 and Theorem 2.13.2), which implies that a limit distri-
bution exists (Theorem 2.13.2), which implies that a stationary distribution
exists (Proposition 2.13.1). If the chain is periodic, combine Proposition
2.12.2 and the argument at the beginning of the proof of Proposition 2.13.2.

|

The phrase positive recurrent, aperiodic and irreducible is sometimes
subsumed under the name ergodic.

The story continues in Section 2.13.1. This may be skipped by begin-
ning students. Those skipping will miss a proof of the useful fact that o
finite state, irreducible, aperiodic Markov chain is always positive recurrent
and the stationary distribution always ezists.

‘We close this section with an example.

Example 2.13.1. The Infinite Capacity Storage Model. Consider
the Moran storage model of Section 2.2, but assume infinite storage capac-
ity, namely that the parameter ¢ = oo, and also suppose m = 1, so that
there is unit release. In this case, the contents process {X,} satisfies the
recursion l

(2.13.4) Xn1 = (Xn+ Anyy — Dy, n>0.

Recall that {A,} are the input variables and are assumed independent,
identically distributed and A,y is independent of X, for every n. For the
distribution of A, we have

PlAy=kl=ax, k20
and A, has generating function
(= o)
As) = Es™ = Zaksk, 0<s<1.
k=D
We seek the stationary distribution {my, & > 0} of the contents Markov
chain {X,} when it exists. If the stationary distribution exists, we know

from Theorem 2.13.2 that it is also a limit distribution. Letting n —
in (2.13.4), we get both sides converging in distribution to limit random
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variables. If X, converges in distribution to Xe, say, then X should
have the stationary distribution and satisfy the equation

(2-13'5) Xoo g (Xco + Aoo - 1)+ i
where A, has the same distribution as A; and is independent of Xo.
Recall that the notation £ 4 » means that £ has the same distribution as

To solve, let -
II{s) = Z'n‘ksk = Es%=,
k=0
and take generating functions on both sides of (2.13.5). This yields

TI(s) = $°P{(Xoo + Aco — 1)4 = 0}

00
+ 37 " PXoo + A — 1 =1
n=1

[eo)
= P[Xop + Aoo 1+ D PlXeo + Ao = n +1]5"

n=1

= P[Xoo + Ao S 1+ D P[Xoo + Ao = Flsi 1
i=2
=PH¢+Am=W+PWm+Am=H

+Y P[Xeo + A = jls7s™
j=2
= P[Xoo + Aoo = 0] + PXoo + Ao = 1]

4571 (BsXet4® — P[Xoo + Ao = 0] — P[Xoo + Aoe = 1)5)
= P[Xeo + Age = 0] + s TI(s)A(s) — s 7' P[Xeo + Ao =0}
= P[Xeo + Ao = 0)(1 — s71) + s~ TI(s)Als).

Solving for II{s) yields

P(Xo + Ao = 0](1 =571
1— s~ 1A(s)

_ PlXoot A =0](s = 1)

a s—Als)

_Pwm+Aw=m
- A(ls)—s

P[Xo + A = 0]
=_TTF%§§d.

f(s) =




134 MARKOV CHAINS

In c?rder to have a stationary distribution, we must have I{1) = 1, so
letting s 7 1 in the foregoing relation vields

P[Xoo + Aco = 0]
1-E4;

1=TI(1) =

Obviously, for this to be possible we need EA; < 1, and in this case we
see that

PlXoo+ Ag =0] =1 - EA,.

Using this fact, we arrive at the generating function of the stationary dis-

tribution:
(1-EA)1-5)
H(s) =
50, for instance, the long run percentage of time that the reservoir is empty
is
mo = I1(0) = ﬂl_
ag

2.13.1. MORE ON NULL RECURRENCE AND TRANSIENCE®.

As a cpmplement to the discussion in section 2.13, we discuss what happens
to limits when the chain is null recurrent or transient.

Proposition 2.13.5. If the Markov chain is irreducible and aperiodic and
either null recurrent or transient, then

lim p™ =0, foralli,jeS.

00 iJ
We know that in the transient case 20 pgl) < 00, so of course
limy- 00 pg-b) = (. The new information in this result, therefore, is what
happens when the chain is null recurrent.

Proof. Assume the chain is null recurrent. Then a unique invariant mea-
sure v = {v;,j € S} exists with the property 2 jes ¥ = 00 since if the
sum were finite, the stationary distribution would exist and the chain would
be positive recurrent,

Suppose the assertion of the proposition were not true. Then P® —
0 would be false and there would exist i,5 such pg-”’) — & > 0 along
some subsequence {n'}. Now use a compactness argument to manufacture
subsequential limits for P™ which are not identically zero. Do it like this:
Think of the collection of numbers {p;;,i,j € S} as an element in the
sequence space [0,1]5%%. This space, being a product of the compact sets

* This section may be skipped on first reading by beginning readers.
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[0,1], is also compact. Therefore {P™,n > 1} is a sequence in this compact
set and hence must have subsequential limits. One of these subsequential
limits must be non-zero; just go to the limit along a subsequence of the
identified subsequence {n'}. At least for i, j the limit is non-zero.

Suppose P = L, where L is a limit matrix which does not have all
its entries zero. We must convince ourselves that L has constant columns;
ie., that L is independent of k. Go back to the coupling argument,
and suppose {X,} starts in state u and {¥,} starts in state v. As in
the original coupling argument, the chain {£,} is irreducible. If it were
transient, then the assertion of the proposition that we are trying to prove
would be obvious, since then

0= Bim Puylén=(s,6)] = Jim pip{7.

If the coupled chain is transient for one starting state (u,v), then it is
transient for every starting state, and we would have

0= lim g:))zv

which gives the desired conclusion. Accordingly, assume the coupled chain
is recurrent. The conclusion of the coupling argument is then (r is again
the coupling time)

lim |p() - p()| =0, %k € 5,
Nn—+0Q

50 the subsequential limit matrix L has constant columns. Now mimic the
proof of Proposition 2.13.1 to conclude that the rows of L form a stationary
probability distribution for P. This is a contradiction, however, to the
fact that the invariant distribution v for P is unique up to multiplicative
constants and ¢ v = 0. The contradiction arose because we assumed

there were states 4, f such that the limit of pf;-‘) was not zero. W
We may now conclude that in a finite state space Markov chain which
is irreducible and aperiodic we cannot have all states null recurrent. Since

we now know in a null recurrent chain that

("}_:0

hm p;;

— 0o
for all 1, j € S, the proof of this fact is exactly as the proof of the fact that
not all states can be transient (Proposition 2.9.4). We are therefore led
to the conclusion that a finite state, irreducible, aperiodic Markov chain is
always positive recurrent and the stationary distribution always exists.
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We know in the positive recurrent case that a stationary distribution
exists (Proposition 2.12.3). When the chain is null recurrent, a stationary
distribution does not exist, but an invariant measure v, unique up to mul-
tiplicative constants, exists which satisfies >°,c s = oo. If the chain is
transient, then an invariant measure may or may not exist; if it exists, it
is not a finite measure, and it need not be unique.

Example 2.13.2. Let us now consider the unrestricted random walk on
S={..,-1,0,1,...} with (p> 0, p+g=1)

Pi1i=0 DPit1,i =4

The transition matrix is doubly stochastic, which means that not only
is it true that row sums equal 1 but also that the column sums equal
1: 3 icspij = lforallj € S. From the doubly stochastic property it
is easy to check that 1 = (...,1,1,1,...) is an invariant measure. (See
also Exercise 2.23. Since this invariant measure is not summable, we have
independent corroboration of the fact that this chain is never positive re-
current.) However, if we try to solve the system g’ = p'P in the case p # g,
i.e., in the transient case, we get

Hi = Z#k?kz’ = fio1Pi-1i F Pl = pi-1P i g-
kes

Using our experience solving this type of system for the absorption prob-
abilities of the gamblers ruin problem, we might guess that a solution is

w=C), ies
q
Indeed, it is an easy verification to check that this is an invariant measure.

Note that this g is not a multiplicative variant of 1, so when the random
walk is transient we find invariant measures exist but they are not unique.

Example 2.13.3. In this example of a transient Markov chain, we find
that an invariant measure does not exist. Take the transient success run
chain on the state space § = {0,1,...} with p;;1, = p; and pp = g;.
Recall that transience means that [], pi > 0 or, equivalently, 3, ¢; < <.
The equation ' = i P yields

oo o
(2.13.1.1) po = Z HEPrO = Z#ka

k=0 k=0
and, fori > 1,

[e3]
(2.13.1.2) i = Z#k?ki = Hi-1Pk-1-
k=0

9.14. COMPUTATION OF THE STATIONARY DISTRIBUTION 137

This Jast system is easily solved to yield, for 1 = 1,

-1
(2.13.1.3) Hi = Ho HP:'-
F=0

If an invariant measure exists, we may always set o = 1. Doing so gives,
from (2.13.1.1), that
o0 oo k-l
1= Z,uk% =qo+ Z(H P; )0k
k=0 k=1 j=0
o0 k-1 k
=g+ (12— 19
k=1 j=0 =0
N k-1 K
=gqo+ JJEHwZ(H i~ | ;)
k=1 j=0 =0
N
=go+ lim (po+ Hpj)
N—oo "
=0
N
= qo+po+ Jim Hopj
3=

N
=1+ “!E’nwjl:[opj.

We get a contradiction in the transient case where H;io p; > 0, so no

invariant measure exists.
In the recurrent case the invariant distribution is

i—-1
po=1, m=][lp 121
j=0

2.14. COMPUTATION OF THE STATIONARY DISTRIBUTION.

For a finite state Markov chain, solutions of the equation 7' = P can
be found by hand, although this is tedious with even a mode?rate number
of states. Out of deference to tradition, the outline of this procec%ure,
applicable when the Markov chain has a small number m of states, is as
follows: - .
(1) The vector equation 7’ = 7' P yields m equations in the m un-
knowns 71,... ,Tm, but another equation, namely 3., m = 1, is
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also available. So survey the m equations, M = 3 4 TkPkis 1 <
t < m, and delete one that looks ugly. Try to keep equa-
tions with lots of zero coefficients. Add to this batch of m — 1
equations, the mth equation >, mx = 1.

(2) Replace m; by z;, and solve the resulting system of equations
by giving z1, say, an arbitrary but convenient value. Solve for
T9,...,Ty in terms of ;.

(3) Setmi=m/(Fzx).
This method will be illustrated after discussion of a more machine

oriented approach which is applicable when the solution by hand is overly
tedious.

Proposition 2.14.1. Let P be an m x m irreducible stochastic matrix
and suppose ONE is the m % m matrix all of whose entries are 1. Then, if
7 is the stationary distribution, we have

(2.14.1) 7' =(1,...,1){I — P+ ONE)™.

Proof. To check this, suppose temporarily that we know that I - P + ONE
has an inverse. Since 7’ satisfies '(I — P) = 0, we have

7'(I - P+ONE) =0 +7'(ONE) = (1, .. ., 1).
Solving for «* yields
7' =(1,...,1)(I — P+ ONE) ™,

as desired.

We now verify that I — P 4+ ONE has an inverse. We can do this by
showing that if (I - P+ ONE)x =0 thenx=0. Butif =’ isa stationary
vector it satisfies 7'(] — P) = 0, so0 if (I -~ P+ ONE)x = 0, we get by left
multiplying by =’ that

7'(I—P+ONE)x =0+ n'(ONE)x = 0.
Thus we conclude 7'(ONE)x = 0. But
7' (ONE) = (1,...,1)

so (1,...,1)x = 0, which implies (ONE)x = 0. We conclude (I-P)x=0,
which is the same as Px = x. This implies for any n that x = P™x, and
therefore that N™2 Y Phx = x. From Corollary 2.12.5 we have

N
N1 EP" —1I,
n=1
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where II is the matrix with constant columns: II; ; = m;. Thus we have as

N — oo that N

X = N_lz P'x — Tlx,
n=1

so x = [Ix, from which in coordinate form,

m
a=1

and the right side is independent of ¢. This means that for some constant
C?
x' =e(1,...,1Y.
Since we also have
0=(1,...,Hx=c¢c(l,...,)1,...,1) =em,
we get ¢ = 0 and consequently x = 0, Therefore, since

(I— P+ ONE)x =0

implies x = 0, we conclude that (I - P + ONE) is invertible. R

Example. Harry, the Semipro. Qur hero, Happy Harry, used to play
sernipro basketball where he was a defensive specialist. His scoring produc-
tivity per game fluctuated between three states: 1 (scored 0 or 1 points), 2
(scored between 2 and 5 points), 3 (scored more than 5 points). Inevitably,
if Harry scored a lot of points in one game, his jealous teammates refused
to pass him the ball in the next game, so his productivity in the next game
was nil. The team statistician, Mrs. Doc, upon observing the transitions
between states, concluded these transitions could be modelled by a Markov
chain with transition matrix

P =

k= L=
O O W
O wirtin

(1) What is the long run proportion of games that our hero had
high scoring games?

(2) The salary structure in the semipro leagues includes incentives
for scoring. Harry was paid $40/game for a high scoring per-
formance, $30/game when he scored between 2 and 5 points
and only $20/game when he scored nil. What was the long
rurn earning rate of our hero?
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Solution by hand: The system z' = 2’ P yields

1
g =
3 2+ T3 =2

13:
— =
3T1 =2
2 2
§$1+§$2 =ir3.
The second equation says
Xo —.'2'11/3,
and the third says
a::g(:c +$)_E($ -!-E)ﬁg-é =8
3 31 2—31 3—33$1—§$1
Now set
_ T r 9 9
1= = s = =—==45
1+ T2+ 23 :Z:1+*3J‘+§$!71 94+3+48 20
x 3 3
ko) L = 331/ 3 =.15

S miHT+2s 1)+ /34 5 T9+3+8 0
mg =1 —{m) +m) =4,

the answer to (1) is m3 = .40. For (2), recall from Proposition 2.12.4 that
if f:5+— R is bounded then

N 3
Jim > F(Xa)/N =n(f) =3 mf(i).
n=0 i=1

In our case f(1) = 20, f(2) = 30, f(3) = 40 and n(f) = (20)3 + (30)2 +
(40)% =9+ 2+ 16 =29.5.
Solution by machine: We have, with help from Minitab ,

2 66667 .33333
(I — P+ ONE) = | .66667 2 33333
0 1 2

so that

09 —.15 —.066667
B 53333

(I-P+ONE)!= (—.2 6 .066667
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and
(my, 72, m3) = (1,1,1)( ~ P + ONE)~! = (.45, .15, .4).
The long run earning rate is

20
x(f)=(45.15.4) 130 | =295 m
40

By the way, this chain is aperiodic since pﬁ) > 0 and pﬁ) > 0 and it
is irreducible.

Example 2.14.2. An Inventory Model. Recall Example 2.2.6 of Sec-
tion 2.2. We let s = 0 and § = 2. Suppose now that we have a simple
distribution of demands in any period, namely,

PiD,=0l=5, P[D;=1j=4, P[D;=2]=.1

From the recursions defining the inventory level Markov chain, we can
quickly check that the state space is {0,1,2} with transition matrix

01 04 05
P=105 05 00}.
0.1 04 05

We seek the stationary distribution and must therefore compute (I — P+
ONE)~!. Using Minitab, we obtain

1.9 06 05
I-P+ONE={05 15 10].
0.9 06 156

Inverting, we get

(I-P+ ONE)"! = | 0.055556  0.8888839 —0.611111

0.611111 0222222 -—0.055556
—0.388889  0.222222  0.944444

Thus, the stationary distribution is
(mo,m1,m2) = (1,1,1)(1 - P + ONE)™

= (0.277778,0.444444, 0.277778).

The mean of this distribution is 2.(.277778) +.444444 = 1. And, by Propo-
sition 2.12.4, with f(¢) = ¢, i = 0,1,2, this is also the long run average
inventory level: limpy oo N 7! Zf:o Xn.
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2.15. CLASSIFICATION TECHNIQUES.

Every finite state, irreducible Markov chain is positive recurrent. However,
when the state space is infinite, it can be challenging to classify the model
as positive recurrent, null recurrent or transient. Furthermore, for a model
depending on certain parameters (e.g., input rate, output rate, and so
forth} it is of qualitative interest to obtain these classifications as a function
of model] parameters.

To test for positive recurrence, the most straightforward approach is
to test for the existence of a stationary distribution since we know for
an irreducible aperiodic chain that positive recurrence and existence of a
stationary distribution are equivalent. This is the method used to obtain
a criterion for positive recurrence in the queueing example.

Queueing Example. Recall the queneing example from Exercise 2.6 or
from Section 2.2. The matrix is

Gy @1 a3
apg @1 da
P=|0 a a a2

0 0 ap a3

and the state space is {0,1,2,...}. Recall further that a; > 0, opai = 1.
The system 7' = «' P yields

g =Mpag + Mido
T =Tpdy + ma
o —Tgag + MGz + Aaay + Tadp

T3 =Mgag + 183 + Mzaz + mad1 + w409

Since the ith column of P is (as, 4:, @41, .., 30,0, ... )", we find for ¢ > 0
it+1

(2.15.1) T = Foli+ 3 Ty0iga—ge
j=1

Set TI(s) = Y io, mis'. We attempt to solve (2.15. 1) by generator function

methods. Multiply (2.15.1) by s* and sum to get

oo i+l

Z'rr,s = Wozaﬁ + ZZ‘JTJG,1+1_JS

i=0 j=1

(2.15.2)
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We need to reverse the order of summation in (2.15.2). Note 1<i<i+1
jmplies 1 > j —1 and j > 1, so, setting A(s) = S aist, the right side of

(2.15.2) is
o0 oo o0 )
TI'()A{S) +- Z?Tjsj_l Z a{wj+15i_3+1 —_—TTDA(S) + S—l Z‘ﬂ'jSJ A(S)
=1 i=j—1 =1
=y A(s) + 57! (TI(s) — 7o) A(s).
Therefore
H(s) = mpA(s)(1 — s71) + s TI(s) A(s)
from which
Ti(s) = moA(s)(1 —s71)/(1 — 572 A(s)
_ mpAls)
= TaTA(s
1 ls_s_gs}
WQA(S)
T iosideT-s lA(s] ’
1—s-1
thus we conclude
TFOA(S)

This solves for II(s) as a function of mp and A(s). Now the question is,
when is it possible to specify mp so II{1} = 35" mx = 17 In such cases a
stationary distribution exists.

In (2.15.3) let s T 1 on the left side to get

1) = > .
k=0

lim 1-As) Als)
st1 1—38

Let

o0
= Z kak

k=0
be the mean number of arrivals per service interval. Since we assume {ar}
s a probability distribution, we have A(1) = 1. If we take the limit on the
Tight side of (2.15.3), we get

moA(1) . m
1-lim,y 3548 1-p

and we see that it is possible to choose 7y so that II(1
0<p<1andmthlscase7rg*1-—
We conclude that this queueing model is positive recurrent iff p < 1,
which says the number of arrivals does not overwhelm the service facility.
Now consider the following criterion for transience or recurrence.

EO me = 1iff
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Proposition 2.15.1. Consider an irreducible Markov chain with state
space S. Pick a reference state, say 0, and set Q = (pi;,1,7 € S\{0}).
Then the Markov chain is transient iff the system

(2.15.4) Qr==z, 0<z <1, i S\{0},
has a solution not identically 0. The Markov chain is recurrent iff the only
solution of (2.15.4) is 0.

Proof. Pretend 0 is an absorbing state with T = S\{0} and 7 = 7y =
inf{n > 0: X, € T = inf{n > 0 : X, = 0}. We need the following
cheery fact about the original chain:

(2.15.5) 0 is recurrent iff Vi #0, fig = 1.

(Certainly if 0 is recurrent, then we know from Proposition 2.9.1 that
fio =1, ¥ i€ § Conversely, suppose fig =1, Vi # 0. Then

(2.15.6) foo=poo + Y, Pojfio.
3#0

since either we go to 0 in one step or to an intermediate state j from which
we ultimately pass to 0 (cf. Section 2.10.1 for the mathematics of this
argument). The right side then becomes

poo+ Y poj 1= poj = 1= foo,
70 j€s
implying recurrence.)
Observe that for i # 0

1~ fio = Pi[r = oo] =t

in the notation introduced following (2.11.14"), and also recall from Section
(2.11) that =¥ = {zY,4 € T} satisfies {2.15.4) and is, in fact, the maximal
solution satisfying (2.144) and 0 < z < 1.

The following holds.

Lemma 2.15.2. zV is the maximal solution of (2.15.4) and either z¥ = 0
or sup;er ¥ = 1.

Proof. We already know that 1V is a solution of (2.15.4), and that it is
maximal. If ¥ # 0, then sup, .oz = ¢ > 0 and, in matrix form, ¥ < cl.
2V =Q"xY < e@™1 from which, for 71 € T,

z) < cPi[r > n] — cz).
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But ¥ # 0 means that for some i € T we have z7 # 0, and, since z;’ <
ez, we divide by the nonzero z) to get ¢ > 1. Since ¢ = sup;er zy < 1,
wehavec=1 W

Now we are in a position to prove the proposition speedily. If the
original chain is transient, then (2.15.5} informs us that there exists i € T
with fio < 1. This means =¥ = 1 — fip > 0, and there exists a nonzero
solution of (2.15.4). Conversely, if a non-zero solution of (2.15.4) exists,
then for some i € T, =} > 0, from which f;p < 1. Another application of
(2.15.5) yields the conclusion that the chain is transient. This completes
the proof of Proposition 2.15.1.

Consider again the queueing example. The matrix, assumed irre-
ducible, is

dp a 23]

ap da) ag
P=]0 a a a2

0 0 ag a1

where a; >0, Y opai =1, 3 pey kar = p.

Proposition 2.15.3. The queueing example is

transient iff p > 1
pull recurrent iff p =1
positive recurrent iff p < 1.

Proof. We only need to focus on the statement about transience, since the
criterion for positive recurrence is already established.

If p > 1 we show z = Qz, 0 < z < 1 has a non-zero solution. With
T={1,23,... }thesystemxr =z is

[£.0]
(2.15.7) T=) @
t=1

L9 =agX; +d1Lo+ ...

Ty =agZz + a1T3 + ...

[&+]
{2.15.8) Tn :Zai$é+n_1, n>2
i=0
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Try a solution of the form z; = 1~ 5%, 0 < s < 1. (The more obvious choice
z; = & works fine for (2.15.8) but not for (2.15.7).) From (2.15.8) we get

e}
1—s"= Z a;(1— s 1)

Setting A(s) = 3 0, a:s' yields
5" = A(s)s™!

or

s = A(s).

This is also the equation that results from (2.15.7) with z; =1 — 5%, i > 1.
But since we are experienced in the art of branching processes, we know
that if p > 1 the equation s = A(s) has a solution in 0 < s < 1. Therefore

p > 1 implies a nonzero solution to x = Qx exists, and hence transience
ensues.

It is not clear how to get the fact that the chain being transient mplies
that 2.15.4 has a non-zero solution. The following simple approach suffices.
If {X,} is fransient, then for each j € {0,1,2...} there is a last visit.
Hence there is & last visit to {0,1,2,..., M} for any M. This implies that
there exists ng = ng(M,w) such that for n > ny we have X,{w) > M.
Then X, {w) — o0 as n — co. Since

Xng1 = (Xn — 1) + Ay,
where Ap1 is the number of arrivals in a service period and
PlAnsy =k = ag, FAn1 = p,
we have for large n (n > ng)
Knp1lw) = (Xnlw) = 1) + Ans1(w)

and for N > ng

N

N
D (Kngalw) = Xa@)) = (N =np) + Y Anpa(w).

n=ng =Ty

P
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Simplifying,
N+1
Xnr(w) = Xng(w) = (N —no)+ D, Anlw),
n=mnp+1
and
N+1 o
Xnr(@) = 3 (An @) = 1) = Xng(w) +70— 3 An(w).
n=1 n=1
The right side is constant, 50, since X1 — 00, We have
N+1
S (An 1) - o0,
n=1

Sums of iid random variables with finite mean g — 1 converge to +oo iff
p—13 0, ie., p> 1. (You have not really seen a proof of this here but
supporting evidence comes from the simple random walk; when the mean is
0 the walk is recurrent. Since it keeps coming back to 0 it cannot converge
to +0c.)

EXERCISES

2.1. Consider a Markov chain on states {0, 1, 2} with transition matrix

P=

b b o
CICREN U
FE IR

COmpu‘te P{Xlﬁ = 21X0 = 0] and P[Xlz = Q,X]_(-; = 2|X0 = 0} TI'Y not to
do this by hand.

2.2. Let {X,} and {¥,} be two independent Markov chains, each with
the same discrete state space S and same transition probabilities. Define
the process {Zn} = {(Xn,Yn)} with state space § x 5. Show {Z,} is a
Markov chain and give the transition probability matrix.

2.3. Show for a Markov chain that, for any n > 1 and subsets Ag,. .. LA
of the state space,

P[Xn+1 =j|X{J E AD, - ,Xn_l (= An_l,Xn = 't.] :pij'
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Verify by giving an example that the following statement is incorrect;
For subsets Ap, ..., A, where A, is not a singleton, we have

P[Xn+1 ‘—“J]X[) € A{'J, e ,Xn S An] =P[X,H.1 =j|Xn S An]

2.4. Suppose py; > 0, and let n; be the exit time from state 4:
n =inf{n > 1: X, #i}.

Show that 7; has a geometric distribution with respect to F;.

2.5. If {X,,n > 0} is a Markov chain, then by example show that
{f(X,),n > 0} need not be a Markov chain. (Hint: If f is 1 — 1 then
{f(Xn),n > 0} is a Markov chain.)

2.6. Suppose E is some space, say a metric space, and that {V,,n > 0}
are iid random elements in F. For instance, F could be the sequence space
R, Imagine that we have functions g;,¢ = 1, 2 such that

g SxE— 8
Define
Xo=g0,Vo) forsomejes
X1 = g2 X0, V1),
Xnp1= 92(Xn, Vi),
and so on.

(a) Show that {X,} is a Markov chain. (cf. the proof that the “simu-
lated chain” is Markov).

(b} Apply this to the simple branching process.
(c) Apply this to the following single server queueing model: Customers
arrive and wait until being served in a first come, first served basis. Between

times n — 1 and n, the number of arrivals is a random variable A, with
distribution

PlA,=k]=ax, ar>0, Zak = 1.
k=0

Assume the random variables {A,} are iid, and suppose the length of each
service is one unit. Let X,, be the number of customers in the system at
the start of the nth service period. Write a recursion linking X, 41 and
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X, Apply (1) to conclude that {X,} is a Markov chain. What is the
transition matrix?

2.7. For a subset Sg C S define the closure of 8y, written cl(So), to be the
smallest closed set containing So.

(a) Prove cl({j}) ={k € S: j — k}. . .

(b) For the deterministically monotone Markov chain, what is cl({7})?

(c) If 7 is recurrent, show cl({j}) is the equivalence class of j.

(d) In the gambler’s ruin chain on {0,1,2,3}, what is the closure of
{1,2}7

2.8. Consider a Markov chain on {1,2,3} with transition matrix

P =

ol s
= O
= ©

Find fi(;) forn=1,2,3,....

2.9. Consider a Markov chain on the states {1,...,9} with transition
matrix

05 006 5 0000
0 6100 0000
00010 O0O0O0O0
1 0 00 0 00000
P=|0¢ 0 000 100D0°0
0 000 0 0100
0 0000 CGOT10
0000 G 00O 1
1 0 000O0CO0O0O0

Is this chain irreducible? Find the period of state 1.

2.10. If {X,,n > 0} is an irreducible Markov chain with period d = 1,
show that {X.q,n > 0} is aperiodic. Is is irreducible?

2.11. Given is a Markov chain on S = {0, 1,2,3,4, 5}. In the following two
cases give the classes, and determine which states are transient and which
are recurrent. In each case compute fig}.

(a)

"o

il
NN e N L R e L L]
Dl == O R O
S O Ul O Rl O
= YL N e B e T s S s |
D= S O O O

G D O W= O Wik
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(b)
100 0 00
0 % % 0 0 0
0 3 £ 06 0 0
p— g8 8
A
3 95 3 30
0 00 0 01
2.12. Consider a Markov chain on S = {1,...,9} with transition matrix
(z signifies a positive entry)
1 /0 00z 0 00 0 z
210 zz 0z 0 0 0 =z
310 000 0 0 O0C z 0
41z 000 0 0D OO
P=510 00 0z 0 0 0 0
610 z 06 0 000 D0 0
T{0 = 00 0z 2 00
810 0 z 0 00 O 0 O
9 \0 00z 000 0 2z

Put the matrix in canonical form. Classify the states. Give the closed
recurrent classes. Which states are transient?

2.13. The Tenure System. A typical assistant professor is hired at
one of six levels or “states” which we designate 1, 2, 3, 4, 5, 6. State 7
corresponds to tenure, and state 8 corresponds to “leaving the university.”
An assistant professor in state 1 (i < 6) may move to state i+ 1 or to state
8. An assistant professor in state 6 may move to state 7 or 8.

A study has been done and data collected. On the basis of the data the
tenure system is modelled as a Markov chain with transition matrix

My
I

0O ~1 & N W2 b
[= R e R e N e B o e R =
OSCOOO OO
D000 0D O
DO O O g oo
[ e B s B o Y e B e R i
OO Oo oo o
c:»—-'gcooc:o
H O B oo kb

and initial probability vector {.9,0,0,.1,0,0,0,0)’.
{a) What are the closed sets? What are the equivalence classes?
{b} What is the probability an assistant professor receives tenure?
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(c) What is f{2)?

2.14. In the occupational mobility example given at the end of Section 2.6,
compuie the expected number of steps necessary to zo to state 1 for the
first time, starting from 3. What is the long run percentage of generations
that a family spends in state 37

2.15. The Media Police have identified six states associated with television
watching: 0 (never watch TV), 1 (watch only PBS), 2 (watch TV fairly fre-
guently), 3 (addict), 4 (undergoing behavior modification), 5 (brain dead}.
Transitions from state to state can be modelled as a Markov chain with
the following transition matrix:

WO oo
DO oo O
S OO @
CuUr Ly o @
oWr L O OO
O e & D

(a) Which states are transient and which are recurrent?

(b) Starting from state 1, what is the probability that state 5 is entered
before state 0; i.e., what is the probability that a PBS viewer will wind up
brain dead?

2.16. Zeke Prevents Bankruptcy. Without benefit of dirty tricks,
Harry’s restaurant business fluctuates in successive years between three
states: 0 ( bankruptcy), 1 (verge of bankruptcy) and 2 (solvency). The
transition matrix giving the probabilities of evolving from state to state is

1 0 0
P=15 25 25
5 .25 .25

(a) What is the expected number of years until Happy Harry's restaurant
80es bankrupt assuming that he starts from the state of solvency?

(b) Harry’s rich uncle Zeke decides it is bad for the family name if his
nephew Harry is allowed to go bankrupt. Thus when state 0 is entered,
Zeke infuses Harry’s business with cash returning him to soivency with
Probability 1. Thus the transition matrix for this new Markov chain is

0 0 1
P=15 25 .25
D26 28
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Is this new Markov chain irreducible? Is it aperiodic? What is the expecteg
number of years between cash infusions from Zeke?

2.17. Students Cope with Depression. A typical graduate student
exhibits four states of mind. States 2 and 3 correspond to depression
states. State 1 is a suicidal state and state 4 is 4 state which means the
student has decided to seek professional psychiatric help. Changes in state
of mind can be modelled as a Markov chain with transition matrix

1 0 0 0
|5 0 25 25
P=125 5 0o 25
0 0 0 1

Compute the probability the student will eventually commit suicide start-
ing from state 7 (1 = 2,3) and find the expected number of changes of state
of mind starting from state ¢ (i = 2, 3} necessary for this result or seeking
professional help.

2.18. Learning Experiments with Rats. A rat is put into compart-
ment 4 of the maze. (See Figure 2.3.} He moves through the compartments
at random; i.e., if there are k ways to leave a compartment, he chooses each
of these with probability 1/k. What is the probability the rat finds the
food in compartment 3 before feeling the electric shock in compartment 7?

! |
1 2 3
| roop
4 D I 6
[
;
SHOCK

Ficure 2.3. THE MAZE.

2.19. Harry and the F-Word. Harry has a keen appreciation for precise
and elegant use of the English language and cannot abide linguistic crudity.
Above all else, he abhors the use of the dreaded f~word. One day, a Mutant
Creepazoid wanders in for a cup of coffee. The creepazoid’s brain has been
all but destroyed by too much television and other toxic substances and
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this has resulted in limited expressive abilities. In fact the conversation of
the creepazoid consists primarily of the following phrases:

(1) Ya know.

(2) It was weird.

(3) Like, I dunno, man.
(4) Bummer.

(5) It was awesoine,

(6) F-word.

The appearance of these phrases in the mutant creepazoid’s speech fol-
Jows a Markov chain (if ever there was a case for lack of long term memory
this is it!) with the following transition matrix:

by = oo D

[ T8 1 [T L TL T R
B bo B D =
[CR=N U ~= Ry JCR
b = @ = b=
[ e T S =
CEC o

Suppose the first phrase out of this fellow’s mouth is “Like, I dunno, man.”

(a) Give the long term frequency that each phrase appears in the creep-
azoid’s conversation.

(b) What is the expected number of transitions until the dreaded f-word
is spoken?

(c) Harry gets a migraine at the fifth mention of the f~word. What is
the expected number of transitions until the onset of the migraine?

(d) Harry bets Zeke $10 that the phrase “It was weird” would appear
before the phrase “It was awesome.” What is Harry’s expected earnings
from this bet? Give details when you answer.

2.20. Harry and the Living Theatre. Harry and a lady friend attend
a performance by an acting company called The Living Theatre in Bailey
Hall, the local theatre. Bailey Hall has six entrances on the main floor,
numbered 1, ... ,6, and two entrances in the balcony numbered 7 and 8.
This particular performance consists of a seemingly endless stream of actors
entering the hall sequentially from random entrances. Upon entering the
hall, each actor emits screams of pain that would waken the dead and falls
down on the floor writhing in agony until overcome by theatrical death.

The successive entry points of the actors can be modelled as a Markov
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chain with eight states and transition matrix

WS koo m OO
Do ww OO w
B OO OO
[~ TN SR = B o B s BSOS
R = R B S e
T OO DR W W e
o= o R o PR N
OO OO O

The performance begins by the first actor entering through door 8. Harry
and his friend sit close to door 4.

(a) Is the chain irreducible? Is the chain periodic ot aperiodic? Why?

(b) What is the long run percentage of actors who enter via the balcony?

{c}) What is the long run percentage of actors who enter by means of
door 4 closest to Harry and friend?

(d) What is the expected waiting time between two entrances via door
47

{e) Suppose, in addition, that Harry’s date is slightly psychotic and is
unable to cope with chilling screams close to where she is sitting, so that
when an actor enters via door 4 and starts screaming and dying she bursts
into tears. Compute the expected number of entrances until Harry's date
bursts into tears.

(f) Now suppose there is only probability p (0 < p < 1) that Harry's
date will burst into tears each time an actor enters via door 4 and starts
screaming and dying. Under these conditions, compute the expected num-
ber of entrances until she starts crying hysterically.

2.21. Suppose an irreducible Markov chain with a not necessarily finite
state space has a transition matrix with the property that P? = P.

(1) Prove the chain is aperiodic.
(2) Prove p;; = p;; for all 4,7 in the state space. Find a stationary
distribution in terms of P.

2.22. Consider a Markov chain {Z,} with state space {0,1,2,...,} and
transition matrix P. Given two generating functions A(s) and B(s) with
1>a=A{1),00 > 3= B'(1), related to the transition matrix by

Y pys = B(s)A(s)'.
=0

(a) Show that these transition probabilities correspond to a branching
process with immigration, namely a process constructed as follows: Let
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{Zpjn 2 1§ 2 1} be independent, identically distributed non?negative
integer valued random variables with a common generating function A(s).
Let {In,n > 1} be iid, independent of {Z,;}, with a common generating
function B(s). Define for n = 0

Z

Znyr=Inp1 + Z Znjs
i=1

50 that the random variables {I,} count the number of immigrants per

generation.
(b) Show that {Z,} has a stationary distribution {II;,k 2 0} whose

generating function II(s) satisfies
II{s) = B(s)II(A(s)),

and solve to get an expression for IT in terms of iterates of A and B.
(¢) This chain is reversible (cf. Section 5.9}, that is,

TiPig = WjiPjiy

if and only if
B(s)TI(6A(s)) = B(A)I1(sA(#)).

{d) Show
E(Zn.-i—llzﬂ.) = ﬁ +aZn.

(e) Compute
E(Szf=ﬂzj1{zn=j]¥zo =1i).

(f) 1f A(s) =g+pswithp+g=1, 0<p<1land B(s) = ere—1),

compute and identify II(s). o
(g) Give an example where II(s) corresponds to a geometric distribution
(Pakes, 1973; Pyke Tin and Phatarfod, 1976).

2.23. Suppose a Markov chain has m states and is doubly stochastic; ie.,
Zieg pij = 1,¥j € S. Show that the vector (1/m, ... ,1/m) is a stationary
distribution.
2.24, If
N
lim S P"/N — T,

N
Hmnzt)

where I has constant columns and row sums that add to 1, is a row of II
a stationary distribution?
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2.25. Consider a random walk on S = {0,1,...} with a reflecting barriey
at (. This is a Markov chain with transition matrix

1 0 0
g 0 p 0O

Classify when this chain is positive recurrent, null recurrent, transient.

2.2.6. In Example 2.11.1, what is the long run percentage of transitiong
which result in a riot? Which yield a star? On the average, how many
riots must be endured between two class “1” performances?

2.27. If {X,} is Markov with stationary distribution @, show that
{(Xa, Xnt1),m > 0} is Markov. Give its stationary distribution.

2.28. Consider a positive recurrent, irreducible Markov chain {Xn} with
stationary distribution n° = (m,m,...). Suppose each time there is a
transition from state ¢ to state j there is a reward of g(, 7) which is received,
(Assume the function g is nice; say it is bounded or non-negative.)

(a) What is the long term reward rate

18
nl_iilo o Z E,g{Xm, Xm+1)?

m=0

Why does this limit exist? Does it depend on the initial state 37

(b) In problem 2.19, what is the long term frequency that the phrase
“It was weird” is followed by “Ya know”?

2.29. Harry Visits the Dentist. Like a good boy, Harry visits the den-
tist every six months. Because of a sweet tooth and fetish for chocolate,
the condition of his teeth varies according to a Markov chain on the states
{0,1,2,3} where 0 means no work is required, 1 means a cleaning is re-
quired, 2 means a filling is required and 3 means root canal work is needed.
Charges for each visit to the dentist depend on the work done. State () has
a charge of 320, state 1 has a charge of $30, state 2 has a charge of $50 and

state 3 has the disastrous charge of $300. Transitions from state to state
are governed by the matrix .

B Lo e O
oot bo
— N

S b
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What is the percentage of visits that are disastrous? What is Harry’s long
qun cost rate for maintaining his teeth?

2.30. Classify the states for the Markov chain with matrix

5 0 5 0
0 2 0 .8
P=195 0 75 o0
0 6 0 4

Compute a stationary distribution for this chain. Is it unique? Compute
mi = Ei (n(1)) for each i € 5. Assume § = {1,2,3,4}.

2.31. An airline reservation system has two computers, only one of which
is in operation at any given time. A computer may break down on any
given day with probability p. There is a single repair facility which takes
two days to restore a computer o normal. The facilities are such that only
one computer at a time can be dealt with. Form a Markov chain by taking
as states the pairs (z,y) where z is the number of machines in operating
condition at the end of a day and y is 1 if a day’s labor has been expended
on a machine not yet repaired and 0 otherwise. What is the transition
matrix? (This should be 4 x 4.) Find the stationary distribution. What
percentage of time are there no machines operable? What percentage of
time is exactly 1 machine operable? (Karlin and Taylor, 1975.)

2.32. Consider a finite Markov chain {X,} on the state space S =
{0,1,... ,N} with transition matrix P consisting of three classes {0},
{1,2,... ,N — 1} and {N} where 0 and N are absorbing states, both ac-
cessible from any k € {1,2,... ,N — 1}. Pick a reference state, say 1, and
define an auxiliary Markov chain {¥,}, called the return chain, by altering
the first and last row of PP so that

Por = Pn1 =1,

and leave the other rows unchanged. The return process {¥, } is irreducible.
Prove that the expected time w,; until absorption starting from 1 for the
{X,} process equals 1/(my + my) — 1 where mp + 7y Is the stationary
probability of being in state 0 or N for the {Y,} process. (Karlin and
Taylor, 1975.)

2.33. If A is an m X m square matrix (m finite) check that if A™ — 0 as
n — oo then I — A has an inverse and

oK

(- t=d A

j=0
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(Kemeny and Snell, 1976, page 22.)

2.34. For a finite irreducible and aperiodic Markov chain, suppose P* — I

where 11;; = m;.
(a) Show Z = (I — (P — II)) ! exists and

o0
Z=I+> (P"—1)
n==1

Call Z the fundamental matrix for the irreducible chain.
(b} Show

(1) PZ=2P

2) 72 =a

(3) I—Z=1-PZ.

(¢) Show for any initial vector a:

N-1
{Ba ) lpxumyp JESY ~Nr—a(Z -1)=aZ -7

n=0
as N — co. (Kemeny and Snell, 1976.)

2.35. A process moves on the integers S = {1,2,...,8}. Starting from I,
and on each successive step, it moves to an integer greater than its present
position, moving with equal probabilities to each of the remaining larger
integers. State 8 is absorbing. Find the expected number of steps to reach
state 8. Replace 8 by the arbitrary integer N and redo the exercise.

2.36. Harry and the Comely Young Lady. Harry has his eye on
a comely young lady whom he originally spotted at a high cholesterol
cooking course. During the course, however, Ilarry never had the courage
to introduce himself as a famous restaurateur. The young lady eats lunch
regularly on Optima Street, and Harry, quite smitten with her, observes
that she visits the four restaurants on the street labelled 0, 1, 2, 3 according
to the Markov chain with transition matrix

0,1 2 7 0
_1f{2 3 3 2
P=9ls 11

3\4 3 2 .1

Harry’s restaurant is labelled 0, and the hated sprouts bar across the street

is labelled 3. Assume initially she is equally likely to visit any of the four
restaurants.

{(a} What is the probability she visits Harry’s before the hated sprouts
bar?

1
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(b) What is the expected waiting time until she visits Harry’s for the
first time?
(¢) What is the expected waiting time between two visits to Harry’s?
(d) If each time she visits Harry’s, there is only probability .3 that he
will have the courage to talk to her and ask her for a date, what is the
probability that eventually he asks her for a date, and what is the expected
waiting time until this occurs?

2.37. Suppose {X,,} is Markov with stationary distribution {7;,j € S}.
Let 7 = inf{n > 1: X, = Xy} be the time of the first return to the initial
state. Evaluate F_ 7.

2.38. Let the state space S be infinite, and set 7 = inf{n > 0: X, ¢ T}.
Suppose P;[r < co] = 1 for all ¢ € S. Check that w; = Ei7 satisfies the
equation

wi=1+Zpijwj, ieT.
JET

Does this system have a unique solution? If not, characterize the solution
which gives {E;7,i € T}. If you believe a unique solution does not exist,
demonstrate this by example.

2.39. More Social Mobility. Glass and Hall (1949) distinguish seven
states in their social mobility study:

(1) professional, high administrative;

(2) managerial

(3) inspectional, supervisory, non-manual (high);
(4} non-mannal low grade;

(5) skilled manual;

(6) semi-skilled manual;

{(7) unskilled manual.

From their data the following transition matrix emerges:

386 .147 .202 .062 .140 .047 .016
107 267 227 .120 207 .052 .020
035 .101 .188 .191 .357 .067 .061
P=1.021 039 .112 212 431 .124 .061
009 024 075 .123 473 171 .125
000 013 .041 088 .391 312 .155
000 .008 .036 .083 .364 .235 274

COInpute the mean first passage time from state i to 1,2 <1 < T,
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2.40. Show for a Markov chain that (Xo, ..., Xa-1) and (Xr11,- .-, Xaqy)
are conditionally independent given X,, for any V. That is, show

P[XD :.7'01-' '5X‘n—1 = jn—l;Xn+l :jn+11 e
= P[XO :jo,,, ':Xn—l =j-n.—1|Xn = '5]
PlXat1 = jnt1,- -

s Xat N = JnyN|Xn = ]

y Xnin = jn+Nan = 7']

Show

P[Xﬂ = len+rn = in+m: L )Xn+1 - in+1;Xn--1 = in—l, - ,Xo = ig]
= P[Xp = j|Xp41 = ns1, Xno1 = inq],

and hence

E(Xn = len+m = dntm- .- y Xnt1 = in-}-l’Xn—l =dn1,...,Xg = ?.'0)
= E(Xn = jIXn+l = in-l-l:Xn—l = inﬁl)'

2.41. In a sequence of Bernoulli trials with outcomes S or F, at index n the
state 1 is observed if the trials indexed n—1 and n resulted in SS. Similarly,
states 2, 3, 4 stand for the patterns SF, IS, FF. Find the transition matrix
P and all of its powers. (Note P2 = P3 = ....) (Feller, 1968.)

2.42. Suppose {Z,,n > 1} are iid representing outcomes of successive
throws of a die. Define '

Xn = ma.x{Zl, ey Zn}

Show {X,,n > 1} is a Markov chain and give its transition matrix P.
Calculate from structure of {X,,} the higher powers of P (Feller, 1968.)

2.43. In a finite Markov chain, j is transient iff there exists some state k
such that j — & but j is not a consequent of k. Give an example to show
this is false if the Markov chain has an infinite number of states.

2.44. Give an example to show that for a Markov chain to be irreducible,
it is sufficient but not necessary that for some n > 1

{m)

p;’ >0, for alli,j € S,

(Hint: It suffices to consider a two-state Markov chain.)

2.45. In a Markov chain with § = {0,1,... }, suppose 0 is absorbing. For

J > 0 suppose that p;; = p, pjj -1 = ¢ where p+ ¢ = 1. Find f;[’;"}, the
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probability of absorption at the nth step from j and find the mean time

until absorption. Calculate the generating function of { f}g ), n > 1}

2.46. For a Markov chain recall fi; =37, f,};‘). Prove

(a) sUPR>1 p,(;) < fiu < Pg'l)-
(b) Consequently show
(i1} ¢« 7 if fi;f5: > 0.
2.47. Given an irreducible Markov chain with matrix P = {p;;} and state
space S = {0,1,...}. Modify P to obtain P’ by making 0 absorbing:

1 06 0o
p= P10 P11 P12

P20 P21 P22

Verify that in the new chain, the states {1,2,...} are transient.

2.48. Let {m;,j € S} be the stationary distribution of a not necessarily
irreducible Markov chain. Show that if =; > 0 and ¢ — j, then w; > 0.

2.49. Let {Y,n > 1} be iid each taking values in 5 = {0,1,2,3,4} with
common distribution

P[Y1=i1=Pi: i=0;1:2:374‘

Let Xo = 0, and define Xn+1 = Xn + Ypq1 (modulo 5). For example, if
(Yi,Ya,...,Ys) = (2,4,4,1,3,4), then (Xo, X1, .-, Xe} = (0,2,1,0,1,4,3).
Then {X,} is a Markov chain with state space S. Find P and show it is
doubly stochastic. Give the stationary distribution.

2.50. Let a Markov chain contain m states. Prove if k — j then j can be
reached from k with positive probability in m steps or less.

2.51. Teach a computer how to classify states of a finite state Markov
chain. (Hint: One method utilizes 2.50. In the transition matrix P replace
all positive entries by 1. Compute P -+ P2 4 --- + P™ where m is the
number of states.)

2.52. Consider a three-state Markov chain with S = {1,2,3} and transi-
tion matrix

25 .15 0
P=1.7 25 0
o0 0 1

(a) What is a stationary distribution?
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(b) Give
m; = Eiﬂ'(l), i= 1,2,3.

(c) What is lim,,_, o P™ 7
(Hint: This can be done in your head.)

2.53. Harry and the Hollywood Mogul. One of Uncle Zeke’s business
acquaintances is the Hollywood mogul Sam Darling. Harry, disgusted over
the success of yuppie oriented shows like L.A. Law, contacts Sam Darling
about the possibility of doing a real down home show called Optima Street
Restaurateur. Harry’s idea is that the show will combine cooking tips and
urban adventure. Initial story lines look promising and negotiations get
seripus. Harry’s niece alertly notices that the negotiations seem to evolve
as if they followed a discretely indexed Markov chain. The time scale is in
hours. From Harry’s point of view, the states are

(1) Royalties and other financial arrangements are totally inadequate.

{2) Rewards are adequate but artistic control is inadequate.

{3) Rewards and artistic control are adequate, but not enough relatives
and neighbors wili be employed in the show.

(4) Rewards, artistic control, employment of relatives and neighbors
are adequate, but Harry has second thoughts about giving up the
life of the respected restaurateur for the fast lane of show business.

The evolution of the negotiations seems to follow the transition matrix

4 4 2 0

1

213 4 3 0
P= 3l2 1 4 3

4 \1 4 2 3
Assume negotiations start in state 1.

(a) What is the long run percentage of time that Harry is in the am-
bivalent state 47

(b) Suppose Harry decides to agree to terms on the sixth time the ne-
gotiations reach state 3. What is the expected time after the start of
negotiations that Harry will agree to terms?

{¢) Assume that negotiaticns have been in progress for 36 arducus hours,
and Harry finds himself in state 4. He is sick of Sam Darling and his
abrasive manner, and unsure that he wants to dedicate his life to show
business. After 36 hours, Harry decides to give up the idea of show business
if state 1 is entered before state 3. If state 3 is entered before state 1, be

will agree to terms and proceed with the show. Find the probability that
Harry gives up show business.

2.54. Consider a recurrent discrete time Markov chain {X,,n > 0} with
transition matrix P and state space Sp. Let § C 83, S # Sp be a subset of
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states and define

vy =inf{n > 0: X, € S},
v =inf{n > : X, € 8§,

Define
{Yjs] 2 D} = {XU_-; Jz 0}

Call {Y;,7 > 0} the reduced process, and think of it as being the original
process observed only when in the states of §. Check that {Y.} is a Markov
chain with state space §.

Partition Sp = S U S¢, and accordingly, partition the matrix P as

S{T U
P=5(3 o)

di; = PlYi = j|Y, =14], i€S8,j€b

(a) Compute D = (d;j,i,j € S), and express this matrix in terms of
T,U,V and the fundamental matrix corresponding to ). Assume only in
(a) that the state space is finite.

(b) If the process {X,} has stationary distribution «’ = (7,5 € So},
what is a stationary distribution for {¥,}? Express it in terms of 7;, 7 €
So}.

(¢) Under the assumptions of (b), what is

Let

lim vy/N?
N—ooo

(Hint: Use (b).)

2.55.* Strong Markov Property. Suppose {X,} is a Markov chain
with state space S, and let T be a stopping time so that the event [T = n]
is determined by Xo,...,Xn. Suppose for all i € S that F[T < o0] = 1.
(a) Prove {Xr,X741,..-} is a Markov chain with initial distribution
9 = B[Xr = j] if {X,} starts from state i. What are the transition
Probabilities?
(b) Verify

P[XT-i—l = kla' . 1XT+TTI- = kaXT = ko] =
PlXy =k, X = k| Xp = Kol

—
*This problem relies on more advanced material.
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{c) Suppose the index set is {...,—1,0,1,...}. Prove

PXpp =k, oo Xeom = km|Xp =ko, Xr_1 =k_y,... . Xp ; =k
:P[Xl = kl)"

-]

.,szkm|X0=k0]=.

2.56. Let {X,} be a Markov chain with state space S, and let T be 4
stopping time so that the event [T' = n] is determined by Xo,...,X,,.
Suppose for all 4 € 5 that P;[T" < o] = 1. Suppose further that the state
space is 8% = {(sg,51,...):5, € 8,i=0,1,...}. Define T} =T, and for
n > 2 define

Tn(SU: L) } = T(STR_1+1) ST, 142y )y

so that T, is T applied to the segment of (sg,1,...) beyond index Tp,_,.
Show that {Xr, ,n > 1} is a Markov chain. Explain the relevance for
problem 2.54.

2.57. Non-Parametric Maximum Likelihood Estimation of Tran-
sition Probabilities. How did researchers in, for example, the occu-
pational mobility study discussed in Section 2.6 estimate the transition
probabilities? Here is the non-parametric maximum likelihocod method:
Imagine we have an m-state Markov chain {X,,} with the number of states
m known and with the transition matrix unknown. We observe the chain
during the times 0,1,...,n, and we wish to estimate P. If ¢g,...,1, is the
succession of states observed, then the likelihood function I, = [,(P) is

1.(P) = P[Xo = ig, ..., Xn = in]
= P{Xo = t0]pigiy - - Pin_1in-
The log likelthood function L,(P)=logl,{(P) is

Ln(P) = loglai,pigiy - Pin_rin)

=loglai, [ pi")
(L.4)E8%S

= Z Tig logpfj,
(i,7)ESXS

where n;; is the number of times the path makes a transition from i to J:

ni; =card{0 <k <n—1:ip =14y = j}.

2. EXERCISES 165

Define random variables which count the number of times the Markov chain
makes a transition from < to j:

n—1
Nij =3 1xumi, Xara=g:
k=0

so that {N;,(i,7) € § x §} are sufficient statistics for P. Show that the
maximum likelihood estimator of P is given by

. Ny
pij:?’

13

and the maximum likelihood estimate of p;; is ni; /n;. Here

N; = ZNH«:, n; = Z’nik-

keS kes

(Hint: Treat a;, as a constant as it is a nuisance parameter. Use Lagrange
multipliers to maximize the likelihood.} Using problem 2.27 and the ma-
terial on time averages in Section 2.12.1, discuss almost sure consistency
of these estimators.

2.58. An Inventory Model. Review the inventory model discussed in
Example 2.2.6. Suppose we assume a simple distribution of demands in
any period, namely

P[DI:O]:5, P[D1=1]=4, P[D1=2]:1

Let s = 0 and S = 2. Find the long run cumulative unsatisfied demand
and the long run fraction of periods when demand is not satisfied. (Hint:
You may wish to consider the Markov chain defined by removing the +
signs in (2.2.1). In this case, the state space is {-1,0,1,2}.}

2.59. More Inventory Theory. For Example 2.2.6, suppose that T}, =
n, and time is measured in days. Let the critical values be set at s = 3
and S = 8, and suppose {D, } are iid Poisson random variables with mean
A =4 per day.

(a) Show the state space of the inventory Markov chain {X,} is S =
{0,...,8}, and give the transition matrix.

(b) If Xy = 8, what is the probability that there is a shoriage before the
end of the first day?

(¢) If Xp = 8, find the probability that no replenishment will be neces-
sary at 1 and 2.

(d) Starting with Xy = 4, what is the distribution of time until the first
replenishment? (Cinlar, 1975.)
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2.60. Storage Models with Content Dependent Release Rules.
Consider the Moran model discussed in Example 2.2.7, but with the vari-
ation that the release from the reservoir depends on the content. Given a
function

r:40,...,e} —{0,..., ¢},

called a release rule, we define
Xn+1 = (-Xn + An+1 - T(Xn))+ Ac

Show this process is Markov and give its transition matrix.

2.61. Storage Models with Markov Chain Input. Review the classi-
cal Moran storage model in Example 7 of Section 2.2. Suppose the inputs
{An} form a finite state ergodic Markov chain with transition matrix A
and stationary distribution m, and define the contents process as we did in
{2.2.2). Verify that the bivariate process {(X,, Ant1)} is a Markov chain
and show

PXpr1 =7 Anss =7 |Xp = 8, Apsy = &
= Ar’s'P[Xu-i-l = TI-Xn =& An+1 = S’]
= Ar’a" 6r,(s+s’—m)+!\c
(Lloyd, 1963.)
2.62. Consider the Moran storage model

Xn+1 = (Xn + An+1 - m)+ Ac.
The reservoir has capacity ¢, and the iid inputs have distribution

PlAy=m-1l=gq, PlAi=m]=r, PA =m+1]=p,
where p, g, r are all non-negative and p+¢+1 = 1. Prove that the transition
matrix is that of a random walk with reflecting barriers at 0 and ¢ and that

the stationary distribution is of the form

T = (const)(‘g)j, i=0,...,c

2.63. Weather and Agricultural Decisions. Harry grows grapes ol
the outskirts of the city with the intention of starting the Optima Street
Winery. Summer weather in his area follows a daily pattern which can be
modelled as a four-state Markov chain with states 0 (sunny, clear), 1 {cool,

——
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muggy), 2 (gray and dreary), 3 (raining). The transition matrix for this
chain is
4 .2 1 3
4 3 2 1
P=le 1 1 2
2 4 3 1

1t is now gray and dreary. The grapes are not quite ready for picking.
Another sunny spell would bring them to perfection, but rain would ruin
them. Harry must decide whether to pick somewhat immature grapes or
risk waiting for a sunny spell.

To help him decide, compute the probability that a sunny day will occur
before rain. What is the long run proportion of days which are gray and
dreary? (Wolf, 1989.)

2.64. A company desires to operate s identical machines. These machines
are subject to failure according to a given probability law. To replace
these failed machines, the company orders new machines at the beginning
of each week to make up the total s. It takes one week for each new order
to be delivered. Let X, be the number of machines in working order at
the beginning of the nth week and let Y, denote the number of machines
that fail during the nth week. Establish the recursive formula

Xn+1 =8 — Yn.

Under what conditions is {X,} a Markov chain? Suppose that the failure
law is uniform, that is

_ 1
i1

PY, = j1Xn = i=0,...,i

Find the transition matrix of the chain, its stationary distribution, and the
expected number of machines in operation in the steady state.

2.65. A Markov chain {X,,n > 0} has state space {0,1,...} and transi-
tion probabilities

PlXp =i+1Xa=il=p, 20,
PXop=i-21Xp=i]=1~p,i 22,
PXpy1=0X, =14 =1-p,i=0,1,
where 0 < p < 1. Establish a necessary and sufficient condition in terms

of p for positive recurrence of {X.}, and find the stationary distribution
when it exists. Show that the process is null recurrent when p = 2/3.
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2.66. Let {Z,, —00 < n < oo} be & sequence of iid random variables with
P[Zy = 0| = P[Z, = 1] = 1/2. Define the stochastic process {X,,} with
state space {0,...,6} by

Xn= w1 + 22, +3Zn+1, -0 < n < 0.

(a) Determine
PXp=1X,=3,Xy=2]
and
P[X1 = 3, X2 = 2]
(b) Is { X, } Markov? Why or why not?
2.67. The position of a particle at time n is a Markov chain with state
space {A,0,1,... }. Thestate A corresponds to annihilation of the particle,

i.e., X, = A iff the particle has been annihilated at or before time n. The

transition probabilities of {X,,} are given as follows: For # i,
2/5, ifj—i=+1
PXpy1 =j|Xn =1 = ’

Koy =71 Xn =) {1/5, if j = A,

and for i = 0,
PXet1 =0X,=0]=1,

and for i = A,
PlX, 11 =AlX, =A]=1.
Let
T =inf{n: X, =A},
remembering the convention that inf@ = oo0. For ¢ =0,1,..., let
p; = P[X, = A for some n | Xy = 1]
and

() =E(sT| Xy =1), 0<s<1.

(a) Find the probabilities p;, 7 > 0.

(b) Determine g;(s),7 = 0.

(c) Does {X,} have a stationary distribution? If so, determine all such
distributions.

(d) If Xo = 4, express E;(T|T < oo) in terms of g;{s) and hence evaluate
the conditional expectation.

2.68. Let P, and P, be two distinct two-state transition matrices with
states {1,2}. Set Xy = 1. Toss a coin. If the coin comes up heads (with
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probability p) generate X, X,,... using transition matrix P;. If the coin
comes up tails (with probability 1 — p) then generate X, X2,... using
transition mattix Py,

(a) Is {X,} a Markov chain?

(b) Assuming P, and P, are positive recurrent and aperiodic, evaluate

lim P[X,=j], j=12
n—0C

Now let P, P, be as above, and set Xy = 1. Determine Xq, X2,... by
tossing the coin (independently) at each trial to determine which transition
matrix to use.

(c} Under this new scheme, is {X,} a Markov chain?

(d) Show that limy_e P[X, = j] is not necessarily the same as that in
part (b).

2.69. A boy and girl move into a two-bar town on the same day. Each
night the boy visits one or the other of the two bars, starting in bar 1,
according to a Markov chain with transition matrix

(5 3)

Likewise, the girl visits one or the other of the two bars according to a
Markov chain with transition matrix

(3%

but starting in bar 2. Assume that the two Markov chains are independent.
Naturally, the game ends when boy meets girl, i.e., when they go to the
same bar.

(2) Argue that the progress of the game can be described by a three-
state Markov chain where one state is absorbing representing the end of
the game, and the other two-states give the different bar identities of the
boy and girl. Exhibit the transition matrix for this chain.

(b} Let N denote the number of the night on which boy meets girl.
What is the distribution of N7

(c) Find the probability that boy visits bar 1 and girl visits bar 2 on the
nith night.

2.70. (a) Let {X,,n > 0} be a random walk on the integers in the closed
interval [—b,qa], a > 0,b > 0, with absorption at a and —b. Suppose that,
for ~b < i < q,
PlXa1 = ilXa =i =1-p—g20,
PIXn-kI ='E+1|Xn:’t] =p> O,
PlXpp1=i—1Xn=1]=q>0,
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and suppose p # g. Determine the probability of absorption at a, given
Xg =1

(b) A particle describes a random walk on k > 2 points arranged on
the circumference of a circle with the step distribution as above, but with
p-+ ¢ =1, so it has probability p of moving to the point on its right, and
probability ¢ = 1 — p of moving to the point on the left. Suppose that the
initial position of the particle is 4. Show that the probability of visiting
all other k — 1 points on the circle before returning to A for the first time

° P+ " Np—q)
(pF-1—gk-1)

2.71. Three cards are placed in a row in one of six possible orders, and
their order is changed successively as follows: A random choice of either
the left-hand card or the right hand card is made, (the left-hand card
being chosen with probability p, the right hand card being chosen with
probability g = 1 — p), and it is then placed between the other two. This
process is repeated indefinitely, the successive choices being independent.
Let X, = k if, after n choices, the cards are in order k.

(a) Explain why {X,} is a Markov chain, and write down its transition
matrix.

(b) Show it is irreducible and find its period and its stationary distribu-
tion.

(c) What is the mean number of choices required first to restore the
initial order of the cards?

2.72. An electric light that has survived for n seconds fails during the
(n + 1)st second with probability ¢ (0 < ¢ < 1). Let X, = 1 if the light is
functioning at time n seconds; otherwise let X,, = 0.

(a) Let T be the time to failure (in seconds) of the light; i.e.,

T=inf{n: X, =0}

Determine ET.

A building contains m lights of the type described, which behave inde-
pendently. At time 0 they are all functioning. Let Y, denote the number
of lights functioning at time n.

(b) Specify the transition matrix of {Y,}.

(c) Find the generating function

Es™ = ¢.(s)

of Y. Use it to find P[Y, = 0} and EY;. (Hint: Show dn(s) = ¢,_,(g +
ps).)
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2.73. A Markov chain has state space {(,1,2,...} and transition proba-
bilities A

i+vr4+1’
where A > 0 and v > ( are constants. State any other necessary restrictions
on the values of A and v. Show that the chain is irreducible, aperiodic and

positive recurrent. Find explicit forms for the stationary distribution in
the cases v =0 and v = 1.

Piitl = Pio = 1—piit1,

2.74. Let ¥ be a nonmegative integer valued random variable and let 5;
be the sum of ¢ independent copies of Y. Let {h;} be a probability mass
function concentrating on the nonnegative integers. Define a Markov chain
with state space {0,1,2,...} with transition matrix

pi;=PlS1=3], i>1, >0,
ponhj.

Assume that this chain is irreducible and aperiodic. Show that it has a
limiting distribution if m = EY <1 and }; jh; < oc.
Let

f&)=EBsY, h(s)=> h;s?, 0<s<1,
F=0

and let TI(s) be the generating function of the stationary distribution. Show
that TI(-) solves the functional equation

II{s) = I(f (s)) — TI{0){1 — h(s)).

2.75. Choice Theory—Markov Chain Models of Brand Switching.
Suppose for a given product, a consumer has a choice between m compet-
ing products, labelled 1,2,...,m. For example, the m products might be
competing brands of Jaundry detergent. Suppose successive purchases by
a consumer are modeled as an ergodic Markov chain {X, } with transition
matrix P = (p;,1 < 1,5 < m).

The diagonal entries of P, namely Pi;, 1 < j € m, are measures of
consumer loyalty to a brand since p;; measures the tendency of a consumer
to repurchase brand j when his last purchase was brand j.

Companies are interested in market share. The market share of brand
J is the percentage of purchases made which are of brand j. Assuming a
homogeneous population, the market share of brand j can be evaluated as

N—oo

N
lim N7! Z Lix, =4
n=0
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which we know by Proposition 2.12.4 is just 75, the stationary distribution
for the chain.

The producer and the advertising agency are interested in the depen-
dence of market share 7; for brand j on consumer loyalty p;; to brand
7

Consider a simple case. Suppose p;; =1/2, § =1,...,m and for i # j
we have p;; = (2(m — 1))™*. Check that this matrix is doubly stochastic
so the stationary distribution is uniform.

Now assume, for j # 1,

_1-pu
T m-1

Pij

so that a consumer not choosing his old brand i chooses uniformly among
the others. With this simple specification of choice probabilities can we
see the dependence of market share on consumer loyalty? Verify

o (epy)T!
WJ - ™ -1
ZJ:l(l - pll)
so that m; T 1 as pj; 1 1. (Wolf, 1989.)

2.76. Two Genetics Models, Let {X5,n > 0} be a Markov chain on
{0,1,..., M} with transition matrix {p;;,0 < 1,j < M}. For the following
two models compute

u;pm = P;[ absorbtion at M |,

and show that ;s is the same for both models:
(a) Wright model:

=) () (2"

fori,j=0,..., M.
(b} Moran model: Define

(M -1 .
Pi:(—ﬁjtz—)! 1=0,..., M,

and set
Pij = Piy if'j—ilzl,()(i(M,
pﬁ=1—2pi, lfO<1<M,

Poo = Pmm =1,
pij = 0, otherwise.

2. EXERCISES i73
2.77. For a finite state Markov chain {X,} compute
COV(X—,-” Xn+k)

in terms of the transition probabilities and the quantities {P[X,, = j]}.
What if the chain is stationary? If the chain is stationary, what is the
behavior of

COV(XTL:X'IH'*:)

as k — oo?



CHAPTER 3

Renewal Theory

ENEWAL PROCESSES model occurrences of events happening at
random times where the times between the events can be approx-
imated by independent, identically distributed random variables. With
such a simple description, one wonders how flexible and powerful a tool
renewal processes can be. Despite the simple description, renewal theory
is one of the most basic of the building blocks in applied probability. Often
a complex stochastic model has one or more embedded renewal processes,
and this fact lies at the heart of the analysis of such processes and is
basic to the idea of regeneretion, which allows a process to be decomposed
into independent, identically distributed blocks of random lengths. The
dissection principle for Markov chains is an example of how to decompose
a process into iid blocks.
In a one-semester survey course, try to cover most of Sections 3.1
through 3.8. Sections 3.9 to 3.12.3 are more advanced and should not
be read by beginners.

3.1. Basics.

Suppose {¥n,n > 0} is a sequence of independent random variables which
take on only non-negative values. Furthermore, suppose the sequence
{Y,,n > 1} is identically distributed with common distribution F(z). We
always assume

F(o-)=0, F0)<1

or, equivalently, for each n > 1,

Pl¥, <0]=0, P¥,=0]<1.

For n > 0, define
Sp=Yo+ -+ Y,

The sequence {5,,n > 0} is called a renewal sequence. The quantities
Sy are usually thought of as times of occurrence of some phenomenon
and are called renewal times or epochs. The process is called delayed if
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P[Yy > 0] > 0; otherwise it is pure, and S; = 0 = ¥} so that for a pure
renewal process time zero is considered a renewal epoch. F is called the
interarrival distribution. If F' is proper (F(oo) = 1) then the process is
called proper. If F is defective (F(co} < 1), then {S,} is terminating or
transient, and there will be a final renewal.

To fix ideas, we consider several simple examples.

Examples. (i) Replacements: Items being tested are observed sequen-
tially. For instance, a light bulb is observed until burnout, and then a
magical janitor instantaneously replaces the expired bulb with a fresh one.
The process repeats. Failure times are {S,,n > 0}. If the initial bulb is
fresh, a pure renewal process is an appropriate model; otherwise a delayed
renewal process is appropriate.

(ii) Imagine the replacements in {i) are proceeding happily. I arrive to
visit my friend the janitor. Unless I arrive at exactly a replacement epoch
(if F is continuous this event has probability zero), the process I see is
delayed. The delay is the time from my arrival until the next replacement.

(ili) Returns to a state: Let {X,,,n > 0} be a Markov chain with finite
state space. Fix a state ¢. As in Section 2.5 on the dissection principle,
define the successive return times to state + by

To(i}) =inf{n: X, =i},

and, for n > 0,

Tat+1() = inf{m > 7,,(3) : Xo, =i}

Then {r,(i},n > 0} is a renewal sequence. If the initial state is i, the
Process is pure; otherwise it is delayed, and the delay distribution is the
first passage distribution to state ¢ from the initial state. In Chapter 5 we
will observe similar phenomena with continuous time Markov chains,

In addition to Markov chains, many other processes possess regenera-
tive states where the process probabilistically restarts itself in that state.
Times of entrance to such states constitute a renewal process. Buzz words
such as “probabilistically restarts” should take on precise meaning as we
develop the theory. For instance, we will see that under proper assump-
tions, beginnings of empty periods in dam models or beginnings of busy
Periods in queueing models constitute renewal epochs. Within complex
Processes one must be able to identify embedded renewal sequences.

Often there is a choice in how one identifies renewal processes, as the
next example shows.

(iv} On-off process: Operative periods of a machine alternate with
down periods during which repairs are made. Suppose all periods are inde-
bendent, operative periods are independent, identically distributed (iid},
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and so are down periods. T'wo distinct renewal processes can be identifieqd-
{1) Times when the machine becomes inoperative. These are de.
noted by z’s.

(2) Times when service is completed and the machine becomeg
operative. These are denoted by o's.

or]
f

-LM

By )
f

FIGURE 3.1. TW0O EMBEDDED RENEWAL PROCESSES

In renewal theory it is often convenient to consider the associated point
process which counts renewals. Of interest is the counting function

Nty = 1jo(Sn)
n=0

giving the number of renewals in [0,1]. The expectation
Ult) = EN(t)

is called the renewal funection and plays a key role in asymptotic analysis.

3.2. ANALYTIC INTERLUDE.

This section collects some analytic facts that are needed for comfortable
manipulation of quantities related to renewal processes. Some of this ma-
terial parallels the discussions in Chapter 1. For instance, the discussion on
convolution and Laplace transforms is similar to corresponding sections of
Chapter 1 which were limited to positive integer valued random variables.

3.2.1. INTEGRATION.

In what follows we will see integrals with respect to a monotone function
U(z) on (0,00} of the form

[ " g@)dU(2)
0
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or

/ g(z)U(dz).
[0,00)

If you know what Lebesgue-Stieltjes integration is, interpret these integrals
in this manner and skip to Section 3.2.2.

If you do not know what a Lebesgue-Stieltjes integral is but know what
a Riemann-Stieltjes integral is, interpret these integrals in this manner:
Note that if U(z) has a jump at O then this must be accounted for in
the integration; the integral includes 0, and some authors would write the
integral sign as f:f . Now proceed to Section 3.2.2. ‘

If you know neither about Lebesgue-Stieltjes nor about Riemann-
Stieltjes integrals, the following is sufficient for the unstarred sections of
this book. We distinguish three cases of interest:

(1) U is absolutely continuous (AC). This means there exists a
density u satisfying u(z) > 0, such that foT u({z)dz < oo, VT >
Qandforb>a>0

b
Uip) - Ula) = / u(s)ds.

a

Then interpret

]0 ” o(@)U(dz) = fo " o) = | " g(@)u(z)ds.

(2) U is discrete. This means there are atoms {a;} and weights
{w;}, w; < oo, and limpyo U(a; + h) ~Ula: —h) = U({ai}) =
w; meaning the measure U places mass w; at location a;. So
the distribution function U(z) is constant except at points a;,
where it jumps up by an amount w;. Thus U (z) satisfies

Ulz)= Y. wi

ul<a; <z

‘We interpret the integrals by
fg(m)U(d:L‘) = [g(:c)dU(:z) = Zg(ai)wi.

This was the set-up of Chapter 1.
(3) U is a mixture of the form

U(z) = alUac(z) + fUa{z),
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where Upe is AC with density uac(z), and Uy is discrete with
atoms {a;} and weights {w;} and o > 0,4 > 0. In this case

] 9(x)U(dz) = / 9(w)dU (z)
~a [ @Wroldz) + [ st@atas)
= /g(m)uAc(:c)dm + ﬁZg(ai)wi.

As an example, consider a case encountered frequently in renewal the-
ory. U(z) is of the form

Ulz) =1 +/: u(s)ds.

Here
X
mdm:/u@@
0
and
1, fz>0
Uglz) = ’
a(e) {m ifz <0,

so Uy has an atom at 0 with weight 1 and @ = 8 = 1. Then

[ st@wz) = stoyiiion + / " g(syuls)ds
—g(0)+ [0 g(s)u(s)ds.

Take this example to heart since it will recur repeatedly.

For more advanced work, it is convenient to write I both for the distri-
bution function U(z) and for the measure determined by this distribution
function and the relation U(a,b] = U(b) — U(a) when 0 < a < b.

3.2.2. CONVOLUTION.

Suppose all functions are defined on Ry = [0,00) and all distributions
concentrate on Ky. Call a function g locally bounded if g is bounded on

finite intervals. For a locally bounded g and a distribution F define the
convolution of F' and g as the function

Fxg(t) = [ 9{t —x)F(dz} fort >0,
0
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where for the definition of the integral we rely on Section 3.2.1 and imagine
the integration includes the endpoints. (Remember that if there are atoms,
one cannot be sloppy about endpoints.}) Some properties of convolution
now follow.

1. Fxg >0
2. F x g is locally bounded; in fact

sup |Fx g(s)] < (sup Ig(s)I) 0]
0<s<t D<s<t

To verify this, define ||g|| =: supg<,<¢9(s)|, which is finite for every ¢ by
the assurmnption of local boundedness. Then for any s < ¢

I+ g(s)] =] [o " gls ~ ) F(do)
< [ lots - 2)iP(as)

< el [ F@o)] = lol(e) < oo

3. If g is bounded and continuous, then F % g is continuous since
F x g(t) = Eg(t — Yy) where Y] has distribution F. Thus if £, — ¢, we
get almost surely that g{t, — Y1) — g(t — ¥1), by continuity, and, since
¢ is bounded, dominated convergence vields Eg(t, — Y1) = F = g(i,) —
Eg(t - VY,) = Fxg(t).

4. The convolution operation can be repeated: F + (F * g). As an aid
to writing consider the following: Define

FO(2) =1pp,00)(2)
F*(z) =F(z)

and forn > 1
FOFDr () = & F(z).
Then F% acts as an identity:
F¥xg=yg,
and an associative property holds:

Fx(Fxg)=(F+«F)rxg=F"xg.



180 RENEWAL THEORY

{Note that F x F = F** is a distribution—see {5) below.) A similar resut
holds for higher convolution powers.

5. Convolution of two distributions corresponds to sums of indepen.
dent random variables (rv’s). Let X, and X, be independent, with X,
having distribution £i,7 = 1,2. Then X; + X, has distribution Fy * F,
since for t > 0

P[X1+ Xy <t] = P[{X1,Xz2) € {(z,y) € R 1z +y < t}]
-/ Py (dz) Fa(dy),
{(z.¥YERY :x+y<t}

and we may write the double integral as an iterated integral:

_ /0 t[ yH Fg(dy)]Fl(dz) - /0 "yt - 2)Fy(da),

=0

6. The proof in {5) shows the commutative property: Fy+ Iy = Fyx ).

7. By induction we may show that if X,,..., X, are iid with common
distribution F, then X3 + - .- + X, has distribution F™*.

8. If F; is absolutely continuous (AC) with density f;, i = 1,2 then
By + Fy is AC with density (for ¢t > 0)

foo falt) = [o it = 5 Faly)dy = ] falt— )y,

In fact, if F is AC, then for any distribution G, F G is AC.

To check these last assertions, observe that

Fox Fy(t) = [ f{ o PRy
z,y):zdy<t

:/y;) ( I:: fl{z:)dr) faly)dy

by writing the double integral as an iterated integral. Changing variables,
this is

- / ( : IO y)du) faly)dy,

and reversing the order of integration yields
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z-[ui[) ( y:o faly)far(u — y)dy) du

t

= fi* fa(y)dy.

u=0

For the second assertion replace fi by f and fa(y)dy by G(dy), and
we find in a similar way

rec = [ ([ fu-voa) s

y=0

G« flu)du,

0

i
N 0
showing F' * G is AC with density G  f.
3.2.3. LAPLACE TRANSFORMS.

Suppose X is a non-negative random variable with distribution F. The
Laplace transform of X or F is the function defined on R by

oG
ﬁ()\) = Fe— X :f e~ P (dz), A>0.
)

Note that, since e™*% < 1, we have F(A) < oo for all A > 0.
Some useful properties of the transform follow:

1. Distinct distributions have distinct transforms. For the mathemat-
ically adept, this can be proven using the Stone-Weierstrass theorem; a
proof using elementary tools is developed in Feller, 1971.

2. Suppose X1,Xs are independent and that X; has distribution
F;, t =1,2. Then o ) A
(F1* F)(A) = Fi(A) Fz(d),

since

(Fp x Fa)() = Be M+5)

= BeT 1 A2,
by independence,

= B (N E(N).

The transform therefore converts the fairly complex operation of convo-
lution into a simpler operation of multiplication. This phenomenon was
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already encountered in Chapter 1 where we saw that the generating func-
tion of the convolution of two discrete densities was the product of the
individual generating functions.

Similarly, for any n > 0, if F is a distribution,
(F)(A) = (F(V)".

We now give some examples of how to compute Laplace transforms.
Example 3.2.1. If X is uniform on (0,1), then

1
Ee ™ = f e dr = (1—e /A
0

Exampie 3.2.2. If X has an exponential density with parameter a so
that F(dr) = ce™*®1(g,c0)(x)dz, then

FQ) = af(a+A).

Example 3.2.3. Start by noting that

o0 n,—ox o —(At+a)zm
alazr)e € x
j o=z 2(0T) dr = o™t / E T i
0 0

n! n!
o0 —_ n
@
=G
It _i{}r; .., Xny1 are lid, each with exponential density ce™"1 g o0y(), then

<=, X; has the Laplace transform
Ee B X (ef{a+ X))"*!
= /00 e—)\za(a‘r)ﬂe_am dr.
o n!

Therefore, because a transform uniquely determines the distribution,

we obtain the significant fact that E::’ll X; has the gamma density
alaz)*e *T/n! on R4.

More properties of the transform now follow:

3. For A > 0, F()\) has derivatives of all orders, and any order deriv-
ative may be obtained by differentiating appropriately under the integral
sign. For any n > 1,

(—1)'1%;13"(,\):/ e F(dz), A >0
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(More advanced readers can easily check this using the dominated conver-
gence theorem.) By monotone convergence,

dr . =
im(—11" M= "F(dz) < oo.
lim(~1)" 5= F ) L 2™ F(da)

In particular, if the random variable X has F as its distribution then
EX = —E'(0) and EX? = F"(0), and so on.

4. Convenience formulas:
(3.2.3.1)
o

/ e~ F(z)dz = ATTE(N), / ~ e (1 — F(z))de = (1— F(A)/A.
0 0

The second formula follows directly from the first, which is obtained merely
by a reversal of the order of integration:

/0 ~ e~ P(g)dz = /x : e ( fu :0 F(du)) dz
- fu Z} ( fz :Oue_)“”dw) Fldu)

= f e_’\u)\—lF(d’u)
u=0

= AR

We now extend these notions to arbitrary distributions and measures
U on R,. Suppose U(z) is non-decreasing on 0, o0), but perhaps U(o0) =
limg 1o U(x) > 1. If there exists a > 0 such that

f e U (dz) < o0
0

for A > a, then -~
U{A) = f e U (dz), A>a
0

is called the Laplace transform of U. If no such ¢ exists, we say the Laplace
transform is undefined. .

The previous properties of Laplace transforms all have obv101}s ex-
tensions. For example, the Laplace transform of U, if it exists, uniquely
determines U. - .

The reason for dealing with transforms of such functions U is that,- as
we wil] see in the next section, we frequently deal with the renewal function
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U(t) = EN(t), and it is convenient to be able to take the transform of this
function.

Example 3.2.4. U(dz) = e**dz. Then

o0 oa—1 s
f o~z gaz gy _ { (A—a)t, ifA>a
0 o0, if A <a.

Example 3.2.5. U(dz) = ¢® dz. Then

f e *%e% dz = oo for all A > 0,
0

and the Laplace transform does not exist.
Example 3.2.6. U(dx} = (1 — F(z))dz where F is proper on R,. Then

0(3) = (1~ FO))/A

from the convenience formulas (3.2.3.1).
Example 3.2.7. U{dzr} = z™dz. Then

o Lo a]
f e~ M = )\_("“)/ e~ ?s"ds
o 1]

=T(n+ 1A~ D
= A"ty

Next we discuss an inversion problem which will help us examine ex-
amples later.

Inversion Example 3.2.8. Let X3,...,X, be iid rv's uniformly dis-
tributed on (0,1). What is the density of 3 - | X;7 We have

Ee B = (B X" = (A1 (1 — M)

(from Example 3.2.1)

= go (:) (~1ykem k2",
Ak

Now e™* = [ e~*¢;(dz), where € is the measure putting an atom of
size 1 at {k}. Furthermore,

e ] N mn—l (=]
AT 2[ e % dr ::] e Mg (x)dz,
0 (n—-1)! i} 9(=)
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50 e **A7™ is the transform of ¢, * g(z), which is

T 0, ifzx <k

=j) g(x — y)ex(dy) = { oo — k) = gm(;i):!—l, f2>h
=: (z— k)7 /(n - 1)1,

and the required density of Y i, X; is

n _ pyn—1
S E B

prd (n—1)!

3.3. COUNTING RENEWALS.

In this section we focus on properties of the random variables N(t), where
N(t) is the counting function of the number of renewals in [0, #l:

s =]
N =D 104(Sn).

n=0
The quantity EN(t), called the renewal function, is a basic quantity in
renewal theory; as we will see in Section 3.5, the renewal function is a
convolution factor of solutions of renewal equations. Renewal equations
are a basic tool for solving for probabilities of interest in renewal theory.

Note that if Sp = 0, then ¢ = 0 is counted as a renewal epoch. In this

case the renewal function is

Ut):=EY log(Sn) = PlSn<t]=>_ F™(t).
n=0

n=0 n=0
On the other hand, in the delayed case, if Sy = Yy has distribution , then
the renewal function is

V() = i PlS. <] = i G FO0 (1) = G+ U(1).
n=0 n=1

The following useful relations between {S,} and {N(¢)} allow limit
properties of {N(t)} to be determined from the behavior of {Sn} :

(3.3.1) () < il =[S0 >8], n>0,
(3.3.2) SN(t)_]_ <t < SN(t) on [N(t) > 1],
(3.3.3) [N(t)=n]=[Sn-1 £t < 8,], n2>1

Note that the event [N(¢) < n] depends only on Sp,...,S5.. {Advanced
students should observe that for fixed t, N(¢) is a stopping time with
respect to {F, = (¥, ..., ¥a),n > 0}.) Here are some moment properties
of N(2).
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Theorem 3.3.1. For any t > 0,

(1) oo M F™(t) < oo fory < 1/F(0).
(2) The moment generating function of N(t) exists , so all mo-
ments of N{t) are finite. In particular U(t) < co.

Proof. (1) Fix v < 1/F(0). Observe

lim F(A)= lim (F(O}+ f
A—oo Ao (©

= F(0).

e"’\IF(dx))

100)

It is possible to pick a large X such that ]3‘(.\)7 < 1, and we have

DY) =Y 4"P[Sa < 1]
n=0

n=0

(where S, = Y1 + ... + ¥,,, ¥y = 0),
oo
= Zry"P[e"‘S" > e M),
n=0

By Markov’s inequality (Billingsley, 1986, page 74, for example), which is
almost the same as Chebychev's inequality, we have the upper bound

o

lee]
N At BeTASnedt = M Z(’yﬁ‘()\))“ < 0,
0

n=10

since vF(A) < 1.

(2} A positive rv Z has a moment generating function iff the distribu-
tion of Z has a tail which is exponentially bounded: For some K > 0,¢ > 0
and all z > 0, we have

(3.3.4) P{Z > 1] < Ke™°=.

We check this by noting that if the moment generating function exists in
(0,8p), then for 6 < 6, we have

P[Z > z] = P[e"? > %] < B(ef7)e 0"

1

from Markov's inequality. Conversely, suppose that the distribution of Z
has an exponentially bounded tail as in (3.3.4). Then, for 8 < ¢,

Ee?? < o0 ifl E(e? - 1) < .
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However,
E(eez — 1) = Ef 9e9"1[u<23du
0

OO
= f 0e** P[Z > u]du
0
(reversing the expectation and integral},

o0
< GK/ e Mgy < oo
0

To prove (2) then, it suffices to show that P[N(t) > n] is exponentially
bounded. Choose 1 < v < 1/F(0), and from (1) we have

A" F™(t) — 0, as n — co.
There exists np such that for n > ng
Fo* (1) < 4" = e (ogmn,
Using (3.3.1) with ¥y = 0, we have, for n > ng,
P[N(t) > n] = P[S, < 1] = F™(t) < e~ Uoemn,
With suitable choice of X, this can be extended for all 7 to

PINB)>n] < Ke ™. B

The previous result assures us that U (%) is always finite. Unfortunately,
it is not easy to compute U explicitly. The following two examples are cases
where an explicit calculation can be accomplished.

Example 3.3.1. Suppose F is the exponential distribution with density
Fldz) = ae” **dz, =20

From Example 3.2.3 we have, for n > 1,

—aT

F™(dz) = aloa) g
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Thus

k> J atosr™ {: = 1)!‘“
=j Za(as)" - _1)1 ds

:] O{dS = I.
0

Remembering the term F% we obtain

= ZF“‘(Z) =1+ ax.

n=0
Example 3.3.2. Now let F’ be the gamma density
F(dz) = ze™*dr, z> 0.

We seek the density of 3o | F™*. Observe that the Laplace transform of
> onr s F™ can be written as

(Z Fn*) Z (Fru) Z(F(A))n
n=1 n=1 n=1
= Z((l + AT
n=i
from Example 3.2.3,
_ a+n 1
1—(T+A)72 142 +X2-1
1 1

23 AA+2)
By a partial fraction expansion, this is

1 1
223 20 +2)
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Therefore, the required density is — - le

determines the measure. Thus we ha.ve

—2%  since the transform uniquely

We now look at some limit theorems for N(t) as £ — oo which can be
readily obtained from standard limit theorems for {5, }.

Theorem 3.3.2. Suppose p = EYp = f;o zF(dx) < co is the mean

interarrival time.
(1) If P[Yp < oo] =1, then almost surely

N/t —» p?, ast— oo.
(2) Ifo? = Var(Y1) < oo then N(t) is AN(ut™* to?u3); ie.,
s PIVG) - t07) /(%72 < 2] = N(O, 1,9,
where N(0,1, z) is the standard normal distribution function.

Proof. From the strong law of large numbers,

n
n" S, = n_IYU+'n_IZYi — 0+ p=pu,
i=1

as n — oo, Observe that N(t) 1 oo as. (Advanced students can check
this by observing that, since {N(t}} is monotone, it is enough to show
N(#) T oc in probability. But this is immediate, since

P[N(t) > n] = P[S, <t] (from 3.3.1}
=G*xF"™(t)—~1ast— )

We therefore conclude that, with probability 1,
Jim Swey/N(t) =
Recalling (3.3.2) we have

Sni-1 ST < SN,
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from which

(w=1) () < v < 3

As t — 00 the two extremes converge to p almost surely, and the result
follows,

For the proof of (2), let [z] be the greatest integer less than or equal
to z. We use (3.3.1) and the central limit theorem for partial sums:

lm_ P((Sn ~ np) /o < 2] = N(0,1,5)

uniformlyine € R. (N(0,1,z} is the standard normal distribution function
with mean 0 and variance 1.)

We have
PIN(t) - tu™)/(@"tp™*)V? < 2] = PIN(t) < [o(o®tp™)2 4 7).
Setting h(t) = [z(0?tp™2)/2 + t4~'] and applying (3.3.1), the above is
PlSuy > 1] = Pl(Sngy — wh(t))/oh(t) > (t — ph(t))/oh 3 (t)).

.It suffices to show A(t) — oo and z(t) := (¢ — ph(2))/ch'/2(t) — —z, since
in that case the uniform convergence in the central limit theorem will imply

P[(Sugey — #h(1))/oh12(8) > 2(t)] — 1 ~ N(0,1, —2) = N(0,1, z).
The first check is easy since A{t} ~ tu~! — co. For the second we have
Blt) = 2(o?tu )2 5 1 g (o)
where |e(t)| < 1, and hence

t - pa(o®tu3) 2 — t — pe(t)

zif) =
®) ohl/2(3)
uu$(02tﬁk3)l/2
__—‘a(t;rl)lﬂ =—-z. 1

We now consider what has come to be called the elementary renewal
theorem.
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Theorem 3.3.3. Let p= EY; < oc. Then
Jim V() = Jim ) =pt

provided Yy < oo a.s.

There are three common ways to proceed with a proof. One is by means
of the Tauberian theorem for Laplace transforms (cf. Feller, Vol II, 1971,
Chapter XIIT). A second proof uses the Blackwell Renewal Theorem, which
we consider later. Here is an elementary approach based on truncation.

Proof. First of all, Fatou’s lemma and Theorem 3.3.2 (1} imply that

= Elim inftTIN{t) < lim inf t1EN(1)
— 00 —OQ

= litm inft~V ().

For an inequality in the reverse direction, set Y5 = 0,Y;* = Yi A b, 55 =
0,5, = Y+ L+ YL N*(t) = Y00 10,4(Sh), V*(t) = EN*(t). Then
5, = 5k, and N*(t) > N(t).

We now observe that ESy. .., = EYEN™(t) = EY]'V*(t), which is
a special case of the Wald Identity since N*(t) is a stopping time with
respect to {o(Yy,...,Y,r),n = 0}. Therefore

limsupt™ 'V (t) < limsupt V™ (t)
t—o0

t—oo

= limsup ¢~ ESy. )/ BY;"

{—o0
= limsupt™! (ESR;.“)_I +Y§,.(t)) /EYT
t—oo

<limsupt~!(t+b)/EY)* = 1/EY;
t—oo
= 1/E(Y, A b).

Let & T oo so that, by monotone convergence, E(Yy Ab) 1 EY1 = p, and we
get
imsupt™ 'V (t) < 1/p,

f—oo

as desired. B
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3.4. RENEwAL REWARD PROCESSES.

A slight elaboration of the strong law of large numbers and Theorem 3.3.2
vields basic facts about renewal reward processes. Suppose we have 3
renewal sequence {S,,n > 0} and suppose that at each renewal epoch §,
we are given a possibly random reward E,. The phrase reward should
be interpreted in the broad sense, as this could be a negative quantity
associated with costs. We assume that the sequence of random variables
{Rn,n > 1} is iid although not necessarily independent of {Sn,n > 0}.
(In fact, if the inter-renewal times are {Y;,,n > 0}, one possibility would
be for R, = cY, so that the reward was proportional to the length of the
interarrival interval.) The renewal reward process is defined to be

N(t)-1 oo

R(t) = Z Ri=) Rilis<y, t20,
i=0 i=0

so that R(t) is the total reward accumulated by time t. (If Sy > 0, then
for t € [0, Sp) we interpret R(t) = 0.)

To fix ideas, imagine an insurance company receiving claims accord-
ing to a renewal process {5,}. The sizes of the claims are random and
represented by the random variables {R,}. The total claim against the
company in [0,%] is R(t).

We think of R(#)/t as the reward per unit time, and, if the limit

(3.4.1) tl_l’nélo R(t)/t =7

exists almost surely, it is natural to think of r as the long run reward rate.
Under mild conditions this liit does indeed exist.

Proposition 3.4.1. If E|R;| < oo and EY; = pu € (0,00) for j > 1, then
the limit in (3.4.1) exists almaost surely, and
R __ERy

(3.4.1) t]_l‘m n i = p

Proof. We have

N(H)-1 .
lim —R(t) = lim _________Z:'=0t R

t—oo L t—co
i ot RN -1
Tihe N -1t

Since N(t} —1 — oo, we have, from the strong law of large numbers and
Theorem 3.3.2 (1), that this limit is equal to
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= ERLLL_}. |

gExample. Harry Budgets for Maintenance. In the old days, before
Harry knew any Operations Research, he used to budget ¢; per day for
maintenance at the restaurant. He now decides to budget less, ¢; < ¢y,
put now risks the possibility of being fined by OSHA {Occupational Safety
and Health Administration) for health hazards or safety violations on the
premises. OSHA inspects Harry’s premises according to a renewal process
with mean inter-renewal time E(Y;) = 45 days. At each inspection, there
is probability p > 0 that a viclation will be found resulting in a fine. The
events {[ detection occurs at the nth inspection ],n > 0} are independent
of each other and the times of inspection. The fines vary in severity accord-
ing to the violation and may be assumed to be independent and identically
distributed with a uniform distribution on the interval (0, 2c3).

(1) What is the expected time until the first violation is detected?
{2) What is Harry’s long run cost rate under the new policy?
(3) What is the range of values of ¢z which guarantee that the
new policy saves Harry money over the long run?
Let {S;,i > 0} be times when violations are detected, and let {Y:} be
the times between inspections. Then

N

Si=3 Y,

where N is the number of inspections necessary to uncover a violation. N
is geometrically distributed: P[N = n] = ¢ 'p,n > 1,80 E(N) = 1/p,
and E(8)) = E(N)E(Y1) = 45/p.

Let F; be the fine on the ith violation; E(F;) = c3. Let N (¢) count the
number of violations up to time t so that the times which N{t) counts are
the {S;}. Harry's maintenance costs up to time t are

N{t)—1

C(t) = cot + Z F;
i=1

the long run average cost rate is therefore

N(t)-1

C(t)/t = ¢z + ¢ Z F;

i=1

—Cy + E(Fl)/E(Sl) = ¢y + c3p/45.

We want ¢; + c3p/45 < ¢, that is ¢ € ¢ — cap/45 B
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Under reasonable conditions, Proposition 3.4.1 also holds in the ex-
pected value sense:

ER(t)/t - ERju !, as t — oo.

This would be the case if, for instance, N (t) was independent of
{R.,n > 0} (cf. Chapter 1) or if, for each n > 0, we have (Rn,Yy) in-
dependent of {¥},j # n} and {R,,n > 1} identically distributed with
E|Rn| < co. Under these assumptions we can write

BR() = ER() v )=o) + BR(t) v (g
=0+ ER(H)1 )0
N{t)-1

=E Y Rl
==
N

=B} Rilivgso — BRx v so)
i=0
=A+ B,
and we mmust show,

tEIED Aft=FER/u, tlim B/t=0.

As in the proof of Wald’s Identity (Section 1.8.1), we have

N{t)

A=E}_ Rlivwso = ERolingso + B Rilpeny
i=0 i=1

o
= ERolivys + B Y Rilio1an(o)

i=1

which, by applying (3.3.1), is

o0
= ERodin()s0 + EZRil[ng]
=1

o0
= BRolivys0) + ERIE Y s, <y
i=1

= EROI[NU)>O] —+ ER;V(t) ~tER /1.
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We have from (3.3.3) that

[ o]
B = ERnw ] Nm>0 = Z EEBa 1 |N(t)=n)

n=1

[ o]
=" ERnls,_,<t<sm),

n=1

and, because (Y, R,,) is assumed independent of S,_1, we get by condi-
tioning on Sp_;

00 nf
= E/ ERnl[mSt<m+Yﬂ]P[S -1 € d.’.[!]
n=1 0

i
=/0 ER1yezqvyV(d).
Set
z(u) = E|R1|1[u<Y1]'

Then z(u} — 0 as u — co as a consequence of ElR;] < oo, z(u) is non—
increasing, and z(u) < E|R;|. We conclude

1Bl <V x2(1),

and it is now guick work to see that B/t — Qas t — co. Given e > 0, there
exists M > 0 such that z{u) < ¢ if u > M. Write for any large t > M

Vo 2(t) = /0 2(t — )V (dz)

t-M ¢
= / z(t - z)V (dz) + / 2(t — 2)V(dz)
0 t—M
< eVt — M)+ 2(0)(V(t) - V(t— M)
From the elementary renewal theorem we get that

€ 1 i €
limsupV * z(t)/t < — + 2{0)(—- — =) = —.
meupV+ 2/t < < +2(0)( - 7) = <

Since ¢ > 0 is arbitrary, the desired conclusion follows.

A variant on the renewal reward proecess which is handled similarly
allows rewards or penalties to accumulate continuously in time instead
of being delivered in discrete bursts at renewal times. Such processes
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are sometimes called cumulative processes. Suppose for simplicity thag
the renewal process is pure, and imagine that in the nth renewal interva|
[Sn, Snt1) the reward rate is random and equal to I,. The reward Tate

process is

I(t) = In if t € [Sn, Sn+t1)
= Z Inlis, 500 (8),
n=0

and the accumulated reward up to time t is

C(t)——-/0 I{u)du.

This is easily analyzed since
N(t)-1

Sn t
Cl) = X_; fs RO /3 I(w)du

N{1)—1
(when N{t) = 1, we interpret Zg=1 =0)

N{t)~1

R t
= > / In_ldu+/ Ingy—1du
n=1 Y%-1 Snt—t
N(t)-1
= Z Yolnot +(t = Snw-1)INne-1-
n=1

If the last term can be neglected asymptotically then using the argument
of Proposition 3.4.1 shows

Cft) ~ tu~ BV I,

as t — oo, provided E|Y1y| < oo.
Other assumptions of a similar nature on the rate are possible.

Example. Harry and the Public Health Service. It is well known
to the Public Health Service that Harry’s Restaurant gives only casual
attention to matters of cleanliness; consequently, the Public Health Service
periodically closes the restaurant and mandates a cleanup. Independent
periods of operation and closure form an alternating renewal process. The
open periods are iid with means yu,, and the closed periods are iid with
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means e Lengths of open periods and closed periods are independent of
each other. What is the long run proportion of time that Happy Harry’s
Restaurant is open to its adoring public?

Imagine that at time O the restaurant is open and that {S,} are the
times when the restaurant reopens after being closed so that

Yn+1 = Sn+1 — 5, = OPn+1 + CLn+1-

Denote by {OF,} the iid lengths of open periods and by {CL,} the iid
lengths of closed periods. N(t) counts the renewals {S,}. Let I(¢} be 1 if
the restaurant is open at time ¢ and O ctherwise; then

¢
C(t):/o I({u)du,

and N(t)-1 N(L)
> 0P, <C()< ) OF,,
n=0 n=0

d therefore
- _Clt) _EOP) e
lim =

t—oo b E{5) _,Uo”f‘ﬂ-c,

giving the long run proportion of time the restaurant is open. M

3.5. THE RENEWAL EQUATION.

The renewal equation is the convolution equation of the form
Z=z+F=x2Z

or, in long hand,

(3.5.1) Z{t)==z(t) + /Dt Z(t — y)F(dy).

All functions are defined on [0, o0), and it is convenient to set z(¢) = Z({t) =
F(t) =0 for t < 0. Z is an unknown function, z is assumed 1o be a known
function and F is a distribution on [0, 00) with F(oo) = lim, 14 Fiz} < .
If F(oo) = 1 then we call the equation proper.

In branching processes such equations are common and appear in the
form

(3.5.2) Z=z+mFsZ,



198 RENEWAL THEORY

where F is proper. The branching process literature calls this a renewal
equation with a parameter (cf. Athreya and Ney (1972)).

We now consider some examples where the renewal equation arises
naturally. Generally such equations arise when one considers a probability
statement about a function of the path up to time ¢. The term z arises from
conditioning on the first renewal being later than ¢, and the convolution
term of the renewal equation arises by conditioning on the time of the first
renewal and moving the origin of time up to this first renewal epoch.

Example 3.5.1. Consider the renewal function U(¢). We have

[}

Ulty=)_ F™(t)=F" (@) + i F™* (1)
n=0 n=1

=F"()+ Fxy FmU)
n=1

=F™) 4+ F=U(t),

and we have the renewal equation with Z = U, z = F**.

Example 3.5.2. Age Dependent Branching Process. Individuals of
a population live for a random amount of time determined by a probability
distribution . At the time of death an individual reproduces k offspring
with probability px, k& > 0. We assume > .- p; = 1, and reproduction
is independent of life length. Furthermore, different individuals behave
independently of one another. For concreteness, suppose the population is
initiated at time 0 by a progenitor of age zero. (For a discussion of family
trees and the probability space on which such a process lives, see Jagers,
1975.)

Suppose X (¢) is the population size at time ¢, and set Z(t) = EX(%)-
Let the lifetime of the progenitor be the random variable L1, and suppose N
is the number of offspring procreated by the progenitor. Then PN = k| =
P, k > 0. Set m = EN = S0 kpy. Finally, let {{X;(t),t > 0},5 > 1}
be iid copies of X independent of (X, N, Ly). Then

Z(t) = EX(t) = EX()11, <o) + EX ()L, >4
On the set Ly > £, X(¢) = 1. On the set L) <t, we have

X(t)—ZX(t—

i=1

l[Ll <t]

Therefore,
N

Z(t) = Plla > ]+ EY_ Xt — L)1, <o

i=1
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For the second term (interpreting Z? =0),

N 00 k
EZ X.i(t — Ll)l[ngt] = Z EZXz(t - Ll)l[N:h,L1St]
i=1 k=0 i=1
oo k
=Y PIN =KEY  Xi(t — L1)liz, <4
k=0 i=1
o
= Z kPN = K|EX;(t — L1)liz, <y
k=0
= / (X1(t = Ly)|Ly = y)PlLy € dy
_ / Z(t— y)P[Ly € dy].
Summarizing,

Z(t) = P[L, > t] +mftZ(t —y)P|L; € dyl,
]

which is (3.5.2).

Example 3.5.3. Forward and Backward Recurrence Times. Con-
sider a renewal sequence {Sy,,n > 0} with Sp — Sy = Y5, and set

Fort > S, set
A(t) =1 SN(t}—la

FIGURE 3.2. FORWARD AND BACKWARD RECURRENCE TIMES
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AN

5 Sy Sy 5 Sy Sy

F1GURE 3.3. PaTHS oF A(t), B(t).

The forward recurrence time B(t), also called the excess life or residua]
tife, is the time until the next renewal. The backward recurrence time A(%)
is the time since the last renewal and is also called the age process. Paths
of B are line segments between jumps, which decrease at an angle of —45
degrees. For A the line segments increase and have slope 45 degrees. See
Figure 3.3.

To compute the distributions of A(¢) and B(t), we write a renewal
equation as a first step. Later, after some theory has been developed,
these equations are solved.

For A we assume the process is pure. Let x > 0 and fixed:

PIA() < o]

= PlA(t) < 2,Yy < 8]+ P[A(t) < 2, Y1 > 1.

Now, A(t) =t on [Y; >¢], so
PIA) < 7, Y > 1] = (1 - F() g, (0).

On [Y1 €], note that A “starts from scratch” at Y1, so
t
PLA® < o Yi <4 = [ PLA(-y) < a|P(dy).
0

The phrase “starts from scratch” is time-honored but vague. The following
elementary argument is precise. We have

P{A(t) < I,Yl < 3] = P{t - SN(t)—l < SC,N(t) > 2}

:iP[t—

Sno1 3,8, <t < Sn]
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Condition on Y31, and the above is
o0 t n—1 n—i n
=Zf P[t—(y+ZYi)Sx,y+ZY,- <t Sy+ZYi]F(dy)

Zf b=y — 8y €0,8 2 <t —y < SpilF(dy)

n=2

Z [ Plt—y - Sn(eyp1 <5 N(t - y) = n — F(dy)
_Z/

_ fﬂ PA(t —y) < z)F(dy).

Thus, in summary,

t
PlAW) < 2] = (1= FO)Lou(8)+ [ PLAG-v) < 1P ()
which is of the form (3.5.1) with z(t) = (1 — F())1jp 4 (¢) and Z(¢) =
P[A(#) < z].
For B we have for ¢ > 0 (still supposing ¥, = 0),
PiB(t} > z] = P|B(t) > z,Y; <] + P[B(t) > z,¥1 > t}.
In order for B(t) > z on [Y; > t], we must have ¥} > t+2. OnY, <{, B
starts over at Y7, so

|

1

) <z, N(t —y) = n|F{dy)

P[B(t) > z] = /Gt P[B(t—y) > z|F(dy) + 1 — F(i + ).

This is made precise as with the equation involving A(t). As an exercise,
try writing the equation for B when the process is delayed.
A challenging example of risk processes is discussed in Section 3.5.1.

We now consider the solution of the renewal equation (3.5.1).

Z(t) = 2(t) + jo Z(t - y)F(dy).

Set m = F(co) < oo and U(t) = Y_,2, F™(t). In the majority of cases, F
is a probability distribution and m = 1, but the added generality is useful.
Assume F(0) < 1. Then U(t) < oo for all ¢ > 0, because we can write

Zm

n=0

F(0} < 1, the finiteness of U follows from Theorem

(35.1)

—lF)n* )

Since m(m ™1 F)(0) =

3.3.1.
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Theorem 3.5.1. Suppose 2(t) = 0 for t < 0, and z is locally bounded,
Suppose F(0) < 1.

(1) A locally bounded solution of the renewal equation (3.5.1) is
U s 2(t) = fi 2(t - w)U (du).

(2) There is no other locally bounded solution vanishing on (—co, 0),

Proof. (1) We fizst check that U x z is locally bounded: For any T > 0

sup U *z{t)= sup /Ot 2{t — u)U{du)

0<t<T

< ( sup 2(3)) U(T) < oc.

0<t<T
To check U * z is a solution, note

Fx{Ux2z)=(F+U)*z

{(by associativity)
=(U-F")xz
(from the renewal equation for U given in Example 3.5.1)

=Uxz—z.
Thus
Ukz=z4Fx*(Ux2z),

and U * z is a solution of (3.5.1).

(2) Let 2y, Z; be two locally bounded solutions of {3.5.1) vanishing on
{—0c,0) sc that

(353) Zi=Z+F*Zi, 1=1,2.

Set H=2y — Zy, and H is locally bounded also. Further, if we difference
the two equations in (3.5.5) then

HZZ;-ZQZF*(Zl—Zz}=F*H.
Iterating, we get, for any n > 1,

H=F"x+H.
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Therefore, for any T > 0, and by recalling property (2) of Section 3.2.2

t
sup 10 = s | [0~ 1) - 22 - )P (@

0<t<T

< sup H{t)F™(T)— 0
0<t<T

as n — 00, since H is locally bounded and U(T) < oo implies F™*{T") — 0.
So H=0and Z, = Z,. B

Example 3.5.4. If F(z) = 1-e7®* £ > 0, then recall from Section 3.3

that
U(t) =1+ at.

Therefore
Usa(t)==t)+a [ =(t-u)dy
t
= z(t) + a/o z(u)du.

Example 3.5.5. If F(dr} = ze™"1(g cc)(z)dz, then, from the inversion
example in Section 3.3,

Z F™(dz) =

= >0,

Mla—!
NJI'—‘

and, in this case,
i 1 1,
Usalt) = o)+ [ 2t =)l - 5¢ )
0

Example 3.5.2 (continued).
u(t} = EX(t), then

If G is the life length distribution and

uit) = (i m"Gn*) * (1 —GH(t).

n=0

(Make the identification F = mG,U = S MG

Example 3.5.3 (continued). Solving the renewal equation for the dis-
tribution of A(t) gives
PlAG) < z] =

* (1= F) - lpa) ().
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For the tail of the distribution of B(t), we get
PB{E)>x]=U=x(1—-F(-+z))¢),

ie.,

(3.5.4) P[B(t) > z] = /:(1 — Flz+t - y))U(dy).

A special case is F/(dz) = ce™*"1(p oy (z)dz. Then
t ¢
/0 1-Flz+t-y)U(dy) =1 —F(m+t)+a/ (1-Flzx+t—y)dy
0

4
= g—(z+t) +0.f/ e—a(a:+t—y)dy
1]

t
— e—-‘::(:r-H) + e’Am:f ae~ds
Q
- eka(w—}-t) + e-—a::(l _ e—cxt) = g0

so P[B(t) > z] = ™%, and B(t) has the exponential density for each ¢.

An interpretation of U(dx) or V(dz): Renewal equations are obtained
by conditioning on an iniial renewal or jump in the process. Frequently
one can bypass the derivation of the renewal equation and go straight to a
deduction of the solution by conditioning on the last jump before time ¢,
The following heuristic helps one to do this. Fix 2 > 0. Then

o0
P{There is some renewal in (z, z + dz]] = P{ U [Sn € (2, z + dx]]}.
n=>0
Because (z,z + dz] is such a small interval, at most one renewal could

possibly be squeezed into it; hence the events {{S, € (z,z + dz]), n > 0}
are disjoint {heh, heh), and therefore,

P[There is some renewal in (z,z+dz]] = Z P|S, € (z,z+dx]) = V(dz).

n=0
We may now interpret (3.5.4) as follows:
P{B(t) > 1]

= f P[Last renewal before ¢ in {u,u + duj; no renewal in (¢t + 2]
u<t

= / P[Some renewal at (u,u + du]; no renewal in (u,t + z]]
uxi

=f<tU(du)(1fF(t+I—u)).

i{
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If you are nervous about this heuristic derivation, the derivation of
(3.5.4) based on the last renewal before ¢ is more rigorously given as follows
(assuming Yp = 0):

PB(t)>z|= P[SN{t) —t >

:iP[Sn—t>x;N(t):n}
n=1

S P ~t> 2,8, 1 <t< S,

n=1

and conditioning on S, gives

00 ¢
= Zf Ply—t+Y, >t <y+ Y JF D" (dy)
n=170

t o
=f P, >t+z—yy FOU(dy)
[}

n=1

- /O (1 - F(t+z—y)Uldy).

3.5.1. Risk PROCESSES*.

This is one of the time-honored examples in renewal theory and is more
challenging than the previous examples. It is an excellent example of an
interesting problem whose solution is obtained by writing and solving a
renewal equation.

An insurance company receives claims according to a Poisson process
with rate o (i.e., arenewal process with interarrival density ce ™ *®1g ooy ().
Sizes of claims are given by non-negative iid rv’s X7, Xo, ..., and {X,} is
independent of the Poisson process. Let f(t) be the amount of capital the
company has at time ¢, i.e., the risk reserve. We assume that, provided
f(t) = 0, the risk reserve increases at rate ¢ at time ¢ due to the inflow of
premiums as well as to profits from investments. We are interested in the
rain probability for the company, and we consider

R(z) = P{f(t) > 0 for all £ > 0/ f(0) = z| = P[ no ruin | f(0+} = z].

* This ~zction contains challenging material which may be skipped on first
reading by beginning readers.
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flt)

/ X,

FIGURE 3.4. THE RISk PROCESS

Xy

After claim X3, ruin occurs in the above picture.
Let 81,59, 83,... be the times of claims. Then

fE=z+ct 0<t< S,
=.’£+CSl-‘X1 t=5;.
If z + ¢S1 — Xy < 0, ruin occurs. Otherwise,
fi&)=xz+c5 - X +C(t—Sl)
=93+Ct—X1 Slst<52
=$+CSz—X1—X2 t=235s,

A.xfter the first jump, the process f continues as if it were starting from
time 0 with a new initial state z +¢5; — X;. Therefore conditioning on the
time and place of the first jump gives

R(z) =P[f(t) 2 0forallt > 0,z +cS; — X; > 0[f(0) = 4]
- J[{ ey P >0 VH(0) = s3] PI(S:, Xa) € (ds, )

Using the independence of X; and S, this becomes

o0 I+cs
= f / R(z +cs — y)ae™ ™ dsP[X; € dy).
s=0Jy=0

We mantpulate this to get it into the form of a renewal equation. First let
¢ =1z +cs 50 ds’ = eds, and

R(z) = f R(s' - yae™ " "1 Xy € ay).
s'=z Jy=0
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Dropping the prime
= o0 - 5
e " Riz) = ac'I/ g™ s (] R(s—y)P[X, € a"yl) ds.
T 0

The right side is the integral of a bounded function and hence is absolutely
continuous on (0,c0). This means that the left side is also absolutely
continuous, and thus R is continuous. If R is continuous , the integrand
on the right side is continuous. So the right side, being the integral of a
continuous function, is differentiable. (Review the argument of (8), Section
3.2.2.) Differentiating gives us

2

g eme” R!(I)_R(x)e—a:cc"lac—l — _ac—lewuc“lm/ R(.’L‘—U)P[Xl c dy];
0

ie.,

(3.5.1.1)

R'(z) = ac”'R(z) — ac™! ]: Rz — y)P[X, € dy].

At this point one has a choice of whether to derive an equation for R or
R'. We try R’. Noting that

R(z) = fo ’ R'(w)du+ R(0),
we have
foxR(I ~ Y)P[X1 € dy]
- [ e <+ moPr <
- fy |

-/ :D ( f ’;Op[xl e dy]) R'{z - y)du + R(O)P{X, < z)

R'(z — w)duP[X; € dy]+ R(O)P[X; < 7]

|

- / R'(z — w)P[X) < u)du + R(O)P[X, < 1],
0

S0

R(z) = ac™! ({R(a:) - ROPIX, < x|} — j: Rz —-u)PX) < u]du)
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or
(3.5.1.2) R'(z) =ac 'R{O)P[X; > z| + /I B (z — wyoc ' P[X; > uldu.
0

Set F'(du) = ac™'P[X; > u] so that F(Ry) = ac 'EX), and we have
Z = R, z(z) = ac'R(0)P[X; > z] (which still involves an unknown
R(0)). This gives a renewal equation.

Renewal equations can be solved using Laplace transforms. Set

d(A) = Be X g(\) = / - e 2R (z)dz.
0

Then using the convenience formulas of (3.2.3.1) gives the transform version
of (3.5.7) as

8()) = ac”'R(O)(1 — OAONAT: + ac™t(1 — o(ANATIO(N).
Solving for & we get

acIR(0)AH(1 — ¢(A))
1 —ac A 11— g(N)

(3.5.1.3) () =

Let
p=EX, = [ PUX, > zldz = lim A~} (1 — $(A).
o 540

We seek a solution of (3.5.1.2) which is non-negative, integrable and not
identically zero. From (3.5.1.3) we get

apc L R(0)
1—apct’

&%B(A) :-/0 R (z)dz =

and therefore we see that a necessary condition for such a solution to exist
is that

(3.5.1.4) ap < c.

This is a balance or mean drift condition asserting that the upward rate ¢

dominates the downward rate cp. (If ape™! > 1, then for a positive finite

solution we wounld need R(0) = 0 from which #{A) = 0 and thus R =0.)
When (3.5.1.4) holds we find a solution. First we check that

xll'.r{.lo 1 R(z) = R{o0) = 1.
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Let V{0, t] count the Poisson process of claims. Then

N(O/]
R(z) = Plz +ct > Z X,V it

i=1

=Plz+cSa> > X;,V 7l

i=1

= Pz > ZX,- — ¢S,V 7
=1

=Pl > \/ O Xi—cS)l.

n=1 i=1

If we can show Vo (3.0, X; — cSa) < oo, then it will follow that
limg oo R(2) = 1. However,

BX;—e(Si—Sim1)=p—ca"l <0,

by (3.5.1.4), so, by the strong law of large numbers,

™

Z(Xi —c{S:—5i1) = ZX,— —cS, — —o0 a.s., n—oo,

=1 =1
and hence
o T
VO Xi —cSn) < 0.
n=l =1

Now that we know R{oc) = 1, we may determine R{0). Let A | O in
(3.5.1.3) to get

lim () = fo " R(z)dz = R{oo) - R(0) = 1 — R(0)
auc 1 R(D)

1-quet’
Solving for R(0}, we find
R(0) =1~ auc™,

50 R 1s of the form

Rz = R(O) + [ "Ry, 20,
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d
o 3.6. THE P0IssON PROCESS AS A RENEWAL PROCESS.
_ ac M1 - g(A)A! 2 :
b2 = R(O)l —ac {1 — ¢(A))A? = R(0) Z(ac‘l(l = ¢(AA~hm . We pause here to collect some facts about the Poisson process. One con-
_ n=1 ; venient way to define a homogeneous Poisson process on [0, oo} with rate
Denote the density . i ¢ is to say it is a pure renewal process with interarrival distribution
ac” P[X) > z] =: g(x), Flz)=1-¢%, £>0
so ’ ’
T - where we do not count a renewal at time 0. Thus the Poisson process is the
dr = 1eq _ ~1 P
_/(] ¢ o) ac™ (1= ¢(A)A counting function {N(0,t],¢ > 0} where N(0,f] = N(t)— 1= N(t) - N(0)
and | and {N(t),t > D} is the pure renewal process corresponding to exponen-
, i - tially distributed interarrival times.
R{x} = R(0) Z g™ (z) Recall from Example 3.2.2 that
n=1
T —ar
(recall g**(z) = [ g(z — y)gly)dy, etc.). (3.6.1) F™(dz) = ofoz)™ to——ds, n>1,2>0,
For example, if X, is exponential, with mean u, then (n—1)!
)‘ _ 'u’—]. l 1— ¢()‘) 1 aﬂd theIEfOI'e
= T S e =
2% .1 _ p—azT k1
and (3.6.2) F*(z)=1—¢ kz_o(aa:) /K,
—171-gp(A - .
8()) = R(0) ac 1(4,\‘1) _ R(O)ﬁ—l@ . since differentiating in (3.6.2) yields £ F™"(z), which agrees with the right
1 ac—l(l_—ﬁi)\_)) 1-— acwl(niﬁ_) ; side of (3.6.1). Therefore, for a pure process
= R(0)+_1__1 _ R(0)ac™! ( pul—ac? | PIN(#)=n+1]= P[S, <t < Spy1]
Atpt-actt pl et \ W+ pmT—ac T ‘ = F™ (1) — v ()
= (M) /me—)\:c(ﬂul _ ac—l)e_(#‘l_ac—l)xdz ' n—1 n
B —ac 0 ‘ =1-e"" (aa)*/kl - (1 -7 (az)*/k])

= /OO e R'(z)dz. ; k=0 k=0
0 = e “(ax)"/n! = P[N(0,t] = n].

In this exponential case, we conclude

R(0)ae™?

The forgetfulness property of the exponential distribution is reflected
in the fact that

’ _ e (=l _—
Bz) = oy me g (07 —ae e (07— e PIB(t) Sz]=1-e""",
=(1- %)ge—u_l(l—%ﬂ)z ‘ and one checks easily
c & -
= (% (11 = Myyemnla- e : PlA(t) £ :{l_e Ttz
CENEH1 = e O <=1, t<a.
from which Finally, we have
T
R(z) = R{0 ! oo
(z) = RO} + o  {u)du Uty =BEN(t)=1+EN(0,8] =1+ _ne *“(at)"/n! = 1 +at.
= (1*%)*-05_# (l_e".“-l(l“%“i)l‘). . n=0
c ¢ Keep these facts at your fingertips, as they will be used frequently.
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3.7. An INFORMAL DISCUSSION OF RENEWAL LIMIT THEOREMS AND
REGENERATIVE PROCESSES.

Here we discuss informally two very important (equivalent) renewal limi;
theorems and emphasize their significance by applying them to some exam.
ples. We also discuss the important class of processes called regeneratiye
processes.

Before this discussion, it is useful to distinguish between renewal theory
in discrete time (where interarrival random variables take values only in g
set of the form {0,a,2a,...}) and the contrary case. Say F is arithmetic
if for some a > 0 we have F({0,a,2a,...}) = 1. If there is no such valye
a, then call F non-arithmetic. In the discrete case where F is arithmetic
there always exists a largest value of a, say ap, such that F' concentrates
on {naeg,n > 0}. This is called the span of F. In Chapter 1 we considered
non-negative integer valued random variables, and there typically we had
ag = 1.

This chapter focuses mostly on the non-arithmetic case. The soon tg
be discussed Blackwell theorem and the key renewal theorem are correct
for both cases, if, in the arithmetic case, we assume that all variables
t,z, etc., however, are multiples of the span ay. Integrals are then to be
interpreted in the arithmetic case as follows: dz is the uniform measure
assigning mass ag to each point 0, ag, 24y, .. .. This is convenient because,
with this convention, for instance

= /000 zF(dz) = ZnaOF{nao} = Zﬂo(l — F(jap))

n=0 F=0
:]Dmu — F(z))d,

As we will discuss in Section 3.8, the arithmetic case can be treated sep-
arately via Markov chain limit theorems. Although it is possible to treat
both the arithmetic and non-arithmetic cases together, and, for the most
part, there is no confusion, in several respects the novice is better off con-
sidering the two cases separately.

The two main asymptotic results (which are in fact equivalent) are
Blackwell’s theorem and what is known as the key renewal theorem origin-
ally fermulated by Walter Smith. Blackwell's theorem states that if the
delay distribution is proper, then

V{t,t+a] = a/p, ast— oo

For the key renewal theorem, consider the solution Z = U # z of the renewal
equation
Z=z+F=x2Z,

r
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where F' is a proper distribution. If z satisfies a mild hypothesis called
direct Riemann integrability (defined below in Section 3.10.1; abbreviated
as dRi}, then

= o)
lim Z{t) = lim U=+ z(t) = p,"lf z(s)ds.
t—o0 t—co 0

The dRi condition is satisfied, for instance, for functions 2 which are de-
creasing and integrable.

This suggests the renewal method: If it is desired to calculate lim,_, o
Z(t), we first write a renewal equation for Z, solve it and then apply the
key renewal theorem. This plan will be followed for the calculation of the
asymptotic distributions of A(t) and B(t) below.

Blackwell’s theorem is more refined than the elementary renewal the-
orem. In fact, the Blackwell theorem bears the same relation to the ele-
mentary renewal theorem as convergence of a sequence bears to Cesaro
convergence of the sequence. To see that the Blackwell theorem implies
the elementary renewal theorem, observe first that Blackwell’s theorem
implies

V(n—1,n) — 1/,

and hence the Cesaro averages of {V(n — 1,n]} converge:
1 1
=3 V(k~ 1,k = =V{0,n] - 1/p.
n i n

Therefore,
Vg +1) - V()
[t]

(R (5)-

limsup ¢~ (V(t) — V(0)) <limsup
t—+00

t—o0

_,u’

= lim sup

t—oo

with a reverse inequality obtained similarly.

Detailed discussion of the logical relationships between Blackwell’s the-
orem and the key renewal theorem will be given later in Section 3.10.2. For
now we hint that Blackwell’s theorem makes the key renewal theorem plau-
sible because

f 2{t - 2)U{dz) = [ 2y)d(~U(t - ))
0 0
=/0 2yl —y,t —y+ dyl,

and, applying Blackwell’s theoremn, this is
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~[ W)y — e

}]:]xample 3.5.3 (continued). Recall for the forward recurrence time we
ave

PIB() > 2] =U = (1 - F(- 4 2))(8),
where z(s) = 1 — F(s + z). Thus for each z > 0, applying the key renewal
theorem gives
tl_lg.lo P[B(t) > z|= u_ljo z(u)du
=u7 [T Q- Flu+ )
0

= p_ljm(l — F(s))ds =: 1 — Fy(z).
Similarly, for the age process we hamve
PA®) Szl = U (1 - F) - 1pp.)(2),
so that z(s) = (1 — F(s))l0,4)(5). Letting ¢t — oo, and applying the key

renewal theorem, we get

tlirgo PIAG) <z]=p? fowz(u)du
= [T P

=t foz(l — F(u))du = Fy(z)

so the limit distributions for A{¢) and B(t) coincide. Note that if F(dx) =
ae” " ¢ > 0, then

o0

= =]
e”du=e"% =1~ F(z).

1= R = ut [ (- Fu)du=a

1
Therefore, for a Poisson process the Yimit distribution for B(t) is the same

as the distribution of B(t} which is one manifestation of the stationarity
of the Poisson process.

Note that the transform of F, yields
[+ =]
Foln) = / e 4Ry (z)
0

— -1 e —Ax _ T
# fo e (1 — F(z))ds

1- F(})
Apt
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from convenience formulas (3.2.3.1). Suppose we start a delayed renewal
process with delay distribution & = Fy. What is the corresponding renewal
function V()7 We have V = G+ U = G= 3~ F™ and therefore

5 PR Ry _1
V(X)) = Fy(ANU(MN = = =
0 = RI = 25 =5
which we recognize from Example 3.2.7 with n = 0 as the transform of
V(1) = t/u. Conversely, if Vi{t) =t/p, then

V() = 1/(A) = GOV = F(V),

from which

and thus G = Fy. We conclude that for a delayed renewel process, the
renewal function V(2) is linear, V() = t/p, if and only if the delay distri-
bution G s Fy.

3.7.1. AN INFORMAL DISCUSSION OF REGENERATIVE PROCESSES.

A broad class of processes exhibit limits for their state probabilities because
of the key renewal theorem. Consider a stochastic process {X (t),t € T}
where the index set T is either [0,00) or {0,1,...}. Suppose there is a
renewal process {S,} of times where the process regenerates (probabilis-
tically restarts itself) so the future after one of these times, say Sy, looks
probabilistically exactly as it did back at time 0. For example consider a
bositive recurrent Markov chain with state space {0,1,...} started from
0. Renewal epochs are the return times to 0. The evolution of the chain
after each return time is that of a Markov chain started from state 0.

To put a bit more precision into this (though still being informal),
we say a process {X(£),t € T} is regenerative if there are random times
{Sn} C T such that

1. {5,} is a renewal process.

2. The process after any S, has the same distribution as the whole
Process; for any n and k,0 <ty < --- <, t; € T,1 < i <k, we have

(X (S + 1), 1<i< k) & (X(t),1<i<E).

3. For any Sy, the process past 5, is independent of {Sg, S1,....Sn };

le, {X(t + S,),t € T} is independent of {Sy,. .., S.}.
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Consider the pieces of path (X(¢),t € TN [S,, Snt1)), as the nth cycle
of the process.

Some examples will clarify what is intended.
Example 3.7.1. Markov Chains. Suppose the chain is positive recyr.
rent with state space {0,1,...} and started from 0. Then S, = 1p(n).
Example 3.7.2. Smith’s Random Tours. Let ({Y;(t},t > 0},¢)),
7 > 1, be iid with £ > 0. Think of {¥;(),0 < ¢ < ¢;} as a piece of the jth
path of a random duration £;. Define Sq = 0,8, = > [, & and

X(t) = Z}G(t - Sj—l)l[sj_l,Sj)(t)a t 2 0.

o0
i—1

a

To get X (#), we take the snippets of path {¥;(2),0 <t < &;} (or random
tours of random length as Smith called them) and stitch them together.
This construction gives a method for simulating a regenerative process.

Example 3.7.3. M/G/1 Queue. Consider a queueing model with Pois-
son arrivals of rate a: the arrival process of customers is modelled as a
Poisson process with interarrival distributions which are exponential with
parameter a. Customers are served on a first come first served basis, and
service times are iid non-negative random variables with distribution G,
An arriving customer at time 0 initiates a busy period which continues
until the initial customer and all his descendents are served; i.e., until the
server working continuously looks up, sees an empty queue and can take a
break. At the end of the initial busy period, the queue is empty. The next
customer arrives after a random exponential (parameter a) length of time
which is the forward recurrence time of the Poisson process. This forward
recurrence time is an idle period, at the end of which, another customer
arrives, and the work load builds anew. Let V(t) be the load on the server
at time t; if the input is shut off, V(#) is the amount of work facing the
server until the queue is empty.

This describes a decomposition of the work load process V() into
cycles consisting of a busy period and an idle period. Renewal times are
the beginnings of busy periods.

There is no specification of the state space in the definition of a regen-
erative process. For Smith’s theorem, given next, we suppose for simplicity
that the state space is {0,1,...}. More general state spaces are considered
in Section 3.12.

Smith’s Theorem 3.7.1. Let {X(t),t € T} be regenerative with renewal
times {S,, = ZL:Yj,n > 0} which constitute a pure renewal process.
Define

g (t) = PX() = 4,5 > 1,
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and suppose u = EY, = E{ cycle length } < oc. If the distribution of the
cycle length, Y1, satisfies a mild regularity condition (satisfied for instance
if the distribution is absolutely continuous or concentrates on the integers)
then the following limits exist:

. . 1 =
tm'Llor’f;ETP[X(IE) =jl=p;= E—Yl/O g;(t)dt

2§l
—wE [ 1 (X

_ E( occupation time in j per cycle )
E( cycle length )

Proof. We use the renewal method: We write a renewal equation for
Py{ty = P[X(t) = j]
and solve and then use the key renewal theorem. We have

Py(e) = P[X(t) = j]
= P[X(t) = 7,5 > t] + P[X(t} = 5,51 <]
= g;{t} + P{X(t) = 4,51 < t].

In the second term, condition on Sy, move the time origin up to S and
use the regenerative property to conclude that the second term is

t
/ Py(t — s)F(ds) = F * P(t).
0

We therefore obtain the renewal equation

Py(t) = g;{t) + F + F5(t),
which has the solution

Pi(t) = U = g;(t}.

Applying the key renewal theorem gives

lim Pj(t):,tfl] qj(s)ds.
T 0

t—o0,le

(Note that regularity conditions on F are necessary to ensure the fact that
g;(t) is dRi, which is needed to apply the key renewal theorem.)
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It remains to analyze the limit and express it in a different form. We
note

/00 g;(s)ds = fm P[X(s) =75 > s|ds
0 0

= [o Elix(s)=j,s<5,]d5

=E (A llx(s)Ij--i(Sl]ds)
51
=5 fo 15X(s)=j1f‘~’5)

= E{ occupation time in j per cycle ),
which completes the derivation. B

Frequently this result serves primarily as an existence result but does
not help calculate the limits explicitly. Sometimes, however, symmetry or
other special structure provides a way to calculate the limits explicitly.
Example 3.7.3 {continued}. The M/G/1 Queue. Let Q(f) be
the number in the systemn at time ¢{. This is regenerative with re-
newal times {S,} which are the beginnings of busy periods, so we know
lim,_, o, P[Q(2) = j] exists. For j = 0 we have

__ E{ occupation time in 0 per cycle )
Po = E{ cycle length )

We know that the cycle consists of a busy period and an idle period.
The idle period is exponential with parameter a, so F( cycle length )} =
E{BP) + a™'. The occupation time in state 0 is just the idle time with
expectation 1/a, so
1/a
Po= =y T
E(BP)+1/a

This still leaves us the task of computing E(BP). The computation of p;
for 7 > 1 is harder.

Example. Harry Visits Haifa, While visiting Haifa, Harry discovers
that people who wish to travel quickly from the port area up the mountain
to The Carmel frequently take a taxi known as a sherut. The system
operates as follows: Sherut-eem are lined up in a row at a taxi stand. The
capacity of each car is K people. Potential passengers arrive according to
a renewal process and enter the taxi at the head of the row. As soon as K
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people are in the car, it departs in a cloud of diesel emissions. The next car
moves up, accepts passengers until it is full, then departs for The Carmel,
and so on. Let X(t) be the number of people in the car at the head of the
line at time ¢, and set P;(t) = P[X(t) = j]. Assume the range of X(t) is
0,1,..., K -1},

Care must be taken to identify the correct renewal processes. Let
{T,,,n > 0} be an ordinary renewal process of epochs at which customers
arrive. If we assume X(0) = 0, then the renewal epochs at which X ()
regenerates are {S,} where

So=05=Tk,5 =Tok,...,

since these are the times when cars become full and depart. See Figure 3.5
for a visual aide.

K=13
3 4 ! 1
9 4 - S
| 1 _— I ————m
| | ol
1 T3 1y Ty T i T

FIGURE 3.5. THE Sherut PROCESS

Forj=0,...,K — 1 we have

E{occupation time in j per cycle)

111.120 Pt = E(cycle length)
_En 1
T KETY K

This is one example where we can compute P;(t) fairly explicitly. We have,
forj=0,1,..., K -1,
g;(t) = P[X(t) = 7, 5: > t] = P[M{0,¢] = 3],
where M is the counting function for the renewal process {7, }. Therefore

P;(t) = P[M(0,t] = j]*» U(t),
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where U is the renewal function of the process {S,}. If we restrict ourselveg
to the case of Poisson arrivals with rate a, then

e~ (at)

PIM(O, 1 =] = ~—

and

00 =3 ((ZF)

a+ A

3
o

Therefore, for the Laplace transform Pj()\) of P;(t),

B\ = j; ” e~ P;(x)dz

=f e + g; (x)dz = T(N) /me-*mqj(m)dm.
0 0

Now

o0 o0 —ax J
fo e"\”qj(:c)ds=f0 e‘*“e—-j(—!m—)—dm

o0 a je—a:c
=a_1f e_kmﬂ—dm.
0

11

From Example 3.2.3 this is

from which
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3.8. DISCRETE RENEwWAL THEORY.

guppose the interarrival distribution of the renewal process is arithmetic

with span 1. The sequence {¥,,n > 1} consists of independent, identically

distributed, non-negative, integer valued random variables, and we set
P[Y1=k]=fk: kZO;

and assume P{Y; < oo} =372, fi = 1. Define for n > 0

o0
Un =U({n}) =E>_ 1} (Sk)
k=0
= FE{( number of Sk equal ton }.
If we assume (which we will) that fo = 0, then P[¥; > 1] = 1, and,
consequently, an alternate interpretation of u,, is

00
un = P{ U {8k = n]} = P{Skx = n for some k = 0].
k=0

Note that U(n) = U[0,n] = 3, ui and up = 1.

We may relate the ordinary renewal process to a Markov chain as
follows. Let

np = sup{n : P{¥Y1 =n| > 0}.
Define
{P[Y1>R‘Y1>’n.""ll, if1<n<ng
=10, ifn>n,,

and set g, = 1 — p,,. Now consider a success run Markov chain {A,} with
transition matrix

0 /a1 m 0 0O
1{g 0 p O
P:2

g2 0 0 ps

The point of this construction is that, for n < ng,
M = PlAy=1,40=2,.. ., Ap_y=n—1,4, = 0]
=P1P2.--Pn—-1ln

fP[Y1>1lP[Y1>2] P[Y1>n—l] 1 P1Y1>’n.]
_P[Y1>O]P[Y1>1]“'P[Y1>nf2]( P[Y1>n—1])
_P[leﬂl_ _

BT

= fa,

and, for n > ng,
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Thus, the first return probabilities to state 0 for the Markov chain are given
by {fn}. If we start this Markov chain in state 0, then, by dissection, the
return times to (0 have the same distribution as the original renewal process

{5}

{80,720} £ {7o(n),n > 0}.
{In fact, {A,,n > 0} is the age process of the ordinary renewal sequence
{Sn}, but it is not necessary to verify this here.)

We may now apply our knowledge of Markov chains to the renewal
sequence. We have

pt()g) = Py{A, = 0] = P| renewal at time n ] = u,,.

From Proposition 2.6.1 we get
() _ N ), (n)
Poo = Zfo(ﬂpf)?} 7,
e
which in renewal theory language becomes

n
Up = E fjun_j.
=0

This shows that the sequences {u,} and {f,} determine one another, and
technigues comparable to what is used in Proposition 2.6.1 yield

1

U(S)zi——FG_)"

0<s <,

where U(s) = > 2 quas™ and F(s) = Foo(s) = Y pvq fns™. Furthermore,
since the distribution of Y] is arithmetic with span 1, 0 is an aperiodic
state of the Markov chain, and if EY] = i < oo, then from Theorem 2.13.2
we get

(3.8.1) U, :pf,’g" —1/u, n— oo,

and this is the discrete version of Blackwell’s theorem (cf. Section 3.10}.
Of course it now follows that if A > 0 is an integer

Ulnn+hl=up+ -+ ttnqsh — h/p
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as n — 00, and this is the exact analogue of Blackwell’s theorem.

For the key renewal theorem we have the following: Let z(k),k >, be
a non-negative function defined on the integers satisfying S o 2lk) < oo
so that in particular z(k) — 0 as k — oo, Then the asymptotic behavior
of the convolution U * z is

n—+00

lim U *z(n)=p" 1Y 2(k).
k=0

This is readily seen from (3.8.1) as follows. Given € there exists ko such
that if £ > kg, then
plee<u <pl e,

since u;y — 1/p as k — oo. So for large n we have

n ko n
Usz(n)=Y 2(n—kue =) zn—kue + S 2(n— Ruk
k=0 k=0 k=kp+1
ko n
<3 an-ku+ (@) Y #n—k)
ko n—kp-1
=Y el -kt (@ ) Y 2(m),
k=0 m=0
and since z(n) — 0 as n — oo we get
o0
limsupl * z(n) < (™2 +€) E z(m).
nese m=0

We may let € — 0 since the left side does not depend on ¢. In a similar
way, we find

liminf U * z(n) > ("' —€) 2 z(m).
n—od g

So we see that in the discrete case both Blackwell’s theorem and the key
renewal theorem follow from the Markov chain limit theorem. .
Suppose now that {S,,n > 0} is a delayed renewal process with

PlYo=n]=gm n=1 PYi=n]=fn,nz]
with 37 | fn = 1. If, as usual ,

V{{n}) =: v, = P[Sx = n, for some k|
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then forn > 1
™
Un = Z Frln_k,
k=1

so that v, = U * g(n), and the key renewal theorem yields

(e =] oo
Jm v =) oe/BYi=u7t ) ok
k=1 k=1

If {Y,.n > 1} are interarrival times with arithmetic distribution of
span ag, then by adjusting time scales we get back to the case of span 1.
Set Y,# = Y,,/ap so that the distribution of ¥;¥ is arithmetic with span 1.
Then for a pure renewal process

k=0

P{D[Sk/ﬂo = n]}

k=0

:P{D[Sf:n]}
k=0

1 1 _ ap
EY} EYifas EY

U({nag)} =: gy = P { U (Sk = nag]}

:uf—}

3.9. STATIONARY RENEWAL PROCESSES*.

The homogeneous Poisson process has the interesting property of a con-
stant renewal rate meaning that the renewal function is linear, If the Pois-
son process is built from interarrival intervals which are iid exponentially
distributed with parameter a, then

EN(t) —1=at.

Recall from the end of Section 3.7, however, that there is a much broader
class of processes with this property. We checked in Section 3.7 that when

* This section contains advanced material which may be skipped on first
reading by beginning readers.
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= BEY] < oo, the renewal function V(t) of a delayed renewal process is
linear, V(t) = £/, t > 0, if and only if the delay distribution G is

Fy(z) = p™? ‘/:(1 — F(s))ds.

With this in mind, define a stationary renewal process as a delayed
renewal process with {¥,,n > 1} iid with common distribution F with
g = fooo zdF(r} < oo and delay distribution Fp for the distribution of
Y;. So far, we know a delayed renewal process has constant renewal rate
put much more is true: We explore in the next theorem additional facts
about stationary renewal processes which provide further justification for
the adjective stationary,

Theorem 3.9.1. Assume u < 0o and

Fofw) =™ [ (1= Pl

(a} A stationary renewal process gives rise to a strictly stationary point
process: For any h > 0, integer k > 0, time points 0 < t; < --- <t and
s; >0, i=1,...,k, we have equality in distribution of the k-dimensional
random vectors

(N(titi+si,i=1,.. Kk} S {N(t;+hti+si+h],i=1,...,k}.

(b) In a stationary renewal process V(t,t + b] = u~b independent of
t for any b > 0.

{c) In a stationary renewal process {B(t),t > 0} is a Markov process
with stationary transition probabilities and Fy Is a stationary probability
measure for this Markov process. Thus if a renewal process is stationary
(so that P[Yy < z} = Fy(z) = P{B(0) < z|) then B is a strictly stationary
process, meaning for any k,h > 0,0 <, < --- <t we have

P[.B(tl) S SL',',]. = 1,,k] =P[B(t5_+h) S.‘Bi,l = 1,...,k].

(d) In a stationary renewal process Fy is a stationary distribution for
the Markov process {A(t),t > 0}.

{e) If Fy is the distribution of the age of the item present at time zero
then V(t,t+ b] = u~'b independent of t for any b > 0.

Any of these properties characterizes 2 stationary renewal process and Fy.

A discussion of Theorem 3.9.1 occupies the rest of this section. As a
preliminary, we prove a result which is very similar to Proposition 1.8.2.
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Lemma 3.9.2. Suppose {S,,n > 0} is a stationary renewal sequence
Then for any h > 0 .

(3.9.1)
in R* and
(3.9.2)
d
{Yo.Y1,. ..} £ {Swgy — b Yogyen K 2 1} = {B(h), Yn(yx, k > 1}

in B,

{SNn(h)4n — hyn > 0} £ {S.,n >0}

Proof. Tt suffices to show (3.9.2) since, by applying the map

gy, v1,...) = (%o,% +¥1, %0 + 1 +y2,...)

{from R* — R*), (3.9.1) follows from (3.9.2).
For real xy, ..., zx we have

P[Sngny — b < 20,Yy(ay4i < 24,8 < &)

=<3
=Y PISng ~h < 2o, N(h) =]

n=0

00
=ZP[Sn—hS$0,Yn+i Sa’,‘“ZSk,N(hJ:n]

n=0

= [Sam1 € h < S,], we have [N(h) = n] €
»Sn) =a(Yy,...,¥,), so

[Sn —h < 2o]N[N(R) =n} and NE, [Yay: < 4]

are independent, Hence the above is

Since [N(h) = n]
O‘(So, N

> PlSu — h < 20,N(h) = nPINL, [¥ps < 1]

n=0

k o0
= HF(mi) ZP[S" —h <z, N(h) =n]

n=0

k
= [1F @) PISwn) - R < )

i=1

k
= P[B(h) < zo) [] F(z)

i=1

=P <zp,Yi<zyi <k|. W

Before proceeding with the proof of Theorem 3.9.1, we consider again
the forward recurrence time B(t)
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Proposition 3.9.3. For a stationary renewal process, the forward recur-
rence time process {B(t),t > 0} is a homogeneous Markov process, mean-
ing that, fort > 0, s > 0, z > 0, It satisfies

(3.9.3)
(3.9.4)

PIB( +5) < 2|B(w),u < t] = P[B(t + &) < |B(®)]
— P{B(s) < 2lB(0)].

Remark. A comparable result can be stated and proven for the age process

{A(t)}. However, since A(t) = ¢ ~ Sy()—1 is only defined on [Sp,0), a

provision must be made for extending the definition of A(t) to [0,.55). See
Asmussen (1987), for example.

Proof. We only consider the statement about B. We proceed to show that
we can write B(f + s) as a function of B(f) and quantities independent of
B(t). See Exercise 2.6 for a discussion of this method.

Define the forward recurrence functional on sequences of non-negative
elements. This is a mapping g; : [0, 00} — {0,0¢) defined by

™ n
gt(xo,z1,...) = inf{Za:i —t: Zmi >t}
i=0 i=0

Now there are two cases to consider, namely, B(t) > s or B(t) < s. If
B{t) > s, then
B(t+s) = B(t)—s.

On the other hand, if B(f) < s, then there is a renewal at epoch ¢ + B(t},
and we may imagine the process starting from this time. Thus in this case

B(t+8) = gis-t-80) (Ynw+: k2 1) = ge— ey (Ynpy+n. k2 1)
Summarizing the two cases together, we have
B(t+s) = (B(t) — s)lia(n2s) + (Gs—B(13) 1 {B(1)<s]-

The result now follows from Lemma 3.9.2 and Fxercise 2.6. W
We now turn to the proof of Theorem 3.9.1.

Proof of Theorem 3.9.1. We discussed (b} adequately at the beginning of
this section. Consider (c). Recall for a pure process that

P[B(t) > z] = /t{l - F(t+z — sHU(ds).
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Therefore, for a delayed process with delay distribution G,
P[B(t) > z] = P[B(t) > =, N(t) = 0] + P{B(t) > z, N(t} > 0]
S 1-Glt+a)+ fot PIB(t - u) > 2|B(0) = 0]G{du)

=1-Gt+2)+G=xU=*1-F(-+z)(¢)
=1-Gt+2)+V=*1-F(+z)(t).

If G = Fy, then V{dy) = p~'dy, and, for all t > 0,
t
PB({t)>zl=1-FR{t+z)+ ;.L_I/ (1-F(t+z—y)dy.
0

Making the change of variable u ={ +z — y, this is

o0 t+x
. f (1 - F(y)dy + f (1 - F(u)dy

+x

oo
=5 [ - Py =1-Ria)
= P[B(0) > dl,
so B(t) 4 B(0) for any t > 0. To check that B is strictly stationary (a

general fact about Markov processes started by a stationary distribution),
note that, for any k£ and z1,...,x¢ and h > 0, we have

PIB(t +h) <z < k| = / PB(ti + h < 71,1 < k| By = 2] Fo(da).

Ry
Since B is a homogeneous Markov process, this is
= / P[B(#)) < xy,i < k|B{0) = z|Fy(dz)
Ry
= P[B(t,_) < :17,‘,1: S k]

showing B to be strictly stationary.
We now prove (a). For y € R define f: R® — RF by

f(y) = (Z l(ti,t.-+s.-]{zyj)si = 1?"'7":) -
n=0 7=0
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Then from Lemma 3.9.2

d
fYo,Y1,...) = f(Snwy — b Y+ B 2 1),

The left side is
(N, 8+ 6], 1 < k).

The right side is

(Z 1(t¢,ti+3i] (SN(h)+n - h‘)y't' < k)

n=>0

=]
= (3 etntito+a)(Svyen), i < k)

n=0

= Z Ltorht; 45,48 (Sn), 1 < k),
n=N(h)

and, since Sp, 51, ..., Sy(p)-1 are all in [0, h) and hence less than t; -+ h,
the above sum is

o0
(z 1(t,~+h,t,—+si+h}(sn):'i < k') =(N( +h bt +5; + hl, i < k).

n=0

Conversely, if N is stationary, then N(z,¢ + b) LN (0,8, so EN(t,t+
b] = V(t,t+ b is independent of ¢; therefore, stationarity follows from (b).

The converse of (c) is most easily verified by using the (not yet proven)
key renewal theorem to prove

Jim P[B(t) < ] = Fola).

If B(t) £ B(D), then P{B(0) < z} = Fy(z) as desired.

We understand (e) as follows: Suppose an item whose life length L has
distribution F is placed in service at time - A < 0, where A has distribution
Fy. Then

PlYo > zjA=a]=P[L >z +al|L > q|
1-F(z+a)
~ 1-F{a} '

and therefore
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PlYy >z} = fom P[Ys > z|4 = o] Fp(da)

[T 1=-Fla+z) -
_/0 e = Pla)uide

ST R z
=it [ (- Pa+a)ia
=1—F0(.'E).

So the process is stationary. W

3.10. THE BLACKWELL aND KEy RENEwWAL THEOREMS*

The two main asymptotic results in renewal theory are Blackwell’s theorem
and what is known as the key renewal theorem originally formulated by
Walter Smith. Blackwell’s thecrem states that if the delay distribution is
proper, then V(t,t + a] — a/p as ¢ — oc. For the key renewal theorem,
consider the solution Z = I/ x z of the renewal equation

Z=z+Fx2Z

If the function z ig directly Riemann integrable (defined below; abbreviated
as dRi) then

tlim Z(t)= tlim Usz(t)=p? / z(s)ds.
— 00 —00 0

Recall from Section 3.7 that this suggests the renewal method: If in a
renewal theory argument it is desired to calculate lim;—.o, Z(t}, for some
function Z(t) we first write a renewal equation for Z, solve it and then apply
the key renewal theorem. Recall the calculation of the asymptotic distri-
butions of A(t) and B({) in Section 3.7. Remember also that in Section
3.7 we checked that Blackwell’s theorem was stronger than the elementary
renewal theorem.

Reminder: The conventions regarding the arithmetic case described at
the beginning of Section 3.7 are in force and are needed for interpreting
the two theorems in the arithmetic case. Alternatively, for the arithmetic
case, rely on Section 3.8,

*This section contains advanced material which may be skipped on first
reading by beginning readers.
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3.10.1. DIRECT RIEMANN INTEGRABILITY.

Additional references for this material are the following excellent books:
Feller, 1971, pp. 361-362; Cinlar, 1975, p. 294-6; Jagers, 1975, p. 108ff.

The key renewal theorem was originally discussed by W. Smith under a
variety of hypotheses. It seems that Feller recognized that the equivalence
of the key renewal theorem and Blackwell’s theorem was achieved under
the condition he termed direct Riemann integrability. Continue as usual
to suppose that the function z satisfies = > 0 and z(t) = 0, ¢ < 0. (We
suppose that z > { because this is what is needed in applications. A
theory could also be developed allowing negative values for 2z, but we do
not pursue this.)

For what follows, heavy use is made of the usual notational convention:
We set as usual

V50 =swp ), A\ 7(6)=jnf 1)

tEA tceA

for the supremum and infimum of a real valued function f defined on a
domain A,

We begin by reviewing the classical definition of Riemann (R) integra-
tion on [0, 00). First we define what it means for z to be R-integrable on
[0, a]. Define for k > 1

my(h) = /\ z(t)

(k=1 h<t<kh

g (h) = V

{(k—1)h<t<kh
F(h)= > hmu(h)
k:kh<a
ahy= > hmy(h).
k:kh<a

Observe g(h) is nondecreasing as k | 0, and 7 (k) is non-increasing as i | 0.
We define z to be R-integrable on [0, a] if

5 (h) — o(h) — 0

a3 h .- 0, and, in this case, we set

foa z(s)ds = E{gﬁ(h).
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An important and useful classical fact is that z is R-integrable on (0, a] iff
z is bounded and a.e. continuous.

We then define R-integrability of z on [0, c0) to mean z is R-integrable
on [0,a] for all @ > 0 and

&

lim z(s)ds exists.
400 0

In this case
OQ 2}
[ z(s)ds :== lim z(s)ds.
0

Q00 0

In contrast, we have the notion of direct Riemann integration: Define
k), mg(h) and F(h), g(h) as above except now for 7 and o we have

o(h) = hmy(h), and (k) = > hmx(h).
k=1 k=1

Then z is dRi if (k) < oo for all k and

lim 5(h) - o(k) =0.

Note that if 7(h) = oo there is no hope of finding »' < h such that (k') <
00,

Example 3.10.1. Since z > 0, f;* z(s)ds is the area between the graph
of z and the horizontal axis. Consider a function z consisting of triangles.
The nth triangle is centered at n and has base of length p, and height h,,.
See Figure 3.6. Suppose the y, are such that the triangles do not overlap.
We may allow g, — 0, hn T oo in such a way that 3 h,pn < 0o. Then

/ z(a)ds = Z 1hmun < 00
0 n=1 2

and z is R-integrable. {Recall for a function to be Riemann integrable on
[0, 20), it does not have to be bounded.) However z is not dRi since

o0 oo
o{l) = Z V z(s) = Z hp = oo,
n=1(n-D<s<n n=1
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L
T
i

#'FI

Ficurre 3.6.

By doctoring this example a bit, Feller (1971) shows that the key
renewal theorem can fail if the function z oscillates too much in a neigh-
berhood of infinity.

Example 3.10.2. Let F concentrate on {1 — a,a} where 0 < a < 1 and
@ is irrational. (We pick « irrational to get F non-arithmetic.) Then the
renewal function U/ concentrates on

{k — na: k,n integers such that k — na > 0}.

(To check this, think of adding iid random variables taking values in
{1 — a,}.) Define z by triangles centered at k — na of height 1 with
bases small encugh that the triangles do not overlap and the sum of the
areas of the triangles is finite. See Figure 3.7.

k-na

R = S——

Figure 3.7.

The key renewal theorem predicts

Lo o]
tlim Uxz(t) = ,u'lf z(s)ds < o
—rO0 0
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but for r an integer

2t~ [ e - 9)Uay)
= Z z(r — (k — na))U{k - na}

knik—no<r

= Z 1U({k — nal})

k,nik—-na<r

=U(r) — oo

as r — 00. Thus the key renewal theorem fails,

Moral: If z gets large in neighborhoods of infinity at embarrassing
times, the key renewal theorem may fail. The concept of dRi prevents this,

The following remarks and criteria flesh out the definition of direct
Riemann integrability.

Remark 3.10.1. If z has compact support then Riemann integrability is
the same as direct Riemann integrability.

Remark 3.10.2. If z is dRi then z is R-integrable on [0,00) and
tm(h) = [ +(s)as,

where [ z(s)ds is the Riemann integral.

Proof. The method is to approximate [0, o0} by [0, a) and then approximate
the integral by a sum: First observe

0= 2{3 te(h) —a(h)
= 1’5:01 Z hig(h) -~ Z hm, (k)
k=1 k=1
= lﬂg ; h{TR(h) — my, (h))
>Hhmh (mik(h) — my(h)),

which shows z is R-integrable on [0, a] for any a.

Next, for given ¢ there exists a = a(e) such that 3 Tin (1) < €. For

n>a
h<l,
(310.1.1) ok} - Y m(h)h= > (k< > (1) < e
k:kh<a k:kh>a k>ra
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Since z is dRi,
li a(h) =: o
lim 1&(h)=t00
exists and therefore there exists hy such that if h < hy

(3.10.1.2) loo — (R} < ..

Also there is by such that if h < hy

(3.10.1.3) IS m(hh - /0 " s)ds| < e.

k:kh<a

The last step follows since z is R-integrable on [0,a]. Combining {(3.10.1)-
(3.10.3), we get for h < hg Ay A1

too — /0 " o] S loo— TR + R) 3 TR

k:kh<a

+ Y m(h)h—/oaz(s)ds|<3e.

hikh<a

This shows

Hm z(s)ds = oq,

a—+o0 1)
so we conclude z is R-integrable on [0,00) and ¢ = [ z(s)ds. B
The easiest and most popular criterion for z io be dRi is next.

Remark 3.10.3. If » > 0 is non-increasing, then z is dRi iff z is R-
integrable.

For non-increasing functions, the concepts of Riemann integrability
and direct Riemann integrability are the same. This result also provides a
partial converse to Remark 2.10.1.2.

Proof. Because of Remark 3.10.2, it suffices to prove the result in one
direction. Suppose z is non-increasing and Riemann integrable. Because
of R-integrability, we have

00 >f:o z(s)ds = ijnh z(s)ds,

n—1 v (n-1)h

and, because of monotonicity, this is bounded below by
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>3 alnph,
1

50 z R-integrable implies g(h) < oo.
Next, observe that for any N, since 2z is non-increasing

N n N
> m(h)h = Y m(h)h <R (2((n — 1)k} — z(nh))

n=1

= h(z(0) - z(Nh)).
As N — oo, this expression has a limit:

— h(z(0) — z(c0)}.
Thus 7(h) < co iff g(h) < o0 and
7(h} — g(h) < A(z(0} — 2(c0)).
Since we know ¢(h) < oo, we conclude 7(h) < o, from whichas h — 0
(k) —o(h) — 0.
Thus zis dR1. W

Remark 3.10.4. If

a) z is R-integrable on [0, a] for alla > 0
and

b) 7(1) < oo,
tuen z is dRi.
Proof. Since 7(1) < oo, for i < 1, we have that g(h) < F(h) < F(1) < o0
so the infinite sums to follow converge. Given ¢, there is Ny such that
Lonsn, Mnl(l) < e Write

gy —ah)=h > @) -m, (W) +h Y (Fa(h)-m, (k).
ninh <Ny nnh>Ny
As h | 0 we have
h S b —ma () <20 S Ta(h) < 26,
nimh>Ng n:nh>No
and, since z is R-integrable on [0, Np),
Ny No
b S ) —ma = | [ o) = [ s =o.

n:mh< Ny 0 0

Therefore 7(h} — g(h) — 0, and # is dRi. W

Here is an easy Corollary.
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Remark 3.10.5. If z is R-integrable on [0, o) and z < g where g is dRi,
then z is dRi.

Proof. This follows from Remark 3.10.4 since (a) is satisfled and

oo o0
YWY Vo) <o,
n=1 n=ln—1<s<n
since g is dRi. W
3.10.2. EQUIVALENT FORMS OF THE RENEWAL THEOREM*.

In this section we discuss various equivalent forms for the main renewal
theorems. In the next section we contemplate the mysteries of the proof
of one of the equivalent forms, namely Blackwell’s theorem,

Theorem 3.10.1. Suppose that F is proper and that F(0) < 1. Define as
usual

= /0 " 2F(de) < oo, Fol@) =t fo "0~ Fly)dy

(where if 4 = oo then Fyy = 0). Recall that F is the interarrival distribution,
U is the renewal function of a pure renewal process and V is the renewal
function of a delayed renewal process. The following are equivalent:
(i) The Blackwell renewal theorem: If G is any proper delay distribu-
tion, then
lim V(t,t+b =pu1b
t—o0
for b > 0.
(ii) The key renewal theorem: Suppose z(t) is dRi. Then

(s o)
lim U 2(t) = u'I/ z{s)ds.
t—oo 0

(iii) For any proper delay distribution G

Jim P[B{t) < &} = Fy(z)

for all z > 0.
(iv) For any proper delay distribution G

lim P(A() <] = Fy(a)

* This section contains advanced material which may be skipped on first
reading by beginning readers.
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forallz > 0.

Before the proof, we remind the reader about the convention discussed
in Section 3.7 governing arithmetic distributions which tells how to inter-
pret the results in the arithmetic case. Also consider the following. Since
for a stationary renewal process V(¢,i+8] = p~ b and P[B(t) < z] = Fy(z},
it is tempting in the case of p < oo to interpret these results by stating
that the process becomes asympiotically stationary. The phrase asymp-
totically stationary can be understood in a variety of ways. Here is one:
The renewal sequence past ¢ should converge in distribution to a station-
ary renewal sequence as t -+ co. By the renewal sequence past ¢ we mean
renewal epochs {S,, —¢ : S, > t} measured with { as a new origin. Another
way to write this formally is

(Snw — t Snpy+k — t, 5 2 1)
By differencing successive terms of this sequence we get
(B(t)a YN(t)+ks k > 1)'

Examining Proposition 1.8.2. and Lemma 3.9.2 we see that

(B(t), Yvgy+e k2 1) L (Y Vi, k2 1),

where (Y{,Y:, k > 1) are independent, (Y, k > 1) is iid with common
distribution F(z) and P[Yy < z} = P[B(t) < z|. From (iii} above we get

(YD*iifksk 2 1) = (?U)Yksk 2 1)
in R where P[¥; < z] = Fo(z) and Y; is independent of (Ye, & > 1).
(Here “=" stands for convergence in distribution in R* which means all

finite dimensional distributions converge.) Therefore, if we apply to the
previous convergence the map

(z1,72,...) = (T, 1+ T2, 21 + T2+ T3,... ),
as t — oo, we obtain
(Swepy = 1, vk — k2 1) = (S5, n > 0),
where (Sn) is a stationary process. This convergence can be interpreted

to mean the renewal sequence past ¢ becomes asymptotically stationary as
t — oo.
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Another interpretation of asymptotic stationarity might be that, for
any kand 0 <t <--- <tg,

(Bt +t:),i < k) = (Bt +t:), i < k),

where B is the stationary version of B. One cannot quite prove this using
renewal theory (Breiman, 1968, pages 134-5).

Proofs. To begin with, it is easy to see the equivalence of (iii) and (iv).
Write
P[B(t) < z]= P[N(t,t+z| > 1] = PlA(t +z) < z],

and the result follows. We now consider the other implications.
(i) —{iv): Recall in the pure case

PLA(t) < 2} = U % ((1 = F()1p g (N(E) = 2(t)
= U * z{(t)

where 2(t) = (1 — F({}}1j0,4)(t). Since 2 has compact support, 2 is dRi and
therefore the key renewal theorem asserts

OO0
tlirn Z(t) = ,u_lf z(s)ds
000
-y / (1 = F(s))1joz(s)ds
b)
= p,_lf (1 — F(s))ds = Fp(z).
0
If the process is delayed with delay distribution G, then

PIA(t) < 2] = PIA(t) < 7,5 > £] + j Z(t - y)G(dy).

Note P[A(t) < 2,8 > t] < P{So > t] — 0 as t — oo. Also define
fe{y) = Z(t — y)1jo (). Since Z(t) is a probability, we have filyy < 1for
allt > 0, y > 0, and since Z(t) — Fo{z) as t — oo implies lim;_,o0 fe{y) =
Fy(x) for all y > 0, it follows from dominated convergence that

/ "2t - y)Cldy) = " rwew

- ] " Ru(2)G(dy) = Fo(a).

Remark. Ponder why it is better to prove (ii)— (iv) rather than (it)—(iii).



240 RENEWAL THEORY
(iii)—(i): Check that
V{t,t+b] =Gy« U(b),

where G(z) := P[B(#) < z] — Fo{(z) as t — oo for each z > 0. Write
b
@*wm=j'@w—gvun
0

On [0,b], U is a finite measure. Since G(b— s} < 1 and for each s we have
Gy(b—5) — Fy(b—s) as b — co, it follows by dominated convergence that
b
Vit t+b — f Fo(b— s)U(ds)

0

= FO ¥ U(b) = y,_lb,

from Section 3.7 or Theorem 3.9.1{c).
(i}-+(ii): We begin with a lemma needed for the proof.

Lemma 3.10.2. If F(b} < | ihen
Ut ~b,t] < (1—F(B) !
for all t > b, and, therefore, for t > b,

sup U(t,t + 8 < (1= F(®))™! = e(b) < oo.
t20

Proof of the lemma. We have the renewal equation
U=F"+FxU,

so that
U—FxU=F".

Therefore

hiAUfFﬁ—ﬂWMﬂ
t
> [1 0= Pl s)utas)

t—b

> - FU{t—b,tl. M
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Proof. We are now prepared to prove that Blackwell’s theorem implies the
key renewal theorem. We check the key renewal theorem for successively
more complex z, assuming the validity of the Blackwell theorem.

Step 1: Suppose z(t) = 1jtn_1)h,an)(t). Then

Z{t-s)=1iff (n—1}h<t—s<nh
fft-nh<s<t—(n—-1)h,

50

¢
U % 2{1) =f0 z(t —s)U{ds) = U(t — nh,t — (n — 1)k],

and, as t — 00, Blackwell’s theorem yields

Uxz(t) = p Th=p"? / z(s)ds.

0

Step 2: Suppose z(t) = 3 o, Calitn-1)n,niy(t) where ¢, >0, 3 e, <
o0 and h is chosen so that F(h) < 1. Then

oo

Uxz(t) =Y ea(U(t —nh,t — (n— k).

n=1

For each n we have
Ut —nht—(n- 1)A] — p,_lh
as t — 00, and

supU(t — nh,t — (n— Dh| < e(h) < o
t,n
by Lemma 3.10.2. Therefore, by dominated convergence

Uaxz(t) — chu‘lh =p! /mz(s)ds.

0

Step 3: Let z be dRi, and define

n (B} n-13hmn (1)

Z(t)
z(t) = 2P =1y ) (E)

>
> m,(
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where

mn(h) = \/ z(s), m,(h)= /\ z(s).

(n—1)h<s<nh (n—1}h<s<nh

Then %, z are functions of the type considered in Step 2 since, by the
definition of direct Riemann integrability,

00 > i”’aﬁn{h) > iﬂn(h).
1 1

Therefore, from Step 2,

&)

lim U *Z() = u~' Y ma(h)h = 5(h)/u

t—roo
1

lim U % 2(t) = g™ Y m, (R)h = g(h)/p.

t—oo
Finally, since 2z < z < Z, we have

plo(h) = litrninfU *z(t) < litm inf U = #(t)
=t OO —r00
< limsup ¥ * z(t)

t—o0
<limsupU # z(t) = p~'5(h).
t—o0
This holds for all k. Let A | 0. From the definition of direct Riemann
integration ¥(h) — g(h) — 0 and 7(h) — fom z(s)ds. The result follows. W

Before closing this section, we give one more example of the renewal
method: If one desires the asymptotic properties of Z(¢), write a renewal
equation that Z satisfies and solve it. If Z = U/ % z and z is dRi then
Z{t) — p 7 2(s)ds.

Example 3.10.3. Second Order Properties of U. If u < co we know
t™*U(t) — p~ 1. What is the behavior of

Z{ty=Ul(t) —t/u?
Recall t/pu= Fo = U(t) s0
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If 1 — Fp is dRi then the key renewal theorem applies. But 1 — Fj is non-
increasing, so, from Remark 3.10.3, 1 — I} is dRi iff 1 — F; is Riemann

integrable. Observe that, with several applications of Fubini’s Theorem
justifying changes in the order of integration,

[ra-Roa=u [ [0 s
e (L e

pt [ s - Feas

= [, ([ Faw) e

- /u:) (fs;s ds) F(du)

:,u‘lj 1'LLZ.F(d'u,).
g 2

Thus 1 — Fp is dRi iff [~ w? F(du) < oo in which case

o)

Ul —p~ 1t — (2u)7! /0 u? F(du).

3.10.3. Proor OF THE RENEWAL THEOREM®*.

Having shown the equivalences of various forms of the renewal theorems in
Section 3.10.2 we are free to prove whichever of the equivalent statements is
most appealing. We follow Lindvall’s (1975) coupling procedure (see also
Asmussen (1987)) and prove in the non-arithmetic case that for a pure
renewal process

(3.10.3.1) tllngj P[B(t) < z] = Folz).
(Note that if we can prove this in the pure case, then a simple dominated
convergence argument gives the result in the delayed case.) Recall that
if B were stationary, then, for every ¢, equality would hold in (3.10.3.1).
"This suggests the following coupling proof. N

Let {5,,n > 0} be a pure process with u < co. Let {S,,n = 0} be a
stationary renewal sequence independent of {S,}. All quantities related to
{8n} will have tildas attached. Recall

Folz) = P[5 < 2] = P[B(t) < 1]

* This section contains advanced material which may be skipped on first
reading by beginning readers.
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for all t.

Run {S,} and {S,} side by side. Construct a pasted together process
{5} by observing {S,} until the first epoch where a renewal from {S,}
is within e distance of a renewal in {S,}. Then switch over to observing
{5,}. The pasted together process {S:} has the property

{52} £ {Sn}

in A%, but after the switch the process is stationary and the forward recur-
rence times should have distribution Fy. Relating the forward recurrence
times of {S,} to those of {5} and letting e — 0 should yield the result.
See Figure 3.8,

s, 3* ¥ % 3

S, = 3 % X3

sk 3 3 N3
FIGURE 3.8.

The above description, though appealing, glosses over several prob-

lems. Why is {Sa} < {S:}? and why does there exist an epoch of {S,}
close to that of {5,} which can be used for the switch? We consider the
proof in a series of steps.

Step 1: We consider why an epoch of {S,} is eventually close to an
epoch of {S }. Given 6 > 0, consider B(S;), which is the waiting time until
the next renewal in {5,} measured from S;. We must show

(3.10.3.2) PB(S;) < éio. |=1,

for then there will be lots of suitable switching times. See Figure 3.9.
Let A; = U;»;[B(5;) < 6}. Then

Ao = lim | A; =2, A; = [B(S;) <60 ]

1— 00

We first show that

(3.10.3.3) PA; is independent of 1.

3.10. THE BLACKWELL AND KEY RENEWAL THEQREMS 245
5;
S, F——— ‘.||: 3 -
|
3, * % | 3 —
N —
B(S))
FIGURE 3.9.

Tor this we check
(310.3.9) (B(S;),4 2 1) = (B(S),5 2 0).
Observe that for any k > 0, and fixed 7, Borel sets Ag,..., A

P(B(S:) € Ao, B(Sit1) € Ar...., B(Siqk) € A}

- fP[B(si+j) € A;,0 < j < KP[Siy; € dsis,0< j < K.
Because B is strictly stationary, this is
/P[B(SM ) €A;,0 < < KP[Sey; € dsir,0 < § < K]
= P[B(0) € Ao, B(Sit1 — i) € A1y, B(Sign — Si) € Akl
and, since {$,,} is independent of {5}, this is

P[B(0) € Ag, B(S1) € As,..., B(Sk) € A4l.

This proves (3.10.3.4) and thus PA; = PAy, as asserted.
We therefore conclude

{3.10.3.5) tli!rgo PA; = PA, = PAy.

For what follows we need two lemmas. The first is from Feller, 1971,
page 147.

For a measure G on R, say x is a point of increase of G if G{z—¢, z+€) >
0 for all € > 0. The assumption that F is not arithmetic means the points
of increase of F are not a subset of

L(k) :={0,h,2h,...}

for any h > 0. We write pi(G) for the set consisting of points of increase
of G. Let ¥ = U2 ,pi(F™) so that & C pi(U).
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Lemma 3.10.3. Suppose F js non-arithmetic.
exists T such that if t > T

Then for each & there

Ult,t +6) > 0.
Equivalently, for a pure renewal process,
P[N(t,t+6)>0]>0
forallt > T.
Proof. First observe that if Fy, £, are distributions on R then q ¢

pi{F1),b € pi(Fy) implies a + b € pi(F, * ). If & is a rv with distri-
bution Fj, i = 1,2, then

Plt&i+& € (a+b~¢€a+b+¢)
€ € € €
> Pl € (a— .0+ 362 € (b~ b+ 5)]
€ € € €
=F1(a"*§,a+—2‘),F2(b-§,b+ §)>0

From this it follows that if

{3.10.3.6) a,bed a<b h=b—-a>0thenna+mhe

for 0 < m < n. To check this, observe that if a, b € £ then for some integers
T, 8

a € pi(F™), be pi(F*)

and therefore
ne+mh=(n—-—mlat+mbc pi(F(("“m)”'m")') C .
. NOW. suppose ¢ € [na,na + nh]. From (3.10.3.6) it follows ¢ rust be
within distance  of some point in £. But the intervals [na, na+mnh] overlap

for n large; ie, (n + 1)a < na+nhifah™ < nsoany ¢ > T = ah is
within distance h of a point in . Soif § > h

Ult,t+6) >0

for t > T. It now remains to show h can be chosen arbitrarily small. We
proceed by contradiction. We wish to show

inf{|6 - a|,a,b e T} = 0.
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Suppose otherwise and that inf{|b — a|,a,b € £} = hg > 0. There exist,
then,a,be X, a <band hg < b—a=h < 2hg. It follows that

(3.10.3.7) [na,na+nhlNE = {na+mh,m=0,1,...,n},

since if there is a point p in [na,na + nh]M E not of the form given by the
right side of (3.10.3.7), it would be at distance less than h/2 < hq from
some point na + kph € £, which contradicts the definition of hg.

Suppose n > a/h. Then on the one hand (n+1)a €  and on the other
(n+1)a € [na,na+nh]. Thus (n+1)a belongs to the left side of (3.10.3.7)
and hence to the right side.

Therefore, (n -+ 1)a = na + mh for some m € {0,1,...,n}, so a =mh
and a € L{h). We conclude from (3.10.3.7) that
(3.10.3.8) [na,na + nh] (| Z C L(h).

To finish, take ¢ € pi(F). Since the itervals [na,na + nh| overlap for
large n, there exist k£ and n such that

¢+ ka € [na,na + nhl.

Since ¢ € pi(F) and a € I, we have c+ka € ¥, and, further, from {3.10.3.8),
we have ¢+ ka € L{h). Since a € L(h}, we conclude that ¢ € L(h). Hence
pi(F) C L{h) which contradicts the fact that F is non-arithmetic.

To prove U(t,t+6) >0for t > T iff P[N(t,t +6) >0)>0fort>T
we observe U(t,t + &) > 0 iff there is some r such that F™{t,{ + &) > 0.
Since

P[N(t,t + &) > 0] = P{UP[S, € {t,t+ &)}
> P[S, € (4, t+8)] = F™(t,t +6),

the result follows. W

The second needed preliminary 1s the Hewitt-Savage zero-one law. Call
aset A C R* invariant if

(I],Iz,...,zi,...,I‘j,...) EA .iff(I}_,I2,...,ﬂ:j,--.,:L;"z',...) €A
for any i, 4. This is equivalent to supposing A is invariant under permuta-
tlons involving finitely many coordinates:
,zk,...)EAiﬂ'(zﬂ(l),m,,(g),... je A

(Il,Iz,... :-T'Tr(k):'“

for any k and any permutation 7 of {1,2,...,k}.
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Lemma 3.10.4. (Hewitt-Savage) If € = {§,,n > 1} is an iid sequence,
then for any invariant set A

PcAj=0orl.

See Feller, 1971, page 124, or Billingsley, 1986, page 304, for a proof.
For us, it is important to realize that the {£,} do not have to be R-valued
but can be iid random elements of more general spaces. For instance, £,
could have range R?; that is, {£,} could be an iid sequence of random
vectors.

We now continue our hunt, for coupling times. The next step is to show

(3.10.3.9) PlAo|Yy=1] >0, forallt>0.

(The reason for conditioning on Y; becomes obvious later, but suffice
it to say for now that we wish to apply Hewitt-Savage to the iid se-
quence (Yl,l?l), (Yz, 172), .... Conditioning on Yy eliminates the offending
Yy which has distribution Fy and not the common distribution F) To
check (3.10.3.9), fix a value of t and write

Plaof¥o = 1) = P {Us2,B(S;) < 6% = 4}
=P {U?';D[t + i Y; € (S;,5; + 6) for some n > 1]} .
=1

For any j, this is

> P[t+zf’i € (S;,5; + &) for some n > 1]

i=1

- /’w P {u;‘;‘;l[t+ znjy e (s,s+5)}} PIS; € ds].

i=1

With T as in Lemma (3.10.3.1), this is

2] P{ug‘;l[Zﬁe(s—t,s»t+6)}P[Sj € ds).
T+t

i=1

The integrand equals P[N(s —#,s —t+6) > 0] whichon {s:s> T +1t}
Is strictly positive. The choice of 7 is still at our disposal. Since S; T o0
there exists some j such that P[S; > T +t] > 1 (say) and therefore for
this vaiue of ¢, (3.10.3.9) is true.
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‘We next assert

(3.10.3.10) P(ALYy=t)=0orl,

which is a direct consequence of Hewitt-Savage applied to the iid (hence
the conditioning on Y5 ) sequence of random vectors {(Y1, Y1), (Y2, ¥2),- .-, }
since

PlAco|Yo =1] = P{limsup U, [t + > ¥ € (S5, 85 +8)]}-
J—ee i=1

Now let _
A={t: P(AlYo =1t) =1},

and we show EFg(A) = 1. If Fy{A) < 1, then a contradiction will ensue:
Write

PAy = f P(Ay|Yy = t)Fy(dt)
and
PAy= PAg = / P(Aoo| Yo = t) Foldt)

= / 1Fo(dt) + f 0L (dt)
A As
= FO(A)a

since by (3.10.3.10) we have P(A|Yo =1t) =0 for t € A%, Note Ag D Ao
so on A we have P{Ap|Yy =1) =1, whence

Fo(A) = PAg = f P{Ao|To = £)Fo(dt)
= / 1Fg(dt) + [ P(A|Y5 = t)Fp{dt).
A Ac

Recall P[Ao¥y = £) > 0 for all t. If Fy{A) < 1 so that Fp(A®) > 0, then
the above gives a contradiction.
Since Fu{A) =1, we have

PA, = / PAw|To = £) Fo(dt)
~ [ P(Auu| ¥ = £)Fp(dt

:/IFD(dt)zFD(A)=1.
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This is the desired conclusion and shows there are plenty of potential
switching times.

Step 2: As a switching time we choose the first epoch when renewals
from the two processes are close. Define

T=inf{i >0: B(S:) < 6, T =int{j: § > Sr}
and
(S:Un 2 O) = (01 Sl'l S25 R )ST7§f+1 - E(ST)aS'T+2 - B(ST)a s )

See Figure 3.10.

Sy
Sy e 3 3 JTL
| B(sn
N o | . —0 o—
: / Sg / /
st Lo~ 0 e o o S —
Sy - B(S7)
FiGcURE 3.10.

Proposition 3.10.5. We have

{Sp,n 201 2 {S0,n >0}

in R,

Proof. Set Y7 = 5 —5;_,, n 21, and it suffices to show
(Vrn>1) 2 (Yan>1)

in R®. Observe that for integers ny,ns

[T:'nl,Tzng]EO’(Sl,...,Snl,go,..
=a(¥1,..

-+ 5ns)

(3.10.3.11) LY, Yo, Y1, Yy
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Therefore for any k, and 2; >0, ¢=1,..., k

PIY; Szii <K= Y P <a,i <k, T=n,T=n

i,z
= > + X
n1<kme>0  r1>kne>0

The first sum equals

Z P[nSIiaiSnlsT=n13T=n2!
nlﬁk,ﬂzzo

Yn2+1 < E P PR Yn2+k—n1 < :Ek]-

Now from (3.10.3.11), [Y; < zj,i <m N [T = ny, T = ng] is independent
of

P[Yng-{-l S Tny+ls--+1 Yﬂ'z'l'k"‘nl S J’;k],

so the sum is

Z P[K“gm'i:ignlvT:nla
ﬂlﬁk,ﬂ.gzo

T = nZ]P[f/ng-lwl < Tnytly - -y Yng-i-k—n; < :Ek]-
. by = d .
Since (Yn2+1, Yn2+2; . ) = (Yn1-+-11 Y’n1+2y - )., the above is

> Pi<migm,T= n1, T = n]P[Yn, 41 < Tnyt1,- o0 Ye < Ti,
mZkng>0

and applying (3.10.3.11) again yields

2

1<k, ne >0

P[Y; S Iiai S nl:T — nl)T = n‘zaYn1+1 S Tryt1sr v+ }Yk _<_ ﬂ:k]
= PlY; <z, i<kT< k).
The second sum under consideration is

S PYi<m i<k T=m,T=n]=FYi <z,i <K T > K.

R >k ne 20
Combining the two sums gives

PlV,<z;i<kl=PlYi <z,i <k, T <K+ PYi <;,i <k, T > K]
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as required.
Step 3: We now prove

lim P[B(t) > 2] = 1 - Fy(x).

Since (5%,n > 0) 2 {Sn,n = 0), it is equivalent to prove
tlirgo P[B*(t) > z] =1 — Fu(z).

Towaxd this end, observe that, for £ > Sr (i.e., £ is larger than the switching
time}, we have

(Bt +8) >z +6]={N(@t+6t+5+z+6] =0l
=[N*(t+5—B(ST),t+5+cc+f5——é(ST)]:[)]
C[N*(t+6,t+85+2]=0)],

since

(t+6t+6+3z) C(t+ 6§~ B(Sr),t+6+z 46— B(ST)]
‘We conclude
(3.10.3.12) [B(t+6) >z +6] C [B*(t+6) > z] on [t > Sp].
Also, we have on [t > Sr)

[B*(t) > 2] =[N*(t,t + z) = 0]
= [N(t+ B(Sr),t + =+ B(Sr)] = 0]
CIN@E+6t+2]=0
(since (£+ B(Sr),t+z+ B(Sr) D (t + 6,t + ])
=[B(t+8) >z -9
So again we conclude
(3.10.3.13) [B*{t) >z] C [B(t+8) >z — 8 on [Sp < t].
Therefore, using (3.10.3.13), we obtain
P{B*(t) > x| = P[B*(t) > z, 87 > t| + P{B*(t) > z,57 < {]
< P[Sr 2t]+ PB(t+68) >z 680 < 1
< o(1)+ P(B(t +6) > z - §),
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gince P[Sr > t] — 0 as t — co. Recalling that B is stationary and hence
B(t + 6) has distribution Fy gives

lmsup P[B*(t) > z} < 1 — Fy(z — ).
t—00

Likewise, from {3.10.3.12)
PIB*(t+68) > x| = P[B*(t + 6) > z,t > S7]

> P[B(t+6) >z + §,t > St}
=P[B(t+8 >x+8 —P[B(t+6) >z +86t< 57
= P(B(t+8) >z + 6 — o(1)
=1 - Fo{z + &) — o(1),

so that

lipglfP{B*(t) >z] = 1— Fp(zr + 8).

Let § | 0, and use the continuity of Fp. Combining the liminf and lim sup
statements gives

1-Fy(z)= Jim PB*(t) > o] = lim P{B(t) > z].

This completes the proof of the renewal theorems.

3.11. IMPROPER RENEWAL EQUATIONS.

Recall that if F(co) # 1, the equation
Z=z+F=x2Z

is called improper. Example 3.5.2, on the age dependent branching process,
provides an improper renewal equation: Just choose m < 1.

In the case where z(co) := lim;_. z(¢) exists and F(co) < 1, asymp-
totic analysis of Z(t} = U * z(t) is easy. We have U(c0) = 3 oo F(o0)™ =
(1 — F(o0))™! < oo. Recall that z is always assumed locally bounded,
that is, bounded on compact intervals, and the existence of z(co) means
2 is bounded on [0,c0). Since z is bounded on [0, co}, from dominated
convergence we obtain

Z(co) =: tll.rﬁ, Z(t) = z(00)U(00).

Frequently, a simple transformation allows the key renewal theorem to
tefine the above argument.
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Proposition 3.11.1. Suppose there exists B € R such that
F-p)= [ e Plam) =1,
0

and suppose Z satisfies Z = z + F % Z, Define Z#(ty = ePtZ(t), 2#
. = , 2H(t) =
e 2(t), F#(dt) = e®* F(dt). Note e

o0
F*(x) = f P F(dt) = 1,
i
ie., F# is proper. Then Z# satisfies
Z# = L F#y Z#
and, if z* is dRj,
. # T Bt
25,870 = fim 72 0)
_Jy 2t
Jo7 tF#(dt)

o ePa(tydt
Jo tePF(dt)’

Proof. Take the equation

Z{ty=z(t) + fot Z(t~ s)F(ds)

and multiply through by et to get

t
eﬁtZ{t) = Eﬁtz(t) +/ E‘B(t_s)Z(t _ s)eﬁsF(ds)
1]

or

ZF() = 2# (1) + f Z#(t - s)F*(ds),
0

The rest follows in a straightforward way by the key renewal theorern. M

Special Case 3.11.2. F{0) < 1 < F(co). Note that #(0) = F(co) > 1,
F(—00) = F(6) < 1 and F is continuous and monotone. Therefore, &
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i

Ficure 3.11.

solution 8 to F(—8) = 1 always exists, is unique and —co < § < 0. See
Figure 3.11. Furthermore,

s :=/ zF# (dx) =f zef® F(dx) < oo,
0 0

since, as £ — o0, we have xef® -+ 0 for 3 < 0, and therefore zef® is
bounded on [0, 00). If z is dRi then

o
Jim Z#(t) = lim efzZ(t) = f e?* 2(s)ds/ut
—00 —00 o

so that Z(t) ~ e7Pt [ eP*z(s)ds/u*, and Z grows at an exponential rate.

Example 3.5.2 {continued). Consider a supercritical age dependent
branching process with population size at time { given by X (t). As usual,
we assume X(0) = 1 and that G is the life length distribution. Let {py}
be the offspring distribution, with m = Y ;- kpe € (1,00). Finally set
Z(t) = EX(t). We found in Example 3.5.2 that whatever the value of m
(m < oo, however)

t
Z(t) =1-G(t) + f 2(t — uymG(du).
o}

Set F(z) = mG(z) so F(oc) = m > 1. We know 3 < 0 exists and is the
unique solution of F(—3) = 1. Let vy = —f, and
mG{y) = L.

Observe z#(t) = e~"(1 — G(t)) is dRi. The reason is that z# is non-
increasing and integrable,

/mz#(t)dt=/ e 1 - G(t))dt = v {1~ G(7)) < o0,
0 [}
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s0 by criterion {3.10.1.3) z¥ is dRi. Hence, by the Key Renewal Theorem,
o)
Jim Z*(t) = f 2% (s)ds/p#,
—_ O 0

ie, ast — o0,

oo L
"1tf0 e~ (1 — G(s))ds

m ;- se~75G(ds)

This is the famous Malthusian law of exponential growth, and ~ is
called the Malthusian perameter.

Z(t) ~e

Special Case 3.11.3. F(co) < 1. As discussed in the beginning of this
section, if z(oo) exists, then Z(t) = U * z(t) — 2{0c0)U(co), and sometimes
the technique summarized in the proposition can be used to obtain a rate
of convergence result. However, the existence of a solution to F' {(~f)=1is
no longer guaranteed, and, if a solution 8 does exist, we must have g > 0,
since F(0) = F(o0) < 1, F(—o00) = F(0). See Figure 3.12.

F(-1)

/\F(O)

FIGURE 3.12. Y

Consider the following example: Define

0, if 2,
Flz) = { it <

1 —_ .
s-a7l, ifz>2

For every 2 > 0
" o0 o0
F(—p) = / et F(dt) = j Pt~ 2dt = oo,
0 2

so no solution exists for the equation F'(—-3) = 1. For existence of a solu-
tion, we need

Floo)—F(t) < Ke™®, §>0,K >0
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for some § > 0, K > 0. Also sufficient is that
. {ea)
1< F(—8) = / e# F(dt) < oo
0

for some § > (.

Now suppose that F(co) < 1, that there exists 5 > 0 such that
F(—8) = 1 and that z{oc) exists. Write Z;(t) = Z(oc) — Z(), where
recall Z(o0) = z(00)U(o0), and set

_ F(eo) - F(t)
21(t) = z(o0) — 2(t) + z{00) ( 1= Floo) )
Then, since Z = z + F * Z, it follows that
(3.11.2) =5+ F=*Z;.

This can be checked directly (drudgery) or as follows. We seek a function
7, which satisfies (3.11.2). Treat z; as the unknown. For A > 0, set

{e =] oQ
Z(A) = / e Z(s)ds, 2(A) = / e~ **z(s)ds,
0 0
and so on so that X X )
Z=3U=%/(1-F).
Since

21 *U(t) = Z1(t) = Z(00) — Z(1)
= z{oo}U{o0) — U * z(t),

we hawv
’ 5H(MNT(N) = 2(c0)U(c0)A™1 — 2AT(A).
Upon solving, this yields
_ z(oo)(;f(oo))\‘l _ )
U(A)
= z{c0)U{c0)ATL(1 — F'(N)) — 5(N).

£(A)

Use
(F(oo) - FO))/A = ] e (F(oo) — F(z))dz



258 RENEWAL THEORY

to get

21(A) = 2(00)U (o)A YL — F (00} + F(o0) — F(A)] — 2(A)
= A" 2(c0)U(c0)(1 — F(oc))

o) U (o0} ] ” e (F(oo) ~ F(z))dz — 3(\)
i}
=A"1z(c0) + z(oo)U(oo)fO e (F(o0) — F(z))dz — 2(\).

Inverting, we obtain

= F(oo) — F(t)
AH) = #o00) =20+ 2 i)
as predicted.
If ez, (t) is dRi then
im e*(Z(c0) — — w
tL (2Zlo0) - Z(t)) = _f%’o sePsF(ds)”

To unwind the right side, we write

oo
/ e 2, (s)ds
0

[o,a]

- / ” P8 (3(00) — 2(s))ds + 2(00)U(00) f €% (F(o0) — F(s))ds.
0 0

For the last term note

fo ~ P (F(oo) — F(s))ds = /0 ” ghe f ” Fldu)ds

_ 00 u '65
= /o (/; e ds) F(du)
= /0 (e”* —1)371 F(du)
P(=f) = F(20))/B= (1 = F(c0))/8,
since F'(—J3) = 1. Therefore, we conclude

—,Bcfo A% (z(00) — 2(x))de + z{o0)5~?
Iy zef= F(dz)

Z{o0) — Z(t) ~
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The Risk Process (continued). Recall the risk process: Non-
negative, independent, identically distributed claims X, X5, ... arrive ac-
cording to a Poisson process rate a. Between claims epochs, capital in-
creases at rate ¢. Let f(¢) be the fortune (risk reserve) of the company at
time ¢ and set

Rz} = P[f(t} > 0 for all ¢|f(0) = x].

In Section 3.5.1, we found that if ®EX, < ¢, then R(co) = 1, R(0) =
1-c¢ laEX; and R(z) = R(0)U(z), where

Ulz)=1+ fo ) S g™ (w)du
n=1

and
9(z) = ac”P[X; > x)

The previous discussion provides a rate of convergence of R{z) — 1. The
parameter J must satisfy

e o] oo
1= f ePtg(t)dt = ac™? / P[X; > z]e%dz.
0 0

Since R{0) = z(z), we have z; =0, and (3.11.3) becomes

e P R(0)5
oc™1 [ zef* P Xy > zldz
_ e Pt1—claEX,)
~ Bact fy zef=P[Xy > zldz

1— R(f) ~

3.12. MORE ON REGENERATIVE PROCESSES.

In this section we discuss more intensively and rigorously regenerative pro-
cesses and develop more fully some examples from gqueueing thecry.

3.12.1. DEFINITION AND EXAMPLES™.

Consider a stochastic process {X(t),t > 0} for which there exists an epoch
81 such that the process beyond S is a probabilistic replica of the process
Starting from zero. Such processes can be decomposed into cycles and

* This section contains advanced material which may be skipped on first
Teading by beginning readers.
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asymptotic behavior studied by means of renewal theory. There are severy)
proposed definitions which attempt to make this description precise. S
Cinlar (1975}, Thorisson (1983), or Asmussen (1987). Suppose the stat,
space of the process is a Euclidean space E (R, R* or even the integers)
with £ being the usual & -algebra of Borel sets. Suppose the process i
defined con a probability space (Q, F, P).

Definition. Let {S,,n > 0} be an increasing sequence of finite rap.
dom variables defined on (£, F) such that 0 < S, T co. Then a procesg
{X(t),t > 0} is a regenerative process with regeneration times {S,} if for
every k, 0 <t < -+« <y, B € B(RE), A € B(RY), for all n > 0, we have

P(X(Sn +t:)i=1,...,k) € B,{Snti — Sn,i 2 1} € A|Sy,...,5,]
(3.12.1.1) = P[(X(t:),i=1,...,k) € B, {5, — S,i> 1} € 4].

It will be seen that this definition requires the process past S, to be
independent of Sg, ..., Sy,. This is a bit more flexible than other definitions
which require the process past S, to be independent of all information up to
Sp. Also, note that although the index set is assumed to be the continuoug
set [0, 00), obvious modifications would allow us to consider, for example,
regenerative processes with the index set {0,1,...}.. Finally, the defini-
tion as stated requires the renewal process to be non-terminating. The
definition can be easily modified, however, to include terminating renewal
processes.

The following comments explain the definition further.

Remarks. (a) {S,} is a renewal process. Set Yp = Sp, Yr = Sk — S,
k> 1. Use (3.12.1.1) with B =Rt . Forz; € Ry,j =0,...,1, we have

PIY; <2;,0<j <] = EP[Y; < 2,0 < § < ilS,..., Sic1)
= Bl <P < 280, Sica]

Applying (3.12.1.1) we have P{Y; < z|S,...,Si1] = P[Y1 < 23}, s0
PlY;<z;,0<j<i|=Pl"1 <x]P[Y; <z;,0<j<i—1]
Continuing inductively, this equals
=P <z;P[Y1 € z;04] ... P[Y1 € 22)P[Yy € 30, Y1 € 1)
For the last factor, observe

PYs <€ 20, Y1 £ 1] = Eljyy <o) P[Y1 < 21|50
= P[Yy < zo|P[Y1 < 7]
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(b} In (3.12.1.1) set A = R and take expectations on both sides to

obtain 4
(X(Sn +t:)i < k) = (X(t:),2 2 k)
in E*.
{c) The post-S, process is independent of o{Sy, .. ., Sn). To check this,
take G € (S0, ..., 5»). Then, using (3.12.1.1) with A = R, we have

P{[(X(Sn + &:),i < k) € BING]}
= B1gP{{(X(8, + t;),i < k) € B]|S,...,Sni}
= ElgP{(X(t;),: < kY € B}.

Applying (b) above, this is
= P(G)P[(X(Sn +1t:), i < k) € B].

(d) Smith’s construction of a regenerative process using ran-
dom tours. Suppose that {Y(#),t > 0} is a stochastic process on £ and
that ¥ > 0 is Ry-valued and defined on the same probability space. Let

({¥;(8).t 2 0}, Y5)

be iid copies of ({¥ (t),t > 0},Y). Define Sp = 0,5, =3 -, Yi,» > 1, and

set
oo

X(&) =Y Y;(t - Si-1)l(s;_,,5,) ()t 2 0.
j=1

Then X () is regenerative according to the definition. To see this, note for
any nand t >0

(V)8

X(t+8n) = ) Yi(t+ Sn— S;-1)15;1,5,)(t + 5n)

b,

st

Yi(t - (Sj-1 — Sa)His,_1-5,.5;-5)(t)

(v

n-+

e
i

o

Kj‘Fn(t - (Sj+n—1 - Sn))l[Sj+n—1”Sn,Sj+n_Sn)(t)'

.
1l
—

Set Y*(-) = Yj4n(), 57 = Sj+n — Sa,j 2 1, and the above becomes



262 RENEWAL THEORY

oo

oYt~ Sy_a)lsy, sn(t) = X*(2).

=1
Note X*(-) g X() and X*(.) is independent of o{Sg, ..., Sn). Therefore

P{(X(Sn+2:),i < k) € B, (Sntk — Surk > 1) € AlSo,..., Sa)
= PI(X*(t),i <K) € B, (St k > 1) € AlSo,. .., 5]
= P{(X"(t:),i <k) € B,(5¢,k > 1) € 4]
= P[(X(t:),5 < k) € B,(Sk,k 2 1) € 4],

and since Sp = 0 this verifies (3.12.1.1).

Recall the following terminology: The epochs S, are called the regen-
eration points for X (), and the time intervals [S,- 1, S,), n = 1, are called
cycles.

Recall also the examples of Section 3.7:

(1) A renewal process {Sn,n > 0} is regenerative in discrete time.
The regeneration epochs are {5,} .

(2) An irreducible Markov chain {X,} in discrete time with the
integers as state space is regenerative, and for any state 3 re-
turn times to j constitute regeneration epochs. If the process is
recurrent, the renewal process is non-terminating. In Chapter
5 this example will be discussed in continuous time.

(3) Storage process: Inputs to a dam occur according to a com-
pound Poisson process A{t) = Zf‘;‘f) X;, where {X;,i > 1}
are iid, non-negative random variables with common distribu-
tion G and N(t),t > 0, is a Poisson process with rate ¢ and
independent of {X;}. Between inputs content decreases at rate
c. The content process X(t) satisfies

dX (t) = dA(#) - cdt,

i.e., change in content equals change in input minus change in
output.

The content process is regenerative. One set of regenera-
tion points is obtained by letting S, be the beginning of the
nth dry period. See Figure 3.13. Alternatively pick any level
z > 0 and let S,, be the epoch of the nth downcrossing of level
z by the process X (t). See Figure 3.14.

(4) Markov processes on general state spaces may be regenerative
if they have atoms, for example, singleton states that the pro-
cess returns to infinitely often. This is the case in the second

3.12. MORE ON REGENERATIVE PROCESSES 263

&\\\\\

FI1Gure 3.13.

()

]

SN NG N

WPENEC r

FIGURE 3.14.

and third examples above. Another example is the process
{B(t),t > 0} of forward recurrence times in renewal theory
where {0} is a convenient atom.

3.12.2, THE RENEWAL EQUATION AND SMITH'S THEOREM*.

The informal discussion of regenerative processes in Section 3.7.1 assumed

the state space was a subset of the integers. In this section, we allow more

general state spaces and consider carefully when Smith’s theorem holds.
Fix a set A € £, and define

Z(t) = P[X(t) € A].
Suppose for now Sp = 0, and let
K(t,A)=P[X(t) € A,5 > 1],

S0 that this kernel describes the probability that at t we are in A and the
Initial cycle has not ended. Then we have the decomposition

Zt)=P[X(t) € A,S; > ]+ P[X(t) € 4,51 <t].
— .~
* This section contains advanced material which may be skipped on first
feading by beginning readers.
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The first term is K¢, A) and the second equals
Els,<gPX(S1+1t - 51) € 4|54].

The idea now is to move the time origin up to 5, so that the above equals
(with F being the distribution of 1)

f "PIX(1— 5) € AIF(ds).

To make this precise, we use the following result from the theory of
conditional expectation (Breiman, 1968): Suppose £,n are independent
random elements in complete, separable metric spaces 5,5 . H¢: §x 8§ —
R, is measurable, then

E(¢&,m)n = a) = E$(§,a) as.

Now let £ = X(S81+-) and i = t—85;. Suppose that the paths of X(-) belong
to a complete separable metric space S; then we define ¢ : Sx Ry — E

by
(z(), 8) = z(s).
Then

P[X(S1 +t—S1) €AS5 < t]

- /t PIX(S:y +t— S1) € A8, = s)F(ds)
)]
= /ot P[lf)(X(S] +),t — 51) € A|S: = s|F(ds)

- fu E(H(X (S + ).t — 5|8 = 5)F(ds),
where
1, ifg(z(),s)eA

0, otherwise,

sz, = {

By Remark (c) following (3.12.1.1), we have that X () + ) is independent
of t — 51, so the above integral is

f "Bp(X (S, +1),t - 8)F(ds) = f Bo(X(), - 5)F(ds)
0 1]
(by Remark (b) following (3.12.1.1)

_ / "PIX(t— 5) C AIF(ds),
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as required. Thus

P[S(t) € A, 5 <t]=EP[X(S1 +t—51) € A, 51 < t|Fs,)
= ElngtP[X(S1 +t—51)¢€ AlFs,]

¢
=/ PIX(t - u) € A]- F(du)
0
where P[S; < u} = F(u). Therefore,

(3.12.2.1) Z(t) = K(t, Ay + ] t Z(t — u}F(du},
0

and, solving, we find

(3.12.2.2) Z(t) = K(-, A) = U(t).

Smith’s Theorem 3.12.1. Suppose { X (t)} is a regenerative process with
state space F and A is a measurable subset. For fixed A, assume K(t, A)
is Riemnann integrable. Set u = ES;, S3=0.

a) If 4 < o0, then

lim PIX(t) € A] = u~! ] K(s, A)ds
t—o0 0

51
=M‘1E/0 lix(s)ca}ds

_ E{ occupation time in A in the first cycle }
- E{ cycle length } '

b) If 4 = oo then
tlirglo P{X{(t)e A] = 0.

Remarks. (i) Our convention regarding arithmetic distributions is
still in force.

(if) K (¢, A) need not be Riemann integrable. An example is given in
Miller (1972): Let F put mass 27™ at the point n™',n = 1,2,.... The
regenerative process X (¢) is defined by

X(t) = 1g(8),
where (2 is the set of positive rationals. The kernel K is

K(t,{1}) = PLX(t) = 1,5 > t]
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For 0 <1 <1, this is 15(¢)F{t, 1], which is not continuous a.e. and hence
not Riemann integrable,

(iii) Smith’s theorem is easily seen to hold also in the case when the
renewal process is delayed.

Proof. a) We check K(t, A) =: 2(t) is dRi. Note K(t, A) is assumed Rie-
mann integrable and

K(t,A) = P[X(t)e A, 51 > t] <1- F(t),

so K is bounded above by 1 — F, which is monotone and integrable (recall
i < oc). Therefore, from Remark 3.10.3, 1 - F is dRi, and, from Remark
3.10.5, K{t,A) is dRi. Applying the key renewal theorem yields

Jim PIX(t) € 4] = Jim Z(t) = lim K(, &)« U(®
—o0 —00 —+50
o <}
— f K(s, A)ds
000

‘—‘#_1/0 Elixa)ca,6,>8d5

which, by Fubini’s theorem, is
3 [= =] S]_
7 E/o lix(s)ea,s,>s1d8 =u_1EfD 14{X(s))ds. W

Remark. For the process in Remark (ii) above, we have
PIX(t) =1] = 1q(1),

which does not converge as t — oo.

We now must consider when K (£, A) is Riemann integrable. Since K is
bounded, K is Riemann integrable iff K is continuous a.e., so it is enough
to give conditions for the a.e. continuity of K.

Say the process X has a fixed discontinuity at ¢ if it is false that
whenever s, — ¢, X(s,) — X(t) almost surely (Doob 1953, p. 357). The
extreme example of a fixed discontinuity is to take any random variable X
and define

X() = XLy (),

o that 1 is a fixed discontinuity.

This concept must be distinguished from moving discontinuities such
as possessed by the Poisson process {N(t)}. Each sample path consists of
jumps, but

P[N() jumps at t] = P{U;4[S, = 1]} =0,
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so that if s, — ¢, P[N(s,) — N{t)} =1.

Consider the function class D[0, oo} which is the class of functions
x : [0,00) — R such that z is right continuous on [0, 00) and has finite left
limits on (0,00). We use the following fact {Billingsley, 1968, p. 124). If
{X(t),t > 0} is a process with P[X(-) € D[0,00)] = 1, then X has at most
a countable number of fixed discontinuities.

Proposition 3.12.2. If X(-) is regenerative with at most a countable
rumber of fixed discontinuities, then K(t, A) is a.e. continuous for all
open A.

Corollary 3.12.3. If X(-) has paths in D[0,c0) and A is open,
s 2]

tIim PlX(t)ye Al = ,u_lf K(s, A)ds.

—_r 00 0
In particular, X (t) = X{(oc) (convergence in distribution) , where

PlX(c0) € A] = u~" [ K(s, A)ds
0

forAe&.
Proof. Define the countable subset Disc of [0, c0) by

Disc = {¢: F discontinuous at t} U {t : ¢ is a fixed discontinuity of X}.

For open sets A, we show K(-, A) is continuous at ¢ ¢ Disc and hence
K(-, A) is continuous a.e. Fix ¢ ¢ Disc. Define

Ag=[S1>t,X(t) e AlN[S: > 5, X(s) € A
=[5 >t,X(t) € A8 <sjUiS >t X(t) e A, X(s) € 4.
Hence

(3.12.2.3)
PA, < P[S1 > t,X(t) € A,S; < 8| + P[S) > t, X(t) € A4,X(s) & A].

The first term is bounded above by

Ptas< S <tvs]—0
a5 § — t since F is continuous at ¢£. The second term of (3.12.2.3) is
bounded above by P[X(t) € A, X(s) & A]. Since t is not a fixed discontin-

uity of X, we have X (s) — X(t) as s — £. Since A is open, if X(¢) €
A, then ultimately we must have X(s) € A for s sufficiently close to ¢.
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Hence the above converges to zero as well. A similar result is obtained by
interchanging ¢ and s, and this leads to

P{[S) > t,X(t) € AJA[S1 > s, X(3) € A]} = 0,
as 5 — ¢, which yields
K(trA) - K(S!A) - 0:

and K is continuous at ¢ ¢ Disc. H

We end this section with a little result useful for some of the queueing
examples.

Proposition 3.12.4. Suppose X(t),t > 0 is regenerative and X(t) =
X(o0), where

(3.12.2.4) PlX{(c0) € A] = ,r.L_lE'js1 1a(X(s))ds, n<oo.
0

For any h > 0, measurable, and h : E — [0,00), we have

51
(3.12.2.5) Eh(X(00)) = p~'E fo h(X(s))ds

In particular, if E = [0,00) and h{z)} = ¢™**, 5 > 0, z € E, then the
Laplace transform of X {cc) satisfies

51
Eexp{~(X(c0)} = u'E jo exp{—(X(s))}ds.

Proof. If h(z) = 14(zx), A € £, then (3.12.2.5) reduces to {3.12.2.4). Next,
suppose h(z) = Z:.;l a;1 4, (z) where A; € £ are disjoint for i = 1,2,...,k
and q; > 0. Then

k
Eh(X(c0)) = Y 6;E14,(Xc0))
1

iaP[X(oo) € Ay
1
k

S
=Y au B ] 14, (X(s))ds

= p_lEfO h{X (s))ds.
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Finally, if h > 0 is measurable, there exist simple A, > 0 of the form
considered in the previous step, and h,, T A so that

Eh(X(c0)) = lim T Ehy(X(c0))

(momnotone convergence)

=200

= lim ,rhn;/si ha(X(s))ds
]

{previous step)

Sy 51
=y 1E lim =;L_1E/ im ka(X(s))ds
0 o T

51
B | R(X(s))ds. W
0

3.12.3. QUEUEING EXAMPLES.

In what follows we describe (rather than construct) the processes used to
study the G/G/1 queue. The symbols stand for general input (arrivals
occur according to a renewal process), general service times (service times
of successive customers are iid) and one server. An exhaustive discussion
of regenerative processes and queueing models is given in Cohen (1976).
In a general one server queue, suppose customer number 0 arrives at
time 0. Let ¢,41 be the interarrival time between the nth and the (n+1)st
arriving customer. Assume on,7n > 1 are iid with common distribution
A{z) = Plo1 < z|; set a~! = Eoy < 0 so that customers arrive at rate a.
Let tx be the time of arrival of customer k, & > 0, so that &, = 0, t, =
g1+ -+ - + ok, k > 1. Further define the renewal counting function v by

v(t) = # of arrivals in {0,1]

=> ey
k=0

Oth customer 1st customer 2nd customer

arrives arrives arrives
o 23] 4+ Go
ARRIVALS
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Focus now on service. Let 7, be the service time of the nth customer,
and suppose {7,,,n > 0} is iid with common distribution B(z) = Pl < z|.
Set b1 = ETg < cc so that customers are served at rate b. Define the traffic
intensity p by
(3.12.3.1) p=alb=En/Eo = (Eo1)™ /(ETe)™,
so that p is the ratio of the arrival rate to the service rate. If p < 1, then,
on the average, the server is able to cope with his load. Assume {7,} and
{0} are independent. (Sometimes it suffices that {{mn,0n41}, 7 = 0} be
iid.)

We assume that there is one server who serves customers on a first
come first served basis. A basic process of interest is W,,, the waiting time
of the nth customer. This is the elapsed time between the arrival of the

nth customer and the beginning of his service period. A basic recursion
for W, is

Wo = 0, Wn+1 = {Wn + Tn — Un+1)+7 n = 0,

where z+ = 2 if x > 0, and Xt = 0if 2 < 0. To check this recursion
note that there are two possible pictures. For the first, W, + v > ony1-
The darkened region in Figure 3.15 represents the wait of the {n + 1)st
customer. The second picture (Figure 3.16) is when W, + 7, < 0,43. I
this case, the (n + 1)st customer enters service immediately upon arrival
and has no wait.

W, T,

F i Il .
F +- L

nth customer nth customer
arrives enters service

nth customer
completes service
and departs

Cr 41

(n + 1)st customer
arrives

FiGure 3.15. CUSTOMER WAITS.
For n > 0 define
(3.12.3.2) Xat+1 = Tn — Ontl,

so that {X,,n > 1} is iid. With this notation,

rn-i-l = (Wn + Xn+1)+-
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— 1
¥ t

.
nth customer nth customer
arrives enters service

nth customer
completes service
and departs

< On 41
|
I

FIGURE 3.16. CUSTOMER DOES NOT WAIT.

It is evident that {W,} is a random walk with a boundary at 0, that is, a
sum of iid random variables, which is prevented from going negative. (See
also Chapter 7.)

To help us organize information, define the o-algebras
fn=U(Tg,...,Tn_l,Ul,...,Jn), TLEO,

80 F, is the information obtained by watching until the nth customer
arrrives or the (n — 1)st customer departs—whichever is later. Let N be
the number of custormers served in the initial busy period. The initial busy
period starts at time 0 and continues until the server becomes free for the
first time and there is nobody waiting for service. Note

N=inf{n>1: W, =0},

since, if Wi = 0, the busy period ended in (tx_,,tx], and, counting
customer number 0, there were N served in the initial busy period. Observe
too that

N=inf{n>1:Y X; <0}
=1

this shows why random walk theory, to be explored later in Chapter 7, is
relevant. Finally, N is a stopping time for {F,,n > 1} since

[N=n] = [Wl >Os"'7W‘n—1 > 07W‘n :0]
k n-—-1
=D Xi>0k<n-1,) X, <0
i=1 i=1

and X, = 7,1 — 0. This merely says the event [N = n] depends only on
T0se i 3 TR=1,015+ .4 0n.

Now let C'sy be the length of the initial busy cycle, that is, the combin-
ation of the initial busy period and the server’s idle period which follows.



272 RENEwWAL THEORY

Let {Ch,n > 1} be successive busy cycle lengths, and suppose N, is the
number served in the nth busy period. Then {C,,,n > 1} and {Np,n > 1}
are iid sequences. Note that

N
(3.12.3.3) Cr=)Y oi=tx,
i=1

the initial busy period BF, satisfies

N-1
(3.12.3.4) BP =Y,
=0
and the length of the initial idle period I is
I = Cl — BA.
To verify that {C,,} and {N,} are each iid sequences, see that

{71 o) B 2 1}

is iid, independent of the pre-N field and identically distributed as
{{x-1,0%), k = 1} (cf. Section 1.8.2 and the material on random walks in
Chapter 7).

If p < 1 then ECy < oo, EN < oo, and the system is stable. This
will be proved in Chapter 7 in connection with random walk theory. Note
1>p=afbmeans b >a and EX; = Frg ~ Eoy =b"! —a~! < 0 and the
drift of the associated random walk {35, X;} is negative. Since N isa
stopping time, Wald’s equation {Section 1.8.1) yields

N
EC,=EY o;=a"'EN,

i=1

(3.12.3.5)

so ECy < oo iff EN < co. Henceforth we always assume p < 1.

Aside from {W, }, the following are two processes of interest: Q(t), the
number of customers in the system {waiting and in service) at time ¢, and
V' (¢), the virtual waiting time at ¢, that is, the wait of a fictitious customer
who arrives at time ¢. V(¢) may also be interpreted as the work load of
the server at time ¢.

We now observe that {Q(t), V(f),t > 0} is regenerative on R% with
regenerations at {3 .., Ci,n > 1}, and {W,,n > 0} is regenerative with
regenerations at {Ng, & > 1}. So if C; has a non-arithmetic distribution
(for instance, if oy has a non-arithmetic distribution), then

(3.12.3.6) (V(5),Q@) = (V(oo), Q(e0))
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in R3, where
Cy
PIV(o9) < 0,Q(o0) = 1l = (BC™'E [ Tvieuaiamnds,
0

since the paths of (V{.),Q(")) are in D[0, o0). Further, provided ¥, is a
non-arithmetic integer valued random variable, we have

(3.12.3.7) Wa = Wy
and
. Ni—1
PW, <w]=(EN,)'E Z 1w, <ul
i=0

A simple corollary of (3.12.3.7) is the following: Let
S =W, + 7,
represent the total time in the system of the nth customer. Then

(3.12.3.8) S o gleo)

where
50 L W+ 70

and where (W, Tw ) are independent, with W, specified as in (3.12.3.6)
and 7, has distribution B. The proof is easy: Since W, and 7, are inde-
pendent {remember W, € F,,) and {7,,,n > 0} are iid, we have

P[Wn SX,Ta < 'y] = P[Wn < :n]B(y) — P[Woo < I]B('y),
and therefore
(Wn,‘rn) = (Wcos Too)

in Ri. The continuous mapping theorem implies that
Wa+ 20 = Wo + Too.

The above are existence results. The limit distribution is shown to ex-
ist, but little information is given about explicit forms. Several qualitative
conclusions emerge, however.

Little’s Formula. This is a balance expression which does a bit of
accounting to equate certain moments of asymptotic distributions. Observe
first that

Ni-1

1
(3.12.3.9) Qsids = Y S,
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since
Cy ol Ni-1
o Q(S)ds - / Z 1[ customer j is present in the system at time ¢ ]dS
Ni—1 ol
= -/ 1{ customer j is present in the system at time s ]ds
=0
Ni—-1
= E ( departure time — arrival time of jth customer )
=0
Ni-1
— § 59
J=0

We now apply Proposition 3.12.4. Write

Ni-1
EQ(c) = (EC1) lE] Q(s)ds = (ECY) IEZS(J)

F=0

Since SU) = W, + 7,

Ni-1 Ny-t Ni-1
E(ZS@ =E| Y Wi l+E| > 7.
i=1 i=t =0

Applying Proposition 3.12.4 again, (3.12.3.7) gives

N;-1
(EN1)T'E ) W; = EW,,.

i=1

Since N, is a stopping time for {F,} and 7,1 € Fj;1, Wald’s identity
yields

N;-1
E ( Z Tj) = E(ﬁl)E(‘ﬁ) = b_lE(ﬁl).
j=0

Putting the pieces together, we get

EQ(x) = (EN1EW,, + b7 'EN,) /EC,
= EN. (EWx + E1y) /EC)
_ EN,ES()
EC,
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Applying (3.12.3.5), we obtain Little’s formula
(3.12.3.10) EQ(c0) = aES™),

which says for the limit distributions that the expected number in system
is equal to the arrival rate times the average sojourn in system.

On the relation between P[W,, < w] and P[V(oo)} <v]. (See
Lemoine, 1974 and also Takacs, 1962.) Define

(3.12.3.11) Vig) = P[V(oo) < z], W(t) = P[Weo < 1)

() = b fo (1= B(s))ds

Viz) =1-p+ pW * By(z),

and

For x > 0, we prove
(3.12.3.12)

where p = a/b is the traffic intensity. {Note the letter V is being used in
two ways. Distinguish between V(0o), the random varjable, and V' (z), the
distribution of the random variable V{o0).)

Let us proceed using Laplace transforms. In transform notation
(3.12.3.12) is (¢ > 0)
(3.12.3.13) V() =1-p+pW ()1 - B

Now write )
V(() = Be Vi),

From Propesition 3.12.4 this is

C1
(ECI)‘lE/ e~SVislgs,
b}

During the idle period [BPy, C1] we have V(s) = 0, so the above is

BP L0451
(BECy) ™t (E f eIy + F / lds).
0 BpP

y
(ECI)*IEf ds=(EC, — EBP)/EC,=1—-EBP/EC,

BP, _
E (Z{‘JI Ti)
E (ENll ‘71) ,

(3.12.3.14)

Now

"_-1—
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from {3.12.3.3), (3.12.3.4); applying the Wald identity twice gives
1-ENp Y/ (ENa ) =1-p.
We now focus on the first piece of (3.12.3.14) and write
BP v Ni-1 .4 BP
j; e ds = gvfthl_'ﬁ/tﬁl_l-
On [tk—1,tx) we have
Vi(s) = Wge1+Te—1 — (8 — k1),
and on [ty _;, BP) we have
Vie)=Wg,_1 + 75,1~ (s —tx,_1)-
Changing variables gives
Ni—1

BP, T
/ e~ SV s = Z / e~ SWii+me1-s8) g,
k=1 Y0

0
Bpl*t“ﬁ _
+[ e R e e g
0

Ni-1
= Z e_C(Wk—1+Tk—1)(eC°'k . 1)(:—1
k=1
(3.12.3.15)
+ e_C{WTV"rl"'er)(eC(BP‘_tTV'rl) _ 1)(-1_

We now make two statements.
{a) Observe that

Wﬁl—l -+ ‘Tﬁl_l — (Bpl —_ twl¥1) = 0,
since tx, ., + Wﬁ1—1 + TR, .1 adds together for the last customer in the
first cycle the arrival time, waiting time, and service time. The sum of

these three is the departure time of the last customer and hence signals
the end of the busy period. Thus the last bit of (3.3.12.15) equals

(1 —exp{—¢(Wg, _, + 7w, _1) ¢
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(b) For 1<k<N;~1
Wi—1 + -1 — ok = Wi
and the first sum in (3.12.3.15)) is

Ni-1
C-"l Z (e—CWk _ e—C(Wk_1+fk—1))_
k=1

Combining the pieces of (3.12.3.15) and remembering that Wy = 0 we get

N1

BP
f Vs = (71 Y (W g mr o))
0 k=1
+ c--—l(l . e_C(Wﬁ1—1+7‘-ﬂ71—1))
N, -1 Ni-1
el DI ST IR
k=0 k=0
N.-1
Sty e,
k=0
50
BP: Ni-1
Ef e™ Vs =(T1E Y e (1 —e™t™)
0 k=0
(e o]
= C_IEZ e tWr(1 - e—CT")l[kSﬁPI],
k=0
Now

[Ny—12k=[N>k+1]=[N> K
=[Nsk]cE}—k=U(TOa---aTkﬁIQO'I:---:Uk)'

Also Wy € Fy. Since 7 is independent of F, we have the above equal to
oQ
¢ z E (e_cwkl[kgﬁl-l})(l — &)
k=0

=(Y Bem el g, Bl -7t
k=D
Ni-1

=E| 3 ™ (1- B!
k=0

= EN{Ee=W=(1 - B(())¢?
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(from Proposition 1.8.1). Finally, we have

V(¢) = (BC) ™ MENEe~W=(1- B(O)X '} +1-p
= (@ 'EN ) HEN, Ee= "1 - B(O)¢'} +1—p
=ab"HEe™ Mo (1 - BN} +1 -
= pBe™ W By () +1 - p,

as desired.
A closing remark: Let z — 0 in (3.12.3.12). Then

V(0) = P[V(o0) = 0] = 1 ~ p+ pW x Bo(0)
=1-p

So 1 — p is a measure of the fraction of time the server is idle.

The M/G/1 Queue. The “M" stands for Markovian, which means
the input stream to the system is a Poisson process and P[o; > T} = e .
For such a distribution, Ploy > 2] = a7 Ploy € dz]. We now check

(3.12.3.16) V{oo) £ We.

We have that

<
PlV(oo) <o} = (ECl)_lE'/ lv(s)<v)ds
0

My o
= (EC&)‘IE):] Iy (@svds.
k=1"th-1

As we have done previously, for s € [ty_1,tx), we have
V(s) = (Wi_1+ 7k — (s =t )T,

50

th ti
f 1[V(3)Sv]d8 = / 1[(Wk—1+7k—1—(3_tk—1))+Sv}ds

tk—1 th_1

ok
= ]D 1[(Wk_1+fk_1—5}+5v]ds‘
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Thus
Nl T
PV(oo) < v] = (EC))EY fo L (Wirrs oyt <o)
k=1

oo o0
= (ECl)_lEZj(; li(Wk_1+n=_1—3)+SvJ1[ng.]1ESSUklds
k=1
(3.12.3.17)

o0 oo
= (ECH)‘IZ/D Eliwi_s+rx2-a)* <o}l (k<) Ls<ox] 95,
k=1

by Fubini’s theorem. Now [k < Ny] = [N1 < k- 1]* € Fpy =
o{Tgy .y Th—2,01,- - ,Ok—1), and also Wi_; € Fi_1. Since %1 is assumed
independent of o, we have oy independent of

[k < N1 [(Wioy + 761 — 8)T <0,

and (3.12.3.17) becomes

(Ecl)_IZfD El[(Wk-1+Tk_1—5)+E‘U]I[kSWI]P[o-k > S]dS.
k=1

Because o, has an exponential density, this is

oo oo
(EC)™ Zj[; L(Wie—rtrms—s)+ <o)l reyy@ Plow € ds],
k=1

and, again using the independence of oj from
(N1 = k)N [(Wioy + 1oy — 8} <0
we get that the above equals
oo
e HECY) ™Y | Elw,_, 4rims—on)r <ol Lyl
k=1

=a (ECy)™! Z Elw, <o)l pe,)
k=1

{since Wy, = (Wy_, + o1 — %) T)

Ny
=a! (EC;)_IE Z I[WkSv]'
k=1
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Ny
=a HEC)T'EY_ 1w, <u)-
k=1
Now WQ =0= Wﬁx’ 50 l[WoEU] = ]'[WTV‘JSU]’ and thus

F1—1
PV() <v]=a " ECH)T'E Y Iw,<u
k=0
= a_l(Eﬁl)(Ecl)‘lP[Wm < ’U]

(from Proposition 3.12.2.4)

= P[W,, <],

as asserted.
Combining this result with {3.12.3.12) allows us to compute V or W for
the M/G/1 queue. From (3.12.3.12),

V(t) =1-p+pV * Boft).

This is a renewal equation with 2(¢) =1 — p, Z() = V(t), F = pBp and
hence the solution, U * z, is

Vity=(1-p) > "By ().
o

EXERCISES

3.1. Reliability of the Power Supply. The nuclear reactor supplying
power to Harry's restaurant has a certain component with lifetime dis-
tribution Fi{z). If the component is operative, the system is in state 1.
Upon failure, there is probability p that this component is instantaneously
replaced by an attentive maintenance man (0 < p < 1). If not, the system
passes into state 2. After a random amount of time with distribution Fa(z),
a fail-safe mechanism shuts down the reactor. The system is shut down
(state 3) for a random amount of time with distribution Fy(x). Then it
passes back into state 1 and the reactor operation proceeds as before. Let
X (t) be the state of the system at time ¢. Distinguish a set of regeneration
points, and use Smith’s theorem to compute

lim P[X(t)=k], fork=1,23.
t-r00

Assume p; = [y adFi(z) < oo for i = 1,2, 3.
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3.2. Harry Copes with the Young Republicans; Counter Mod-
els. Members of the Young Democrats (YD) arrive at Harry's restaurant
according to a Poisson process rate a. However whenever a Young Re-
publican (YR) spots a Young Democrat (YD) entering the restaurant, the
YR’s get mad at Harry and declare a boycott of the restaurant during
which time no YR's enter. The boycott lasts a random amount of time
with distribution . Boycott periods are iid with the condition that if a
YD arrives while a boycott is in effect, a new boycott of random duration
& is immedjately initiated, regardless of how long the previous boycott had
been in place. Suppose a YD arrives at time 0 and L is the total duration
of the initia] boycott.
(a) Write a renewal equation for

Z(t) = P[L > t].

(b) Find the Laplace transform ¢(A) for the distribution of L in terms
of the Laplace transform of G and a.

{c) Find E(L) in terms of g = f;° zdG(z) and a.

(d) Now suppose that a YD arriving during a boycott has no effect on
the boycott. It is as if a YD arriving during a boycott is unobserved by
the YR's. Show that arrival times of YD’s when no boycott is in progress
form a renewal process and find the interarrival distribution.

{e) Suppose in {d) that the boycott duration distribution G is known but
the rate « is not known. Discuss how one would naively estimate o based
on the number of boycott initiated by time t and find some properties of
the estimator as £ — oo.

{f) If the renewal equation written in (a) is of the form

Z=z+Z*F,

show F{oo} < 1. When does there exist 3 such that

1= f P2 dF ().
o

When such a 3 exists, use it to derive the exponential decay of P[L > ¢].
(g) Now suppose that Young Democrats arrive according to a renewal
process with interarrival distribution F. Suppose there is an arrival at time
0 and that the boycott periods are for a fixed duration d. During boycott
periods, arrivals have no effect on boycotts. Show that the distribution of
the length of time between when one hoycott ends and the next begins is

d
/D (F(d+1t - y) - F(d - y))U(dy).
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What is this distribution in the case F' is exponential? In the exponential
case, what is the probability that at time ¢ there is no boycott?

(This model can also be used for counters of radioactive particles. Ar-
riving particles block the counter. The scheme in (d) corresponds to & iype
{ counter and the scheme in (a}, (b), (c) corresponds to a type II counter.)
3.3. Find the renewal function corresponding to

(a) F/(z) = @e™®®, @ >0, z > 0. (This is the Poisson process.)

(b) F'(z) = o®ze=>*, 2 > 0. (This is a gamma density.)

Do the drill without Laplace transforms. In both examples, verify the

elementary renewal theorem directly.
3.4. Suppose F is a distribution of a positive random variable and
Pr = O,Z:o:npk = 1. Define G = Z:';Okak*. If Xy,Xs,... are iid
with common distribution F' and if N is a non-negative integer valued
random variable independent of {X,} then check (7 is the distribution of
X, +---+ Xy. Find the Laplace transform of G.

3.5. If X > 0 and Y > 0 are independent with distributions F and G,
show

e XY _ '/Doo FQy)dG(y) = fow GOw)dF (y).

3.6. Items of a certain type have a mean lifetime of one day. The standard
deviation ¢ of the lifetime distribution is two hours. There is a unit cost
per item, and items are used successively according to a renewal model.
Use of items starts at £ = 0 and continues for a 10-year period (3600 days).
If C is the total cost for the 10-year period, give an upper bound « and a
lower bound /3 such that

PB<C <o)~ .95.

Hint: Use the central limit theorem.
3.7. (a) Write a renewal equation for

Z{t) = P{A(t) > z, B(t) > y).
(b} Solve it.

{¢) What is
lim Z(t)?

t—oo
(d) When is the limit distribution a product measure?

3.8. Suppose the interarrival density of a renewal process is
ae~ T8 for p o §

Fl(z)=
(2) { 0, for z < 6,

where 6 > 0 is fixed. Find P[N(t) > k]. (Express as an incomplete gamma
integral.)

!
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3.9. Suppose Z(t) satisfies the renewal equation
Z=z+F=xZ
where z(t) is assumed bounded, non-negative, non-decreasing, so that
tan;io T z{t) = z(oo) < o0,

Show
Jim 22/t = 2(9)/n,

where u is the mean of F.

3.10. Forgetfulness Property. If you have been living in a cave and
haven't encountered the “forgetfulness property” of the exponential den-
sity, then check it now: If X is a random variable with exponential density,
then

PX >t+z|X > 1) = P[X > z]

forx >0,t>0.

Waiting times in doctors’ offices in Ithaca follow exponential wait-
ing times with mean 75 minutes. Given that you have already waited one
hour, what is the probability that you will have to wait another 45 minutes
to see the doctor?

The Youngest Goes Last. Dana, Tali and Sheli go to the post office
where there are two servers. The service requirements D, T and S of the
three girls are iid exponentially distributed random variables. Because
Sheli is the youngest, Dana and Tali enter service first. Sheli can only
enter the service when one of the older girls finishes the service {at time
D AT)., What is the probability that Sheli is not the last to leave the
service?

3.11. Optima Street Fire Department. In Harry's neighborhood of
Optima Street, calls to the fire department occur according to a Polsson
process with a rate of three per day. The fire department must respond to
each call (although they know a certain percentage represent false alarms).

(a) A fireman gets a raise after the 300th call. How many days should
the fireman expect to wait for the raise?

(b) Of the calls that come into the fire department, on the average one
third turn out to be false alarms. In a single day, what is the probability
of two false alarms?

(¢) Firemen are presently paid $100 a day. A new pay plan is proposed
where they will be paid a random amount of money per fire that they
actually fight (the reward being based on the difficulty of the fire fought).
In the new scheme the expected pay per fire fought is $40 per fire. What is
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the long run reward rate in the new scheme? (To help your thinking, you
might wish to represent the payments as random variables Ry, Ra,....) Is
the new scheme more or less advantageous than the old one?

(d) If we consider only calls to the fire department which occur after
midnight, January 1, 1995, what is the probability that a false alarm occurg
before a real alarm is phoned in?

3.12. Whenever machines of a given type are “operative”, they stay that
way for a negative exponential length of time of mean duration 1/A. When
breakdowns occur, repairs lasting for a negative exponential length of time
of mean 1/p are started immediately. Repairs return the machines again
to the operative state.

At time ¢ = 0, N identical machines are independently placed in use
and all are operative.

(a) Show that the number of machines that are operative at time £ > 0
has a binomial distributicn with parameters N and

1

P=Xva

(,u + )\e"(“'“)t) )

{b) How large should N be chosen to guarantee that the probability
that at least one machine will be operative is at least 0.997

{c) Give a simple approximation to the number asked for in (b) when ¢
is very large.

(Concentrate on one machine alternating periods of being operative and
inoperative. Compute a renewal function. Laplace transform techniques
may help. We will see later that this problem has a somewhat simpler
solution using continuous time Markov chains.)

3.13. Harry’s Customers Like Their Brew. Kegs of beer at Happy
Harry’s bar hold 24 liters. Ouzuly one is kept under the bar at a time; the
rest are in the back. Custormers arrive according to a renewal process with
finite mean interarrival times. Each customer orders half a liter. When a
keg is empty, it is instantaneously replaced with a full keg from the back.
Let X (¢) be the level in the keg under the bar at time ¢. Assume the state
space is {.5,1,1.5,...,24}.

(a) Is X(¢) regenerative? Why or why not?

{b) Compute

zlirgxo PlX(t) =kl

{c} What is the the long run percentage of time the keg on the bar is

full?

3.14. Wildlife at Harry’s Restaurant. The cockroach population
grows linearly at Happy Harry’s with a random growth rate. When the
population reaches 5000 the Public Health Service comes in and shuts
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Happy Harry’s Restaurant for a random amount of time while the place
is fumigated and cleaned up. Then the restaurant reopens, and the cock-
roach population again begins to grow. This happy pattern continues ad
nalseam.

Assume cockroach growth rates are Gy, Ga, ..., which are iid random
variables, so that, for instance, if t is before the first time the Public Health
Service shuts down the restaurant, we have the cockroach population G;t.
Similarly, the periods when the restaurant is closed are iid random variables
D1,Ds,.... Assume {D;} and {G} are independent, ED; = 4, EG; ! =
g < oo

(a) Let N(t) be the number of times the Public Health authorities have
closed Happy Harry’s in [0,t]. Give an expression for EN(Z} in terms of
the distribution of G; and D;. What is the long run rate of closures per
unit time of happy Harry’s? If Harry is fined $50 per closure, what is the
expected total amount Harry has paid in fines by time {7 (Clearly state
assumptions about the initial configuration of the system at time 0.)

(b) Let B(¢) be the time until the next closure of Happy Harry’s after
time #. Give an expression for the distribution of B(t). What is

tl_l{& PB(t) >z} ?

{¢) Maxdimum profits are achieved when the cockroach population is
between 1000 and 3000. (Anything below 1000 leaves the regular patrons
nervous that Harry is serving roaches in the soup, and anything more than
3000 is excessive even for Harry’s devoted customers.) Let C(t) be the
number of cockroaches at time t. Does {C(t),t > 0} have any notable
structure? Compute

Jlim P[1000 < C(t) < 3000].

3.15. Age Dependent Branching Process. Let T(t) be the total
mumber of particles born up to time {. Define

F(s,t) = BsT®,

Derive an integral equation for F and then differentiate to get a renewal
type equation for ET(t). Give the solution of the equation.

3.16. Plumbing at Happy Harry’s Restaurant. In the back of Harry's
restaurant is a small building with a tube running down to a huge tank of
capacity 100,000 cc. Harry’s customers visit the small building in a steady
procession according to a renewal process {Sp,n > 0}, with 5, — Sp—1 ~
F{z) and E{S, — Sp—1) = 35 seconds. Upon arrival to the small building,



286 3. EXERCISES

each person instantaneously and discretely deposits 10 cc of liquid down the
tube which is collected in the tank. The tank is initially empty. When the
tank is full, a red light glows and the tank is replaced by a shiny new, empty
tank. Let X (t) be the level in the tank at time t. For j = 0,...,10,000~1,
compaite
lim P{X(t) = j].
t—00
Why does this limit exist?
3.17. Consider a discrete pure renewal process such that the span of the
distribution governing times between renewals is 1, and assume
EY,=p<o0, Var(ty)=o0? < oo
Define " o
gn= Pl >n]= Z fiv ™m= Z qj-
j=n+l j=n+1

Show that the generating functions Q(s) sud R(s) converge for s = 1, and

prove that . R(s)
2 (u" - ﬁ) "= Q)

n

3 (- 1) =T
”ﬂ - 2”2 .

- #

3.18. Consider a delayed renewal process with initial distribution

G(z) = Folz) = ™! /: (1 - F(s))ds.

and hence that

Let
H(t,z) = P{U2,[5n € (&, +2]]}.
Write a renewsl equation for H{t,z). What is H(t,z) 7

3.19. Given a renewal process with finite mean, suppose the random
variables A(t} and B(t) are independent for each ¢ > 0. Show the process
is Poisson.

(Hints: Use the identity

PlA(t) > =, B(t) >y} = PA(t) > 2] P[B(!) > y],

and let t — co. Recall Exercise 3.7(d). Derive a functional equation for
1—Fy(z). You may want to use the fact that a version of Cauchy’s Equation

flz+y) = flz)fly)

has only exponentials as solutions if f is reasonable. Monotone implies
reasonable. )
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3.20. Suppose you have an alternating renewal process: A new machine
begins operating at time 0 and breaks down after a random amount of time
whose distribution is Fi(z). Tt takes a random amount of time whose dis-
tribution is Fy(x) to replace the broken machine with a new machine with
characteristics identical to the original. Successive periods are independent
and alternate between having distributions F; and Fs.

Define f,(t) to be the probability that at time ¢ there is an operating
mchine and that it stays operative for at least £ more time units. In what
follows, z is always fixed.

{a) Write the renewal equation satisfied by f.(¢).

(b) Solve the equation.

{c) Compute lim;_, o fz(t).

3.21. Consider an ordinary renewal process with counting function N ().

(a) Show

= +]
B(N®)Y =) _(2n—1)F" 04,
n=1
(b) Find the Laplace transform of 3 oo, nF("~1*(¢). Use this to write
Yoo nF=U*(4) in terms of U(t), the renewal function.
() Use (a}, {b) to find an expression for E(N(¢))? only in terms of U.

3.22. (a) If X,Y are independent, X has density oe™®*, z > 0 and Y has
density Se~#%,z > 0, show the density of X + Y is

e—oT _ e—ﬁz
s (“5me—)
Do this directly by computing the convolution of the two densities, and
then do this a second time using Laplace transforms.

{b) Let E(cx), . .-, E{ay,) be independent exponentially distributed with
parameters ag, . ..,o,. Find the density of 3,7, E{c;) by Laplace trans-
form methods using the following outline:

(b1) The Laplace transform of the sum ;" F{a;) is

n "
Ha,;«{-)\'

i=0

(b2} Do a partial fraction expansion on the product by writing

n
i=0

1 id A;
C!,"FA*;O&'*I-A.

Multiply through by JTi—p(e: + A) to solve for A;, i =10,...,n.
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(b3) Verify

Eexp{—«)\z E(a;)} =/me—)~w (Z [HHZL:O&T“ :I e—asz) dz.
i=0 0 i=0

jalas — o)

3.23. Prove without using transforms that if V(t) = t/u, then G = Fg.

3.24. Replacement Policies. Machines having iid lifetimes with com-
mon distribution F(z) of finite mean i and variance ¢? are used succes-
sively.

(a) Show that if machines are replaced upon failure only, then the lim-
iting average cost per unit of time for replacements is A/u, where A is the
cost of a new machine.

As an alternative, we can replace machines regardless of age at times
0,T,2T,... at a cost B or whenever a failure occurs (at cost 4).

(b) Show that the expected cost per time intervallKT, KT + T| for
replacements is B+ AU(T") where U is the renewal function corresponding
to F.

3.25. Let U(\) = [;° e7**U(dz) exist for A > 0. Then U is integrable
over (0, 1) (respectively (1,00)) with respect to Lebesgue measure iff ™1
is integrable with respect to U over (1,00) (respectively (0,1)).

3.26. Busy Periods in M/G/1 Queues; the Bullpen Discipline.
Customers arrive at a single server queue according to a Poisson process
{Na(t),t > 0} of rate a. Service times are iid random variables {S,} with
common distribution B(z) = P[5 < z], x > 0. Assume service times are
independent of input to the system. Let Q(t) be the number of people in
the system at time t; we are interested in the busy period

BP :=inf{t 20: Q) =0},
and we seek to calculate the busy peried distribution
B(z} = P[BP < z|Q(0) = 1}.

(a} As a warm-up, first compute the distribution of the number of
arrivals during a service period, lLe., compute P[N4(S:) = n] and the
generating function Es™¥4(51) Compute EN4(S1).

(b} Argue that the busy period discipline does not depend on the queue
discipline, i.e., on the order in which the customers are served.

(¢) Thus we may consider the bullpen discipline: Let the initial customer
enter service and remain in service for a duration 5;. Label the customers
who arrive in the interval of length 51 as e1,...,¢n,(5,;- Put these cus-
tomers in the bullpen. At the end of the interval of length 51, the customer
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¢y is removed from the bullpen and allowed to enter service. He is served,
and all the people who arrive during ¢;’s service period (call these arrivees
the descendants of ¢;) are served, as are all the people who arrive during
the service periods of the descendants, etc. until all customers descending
from ¢, are served, and the server is free. The next customer ¢, is released
from the bullpen and allowed to enter service. He is served, and all of his
descendants are served, etc. until the server becomes free. This process
continues until the last customer is led from the bullpen to the server, and
he and his descendants are served. Show that this procedure leads to the
recursion
BP 4 S1+BP,+BP + .. -BPNA(SL)

where BP; can be considered the busy period initiated by ¢;. Note {BF;}
are iid with BF; £ BP.
(d) Derive Takacs’ Equation by taking Laplace transforms:

B(8) = Bla+6 - ap8)),

where ﬁ is the Laplace transform of the busy period distribution and Bis
the Laplace transform of the service time distribution.

(e) In the special case B{z) = 1 — e ®*, x > 0, what is the form of
Takacs’ Equation ? Solve for [3‘ (Takacs’ Equation leads to two solutions;
one needs to be discarded.)

Assume for the rest of the problem that the service time distribution is
exponential.

(I Define the traffic intensity to be p = a/b. Show

P[BP<oo]=1ifp<1.

Compute P[BP = o0] in case p > 1.

{g) If p < 1 compute E(BP|Q(0) = 1). Show that if p = 1, then this
expectation is infinite. Compute Var(BP).

Now consider the random variable IV, the number of customers served
during a busy period. We seek the transform g(s) = E(sV|Q(0) = 1).

(h) Argue as in part (c¢) that N satisfies the recursion

NE214 N+ + Ny

where {N;} are iid with N; N , and N; represents the number served
during the busy period initiated by customer c;.

(i) From (h) convert to generating functions, and show with a general
service distribution B that g satisfies the functional equation

g(s) = sB(a(l - g(s))).
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Specialize this to the case that the service time distribution is exponential
with parameter b, and solve for g in this case. (Again, there will be a
guadratic equation in the unknown g and thus two roots; one root musg
be discarded.)

(j) Corapute P[N < 00|Q(0) = 1]. Prove this is 1 iff p <1. In this case
compute E(N|Q(0} = 1) and Var(N{@(0) =1).
3.27. Bulk Arrivals at Harry’s Restaurant. The late shift at Happy
Harry's restaurant consists of one chef. Traffic at this time of night arrives
at the restaurant in bulk owing to arrivals of busloads of hungry athletes
returning heme from athletic competitions. Buses arrive at Harry's ac-
cording to a Poisson process { A(t)} with rate a. The number of occupants
in each bus is a sequence of iid random variables {N;,1 > 1} with cornmon
distribution

PNy =k =0, 1<k<30,

generating function

30
B(s) = EsM = Zﬁksk,
i=1

and mean

m=6(1)=> kb
k

{Note the support of the distribution contains small numbers to allow for
single arrivals by car.) The chef processes the order of each customer in an
exponential length of time with parameter b. We seek to analyze the busy
period of the chef assuming the busy period is initiated by the arrival of a
busload of hungry athletes.

(a) What shouid be the condition that the busy period is finite?

{b) Under the condition given in (a) find E{(BP}. Do this by writing an
equation among random variables, many of which are iid replicates of BP.
Express the answer neatly and succinctly in terms of A, i, m. Does the
answer depend on the assumption that the chef works at an ezponential
rate?

(c) Let

¥(¢) = Eexp{~(BP}

be the Laplace transform of the busy period distribution. Write a func-
tional equation for ¥({). The equation should involve the guantities
W(C), BIC) = b/(b+ ), ¢, X, ().
{d) Let
p= P[BP < o).

Use (¢] to write a recursion for p and to verify your answer to (a).
{e) Use (c) to compute E(BFP) when p =1, When is E(BP) < co?
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3.28. If g > 0 is integrable on [0, o0}, check

/ODO e M g(z)dz f:o e” G (dz)

is the Laplace transform of the density G * g(z).
3.29. Check the elementary renewal theorem via Laplace transforms when
the process is delayed.

3.30. Formulate and prove a central limit theorem for a renewal reward
process.

3.31. Prove for a delayed renewal process
EN(t,t+b] =U=Gb),

where

Gi(z) = P|B(t) < z].

3.32. Let M = max{S, : Sn < oc} be time of the last renewal in a ter-
minating ordinary renewal process with defective interarrival distribution
E.

(a) Find the distribution of M in terms of F.

(b) What is the distribution of N{oc), the total number of renewals?

(c) What is EN? EM?

(d) Large gaps; pedestrian delay: Harry strains his Achilles tendon
in a pick-up basketball game and has to be on crutches while mending,
While on crutches, he needs 7 time units to cross Optima Street. Assume
Optima Street has only one way traffic and that the traffic passes according
to a renewal process with interarrival distribution F'. Suppose Harry arrives
on crutches at £ = 0 and seeks a gap in traffic sufficient for him to cross.
Therefore, he starts to cross when he sees a renewal interval at least =
in length. Let M be the time when he starts to cross so that M = S,
ffyY, <7...,Y, € r,Yay1 > 7. Compute the distribution of M and
give EM. Specialize to the case that the renewal process is Poisson with

parameter «.
- Yo,
Y, = { "
m'l

{Hint: Let
Let S‘n =Y, 4+ Y, Find the distributign of ¥, and then M is the
lifetime of the terminating renewal process {5,}.)
3.33. A General Risk Process. Let r(z),z > 0, satisfy r(0) = 0, and r
is continuous. Assume

ify, <,

otherwise.

T,
) '_/a WS
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for z > 0 and that S(o0) = 0. Define g(z,t) = S~(S(z) +¢) where S+ ig
the inverse of the monotone function 5. Check that ¢ satisfies

(o) =2+ [ rlala,)ds

Suppose at Poisson times ¢, {2, . ..
are taken. Define for z > 0

X(t) =q(z,8), f0<t<ty,
= (g(z,t1) — X1)4, ift=ti,
Xty +1) = q(X(81),t), f0<t<ty 1,
X(t2) = (@(X(t1),t2 — 1) — Xa)y, it =1y,
etc. Analyze the ruin probability.

iid jumps downward of size X1, X, .. .

3.34. Construct a Riemann integrable function on {0, oo) which is contin-
uous and unbounded.

3.35. If z is dRi, then F'x 7z is dRi for F' a distribution function on [0, oc).
(Cinlar, 1975)
3.36. If F is arithmetic with span A (in which case regard 2 as a function
on {kA}), then z is dRi iff 3, 2(kA) < 0.
3.37. Any finite linear combination of functions which are dRi is itself
dRi.
3.38. If z is continuous almost everywhere and

Z sup z(k+1) < co,

% 0<t<1

then z is dRi.

3.39. Suppose in a ruin problem, the company invests capital at interest d,
so that, in the absence of clalms, the fortune obeys the differential equation

F(8) = c+df(t).

Show that R(z} is positive for all z no matter what the values of o, ¢, EX;.

3.40. Find the limiting behavior of the expected number of all individuals
who ever lived before time ¢ (which equals 1+ the number of births up to
time t) in a supercritical (m > 1) age-dependent branching process.

3.41. In the G/G/1 model, let {(t) be the residual service time of the
customer who is being served at time ¢, provided Q(t) > 0 (meaning there
is someone in the system). If the system is empty, @(t) = 0, then define
¢(t) = 0. Show

(Q(2), (1)) = (Q(cx), ((o0}),
and express the distribution of (Q(o0), {(c0)) in terms of paths up to Cy.
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3.42. (a) Suppose a process {X({t},t > 0} may be in one of three states
1, 2, 3. Suppose initially the process starts in state 1 and remains there
for a random length of time distributed by Fy. After leaving state 1, it
enters state 2, where it sojourns for a random length of time distributed
according to Fy. Then it goes to state 3, where the sojourn is governed
by F3, and then on to state 1, etc. Successive sojourns are independent.
Assuming F; is non-arithmetic and has finite mean u; for 1 = 1,2, 3, find
the limiting state probabilities

tl_l.r& PIX(t) =1].

(b) Customers arrive at the dispatching room of the Optima Street
Taxi Service according to a renewal process having mean interarrival time
p- When N customers are present, a taxi departs with the N waiting
passengers. The taxi company incurs a cost at the rate of nc dollars per
unit time whenever there are n customers waiting. What is the long run
average cost incurred?

(c) Replace the taxi company by a railroad company. Imagine customers
arrive at the train station according to a Poisson process. When N pas-
sengers are waiting, a train is summoned to pick them up. The train takes
a random number of time units (with mean k) to arrive. When it arrives,
it takes everyone away. Again, assume the train company incurs a cost per
unit time of nc when n passengers are waiting in the station. Find the long
run average cost incurred by the train company.

3.43. If F?* has a density which is directly Riemann integrable, then
V = U — 1 — F has a density v and v{t) — 1/u {Feller, 1971).
3.44, Supposefori =1,2

Z{:Z;‘-*'Z{*F.

(a) Show that if
tlim () z(t) =1,

then
tlim Z1 ()] Z4(t) = 1.

{b) Suppose zz is the integral of z; and % (0) = 0. Then Z; is the
integral of Z,.

(c) Use (b) to show that if z(t) = "', then Z(t) ~ t"/(nu) as t — co.

(d) If zg = G+ 2z, (where G is a Radon measure, that is, a measure which
puts finite mass on finite intervals), then Z; = G * Z;. If G(x) = z* with
a > 0 then

1

z1{z} ~ 2% implies Z;(x} ~ z*/(ap).
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3.45. On Length Biased Sampling, Inspection Paradox, Wait-
ing Time Paradox. The renewal interval covering ¢ tends to be longer
than a typical interval with interarrival distribution F. We explore this
phenomenon in this exercise.

(a) As a warm-up, let X be uniform on [0,1]. Then

{0,1] = [0, X] U (X, 1].

By symmetry, each subinterval has mean length 1/2. Now pick one of the
subintervals at random in the following way: Let ¥ be independent of X
and uniformly distributed on [0, 1], and pick the subinterval [0, X] or (X, 1}
that ¥ falls in. Let L be the length of the interval chosen so that

L_{X, ifY <X
T l1-X, Y > X,

Find EL (Taylor and Karlin, 1984).

(b) Consider an ordinary renewal process {S,,n > 0} with interarrival
distribution F. The lengths of the interarrival intervals are {V¥;,7 > 1}.
The length of the interval covering t is Sy() — Sn)—1 = Y = At) +
B(t) =: L;. The point of this exercise is that the length of this interval
does not have distribution F', since longer intervals tend to cover ¢.

(1} Show the distribution of L, is

f ., (F@)— Ft—uw)dU(u), ifz<t,

u=

PlL; <z = { ]
Jo(F(z) — F(t — u))dU(u), ifz >t

{2) Evaluate the distribution of L, in the case when the renewal pro-
cess is a Poisson process with rate o. Show that L; converges in
distribution to L., and give the distribution of L. What is the
mean of L7

(3) Tired of the rigors of city driving and seeking to be ecologically
correct, Harry eschews the automobile in favor of the bus. Buses
arrive at his stop according to a Poisson process with rate . Harry
arrives at time ¢ and tries to estimate his expected wait until the
expected next bus arrives. Harry reasons in two ways: (i) On
the one hand, Harry knows that the forward recurrence time for
the Poisson process is exponentially distributed with parameter
o and hence his expected wait should be o~!. (ii) On the other
hand, he reasons that because of symmetry, and in the absence
of knowledge about when he arrived relative to bus arrivals, he
might as well assume that his arrival is uniformly distributed in
the interval. Harry thinks the interval should have expected length
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a ! and hence his expected wait should be approximately o !/2.
Criticize Harry’s reasoning given in (ii), and explain why, if Harry’s
reasoning in (ii) is fixed up, he has an approximately (as ¢t — o0)
correct method of estimating the expected wait.
(c) Show that
P[Y; > z] 2 P, > z.
3.46. Find the limiting distribution of the forward recurrence time when
the interarrival distribution is
(1) uniform on [0, 1],
(2) the triangle density on [0, 2]
(3) Erlang with k stages with density f
e—ﬂI
(k—1p°
3.47. Consider a discrete renewal process with interarrival distribution
which is geometric:

PX; =k =a(l-a)*, k=12,....

Computie the discrete density of the forward recurrence time.

f(@) = afaz)*

3.48. Consider an age-dependent branching process with offspring distri-
bution {px}, f(s) = o Prs® and life length distribution G. Let X{t)
be the population size at time t and F{s,t) = Es*®); show that F{(s,t)
satisfies the recursion

F(s,1) =s(1—c(t))+f0 F(F(s.t — u))dGHw).

From this, recover the recursion for EX (t) given in Example 3.5.2.

3.49. Suppose for an ordinary renewal process that o? := Var(¥}) < oo.

Show that
Var(N{t)) _¢o°

lim .
t—oo t us
3.50. Average Age, Average Forward Recurrence Time. Check
o] 0.2 + ”2
rdFp(z) = ———.
| =aro@ =

Then check that
t

lim ¢~? / B(s)ds = EB{w0) = EA{ox)
0

t—oo

= _/Om zdFyp{z)

t—oo

t
lim t41/ A(s)ds,
0
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where B(o0) &4 A{o0) has distribution Fg.

3.51. The lifetime of Harry’s computer, which performs essential restay.
rant management functions, has distribution H. Harry buys a new com-
puter as soon as the old one breaks down or reaches the obsolescence age
of T years. A shiny new computer costs C) dollars, and an additionga]
cost of (5 dollars is incurred whenever a computer breaks down and leayeg
Harry’s business without high tech support. A T-year-old antique com-
puter has minimal resale value but can be donated to a school for a tax
benefit yielding a gain of 4(T) dollars. Find Harry’s long run average cost,

(a) If H s uniform on (2,8}, €1 =4,C; =1 and 8(T} =4~ (T/2), then
what value of T" minimizes Harry’s long run average cost?

(b) If H is exponential with mean 5, Cy = 3, C2 =1/2, b(T) = 0, what
value of T minimizes the long run average cost? (Ross, 1985.)

3.52. Conserving the Server. Suppose in an M/M/1 queue, the service
facility is turned off whenever it is empty. It is turned on again when the
amount of work in the system exceeds a set quantity v. Suppose the system
is imitially empty. The server is activated by customer number N = n if

n—1 n
z TS < Z Ti.
i=1 i=1

Once on, the server remains active until the system is empty. Assume the
traffic intensity is less than 1 so that the system is stable.

{a) How is E:}\; 7; — v distributed?

(b) Find EY ) , 7, and EN.

{c) What is the expected time from when the server is activated, umntil
the system is empty? (Wolf, 1989.)

3.53. Show hy example that g < oo is not necessary for convergence in
distribution of a regenerative process. {A simple example, say X (¢t} = 0,
suffices.)

3.54. Customers arrive at a train station according to a Poisson process
of rate @, and trains arrive according to a renewal process with interarrival
distribution & with mean p. What is the long run fraction of customers
who arrive for whom the waiting time for the next train does not exceed
y. (Wolf, 1987))
3.55. (a) U ¥} = ¢ for all § with probability 1, what is 7

(h) Fy = F iff F'is an exponential distribution function.
3.56. lLet & be a random variable with distribution Fp, and suppose ¥;

has distribution F concentrating on {0, o). Express the moments of & in
terms of the moments of Y7.
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3.57. Consider an alternating renewal process {X(t),{ > 0} with states
0,1. Sojourn lengths in state ¢ are governed by a continuous distribution
F;fori=1,2. Let

excess life in state 1, i.e., time until the next transition,
Bi(t) = if X(t)=1,
0, if X(¢) # 1.

Find the limit distribution of B;(t) for i = 1, 2.

3.58. Restaurant Maintenance. The expresso machine in Harry’s
restaurant breaks down periodically and is eventually fixed. Times between
breakdowns are iid random variables { X} with mean FX;. The expresso
machine is inspected by Harry periodically to determine whether it is still
working adequately. The times between inspections are iid exponentially
distributed random variables with mean g. When an inspection determines
a repair is necessary, repairs begin. Repair times are iid random variables
{Y;} with mean BY.

(a) What fraction of the time is the machine working?

(b) If we assume the inspections stop when the machine is being repaired,
what is the average number of inspections per unit time? (Wolf, 1989.)

3.59. Demand for an jitem in inventory at a warehouse is a Poisson process
at rate o, meaning customers arrive according to a Poisson process, and
each customer demands one unit. When the inventory level hits 0, an
order of constant size S units is placed with the factory. Delivery time
of the entire order from the factory to the warehouse is exponential with
mean 1/u. During that time, demand is lost at a cost of $¢ per unit.
The inventory holding cost is $h per unit per time, based on the average
amount of inventory held.

(a) Check that iid ¢ycles {C;} can be discerned.

(b) Suppose the inventory level hits 0 at epoch 0. Let I(t) be the
inventory level at epoch ¢, and define

C1
A= f (),
0

where C is the length of the first cycle. Show that

S(S+1)

EA = 2cx

(Hint: Break the integral into rectangles.)
(¢) Find the long run cost per unit time of inventory and lost sales (Wolf,
1989).
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3.60. More on Counter Models, Suppose particles arrive at a
counter according to an ordinary renewal process {Sn,n > 0}, where
Sp = 8p.; = Y, has distribution F with mean f. A registered par-
ticle locks the counter for a random duration, during which time no
other particles can be registered. Lock periods are iid random variables
{Ln,n > 0} with distribution G and mean v, Registration times have in-
dices np = 0, ny = inf{n : S, > Ly}, oy =inf{n: 8, > 8, +L; 1}
Times of registration are {S,,,j > 0}

(a) Define Z; = Sp; = Sn;_,, and show {Z;} are iid, so that registration
times form a renewal process.

Let Ut) = 3,2, F™(t) = EN(t) and let M(t) be the number of
registrations by time £, so that M(t) is the counting function of the renewal
process with interarrival times {Z;}. Set V() = EM(t) to be the expected
number of registrations up to time ¢. Finally, let W; = Z; -~ Li_1 be the
amount of time prior to the jth registration that the counter is free since
the last registration.

{b) Prove the {W,} are iid and

o t+4x

PIW, <a) = /0 || =P+ t—r)av(mact).

(Hint: Recall the formula for the forward recurrence time distribution for
an ordinary renewal process. )
(¢) Prove {Z;} are iid and

(1) H(z) :=P[Z; < 2) = [§ G(t)(1 - F(z — 1))dU (t).
Show for A > 0 that the Laplace transform H satisfies
I e G (s)dU (s)
oV
(2) P[Z; < 00] = 1. (Hint: Show limyyo H(A) = 1.)
3}

B\ =

[ el URG(), i g < oo,p < 00,
EZ; =
oo, otherwise.
(Hint: Wald’s equation is one possibie method.)

Let

be the bias of the counter.
(d) Show the asymptotic bias of the counter is

if o= oo,

- m!
Jim, B(t) = { IS UG,  if u < 0.
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(Hint: The elementary renewal theorem suffices.)

Let Fy(t) be the probability the counter is locked at time t, and let P;(t)
be the probability the counter is free at time ¢.

{e) Show that

R0 = [ (1= G- sNavi)

and that v
lim Fyft) = —ssm—rrr.
Jm Fo(t) kfy U)dG(t)

3.61. Two-State Semi-Markov Process. Given two distributions
and F, and the matrix
l-a
P=(." ,
(1 -8 B )

0 <a<1,0< <1 Astochastic process {X(t),t > 0} has state space
{1,2} and moves according to the following scheme: When the process
enters ¢, it stays in ¢ a random amount of time governed by distribution
Fi(z),1=1,2. Then, given that this sojourn time is at an end, the process
jumps to state j (possibly j = i) with probability p;;, which is the (4, j)th
entry of the matrix P. Sojourn times are conditionally independent given
that you know the state the process is sojourning in. Use Smith’s theorem

to calculate
tlim PIX(t) = 4]

for j =1,2.



CHAPTER 4

Point Processes

E WANT to build models for a random distribution of points in
a space, usually, a subset of R or [0,00) or B, d > 1. We have
seen several examples of such models already. Renewal processes distribute
points on [0, oo} so that the gaps between points are iid random variables
and the Poisson process on [0,00) is a renewal process which distributes
points so the gaps are iid exponential random variables.
Point processes contribute components to a solution of many varied
modelling problems. We may need to model any of the following:

(1)

the times of arrivals (departures, service initiations, and so forth)
in a queue;

(2)

the breakdown times (repair times) of a machine or a group of
machines;

(3)
{4)
(5) the location of trees in a forest;

(6) the location of tanks in a battlefield.

First, we consider some basic issues connected with modelling random
distributions of points in a space. We wish our models to be general enough
that they do not require the nice ordering present in the real line but absent
in higher dimensional Euclidean spaces.

the positions and times of earthquakes in the next 50 years;

the location of oil relative to a known deposit;

4.1. Basics.

Suppose F is a subset of a Euclidean space; for us it is enough to suppose F
is a subset of [0,00), R or B? for some d > 1. We want to distribute points
randomly in F and have a convenient notation for a function which counts
the random number of points which fall in a bounded set A. Suppose that
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{Xn,n > 0} are random elements of E which represent random points in
the state space E. If we define the discrete measure

1, fX,cA,
€x.(A) = T

0, fX. €4,
then, by summing over n, we get the total number of random points X,
which fall in A. If we define the counting measure N by

Ny =3 ex, (),

n

then
N(A) =) ex,(4)
n

is the random number of points which fall in the set A. N is called a point
process and {X,,} are called the points. The notation is designed to exhibit
explicitly the dependence of the counting measure on its points. Note if
the domain of the random elements {X,, } is the sample space ), then N is
also a function whose domain is 1. Therefore, with w € 2, we could write

N(w, A) = Z EX,,(w}(A)!

i

but we will almost always suppress the dependence on w in the notation.

A technical requirement for point processes, which allows us to manage
infinities, is that bounded regions A must always contain a finite number
of points with probability one; viz for any bounded set A4,

P[N(A) < o0] =1

For instance, for a renewal process, we have F = [0, 00}, and the points
are the renewal epochs {S,,n > 0}. The point process corresponding to
the points {5,,} is

N = Z [

The property that bounded regions should contain a finite number of points
is ensured by the finiteness of the renewal function proven in Chapter 3
{Theorem 3.3.1), since, if A is bounded, there exists a large t > 0 such that
A C {0,t], and, therefore,

EN(A) < EN([0,£]) = V(t) < oo,
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where ¥ is the renewal function. Since EN(A) < oo, we have
P[N(A) < o0] =1.

In Chapter 3, the notation for N([0,t]) was N(t); this is a typical and
convenient convention when E = [0,00).

A.s another example, consider the modelling of earthquake locations
and times. A suitable choice of state space would be E = [0, 00) x R?, and
the point process could be represented as

N =3 €@ fhut Lua))

where T, represents the time of the nth earthquake, and (Lni, Ine) repre-
sents its latitude and longitude. For t > 0 and B C R?, N([0,t] x B) would
be the number of earthquakes occurring in [0,%] whose locations were in
region B. If we wanted to add intensity to the model, a suitable state
space would be E = {0,00) X B? x [0, 00), and the point process could be

represented as
D T Lo L) T (s
n

where I, is the intensity of the nth earthquake.

The notation is flexible enough that it can be modified slightly if we
wish to model multiple points at a single location. As before, regard {X.}
as a sequence of random elements of £ which will now represent siies,
and let {£,} be non-negative integer valued random variables, where én
represents the random number of points located at random site X,,. Then
the point process with multiple points at its sites can be represented as

Z gnEXﬂ-

Then, for a region A C E,
> bnex, (A)

is the number of points in A, since we have counted the number of points
at each site in A. This type of set-up is ideal for modelling bulk arrivals.
Imagine buses arriving at Harry’s restaurant according to a point process
with points {X, }; the nth bus arrives at time X,,. If we represent the num-
ber of passengers in the nth bus as &,, then the total number of customers
arriving in [0, ¢} is

> tnex. ([0,4]).
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An important summary statistic for the point process is the mean
measure, frequently called the iniensity, defined to be

u(A) = EN(A).

Thus g(A) is the expected number of points in the region A. If N is the
renewal process 300 €5, then u([0,t]) = EN(t) = V(t) where V is the
renewal function of the renewal process.

The most tractable and commonly used point process model is the
Poisson process and we discuss this in the next section.

4.2, THE POISSON PROCESS.

Let N be a point process with state space E. Suppose £ is a class of
reasonable subsets of E. (If you are happy with the adjective reasonable,
skip the rest of this parenthetical remark: & should contain sets A for
which it would be useful to ask how many points of N are contained in
A. For instance, we demand that £ contain all open subsets of E or all
open intervals, etc. We also want £ to have desirable closure properties: If
Ac &, then A° € £, and if A, € € for » > 1, then Up»14s € £.*) Then
N 15 a Poisson process with mean measure i or, synonomously, a Potsson
random measure (PRM{1)) if

(1) ForAc€

e AN it (A
P[N(A)=k]={0 Kl , ;it&:i

(2) If Aj,..., A are disjoint subsets of E in £, then N(A1),...,
N(Ag) are independent random variables.

So N is Poisson if the random number of points in a set A is Poisson dis-
tributed with parameter z(A4) and the number of points in disjoint regions
are independent random variables.

Property {2) is called complete randomness. When E = R it is called
the independent increments property, since we have for any ¢ <tz <--- <
tx that (N((t;,tis1]),i=1,...,k — 1) are independent random variables.
When the mean measure is a multiple of Lebesgue measure (i.e., length
when E = [0,00) or R, area when £ = R2, volume when E = R3, etc.),
we call the process homogeneous. Thus, in the homogeneous case, there is

*An advanced student will by now have figured out that we have described
the Borel ¢-algebra in E; i.e., the o-algebra generated by the open subsets.
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a parameter o > 0 such that for any A we have N(A) Poisson distributeq
with mean EN(A4) = a|A|, where |A| is the Lebesgue measure of A. Wheq
E = [0,o0) the parameter a is called the rate of the (homogeneous) Poisson
process.

When E = [0, 00), we asserted in Chapter 3 that epochs of a pure re-
newal process in (0, o¢) whose interarrival density was exponential deserved
to be called a Poisson process. We must check if the earlier renewal theory
definition of a Poisson process coincides with this one when E = [0, ).
This is asserted in the next proposition.

Proposition 4.2.1. Let {E;, § > 1} be iid random variables with a unit
exponential distribution. Define T, = Y., E; to be the renewal epochs
of the renewal process and set N =35> ep . Then N is a homogeneous
Poisson process on [0,00) with unit rate a = 1; ie, N satisfies (1),(2)
of this section and the mean measure is | - |. Conversely, a homogeneous
Poisson process on [0, 00) of unit rate satisfying (1),(2) has points arranged
in increasing order which form a renewal process with interarrival depsity
which is exponential with mean 1.

In Section 4.8 we give a proper proof of Proposition 4.2.1, but let us
now explore informally why this equivalence must be true.

Start with a renewal sequence {I'n,m > 1} described in Proposition
4.2.1. Why does it satisfy properties (1),(2) listed at the beginning of
this section? We know from Section 3.6 that N((0,£]) :== 3", er.((0,t])
is Poisson distributed with parameter . This is property (I) above for
sets A of the form A = {0,1]. We also need to check the independence
property given in (2) above. The independent increment property (slightly
weaker than (2)} can be checked by brute force (Doob, 1953) or by using
Proposition 1.8.2.

Conversely, given a point process N on [0, 00} satisfying (1),(2) and
such that EN{A)} = |A|, let T1 < T2 < ... be the points of N in increasing
order. Note first of all that

P[Ty, >t] = PIN((0,#]) = 0] = e~*

since |(0,¢]| = ¢, the length of the interval. T7 has an exponential density
with parameter 1 and thus

T 41,
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Next, cbserve that for 0 < ¢ < &
P[Tl <, T < t2] = P[N((D:tl]) =1, N((Ovtﬂ]) = 2]

_ i PIN((0, 0]) = 4, N{(0,t2]) = 2

w
—

PIN((0, ta]) = 4]+ PIN((0,ta]) = 1, N((ts, ta]) = 1]

M

‘Tt.
(]

(since for § > 2 we have [N((0,t1]) = 7] C [IV((0,t2]) = 2])

e~

= # -
D
=2 7

{using the complete randommess property (2})

3!

=1—e™ — et

% —tyyd
Z ¢ LINR tle"‘“
=1

Also, we have for 0 < ) < {2

Pl €4,T2 St = f/ e e Vdudvy
{(u,2)ulty utv<ta}

ty t2—u
= f e ¥ (f e"’dv) du
0 0

ty
=j e *(1 — e~ 2=y
0

ty t2

=1—e"" —te”

Thus we see that J
(Tl) T?) = (Fl} FQ)

A small leap of faith makes it believable that {T,;} and {I'n} are distri-
butionally equivalent. This verification can also be approached by noting
that {N((0,¢]),¢ > 0} is a Markov process and using results from Chapter
5. See, for example, the remarks on the linear birth process in Section 5.1.

We know that to construct a homogeneous Poisson process on [0, co)
we merely construct a renewal process with exponential interarrival density.
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A more general construction of the Poisson process which is applicable to
a wide variety of spaces will be given in Section 4.9.

Suppose N is a homogeneous Polsson process on [0,00) with rate a.
What is the interpretation of a? We know EN((0,1]) = «|(0,t]| = at, so
we may interpret a as the expected rate of arrivals of points. Furthermore,
from Theorem 3.3.2 we know

Pllim 7IN((0,8) = o] =1,

so, in fact, we may interpret o as the pathwise arrival rate of points. This
also tells us that in a statistical context, if we know N is homogeneous
Poisson, we may consistently estimate o by & = N((0,¢])/t, assuming we
have observed the process up to time £. {See Exercises 4.40 and 4.47 for
more information on estimation.)

Next, let o(h) represent a function, perhaps different with each usage,
which has the property

Ai_r'% o(h)/h = 0.

From a Taylor expansion of the exponential function, we have 1 —e™" =
h + o(h). The relevance to the Poisson process is as follows: For h > 0

PIN((t,t + h]) = 1] = e %" ah = ah + o(h)
and

ah —oh

1—e ™" —ahe
= ah 4 o(h) — che™ "
= ah(l - ") + o(h)

= o(h).

PIN((t,t+A]) > 1]

Therefore, the probability of finding a point of a Poisson process in an
interval of length hk is roughly proportional to h; the proportionality factor
is the rate a.

Example. Arrivals at the Infamous Orthopedist’s Office. Limping
custormers arrive at the infamous orthopedist’s office according to a homo-
geneous Poisson process with rate o = 1/10 minutes. Careful observation
by Harry’s niece reveals that the doctor does not bother admitting patients
until at least three patients are in the waiting room. If I'; = By + ... En,
where {E;} are iid unit exponential random variables, then {E;/a} are
iid exponentially distributed random variables with parameter a. Thus,
if a Poisson process has rate o = 1/10, its points can be represented as
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{Tn/a} = {100'n}. Therefore the expected waiting time until the first
patient is admitted to see the doctor is

E(10T'3) = 10 x 3 = 30 minutes.

What is the probability that nobody is admitted in the first hour t':o
see the doctor? This is the probability that at most two patients arrive in
the first 60 minutes:

PIN((0,60]) < 2] = P[N((0,60]) = 0] + P[N((0,60]) = 1]
+ P[N({0,60)) = 2
= ¢790/10 4 (60/10)e™ %10 + %(60/10)26—60/ 10

1 _
=e%(1+6+ §62) = 25¢7°
= 0.0620. W

Example. Location of Competition. Harry wonders who the ne.arest
competitor to his restaurant would be if restaurants were geograI‘)hlcally
distributed relative to his restaurant as a spatial Poisson process with r.a.te
a = 3 per square mile. Let R be the distance of the nearest competitor
and let d(r) be a disc of radius r centered at Harry’s restaurant. Then

PR > r] = P[N{(d(r)) = 0] = e~ =141,
Since the area of the disc is

d(r)= 7re,

we get )
PR>7]=¢7"".

This means that R? is exponentially distributed with parameter 37, since

forr>0
PIRZ> 7] = PR > yr =¥/ =

Also, the expected distance to the nearest competitor is

E(R) = /0 PR > rldr

oo 2
= f e 3" dr.
0

Setting 37 = 1/(20%), we get
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e—rQ /20?

= v 2nxa? ] Ly,
[}

V2r gl

Because a normal density integrates to 1, this is

1 /1 .
= 5\/; = (.2887 miles. W

4.3. TRANSFORMING POISSON PROCESSES.

Some very useful results arise by considering what happens to a Poisson
process under various types of transformations. The first result, though
elementary, is enormously useful in understanding inhomogeneity. To pre-
pare for this result, suppose } ex,, is a Poisson process with state space
E and mean measure . Suppose T is some transformation with domain
£ and range E', where E’ is another Euclidean space:

T:Bw— FE.
The function T~ defines a set mapping of subsets of E to subsets of E,
defined for A’ C F' by
T 'AY={ec E:T(e) e A}

Thus T7'(A") is the pre-image of A’ under T} it is the set of points of E
which T maps into A’. See Figure 4.1.
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As an example, suppose E = (0,00), B = {—o0, ), T'(z) = logz. If
a < b, and A’ = (a,b), we have

T H(a,0) = {z > 0: T{z) € (a,b)}
={z>0:logz € (a,b)}
={z>0:ze (e}

Given the measures N, u defined on subsets of E, we may use T" to
define induced measures N', i’ on subsets of E'. For A’ C E' define

N'(A) = N(THA)), w'(4)=umT7H(A)).

To get the measure of A', we map A’ back into F and take the measure
of the pre-image under T. Also, if ¥ has points {X, }, then N’ has points
{X;.} = {T(Xn)}, since for A’ C E

N'(A) = NTHA) =3 ex, (T7HA))
= lixaer-igay
= e

T
= Z ET(X.—,)(A’)'

See Figure 4.2.

FIGURE 4.1.

FIGURE 4.2.
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The next resunlt asserts that if V is a Poisson process with mean mea-
sure u and points {X,} living in the state space F, then N' = N(T-1(.))
is a Poisson process with mean measure u’ and points {T(X,,)} living in
the state space E'.

Proposition 4.3.1. Suppose

T:Ew— FE
is a mapping of one Buclidean space, E, into another, E’, with the property
that if B® C E’ is bounded in E', then T*B' .= {e ¢ E:Te € B'} is
bounded in E. If N is PRM(u) on E with points {X,,}, then N’ .= NoT™!
is PRM(') on E' with points {T'(X,)} and where u' := o T™1.

Remember that if N has the representation

N=Z€Xﬂ,

then

N = ZETXn'
i)

This result says that if you shift the points of a Poisson process arcund
you still have a Poisson process.

Proof. We have
PIN'(B') = k] = PIN(T(B")) = k] = p(k, (T~ (B"))),

so N’ has Poisson distributions. It is easy to check the independence prop-
erty, since, if B, ... , B, are disjoint, then so are T~1(BY),... , T Bm);
from which

(N'(BY),.. ., N'(Bp,)) = (N(T™H(B))),-.. , N(T™H(Bp,)))

are independent. Thus (1),(2), which define a Poisson process, are satisfied
for N'. &

Examples. For examples {1),(2) and (4) below, let N = } 72 | er, be
a homogeneous Poisson process with rate o = 1 on the state space B =
{0, 00). The mean measure 1 is Lebesgue measure so that u{ A) = |A| and, in
particular, p{[0,t]) = ¢. Recall that we can always construct this process

by the renewal theory method of summing iid unit exponential random
variables.

(1) IfTz =22 then ¥, er2 is PRM, and the mean measure ' i8
given by

#'[0,t] = p{z: Tx <t} = uf0,vt] = V.

(4)
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Note that p' has a density

_ d _ 1 _1/2

B dt‘/iz =3t

T :E — ExEviaTz = (x,2°), then 3} err, =
> €(r,,T2) 15 Poisson on E x E. The mean measure con-
centrates on the graph {(z,z%): z > 0}.

Suppose N is homogeneous Poisson on E = (—o0,00), and
define T : E v (0,00) via Tz = ¢*. Then N’ = N(T71()) is
Poisson on (0,00) with mean measure ' given by (0 < a < b)

a(t)

i (a,b) = p{z : €¥ € {a,b]} = logb—loga.

Again, g’ has a density

d 1
a(t) = d—tlogt= T

If 3" er, is homogeneous Poisson on [0, 00), then >, ep-1 is
Poisson on (0,c0] with mean measure p' given for ¢ > 0 by

W(too]=pls>0:s7 >t} =pl0,t7 ) =71
i has a density

d,1_,-2
a(t) = dtt =t7%
Note the density becomes infinite as ¢ — 0, indicating a large
density of points about 0.

This example contains a subtlety. We know that for point
processes, bounded regions of E' = (0, co] must contain a finite
number of points. Therefore, (0, 1} had better not be bounded
in E', because it contains an infinite number of points {T';*},
following from the fact that [1, 00} contains an infinite number
of the points {I',}. In E', the bounded sets are those sets
bounded away from 0; i.e., the bounded sets are neighborhoods
of o0o. The transformation of F to E' in this case essentially
interchanges the roles of 0 and co. Distance may be measured
in E' by the metric (e],e5 € E')

1
d'(e eh)=|—— =
(11 2) |6€|_ er2I7

and we interpret /oo as 0.



312 PoINT PROCESSES

Poisson processes with mean measure ¢'(dt) = ¢72dt, ¢t > 0, are pay.
ticularly important in extreme value theory and in the theory of stablg
processes. We touch briefly on these connections in Section 4.3.1 below.

The non-homogeneous Poisson process. Suppose N is a Poissoy
process on [0, co) with mean measure p and that p is absolutely continuoyg
with density a(f). For reasons to be explained later, we call N a non.
homogeneous Poisson process with local intensity o(t). This process may
be obtained as a transformation of the homogeneous Poisson process by
the following scheme. Define

t
m() = ulo,f) = [ als)ds,
0
and define the inverse function
m™ (z) = inf{u : m{u) > z}.

If we suppose m(0o) = oo, then the set {u : m(u) > z} is non-empty for
all z, so
m™ : [0, 00) — [0, 00),

and, since m is continuous, we have that m* is strictly increasing. If
2., €r.. is homogeneous Poisson, then

f‘«r'r = Z Emo—(p")

n

is also a Poisson process. The mean measure is (remember |A| is the
Lebesgue measure or length of A)

w0, 8] = l{z - m" (z) < t}]
=Hz 2 <mit}}| = [0, m()]]
=m(t) = p[0, .

Thus we have constructed PRM(u) from a homogeneous Poisson process.
This means that if ", ex,, is PRM(g) on [0, co) where X| < X3 <
..., then

{Xnn>1} £ {m™(Tn),n 2 13,
50 that in R*
{m(Xa),n > 1} £ {Th,n =1}

Tlerefore, 3 €m(x,) and ¥, er, have the same distributions, and thus
> €miX,) 15 a homogeneous Poisson process with rate 1.
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Note that the assumption that g is absolutely continuous, though tra-
ditional, is more than what is needed. Continuity of m and m(c0) = oo
are adequate assumptions,

If N is & non-homogeneous Poisson process with mean measure p and
local intensity o(-), we have, for any ¢ > 0 where a(-) is continuous and
small h > 0, that

PIN{{t,t +h] = 1] = p((t, 1 + h])e™#ltttRD
= p((t,t+ h]) + o(h)

t+h
= ] a(u)du + o(R)

As in the homogeneous case, we may check that
PIN((t,t +h]) 2 2] = o(h).

The probability of finding a point in a neighborhood of ¢, therefore, is
proportional to the size of the neighborhood. The proportionality factor is
the local intensity.

Example 4.3.1. Periodic Demand. To model the periodic nature of
customer demand in queueing models, researchers frequently propose a
traffic input which is a non-homogenecus Poisson process with a periodic
local intensity function. Suppose, for instance, that

a(t) =2 +sint.

Then .
m(t) = / (2+ sins)ds = 2t + 1 — cost
0

gives the expected number of arrivals in (0,1).

4.3.1. MAX-STABLE AND STABLE RANDOM VARIABLESY.

Poisson processes similar to those constructed in the last section are ba-
sic to understanding extreme value random variables and stable random
variables. Here is a brief treatment.

Extreme value laws. To see the connection between Poisson pro-
cesses and extreme value theory, we start with a particular Poisson process
and construct a random variable which will have a classical extreme value
distribution. Proceed as follows: Let N' = 3 ex: be a Poisson process

* This section may be skipped on first reading without loss of continuity.
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on (0,00] with mean measure 4 "(dt) = t~%dt, t > 0. Note that for any
z > 0, since p'{(z,00]) = 27! < 0o, we have

PIN'({x,00]) < o0} = 1.

There are only a finite number of large points, and we may define
= \/ X!
n

where Y is simply the biggest point of the Poisson process. The distribution
of ¥ is easily computed: For z > 0

PlY <z} =P[\/ X}, < 1]

= P[N'((z, oc]) = 0]
= ¢~ # ({z,00])

which is one of the classical extreme value distributions.

Distributions similar to the distribution of Y arise in extreme value the-
ory as approximations to the distribution of extremes of a random sample.
Given a random sample Xi,..., X, of size n from the underlying distri-
bution F(z), the distribution of the maximum M, = max{X1,...,X,} =
Vi, X, is given by

PMy,<2}=P[X,<z,...,X, < 2] = F*(z).
In order to obtain an approximation to the distribution of M,,, we hope that
there exist a non-degenerate limit distribution function G(z), centering
constants b,, € R and scaling constants a,, > 0 such that
(4.3.1.1) Pla;'(My — b,) < 2] = F*(anz + by) — Glz).
In this case, we call (7 an exireme value distribution, and we say F'is in the
domain of attraction of G. The possible forms of G were worked out by
Gnedenko (1943), and good treatments can be found in de Haan (1970),
Leadbetter et al. {1983) and Resnick (1987). The distribution of ¥ given
above is one of the extreme value distributions.

A distribution G is called maz-stable if for every t > 0 there exist
a(t) > 0, 3(t) € R such that

(4.3.1.2) Glz) = G"a(t)z + B(t)).
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The class of extreme value distributions coincides with the non-degenerate
max-stable distributions; this is discussed in the references above. (One
direction of the equivalence is easy since if G is max-stable and (4.3.1.2)
holds, we may replace ¢ by n, and then (4.3.1.1) is immediate.)

We can quickly see that the distribution of ¥ is max-stable. If G(z) =
exp{~xz~'} for z > 0, we have, for z > 0,

G'(z) = exp{—tz~1},

and thus
Gt{tz) = G(z).

Stable laws. There are several equivalent definitions of a stable law.
Here is Feller’s (1971) definition: The distribution G is (sum) stable if
it is non-degenerate and for every n there exist scaling constants ¢, > 0
and centering constants d, € R such that if X,,...,X, are iid random
variables with common distribution G then

52X 60y +d.

i=1

The scaling constants ¢, can always be taken tobe ¢, = nl/e (Peller, 1971,
page 171, for example), and in this case we say G is stable with index a.

To see the connection with the Poisson process, it is simplest to look
at a variant of the construction discussed in the extreme values section:
Let 0 < @ < 1 and define the Poisson process

=53]
= E fr;‘-l_la-
n=1

Let u# denote the mean measure of N# and, since N# is constructed
from the transformation T'(z) = z~ /%, we have that

u*((z,00]) =27,

Define the random variable

e u]
X = ZIF;I/Q.

We will verify that X is a stable random variable with index a. It is easy
to see the series converges, because I'y, ~ n 88 n — oo by the law of large
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numbers. Since 1/a > 1, convergence of the series defining X follows by
comparison with the series 3 n~/e.

We now verify that X is a stable random variable with index a. For
1=1,2, let

[=.=]

. .
NT = Z friy-1/a !

n=1

be two iid Poisson processes each having mean measure u* ((z, o)) = z -,

The superposition N f + Nf is a Poisson process with mean measure 2p#
and thus

oo
d
N]# + N# = ZEZU“T:UG’

n=1

(4.3.1.3)

since the process on the right side of (4.3.1.3) has the correct mean mea-
sure. (As usual, {T',,} is the renewal sequence corresponding to interarrival
distribution which is exponential with parameter 1.} Summing the points,
we get, with obvious notation,

X34 Xy Z2lex

where X 2 Xs 2x and X isindependent of X, This argument is easily
generalized from two summands to n summands and shows X is a stable
random variable with index a.

A similar construction can be used to define stable random variables
with indices 1 < @ < 2, but the terms I‘;ll “ must be centered before
summing in order to guarantee convergence of the infinite series of random j
variables.

4.4, MORE TRANSFORMATION THEORY; MARKING AND THINNING. :

Given a Poisson process, under certain circumstances it is possible to en-
large the dimension of the points and retain the Poisson structure. Onme
way to do this was given in example (2) of Section 4.3, but the enlarge-
ment of dimension was illusory since the points concentrated on a graph |
{(z,z%) : = > 0}. The result presented here allows independent compo- ,
nents to be added to the points of the Poisson process. This proves very |
useful in a variety of applications. We present the result in two parts; the

first is simpler. The second is presented in Secticn 4.10 and is used in
Section 4.11 in connection with records.
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Proposition 4.4.1. Suppose {X,} are random elements of a Buclidean
space Eq such that
S
n

is PRM(p}. Suppose {J,} are iid random elements of a second Euclidean
space Fo with common probability distribution F' and suppose the Poisson
process and the sequence {J,} are defined on the same probability space
and are independent. Then the point process

Z E(Xn,Jn)s

T

on E} x B3 is PRM with mean measure ux F', meaning that if A, C E;, 1 =
1,2, then

U X F(A]_ X Ag) =l X F({(El,eg) 1ey € A]_,eg S Ag}) = y.(Al)F(AQ)

Often this procedure is described by saying we give to point X, the
mark J,. See Figure 4.3 for a picture of this construction. The points of
the original Poisson process {X,} appear on the horizontal axis, and the
marked points appear in the £y x Ey plane.

A
Ey

1]3

i

FIGURE 4.3.

The proof is deferred to Section 4.10, by which time some machinery
will have been developed which makes the proof extremely simple. For
now, note the mean measure is correct, since, for a nice set of the form
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Ay x Ay ={(er,e2) 11 € Ay C Er,ep € Ay C Ez}, we have
EY ety (A1x A2y = 3 P(Xn,Ju) € Ay x A

=" PlXn € A1|P[J, € Aqg]

because {J,} is independent of the Poisson process. Since {Jn} are iid
random variables this is the same as

= ZP[X” € A1|P[J; € As)

= E() ex, (A1) P[] € A3

n

= [.L(Al)P[Jl S Ag]

Example 4.4.1. The Stationary M/G/cc Queue. Calls arrive to a
telephone exchange at time points which constitute a Poisson process on R
with mean measure p. The lengths of the calls do not depend on the time
when they are initlated and are iid random variables {Jn} with common
distribution F. We will check that the times when calls terminate and free
up lines also constitute a Poisson process.

To analyze this situation, suppose the point process of arriving calls

is represented by the point process }, ex, which is PRM(p). Then, by
Proposition 4.4.1,
ZE(X..,Jn)

n

is also PRM with mean measure g x F. From Proposition 4.3.1,
Z €X it dns
n

which represents the point process of times when calls terminate, is also
Poisson with mean measure y; where {a<b)

,u,l(a,b}=,uxF{(:c,y):r-l—ye(a,b]}

= f_/ p(dz) F(dy)
{{z.w):z+ye(a,b]}
= _[Ru(dSC) (F(b—1x) - Fla—1)).
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Note that if the original Poisson process on R is assumed homogeneous,
so that p is Lebesgue measure or length, then

b= [ a=vo-iliF@) = [ o-aF@ =o-a

so that u; is also Lebesgue measure. Thus, if the input (times of call
initiations) is homogeneous Poisson, then so is the output (times of call
terminations). Therefore, randomly shifting the peoints of a homogeneous
Poisson process results in a process which is still homogeneous Poisson.
Example 4.4.2. How to Construct a Homogeneous Planar Pois-
son Process. Suppose we know that 3, €x, v, is a homogeneous planar
Poisson process. What happens if we transform to polar coordinates? Let
T{z,y) = (r,0) = (/2% + y?, arctan y/x) be the polar coordinate transfor-
mation. Then according to Proposition 4.3.1,

Z € (Xa,Yn) = EE(R“,en)

T

is a two-dimensional Poisson process. If we call the mean measure p/, we
have

#([0,r] x [0,6]) = f/ dzdy.
{(=9):T(z,3)€[0,7) 10,61}

Switching to polar coordinates to do the integration yields

= // sdsdn
{s<rn<8}

8
= '§T‘29 = WTzﬂ.

From Section 4.3, the non-homogeneous Poisson process with local
intensity a(r} = 277 can be represented as

Z EF}"'Z/\/%T’
T

where, as usual, {T'»} is a sequence of partial sums of iid unit exponential
random variables. If {U,} are iid random variables, nniformly distributed
on [0,27) and independent of {I'x}, then by Proposition 4.4.1 we get that

Zf(r:f“/m,un)
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is a Poisson process with the same mean measure as 3 €(R,,0m)

This gives us a methoed for constructing or simulating a homogeneoys
planar Poisson process: Construct a one dimensional planar Poisson pro.
cess {I'x} and an independent iid family {U/,,} where each U, is uniforp
on [0, 2w). With these ingredients, build a point process on [0, co) x [0, 27)
with points

Ty

(\/i;’ Un)-
Transform these points by applying the map from polar coordinates o
cartesian coordinates:

(r,0}— {z,y) = (rcosf, rsinf).

The resulting points will be the points of a homogeneous planar Poisson
process.

Thinning a Poisson process. Suppose _ €y, is a Poisson process
on the state space E with mean measure u. Suppose we inspect each point
independently of others and decide with probability p to retain the point
and with probability 1 — p = ¢ to delete the point. Let N, be the point
process of retained points and Ny be the point process of deleted points.
We will show that N, N; are independent Poisson processes with mean
measures pp and gu respectively.

To analyze this, let { B;} be iid Bernoulli random variables independent,
of the points of the Poisson process {X,,} so that

Then we know by Proposition 4.4.1 that

ZE(XmBn}

n

is PRM on E x {—1,1} with mean measure u x P[B; = :]. We think of the
points {X, : B, = 1} as the retained points; similarly, {X, : B, = -1} is
the collection of deleted points. Then we have by the complete randomness
property (2} in Section 4.2 that

Ne() =Y examn((x (1) = 3 ex,

n n:B,=1

and
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Na(-) = Zf(x,,.sn)(' x {~-1}) = Z €X,

n n:Bp==1

are independent processes since they are based on the valuesof 3, ¢(x. &)
on two disjoint regions of the state space.

This result could, of course, be generalized. Previously we categorized
or marked the points in two ways: retained or deleted. We could just as
well randomly assign the points to any of k categories. The B’s of the
discussion in the previous paragraph would be replaced by multinomial
random variables with k cells. The resulting point processes Ny,..., Ng
would still be independent Poisson processes.

Results like these are used to justify splitting a Poisson input stream
to a queue into independent Poisson substreams.

Example. Rush Hour at Harry’s Restaurant. Harry’s restaurant is
well known for serving great food, but it is filthy and hence not for those
with weak stomachs. During rush hour, customers arrive at the restaurant
according to a Poisson process of rate a. Customers peek in the door and
with probability ¢ they decide the filth is not for them and depart; with
probability p they enter and eat.

What is the distribution of the waiting times between entrances of
customers into the restaurant? What is the mean and variance of this
waiting time?

The stream of customers who enter is independent of the stream that
departs in disgust. Customers are thinned and those that actually enter
constitute a Poisson process of rate pa. (The mean measure of the process
before thinning is a} - | where |- | is Lebesgue measure. After thinning, the
mean measure is pa| - | from which the rate is pa.) We know that points
of a Poisson process have the distribution of sums of iid exponentially
distributed random variables and hence the times between entrances into
the restaurant are iid exponential with parameter ap. Therefore, the mean
time between entrances is 1/(ap) and the variance is 1/(ap)?. W

4.5. THE ORDER STATISTIC PROPERTY.

As we shall see, one way to construct a homogeneous Poisson process on a
bounded region A is to sprinkle a Poisson number of iid random variables
on the region where the random variables have a uniform distribution over
A. Thus, conditional on there being n points in the bounded region A these
peints are distributed as n iid uniformly distributed random elements of A.
Consequently, in statistics, the homogeneocus Poisson process is often used
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as a null hypothesis of no interaction between the points, since the Poisson
process can be thought of as a model for points distributed independently
and at random in a region.

In this section, we suppose the state space E is [0, c0) and explore this
result and its uses. This result is examined in a more sophisticated way in
Section 4.9 and in the exercises.

‘We begin by reviewing the concept of order statistics and proving some
useful connections between order statistics of the uniform distribution and
the points of a homogeneous Poisson process.

Suppose X,,..., X, are iid random variables defined on the sample
space {2 and having the common distribution F. If we suppose Fi{z) is a
continuous distribution function, then ties among the X’s occur only with
probability 0 and may thus be neglected. We define new random variables
Xy« -+ » X(n) with domain £, called order statistics, as follows: Forw €

define
Xy(w) = min{X;{w),..., Xn{w)}
X(2){w) = second smallest of {X; (w),..., Xn{w)}

X(nﬂl)(w).= second largest of {X){w),..., Xn(w)}
Xny(w) = max{X1{w),..., Xn(w)},

so that with probability 1
Xy < < Xy
We now derive the joint density of the order statistics when F is the
uniform distribution on (0,1).

Lemma 4.5.1. (a) Suppose Uy,...,U, are iid uniformly distributed on
(0,t) and that Uy < --- < Upy,) are the order statistics. Then the joint
density of the order statistics is given by

n!

fu Ueny (U1 Uy) = e
e, e tg) = )
i 0, otherwise.

o<y < - < <t

(b) Suppose, as usual, that {E,} are iid unit exponential random vari-
ables and that for n > 1 we define ', = E; + - - - + E,. Then conditional
onl', ) =t the joint density of T'1,..., [y Is

n!

W HO0<uy < <up <t
0, otherwise .
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Therefore the conditional distribution of I'y,... ,I'a iven'I‘nfl =t is the
same as that of the order statistics from the uniform distribution on (0, 1).

Part (b) is not needed until Section 4.8, where we discuss fully the
reason why the renewal theory construction with exponentially distributed
interarrival times yields a Poisson process satisfying (1),(2) of Section 4.2.

Proof. (a) Let II be the collection of n! permutations of the integers
{1,...,n}. Then for 7 € Il we have (Uqy - Umy) = (U,,(l),...,U,,('n))
on the set [Una) < -+ < Ux(m). Thus, for any bounded function
glui, - .., u,), we have

EQ(U(]_), R U('n.}) = Z Eg(Uﬂ'(l)’ ARE Uﬂ(n))l[U,..(n<---<U1r(n)]'
well

Since the joint density of (Un(1),..-» Up(ny) 18

FUncryveUnim (U1 -y Un) = Sy, 0 (81, -y ),
we get
t_na if (‘U],.--,Un)e [Dal]n
Ty Vet (11 Un) = 0, otherwise,

and, therefore,
EQ(U(I)v sy U(n})

23

well

n!
= f g(ul, e ,uﬂ_) (—nl[ul<...<u“](u1, Ve ,un)) dﬂ.l o .dun.
lo’lln t

glu1, ... un)t "duy .. dug

[0<uy - Cup <]

This shows that the density of (Upy, - .-, Um)) 18
n!
t_ﬂ1[u1<...<un](u1, Sy un),
as was to be proved. N o
(b) Since B, ... , Ent1 are independent the joint density is
n+1
fEl.--- 1En+1($1) .. :Iﬂ-l-l) = H B—I“
i=1
e Flim forz; >0, 1<i<n+L.
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From this density we get the density of (T'1,... ,T41) by change of vari.
ables: For i = 1,... ,n+ 1 define

i
8; = E T,
=1

so that the inverse transformation is
Ty =8 —8-1, l<i<n+1; s5=0.

The Jacobean of the inverse transform is

1 g ... 0 0
s -1 1 0 0
idet( :c,,) =ldet[ O -1 1 0 li=1,
st . . .
0 0 -1 1
and, therefore, the joint density of Iy, ... , T’ 41 Is
Jrrr Cagn (815 s Sny1) = €7+, 0 <51 < 89 < ool < Sy
Since T',,41 has a gamma density
—tn
e
frn+l (t) = nl : 2 2 0:'
we get the conditional density of T'1,... , [, given Ty, by dividing:
fl" TP (51:'-- - t)
Iry e TalTasi=t{81, .y 8n) = = ;;n+1(t) d
!
= e 0<s1<...< 8, <5,

The latter density is the density of the order statistics of n iid random
variables which are uniformly distributed on [0,¢{]. W

We now prove a homogeneous Poisson process on [0, oc) has the order
statistic property; namely that, conditional on there being n points in (0, ],
the locations of these points are distributed like the order statistics from a
sample of size n from the uniform distribution on (0, ).
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Theorem 4.5.2. If N is a homogeneous Poisson process on [0,cc) with
rate a, then, conditional on

[N ({0, 8]) = n],

the points of N in |[0,1] in increasing order are distributed as the order
statistics from & sample of size n from the uniform distribution U(0,t) on
[0,t]; i.e.,
d
(T1,... Lol Nt = n) = (U, .- Uy ).

Thus, if the non-negative function g(x1,...,%n) 8 a symmetric func-

tion of its arguments, meaning, for any @ € I,
9(931: v yxn) = g(:crr(l)y BEER m7'r(‘."t)):
we have the following equality in distribution for the conditional distribu-
tion of g(I'y, ..., 'n) given n points in (0, ]:
d

(4-5-1) (g(rh e sPn)IN[O’t] = n) = Q(U(l)a s ’U(n)) = Q(Uh - aUﬂ)'

Remark, If n = 2, ¢ symmetric means g(z1, T2} = g(z2,z1). For general
n, the typical application is when g is of the form

glzi, ..., xy) = Zh(x,-_)

i=1
for some nice function h(x).

Proof. A short non-computational proof is presented in Section 4.9. As-
suming we believe the conditional density exists, we can derive it in an
elementary manner as follows: Suppose the homogeneous Poisson process
has points {T',}. Then suppose a1 < b < ax < ba < -~ a, < by < t, and
for the conditional distribution of (T'y,...,T) given N{0,¢] = n we have
P € (@i, &), i=1,...,n|N{(0,t]) = n]
= P[a,; <T;<by, i= 1,...,n,N{(0,t]) = ﬂ]/P[N((O,tD :n]
For the numerator we have
P[N{{0,a1] =0, N({a1,b0]) = 1,
My V(B aial) = 0, N (@it bia)) = 1, N((bn,t]) = 0]
= e “Malb - al)e“’(bl““)
n—1

H e_a(a‘+1_b‘)a(bi+1 - aH_l)e—a(wa—ﬂwl)e“ﬂ(z“bn)

i=1
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and therefore

P[F,; e (a,-,b,-],i =1,... ,n|N((0, t}) = 'fl]
= %{H(bi—ai).
=1

Dividing through by [Ti_, (b; — a;) and letting b; | a; fori =1,....n
the left side becomes the conditional density given [N((0,1]) = nj:

3

n!

TPy PN ) =n(01, -, 0,) = e

as required. W

Example 4.5.1. Shot Noise Processes. This class of processes is a
superposition of iid random impulses. Assume electrons arrive according
to a homogeneous Poisson process with rate o on [0, 00). An arriving
electron produces an electrical current whose intensity ¢ time units after
arrival is w(t). Typical choices for w are exponential functions:

w(t) = exp{-8t}, 6>0.

I arrivals occur at {I',}, then the total current at time ¢ is

N((0.2))
X{)= > w(t-T),
i=1

and we may use the order statistic property to determine the distribution
of X(t) for each fixed ¢. The Laplace transform is

N((0.eh)
Eexp{-AX(t)} = Eexp< -\ Z w(t —T)

i=1

B (exp {_,\zw(t_r,-)} N, = n) PN{(0,1) =)
0 i=1
E (exp {—,\Zw(t - U(,-))}) PIN{(0,t]) = nj
E (exp {—/\iw(t— Ui)}) P[N{(0,t]) = n]

(where we have used (4.5.1) twice). Letting U be a U/(0, 1) random variable,

and using the fact that U £ 1~ U and U/ 2 Uy, we have the Laplace
transform equal to

o

3
i

M

0

3
Ii

ol

=3
It
=)
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=" (Bexp {~Mw(t — tU)})" P[N[0,t] = n]

n

1l
[=]

(Eexp {2 w(tU)})" P[N[0,t] = nl.

M

3
Il
=]

Recalling the generating function of a Poisson random variable, this is

exp {at (Ee_)“”(w) - 1)}

1
= exp {at/ (e_)‘"’(“) — 1) du} .
0

Thus we conclude the Laplace transform of the shot-noise process is

{4.5.2) Eexp{—-AX(t})} = exp {ac /0t (e—Aw(u) - 1) d'v} :

From (4.4.2), moments of X (t) can readily be found by differentiating,
setting A = 0 and inserting a minus sign. For example, we get

EX(t)=«a /-t'w('u)dv.

4.6. VARIANTS OF THE PoISSON PROCESS.

Many variants of the Poisson process have been proposed. We discuss
several briefly and give some simple properties.

¢ Mixed Poisson. Suppose A is a random variable with P[A > 0] = 1,
and suppose N is a Poisson process on the state space E = [0, 00} indepen-
dent of A. Then {N({0, At]),t > 0} is a mixed Poisson process. Because of
the random time change induced by A, the mixed Poisson process does not
in general have independent increments. If N is homogeneous, the mixed
Poisson process still has the order statistic praperty (which shows that the
order statistic property does not characterize the Poisson process), as can
be seen by conditioning on A and repeating the argument of the previous
section. (In fact, with the correct formulation of the order statistic prop-
erty, the class of mixed Poisson processes is the exact class to possess the
order statistic property.)
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To obtain the marginal distribution of N ((0, At]}, we may easily com-
pute the Laplace transform: Suppose for simplicity that N is homoge.
neous with rate 1, and let the distribution function of A be G so that
PIA < 3] = G(s). Then for A > 0 we condition on A to get

Be- N(0.AL) _ / ” Ee N 0athgi(y),
0

and, because N((0,at]} is a Poisson random variable with parameter ot,
this is

_ ] €2t =1 4G (a)

0
= Gt - e )

where (3 is the Laplace transform of G.
From this the mean can easily be computed. We have

EN((0, A]) = G'(¢(1 — e M)} te ™ |r=0
=—G'(0)t
= E(A),

as expected.

The scheme describing the mixed Poisson process in one dimension
can easily be generalized to cases where the state space E is of dimension
higher than 1. The relationship of the mixed Poisson process and the linear
birth process is explored in Section 5.11.

e Doubly stochastic Poisson process. Suppose N is a Poisson
process on [0,00), and suppose {A(t),t > 0} is a stochastic process in-
dependent of N with non-decreasing paths. Suppose also that A{0) > 0.
Then N* defined by

N*{(0,2]) = N((0, A(8)])

is called a doubly stochastic Poisson process. We think of A() as a random
transformation of the time scale.

As an example, think of an alternating renewal process ( Example (iv)
of Section 3.1 and Problem 3.12}. Imagine that there are two independent
sequences {U,} and {D,} and that each sequence consists of independent,
identically distributed random variables. Define Sy = 0,5, = U, 5 =
U+ D1,S =1 +Dy+0h,5 =1+ Dy +Us + Dy, etc. Think of a
transmission node in a telephone network which has alternating periods
of being operable (up) and inoperable (down). The operable periods have
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lengths {U.}, and the inoperable periods have lengths {D,}. Let &(t) be
1 if the node is operable at time t and 0 otherwise:

(t) = { 1, ifteuR,iSn, Sont1)s
0, ifte U?=0[S2n+1: 52n+'2)'

Define A(f) to be the amount of time in [0,#] that the node has been
operable:

Alt) = jo £(s)ds.

Now suppose there is a Poisson stream N of arriving calls to the node which
is independent of whether the node is operable or inoperable. Calls arriv-
ing when the node is operable are instantaneously processed and routed
while calls arriving when the node is down are lost. The number of pro-
cessed calls in [0, {] should have the distribution of N*((0, t]) = N{(0, A(£)]),
while the number of lost calls at the node should have the distribution of
N((0, t = A(#)]).

The properties of the doubly stochastic Poisson process are discovered
by conditioning on the process A(-), since this conditioning allows the pro-
cess to be analyzed as a Poisson process. If N is homogeneous Poisson,
then, after conditioning on {A(t),¢ > 0}, the process N* is Poisson with
mean measure of the interval (a,b] equal to A(b) - A(a).

Particular cases of the doubly stochastic Poisson process include the
mixed Poisson process {A{t) = A} and the Markov modulated Poisson pro-
cess discussed in Exercise 5.3. In the Markov modulated Poisson process
there is an environmental, continuous time Markov chain {X({t),¢ > 0}
which is independent of a homogeneous Poisson process. The Markov chain
evolves among m states. While the Markov chain is in state j (1 < 7 < m),
we run the Poisson process at rate o). Thus, conditional on the Markov
chain {X(t)}, the Markov modulated Poisson process behaves like a non-
homogeneous Poisson process with local intensity function a(X (t)) and the
conditional expected number of points in (0,1] is

Al) = /D (X (5))ds.

The Markov modulated Poisson model is extensively utilized in queueing
and teletraflic models because of its algorithmic properties and because it
forms a flexible statistical parametric model which can be fit to a wide
variety of data sets.

» Compound Poisson processes. This model is closely related to
the renewal reward models of Section 3.4. Suppose N is a homogeneous
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Poisson process with state space E = [0,00) and independent of the iid
sequence {D,,n > 1}. Define

C(t) = SrOD D, i N((0,4) >0,
0, otherwise.

Imagine insurance claims arriving at an insurance company according to a
homogeneous Poisson process with the nth claim being D,. Then C(t) is
the total amount of claims made up to time t.

The process {C{t)} is a simple example of a process with statienary,
independent increments, or, synonomously, it is a simple example of a Lévy
process. This means, for any 0 < s < ¢, C(t) — C(s) has a distribution
equal to C(t — s) and that, for any k and 0 < #) < t; < -+ < 1, the
random variables C(t;} — C(£;—1),1 < i < k, are independent. To verify
the independent increment property, suppose N = 3 €x,.. From the
result on marking (Theorem 4.4.1), we then know

Z €(Xn.Dn)

n

is also Poisson. Because of the complete randomness property of the Pois-
son process, the following are independent Poisson processes:

ZI[XRE(t,;"l,t;]]E(Xﬂ,Dn)a i= 1)“'1k:
n

since the different counting processes look for points in disjoint regions.
Therefore the sums

Clts) - Clti1) = > Dy,

{3:X5€(t;—1:t5]}

rmust be independent.
To show the distribution of C(t) -- C(s) depends only on ¢ — s we can
proceed in a similar fashion. The point process

Z 11X, e0,t—8)) €(X..D,)
i

is a Poisson process with state space (0,t — 5] x R with mean measure
|- | x R restricted to (0,t — s] x H. By the transformation theory of Section
4.3 we have

D X ot-sE(Xunrs,0s)
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is a Poisson process on the state space (s,t] x R with mean measure |-|x R
restricted to (s,t] x K. However, the process

Z Hx;e (e ) €(X0D:)
H

is also a Poisson process on the state space (s,t] x R with mean measure
|- | x R restricted to (s,t] x R. Since the two Poisson processes have the
same mean measure, they are equivalent in distribution:

d
Z 1[.X.-€(D,t—sl]£(X=‘+8,Di) = Z 1[X.E(s,t]]f(Xi,Di)’
i i

and, therefore,

C(t~s)= Z D;

{t:X:e(0,t—4]}
- Z D;
{1 X:+s€(s,1]}

> Dj=C(t)-Cls)

{i:X;€(s,4]}

Hlen

We may easily compute the transform of the distribution of C(t}. If
the D, variables are non-negative, it is convenient to compute the Laplace
transform. {In cases where the random variables {D,} can be positive or
negative valued, it is necessary to use the transform called the characteristic
function.) Let the Laplace transform of D; be ¢(A). We have, for A > 0,

- —anivo.t)
Ee 200 = e B p;

= i Ee*E1DePIN((0, 1)) = n]

n={

=Y ¢"(NP[N({0,]) = n].
n=0

Supposing the rate of the Poisson process is @ and recognizing that the
previcus line is the generating function of N((0, t]) at the point s = ¢(}),
we get

= t(B(3)=1)

and, if G is the distribution of Dy, this can be expressed as
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= exp{—atjom(l — e7*)dG(x}).

Note
EC(t) = weat(qs(x)_l)atqﬁl(}\)t;\:o
= at(—¢'(0))
= otEDy = EN{{(0,t])ED,,
as expected.

+ Cluster Processes. The simplest kind of cluster process based on
the Poisson process is obtained by treating the Poisson points as sifes and
locating at each site a random number of points. Let {£,} be independent,
identically distributed non-negative integer valued random variables which
are independent of the Poisson process ), €x, with state space E and
points {X,}. The simple cluster process, similar to the scheme used to
define the compound Poisson model, is

New = Entxa,
T

so that, for a region A C E, the number of points in A is

Nep(Ay= > &

{n:X.€A}

Thus, to compute the number of points in A, we see which Poisson sites
X, fall in A and sum the associated £,'s.

To help fix ideas when F = [0,00), think of bulk arrivals to a service
facility; for example, imagine cars arrive at a roadside restaurant at Poisson
times points {X,} and that each car contains a random number &, of
customers. For a spatial version when F = R?, imagine an epidemiological
study to determine the effect on a region of proximity to a low-level nuclear
waste dump. The null hypothesis is that houses which contain cancer
victims are distributed like a spatially homogeneous Poisson process and
that the number of victims in each house is random.

Note that Ny has the complete randomness property: If Ay,..., A
are disjoint regions, the random variables Nogr(A1),..., Non(Ax) are in-
dependent. The proof is the same as the one which proved the independent
increment property for the compound Poisson process. Furthermore, the
distribution of N¢r(A) has a Laplace transform given by the formula for
the Laplace transform of a compound Poisson process.
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A more sophisticated type of cluster process, sometimes called the
center-satellite process, uses Poisson points as centers or parents. At each
center, independent of other centers, a random number of satellites are
generated. The number of satellites per center is given by independent,
identically distributed non-negative random variables. Also, each satellite
is displaced from the center according to some dispersal distribution. Thus,
let E be the state space and let the E-valued random elements {X,,, n >
0} represent the Poisson points of centers, and suppose £, represents the
number of satellites about the nth center X,. Let the displacement of the
jth satellite from X, (1 < j < £} be given by Yo so that each Y,; has
range E. Assume {X.}, {{,} and {¥,;} are independent of each other
and that both {£,} and {¥,;} are iid sequences. The cluster process with
displacements is then given by

Eﬂ
Nerp =), > exatvays

n j=l1
s0 the points of Ngorp are
{Xs+ Yo, 1 £ <&nymn 20}

Such processes have been used as models for dispersals of stars in
galaxies and to model stands of trees in forests. Alternate schemes for
dispersing satellites about centers when E = [}, co) have been proposed.
For example, when £ = [0, c0), we may suppose that from each center
point a renewal process generates satellites. Such cluster models have been
used as models of machine repair. Consider primary failures cccurring
according to a Poisson process. Due to imperfect repair, each primary
failure generates a renewal process of secondary failures.

For a description of the batch Markovian arrival process which has
recently received some attention in the teletraffic literature, see Exercise
5.72.

4.7. TECHNICAL BAsIcs*,

In this section we discuss in more detail the sample space of our models. It
is important to realize the sample space comes equipped with distinguished
sets which determine the distribution of the point process.

* This section contains advanced material which may be skipped on first
reading by beginning readers.
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Suppose E is the space where the points of our model live. This will
be a subset of Euclidean space R? (d = 1 is the most important case,
but d > 1 is also very useful}, and we suppose E comes with a o-field £
which can be the o-field generated by the open sets or, equivalently, the
rectangles of E. So the important sets in £ are built up from rectangles.
How can we model a random distribution of points in E? One way is to
specify random elements in F, say {X, }, and then to say that a stochastic
point process is the counting function whose value at the region A € £ is
the number of the random elements {X,,} which fall in A. This procedure
has some technical drawbacks, and it is mathematically preferable to focus
directly on counting functions rather than points.

Accordingly, define a point measure m on F as follows. For ¢ € F and
A ¢ £, define the delta measure

1, ifzed
T A) =
a(4) {m ifz¢ A
A point measure m on E is a measure of the form

m= E €z;,
i

where z; € F and any bounded region A contains only a finite number of
z;. Then m(A) is the number of z; which fall in region A. As an example,
let E = [0,00), and let {S,} be a renewal process. The counting process
associated with renewal epochs {S,.} is

oo
N=Z£sn,

n=0

so that N[0,1] is the number of renewals up to time t.
Let the set of all point measures on E be denoted M, = M,(E).
Important subsets of M), are of the form (k > 0)

{me M, m(I)=k},

where I is a bounded rectangle in E. The smallest o-algebra containing
such important sets (let I and k vary) is denoted by M, = My (E). Then
we have specified the class of all point measures M, along with a distin-
guished o-field of subsets of M,, which is denoted M,. (We may also
make M, into a metric space. The metric would make two point mea-
sures my, my close if the values of these two measures are close on a lot
of bounded sets. See Kallenberg, 1983, or Resnick, 1987.) We may now
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define a point process as a random element of (M, M,); there is a prob-
ability space (2, F, P) where F is the o-field of events, and N is a point
process if it is a measurable map from (2, F) to (M, M,), which means
that for A € M,, we have N "}(A) :== {w € Q: N(w) € A} € F, so that,
in particular,

IND)=kl=N"'meM,:m{I)=k} € F.

Since [N{I}) = k| is an event, it is meaningful to talk of PIN(J) = &].

Instead of picking points at random as initially suggested, we pick
point measures at random. If you specify w € Q and then plug into the
map N, you get a point measure. However, if { X} is a sequence of random
elements in F, it is not hard to show (but we will not dwell on this point)
that > ex, satisfies the definition of a point process, provided bounded
regions contain finitely many points with probability 1.

Suppose N is a point process

N (@, F) = (Mp, M),

and P is the probability measure on (2, 7). The distribution of N is the
measure Po N™! = P[N € ] on {(Mp, M,). Therefore, the probability of
any event depending on N can be specified if we know the distribution of N.
The finite dimensional distributions of N are the collection of multivariate
mass functions indexed by bounded rectangles:

Pr, 5 (1, ng) = PIN(I) =ny, .., N(IE) = ni,
where [;,1 < j < k are bounded rectangles and ni,...,ng, are non-
negative integers.

Proposition 4.7.1. The finite ditnensional distributions of the point pro-
cess N uniquely determine the distribution Po N™! of N.

Proof. Let G be the class of finite intersections of sets of the form
{meM,:m{I)=k}, k=0, Iisabounded rectangle.

Then G is closed under intersections and generates Mp, and hence any
measure on M, is uniquely determined by its values on G (cf. Section 1.7
and Billingsley, 1986, p. 38). In particular, P o N~! is a measure defined
on M, and its values on § are given by the finite dimensional distributions.

n
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4,7.1. THE LAPLACE FUNCTIONAL*.

A transform technique is useful in manipulating distributions of point pro-
cesses. Let By be the non-negative and bounded functions on F, and for
m € M, and f € B, define

m(f) = ] _ f@him(@) = Y s,

where {r;} are the points of the point measure m. If we think of f ranging
over all of B, we get m(f) to yield all the information contained in m;
certainly we learn about the value of m on each set A € £ since we can al-
ways set f = 14. Therefore, integrals of measures with respect to arbitrary
test functions contain as much information as evaluating the measures on
arbitrary sets. This will be a guiding principle.

The Laplace functional of the point process N is the non-negative
function on B, given by

Uy (f) = Fexp{~-N(f)} = ]Q exp{—N (w, )}dP(w)
= [ exp{-m(n}PoN (am)

P

Proposition 4.7.2. The Laplace functional of N uniquely determines the
distribution of N.

Proof. For bounded rectangles Ip,... ,Ix let f be the simple function

k
f@)=> Mlil(z), z€E,

for ; > 0,i=1,...,k. Then

k
Un(f) = Eexp{- ) _AN(L)},

i=1

the joint Laplace transform of the random vector (N(I1),... ,N(Ix)). Its
transform uniquely determines the distribution of this random vector, and,
by Proposition 4.7.1, we know that the Laplace functional determines the
finite dimensional distributions of & and therefore the distribution of V. B

* This section, as well as Section 4.8, contains advanced material which
may be skipped on the first reading by beginning readers. The definition of the
Laplace functional can be understood by most readers.
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4.8. MORE ON THE P018SON PROCESS.

We begin by repeating the definition.

Let 1 be a measure on (E, £) which is finite on bounded sets. A poini
process IV is a Poisson process with mean measure p or, synonomously, a
Poisson random measure (PRM(p)) if

(1) For Ae&

e ulA)
P[N(A)=k]—{0 g iii&;:’;

(2) If Aj,...,Ag are disjoint sets in £ then N{A41),... ,N(A4g)
are independent random variables.

Therefore, N is Poisson if the random number of points in a set 4
is Poisson distributed with parameter #{A) and the number of points in
disjoint regions are independent random variables.

Recall that we must check if the Chapter 3 renewal theory definition
of a Poisson process in [{}, co} being generated by sums of 1id exponentially
distributed random variables coincides with this one.

Proposition 4.8.1. Let {E;,7 > 1} be iid random variables with a unit
exponential distribution. Define T, = Y| E; to be the renewal epochs
of the renewal process, and set N =3 - | ep.. Then N satisfles (1),(2}
above and is therefore PRM on [0, c0) with Lebesgue measure as the mean
Imeasure.

We defer the proof of this result until after the characterization of the
Laplace functicnal of the Poisson process given in the next result.

Theorem 4.8.2. The distribution of PRM() is uniquely determined by
(1),(2) in the definition. Furthermore, the point process N is PRM({p ) iff
its Laplace functional is of the form

(4.8.1) \DN(f)=exp{—/E(1—eAf(”))p(dz)}, feB..

PRM(u) can be identified by the characteristic form of iis Laplace
functional.

Proof. We first show (1} and (2} imply (4.8.1). If f = Al4 where A > 0,
then, because N(f} = AN{A), and N({A) is Poisson with parameter pu(A)
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we get

Uy (f) = Be N = exp{(e™ — 1)pu(A)}

exp{—fE(l—e_’\)lA(-T)H(dx)}
exp{—[g(l — e Ml u(da)}
exp{— L(lﬁe_ﬁx})ﬂ(dfﬂ)}:

{

I

which is the correct form given in (4.8.1)
Next suppose f has a somewhat more complex form,

k
f: ZAilAu
i=1
where A, > 0,4, € £,1<i <k, and A,...
k
Uy(f) = EGXD{MZAiN(Ai)}
i=1
k

= H Eexp{—AN(A;)} from independence,
i=1

= Hexp {— / (1 — e Hela (“-‘))u(d:c)} from the previous step,

—exp{ /2(1 A )(dw)}
—exp - [ e u(es) |
—ep{- [~ ).

which again verifies (4.8.1). The last step is to take general f € B, and
verify (4.8.1) for such f. We may approximate f from below by simple f
of the form just considered. We may take, for instance,

, Ay are disjoint. Then

n2™

fale) = 32 T M (@) 1y (@),

i=1
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50 that
0< falz) T f(=).

By monotone convergence N(f,) 1 N(f), and, since e~ < 1, dominated
convergence yields

Un(f) = lim Ty(fn).

We have from the previous step that

U n(fn) = exp {—f (1- e—f“(”))u(d:c)} .
E
Since
1—e /11 -e,

by monotone convergence we conclude that

Ja-emnuan 1 [ 1),
E E

and thus we conclude (4.8.1) holds for any f € B,. Since the distribution of
N is uniquely determined by ¥, we have shown that (i) and (ii) determine
the distribution of N.

Conversely, if the Laplace functional of N is given by (4.8.1), then
N{A) must be Poisson distributed with parameter p(A) for any A € £.
This is readily checked by substituting f = A14 in (4.8.1) to get a Laplace
transform of a Poisson distribution. Furthermore, if Ay, ... , Ay are disjoint
setsin £ and f = ZL] Aila,, then substituting in (4.8.1) gives

Fe—ThadN(a) exp {_f (1-e —T¥_ Ay, )du}
E

k
= exp {—/ Z(l - e‘)“lh)du}

=1

k
= [Tewt-0-e (a0}

ﬁ —MN(AD

Then the joint Laplace transform of (N(4;),1 < 7 € k) factors into a
product of Laplace transforms, and this shows independence. W



340 POINT PROCESSES

Proof of Proposition 4.8.1. We show the Laplace functional of N = 3" ep_
is given by (4.8.1) with £ = [0, c0) and p(dz) == dx being Lebesgue mea-
sure. We have

Yn(f) = lim Ee Znfly),

Mt

Conditioning on the value of T'pq1, iterating expectations (Law of Total
Probability) yields that the expectation on the right is

(4.8.2) [ B (&=
¢]

We know from Lemma 4.5.1(b) that if U3,... ,Un, are iid uniformly dis-
tributed random variables on {0, 1} and Upy,... , Uiy are the order sta-
tistics in increasing order, then the conditional distribution of the I'Vs is

TP,y = s) PTmsr € ds].

(Fl, .- mlrm+1 = S) (SU(l), .. ,SU(m)).
Therefore
(Zf(ﬁ)ﬂ‘mﬂ = 5) (Zf (sU( ))) (Zf (sUs) )
i=1

because of symmetry.
We are now in position to compute the Laplace functional of N. From
(4.8.2) we have

= o]
¥n(f)= lim Ee ¥=fsUd PID, 1) € ds)

m—oo 0

~ Tim (Ee—f<~'*U1))m P[Crms1 € ds]
0

m—oo

o0 8 ™m
lim U e-f(z)d_:") Plmy1 € ds]
m—=0S 0 &

. m
lim B [ Y s
Mm—oo o Pm+l

Tmarpq _ —flx) Tmt1
1 d
- limE(lfo (1-e )I) )

l

m—od I-‘m.ﬂ}'l

Since 'y — o0 and Ty /m — 1, by the strong law of large numbers,

Pmiyiey o~ flx) rm+l'l:+1 oo
1
1- fo (1-e —aexp{/ {1 -e_f(m))dz},
Fm+1 0

and dominated convergence finishes the result. W
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4.9. A GENERAL CONSTRUCTION OF THE P0ISsON PROCESS; A SIMPLE
DERIVATION OF THE ORDER STATISTIC PROPERTY*.

When £ = {0,00) we know the renewal theory construction yields a
Poisson process with Lebesgue measure as the mean measure. Here is a
general scheme for constructing a Polsson process with mean measure pu.

Start by supposing that u{E) < oo and define the probability measure
F(dr) = p(dz)/p(E). Let {Xn,n > 1} be iid random elements of E with
common distribution F and let » be independent of {X,} with a Poisson
distribution with parameter pu(E). Define

Nz{EZ’:ﬁXu ?fyz]_
g, ifv=0.

We claim N is PRM(p) and this is easy to check by computing the Laplace
functional of N:

Uy (f) = Ee~Bimnf(X3)

= ZEe_E-vlf(x }P[V = 7]
i=

Il
=}

p”q@

(Ee fx‘)) Plv=j]

I
=]

J

exp {,u EY(Fe~ftX1) _ 1)}
=eo{-um (1 [ 5}
= exp {—/E (1 - e“f(z)) p(da:)}.

The Laplace functional has the correct form, so N is indeed PRM(p).
Note that what the construction does is to toss points at random into
E according to distribution p{dz)/u(E); the number of points tossed is
Poisson with parameter p(E).

When the condition p{FE) < oo fails, we proceed as follows to make a
minor modification in the foregoing construction: Decompose E into dis-
joint sets Ey, By, ... such that £ = U;F; and p(E;) < oo for each 4. Let

* This section contains advanced material which may be skipped on first
reading by beginning readers.
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pi{dz} = p(dr)lg (x), and let N; be PRM(y;) on E; (do the construc-
tion just previously outlined). Arrange things so the collection {N;} is
independent. Define N := 3", N;, and N is PRM(u) since

¥ (f) =[] on(n)
- 1S[exp{— [ (=) i}
e {2 (- uien)
_ exp {_ [ (1= e > ,u,—(dm)}
—exp{~ [ (1-e) uan)}

since Y, it; = pi. This completes the construction.

The construction just completed tells us PRM(j1) exists, but it also
gives us information about the distribution of the points: Conditional on
there being n points in a bounded region A, these points are distributed asn
ild random elements of A with common distribution F(dz) = u(dz)/u(A).
When E = [0, 00), this yields the order statistic property for a homoge-
neous Poisson process which is now restated from Section 4.5.

Theorem 4.5.2. If N is a homogeneous Poisson process on [0, 00} with
rate a, then conditional on

IN((0,1]) = n]
the points of N in [0,¢] in increasing order are distributed as the order
statistics from a sample of size n from the uniform distribution U(0,t) on
[0,t]; i.e.,
' d
(Pl’ e )FHIN[OatJ = n‘) = (U(l)) Cee 1U[1’1))

Proof. Let N' = N(- N [0,t]} be the restriction of N to the bounded set
[0,2]. We know from the general construction that as random elements of

M0, 1]
N’ g Z €Uy
i=1

where {U;} are iid random elements with distribution dz /¢ (which is iden-
tified as U(0,1)) and 7 is independent of {U;;} and Poisson distributed with
parameter t. Then, if {T',} are the points of N, we have

(Ty,... . ToiN0 ] =n) £ (U, .- UglT = n) =% (Upy, ... ,Upy). B
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4.10. MORE TRANSFORMATION THEORY;
LoCATION DEPENDENT THINNING*.

Given a Poisson process, recall that one can enlarge the dimension of the
points by appending independent marks and that this retains the Pois-
son structure. The result presented here allows independent (or almost,
independent) components to be added.

We present the result in two parts; the first is simpler and arises more
frequently.

PFoposition 4.10.1. (a) Suppose {X,} are random elements of a Eu-
clidean space E; such that

2 ex

T

is PRM(yu). Suppose {J,} are iid random elements of a second Euclidean
space Ey with common probability distribution F, and suppose the Poisson
brocess and the sequence {J,,} are defined on the same probability space
and are independent. Then the point process on E, x Ey

Zf(xn.in)

T

is PRM with mean measure p x F.
(b) Suppose {X,} are random elements of a Euclidean space E) such

that
D x.
k13

Is PRM(yu). Suppose we have a second Fuclidean space (Ey, £2) and that
K : By x& ~ [0,1] is a transition function. Then K{., Az) is a measurable
function of the first variable for every fixed A; € &, and, for every x <
Ey, we have K(z,-} is a probability measure on E;. Let {J;} be random
elements of Ey which are conditionally independent given {X,.}:

Then the point process on By x Es

Y Xt

n

." This section contains advanced material which may be skipped on first
reading by beginning readers.
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is PRM with mean measure
p (dx, dy) = p(dr)K(x, dy).

It is not necessary for {J,} to be independent of {X,}; conditional
independence will do. If the distribution of J, depends on the {X;}, it
must do so only through X,, and not the other X's.

Proof. (a) Start by assuming that p is finite. From the construction in
Section 4.9 we may, without loss of generality, assume that the PRM(u) is

of the form ,
D eve,
i=1

where v, {Y,}, and {J,} are independent and

Lo~ p(k) ”(El})

and {Y,} are iid with common distribution u(dz)/u(E,). It follows that
{(Yn,Ju)} isiid in By x Ey with common distribution u(-)/u(E1) x F, so
from the construction of Section 4.9,

e

Z €(XnJe} 2 Z €(y; Ji)

) i=1

is PRM with mean measure u(Fy)p(-)/u(E1) x F = g x F as required.

If 11 is not finite, then, as in the construction of Section 4.9, we patch
things together by repeating the argument of the previous paragraph on
patches of E; where p is finite. We need at most a countable number of
patches which are disjoint and exhaunst E;.

(b) Write

K(I,Az) = P[Jl = A2|X1 = SL‘]

for the conditional distribution of J;. It is always possible to realize a
distribution as a function of a uniform random variable (e.g., Billingsley,
1971). That is, there exists a function, say g(x, u), such that

K(.’L‘, AQ) = P[g(I,Ul) S Az],

where we suppose {0/, } are iid U(0,1} random variables, independent of
{X,}. (If By = R so that K(x, (—oo,yl} = PlJ1 < y|Xy = z}, then we
take g(z,u) = K (zr,u), where K (z,w) is the inverse function for fixed
z of the y-function K(zx, (—oo,y]) so that

Plg(z,Uh) <z} = P[K ™ (z,U) < 2
= Pl € K(z,{-o0,z]) = K(z,(~00, z]).
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If £7 bas dimension higher than 1, a discrete approximation must be used
as discussed in Billingsley, 1971.)
The impact of this transformation is that

{(Xm Jn)} 2 {(Xn: 9( X, Un )}

Z €(X,.Un)

is PRM with mean measure u x L{dy)ljp 1;(y). (L is Lebesgue measure.)
Therefore, from Proposition 4.3.1, we get that

Z E(Xn.dn} = Z E(Xp g (X Und)

n n

is PRM(u:). To compute p,, define T": By x [0, 1] — Ey x By via T(z,u) =
(z, g(z, u)). Then the mean measure p; is (4; € &, 4y € &)

‘LL]_(Al X Az) = (,LL X L) OT_I(Al X Az)

- f uldz)L{u € [0, 1] : g, u) € Az}
[zEAL]

We know

- f u(dz)Pig(z, Uh) € A
(ESFERY
Ay

Example 4.10.1. Thinning Dependent on Location. Suppose we
have a homogeneous Poisson process on [0, 0c) with rate a. If a point is
at t, we delete it with probability g(t) and retain it with probability p(t)
where p(t) + ¢(t) = 1, 0 < p(t) < 1. The point process of retained points
is non-homogeneous Poisson with local intensity ap(t).

As in the discussion of thinning in Section 4.4, we imagine having
Bernoulli random variables {B;} with values {—1,1}. If the homogeneous
PRM is 3" ex, on [0,00), then we have

P[B; = 11X; = t] = p(t).

ZE(Xn:Bn)

n

The process

is PRM with mean measure of region dt x {1}
(de x {13) = pldt)K (¢, {1}) = ap(t)dt.

Note that the process of retained points is still independent of the process
of deleted points.
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4.11. RECORDS*.

Suppose {X,,n > 1} is an iid sequence of random variables with common
distribution ¥’ which we suppose to be continuous.
Define

L(l)=1
and, for £ > 1,

L(k + 1) = mf{m = L(k) X > XL(A:)}

The sequence {Xp, sy, k > 1} is called the record value sequence and the
sequence {L(k), k > 1} is the sequence of record times. Thus, Xr) is the
kth record which means it is greater than all preceding L(k) — 1 values in
the sequence. Another way to think about this is to set M,, = VI, X;; then
{X Lk} are the distinct states visited by the stochastic process {M,,,n >
1}, and the times when the monotone sequence {M;,} jumps are the record
times {L(k)}.

There are many connections between the Poisson process and records.

Proposition 4.11.1. (a) Suppose F(z) = 1 —e %,z > 0, is the expo-
nential distribution. Then the records {Xpx),k > 1} are the points of a
homogeneous Poisson process on {0,00). This means that in R

{Xrwy k= 1} 2 Tpn> 1},

where 'y, = E1+- -+ E,, and {E,,n > 1} are iid exponentially distributed
random variables with parameter 1.

(b) For general continuous F, the records {Xr ),k > 1} are the points
of a Poisson process with mean measure of (a, b} equal to R(b) — R{a) where
R(z) = —log(1—F(x)). The Poisson process has all its points in the interval

(z1,20) == (inf{z : F(z} > 0},sup{z: F(zx) < 1}).

Proof. (a) We proceed in a slightly informal way; the procedure about to
be given can be used in a more rigorous manner to compute the Laplace
functional of the counting function of the sequence {Xp )} or, alterna-
tively, Markov process theory can be used (Resnick, 1987, page 166).

* This section can be skipped without loss of continuity in the same sense
that dessert can be skipped when eating dinner.
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We compute the density directly for (X Ly Xr@y): For 0 < zy < zy
we have

oo
P{XL(I) € dml,XL(z) € d-'ﬂz] = ZP[XLU) S dIl,XL,(z) € d.‘rz,L(2) = l]
i=1

M

P[XL(I) € dI],XL(Q) € dxp, max{Xg,. Xl < Xl}]

....
Il
-

(since in order for a record to occur at index {, we need X, ... , Xi—1 not
to exceed the previous record X)

[eo]

= Ze"‘drl(l —e®) e T2y,

i=1

e T2dxzy
1—(1—-e=1)
=e "2dxdzs
= P[l', € dz,T; € dz3).

=e Fldn

This shows
d
(Xray, Xr@y) = T1.T2).
The generalization from two variables to an arbitrary number is not hard
and simply requires more bookkeeping.
(b) Suppose {Xi,k > 1} is an iid sequence with common distribu-

tion function F(z). Remember, we suppose that F is continuous. Define
R{z) = —log(1l — F(z)) and its inverse

R™(zr) = inf{u: R{u) > z}.

If {Ex,k > 1} is a sequence of iid unit exponential random variables then
fori>1

X, 2 R™(E))
sifce
P[R™(E;) < 2] = P[E; < R(z)|
=1 - B - F(x)
Thus in R

{Xik =1} £ (R™(E), k> 1).
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Since F is continuous, R is strictly increasing, and hence
- d
{RT{ELmy) k2 1} = (X k 2 1}

(We have abused notation a bit; on the left L(k) refers to the kth record
time of the { £} sequence, and on the right L{k) refers to the kth record
time of the {X,} sequence.) From part (a) we know that {Er)} are
the points of a homogenecus Poisson process, and from the tra,nsformatlon
theory (Proposition 4.3.1) we get that {R(EL())} are also the points of
a Poisson process with mean measure determined by R.

Proposition 4.10.1(b} allows a more sophisticated conclusion:
Proposition 4.11.2. Suppose F is continuous with
(z1, ) == (inf{z : F(x) > 0},sup{z : F(z) < 1}).

Then
{Xrgey, Lk +1) — L(k), k> 1}

are the points of a two-dimensional Poisson process with state space
(1, zr) x {1,2,...} and mean measure

"({a,b] x {j}) = (F7 (b) — F7(a)}/

forzp<a<b<z, j>1.

Proof. We know that {Xp,k > 1} are the points of a Poisson process
whose mean measure is determined by R. If we hope to apply Proposition
4.10.1(b), we need to check that {L{k +1}— L{k), k > 1} are conditionally
independent given {X L(k)» & > 1}. This is easily checked by a simple calcu-
lation: For positive integers m,ny, ..., n,, and real numbers z; < -+- < T,

PL(k+1) = L(K) = ng, k=1,...,m| Xy =21, -, Xp(m) = Tem)

= H Flxp )™ (1 - F(zi))

= H P[L(k+ 1} - L(k) = nleL(l) =T1,-.. aXL(m) = Tm,
k=1

L{j+1) = L(j} = nj, 5 # k.
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Proposition 4.10.1(b) applies, and the mean measure is

b
(o8 x ) = [ PP - PR

[
- [ Py - ey R

= (F7{b) — F7(a))/3.

EXERCISES

4.1. Electrical pulses have iid amplitudes {£,,n > 1} and arrive at a
detector at random times {I'n, n > 1} according to a homogeneous Poisson
process rate with . Assume {£,} is independent of the Poisson process.
The detector output for the kth pulse at time ¢ is

G.(t) = 0: ift < Ty
H0) = { Epexp{—B(t —Ty)}, ift>Te

Assume the detector is additive, so the output at time ¢ is

N(t)
Z4(t) = Z 8x(t)
k=1

where N(t) is the number of Poisson points in [3,{]. Find the Laplace
transform of Z(t) and E{Z(t)).

4.2. The Renyi Traffic Model. At time 0 cars are positioned along
an infinite highway according to a homogenecus Poisson process with rate
«. Assume the initial position of the nth car is X,. Each car chooses
a velocity independently of all other cars and proceeds to travel at that
fixed velocity. Call the velocities {V;.}, and assume these are iid random
variables with state space (—oo,c0). A negative velocity means the car
is travelling to the left and a positive velocity means travel to the right.
Assume collisions are impossible; if necessary, cars pass through each other
rather than collide. Let Ng(-) be the Poisson process of initial positions
and let Ni(-) be the point process describing positions at time ¢. What
sort of process is Ny {-)?
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Let T}, be the time the nth car passes through 0, so that T}, satisfies
Xn+ TuVn = 0. Show ), er, is Poisson, and find its mean measure.
(Assume E|V1] < 0o and consider the point process with points {{X,, Vi.)}.
Proceed by transformations.) (Renyi, 1964.)

4.3. For a homogeneous Poisson process {N(t),t > 0} of rate 1, we know
from renewal theory that

lim N(t)/t = 1.
t—o0

If N is non-homogeneous Poisson with local intensity 1/t, what is the
asymptotic form of N’(1,¢]? Find a function 3(f) such that

Jim N'(1,1/6(2)

exists and is finite. (This gives the asymptotic rate at which points are
coming.) Hint: Use the transformation theory to compare N’ with N.

4.4. Harry Combats Drugs. Incidents of drug usage occur in the
bathroom of Harry's restaurant. The times of these incidents constitute
a Poisson process of rate two per hour. Harry is concerned about this
because of the possible effect on business and because he worries about
how effective the government’s war on drugs will be. Consequently, Harry
visits the bathroom at tirme points which constitute a Poisson process of
rate one per hour. Assume this Poisson process is independent of the
Poisson process of drug incidents. Assume also that if a drug incident has
occurred, Harry detects it.

(a) On his first visit, what is the probability that Harry finds evidence
of drug use; i.e., what is the probability that a drug incident occurs
before Harry checks the bathroom for the first time?

(b) What is the expecied time until Harry detects evidence of drug use?

4.5. Harry’s Stressful Life. Due to the stress of coping with business,
Harry begins to experience migraine headaches of random severities. The
times when headaches occur follow a Poisson process of rate A. Headache
severities are independent of times of occurrences and are independent,
identically distributed random variables {H;} with common exponential
distribution

PH; <z]=1-exp{~z}.

(Assume headaches are instantaneous and have duration zero.)
Harry decides he will commit himself to the hospital if a headache of
severity greater than ¢ > 0 occurs in the time period [0,]. Compute

P {Harry commits himself in [0,]}.
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(Hint: Compute the probability of the complementary event that Harry
won't commit himself in [0,¢]. Remember that max{a,b} < ¢ if and only
ifbotha<cand b <c.)

4.6. Suppose you are a historiometrician (one who uses statistics to aid in
the study of history—if there isn’t a word like this, there will be eventually),
and you need a Poisson process model to explain the archeological findings
of coins on the winding road between London and Canterbury. Explain
how you would construct such a model.

4.7. M/G /oo Queue. Times of call initiations are homogeneous Poisson
time points on {0, 0o} {not (—oo, +oc) as in Section 4.4}, and call durations
are iid with common distribution & and independent of call initiation times.
Let N(t) be the number of calls in progress at time . Mark an incoming
call according to whether or not it is still clogging a line at time t. Show
that N(t) has a Poisson distribution.

4.8. Bulk Arrivals. Buses arrive at Harry’s on Friday nights according
to a Poisson process with rate «. Each bus contains a random number of
hungry athletes, and we assume the number per bus constitute iid non-
negative integer valued random variables. Expecting Friday night traffic
will be heavy, Harry has added many servers; the number is infinite. Each
hungry customer spends a random amount of time ordering and waiting for
his/her food, and we assume the waiting times are iid and independent of
other random variables. Let X () be the number of customers whe arrived
in [0,] and by time ¢ have still not commmenced eating.

(a) Find EX(t).

(b) What is the distribution of X (¢)? (Think compound Poisson.)

{c) If we assume customers only come to Harry's to buy food, but intend
to eat it on the bus rather than in the restaurant, describe the departure
process of customers from Harry's.

4.9. If {E,} are iid exponentially distributed with parameter ¢, N is
geometric with
P[N=n]=pg"™, n>1,

and N is independent of {E,}, show that

>,

n=1

has an exponential distribution by computing the Laplace transform. What
is the parameter? What is the relation of this result to thinning? Construct
a second probabilistic proof using thinning of a Poisson process.

4.10. A critical submarine component has a lifetime which is exponentially
distributed with mean 0.5 years. Upon failure, replacement with a new
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component of identical characteristics cccurs. What is the smallest number
of spare components that the submarine should stock if it is leaving for a
one year tour and wishes the probability of an inoperative unit caused by
failure exceeding the spare inventory to be less than 0.027 (Taylor and
Karlin, 1984.)

4.11. Let

be a non-homogeneous Poisson process with state space [0,00) and with
local intensity a(t) and points {X;}, with X; < Xp < .... Let T) =
X1, Ts = Xy — X,,... be the interpoint distances.

(a) Are {T;} independent?

(b} Are {T} iid?

(c) Compute the joint distribution of 77, T3 and X5, Xo.
4.12. Bulk Arrivals. Customers arrive for Friday night amateur night
at Harry’s by bus. The buses arrive according to a Poisson process of rate
a, and the number on the kth bus is a random variable A; (independent
of numbers on other buses) with generating function P(s). If the Poisson
process is represented by > er, , then we may represent the process of

bulk arrivals by
N=> Ager,.
Compute the Laplace functional of N, and find the mean measure

#()=EN().

(Assume E{A;) < cc.) Hint: You may wish to condition first on {I'»},
which will give you the Laplace functional of the Poisson process at a
different function than the one you started with. You can then capitalize
on the known form of the Laplace functional for the Poisson process.

4.13. Suppose the input to an M/G/oo queue (infinite server queue) after
time 0 is a non-homogeneous Poisson process with local intensity a(t). Sup-
pose durations of calls are iid random variables with common distribution
(. Describe the times of terminations of calls.

4.14. The Order Statistic Property Characterizes the Mixed
Poisson Process. Suppose N = ) ey, is a point process on (0, c0)
with 0 < T3 <73 < ... and set N{t) = N((0,2]). Assume NN has the order
statistic property, namely that

(T, TN = k) £ (Ug),- - Uiy)s
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where (Upy, - .., Ugy) are the order statistics from a sample of size k from
the uniform distribution on {0,¢). Show there exists a random variable
W > 0 such that

(N(t),t > 0} = {N*(W1),¢ > 0},

where N* is a homogeneous Poisson process with unit rate and independent
of the random variable W.

This result may be derived by following these simple steps:

(a) Let ey = Tj/Tk-1 for k > 2. Conditional on N(t) = k show that
€2,.- )€k, T} are independent and that loge; is exponentially distributed
with mean 1/(j5 — 1).

(b) For any k > 2 show {ez, ..., €k, Tk) are independent by computing

Plez < x2,...,ex <%, Ti < )
oo
=Y Plez <@y,...,ex S 3, T < 2|N (1) = JIPIN(t) = 4.
j=k

{c) Since the homogeneous Poisson process with points {I'n,n > 1} has
the order statistic property,

. Ty
(ej:.722)=(1-|J ,322).
-1

(d) By the law of large numbers, for any j,
I'n 1

m -
n—00 nI",- Fj
Thus, there exists 77 such that

lim L _ 1
n—0o n’l’} - T;,

since

lim & = lim Tn T N Tin1

n—0o n'lr} n—co nTn-—l Tn—2 I}

.1
= nli'ngo ;Enen_l N FER

2y 2n In1 D

n—eonl, Ty 2 Ty

| 1

= lim — = —.
nl»nclto nl"j Fj
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{e) Check {T;} 2 {T';}; there exists V such that T,,/n — V > 0.

(f) Since (e;,7 < k) is independent of Tk, conclude V is independent of
(e5,4 > 2) and of {T}}.

(g) On [V < oo] we have a.s.

V—I(T}_,Tz,...) ﬂ( I} ;7)

Set W = V1. (This outline is from Feigin, 1979; the more general char-
acterization is nicely described in Neveu, 1976.)

4.15. Consider the Poisson process N = Y, ¢;, on (0, oc] with points {jx}
and mean measure p(dr) = ar~°"1dz for z > 0. Let Y7 = sup, jx be the
largest point, and let Y2 be the second largest point. Compute the joint
distribution function of ¥1,Y5.

4.16. Let {I'z} be as usual the renewal sequence corresponding to the
exponential distribution. Suppose v is a measure on R with the property
that Q{z) := v(z, 0} < oo for any z € R. For y > 0, define

Qw)=1/Q) (1),

where, as usual, we define the inverse of the non-decreasing function by

(1/Q)" (u} =inf{v: 1/Q(v) = u}.
Show

Y eq(ra)

is Poisson on R with mean measure v.

4.17. Compute the Laplace functional of the simple cluster process
Z f’u €Xa

where {X,,} are Poisson points independent of the iid non-negative integer
valued sequence {&,}. Use the form of the Laplace functional to verify that
the simple cluster process is completely random.

4.18. Lévy Decomposition of a Poisson Process.* (a) Let N be a
Poisson process on {0, 00} with mean measure p. Show

N =Ny + N,

* This problem is for advanced students.

_
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where Ny, N, are independent, where {N((0, {]),# > 0} is a stochastically
continucus Poisson process, and where {N({0,t]),t > 0} is a process with
independent increments with only fixed discontinuities. (Hint: The fixed
discontinuities consist of {¢ > 0: p({t}) > 0.)
(b) Arrivals at a barber shop form a non-stationary and non-stochastic-
ally contimious Poisson process. On a particular day, there are appoint-
ments made for 12:00, 12:20, 1:00, 3:40, 4:20, 4:40. Past experience indi-
cates that an appointment is kept with probability 2/3. Customers without
appointments arrive at the rate of one per hour during the first three hours,
at the rate of 0.4 per hour during the next two hours and at the rate of 0.2
per hour during the last hour. Discuss the structure of the mean measure.
Compute
(8) PIN;((0,4]) = K],
(b) PIN((0,4]) = K,
(3) PIN((0,4]) = k]

{Note the number of fixed discontinuities is not Poisson distributed.)

4.19.* Let N be a point process with mean measure u. Suppose f > 0 is
bounded. Show for any measurable set A

E f f(2)dN(z) = / F(z)u(dz).

4.20. The Mixed Poisson Process and the Order Statistic Prop-
erty.

(a) Let N*({0,£]) = N({0, At]) be a mixed Poisson process. Here A and
N are independent and IV is a homogeneous Poisson process on [0, 00). Let
G be the distribution of A, and let G be the Laplace transform. Show

PIN*((t,t + 7)) = n] = (-=7)"G™)(7)/n,

where G(™}(r) is the nth derivative of G at the point 7.
(b} More generally, show that if the intervals (¢;,t;+7:),i=1,...
disjoint

, T, are

PIN*((terts 1) = i = 1. 7] = izt T @(Srﬂm)(ijn).
) 3 ) H;-=1 ni!

{c) Show if the intervals (¢;, t;+R],1 = 1,...,n, are disjoint and t;+h; <
7 for each 1, then

PIN*((tits +hi]) =1,i=1,...,n;

i=1

N0, 7]\ Uiy (B ts + ha]) = O|N((0, 7]) = 7] = f_:; ﬁ i
i=1

* This problem is suitable for more advanced students.
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and therefore the mixed Poisson process has the order statistic property.
(This problem can be done independently of Problem 4.14).

4.21. Mixed Poisson, continued.* Let N be a stationary point pro-
cess on [0,00) with points {X,} arranged in increasing order. Suppose
EN{((0,t]) < oo for each ¢t and, for each n,

d
(X5, XIN((0,2]) = n) = (Unys -+, Uny)
where U;,...,U, are iid uniform random variables on (0,t) and the order
statistics are Uyyy,...,Upmy. Also, N is Poisson if {N((n,n +1])} is a
stationary, ergodic sequence, and N is mixed Poisson if {N((n,n +1])} is
not ergodic. In the latter case,

A= nlin;ON((O,n])/n

almost surely.
4.22. Constructions of the Poisson Process on K. Show that the
following constructions lead to a homogeneous Poisson process on H:

(a) Let {E,, —00 < n < co} be iid unit exponentially distributed ran-
dom variables. Define

Xo=Ep, Xn = Ep + Eq,...,
X12=—FE_41,X = -—(E_l +E_2),... .

Show 3, ex,_ is a homogeneous Poisson process.

(b} Suppose {E,,n # 0} are iid unit exponentially distributed random
variables independent of the uniformly distributed on (0,1) random vari-
able W. Also suppose Ey is independent of {En,n # 0} and W and Ey
has density

fe(z)=ze™%, =z>0.

Prove WEy and (1 — W}E, are iid unit exponentially distributed random
variables. Define

o

Show ), €, is a homogeneous Poisson process on R.

to = —WEq, t, = (1 ~ W)Ep

and
1+ B+ -+ B,

to—E_1—--—E._y

fori>1
fori < 0.

* This problem is suitable for more advanced students.
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4.23. For the mixed Poisson process N*, show, using, say Theorem 3.3.2,

that .

lim N0, 1)) = A

t-—ro0 t
4.24. Doubly Stochastic Poisson Process and Thinning. Let N,,
be Poisson process with mean measure m on E. Let i be a random element
of the space M (E) of measures on E which are finite on bounded sets,
and suppose the random element p is independent of the family {Np,,m €
M (E)}.

(a) Compute the Laplace functional of N,.

(b} For any point process N, let D, N be the thinned point process
where we inspect the points of N independently and discard each with
probability 1 — p and retain them with probability p. Show the Laplace
functionals of N and D, N are related by

Up,n(f) = Un(—log{l — p+ pe~7)).

(c) If N, is a doubly stochastic Poisson process (i.e., Ny, is PRM(m)
for each m), then D,N,. is doubly stochastic Poisson also and

d
D,N, £ N,,.

(d) To each doubly stochastic Poisson process N, corresponds another
doubly stochastic Poisson process N® such that

N =D,N®).

(The converse of (d) is true as well and characterizes the class of doubly
stochastic Poisson processes.)

4.25. Let N be a homogeneous Poisson process on [0,00). Suppose the
non-negative stochastic process {V(t),t > 0} is stationary and that it can
be integrated. Define

Alt) = ]Dt V{(s)ds.

Show that the doubly stochastic Poisson process {N((0, A(t)]},t > 0} isa
stationary point process. (If necessary, review the definition of a stationary
point process from Section 3.9.)

4.26. Consider random variables X, Y such that X > 0 and has distribu-
tion F (with F(0) = 0) and the conditional distribution of ¥ given X is
uniform on (6, X). Consider the point process

oo
N= Z EnX4Y-

=00
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Compute P{N((0, h]) = 0], and evaluate this explicitly in the case where
F is the uniform distribution on (0,1). In this special case compute

. P[N((0,h]) > 0]
lim ——————,
h—0 h

In contrast fo the behavior of the process presented above, compute this
last limit for the mixed Poisson process.

4.27. The Mixed Poisson Process and Independent Increments.
Show that a mixed Poisson process has independent increments iff it is
Poisson.

4.28. Let {Sy,n > 0} be a renewal sequence with Sp = 0. Let A(t)
and B(t) be the age and forward recurrence times at ¢. If the interarrival
distribution is exponential, we know B(t) has an exponential distribution.
Prove if EB(t) < oo is independent of ¢, then the renewal process is a
Poisson process. (Hint: Let {7 be the renewal function. Express, as usual,
the probability P[B{t} > z] in terms of the renewal function. Integrate
over z to get EB(t). Suppose the latter is constant, and take Laplace
transforms in £.} (Cinlar and Jagers, 1973.)

4.29. Harry and the Hailstorm. Harry’s restaurant has a flat roof
which is subject to damage during a hailstorm. When a hail stone strikes
the roof, there is damage due to the primary impact of the hail, as well as
secondary impacts caused by the hail bouncing and restriking the surface
of the roof. Both Harry and the insurance adjuster believe the positions of
primary impacts form a Poisson process and assume this to be true. Harry
believes the total collection of impact points on his roof form a spatial
Poisson process. The insurance adjuster vehemently disagrees. Who is
right?

4.30. Assume N is a point process on [0, 00), and let N(t) = N([0,]).
Suppose {N(t),t > 0} satisfies N{0) = 0, N has independent increments
and

PIN((t,t + B]) = 1] = Atk + ok)
PIN((t,¢ + h]) > 2} = o(h).

Prove N is a nonhomogeneous Poisson process with local intensity A(t).
(Hint: Let Py(s) = Es™®), and use the postulates to show

C%R(S) = Mt} (s ~ 1) Py(s).

To do this, consider the difference quotient

Pyin(s) — Bi(s)
——
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Solve the differential equation—it’s easy—for P,(s), and invert or identify
the generating function.)

4.31. Consider a non-homogeneous Poisson process on [0, co} with local
intensity
A, f2m<t<?2
)\(t):{ mSt<2m+1,

0, otherwise,

for m =0,1,.... A sampling interval of unit length is selected at random
by first choosing an integer m at random according to some discrete dis-
tribution {px} and initiating the sampling interval at a point uniformly
chosen in the interval [m,m + 1). Compute the probability that the sam-
pling interval contains n points, and compute the mean and variance of
the number in the sampling interval.

4.32. Consider a homogeneous planar Poisson process, and let ||z|| be the

Euclidean norm. Suppose the points of the process are {X,,} arranged so
that

[ Xoll < 1Xall < || 2]l <. ...
What type of process is {|| X, [|}? Let

An = '"'“Xn“2

be the area of the sphere with radius ||.X,||. What type of process is {4,}?

4.33. As a simple example of a cluster process, consider the following
scheme: Let 3 ex, be homogeneous Poisson on [0,00). Suppose {¥,}
are 1id displacements. Retain the old point X, and add a new point at
Xn +Y,, so the new point process is

Nerp = Zﬁxn =+ ZExn+yﬂ.
n n

Compute the Laplace transform of Ngr,(A) or compute the Laplace func-
tional. Is this process ever Poisson?

4.34. The Order Statistic Property in Higher Dimensions. Let
N be a PRM(i} on a state space E. Prove that for a bounded region A,
the conditional distribution of the points in A, given N(A) = n, is the
same as the distribution of n iid random variables from the distribution

#(dz)/p(A).

4.35. Moran’s (1967) Example—Poisson Marginals but Not a
Poisson Process. Take a two-dimensional density of the form

flz,y) =@V 4 folz, ),



3680 4. EXERCISES

VoA
al
5,6 |
3_-—4_-_-]
I
6§ | -6 |
s
§ | -6 i
|
1 |__"l—_-|
5 s
' S
1 2 3 4 v

FicURE 4.4. MORAN’S EXAMPLE

where fs(z,y) takes the values +6 (§ < e~%) in the regions shown in the
figure and is 0 elsewhere.

Note that if the random vector (U, V) has the density f(z,y), then the
marginal densities of both I/ and V' are unit exponential, and, furthermore,
U + V has density ze™"1(p,0)(z), which is the density of the sum of two
iid unit exponentially distributed random variables.

Suppose {(U;, V;)} are iid copies of the vector (U, V). Use these iid
vectors to construct interpoint distances of a point process N’ (where will
the origin go?) which has the properties

(1) The number of points of N’ in any interval is Poisson distributed
with a mean proportional to the length of the interval.

(2) The interpoint distances of points of N' are marginally exponen-
tially distributed.

(3) N’ is not a Poisson process.

4.36.* Let N = __ex, be a mixed Poisson process on R. Let {¥,} be
iid random variables independent of {X,}. Show

N g ZEX“.FY“.
]

Conversely, if a point process N = 3" ex, on R has the property that
d
N3 exov,
n

for any sequence {Y;,} independent of {X,}, show N is mixed Poisson.
(Goldman, 1967.)

* This is a challenging problem suitable for advanced students.
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4.37. EARMA and Friends. As an alternative to iid interpoint dis-
tances of the homogeneous Poisson process on [0, o), consider the following
schemes inspired by time series constructions: Let {E,,n > 0} be iid ex-
ponentially distributed random variables with parameter p, and let {U,}
and {V,} be independent sequences of iid Bernoulli variables with

a=PjU,=0], B=P[V,=0].
Define the following three sequences which may serve as interpoint dis-

tances of point processes on [0, oo):

(1) Ezponential autoregressive process of order I (EAR 1):
Xo=E), X,=aX,1+U,E,, n>1;
(2) Fzponential moving average process of order 1 (EMA 1}
Yn=0E,+Voln_1, n21;
(3) Ezponential autoregressive moving average process (EARMA (1,1)):
Zo =B 4+ VpXno1, n 21,

where X, is given in (1).

(a) Verify that (1) and (2) are special cases of (3) and that fa =8 =10
the point process generated by these interpoint distances is Poisson.

(b) Show that the Z, are marginally exponentially distributed. (Com-
pute the Laplace transform of U, E,, and then a recursion for the Laplace
transform of X,,; solve the recursion. Then compute the Laplace transform
of Z,.)

(c) Compute the autocovariances

Cov(Zn, Zntk )

Verify that this is independent of n; thus {Z,} is (covariance) stationary,
and we may set

7("’) = COV(ZfH Zn+k)'

{(Jacobs and Lewis, 1977; Lawrance and Lewis, 1977.)

4.38. Let N be a non-homogeneous Poisson process on [0,00) with
poits 0 < T3 < T3 < .... Given T,, = {, what is the distribution of
(T1,...,Tho1)?
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4.39. Consider a mixed Poisson {N((0, At]),t > 0}. Work out the distri-
bution of N((0, At]) when A has the following distributions: (a) Gamma,
{b) Poisson.

Consider the simple cluster process Ngz = ., n€x, based on the
homogencous Poisson process with points {X»} and in which there are
no translation satellites about centers. Compute the distribution of
Nep((0,#]) when &, has the following distributions: (a) Geometric, (b}
Poisson, (¢} Binomial.

4.40. Estimating the Rate of a Homogeneous Poisson Process.
Suppose it is known that N is a homogeneous Poisson process but the rate
o is unknown. Suppose up to time t, the process is observed; we observe
N{((0,t]) = n and points X; = ) <Xog=Tp << Xp=2zn <t

(a) Show that the likelihood function is

e~*a”,

{b) For t fixed, show that N((0,1]) is a sufficient statistic for a.
{c) Show
N((0, t})

t

is the maximum likelihood estimator of o. Show that this estimator is
consistent and asymptotically normal. Is it also a uniform minimum vari-
ance unbiased estimator? What is an exact 95% confidence interval for o?
Use the normal approximation, and give an approximate 95% confidence
interval.

(d) Consider testing the null hypothesis

&=

HQ:O!=O.'0

against the alternative
Hy o> ap.

Using the sufficient statistic as a test statistic, when would you reject the
null hypothesis? What is the exact significance level of the test. Compare
the exact significance level with the normal approximation if t = 15 and
N{(0,¢]) = 12.

Change the alternative hypothesis to Hy : e < ag and answer the ques-
tions in the previous paragraph. {Cox and Lewis, 1966.)

4.41. Local Poissonification. Neuts et al. (1992) describe a transforma-
tion of a stationary point process called local poissonification designed to
test how critical local characteristics are in determining global properties.
The procedure is as follows: Suppose N is a stationary point process on
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the state space R. Fix a length h, and decompose R as a union of intervals
of length h:

R= |J ((n—1h,nh] = D L(h).

n=—00 n=-—oo

The poissonified version of N, call it Npp, is obtained by looking at each
interval I,(h). If N(I.(h)) = m, we replace the rn points of N by m
random variables uniformly distributed on I, (h).

(a) Express the Laplace functional of Npg in terms of the Laplace func-
tional of N. Alternatively, if you skipped Section 4.7.1 on Laplace func-
j\i;ana.ls, express the Laplace transform of Npo(1,(h)) in terms of that of

(b) If N is either a Poisson process or a mixed Poisson process, show
N £ Npo;

ie., show Npo is a Poisson process of the same rate or a mixed Poisson
process,

4.42, Suppose the arrival process of customers to the bus stop is a homo-
geneous Poisson process with rate o and that the arrival process of buses
is an independent renewal process with interarrival distribution F. Find
the long run percentage of customers who wait for a bus less than z units
of tirne.
4.43. Under what circumstances would you be willing to model the fol-
lowing phenomena as Poisson processes? Which Poisson processes?

(a) Telephone calls arriving to a central exchange.

{b) Emissions from a radioactive souce arriving to a counter. Does the
counter have a significant block time after a registration?

(c) Stops of a machine due to either breakdowns or lack of work.
71.44. Superposition of Poisson Processes. Suppose Ny,..., Ny are
independent Poisson processes on a state space E, and suppose the mean
measure of N; is y;. Verify that Efﬂ N; is a Poisson random measure also
with mean measure ZLI ti. If you wish, think about this when the state
space F is [0, co}.
4.45. Who Will Be First?

(a) Suppose Ey, E, are independent exponentially distributed random
variables with parameters o, 2. Show the events

[El < Ez] and [E1 ANES > I]

are independent. (See Proposition 5.1.1 for help.)



364 4, EXERCISES

(b) Entry of yuppies and computer nerds into Harry’s restaurant after

opening each day constitute independent Poisson processes of rates o), .
‘What is the probability the first person to enter after opening is a yuppie?
Show that the event that the first person to enter is a yuppie is independent
of the entry time of the first customer.
4.46. The arrival of customers at a self-service market is a Poisson process
of rate . Customers have iid shopping times 5; which have common
distribution G(t). After shopping, each customer checks himself out. The
checkout times C; are iid and independent of shopping times and have
common distribution H(t). Assume customers begin checking cut as soon
as their shopping is completed.

For each ¢ > 0, let X(¢) be the number of customers shopping at time
t, and let Y {¢) be the number of customers who are checking out.

(a) Find the joint distribution of (X(t), Y (t)).

(b) Now suppose that {(S;,C;)} are iid random vectors but that for
each j we might have 5; and C; dependent. Suppose we know the joint
distribution of {S), C1). Show (X (t),Y(t)) are independent, and compate
the joint distribution.

(€) Take the joint distribution found in (b) and let ¢ — oo to show a
limiting joint mass function exists. Identify it. {Wolf, 1989.)

4.47. More on Estimating the Parameter of a Poisson Process.

Suppose we know
oo

N=Z€xn

n=1
is a homogeneous Poisson process on [0, 00) with unknown rate o where
the points {X,,} are assumed to satisfy

Xi< X< oo

For some fixed n, we get to observe the process up until the time of the
nth point and thus we observe until X,.

{a) Show that the likelihood function is the joint density of X;,...
namely

:-XYH

n,—QaTn

le,...,Xn(xli"'1$“):a e T <X < < Ty

(b} Show X, is a sufficient statistic for o, What is the maximum like-
lihood estimator of &? What is the UMVUE (uniform minimum variance
unbiased estimator)?

{c) What is the density of 2X,,? Does it depend on a? If not, use it
as a pivotal quantity to get a 95% confidence interval for a.

(d) Explain how to test the hypothesis Hy : & = o against the alterna-
tive H; : & < ap. (Cox and Lewis, 1966.)
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4.48. Motor vehicles arrive at a bridge toll gate according to a Poisson
process with rate o = 2 vehicles per minute. The drivers pay toills of $1
$2 or 35 depending on which of three weight classes their vehicles belongj
Assuming that the vehicles arriving at the gate belong to classes 1, 2 and
3 with probabilities 1/2, 1/3, and 1/6, respectively, find

(a) The mean and variance of the amount in dollars collected in any
given hour.

(b) The probability that exactly $3 is collected in each of three consec-
utive l-minute intervals (which are specified).

(c) The probability that the waiting time between the first two $5 vehi-
cles is more than 10 minutes.

4.49. Customers arrive to a bus depot according to the mixed Poisson
process {N((0,£t]),t = 0} where N is homogeneous Poisson with rate
and £ is a positive random variable independent of N. The first bus to
leave after £ = 0 leaves at ¢ = 1. Compute the expected total wait of all
customers arriving in (0, 1).
4.50. Let {N(t) = N((0,¢]),t > 0} be a non-homogeneous Poisson process
with N(0) = 0 and local intensity a(t) = 8¢, where § > 0 is a constant.
(a) Compute EN(1)N(2) and P[N(1) = 2|N{2) = 6].
(b) Let W, = inf{t > 0: N(t) = n}, for n = 1,2,.... Find first the
distribution of W,, and then the joint distribution of Wi, Wo — W,
(c) Suppose @ is unknown and needs to be estimated.
(1) If the process is observed only at t = 5 and £ = 10 with N(5) =
1, N(10) = 2, find the maximum likelihood estimate of 6.
(2) If the process is observed over the entire time interval [0,10] with
N(10) =2,Wy = 5, W, = 8, find the maximum likelihood estimate of 9.
(d) Define Y(t) = N(t?). Determine the local intensity for the point
process Y (t) in terms of 6.

4.51. Extremal Processes. Consider a two dimensional Poisson process
N=3 e
k

on [0, 00) x (0, 0c] with mean measure determined by
#((0,4] x (z, 00]) = t(~ log F(x}),
where F'is a distribution function on R. Define
Y(t) = sup{ji  te < 1)

to be tt'ie largest second component whose first component is prior to t.
{Y ()} is called an extremal process. (Dwass, 1964; Resnick, 1987.)
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(a) Compute P[Y {t) < zl.
(b) For any k and z1, ..., Tk real and (0 < t; < --- < i, compute

PlY(t1) S 21,..., Y (1) < Tk].
4.52. Consider {Xn,n > 1} iid with continvous distribution ¥ and
(z1,2r) = (sup{z : F(z) > 0},inf{x : F(z) < 1})-
Set M, =/~ X, and define
n(t) = inf{n : My, >t}

for z; < t < z,. Prove {n(t)} is a process with independent increments,
and for;y<a<b <z,

Ply(s) = K] = FE=' )1 - F(b), k21

—~ F(b
Pln(s) ~n(e) =0 = {50

Also, forn>1

Plo) —n(e) =)= ([ g ) Pl HF0)

(Hint: Observe that
() —n(a) = _ lima.e(abl

= i(L(k +1) = L(k))ex, i (@5 8]
k=

-

and use Proposition 4.11.2.)

CHAPTER 5

Continuous Time Markov Chains

E TURN now to the continuous time version of the Markov property.

Some of the simplicity of Chapter 2 is retained, because we assume
the state space S is discrete. Usually we can suppose that S = {0,1,... }.
The succession of states visited still follows a discrete parameter Markov
chain but now the flow of time is perturbed by exponentially distributed
holding times in each state. An easy generalization of the dissection ar-
gument of Chapter 2 shows that the process regenerates at return times
to a fixed reference state, so renewal theory and regenerative processes are
useful.

Our approach is to construct the process starting from some basic in-
gredients: a discrete parameter Markov chain and a supply of iid exponen-
tially distributed random variables. The discrete parameter Markov chain
controls movements through the state space, and the exponential random
variables control how rapidly these movements take place.

In Chapter 2, useful descriptive quantities such as absorption probabili-
ties and expected absorption times were calculated as solutions of difference
equations; in this chapter, however, we must solve systems of differential
equations.

There is a large class of queueing models which are analyzed as Markov
chains in continuous time. Other applications include models for pop-
ulation growth, material transfer, reliability of mechanical systems, and
epidemics.

5.1. DEFINITIONS AND CONSTRUCTION.

We consider a process {X(t),t > 0} with index set [0,00) and a state
Space which is a subset of the integers. Given that the process is in state
t, the holding time in that state will be exponentially distributed with
parameter A{z). The succession of states visited will follow a discrete time
Markov chain. Given a knowledge of the states visited, holding times are
independent random variables.
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For example, think of the number of patrons in Harry’'s restaurant
as fluctuating with time. For this to be modelled as a Markov chain,
we must assume that when there are n patrons present, the time unti]
the number present changes is exponentially distributed with a parameter
which depends on n, the current number of patrons.

We want the process to have the Markov property, i.e., for any m > ¢,
time points #) < 2 < ... < t,, and states ky,... ,km—2,1, ], We want

P[X(tm_) = JiX(tl) = kl, cey X(tm_g) = km_g,X(tmfl) = T,]
(5.1.1) =P[X(tm) = 1 X (trm1) = 1} =t Pyj{tm — tm_1).

We also want the process to have stationary transition probabilities, mean-
ing for s,t > 0,

PIX(t+5) = jlX(2) = 1] =: Py(s).

Furthermore, we wish this process to have the continuous time analogues
of property (2.1.4), namely, for any collection of paths B (allow this to be
vague), we have

P{X(s),s > t} € BIX(t1) =k, ... , X (tg-1) = 1]
(5.1.2) = P[{X(s), s > t} € BIX(te) = i]

We defer consideration of (5.1.1) and (5.1.2) and concentrate on the
construction of the process {X{¢)}. Suffice it to say here that the existence
of the Markov property is crucially dependent on the forgetfulness prop-
erty of the exponential distributions used for the holding times in a state.
Conditioning on the past up to time t means knowing the current state and
elapsed time since the last transition. The exponential distributions allow
us to pretend a transition has just been made, so prior history becomes
irrelevant. In Section 5.2.1 we will prove that the process we construct
satisfies (5.1.1).

We construct the process as follows. Start with a discrete time Markov
chain {X,,,n > 0} with state space S, initial distribution {ax} and tran-
sition matrix Q@ = (Qi;). We assume @y = 0 for all ¢ € 5. Suppose
we have a sequence {FE,,n > 0} of iid exponentially distributed random
variables with unit mean, and suppose the exponential random variables
are independent of {X,}. We are given a function {A(i),{ € 5} which will
govern holding times. This function satisfies A(f) > 0 for all i, We now
construct the continuous time Markov chain {X(¢}}. (Distinguish in your
mind between the discrete time Markov chain {X,} and the about to be
constructed continuous time Markov chain {X (¢)} which uses {X,} as an
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ingredient in the construction.) Let Ty = 0, and define W(0) = Ey/A(Xy),
which implies

PIW(0) > z|Xp = 1] = exp{—A{i}z}, z>0,
so that, given the initial state of the discrete time Markov chain, W (0) has

an exponential distribution with parameter A{X,). Remember, we assume
that {Xn} and {Ey,} are independent. Now define

Ty =1y +W(0)
and
Xty=Xo, forTy<t<Tn
define W (T} = E1/A(X1) so that
PIW(TY) > 2lX1 = i) = exp{~A(i)z
define
T2 = Tl + W(Tl)

and
Xt)=Xy, forTi<t<Th.
Continuing in this way, suppose {W(T,.},m < n — 1},{T%,0 < m

n} and {X(s),0 < s < T,} have been defined. We define W(T},)
E,/A(Xn),

i 1A

Tn+1 = Tn + W(Tn)
and
Xt)=X, forT, <t<Thy.

Setting Too = liMp—eo T T, we have the process defined on [0, T,,), and
for t < T,

(5.1.3) X(t) =Y Xalr, 1y (8,

n=0

and furthermore,
(5.1.4) Tog1 — T = W(Th) = Eo/AX,).

Two important properties of the sequence{ X,,, T, } now follow. The first is
that {To — Trn—1,m > 1} are conditionally independent and exponentially
distributed given {X,}: For up, >0,m=1,...,n,
Pllm —Tme1 >up, 1l <m<n|Xg=1dy,...,Xn_1 = in 1)
= P[EmAl/)\(Xm_l) > Um,lEm< 'n,|XD =40, , Xn-1= in_]_]
n
(5.1.5) = PlBn—1/Mim_1) > tm, 1 Sm <= [ &7 m-t0m,

m=1
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The second property is the distributional structure of {X,,T,}. For
u > 0,1p,... ,in-1,% € 5, we have

PXp1=5Tnr—Th > ulXo=tdo,... , Xn =1,T0, ..., I},
=PlXp1 =5 B /AMXL) > u|Xo =40, .. , Xn =4, T — T—1,
1<m<mn
=PlXp1 =5, Bu/Mi) >u|lXo=1p,...,Xn =, En_1/Mim-1),
1< m <]

and, since {X,,} and {E,,} are independent, we conclude

PXpi1 =5, Tne1 — Tn > ulXo, ... , X, b, .., Ta] = Qx, je XK

= P[Xps; = j.Tors — T > ulXn].
(5.1.6) [Xn41 =5, Tan1 | Xn)

Note that because we assume Qy; = 0 for all ¢ € 8, {7} are pre-
cisely the epochs when the process can be observed to change states. It is
conceptually simpler to construct the Markov chain when we assume the
discrete time Markov chain cannot make transitions from 4 to i, for any
i € §. There is also a statistical reason for desiring Qi; = 0, since other-
wise, from observing the continuous time process {X ()} transitions from
state i back to i would not be identifiable. Note, however, if you are dying
to construct a continious time model based on a transition matrix {Q;}
where (2;; > 0 for some %, then things can still be arranged neatly. Replace
the original Markov chain {X,.}, governed by a Q which has zeros on the
main diagonal, by a new chain {X,}, recognizing only transitions of {X,}
to new states and ignoring the geometrically distributed number of visits
back to the same state. See Section 5.10 and Exercise 5.8

Example 5.1.1. The Pure Birth Process. Consider the determin-
istically monotone Markov chain {X,,n > 0} starting from state 1 with
Qii+1 = 1 so that the transition from ¢ to ¢ 4+ 1 is sure. Then there is
no randomness in the {X,} sequence, and thus there is no difference be-
tween the distribution of {T,,1; — T,,n > 0} conditional on {X,} and the
unconditional distribution. We conclude for this process that the holding
times {Ty+1 — Tr,n > 0} are independent exponentially distributed ran-
dom variables. The process {X(¢)} represents the population size at time
t for a growing population. The case where A{i) = Aé and A > 0 is called
the linear birth process or the Yule process.

Before proceeding with the discussion of the dynamics of the birth
process, it is wise to stop and collect some facts about the exponential
distribution.
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Proposition 5.1.1. Let E(a), E(b) be independent with exponential dis-
tributions with parameters a, b respectively where a > 0,b > 0. Then
(i) Forgetfulness property: For s,t > 0

P[E(a) > t+ s|E(a) > s] = P|E(a) > t] = e™ .

(i) Denote the minimum of two numbers z,y by zAy. Then E(a)AE(b)
is exponentially distributed with parameter a + b:

PE(@)AE(b) > a] = e~ 0¥ 250,
(iii) We have
Pl|E(a) > E(b)] = b/(a +b).

(iv) Suppose {E,} are independent exponentially distributed random
variables

PE,>z]=e™= £>0, Aln)>o0.
Then the sum 1
;En<008.3. IE;X‘GI—)<OO

Proof. For (i) we calculate

PlE{a) > t+ s, E(a) > s
PlE(a) > 5]
_ PlE(a) > t+ 3]
~  PlE(a) > 3]
= g0t femos — =9 — P[E(g) > 1],

PlE(a) > t+ s|E(a) > §] =

For (ii) we have
P[E(a) AE(b) > x| = P[E(a} > z, B(b) > 2] = ¢ %% = ¢~{e+b)z,

For (iii} we integrate

P[E(a) > E(b)] = /] ae™ " be " dudv
{(u,v):u>v>0}

oo o0
= / be PV dy j ae” “du
v=0 u=v

oo
= [ betvem vy
p=0

=b/(a+b).
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For (iv) note that if 3, 1/A(n) < oo, then 3, E(E,) = E(3, E,) <

oo, and, because ), E, > 0, we have > F,, < co. For the converse, note
that if 37 F, < oo then for all s >0

0<Eexp{-sY E,}= HEexp{—sEn}
. H )\(n)

Then, from Lemma 2.9.1 we find
Aln) s
1l — | = — < .
Zn:( /\(n)-i-s) ;s+)\(n) e

This means s/{A(n)
we have

+8) — 0 as n — co so that A{n) — occ. Since n — oo,

An) +3 ~ Tn)’

and therefore

Zs-i-/\ <001ffz

as desired. W

Remark. For the linear birth process on the states {1,2, ...}, we have the
holding time in state n, namely T, — T,,—1, distributed as an exponential
random variable with parameter An. Therefore

Tn - Tn——l g ?:1’\_1Ei1
where {E;} are iid unit exponential random variables. This follows from
Proposition 5.1.1 (iii).

If X{t) is the number in the population at time ¢, then the dynamics
of the process are as follows: Particles in a population live for random
lengths of time independent of each other. Each lifetime is exponentially
distributed with parameter A, When a particle dies, it is replaced by two
other particles. Given that the population is n, the walting time until the
population is 7 + 1 is the minimum of n exponential random variables.
At this random time, there are now, because of the forgetfulness property,
n 4 1 lifetimes which are i1id with exponential distribution. The minimum
of these n + 1 gives the sojourn in state n + 1, and so on.
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Example 5.1.2. Birth—Death Process. A birth—death process is a
continuous time Markov chain whose embedded discrete time Markov chain
{Xn} is a simple random walk on {0,1,...} with

Qiit1=pi, Quici=@=1-p;, i>1,
and

Qo =1

Given the holding time parameters {A(7),? > 1}, we define
A= piAE), = q(d).

(Be careful to distinguish A(7) and A, which are very different. Tradition
demands that the quantity p;A{z) be labelled A;.) For historical reasons
and for reasons which will be clearer later, the numbers {\;} are called
birth rates and the {u;} are called death rates. Note yg = 0, the holding
time parameters are

M@ =Mi+p, 120,

and the probabilities governing the discrete time random walk are

A
Mo+

P = i Z OJ
where we assume for all ¢ that A; + g; > 0.

A way to think about the birth—death process is as follows. When in
state , imagine there are two independent random variables B(%) and (i)
which are exponentially distributed with parameters A; and p; respectively.
A t{ransition from i to { + 1 is made if B(i) < D(i), which cccurs with
probability

)\+

{which follows from Proposition 5.1.1). The holding time in state i is B(d)A
D3}, which is exponential with parameter A; + p; (also from Proposition
5.1.1). We may think of B(i} as the time until a birth when the population
is ¢ and similarly D(4} is the time until a death when the population size
is 1. The population increases by one if a birth occurs prior to a death;
otherwise the population decreases by one.

When the birth and death parameters are of the form

/\i = )\%, i = p'zu g 2 0)

we call the process a linear birth-death process.
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As a particular case of the birth-death process consider the M/M/1
queue, which is a model having arrivals according to a Poisson process of
rate a {a stands for arrival} and where arriving customers are served in turn
by a single server who serves at rate b (b is the letter which follows a}.* This
means service times are iid exponentially distributed with parameter b and
independent of the arrival process. A birth corresponds to an arrival and
a death corresponds to a service completion with a consequent departure;
therefore A; = ¢ and y; = b. The process {X(t)} gives the number in
the system at time . The sojourn time in state i is B(i) A D(i}, which
is exponentially distributed with parameter A(z) = A; + g = a + b if
i > 1 and A(0) = Ap = 4. The number in the system goes from < to
i+ 1if B(i} < D(i), i.e., if there is an arrival before a service completion.
Therefore Q; 41 = af{a+b), fori > 1 and Qo3 = 1. Thus the matrix Q
is of the form

0 1 0 0
b a
m?mo

Q=10 2 0 5

Example 5.1.3. Uniformizable Chains. This is discussed more fully
in Section 5.10, where the reason for the name also becomes obvious. For
a brief introduction, suppose {X,} is a Markov chain in discrete time with
transition matrix @, and suppose A(i) = A > 0 independently of i. Then

Tﬂ+1 - Tn = Eﬂ/’\!

so the sojourn times are iid exponentially distributed random variables
with parameter A and independent of {X,}. Thus

{Tp,n > 1}
are the points of a Poisson process. Let the counting function of this
Poisson process be N(0,t], so that the continuous time and discrete time
Markov chains are related by the formula
X)) = Xnw,y-
The transition matrix function of the constructed process {X(t}} can be

* Another way to remember this is to keep in mind that @ = ankomst {arrival
in Danish) and b =betjening (service in Danishj.
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computed as

Py(t) - = PIX(t) = j|X(0) = 4] = P[Xn(o = j1Xo = 1]

M

P[XN(D,t} =4, N(O)t] = anU = 3]

3
1l
<

PlXy = j|Xo = i|PIN(0, § = n]

M

3
1l
(=]

e—/\t (/\t)n
n!

(n)
Q,‘,j .

M

0

3
Il

In this last example, it was possible to compute {F;;(t)} in closed
form. This is frequently not the case. However, from the description of
the reality being modelled, it is usually comparatively easy to obtain the
sojourn parameters {A(¢)} and the transition probabilities {Q,;} of the
discrete time Markov chain. These quantities control the local movement
of the continuous time Markov chain, and in subsequent sections we will
see what conclusions can be drawn about {X(¢)} from knowledge of these
local movements. Usually the analytic challenges in applying Markov chain
theory come from relating local movements to global ones.

5.2. STABILITY AND EXPLOSIONS.

The previous definitions have assumed A(¢) > 0. The construction could be
modified to allow A(i) = 0, and, since the mean sojourn time in 4 is A(s) 1,
this would be a natural way to model absorbing states. Similarly, if we
allowed A{i) = oo, the mean sojourn time in state i would be (0, and such
states would be visited and exited instantaneously. (Such states are termed
instantaneous states.) While such a property has potential applications
(for example, to model bulk arrivals in queues), we will assume, unless
explicitly stated to the contrary, that 0 < A(4) < co; Le., that all states are
stable.

The construction given in Section 5.1 defines {X(¢)} only up to time
T = lim, T T,,. If Tpe < o0, we say an explosion occurs, because an
infinite number of transitions have taken place in finite time. When

Pi[Tw:oo]:‘l, Vie s,

we say the process is regular. (Recall Pi(A) = P[AIX(0) = i].)
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Using Proposition 5.1.1 and the birth process, it is easy to construct
examples. The linear birth process is regular since 3 {An)~! = oo, and
hence

Too = ZE,,/(AH) = 00 a.8.

On the other hand, if we set A(4) = A2, then we get an explosive process.
The main criterion for regularity now follows.

Proposition 5.2.1. For anyi € S,
1
Pi[T < 0] = Pelg xS < oo},
and thus the continuous time Markov chain is regular iff
> s =
L 3%

P;-almost surely for every i € §. In particular,
(1} If A(Z) < ¢ for all i € S for some ¢ > 0, then the chain is

regular.
(2} IfS is a finite set, then the chain is regular.
(3) IfT C S are the transient states of {X,} and if

B[X, €T,V n]=0

for every i € S and if there are no instantaneous states (our
standing assumption), then the chain is regular.

Note for a regular pure birth process every state in the discrete time
Markov chain (the deterministically monotone chain) is transient, so

PX,eT,¥n]=1
We may have regularity, therefore, even if condition (3) fails.
Proof. We have
Too=Y (Tag1 —Tn) = 2 _ Ea/A(Xn).

n

Conditional on the sequence of states {X,}, the quantity T, is a sum
of independent exponential random variables with parameters {A(X,)}.
From Proposition 5.1.1(iv), we have, by conditioning on {X,}, that a.s.

1, if >, SYeo] ‘,15") < 00
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Thus
P[Tm < OOl{Xn}] = 1{2")_(?13<°°] a.8.

Taking expectations yields
1
n n

For (1), we observe that, if A({) < ¢ for all i € S, then
S UMK 2 T /e = oo,
n i

which yields regularity. If § is finite, then A(f) € V;A(§) = ¢ < o0 and (1)
applies. If P[X,, € T V n] =0, then entry into T is sure, and then there
must be a state, say ¢ € T, which is hit infinitely often. Let the infinite
sequence of random indices when X, =i be {n;}. Then

D UYMXA) 2 D 1AM X)) = PRVICEEN |
n i I

We henceforth assume the chain is regular.

5.2.1. THE MARKOV PROPERTY*.

Consider a Markov chain as constructed in Section 5.1 and suppose for
simplicity it is regular. (A more sophisticated discussion without the as-
sumption of regularity is contained in Asmussen, 1987, pages 30-31.} Why
is the process that we constructed Markov? Recall the notation

P;(t) = BlX(t) = j]

and that whether or not a process is Markov can be determined from the
form of the finite dimensional distributions (Proposition 2.1.1). We see that
for the process in Section 5.1 to be Markov, it is necessary and sufficient
that, for any 0 < t; < --- <t and states 1, 51, ..., &,

(5.2.1.1)
Pg[X(tl) = f1y00- ,X(tk) = jk]
= B (0) Py g (b2 — 1) Py, (B — tea)
* This section may be skipped without loss of continuity provided one is

willing to accept the fact that the process constructed in Section 5.1 is a Markov
process.
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We first derive a form for F;;(t) for convenient reference. We have

PIX(E) =7]= > BlXn=5T0 <t < Tasi)
n=>0
o

= Z Z P,;[Tn <t< Tn+1|X1 =11, 0ees Xn-1 = In—1,Xn =J]

ne=0 i3, . 4ne1

. P,-_[X1 = 1"1, .- Xn—l = 1:nv-I:Xﬂ =.7]

[ o] n—
= ,.; Z Z A(z Z A(z
'Pi[X1=%1,---,X -1 =in-1,Xn =7].

Since {E;} are iid exponentially distributed random variables, we obtain

1]

Py;(t) = i > [

B Gdul]e—"(j)(t-—m)
n=D iy, in_q " 11=0 Z i)

(5.21.2) * R[XI :111---,Xn—1 =in—laXn =j]'

We now check (5.2.1.1} when k = 2; the proof for any k£ > 2 is sim-
ilar but notationally cumbersome. The main trick is to remember that,
conditional on knowing the succession of states, {Tp — Tn-1,n > 1} is a
sequence of independent exponentially distributed random variables.

For 0 < t; < ty and states ¢ and j; # 7o, we have

P[X(t1) = j1,X (t2) = ja]

E,
Z -P[X'n.; _Jth; <t <Tn; + — 2L

1=1,2].
n1<n2 '\( )

Conditioning on the succession of states yields

E, .
= E E PiTn, St < Ty + —5,1 =1,2|X, =4,
Ty,000yd T ST )\( )
L] nl—ly 1>=Ti2
"n1+1' s‘ng 1
in1=31y‘n2=32

a=1,...,n2]-P¢[Xa='ima=1,...,n2].

Since E,,/A(j1) is exponentially distributed with parameter A(j;) this
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becomes
n1—1
- = T ff A e
. ?1,...,1.?1_1,. ] "1<n2u1<t1
‘n|_+l;-n-,‘n2-—l:'n1=J1v‘n3=J2 £ <uyuz<ia .
Mir e A duy
nz—1 ng E!
- BPiluy +us + <ty <uy +ug+
[ ,_Z A(tz) _Z (21)
ny+1 I=n;+1

- P,'[Xa = ‘ia, = 1,...,1’12].

Make the change of variable s; = uy, s2 = u; 4 uz — ¢ in the integral,
and use the Markov property for {X,,} to obtain

- o2

Tpensdng =1, n;<na
81 <t1,0< 8y <tg—t
'n1+1| |‘n2—l 3n1—111'n3—32 18 2 3 !

fll--l

P[Z ,\( ) € ds)

. /\(j])e_’\(j')(”'““‘)dsz
ng—-l

P[32+ Z ,\ —t1 < 8§+ Z

l=n1+1 I=n1+1 (”
P[Xy = tg, = 1,...,n2]

n—1

. E
_ e~ M- pr §° 2 e gy
j;,..o ; M)

ﬂ1<ﬂ2 iprertng =1,
iny=h

P[Xl —?:1,... an =in-l]

ta—iy nz—-1 ny
3 j Plat > 50 )_tz_t,<52+ S B
‘ﬂ;-{-ls v‘ﬂg—l g2 i=ni+1 i= 1’11‘+1

'-ng—J?
AG1)e 0 2dsy Py, | Xy = iny 4150 Xngmny = m,)-
Applying (5.2.1.2), and setting m = np ~ n1, we get
= BX(t1) = j1]

> 3 Py IX1 = inygtse s Xom = ]

Mty 4lienimtng =1imtn; =iz

m+ny—1 m+ny—=1

»\(31) Z ,\ “hs Z

= B[X(t1) = H]P;[X(t2 — t1) = .72],
as was to be verified.
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5.3. DISSECTION.

As in discrete time, we may decompose the continuous time Markov chain
into independent cycles. Suppose 1 is a recurrent state of {X,,}. As in
Section 2.5 define 7;(0) = 0 and

(1) =mf{m21: Xp=1)
7(2) = nt{m > (1) X = 1)

Ti(n+1).=inf{m2'rg-(n): Xm =i}

The epochs {Tr,(ny, 7 > 1} are the epochs when { X (¢)} hits ¢ in continuous
time, and the path behaviors between these times are part of independent
cycles. Suppose that the process starts in state 4, so that P[X,; =¢] = L
The precise statement of the dissection principle in continuous time is that
the blocks

{(Xrﬁ(m)+13TTi(m)+1 - TT,-(m): (R !XTi(m+1)!T1’¢(m+1) - T‘r.- (m+1)-—1)
(5.3.1.) m 2 0}

are iid, and hence

{((-X(t)aTT.(m) <t< Tﬂ(m+1))}Tﬂ(m+l) - Tn(m)) ym 2 0}

is an iid collection of pieces of path. These are the ercursions between
visits to state .

As in discrete time, if the process does not start in state ¢, then, pro-
vided it hits 1 with probability 1, we have a similar result. After the first
hit of state ¢ there are iid cycles which are independent of the initial wan-
derings of the prncess prior to the first hit.

These rem $+s should make it clear that a continuous time Markov
chain is an exan.ple of a regenerative process. The regeneration cycles can
be taken to be excursions between visits to a recurrent state i.

(5.3.2)

5.3.1. MoORE DETAIL ON DISSECTION*.

Without loss of generality, suppose {X, } is the “simulated Markov chain”
given in Section 2.1 by construction from uniform random variables {Un},
and suppose {U,} is independent of { £,}. Recall that there is a function
f:8x[0,1] — S such that

Xnt1 = f(Xn, Uny1).

* This section contains harder material which may be skipped on first read-
ing by beginning readers or readers with only average patience.

(5.3.1.1.)
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For n > 1, define the o-algebras
Fn=0({(Ur, Bx_1),1 £k <n).
Since we have, for n > 1,
[1:(1) =n] € o(Xy,... , Xn)
C O'(Ul,... ,Un)
Co Uk, Bx-1,1 <k <n)=Fy,

we see that 7;{1) is a stopping time of the sequence of s-algebras F,.
Now we apply the material from Section 1.8.2 on splitting iid random
elements at a stopping time. We have

(5.3.1.2}) (Ur(Ok> Bryyr-1,5 2 1) 2 (Un, Ep—1,n > 1).

Furthermore, the post-7;{1) process on the left of (5.3.1.2) is independent of
Fr.(1) and therefore independent of the block of variables (U, Em—1,0 <
m < 73(1)). Recalling (5.3.1.1) we have from (5.3.1.2) that

(Xn(l)+mym z ]-;E'ri(l)-i-k—l)k 2 1)
= (@, Uryys1)s FUFG Unqiyr s Unciye)s - -+ By 4k-15 2 1)
L (£, Uh), F(F (G, V1) Ua), o, Ber K 2 1)
= (Xn:En—l,n 2 1)
and the left side of the previous equation is independent of
(Xn, Bac1,0 <1 € 1(1)).
Thus we find

Ery4m—1 ) d ( Em )
X, (1, e @Fml > 2 [ X, = m > 1),
( O Ky em—t) ™ M Xm-1)
and the left side is independent of
En—l
Xn} Nrv V!
( A(Xa-1)
Finally, we may conclude that

0<n$r,-(1)).

4

(XT.‘(I)-i-k}TTi(l)-Fk - Tr,-,(l)+k—11 k> 1) (Xan —Tp-1,n 2 1) ’

and the left side is independent of
(X, Tn — Tac1,0 < < 75(1)) .

If we employ this same procedure starting with the post-r;(1) pro-
cess and splitting at 7:(2), then employ this procedure with the post-7;(2)
process, ete., we find that the blocks

{(Xrstmyt: Tyt = Trgmps > Xm0 Trgmn) = Trigma1)-1) »
(5.3.1.3) m > 0}

are iid.
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5.4. THE BACKWARD EQUATION AND THE GENERATOR MATRIX.

Given the ingredients { X, } and { E,,}. Section 5.1 shows how to construct a
continuous time Markov chain. Assume we believe the construction yields
a Markov process satisfying (5.1.1) and (5.1.2). We have as the basic
parameters of the model the holding time parameters A(%),i € S, and the
transition matrix @ of the discrete time Markov chain. How do these
parameters, which control local movements of the process, determine the
global probabilities of the form

Py(t) = P[X(t) = j| X(0) =4]?
We assume the chain is regular, We also assume all states are stable;
modest changes are necessary to handle absorbing states.

We start by deriving the backward integral equation by conditioning
on the first jump place and time.

Proposition 5.4.1, Foralli,j € § and t > 0, we have

[
Py(t) = bije 0 j A()e s ZQikij(t — 8)ds,
0

ki
1

bij=1

7 {0,

Proof. We decompose according to the value of the first jump T3. We have

where as usual .

ifi#j.

PIX(8) = j| X(0)=1] = PIX() = 5,71 > t| X(0) = ]
+ P[X(t)=4,T) <t| X(0) =¢] =: T+ II.

For I, a first transition has not been made up to time ¢, so, if i = j, we
have )
I =B[N >t=e 200

For analyzing I, the idea is as follows: Suppose the first jump occurs at
(s, 8 + ds), which occurs with probability A(i)e~*(¥*ds. Then there must
be a jump to some intermediate state k which has probability Q. If we
start at k, the Markov property allows us to neglect the history of how we
got to k. Now the process must make its way in time ¢t — s from state k
to state j; the probability of this occurrence is Pgj{t — s}. Finally, the law
of total probability requires us to sum over intermediate states k and over
intermediate time points s.

5.4. THE BACKWARD EQUATION AND GENERATOR MATRIX 383

The more precise analysis of I7 which follows may be considered op-
tional reading for novices. We have

oo
X(t) = Z X“]'[Tanu)(t)’

n=0
and, forn > 1,
n—1
n = —Ej .

Therefore, if the process starts from ¢ and ¢ > T}, we have

X(t) = 21 an[z;‘;;f:, JAMX3),E0_0 By JA(X5) (t)
n—=

o0
G4) =3 Kl s, pothmp, 5 (=~ Bo/ M),

n=1
Therefore, we have for IJ

PX(t)=4,Ta <t] =) BIX(t) =4, Eo/A() < t, X1 = k]
ki

- ;-/;=0
Fi[X: =k, Bo /(i) € ds].

PIX(£) = 51Bo/AG) = 5, X1 = k]

From (5.4.1) we get

BiX(t) = j|EBo/Mi) = s, X1 = K]

= BD_ Xaligeot g, acx,), 250 B e & = 8) = 41X = ]

Je1
n=1

[» =]
= Pl Xn1ligpt, iy mp, 2y ks (= 8) = 1)

n=1

where we have used the Markov property (2.1.4) of {X,}. Now set m =
n—1,h=j—1,E), = By and the foregoing expression becomes

Pl Xmlimmt gy a2 o306 (E = 8) = 1]

=0

= PulX(t~s) = jj = Pyt — s).
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Since
Pi[X1 = k, Eo/A(i) € ds] = P[X) = k]P:[Eg /(i) € ds] = QuA(i)e=*ods,
the required expression for IT follows. W

We now convert the integral equation into a differential eguation. De-
fine the generator matriz A by

o { -AE),  ifi=3j
YT AMDQy, i

A is obtained by writing the A’s on the main diagonal with a minus sign and
writing A(¢)Qs; off the main diagonal. Off the main diagonal, the entries

are non-negative, and on the main diagonal the entries are non-positive,
Furthermore, for any i,

D Ay = =A@+ Y AEQi = —AE) + Al) =0,
i

J#i

so the row sums are always equal 0. (This sometimes saves a bit of work
when computing the generator matrix, since, if the number of states is m,
we need only compute m — 1 entries.)

Note that A(),7 € 5, and @ determine A4 and vice versa. Given 4, we
obtain A by negating the main diagonal entries, and, for i # 7,

Qu = -5L.

Before proceeding, we prove a property for the matrix P(t) = {P;;(¢)}
which says P(t) is standerd.

Lemma 5.4.2. We have
lim P(¢) = I,
110
the identity matrix; i.e,
ltlﬂ'}l P.,'j(t) = 51',]'.

Proof. This can readily be checked from Proposition 5.4.1. The following
alternative verification is also instructive: If the process starts from state
1 then

X(t) =1, 0<t<T,

and, since Ty = Eg/ (i) > 0, this shows

lim X (t) =,

F, — almost surely.
t10
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Almost sure convergence implies convergence in distribution, so

Lim FX(8) = j] = b,

as required. #

For the following, define the matrix

Pt) = {3 Ps()

Proposition 5.4.3. For all i,j € S we have P;;(t) differentiable and the
derivative is continuous. At t = 0, the derivative is

(5.4.2) P’(O) = A,

ie.,
d, [\, ifi=j
70 = 4= | N)Qy, i # ]

Also the backward differential equation holds:

(5.4.3) P'(t) = AP(t),

ie.,
d
EP;_.,: (t) = z A,'kij (t)
k

Remark. An interpretation of (5.4.2) in terms of flow rates of probability
is as follows: We have

—A{i) = P4(0) = lim Pult) — Pu(0)
tlo t
= lim ———Pﬁ(t) — 1.
£10
Therefore
1 — Pyu(t) = Ali}t + o(t).
Since 1 — P;(f) is almost {modulo the term o{t)) a linear function of ¢, we
have
A(i)t = probability the system leaves { before &,

and hence we interpret

A(d) = flow rate for the probability the system leaves i before £.
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Similarly, for i # 3,

Py(t) - P3(0) _ . Pi(®)

A(Z)Qﬁ = H{,‘ t tjo 1

so that
Fi;(t) = A(1)Qu;t + oft).

Therefore, since the right side is approximately a linear function of ¢, we
interpret A(Z)Q;; as the flow rate of probability leaving i and heading to-
ward j. Note the flow rate of probability out of 7 is A(7), and that 100Q;;%
is directed towards state j.

Recall the birth-death process introduced in Section 5.1. From the
above discussion on flow rates

P,-,,-.,_l(ﬁ} = Ai,i+16 + 0(5)
= piA(i)6 + o(6)
= M6 + of6),

and, similarly,

Py 3(8) = Ay 16+ o(6)
~ GAGS +o(6)
= ;8 + o(8).
Thus the probability of a birth in a small interval of length § is approx-
imately A;8, which explains why A; is called a birth rate. Similarly, the

probability of a death in a small interval of length § is approximately p;6
and explains why the y; are called death rates.

Proof of Proposition 5.4.3. In the recursion of Proposition 5.4.1, make the
change of variable u = ¢ — s inside the integral to get

H
Pyi(t) = 667 N0 4. g= M) f MBS Qui Pej(u)du
o k#i

(5.4.4) = e 0 [5,-3- + / t Ay ngij(u)du:I :
0

ki

Observe that what sits inside the integral is a locally bounded function,
and thus the integral is a continuous function of t. Hence FPj;({t) must be a
continuous function of ¢ for all ¢, j € 5, since it has an expression in terms
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of this integral and an exponential function. If we consider the integral in
(5.4.4) once more, we see that the integrand is not only bounded on finite
intervals, but it is also continuous, and hence the integral is a continuously
differentiable function of £. This shows that Fj;(t) is absolutely continuous
(it is the product of the exponential and the integral of a bounded function)
and continuously differentiable. Differentiating in (5.4.4) we find

(5.45)  Pj(t) = ~[IM(@)e™ " + &2 {A(i)e*“)* Y- QuPi (t)} ,
koti

and, since (5.4.4) yields
[ } = Pij(t)eA(i)t:

we conclude from (5.4.5) that

P{t) = —A(i)P; (£) + A6} D Qu Pis(2)

k#i

= > (—A(&)8uk + AE)Qux) Prs (t)
kes

=3 AuPy(t),
keS

vielding the backward equation (5.4.3} as desired. Note for the derivative
at 0, for 1 # 7,

PL(0) = lim D8~ P4 (0)
7 t—0

t
-1 70

= lim¢™? /0 t Ag)e 2 zk: Qi Pi; (£ — s)ds
= X(i) 3 Qubr; = M(i)Qs

= Ay, ¢

Similarly, we can show P};(0) = —A(i) = A;;. B

1

Note that just as {X,.}, {En} carry the same information as {X(t)},
we have that {P(t),t > 0} carries the same analytic information as
Q,{A\(#),i € S}. Given {P(¢),t > 0}, we have A = P{0). Given
Q,{i(i),i € S}, we compute A and then solve the backward equation
to get P(t).
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There is a companion equation, called the forward equation, which
is obtained by conditioning on the last jump before time ¢ and proceed-
ing in a manner very similar to Proposition 5.4.1. For regular systems,
such a last jump exists, but if explosions are possible the last jump may
fail to exist. (If Tow < oo, what is the last jump before To.?}) The
backward equations are more fundamental than the forward equations,
but the forward equations are often easier to solve. The forward equa-
tions are obtained formally by noting the Chapman-Kolmogorov equation
{t>0,5>0)

Pt + s5) = P(t)P(s)

(the continuous time expression of the Markov property) and then differ-
entiating with respect to s to get

P'(t + 3) = P(t)P'(s);

setting s = 0 yields
P'(t) = P(t)A.

When the state space S is finite, both the backward and forward equa-
tions have the formal solution

P(t) = 4,

where the matrix exponential function is defined by

eAt _ i AT

n!

n=0

It is usually relatively easy to specify the infinitesimal parameters
Q, {A\(@),i € S} giving the local motion of the system. It is frequently
analytically unreasonable to expect to solve for the transition function
P;;{t) except in toy problems. Either a system of differential (or integral)
equations must be solved, or all the powers of the A matrix must be com-
puted. Generating function techniques sometimes convert the system of
differential equations into a partial differential equation, but, in general,
an explicit solution can be very difficult to obtain. The following very
simple example illustrates two techniques for solving these equations. A
third technique, using Laplace transforms, will be given later. A fourth
technique using renewal theory was suggested in Exercise 3.12.

Example 5.4.1. On-Off System. Whenever a machine of a given type is
“operative,” it stays that way for a random length of time with exponential
density with mean 1/A. When a breakdown occurs, repairs lasting for a
random length of time with exponential density with mean 1/u are started
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immediately. Repairs return the machine again to the operative state. Let
X (t) be the state of the machine at time ¢.

Suppose the state space is S = {0,1} with 0 corresponding to the
operative state and 1 corresponding to the system being under repair. We
have that X(t) is a Markov chain with state space §. We have already
seen a renewal theory solution for the transition probabilities; now we give
Markov chain solutions for P{t). We present several approaches.

Approach 1. The backward eguation: Since states 0 and 1 alternate,
the matrix Q) is
_0f0o 1
a=1(7 o).

and A(0} = A, A1)} = u. Thus the generator matrix is

Az(—)\ ,\),
TR

and the backward equations

P(t) = AP(t)
become
(5.4.6) Pis(t) = M [Pro(t) ~ Poo(t)]
(5.4.7) Pioft) = u[Poo(t) — Puo(t)] -

Take 41(5.4.6) + A(5.4.7), and we have
WPly(#) + APLo(8) = 0.
If we integrate this equation, we get
WP (t) + APw(@) =¢
for some constant ¢. Since we want P(0) = I, we let t = 0 so that
1P0o(0) + AP(0) =+ 0 =,

from which
pPoo(t) + APro(t) = p.
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Solve for APjo(t) and put this into (5.4.8) to obtain
Foo(t) = i (1 — Poo(t)) — APoo(t}

(5.4.8) =t — (1 + A)Poo(2).

If we set

9(t) = Pot) = 25,

then we find from (5.4.8) that g satisfies the differential equation
g = —(+Ng(t).
This is easy to solve since

2 _ L toggle) = ~(u+ )

which yields
g(t) = ce= B+t

for some constant ¢. Thus

Pon (1) = ce—#HAt H .
oo(t) = ce + PES)

Since for t = 0 we have

7
Ppll)=1=c+ ——

we finally conclude

—(p+A) i
e + —_—.
Bt A

A
Pyo(t) = PESY

The remaining entries of the matrix P(t) may now be computed.

Approach 2. The forward eguations: If we solve the system
P/(t) = P(t)A,

we get
Pio(t) = —Poo(t)A + Por ()

Ppo(ty = —Pio(t)A + Py (t)p.
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Because there are only two states in S, upon setting Fo1(t) = 1 — Pyol£),
the first equation becomes

Po(t) = —Poo(tY A+ p) + u,

which is the same as {5.4.8). The solution now proceeds as before.
Note that the forward equations, as is frequently the case, are easier
to solve than the backward equations.

Approach 3. Matriz methods: Since A is so simple, there is hope of
finding all powers and computing exp{ A¢}. The matrix A has eigenvalues

TORIB
A(-Aﬂ) :(_,\_#)(_/\#)_

Thus we have the decomposition

(0 0 .
A_B(O _A__#)B :

_{1 A 1 fu A
s-(3 L) ean(t A)

Now we can evaluate P(1):

and

where

TS Vo S D LI W Pl G o
= b\ p—pem Ot A e Omit J-
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5.5. STATIONARY AND LIMITING DISTRIBUTIONS.

A measure n = {n;, j € S} on S is called invariant if (just as in the discrete
time case) for any t > 0

{(5.5.1) 7TPt)=r.

(Note that since § is discrete, the term measure merely denotes a family
of non-negative numbers indexed by S.) If this measure is a probability
distribution, then it is called a stationary distribution. Paralleling the
discrete time Markov chain case, we have the following proposition.

Proposition 5.5.1. If the initial distribution of the Markov chain { X (t)}
ismn, ie.,
PIX(0)=4l=m; je€S§,

and 7 is a stationary distribution, then {X (t),t > 0} is a stationary process.
Thusforany k> 1land s > 0,0 <t < ... <
(X(t),1<i<k) 2 (X({t:i+s),1<i<k)

In particular , foranyt > 0,5 € S,

PIX(t) = 4] = ny
Is independent of t.
Proof. Copy the proof of Proposition 2.12.1 for the discrete time case. W
A probability distribution {L = L;,7 € §} on § is called a limit distri-
bution if for all 4,5 € §

(552)  Jim PX())=3IX(0)= 4] = im Py(t) = L,

This definition is formulated under the assumption that the embedded
discrete Markov chain {X,,} is irreducible. As in discrete time we have the
foliowing:

Proposition 5.5.2. A limit distribution is a stationary distribution.
Proof. Replicate the proof of Proposition 2.13.1. W

Since the matrix transition function P(t) can be difficult to compute,
it is essential to have a means of computing a stationary distribution or
a limit distribution from the ingredients @ and A(i),i € S. The following
result thoughtfully provides this for us.
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Theorem 5.5.3. Suppose {X,} is irreducible and recurrent. Then {X (¢)}
has an invariant measure 13 which is unique up to multiplicative factors and
can be found as the unique (up to multiplicative factors) solution of the
equation

(5.5.3) 7A=0.
Also, 1 satisfies
(5.5.4) OD<mj<oo, Vjes

A stationary distribution exists for {X (t)} iff

Z'm < 0O,

i€S

in which case 7
{&——i€es}
Lkes

is the stationary distribution.

Proof. In this section we only check that (5.5.3) has a solution unique
up to multiplicative factors; novices may wish to content themselves with
reading oniy this part of the proof. The remainder of the proof is discussed
in Section 5.5.1. Note that (5.5.3) holds iff

S onidie = mAG)Qsk — meAk) = O,

j€s i#k

so that {5.5.3)} holds iff

neA(k) =D nA(7)Qsk,
ik
which says that {mA(k), k € S} is invariant for the Markov matrix (. From
discrete time results (Proposition 2.12.3) we may conclude that (5.5.3)
indeed has a solution satisfying {5.5.4) which is unique up to multiplicative
constants. If you are curious why this solution is in fact an invariant
measure for the continuous time Markov chain, go now to Section 3.5.1.

We may express the solution of (5.5.3} as an occupation time as follows:
If {n;A(7),j € S} is invariant for Q, then by Proposition 2.12.2 and 2.12.3
we have for some ¢ > tand i € §

ni(1)-1

HAG) =cBi Y Ly
n=_0
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Without loss of generality we may and do suppose ¢ = 1, since otherwise
we could consider {7;/c} which would also be a solution of (5.5.3). So if
{n;} satisfies (5.5.3) then

1 Ti{1)~1 1 00
nj = ’\—(J')E.l Zo l[Xn=J] = X(T)Ez ZO]'[Xn=j;ﬂ<Ti(1)]
n= n=

oc E,
e Z E; (m) 1[X..=j,n<‘ri(1)]

n=0
o]
= E(Tai1~ o)X 0=jnemi()]
n=0
7:(1)—1
=E; E (Tot+1 — Tulix, g0,
ri==0

and since between T, and Thyy the process X(s) does mot change state,
we have this equal to

T"(l)—l

=E Y,

n=0 Tn

Teyta)
=E; _A 1ix (s)=)ds.

Therefore, 7; may be considered to be the expected occupation time of
state j in one cycle. This is to be expected based on our experience in
discrete time. See Proposition 2.11.2.

Note that, according to Theorem 5.5.3, a statibnary distribution exists

Tria)
>3 m=> E / Uxw=rde = ETr,q),
kes keS 4

i.e., iff the expected cycle length is finite.
So when{ X} is recurrent and irreducible, any of the following schemes
will produce an invariant measure for P(t):
(1) Solve n’A =0.
(2) Compute expected occupation times

Tn41

1ix(s)=51d8

iff

T
n; = Ei/; 1[x(s)=j]d8, JES.
(3) Find the invariant measure {1;} for {X,}. Then

mo=vifAd), jeS
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is invariant for P(t). (Note the weighting of v; by 1/A(j)
accounts for the random sojourn times of (X(t)).)

Ergodicity: Call the regular Markov chain {X(t),% > 0} ergodic if {X,}
is recurrent and irreducible and a stationary distribution exists for {X (£)}.

Corollary 5.5.4. Suppose {X, } is recurrent and irreducible. Then the
following are equivalent:

(1) The expected cycle lengths are finite:
(5.5.5) E:(T,,(1)) < co.
(2) The system
yA=0
has a probability distribution as solution,
(3) {X(t)} is ergodic.

Proof. As just shown, (5.5.5) holds iff }_1n; < oo where 1A = 0. There-
fore, (1} and (2) are equivalent and imply ergodicity. Conversely, if the
process is ergodic there exists a stationary distribution {5;}. Since {X(t)}
is regenerative, Smith’s theorem yields

Ty,
Ei [i 7 Lx(e)=yds

TH = P"J[X(t) =J] —* Ei 1"-(1)

where P, means the initial distribution is 5. Since the limit is non-zero,
we conclude E;(T7,(;)) < o0 as required. W

Corollary 5.5.5. If {X(t)} is ergodic, the limit distribution exists. For
any k,j€ S

. . Ei TT'_(UIX,:-dS
t]i}[&Pk[X(t) =j]= Jo EiTj‘(l()) 4135

Remark. Postive recurrence of {X,,} is not enough to ensure that {X(t)}
is ergodic, since long sojourn times could prevail As an example, con-
sider the modified success run chain {X,} with state space {0,1,...} and

transition matrix
0

Q:

01 0
g 0 p
g 0 0 p



396 CONTINUOUS TIME MARKOV CHAINS

We have forn > 2
Bofro(l) =nf =p"?g,

EO(TO (1)) < e,

ensuring that {X,} is positive recurrent. Let {X(t),t > 0} have this
embedded discrete time Markov chain, and suppose the holding time pa-
rameters {A(z),7 > 0} are given. Then {X(t)} is regular by Proposition
5.2.1(3). Observe that

re(1)—1 E
E,T. =E L
0d70(1) 0 mZ-—:o Y5,
To 1) 1
=Eo >
= )\(M)
X
En
= Eq Nim) 1[m<1'o(1)]

m=0

Since {X,} and {E,,} are independent, this is

= 1
= P, Toll
mz=o m) o[m < To(1}]
=1 1
=2 5w 3o

If we let A(m) = p™, for instance, then

Eo(Tfo(l)) = 0C
Therefore, {X,,} is positive recurrent, but {X (¢)} is not ergodic.

Time averages: Counsider an ergodic Markov chain {X(f)}. Suppose that
when the process is in state j, a reward is earned at rate f(7j), so that the
total reward earned up to time t is

/ *H X () ds.
0

Using dissection, we may break this up into iid pieces

N(t)

Z/ T R (s))ds +

Trim-1)
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where N(t) = sup{m : Tp,(m) < t} and J is the junk left over by this
decomposition of fot . Following the procedure in Proposition 2.11.1, we

find that if f is reasonable (non-negative or bounded) that a long run
reward rate exists:

hm t_ff(X s)ds =n(f) = Zf(.?)"'b

jes
Tri(n)
= E / FIX())ds/ BTy
0

since

Tei(n)
> OB /0 1ix (s)=5198/Be(Tri1))
i
T ,
= Eaf Zf(.?)l[X(s)=j]d3/Ei(Tr.-(1))
v51)
— E f Zf

Triq)
= E; _[ FX(s))ds/Bi(Tr (1))
]

)IIX(J)—J]ds/E‘I (T'r,(l))

Example. Harry’s Basketball Injuries. Harry’s illustrious semi-pro
basketball career was marred by the fact that he was injury prone. Dur-
ing his playing career he fluctuated between three states: 0 (fit), 1 (minor
injury not preventing competition}, 2 (major injury requiring complete ab-
stinence from the court). The team doctor, upon observing the transitions
between states, concluded these transitions could be modelled by a Markov
chain with transition matrix

|

Holding times in states 0,1,2 were exponentially distributed with parame-
ters 1 3 é, respectively.

Let X{t) be the continuous time Markov chain describing the state of
health of our hero at time ¢. (Assume the time units are days.)

Pt LA O
o B o R XTEH
[ TEITRTEIIE]

{1) What is the generator matrix?
{2) What is the long run proportion of time that cur hero had to
abstain from playing?
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(3) Harry was paid $40/day when fit, $30/day when able to play
injured and $20/day when he was injured and unable to play.
What was the long run earning rate of our hero?

We see from Q and A(0) = 1, A(1) = 3, A(2) = £ that the generator
matrix A is

Solving the system 57 A = 0,79 = 1, yields the equations

1 1
g~ 3gm=0
1

Lot im0
3’70 ghTegm="
which yield the numbers
no = 1,1)1 = 1/3,1”2 - 16/94
Nermalizing by dividing by np 4+ m + 2 yields the probabilities

9 3 16
28’ 287 287

so the long run percentage of time Harry abstained was 7o = 16/28 = 4/7.
Harry’s long run earning rate was

{0, m,m2) = (

401]‘0 + 30’71 + 20172 =27.5.1

When the state space is larger than three elements, finding the solution
of (5.5.3) by hand is tedious and undesirable. A method of solution suitable
for the computer is discussed in Section 5.7.

5.5.1. MORE ON INVARIANT MEASURES*.

Here we continue the discussion of Theorem 5.5.3. It remains to show that
a solution of (5.5.3) is invariant. We may now check that {r;}, written in
the form of an occupation time, is invariant for P(t).

Write T := T, (1. Note that regardless of whether ¢ < T', we have, by
the usual rules of integration,

T t T
fo lix(w=j)du = ]; ocqw=gdu + _/: Lx (uy=g) s,

* This section contains harder material requiring sbove average patience to
read. It may be skipped by beginning readers.
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and therefore

T t T
n; =B /0 Lix uy=g)du = B fo Lpx(up=g1du + B ft Hx (uyg) B0

By the dissection principle,

" T+t
E; j 1[x (wy=g)d% = Eq /T L1 (uy=5) 8%,
0

T+ T
;= E; / Lix (uy=g)du + B [t 1[x(u)=s1du
TT+t T
=E; f 1ix (wy=j1du = Ex /; L[x (urt)=s)du
tCD
=E; /O 1 (utty=j,u<T| AU

= Pi[X(u+1t) = j,u < T)du.
(5.5.1.1) /D :
Observe that on [T}, < u < T3] we have

oQ

(5.5.1.2) X(w+t)= Y Xmlifn Tmn) (1),

m=n
and, for m > n,

T =u+ (Tn+1 —_ 'U») + T — Tn+1
m—1

=ut B AXa)+ O Ex/MXx)

k=n+1

where E/, /A(Xp) = Tn41 — 4, and > k=nt1 =0

0 T u Tpa1 Tn

FIGURE 5.1. TIME LINE
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Therefore (m > n),

t+uc€ [Tm, Tm+1)
iff

t € [T — 1, Thppr — 1)

(5.5.1.3)
= [B/MED) + 3 Bron/MXern) Ba/NXa) + 3 Brin/NXnpa).
k=1 k=1

Now pick up the thread from (5.5.1.1). We have

o0
n = ] PIX(u+1) = j,u < T)du
0

oo 00
- f SO PIX(u+8) = 5, T < U < Togr,n < 1(1)]du
0

n=0

Condition on X; = iy,...,Xn = i, (observe that iy,...,i5 # i implies
n < 1i(1}) and Ty, Try1 — T > u — v to get

w=[> = [

n=041,...,inF#:
.P;[X(’U.-i—t) =J|X1 ='l:1, .. .,Xn = Z.-,-,_,Tn :U,Tn+1 _Tﬂ > ’H—U]
(5.5.1.4)
CPXy=11,..., Xn =in, Tn € dv, Tpny1 — T > u—v]du.

From (5.5.1.2), (5.5.1.3), (5.5.1.4),

P,‘_[X(U'f‘t) =JiX1 = 'ila- .. )Xn = 'inaTn = vaTﬂ+1 - Tﬂ > u--’U]
= Pi[Xalpo, . /a60)(E)

oo
+ Z Xm1[Ef,/.\(iﬂ)+z;'=-11—"EH,,/A(x,,+,,),E',,/,\(s,.)+EL"=;"E,,+,,/A(X,,+,,))(t)
ma=n-l
=J|X1 = il}' .. 1Xn = 'in,Tn = U!Tﬂ+l "Tﬂ >u —'U].
(5.5.1.5)
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Since B, /MXn) = Toy1 — u and

Py —u>z|Tn =0, Thy1 ~ Ty > u—v, Xp = iy
=Py -Thotrv—u>z|Th=v,Tnp —Tp >u—0, X, =1in]
= PlEp/A(in) > 2 + (u — )| B /A(in) > v — v}
= P[En/A(in) > 2],

by the forgetfulness property of the exponential distribution and from the
Markov property (2.1.4) for {X,}, (5.5.1.5) equals

Py [Xoljo,Be/(i0) ()

[=5]
+ Z X"‘1[Eu/«\(i..)+Z§,";,“"E,./A(x,,),E.,/A(i,.)+z;"=;"E,‘ 1210, 4%)) (t) = J]
m=1
= P, [X () = j] = B, ;(8).
Inserting this into (5.5.1.4} yields

= [ 2[R

n=0 iy,...,in 4

PiX1=1i1,...,Xn = in, T € dv, Tos1 — T > u — v)du

= _/;miszj(t)

7
n=0kes v=0
PXn =k, Ty € dv,Tpnyy — Ty > 4 — 0,1 < 75(1)]du

/ DY Py(BP[Xn =k, Tn € 4 < Tnya,n < 7(1)]du
0 h=0 kes

> Pei(HE; i f

kES n=0"Tn

* Trnt1
= Z Pr; (DE; Z / Lx(u)=knar (1] 98
kesS n=0 Ts

Trn+41
UX (w)=k, T Su<Trar,ner, (1] 0%

Il

T"(l)—l Tn+1

=Y Py(tE; Y / L (uy=k)du
kes n=0 vTn
T"’.‘(l) .
=Y P(t)E, f 11X (u)=k3du
keS ¢
= mPe(t).
kes

This shows that {n;} is invariant for P(t}, which completes the proof of
Theorem 5.5.3.
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5.6. LAPLACE TRANSFORM METHODS.

Since computers can now do symbolic algebraic computations, the following

can be helpful when solving for P(t). Suppose the state space is finite, and
set {a > 0)

R o0
Rij (C!) = / E_atpgj(t)dt.
(i}
Then we have
. x>
Pot)= [ etpy (o
0
= [ ety - Py i+ a=25,

o0 t
e j e ot (f Hj(s)ds) dt + a_iﬁij.
0 o

Reversing the order of integration yields
o i+ o)
= / Fi;(s) (j e“"‘dt) + o716
=0 t=g
o0
=/0 Fi(s)a™ e~ ds + o715y,
and, recalling the backward equation P'(t) = AP(t), we get
= Zf Ak Pi(s)a e *ds + a 16,
k 0
=al Z Aikﬁkj (Ct) + a_l&j.
k

Writing this in matrix notation, we obtain

aPla) = AP(a) + 1,

so that

(al — A) P(a) = I,
and, finally,
(5.6.1) P(a) = (ol — A)?
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provided the inverse exists. To verify the existence of the inverse, it suffices
to show for any a > 0 that (o — A)x = 0 implies = = 0; i.e., we need to
show Az = ez and o > ( implies z = 0. To accomplish this goal, we use
the forward equation P’(t) = AP({t), which frequently holds; for instance,
the forward equation is always valid when the state space is finite. Observe

(e"**P(t)z)’ = et P'(t)x — P(t)zae™,
which becomes

= ¢~ P(t)Ar — P(t)zae~™

upon using the forward equation, since Az = ax. For all t > 0 we have
(e *tP(t)z) =0,

and if we integrate from 0 to s we get
3
0= f (e=**P(t)s) dt = e**P(s)z — .
0

Therefore we conclude that, for all s > 0,
e MP(slx ==

Let 8 — co. Since e™** — 0 and P(s)x is a bounded vector (for instance,
recalling S is finite we have |P(s)z| < 3 ;g |zi]), we see that z = 0, as
required.
The relation (5.6.1) in the transform domain provides a justification
for the formula
P(t) = exp{4t)

since
Pla)=(al —A) ' =a (I -a14)!

a-l

5

]

o0
(a~tA)" =t ZA“CF“

n=0
o0
1/ e =Hndt
n=0 "~ J0
oo AT
€

f ~at

I

21 ;s

o dt,
0 bopr L



404 CoNTINUOUS TIME MARKOV CHAINS

and therefore

P(t) = iA"t"/n!.

=0

Example 5.6.1. On-Off System {continued). Recall the generator

matrix
A= (-/\ A ) ,
© —p

a+i =X
-4 atp)

therefore,
al — A= (

Inverting, we find

o1 1 a4+ p A
(al = 4)  det(al — A} boooatA

_ 1 at+p A )
Talatp+ A\ B at+r)’

Since
1 1 (1 1 )
ala+p+d) Atpl\a at+it+up/’
we obtain
MG T -
(QI—A)_]': ( o cetA4-p a’\ a+ +,¢)t )
At p a  atrdp Eg— a-7-1-+.u.
+ 1 1
1 (1rE - AR - o)
1 1 A +A
A4 pu 2 E_a+.\+.u) 1+E_Q—T-A+.u
A 1 1
1 trmn AMi-Fe)
1 1 A
Atp y’(a_cﬁ-)\-lzu) at e

_ 1 /we“*‘ Ae=Otnlt 4 gy A1 - g~ dtult) i
o ,u(l _ e—()\-i—u)t) ﬂe——(h-é-.u.:)t + A

= / e~ P(t)dt
0

where we interpret the integral of a matrix as the matrix of integrals of the
components of the matrix.

Example 5.6.2. M/M/1 Queue with a Finite Waiting Room.
Suppose arrivals occur according to a Poisson process rate a and service
lengths are iid, independent of the arrivals with distribution 1—e~%, z > D,
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The wrinkle here is that an arriving customer who finds two customers
in the system departs iminediately without waiting for service, and the
interpretation is that the capacity of the system is two or the waiting room
only seats one.

Let Q(t) be the number in the system at time ¢, so that S = {0,1, 2}.
First we compute A{),0 < i < 2. Since A(0}, the holding time parameter
of state 0, is the parameter of the time until an arrival, we have A(0) = a.
For A(1) we consider the holding time in state 1, which is the minimum
of the exponential waiting time until an arrival and the independent expo-
nential waiting time until a departure. From Proposition 5.1.1(ii), we have
A(1) = a +b. Finally, for A(2} we note the system is blocked until a service
completion, so A(2) = b.

For the @ matrix, we have

Quo = PE(b) < E(a)] =b/(a+b),
since (19 is the probability a departure occurs before an arrival. Similarly,
Q12 = P[E(a) < E{b)] = a/(a+b).

This is encugh to write the generator matrix:

0 f-—a a 0
A=11{ b —{a+b) a
2 0 b -b

Now P(a) = (oI — A)~!. We have

ata —a 0
al -A= b a+a+b -—a
0 ~b a+b

Inverting by means of, for example, Methematica, we get an expression
which is not particularly heartwarming: Define

d=a (o’ + 2(a + blaa® +ab + ¥*),

and
{al —A)~!
a®+ (2b+ a)a + b? a(a +b) a?
=d! b(b + ba) a® + afa+b) + ab a{a + a)
v bla + a) a? + a(b+ 2a) +a°



406 CoONTINUGUS TIME MARKOV CHAINS

To continue further, one requires considerable analytic persistence. To
demonstrate on an easy term, pick Pyo(a) = a?/d. Note that

d=ofa— a1)(a - az),

where

(a1,02) = (—(a + b) + Vab, —(a + b) — Vab).
Consulting a table of inverse Laplace transforms (Abramowitz and Stegun,
1970, page 1022), we have
2v/ab+ e~ @+t ((a + b — 2Vabe™ V" — (a+ b+ Vab)eV™)

Pyo(t) = 2v/ab{(a + b)2 — ab)

Perhaps this is a good illustration of the assertion that solutions of the
backward differential equations are usually difficult to obtain.

5.7. CALCULATIONS AND EXAMPLES.

In this section we discuss some matrix techniques and consider some ex-
amples where the stationary distribution is computed.

For a finite state ergodic Markov chain, there is a matrix method to
compute the stationary distribution which parallels formula (2.14.1) in
discrete time.

Proposition 5.7.1. Suppose {X(t),t > 0} is an ergodic m-state Markov
chain with state space S = {1,...,m} and that A is the generator matrix.
Then we can compute the stationary probability vector for {X{t)} by the
formula

(5.7.1) 7 =(1,...,1}(A + ONE)™',

where ONF is the m x m mairix all of whose entries are 1.

Proof. Suppose we know A + ONE is invertible. From Theorem 5.5.3 we
know 7' A = 0, and, since 5 is a probability vector, we know 5’1 = 1, where
1 is a column vector of one’s. Thus 7'ONE = 1/, and

7 (A+ONE) =1/,

from which, solving for 1, we get (5.7.1).
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It remains only to check the invertibility of A 4+ ONE. It suffices to
assume that, for x € R™,

(A +ONE)x =0

and prove this implies x = 0. But if (A+ONE)x = 0 then ' (A+ONE)x =
0, so since 7’ A = 0 we have y’ONEx = 0. Since ' is a probability vector
we have n'ONE = ONE, so we conclude ONEx = 0. Thus Ax = 0, and
therefore P(t)Ax = 0. From the forward equations we get P(t}4 = P'(t),
so it follows that P'(¢)x = 0. Integrating for any T > 0 yields

T
0= f P'(t)xdt = P(T)x — Ix,
0

50 that
PMx=Ix=x

Let T — oo so that

P({T)— L
where

m -.- fm

L=|: =
M - m

Thus Lx = x, or, in component form,
m
E Tin; = k4, i=1,...,m,
j=1

and x = ¢l for some constant c. Since ONEx = 0, we realize that
0={(1,...,1)x=1el = em,

which requires ¢ = 0, and this makes x = c1 = 0. Therefore, (A+ONE)x =

0 implies x = 0, which makes A + ONE invertible. B

As a short example, consider again the example of Section 5.5 describ-
ing Harry's injury prone basketball career. There were three states: 0
(fit), 1 (minor injury) and 2 (major injury), and the fluctuation between
the states followed a continuous time Markov chain with generator matrix

-1 1
3 9
g 0

L=1L =T[5

|
=112
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With the help of a package such as Minitab, we quickly perform the fol-
lowing calculations: First we find

1.16667 1.00000

66667 1.11111 1.22222
.83333

A+ ONE = (1.11111 66667 1.22222

Inverting yields

—1.28572 57143  1.04262
(A+ONE)~! = | 096420 —167857 1.04762 |.
0.64286  1.21429 —1.52381

Multiplying by a row vector of ones, we get the stationary distribution

(o, m,m2) = (1,1,1)(A + ONE)"!
= (.321429,.107143, .571428),

which agrees with the hand calculations of Section 5.5.

Next, we comment on matrix methods for calculating absorption prob-
abilities and expected times until absorption in a finite state Markov chain.
For absorption probabilities, the time scale does not matter, so the discus-
sion of Section 2.11 is still applicable. Starting from transient state ¢ € 5,
the probability u;z of being absorbed in recurrent state k is obtained from
the embedded discrete time chain {X,} and its transition matrix Q. For
expected absorption times, where the time scale is crucial, we have the
following representative result.

Propaosition 5.7.2. Suppose the associated discrete time Markov chain
{X,} is irreducible. Pick a reference state j € S, and let

t= {EiTrj(l):i #* J}'

be the column vector of expected hitting times of state j starting from
initial state i # j. Define the (m — 1) x (m — 1) matrix

B = (Atk:"_TJ'J:k?{'J)

to be the restriction of the matrix A to the set S\{j}. Then —B is invert-
ible, and

(5.7.2) t=(—By1
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where 1 is a column vector of 1's.

Proof. Use first jump analysis to verify that, for 1 # j,

ETrqy= M)+ Z QirExTr, 1)
ki, k£ ]

o\ A
= )\(‘L) 1 + Z TS—E;@TTJ. (1-
ki k#j

Multiply through by A(i) to get

LA@y =1+ Z AiExT 1y,
k#EL kT

or, equivalently,
tAE) — Y Aute=1.
ki kt]
Then, for all i # j,
~tidi — E Autr =1,
ki k]
which in matrix form is
(-B)it=1,

so that if (—B) is invertible we get (5.7.2).
To check this invertibility, let D = diag(A(1),..., A(m)); i.e.,

A1) 0 0 ... 0

0 A2 0 ... 0

D=1 . . :
0 ... 0 0 Am)

Check that A = D(I — Q) so B = D™(I — @)~ where the minus means
delete the jth row and column; i.e., for a m x m matrix M,

M= (Mzkuz%J}k¢J)

From discrete time theory we know that (I — Q)" is invertible since it is
the fundamental matrix (see Section 2.11). The diagonal matrix D~ is
invertible since the A’s are assumed positive, and therefore, (—B) must be
invertible. W

As another quick pumerical example, consider again Harry’s basketball
career, which fluctuated between states 0,1,2, and suppose we and Harry's
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coach wish to compute the expected time until Harry is felled by a major
injury. The generator matrix is

U= XD -1 X]

A=

Dt =

1
6

Eliminating the third row and column and multiplying remaining entries
by —1 yields

Inverting, we find

Post multiplying by a column vector of ones, we get the expected absorp-
tion times starting from states (,1:

(BoTry1y: BxTry(n)) = {to, 11 )' = ("B)_ll

27 9 36 36

Additional practice with the formulas given in Propositions 5.7.1 and
5.7.2 can be obtained by trying some of the exercises at the end of the
chapter. Problem 5.1 is a good numerical exercise.

The distribution of the time until a state of a continuous time Markov
chain is hit for the first time is an example of a phase distribution. {(See
Neuts, 1981, 1989.) Such distributions have been important for modelling
complex stochastic networks in a Markovian way. Any distribution can
be approximated by a phase distribution. By replacing a distribution in a
model by a phase approximation, one allows for simpler Markovian analy-
sts. The basic information about such distributions is explored in Problems
5.5 and 5.50.

We now discuss significant examples where the stationary distribution
is of interest.
Example 5.7.1. Birth-Death Processes. Suppose birth rates are {A:}
and death rates are {;} with gp =0and § = {0,1,...}, so that

A(““) =’\i+#‘i|i20’

and

/\._' L .
.. —_ , .. — . i > 1,
Qm,+l = Ai . Qt,t—l - /\i ; =
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and Qm = 1. Then

—Ao Ao 0 0
p1 —(M+m) AL 0
A=10 bz

—(d2 +p2} A2

Note that for 6 small,

P i11(8) = Ai 416 + 0o(8) = Mib + o(6)
Pii1(8) = Aiic160(8) = 6+ o(6), i 2 1,

which helps to explain why A;, p; are referred to as the birth and death
rates respectively.
For regularity, we need, for any starting state i € §,

= 1 2o LiX.=1)
o0 = .
NZ=0 MXN) =2 Aj + pj

JES

Setting N\ = 37° | 1/x,; for the number of visits to state j, we find
we need

An obvious sufficient condition is that
Y=
=
j J

For instance, in the linear birth-death process where A; = Aj and p; = pj,
we quickly conclude regularity holds.

Supposing that the process is regular, et us analyze ' A = 0, assuming
1o = 1. We have

—A + i =0
do = +p)m+pepe=0
A — (A2 + o) + pans = 0.

In general, for n > 0,

Antin — (Ang1 + tati}nd1 + Bniolintz =0,
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Him = Ao

(recall the right side is also (Ag + pi0)70)

Ao+ p2th = (AL + pa1)m

n > 0.

AnTin + finr2lnt2 = (Ans1 + nt1 )01,

Remembering 79 = 1, o = 0, after sumnming from 0 to n — 2, we have

Z Nrgi + Zﬂﬂh Z M + Z i,

i=0 i=0 i=0
from which
bnlin = An-1Wn-1, N =1,
and
_ )\n—l
n -1
n
— )\n—lxn—Z 2
Hnfin—-1 "
I, D .
L= T
Mnbin—1 ... 41
i1
A
(5.7.1) = H*:—“ n>1
Hi:l Hi

Therefore, a stationary distribution exists #f 3 n, < oc iff

n—1
(5.7.2) Z [Lio A
=1 |J Y
Example 5.7.2.(a). M/M/1 Queue. Recall customers arrive according
to a Poisson process with rate a. There is one server who serves at rate
b; i.e., service times are iid exponential random variables with parameter
b independent of the input. We have

a .
Qi1 = atd Qii-1 = yi21,

a+b
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and (A(0),A(1),...) = (a,a+b,a+0b,..
1,0 = 1. Then, from (5.7.1),

ysoM=a,i20u=5 i>

a
T = (E)na

1 > 0.

Let p = ¢, which is called the traffic intensity. We have 3, < 0 iffp <1,
in which case, by normalizing, the stationary distribution is geometric:

{ﬁ,n 20} ={(1~p)p",n >0}

Example 5.7.2(b). M/M/s Queue. Customers arrive according
to a Poisson process, but now there are s servers (s > 1), each of whom
serves at rate b.

The holding time in state 0 is the waiting time for an arrival, and is
therefore exponential with parameter a. Thus A(0} = a. For 1 < { < s, the
holding time in i has the distribution of

E(a) A (Akm1 B (b)),
where these are independent exponential random variables, E(a) repre-
sents the wait until a new arrival and Ejx(b) represents the required ser-
vice time of the customer at server number k. (Recall the notation that

E(parameter) represents a random variable with exponential distribution
of parameter=parameter.) Thus

AMi)=a+ib, 1<i<s.
For ¢ > s, the holding time is of the form

E(a) A (Af=1 Ex(D)),
so A(Z) = a+ sb, i > s. Also, fori > 0,

if0<i<s
if4 > s.

PE(a) < Neur Bi(B)] =
PlE(a) < Ajoy Ee(b)] =

_a
_ a+tib?
Qi.i+1 =

ﬂ.
atab?

We conclude

Adi=a, 120,
{'ib., ifo0<i<s,

F=sh, ifi>s
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A stationary distribution exists iff (5.7.2) holds. Condition {5.7.2) is

1+Z T, b + Z Hz— MH—S-}-I <o

n=1 n=s+1
iff the last sum is finite. The last piece is

Z (bs“ {(bs)n—"

n 5+1

and this is finite iff a

— <1,
bs
i.e., a < bs. Therefore, the queue is stable if the overall service rate exceeds

the arrival rate.

Example 5.7.2(c). Machine Repair. Suppose there are m machines
and one repairman. Machines operate for periods that are exponentially
distributed with parameter a. Repair periods are exponential with param-
eter b. All operative and repair periods are independent. Let X({t) be
the number of machines inoperable at time . The holding time in 0 is
AR Ex(a), so A(0) = am. For 1 <1 < m, the holding time in i is

AP Ex(a) A E(b)

(since m — i machines are operating and one is in service), so A(i) =
a(m — i) +b. Then

{a(m-‘i), if0<i<m,
A= 0

\ ifi >m,
0, ifi=0,

w=14b Hl<i<m,
0, ifi>m.

Therefore, the state space is finite, consisting of the states {0,1,...,m},
and a stationary distribution will always exist. For 1 <n <m, we have

T = H Ai /Hﬂ'l
i=0 i=1
— Hi:ﬂ a{m — i)
bn

= (3)" tmn,

and the stationary distribution is obtained by normalization.

Many other examples of quenes modelled by means of Markov chains
are explored in the exercises. Also, a significant set of applications to
gueueing networks is discussed in the next subsection.

= (Z)mim~1)...m~n+1)
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5.7.1. QUEUEING NETWORKS.

In this section we consider important examples of Markov chain analysis
applied to queueing networks. A queueing network is an interconnected
grid of service facilities called nodes. Each node may have its own service
mechanism and queueing discipline. For each node there is a probabilistic

" mechanism for routing traffic either to other nodes or out of the system.

Networks may be either closed or open. A closed network has a fixed
number k of nodes and a fixed number m of customers. It is assumed that
no traffic either enters into or departs from the system. To fix ideas, imag-
ine a company has m trucks. The trucks are either in the field operating
(node 1} or in one of k — 1 service bays being serviced and maintained. In
the other important case, the network is open. Arrivals and departures are
permitted. Imagine data packets being routed around the terminals of a
computer network or telephone traffic being routed in the grid of exchanges
controlled by the phone company.

The quantity of interest is the queune length process

Q) = (Qu{t),. .. . Qi(E)),

where );(t) represents the number of customers at the ith node at time t.
The state space for the queue length process is either

k
S={n=(n1)"')nk):ni 207Zni=m}

in the closed network case or

S={n=(ny,...,n):n 20,i=1,...,k}

in the open network case. We will make sufficient assumptions to assure
that {Q(t),t > 0} is a Markov chain with state space 5. We are interested
in the stationary distribution, and we will find that it has a product form.

A closed queueing network: There are m customers who move among
k nodes (service facilities). Entry into and exit from the system are not
permitted. There is a routing matrix P = (p;;} which has the interpreta-
tion that an item departing node ¢ next goes to node j with probability
pij, 1 £14,5 < k, where we assume for all 4,7 that p;; > O,Z;-“:lp,-j =1
and that P is the transition matrix of an irreducible and, hence, a positive
recurrent Markov chain. Note we allow p;; > 0 as this allows for feedback
to node j, as would be common when reworking is necessary in manufac-
turing situations. Suppose 7’ = (my,...,7) is the stationary distribution
of P, so that #'P = 7’ and 7’1 = 1. Assume the server at node j serves at
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rate b; (1 < j < m), so that service times at node j are iid with exponential
density of parameter b;. Service times at different nodes are independent.
The process of interest is the queue length process

Q(t) = (Ch(8),.., Qel®)),

where for 1 < 1 < %, we define Q;(¢) to be the number waiting or in service
at node ¢ at time ¢. The state space of this process is

k
S={(ﬂ1:---,nk)=USﬂiSm,Zﬂi=m,l <i<k}.

i=1

The stationary distribution of Q(f) turns out to depend on the sta-
tionary distribution 7' of P and the service rates ;. Why should #n’ be
a component of the solution? It is reasonable to expect the stationary
distribution of Q(¢) to depend on the throughput rates at each node where
we may think of the throughput rate r; at node j as the long run number
of customers leaving node j per unit time. How would we compute the
throughput rates? These should satisfy the system of equations (called the
traffic equations) which says that if the system is in equilibrium, the long
run rate at which customers enter node j should equal the long run rate
r; that customers leave node j. The long run rate of arrivals to node j is
the sum of the arrival rates to j from all the nodes; i.e., Zf=1 ripy;, since
the proportion of the output of node ! which goes to j is p;;. Thus the
throughput rates should satisfy

Ty = Z'r;p:j, i=1,...,k
=1

The vector ¢’ of throughput rates must be a constant multiple of the sta-
tionary distribution 7’ of the matrix P, which explains why we may expect
the stationary dsitribution of Q(t) to be dependent on 7',

We now compute the infinitesimal parameters {A(n),n € §},Q, A
If the process is in state n € 8, the sojourn time is determined by the

minimum of the service times at nodes where customers are being served.

Thus the sojourn time in n € § is of the form
/\i:m>OE(bi)y

and therefore

(n) A(nla $nk)_ z b '—Zb aﬂn‘

ng >0 i=1
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The Q-process changes state at service completion times. If service is
completed at node i, then the number at node 7 drops by 1. If the departing
item moves to node §, the number at j increases by 1. Then forl <1,5 < k,
we have the following transition within S:

(Moot 1, 0m =1, n) = (By,. .., R, .o, T, ., )
(where we assume m > n; —1 > 0). To avoid going crazy with the notation,
define the transfer function within S: Ifm € S, n; > 0,

T(z',j)n = (nl,...,n,- -1...,n41,... ,nk),
s0 that an item is transferred from node { to node j. (It is not required
that ¢ < j.) Note T'(4,#)T(i,j)n = n if n; > 0, and m = T(i,j)n iff
T{,i)m=n if n; > 0,m; > 0.
If n; > 0,
Qn,7(i,51n = PIE(1:) < Aigin, >0 E(00)]pi;
by »
i
E; 1b1( 60,111)

,\(n)f’"

since in order for there to be a transition n — T(4, 7ln, service at node
i must finish and an item must transfer from i to 5. We find, for the
generator matrix A,

k
Anpn=-A@)=~Y_ bl ~80z,),
i=1

and, if n; > 0,
An (50 = AM)Qn 16, 5)n = bipsj.
We now check that (n € 5)

k ™ ne
w=11(3)

is an invariant distribution. To do this, we verify ) . cAnm = 0 for
m € 5. Observe that if m; >0

k
T ..
MG iym = H(b—')”"‘)”“

i=1

H (m m; m;-l—l( )m,--—l

Il b
’J'l','/b{,

i fby
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We have that
Z nnAn,m = Z TInAn,m
n#m {nemo=T{(¢,5)n, for some £,5 }

= Z nnAn,m

{n:T'(j,{)m=n for some i,j }

E (i) m AT} iym,m»

i,5:m; >0

and since Az iym,m = Ar(j,ijm,T6.5(T( Hm) We have

> (ﬁ (}f—f)m :'—f,:) bipi;

',j-m,>o =1
- > T() B
jimy>01=1 7 /b
k mi
-G 25
k. 'ﬂ'[ m k
=1 j=1
= nm)\(m)-
Therefore
Z MAnm = Z Tadnm — TA(m) = nuA(m) — g A(m) =0,
nes n#m

showing {n,, n € S} is invariant.
Because the state space is finite, the stationary distribution exists and

equals
- 75 "
Zles T ﬂm H ( )

Jj=1

- (1))

Computing the constant 3,, can be quite difficult, as the state space S can
be quite large. One scheme for accomplishing this, suggested in Kelly

where
-1
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(1979), is discussed in Problem 5.49. Other schemes are discussed in
Walrand (1988).

Note that although the stationary distribution has a product form,
the stationary distribution is not the distribution of a random vector with
independent components, This is because of the constraint on the state
space that n € § implies Zfﬂ ng =1m.

Bottlenecks and clogging: Define for j = 1,...,% and a multiplicative
constant ¢ > 0 to be specified,

BJ:C——
f)

and call this the clogging factor for node j. Bottlenecks will occur at the
node with the biggest clogging factor, and this will be where customers
tend to be located. We explore how to make this precise by means of some
limit results.

We know Q(t) converges in distribution and the limiting distribution
is the stationary distribution, which we denote by n,,n € 5. Forn € §,
we will write

PlQ(co) = 1] = 7.

To be specific, suppose that node 1 has the biggest clogging factor, so
that for j=2,...,k,

0; <6,

Take

so that
=1, 6;<1, j=2,...,k

Write § = V;?=28_,-. We may re-express the stationary distribution 7, as

]._IJ 1( bj )ﬂJ
Zies Hj-—.l( B Y

T =

Multiply numerator and denominator by ¢™, and the above is

k i AT

_ Hj:]_(_c]%?-)ﬂJ
- k i3l
2ies Hj:l(%)lJ

k mj
J= 29.7

EIGS ]._.[_-,v—2 7
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Call the denominator in the last expression DEN and we note that as the
number of customers m goes to infinity a limit results:

k
DEN = 3 I1¢;

{(11,...,1;3):2;:111' =m} j=2

- s I

{(f2voli):EX 1, Sm} =2

_’i"'iﬁ();’

in=0 Ip=07=2

k
=J[a-en
=2
Thus, as m — o

ko gm
P[Qz(00) = na,...,Qk(cc) = ni] = HJB_TZA;

L
H_’l;=2(1 - Bj)_l

k
= [[-6,6".

i=2

We get a product form limit distribution for nodes which do not have
maximal clogging factors. As we will see, the sort of product form for the
stationary distribution obtained here is characteristic of open networks.
Since behavior in nodes 2,...,k is stable as m — oo, we expect lots of

customers to be caught in the bottleneck node 1 with maximal clogging

factor. We will check that for any integer ¢

(5.7.1.1) PlQ:1(00) < gl =0,

so that with high probability the number in node 1 is very large and enough
traffic is clogged at node 1 that nodes 2,..., k operate as a stable, open
system.
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Te check (5.7.1.1) we use brute force: For any integer q

H'.’ N
4= =2
P[Ql (00) = q] = Z et
{{(nz,.. kD% _yni=m—g}
’.‘ 2 i
< 1= 9"
B 2 DEN
{(nz....,n,,):zzczzm___m_q}
6B?==ﬂj
- 2 TEN

{(ng,...,‘nh):z:;.‘n;:m—q}
sm—9

= DEN (the number of ways to assign m — ¢ customers

to k — 1 nodes ).

Computing the number of ways to assign m — g customers to k£ — 1 nodes
is a classical combinatorial problem (e.g., Feller, 1968, Volume 1, Chapter

2) and equals
m+k-g-2\_ (m+k—qg-2
m—gq - k-2 )

We have that DEN converges to a non-zero limit as m — oo and

megfMm+k—qg=2\ _ . (m—gq+k-2)!
o )-o )

m—q (m—g{k-2
_ om—gm—gt+k-2)...(m-q+]1)
=& (k — 2)!
— (:’i_;)!mk_z(l— (q—i+2))_“(1_ (qr—nl))

<dé™m*F =0
as m — 0o for some ¢’ > 0. Therefore

PQi(o0) =q] = G

thus (5.7.1.1) follows.

Example 5.7.3. A Closed Cyclic Queue. A simple example is con-
structed by assuming there are k nodes and traffic eycles through the nodes
according to the scheme 1 — 2 — ... — k — 1, so that the routing matrix
isgiven by p;;41 =1 fori=1,...,k— 1 and also px1 = 1. The routing
matrix is doubly stochastic, so the stationary probability vector for P is
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automatically m; = 1/k for j = 1,..., k. The stationary distribution for

{Q()} is thus
oS}
B L1
j=1
and there is a bottleneck at node j if

i1 ..
3;>b_i, .?'-lé"":

that is, if b; < b; for all j # i. As expected, the bottleneck occurs at the
node with the slowest service rate.

An open queueing network. As before there are k nodes, but now
customers can enter and leave the system. In order to guarantee that
{Q(t}} is Markov, we assume that customers from outside the network
enter node i according to a Poisson process of rate a; and that the arrival
streams to the different nodes are independent. Also, we assume node
1 has a single server serving at rate b;; service times at node i are iid
with exponential distribution with parameter b;. There is a routing matrix
(pij,1 < 4,5 < k) where p;; represents the probability that a customer
leaving node i goes next to node j. In contrast to the closed network, we
assume that at least for some i (1 <1 < k) we have

k
Zpij <1,
=1
and we interpret
k
gi:= I—Zpij >0
=1

as the probability that a customer departing from node 7 leaves the system.
Think of there being a state A which corresponds to “leave the system,”
and define the (k 4+ 1) x {(k + 1) matrix P by

Dij, if1<4,7<k
B — 1, ifi=j=A
R fi=A,j#A

gi=1-3r pu ifi#£Aj=A.

If we think of P governing a discrete time Markov chain, then states 1,...,k
are transient, A is absorbing and (I — P)7! is the fundamental matrix
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corresponding to transient states. A customer leaving node i will visit
node 7 a finite number of times before leaving the system (1<4,5<k).

As before, the stationary distribution (when it exists) should depend
on throughput rates, so suppose r; is the rate customers leave node j
(1 € j < k). In equilibrium, the rate r; at which customers leave node
7 should balance the rate at which they arrive to node j. The rate at
which customers leave node 4 is r;, and the proportion of the customers
who depart from node i and migrate to j is p;;. Furthermore, customers
enter the system externally as input to node j at rate ;. Thus the input
rates should satisfy the system of equations

k
rj = aj +ZTiPij, 1< <k,

i=1

which we again call the traffic equations. If we let a = {ay,..., ap),r =
(r1,...,7&), then in matrix form the traffic equations for the open system
are

r =a +1'P,
or

r'(I-P)=2a,

and the solution is

o0
r=a'(I-P)'= a’ZP“.

n=0

We still need to have the transfer functions T(i, 7) defined on the state
space §. When 1 < 4, j < k define T'(i, j) as we did for the closed system.
In addition, for n = (ny,...,nk) € S, define

T(0, /)0 = (my. - 15 + 1.0y mi),
which means there is an external arrival to node 7, and for n; > 1, define
T(,0m = (n1,...,n5 —1,...,n),

which means there is a departure from the system at node j.

The generator matrix is now of the form (n=(ny,...,7k) € 5)
k
Ann=-Am)=- a;+ > b)
7=1 Fm>0

AH.T(OJ)“ = aj, 1<j<k,
An1(,om = bigi, 1<7<k, n >0

An,T(i,j)n = bipi;, 1<i,57< k, n; >0
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We will show that the invariant measure 77,,n € S has the product
form

k
Py
5.7.1.2 n = -Lyrs
(5:7.12) m=T11GH)
i=1

and therefore a stationary probability distribution exists iff 3, ¢ ¢ 7 < 0.
This holds iff

=] r.
Z(f_—)"‘ <o, j=1,...,k,
m=0 7

and this condition is equivalent to
ry < bj, j=1,...,k,

which says that, in order for equilibrium to hold, the service rate must be
adequate to handle the rate at which customers pass through each node.

To verify that the product form in (5.7.1.2) yields an invariant measure,
we make the following observations:

b.
(5.7.13) TrGom = T
Tj
rs
(5.7.1.4) NT(05)n = nnb—""-;
7
nnbj'ri
7.1, PR | L
(5 7 5) N (j,i)n bi'rj '
(5.7.1.6) r'g=a’l.

The first three observations are readily verified from the form given in
(5.7.1.2), and for the last observation we note that multiplying the traffic
equations by the column vector of ones yields

r'l=a'l+a'P1,
so that

r'(1—-P1)=a'l,
and recalling that 1 — P1 = ¢ yields the result.
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Now we must show that
0= Z WnAnm

nesS
or
z Nodnm = —TmAmm
n#m
k
(5.7.1.7) =m(} a+ D b)

i=1 jim; >0

We break >, ., TaAnm into three pieces correspending to transitions
which yield internal swaps of position, transitions resulting from depar-
tures and transitions resulting from arrivals. Using the first observation
(5.7.1.3), for arrivals, we have

bias
> mGomArGomm =tm ), 1
jim;>0 gumg>0
Using the second observation (5.7.1.4), for departures, we have

k k

r
th"m.j)mATm.j)m,m = Z ’Tmaj‘. 795
j:l j=1

k
= Tm ZTij-
i=1
Corresponding to internal swaps of position, we have the terms

Z Tlm% li bipi;

Y. MGomATGimm = s
Gimg>0 7

(4,§):m; >0

(from the third observation (5.7.1.5))

k
b.
=Tm D LD TPy
Fm; >0 7 =1
b.
=t » 2(rj—aj)

T
F:m;>0 7

(from the traffic equations})

o
=fm P bi{l- r—;).

jin >0
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If we now add terms corresponding to arrivals, departures and internal
swaps of positions and use the fourth observation, we verify (5.7.1.7), which
verifies the form of the product solution.

Observe that when a stationary probability distribution exists, the
distribution is a product of geometric distributions. Each node acts as an
M/M/1 queune with the jth node having effective input rate r; and service
rate b;.

Example 5.7.4. Queues in Series. As a simple example, suppose
there are k nodes in a series so that customers must traverse the network
according to the path 1 — 2 — ... — k. After node k, a customer departs.
We may suppose a1 = a corresponding to a Poisson input of rate a to
the network at node 1 and az = - = ax = 0, which says customers
only enter at node I. Assume that the service rate at node j is b; and
that service times are exponentially distributed. The routing matrix is
Piiv1 =1, i =1,...,k —1 and px o = 1, the last probability indicating
that from node k the customer leaves the system. For the throughputs,
we guess that r; = r, and, in fact, it seems obvious that r; = a. It is easy
to verify that this is indeed the solution of the traffic equations. Thus the
invariant measure is

k k

T§\n; n;

fIn = H(b_J) i = H(pj) )
j=1 7 i=1

where p; = a/b;. When p; < 1 for all j, we get a stationary probability
distribution, which is a product of geometric distributions, namely,

k
JLim P[Q() =n] = JT(1 - p))e}.
j=1

5.8. TIME DEPENDENT SOLUTIONS*.

Some methods of solving forward or backward equations to obtain
the matrix of transition functions P = (p;;(¢)) were discussed in Section
5.4, and Laplace transform techniques were discussed and illustrated in
Section 5.6. In this section we illustrate a generating function technique

* This section contains material requiring some familiarity with partial dif-
ferential equations. A rapid review of the technique needed for solving partial
differential equations is included. Beginning readers may skip this section on the
first reading,.
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which converts the linked system of differential equations represented by
the forward equations into a partial differential equation. We illustrate this
technique with the pure birth process whose time-dependent solution by
this method presents some challenges but is still fairly simple. A completely
different probabilistic analysis of the pure birth process considered as a

~ mixed Poisson process is described in Section §.11.

Consider then, the pure birth process {X'(t),¢ > 0}, and assume the
initial state is 1. The parameters are given for ¢ > 1 by A(Z) = Ai, and
@i;+1 = 1. Thus the generator matrix is

—-A A 0O O
0 —-2x 22 0
0 0 -3x 3

0
0
A=1|0

and the forward equations P’(t) = P(t)A become, starting from 1,

o
Plapi(t) = Z Py (8)Ajnta

=0
= Plﬂ(t)An,n-lPl + Pl,n'!'l(t)An-l—l,n«{-i
= Pln(t)'ﬂA — P1,n+1(t)(ﬂ =+ 1)1\.

Let gn(t) = PiLpta(t) be the probability that starting from 1 there are

n births up to time £. Then for n > 1 we have the following system of
differential equations:

(5.8.1) 2 (t) = g1 (A — @ () (n + 1),
with side conditions

20(0) =1, ga(0) =0, n > 1,
and

% (t) = p11{t) = pra(t)An
(5.8.2) = —qo(t))

Define the generating function

G(s,t) = an(t)s"’.

n=0
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Multiply equaticn (5.8.1) by s” and sum over n from 1 to co to get
o k) o0
Z gL (t)s™ = Z Gn—1(t)nAs™ — Z gn(t)(n + 1)As
n=1 n=1 n=1l

On the left, if the sum started at n = 0 we would have %G(s,t).
changing dummy indices on the right, we obtain

G(S t) — qo(t) —Aqu(t )G+ 1) —AZQJ B +1)&

J=0 i=l
= Asqo(t) + ASZQJ(f)(J +1)s7 — A Zq, (6} + 1)s?
j=1 i=1
= Asgo(t) + A5 — 1) a;(t)(5 + 1)s’.
j=1

Using (5.8.2), this becomes

o G(s £) + go(t) = Asga(E) + A(s -1 g i ;5 (8)s71)

= Asgo(t) + A(s — 1)5;(3(6’(8, t) — go{t))

g
= Asgo(t) + A5 — W)(G(s,t) — qoft) + S&'G(S, )
and we obtain the partial differential equation

(5.8.3) %G(s,t} = A(s—1) ( ZG(s,t) + G(s, t))

We now attempt to solve the partial differential equation (5.8.3) for &
and then invert G to obtain ¢n(t).

Here is a review of a method for solving some partial differential equa- A

tions which are likely to arise with Markov processes. (The methods are
standard and are explained in standard books on differential equations; the
reference on my shelf is Cohen, 1933, page 250ff.) Consider the problem of
finding a solution f(z,z2) of an equation of the form

(5.8.4) = (:cl,:r:g) of +P2($1,$2)§")f‘ R(z1,22),
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where Py, P>, R are nice functions of #;,z,. We must solve the auxiliary
system

(5.8.5) doy _dzz _ df
B B R

whose general solution is of the form
w21, T2) = €1,  ua(x1, 22) = ca.

The general solution of the partial differential equation (5.8.4) is of the
form

$(u1,up) =0,

for ¢ an arbitrary function which must be determined by boundary condi-
tions. Alternatively, the general solution can be expressed as

Uz = T:b(ul)a

for 4 an arbitrary function which must be determined.

Let us apply this method to our example (5.8. 3) coming from the pure
birth process. In this case f =G, 2y =s,23 = t, P, = ~A(s—1)s, P =1,
and R = A(s — 1)G. The auxiliary equations (5. 8 5) become

ﬂ _ ds _ dG
1 Ml-sls -AM1-38)G

The first yields

@ _ ds

1 Al-s)s’
and, since

1 1, 1

(lms)s—s_l_l—s’

we have for some constant ¢

At +c =logs—log(l—s) :log(1 i 3),

so that

uy(s,t) = —At + log(1 is

A second equation,
ds dG

A1 — s)s = A1l - s)@’
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or, equivalently,
& _do
s -G’
yields (treat G simply as a variable)
logs+c=—logG

s0 that
logsG=us =c.
Therefore the general sclution is of the form
(5.8.6) ug = log G = Y(u1) = $(~At + log(; = ))-

To determine 3 we use the boundary condition G(s,0) = 1. Substituting
t = 0 in the previous equation, we obtain

s
log s = 'P(log(fs)),
which allows us to determine . Set
= log(——)
y - g 1 —3 ]

so that
1

=T

1
=1 :
¥(y) = log (He_,)
Using this in (5.8.6) yields

and thus

1
3G = ———~~—
14 ereize
_ s
T st eM(1—3)
e s
T 1-s(1—et)’
50
G 2
1-3(1-e2)

oo
= e—)\t Z(l _ e-At)nsn
n=0

= E ga(t)s™.

n=0

This allows us to identify
) =e M-, n20
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5.9. REVERSIBILITY.
Reversibility is a concept with many applications in stochastic modelling.

It is present in many birth—death processes. It makes the structure of the
output processes of many queueing models transparent, which is important

" since the output of one queue is sometimes needed as the input to a different

service facility. Since the publication of Kelly’s book (1979}, reversibility
has assumed ever greater prominence.

We start by considering a discrete time Markov chain {X,, —co <n <
co} with discrete state space 5. Note the index set of the process is all
integers including the negative ones. This is a convenience when we reverse
time. If the index set were {0,1,...}, then for the reversed time process
there would be an awkward barrier at 0 to be dealt with; better to remove
the barrier and consider the process on all integers.

We assume {X,} has a transition matrix P, that it is stationary, and
that the stationary distribution is n’ = (74, 7 € S). Thus the finite dimen-
sional joint distributions which determine the distribution of the process
are of the form (k > 1,1y,...,7x € 5)

(591) P[Xn+1 - '51, ey Xn+k = 1'Ic] = T4y Piyiy - - - Pig_yig-

If you have trouble assimilating the idea of a process with index set
{...,~1,0,1,...}, think of & Markov chain £ with transition matrix P

being started a long time ago. Assume p\;’

;; > Tj a5 n — 00, and consider
the £-process started in the remote past at time —N. Call this process
{¢;,7 = —N}. I this process has some initial distribution a, then, as
N — o0, the finite dimensional distributions of {£;} converge to those of

{Xa}, since for any fixed n as N — oo

— 3 T (n+N+2)
Pléntr =i1,- . Enrk = i) = Eajpjil Piyig -« - Pin_yis
jes
Wiy Piyig - Pig_yiy

= P[Xn+1 = il,‘--,Xﬂ+k :‘l:k].

Sometimes this procedure of letting the starting point drift to the
remote past is termed letting the process reach equilibrium, but this is very
vague language.

Set Y, = X_,, and consider the reversed time process

{Yp,—c0 < n < oo}
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Observe first that it is a Markov chain, since

PlYniki1r = %k1|Yagr = 81, .., Yogr = 0k]
= P[X__(n+k+1} = ik+1]X_(n+1) =11, X_(ntk) = ik
PIX_tnikt1) = 41, X (n+1) = 81, - - X_(nsk) = ]
B PX_(nr1) =i, X (nyi) = %]

wik+1pik+1‘l'k < Pigdy

T Pigig_1 - - Pigiy
_ i1
Mg,

Digyrin
= P[Ypyk41 = ik Yok = @],

which shows that {¥,} is a Markov chain with stationary transition prob-
abilities and transition matrix

, g Ty
(5.9.2) Pty =¥y =i = ~p;s.
k]
Note also that the reversed process {¥} is stationary. This follows since
if the distribution of the vector (Xn41,...,Xnt&) is independent of n for

any k, then the.same is true of the vector with Y¥’s replacing the X's.
Furthermore {¥,,} has stationary probabilites m, since

, .
PIY; = ¥y =il = i~
z'ﬂ': [ 1 Jl 0 I] ;W ﬂ_ipjt
= mips = 5.
i

Next we seek a condition for the process {X,} to be reversible; we
want both {X,} and {¥} = {X_n} to have the same finite dimensional
distributions, a property which we write as

{X.} £ {Ya).

‘We know both processes have the same stationary distribution, so exam-
ining the form of the finite dimensional distributions in (5.9.1} yields the

conclusion that reversibility will hold if the transition probabilities for both .

the process and the time reversed process are the same. From (5.9.1), we
need _
pis = PX1=jlXo =i = P[Yi = ji%s = i] = Zps,
t

and we see that a stationary Markov chain indexed by all the integers is
time reversible if and only iff

(5.9.3) W;Pgi = Wilij
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foralli,j € 5.

Now consider a continuous time regular Markov chain {X(t),—oc0 <
t < oo} with countable state space S and transition matrix function
P(t) = {P;(t), i, € S}. Suppose this process is stationary with sta-
tionary distribution 7 so that (k2> 1,0<#; < - <) :
(5.9.4)

PIX(t) =141, ... X(te) = ik] =05, Priy (2 — 1) - iy (e — 1)
As in the discrete case we find that the reversed process Y (¢) = X(—1) is
also a Markov chain with stationary distribution # and transition madtrix
function

(5.9.5) PY(t+s)=j[Y(t)=i]= %’pﬁ(s).

Furthermore, {X (%)} is reversible, that is, the process X and the process
Y have the same finite dimensional distributions, if and only if

(5.9.6) n;Pi(s) =miFi(s) Vi,j€8, s>0.

Condition (5.9.6} is impractical, since it depends on the transition matrix

function P(t} which is frequently unknown, so we wish to recast this con-

dition in terms of the generator matrix A of the Markov chain. If we divide
by s in (5.9.6), let s — 0 and use Propoesition 5.4.3, we see

(5.9.7) i Aj = mAi, i# ]

Conversely, assume (5.9.7). The distribution of the regular Markov chain

{Y (t)} is determined by n and the generator matrix, so to show {X(¢)} &
{Y'(t)} it suffices to show the generator matrix of ¥ is also A. Again from
Proposition 5.4.2 and (5.9.5), we have

im P[Y(S) = _1|Y(U) == '.'.] = lim ij,-(s)
3—0 ) a—0 T)I' S
s
=LA i
o
Applying (5.9.7)
i
= —"A,;' = A-g iy
N ! 7

Thus we have verified the following:
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Proposition 5.9.1. A stationary Markov chain {X(t}, —00 < t < oo} is
reversible, ie.,

{X®)} £ {X(-0)},
iff the detailed balance condition (5.9.7} holds.

Fortunately, a large and useful class of processes can be immediately
identified as reversible.

Proposition 5.9.2. A stationary birth-death process on the state space
{0,1,...} is time reversible.

Proof. Recall the form of the stationary distribution
-1

T =2¢ nj:cl_l_’;'i: 321’
i=1 Hi

where ¢ makes }°.%; = 1. For instance, we have the following case of
(5.9.7) for j 2 1,
oM
M Asim1 = €= );
i=1Hi
= Nj+14541,5-

The case j = 0 is easily checked, and there are no other non-trivial cases.
|

This has an immediate application to the output process of certain
Markovian queues.

Proposition 5.9.3. The output process from a stationary M/M/s queue
is Poisson with parameter ¢. Let Q(t) be the number in the system at time
t, and let D(s,t] be the number of departures from the system in the time
interval (s,t]. Then for any to,

{D(s,to],s < to} and Q(to)

are independent.

Proof. A stationary M/M/s queueing model is a stationary birth-death

process and hence is time reversible, so {Q(t}} 4 {Q(—1)}. This means
that the times of upward jumps of {Q{t)}, which is a Poisson process of rate
a, are equal in distribution to the times of upward jumps of {Q(—t)}. But
the times of upward jumps of {@(--t}} are the times of downward jumps of
{Q(t}} due to the effect of time reversal. So the times of downward jumps
(which correspond to departures resulting in the number in the system
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dropping) also form a Poisson process of rate a. What comes in must go
out in equilibrium.

Now we extend this argument slightly. The departure process prior to
tg is the times of downward jumps in the path {Q{s), s < to}. Set v = —s,
and the departure process is equal to the times of upward jumps in the path
of the reversed process{Q{—v),v > —tp}. Because the reversed process has
the same distribution as the original process, these Poisson upward jumps
are the input to a M/M/s queueing model. Since these upward jumps
represent future arrivals for the reversed process, they are independent of

Q(—(=t0)) = Q&) W

Consider the application of these ideas to tandem queues. These are
queues in series, arranged so that the output from one queue becomes the
input to the next queue. For simplicity, assume we have two queueing
systems, each with a single server, arranged in series. Assume the first
quene has a Poisson input of rate g¢; and that the server serves at an
exponential rate b;. The second queue has the output from the first queue
as its input, and the server serves at an exponential rate bs. We suppose
the stochastic process @ (-), representing the number in the first queue, is
stationary, so that the output from the first queue (identical to the input
for the second queue) is Poisson, parameter a;. Assume p; = a;/b; < 1 for
i = 1,2 to assure stability. Let ;(f) be the number in the ith queue at
time t, ¢ = 1,2. The bivariate process {Q(t) = (Q:1(¢), Q2(f)),t > 0} is a
Markov chain. We have the following result about the series of queues in
equilibrium.

Proposition 5.9.4. The stationary distribution of the Markov chain
{Q(t),t > 0} = {(Q1(t), Q2(t)),t = 0} is the product distribution
Nnmy = (1= p1)pT(1 — p2)p7,

so that

Jim P[Qy(t) = 7, Q2(t) = m] = lim P[Q1(t) = n]P{Qs(t) = m]
= Nn,m)-

This does not say that the two processes {Q,(¢)} and {Q2(t)} are
independent. Under the stationary distribution, for a fixed £, the two
random variables ; (t) and Q2(t) are independent.

Proof. To verify n is the stationary distribution of {Q(t)}, it suffices to
start the process (Q with distribution n and show that, for any ¢, 9 is also
the distribution of Q(t). Take the process Q and start it off at time 0
with initial distribution 5. Since n has a product form we have (},(0)
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independent of §2(0). Since the Markov chain ¢; has stationary distri-
bution (1 — p)pt, we have started (; with its stationary distribution,
and therefore {Q1(t),t > 0} is stationary. We know from Proposition
5.9.3 that, for any t, the departure process D;(-) from the first queue is
Poisson rate aq and {D;(3,1],0 < s < t} is independent of Q;(t). How-
ever, the queue length Q3 (t) in the second queue is dependent on its input
{D1(s,t],0 < s < t} (which is independent of Q,(¢)) and upon the actions
of the servers in the second service facility which are independent of the
first server. Therefore, Q;(t) and Qz(t) are independent.

The Markov chain ¢}, was started with its stationary distribution and

hence is stationary, so Q;(0) 20 (t). The second queue has Poisson input
of rate a; (being the output from the first queue, which is in equilibrium)
and an initial distribution which is geometric with parameter ps. Therefore,

the second process (5 is also a stationary queneing model with Q2(0) 4
Q2(t). Hence

Pyleh (t) = n,Qa(t) = m| = PylQh(t) = n]Py[Q2(2) = m],
since Q1(t) and Q2(t) are independent,

= (1= p1)p7 (1 — p2)py’

since @1 (0) £ (t) and Q(0) 2Q, )

= N(n,m)- n

This result has an obvious generalization to » queues in series.

5.10. UNIFORMIZABLE CHAINS.

Recall the example at the end of Section 5.1 of a uniformizable chain which
consisted of taking a discrete time Markov chain and allowing it to jump
at the times of an independent Poisson process. We now review this con-
struction. Suppose {X,} is the discrete time Markov chain with transition

matrix KX = (K;;} and {N(t),t 2 0} is a homogeneous Poisson process of -

rate o independent of {X,,}. Define
The transition matrix function of this process is

X —at n
e (at) n)
(5.10.1) Py(t) = § ——nr——ng .

n=0
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What is the generator of this process X#? Differentiating formally in
(5.10.1) we obtain

PL(t) = —ae™ 6 + i -e_—at(aﬁ-_—laﬂ’-(?) - f: Mae"“t}'{.ﬁ‘)
A G S A

and setting ¢ = 0 we get

A* { F;(0) = oK, if ¢ # 4,
=

5.10.2
( ) Pi(0) = oKy — by, ifi=].

In matrix form, this equation is
(5.10.2) A* =o(K -1

To verify this from first principles, let {X#} be the Markov chain derived
from {X,} by only observing transitions between different states. To make
this precise, we define

n(0}) =0,
n(l) =mf{k > 0: X; # Xp}
n{2) = inf{k > n(1) : Xy # Xa)}

and
{XF} = {Xngey -

Exercise 5.8 helps us calculate the transition matrix Q¥ of the Markov
chain X#, and we have

. [0 if i = j
Q'i,j = Kij if§#
l_K", :

To calculate the holding time parameter in state ¢, A (i), we observe that
starting in state i, the process X#(t) leaves state i after Z;'ill) Ej(a),

where n(1) is independent of the iid exponential random variables { E;(a)}
with parameter . Thus

n(l) 1
N#(i) = EZEj(G)) = (ER)E(E (@)™,

=1



438 CoNTINUOUS TIME MARKOV CHAINS

M) = ofl — Ka).

A#(i) and K# are the infinitesimal parameters corresponding to X* (1),
and from these we easily get A# and verify equation (5.10.2).

Now suppose we are given some other continuous time Markov chain
{X (t})} with generator matrix A. The only assumption about this process
X(t) is that the generator A satisfies the assumption that for all i in the
state space, the holding times A({) = —A;; < a < oo for some finite a.
With this assumption, we will find that we can mimic the process X(t)
with a Poisson paced process as discussed in the previous paragraph. To
do this, define the matrix

K=alA+1,

so that
Ki=1+a'Au=1-0a"12(¢) >0,

and for i # j
K{j =A,'J'/0£ > 0.

Furthermore, for all 1 in the state space,
ZK{,’ =O:_IZA,'J' +Z§ij =0+1=1,
b J 3

Thus K is a stochastic matrix.

Let us now use this K and o to construct the continuous time process
{X#(t),t > 0} as described at the beginning of this section. We know the
generator matrix of X# is A# = a(K — I); from the definition of X, this
is A, so A= A¥. Thus the two processses X (f) and X*#(t) have the same
generator. Assuming they are regular, this means that both processes have
the same distribution.

If a continuous time Markov chain can be constructed by placing the
transitions of a discrete time Markov chain at times of Poisson jumps,
then we call the continuous time process uniformizable. We have checked
that any process with bounded holding time parameters {\(i),i € S} is
uniformizable. In particular, a finite state Markov chain is uniformizable.
This provides a way for us to simulate a finite Markov chain in continuous
time: Simulate a discrete time Markov chain and put the transitions at
points of an independent Poisson process.
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5.11. THE LINEAR BIRTH PROCESS AS A PoINT PROCESS*.

In this section we treat the linear birth process as a point process and
show that we may consider the linear birth process as a mixed Poisson
process; i.e., we will express the linear birth process as a non-homogeneous
Poisson process whose time scale has been subjected to multiplication by a
non-negative random variable. This result was learned from Kendall, 1966
{see also Waugh, 1971). It is included because of its surpassing beauty.

Recall that the linear birth process has embedded jump chain

{Xpyn>1}=1{1,2,3,...}

equal to the deterministically monotone Markov chain. The jump times
{7} have the structure

Ey Es E
(5.11.1) {Tn+1—Tn,n20}i( 1.2 3 )

PRETHE T

where {Ej,7 > 1} are iid, A > O and P{E; > x]=e"%, x> 0. Set Tp = 0.
The number of births (as opposed to the population size) in (0,1] is

(5.11.2) Nt =) e,
n=1

so that the point process under consideration can be expressed in the no-
tation of Chapter 4 as

(5.11.3) Nty = i ez, ((0,2]).

We explore how N can be related to a non-homogeneous Poisson process.
We need the following lemma, which is usually attributed to Renyi,
1953.

Lemma 5.11.1. If Z,,..., 2, are iid, exponentially distributed with
parameter A, and if Z;y < .-+ £ Zy,) represent the order statistics
(Z2(y = A1 Zi, -+ Ziny = Vj_,Z;) then the spacings satisfy

i {(Zn Zn1 I
2y = Ztys oo Zimy — Zinny) & | 22, =
(Zays 22y = Zys o+ Bimy — Zn-1)) (n — 1)

* This section contains advanced material.
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5o that the spacings are independent and exponentially distributed (with
varying parameters).

Proof. The formal method of proof is to write down the joint density
of Za),...,Z(ny and then transform to get the joint density of the spac-
ings. (See Feller, 1971, page 19, for example.) More heuristically, consider
the following argument. At time 0, initiate the lifetimes of n machines.
The lifetimes of the » machines are represented by the random variables
Zy,..., Zy. The first failure occurs at Z(y). After Z(y), the remaining n—1
unfailed machines have exponentially distributed lifetimes because of the
forgetfulness property. The elapsed time until the next failure is distributed
as the minimum of n — 1 exponentially distributed random variables, so is
exponentially distributed with parameter A(n — 1). Continue this process
until all the machines have failed. Independence of the spacings results
from the forgetfulness property of the exponential density. H

We conclude from this lemma that, for n > 1,

d
(TI,T2 ~T1, ., T, "‘“Tn-—l) = (Z(n) - Z(n—l), Z(n—l) - Z(n—2)w LR Z(l)) 3

where the spacings on the right aré independent. Thus for any n > 1

(5.114) (11, Ts,...,Tn) £ (Ziny = Zin-1) Zin) = Zin—2)>- > Zim)) -
In particular,
n
T, 2 Zmy = v Zi,
i=1

and therefore, for z > 0,

P[T, <z]=P[V},Z; <1
= P{Nj.1[Z; < zl} = (P{Z1 < )7
(5.11.5) =(1-e )™

Thus using (5.11.2) and (5.11.5)

o
EN(t)=EY_ P[T,<{]

n=1
1™y,

~

Y ’

ast —00.
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Proposition 5.11.2. There exists a4 unit exponential random variable W
such that almost surely

(@ tim YO _ gy YO

= IT = W
t—oo EN(t) t—oo gt

and

(b) lim (AT, — logn) = —log W.

Remark. It turns out that {N(t)/EN(t),t > 0} is a martingale and the
martingale convergence theorem makes short work of (a). Here is a proof
by classical means.

Proof. Observe first from (5.11.1) that
11
=533

and

1 = 1

Since Ejil 37% < oo, we obtain from the classical Kolmogorov convergence
criterion (Billingsley, 1986, p. 298) that

lim (Tn — ET) = Iim Y (T — Ty-1) — E(T; = Tj1))
n—0o0 o0 j=]_

exists finite almost surely. Since asn — oo we have ET),,— 3 log n converges
to a constant {Abramowitz and Stegun, 1970, page 255), we get that the
limit in (b) exists. Call this limit — log W.

From the definition of N (¢} in (5.11.2) we have

(5.11.6) Ty £t <Tng)+r-
Since the linear birth process is regular, T, - oo, and therefore
P(N{t) 2 n]=P[T, <t]=(1-e )" =1

as t — oco. Thus as ¢ — oo, N(t) converges in probability to co, and being
monotone, N(t) must thus converge almost surely to co. In (b) replace n
by N{t) to get

tErg(ATN(z) —log N(t)) = ~log W.
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1t is also true that if we replace n by N(t) + 1 in (b) we get
Bim ATy —log(N(t) +1) = —log W,
and, since

N(t)+1

log(N(t) + 1) — log N(t) = log NGO

—logl =0,

we get
t]ir{.lc, Ny — log N(f) = —logW.

Now write the sandwich using (5.11.6):
ATn¢sy — log N(t) < Mt —log N(t) < ATy(sy41 ~ log N(2),

and since the extreme sides of the sandwich converge to — log W we con-
clude

lim M —log N(f) = —logW.
t— 00

Exponentiating gives (a).
It remains to prove W is unit exponential. Let us try brute force. We
have, for x > 0,

Ple™N(t) > o] = P[N(t) > ze™]
and since N(t) is integer valued this is
= P[N(t) > [ze™]],

where {y] is the greatest integer < y. From the definition of N(2) in (5.11.2),
the previous probability is

=P [T[:rc**]+1 < t] .
Applying (5.11.5), this is

— (1 _ B—)\t)[a:c)‘*]+1

([.':e“}+l)/=)"’
1 Al

Since [ze™]/e* — z as t — oo, we conclude

. N(2) —1y lime o [zeXt] 63

lim Pl > 2] = (¢7)
= (e =e",

as desired. W

In order to understand the dependence of N and W better, we inves-
tigate some conditional distributions.
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Proposition 5.11.3.
(a) The conditional density of T, ..., Tm-1 given Tw (m>2)is
5.11.7
( ) (m-1A" TR BET G <y < <ty S b
f(tl, . tm—lltm) = (exp{Al‘,m}—l)’“—l - - - - '
0 otherwise.

( b) If g is a bounded function on R™*

(5.118) E(9(TL.Ta—T1,...,Tm-1 = Tm-2){Tm, W)
=E (Q(Tl, e mi—l -1 -—2)|Tm) .

Proof. (a) The joint density of T}, T2 = Th,. .., Tm — Tm—1 is 3 product of
exponential densities

e~ Mi2xe" M2 (m — I)Ae_(m—l))“”—lm)\e_"‘“m.

From this, by transformation of variables, we have that the joint density
Ole,...,Tm is
flty, .y tm) = de~Migrem B ta—h) | e Em—tmo1}

m—1

= A"m!exp{ Z t:} exp{=Amty},

i=1

for 0 <ty < -+ € ty. To get the density of Tp,, we can use (5.11.5) to get

d d —= Al AL
)= —P[Tp € ty] = =—{(1 —e™m
£(tm) = = P{Ton < 1] = g )
=m(l — g Mm )M Nm
for t, > 0. From the last two formulas we get

Fltr, oo tmetftm) = f(tse oo tm)/f (tm)s

which is (a).
(b) From Proposition 5.11.2

~logW = lim T, — A~} logn
n—0oo

n

= lim > (T; = Tj-1) - A llogn
n—000j=1
=lim > (T-Tj-1) — A logn+Tn

n—oo

j=m+1
=T +Tn
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for any integer m, where

n
Tp=lim > (T;~Tj-1) = A"logn
n—oo Pl

is independent of T},. If ¢(xi,2 € T) is the o-algebra generated by the
variables x;,¢ € T, we have

(T W) = o(T, — log W)
=o(Tp, T + T2)
= U(TmJT;n)
s0 that
E(g(, I - T,. .., Tm—1 ~ Te2)| Tin, W)
=E(@N,Te-T,....Tmo1 — Tne2)|Tm, Ty)
=E(gT1, T2 —T,.... Tne1 — Trn2)lTm)
since T}, and g(11, T - T, ...

We now verify that the counting function N of birth times is a non-
homogeneous Poisson process conditional on W,

yTrne1 — Tyn_2) are independent. M

Theorem 5.11.4. The linear birth point process N is a mixed Poisson
process. Conditional on W, N is a non-homogeneous Poisson process with

local intensity W e, The Laplace functional of N is (f > 0)
00
(5.11.9) ¥n(f) = Eexp {—f (1- e_f(*))W)\e‘“dt} .
[

Procf. It suffices to show that for f continuous with compact support and
fz0,
(6.11.10)

E (exp{—[)w f(t)N(dt)} IW) =exp {hfoooa —e-f(f)),\we“dt}.

Suppose the support of f is contained in [0, K] so that f(z) =0, z > K.

Then
E (exp{—j;m f(t)N(dt)} ]W)
el )

m=1
lim B (exp {— > f(Tn)} IW)

n=1

o E (E (exp { ~ T:\:—l f(Tf.)} |W,Tm) IW) .
n=1

It
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Applying (5.11.8), this is

m—1
= mli_rPOOE (E (exp {— Z f(Tn)} |Tm) |W) .
From (5.11.7),

E (exp {_mz;;lf(Tn)} |Tm = tm)
N j'“-[o<t;<---<tm_1<tm

exp {— oy flta) + sy /\t,.} AP=1(m ~ 1)!

(e)\tm - l)m_l dt] P dtm-l-

Since the integrand is symmetric in tq,. .., tpm~1, this is

/\m—l tm m—1
A f I I A
(eXim — 1)m—1 \ f;

Because f(z) = 0 for z > K, for m large enough that T,,, > K, we have

(ol B

)\m—l

K ) Tm m-1
- - --f(t +Atdt + f e td.t
(€XTm — 1)m=1 (/0 € K

m—1
(f[ff e—F(O) \eAtdt 4+ M Tm _ eAK)
(eATm _ I)m—l

The denominator equals

ATm g~ ATm (1)

(eATm)m—l (I - —e’\i,m) ,

which, because of Proposition 5.11.2(b), is asymptotic to

(e"T'")m_l e V.



446 5. EXERCISES
Thus, as m — o0,

£ (exp {— mz_lf(m} rrm)

ne=]

-1
N (— ST - e/ O)aeMdt + T — 1)’" W

erTm

ATm o =ATm (g ]
14 fFa—e e\t T Y
=|1- T e

K
— exp {—1 - / (1- e"f(‘))Ae’\’dtW} eV
0
= exp{— /0 (1 - e~ fEWaedt,

since from Proposition 5.11.2(b) we have e™*Tm(m — 1) — W. Finally,
dominated convergence yields

E (exp {— fo ~ f(t)N(dt)} |w)
o (oo o) )
=E (exp {—fow(l -~ f0) )/\e’“Wdt} |W)

o
= exp {— f (1- e_f(‘))/\eMWdt} .
0

EXFRCISES

5.1. Harry and the Hollywood Mogul (continued). Recall from
Problem 2.52 that one of Uncle Zeke’s business acquaintances is the Holly-
wood mogul Sam Darling and that Harry and Sam Darling were negotiat-
ing about the possibility of doing a real down-home show entitled Optima
Street Restaurateur.

Assume terms have been agreed upon and Optima Street Restaurateur
goes into production. To save money, round-the-clock shooting is used. Re-
alistic locales are essential, so the restaurant is used for all scenes. Scenery
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and furniture must be added, however, as the usual grungy decor in Happy
Harry’s does not reflect light properly. There are four different sets, labelled
1 through 4 that are brought in and out, depending on the needs of the
script:

(1} neo Julia Childs, cheerful but antiseptic for quiet discussions of
the art of cooking;

(2} 19tk century salcon, for those action scenes where someone is shot
and falls from the balcony;

(3) student modern (boards on bricks for bookcases, ete.}, giving the
impression of the serious artist studying his craft and planning
carefully;

(4) quasi-Cheers, for that warm atmosphere conducive to mating and
other rituals.

The changes in the sets follow a continuous time Markov chain. Holding
times in each state are exponential with parameters

(A1),--.,A(4) = (2,2,3,1)

and changes of state are achieved according to a uniform distribution: given
the system is in state Z, the next state is § 5 ¢ with probability 1/3.

(a) What is the long run percentage of time each set is used?

(b) If production starts in state 4, what is the expected time until Harry
can quietly discuss cooking; i.e., until set 1 is used for the first time?

(c) The mutant creepazoids are infuriated that a production company
has taken over their turf. They will stage a noxious demonstration at a
random time 7" which will halt production. The random variable T is
exponentially distributed with parameter 8. This demonstration will cost
the production company $200, $300, $100 or $500, if, at the time of the
demonstration, the set numbered 1, 2, 3, or 4, respectively, is in use. What
is the expected cost to the production company due to this demonstration?
How much should be production company be willing to pay in bribes to
the leaders of the mutant creepazoids to try to persuade them to call the
demonstration off?

5.2. Harry’s Talent Agency. After the success of amateur night, Harry
decides to start a talent agency which will match amateur performers with
talent seekers, i.e., people who need entertainment at weddings, Bar Mitz-
vah’s, etc. Talent seekers arrive at Happy Harry’s according to a Poisson
process of rate 1, and performers arrive via an independent stream ac-
cording to a Poisson process of rate 2. A performer arriving to find no
talent seckers leaves immediately rather than wait around. If a performer
arrives to find a talent seeker present, however, the talent secker imme-
diately bocks the gig, and performer and seeker leave together. A talent
seeker arriving to find no performers waits until one arrives.
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(a) Let S(t) be the number of talent seekers present at time t. What
sort of process is {§(¢},t > 0}7?

{b) What is the mean number of talent seckers present (computed rela-
tive to the stationary distribution)?

{c) What is the long run proportion of arriving performers who do not
get gigs? (You might want to think conditionally; thin a Poisson process.)

Eventually performers get more business savvy and negotiate with tal-
ent seekers before departing. The negotiations take an exponential length
of time with parameter 10. Let {X(t) = (A(t), S(¢)),¢t > 0} be the bivari-
ate process giving the number of performers and number of talent seekers
present at time ¢.

(d) Is X(t) Markov? If so, give its state space and specify its generator.

5.3. A Markov Modulated Poisson Process. Suppose {X(t)} is a
Markeov process with state space S = {1,... ,m}. As usual, the succession
of states is given by the Markov chain {X,} with transition probabilities
@ = {Qi;}, and the holding time parameters are {A(i),i = 1,... ,m}.
The times of jumps are {T},,n > 0}. Let {N(¢),¢ > 0} be a homogeneous
Poisson process with unit rate 1, and suppose the Poisson process {N(t)} is
independent of the Markov chain {X(£)}. Construct a new point process
{N*(t),t > 0} to have the property that, when the Markov chain is in
state 7, the process N* behaves like a homogeneous Poisson process of rate
a(i). Thus the rate of the new counting process changes according to the
behavior of the Markov chain. Formally, we have o : § + [0, c0), and

N@®)=N ( /D t a(X(u))du) ,

so the new process V" is the original process N with its time scale jiggled
by the integral of a function of the Markov chain.
(a) Verify that

{Tn+1 - TnsN*(Tn, Tn+1]:n > O}

are conditionally independent given {X,.}.
{(b) Compute

P{XH-H =5 Th1 —Tn < 1, N*(Tn:-Tn+1] = kIXn = 1,]

in terms of @, {A\(m), m € 8}, {a(m),m € S}.

(c) Show N*(0,¢1],N*(t1,22),... ,N*(tm—1,tm| are conditionally inde-
pendent given X(0),... , X (tm).

(d) Consider the bivariate process {£(t) = (X (t), N*(t)),t > 0}:
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(d1) Give an argument that {X(t), N*(t),¢ > 0} is a Markov chain
on the state space {1,... ,m} x {0,1,...}.

(d2) Is this system regular? Why or why not?

{d3) Define

Pyj(n,t) = Bi[X(t) = 5, N*() = ]

and give a system of equations which {Py(n,t),i,7 € S,n > 0,t > 0}
satisfy.

(d4) What are the holding time parameters {A(i,m),i € S,m > 0}
and the transition probabilities Q(; ), (jn) for the chain {£(¢}}? What is
the generator matrix?

(d5)} Does a stationary distribution exist for the process {£(¢)}? Does
a stationary distribution exist for the process {X({t)}7

(e) What is the long run arrival rate of points

e
Jim N*()/t 1

Express the limit in terms of {a(k), k € S} and the stationary distribution
of {X ()}

(f) Compute the Laplace functional of N* at the function f(¢). (You
might want to do this by conditioning on either on {X{t)} or by condi-
tioning on {X,},{Tn}.) Express the answer as an expectation involving
f(@). {a(k), k € S}, {X (1)}

(f1) From the Laplace functional, compute the Laplace transform at
the point 8 > 0 of N*{a, b] where 0 < a < b.

(£2) From the Laplace transform compute EN*(a,b]. Express the
answer in terms of {a(k),k € §}, {X{t)}.

(£3) If the Markov chain {X(#)} is stationary (begun with the sta-
tionary distribution) does the expression for the mean number of points
found in (f2) simplify? To what?

(Hint: Think conditionally.)

5.4. Harry and the Comely Young Lady, the Sequel. Recall from
Exercise 2.35 that Harry had his eye on a comely young lady whom he
originally spotted at a high cholesterol cocking course, and recall that
eventually Harry worked up the courage to ask her for a date.

Once the ice is broken, Harry and the young lady see each other reg-
ularly. Their relationship, although close, is somewhat stormy and fluc-
tuates between periods of amorous bliss (state 1), abrasive criticism of
each other caused by spending too much time together (state 2), confusion
about where the relationship is heading (state 3), and emotional exhaus-
tion caused in part by Harry’s relentless devotion to improving his business
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(state 4). The fluctuations follow a Markov chain with matrix

1,0 7 3 0
213 0 6 1
Q= 312 3 0 57§’
4 \7 0 3 0
and the times spent in states 1, 2, 3, 4, respectively, are exponentially

2
distributed with parameters 1,1,1,1. Let X(t) be the state at time ¢ of

the relationship.

(a) What is the long run percentage of time that the couple spends in
amorous bliss?

(b) Ha.rry observes that when he is happy, his business seems to do well.
The earning rates for the restaurant per day as a function of the states
are $400 when in state 1, $200 when in state 2, $300 when in state 3 and
only $150 when in state 4. Using these earning rates, compute the long
run earning rate of the restaurant,

5.5. Phase Distributions. Consider an m + 1 state Markov chain
{X(t),t > 0} with generator matrix A, and define

r=inf{t > 0: X(t) = m+1},
ﬂ.{=PI‘T<OO|X(O)=i], z'=1,...,m.

T T°
A"(n n)’
where T is m X m and corresponds to states 1,... ,m, T® is m x 1 and T
is 1 x 1. The distribution of r is called a phase distribution.

(a) Write a system of linear equations that a = (a,, ... , @) satisfies.
Express the system as a matrix equation in T, 7%, a. (Recall the linear sys-
tem you get in the discrete time case, and make adjustments for the random
sojourn times.) Show thata; =1, i=1,...,m,iff T'is nonsingular.

(b) Let Fi(x) =Pfr > 2], i=1,... ,m, and set

F(z) = (Fi(z),... , Fn(z)).

Write a system of integral equations whose unknowns are 7 (z),..., Fn(z).
{c) In (b} take Laplace transforms. Let

Write

oo
\I‘,-(G)=] e % F(z)dz, 8>0, i=1,...,m.
0

Lgt Y(8) = (¥1(6),... ,¥n(8)). Express the resulting equations as a ma-
trix equation in ¥(6), T, and solve for ¥(8) in terms of 7.

5. EXERCISES 451

(d) Invert and express F(z) in terms of T. If & = (@i,..., @) is an
initial distribution concentrating on {1, ...,m} and T is nonsingular, show

Eor = —oT 1.

(e) Harry’s Stressful Life. Harry’s stressful life causes his mental
state to fluctuate among three states: 1 (depressed), 2 (hopeful), 3 (sui-
cidal). Upon entering state 3, he must immediately be institutionalized.
Sojourns in states 1 and 2 are exponentially distributed with parameters
2 and transitions of mental state oceur according to the matrix

1 /0 b5 5
Q=215 0 5].
3\0 0 1
Let X(t) be Harry’s mental state at time ¢.
(el) Give the portion of the generator matrix corresponding to T
(€2) ¥ 7 = inf{t > 0: X(t) = 3} is the time to institutionalization,
find Py[r > z] explicitly if possible; otherwise express as a series. (This
can be done independent of the foregoing theory.)
(e3) Find Eyr.
(More on phase distributions in Problem 5.50. (cf. Neuts, 1981).)
5.6. Harry Meets Sleeping Beauty. Harry dreams he is Prince Charm-
ing coming to rescue Sleeping Beauty (SB) from her slumbering imprison-
ment with a kiss. The sityation is more complicated than in the original
tale, however, as SB sleeps in one of three positions:
(1) flat on her back, in which case she looks truly radiant;
(2) fetal position, in which case she looks less than radiant;
(3) fetal position and sucking her thumb in which case she looks radi-
ant only to an orthodontist.
SB’s changes of position occur according to a Markov chain with tran-

sition matrix
0 .75 .25

1
Q=225 o
3325 75 0

SB stays in each position for an exponential amount of time with parameter
A(Z), 1 €4 £ 3, measured in hours, where

A =1/2, A2)=1/3, X3)=1

Assume for the first two questions that SB starts sleeping in the truly
radiant position.
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(a) What is the long run percentage of time SB looks truly radiant?

(b) If Harry arrives after an exponential length of time (parameter a),
what is the probability he finds SB looking truely radiant? (Try Laplace
transform and matrix techniques.)

(c) 8B, being a delicate princess, gets bed sores if she stays in any one
position for too long, namely if she stays in any position longer than three
hours. Define for ¢t > 0 and i = 1,2,3,

Si(t) = Pfno bed sores up to time #| SB’s initial position is i],

so that S;(t) = 1 for ¢t < 3. Write a recursive system of equations satisfied
by the functions S;(¢),t > 0,i = 1,2,3. You do not have to solve this
system.

5.7. M/M/co Queue. Arrivals are Poisson with rate a, service times are
exponential with parameter b, and there are an infinite number of servers.
Let Q(t) be the number in the system at time ¢. Give the generator matrix
and show by solving %' A = 0 that the stationary and limiting distribution
is Poisson.

5.8. Suppose {X,} is a Markov chain with transition matrix P where
for some i we have py; > 0. Let {Y,} be {X,} observed only when the

X-process changes state. That is, ¥ ignores transitions which are back to
the same state. More precisely, we define

n(0) =
n(l) =inf{k > 0: Xk # Xo}
n(2} = inf{k > n(1) : Xi # Xy}

and define {Yi} = {Xnx)}. Show {Yi} is a Markov chain and give its
transition matrix. Show P[Y,4; = ¢| ¥} = i] = 0. Discuss the relevance of
this result to constructing a continuous time Markov chain.

5.9. Amateur Night at Happy Harry’s, the Sequel. Recall that
Friday night is amateur night at Happy Harry’s (Example 2.11.1). Assume
in addition to the information given previously that the length of time a
performer of class ¢ is allowed to perform is imited by management and the
indulgence of the crowd and is random with an exponential distribution
with parameter 2i. The amount of time it takes to quell a riot is exponen-
tially distributed with parameter 1. After the riot is quelled, performances
resume—the show must go on. Define the continuous time Markov chain
{X(2),t =2 0} by X(t) =1 if a performer of class i is being endured at time
t or X(t) =6 if a riot is being endured.

(a) Give {A(i)}, @, A for this chain.
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(b) If the evening starts off with a class 2 performer, what is the expected
waiting time until a class 1 performer is encountered?

(c) What is the long run proportion of time one spends enduring riots?

(d) Customers arrive at the door of Happy Harry’s according to a Pois-
son process rate o. If, however, upon peeking inside, a customer notes a
riot in progress, he will not enter, preferring instead the more sedate enter-
tainment of home video. What is the structure of the process of customers
who do not enter Happy Harry’s?
5.10. A service center consists of two servers, each working at an expo-
nential rate of two services per hour. If customers arrive at a Poisson rate
of three per hour, then, assuming the capacity of at most three customers,

(a) What fraction of potential customers enter the system?

{b) What would the value of (a) be if there was only a single server and
his rate was twice as fast (that is, rate 4)7

5.11. Show 61 de-5t 4 4g-5t
b+ .4e” 4 — de™
P@t) = (,6 — Be~5 44 Gedt )

is a standard transition function of a two-state Markov chain {X(t)}. Com-
pute

P[X(3.4) =1,X(3.8) = 0]X(0) = 0]
5.12. Harry’s Boxing Career. Harry gets into a fight with a brutish
mutant creepazoid over the dress code at the restaurant. Harry does well
but suffers increased dullness every time he is hit. Initially the probability
he is hit in a period of length 6t is Adt + o{6t), but when he has been hit 7
times, this probability is (A + ar)6t + ot) where ), a > 0. Formulate this
as a pure birth process, and find the probability that he suffers n hits in
time {0,2).
5.13. Yule Shot Noise.* Consider the linear birth process {sometimes
called the Yule process), and represent it as a point process

N=§:€T“,

n=1

so that T;, is the time of the nth jump (cf. Section 5.11). Let {g:{¢t),¢ >
0},i=1,2,..., be independent identically distributed non-negative valued
stochastic processes and suppose these processes are independent of the
linear birth process. Define the Yule shot noise process

N((O.h
Y = ) a(t-T).

i=1

* This problem is done best using material from Section 5.11.
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Compute the Laplace transform of Y (), and show
t
EY (t) = deM f e~*?Eg(z)dz,
0

where ) is the birth rate. (Hint: Since the Yule process is a non-
homogeneous mixed Poisson process, a version of the order statistic prop-
erty holds.)

5.14. Power starved Optima Street receives electricity through the follow-
ing grid:

To Optima 5t.

Y

.
-

FIGURE 5.2. TRANSMISSION ROUTE

At points 1 and 2 are transformers which operate independently. Trans-
former i operates for an exponentially distributed amount of time with
parameter a; (i = 1,2). When a breakdown occurs, repairs commence,
which take an exponentially distributed amount of time with parameter
b;,i =1,2. When both transformers 1 and 2 are broken, the flow of power
to Optima Street ceases and a blackout begins. What is the probability of
an eventual blackout? Explain, (Hint: Don’t panic. If you are doing lots of
computation you are on the wrong track.) What is the distribution of the
length of time the street is blacked out? What is the long run frequency
of blackouts?

5.15. Markov Branching Process. If a given particle is alive at a
certain time, its additional life length is a random variable which is expo-
nentially distributed with parameter a. Upon death, it leaves k offspring
with probability pg, k > 0. As usual, particles act independently of other
particles and of the history of the process. For simplicity, assume p, = 0-
Let X(t) be the number in the population at time t. Find the genera-
tor matrix and write out the forward and backward systems of differential
equations.
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Specialize to the binary splitting case where either a particle splits in
two or vanishes. Find the stationary distribution of {X (£)}.

5.16. M/M/1 Queue with Batch Arrivals. As usual, services are iid
random variables with exponential distribution and parameter b, Services
are independent of the input. Customers arrive in batches. The batches
arrive according to a Poisson process rate a. Each Poisson arrival event
delivers a batch of customers, the batch size being distributed as a random
variable N with

oo
PIN=n]=g,, n>1) a=1
j=1

Find the generator matrix.

5.17. Harry’s Scheduling Problems. In the interests of community
harmony, Harry decides to attend both the Young Republicans and the
Young Democrats meeting, but they meet at the same time. To be fair,
when he goes to the bus terminal, if buses to both meetings are available,
he flips a fair coin to decide which to choose. If only a bus to one meeting
is available, he boards that bus. Otherwise he waits for the first suitable
bus and boards that one. Loading times in the bus station for any bus are
exponential with parameter A;. The time between the departure of one
bus to the Young Republicans meeting and the arrival of the next bus for
the Young Republican meeting is exponentially distributed with parameter
As. The corresponding time for Young Democrats buses is exponential with
parameter \3. Loading times are independent of the waiting times for buses
after departures, and the two types of buses are in no way dependent.

(a) What is the equilibrium (limiting) probability that Harry arrives at
the terminal and finds:

(1) only a bus to the Young Republicans meeting available?
(2) only a bus to the Young Democrats meeting available?
(3) both buses available?

(4) neither bus available?

(b} What fraction of Harry's visits are to the Young Democrats meet-
ings?

5.18. Harry’s Buffet Line. Harry initiates a buffet and as an experiment
organizes it as a Moscow queue: Customers queue at the cashier to pay
for the buffet, then proceed to a second line where they wait to be served
by a single server. Suppose customers arrive at the cashier according to
a Poisson process with parameter one per minute and have exponential
service times with mean 1/2 minutes for the first queue and mean 1/3
minutes for the second queue. Further, assume that the interarrival times
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and service times are all independent. Set X (£) to be the length of the first
queue and Y () to be the length of the second queue.

{a) Let 7 (i, j) be the distribution of (X (¢}, Y (¢}) at equilibrium (7(i, j) =
lim; .o P[X() = 4,Y(t) = j}). Argue heuristically (if necessary) that
w(i,7) must satisfy the forward equations

3r(t,j+1)=2r(i+ 1,7 - 1) ~7m({, H{(1+2+3) + (i - 1,5)

foriz1l,j>1
(b) What are the corresponding forward equations for the cases { =
0,j=2landi=10,7j=0. Notefori>1

3m(i,1) +7(i —1,0) — w(5, 0)(1 + 2} = 0.

(¢) Verify that
7G5, 9) = (3 12(5)7"

is a solution to the forward equations and hence the two queue lengths are
independent in equilibrium,

5.19. Weather Affects Business. During snow storms, potential pa-
trons arrive at Harry’s place according to a Poisson process at a rate of one
per hour. Because his help is unable to arrive during bad weather, Harry
can only serve one customer at a time, and the service time is exponen-
tially distributed with mean 30 minutes. A prospective customer, knowing
this situation, will only enter Harry’s place if there are no other customers
being served.

{(a) Find the limiting distribution of queue length.

(b) What fraction of potential customers will be lost?

5.20. M/G/00 Queue with Fictitious Services. Consider a single
server queue with Poisson input of rate a. Service times are iid with com-
mon distribution G{z}. Assume f0°° z2dG(x) = m < oo, and if you like, you
may assume G has a density g. If, upon completing a service, the system
is empty, the server starts a fictitious service period {coffee break?} whose
length is independent of input and other services and also is distributed as
(. The server is considered busy during such fictitious services and cannot
work on new arrivals. Let X,, be the number in the system just after the
nth service (fictitious or actual) is completed. {X,} is a Markov chain.
What is its invariant measure when p = am < 17 Let Q(t) be the number
in the system at time £. Compute

Jim P[Q(t) = k| Xo = j]
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for all j, k. Why does this limit exist? Does this limit always equal
] = — 4|7
Jim P[X, = k|Xo = j]?

5.21. More on the M/M/cc Queue. Imagine Poisson arrivals with
rate a at an infinite number of servers and that service times are iid ex-
ponentially distributed with parameter b. Let @(t) be the number of busy
servers. Suppose Q(0) = 7. Model this as a birth-death process. Set

P, () = P[Q(t) = n].
Derive the forward equations

Fy(t) = —apo(t) + bP1(2t)
PL(t) = —(a+ nb)Pu(t) + aPu_1(t) + (n + D)bPop (), n>1.

Set G(s,t) = 3oy Pa(t)s™ and show G satisfies the partial differential
equation
8G

oG
5 :

(1-3) [——aG +b—>

Solve to obtain
G(s,t) = (1- (1 - s)e™) exp{~a(1 — $)p™}(1 — e™)}.

Identify this distribution when ¢ = 0. What happens as t — co7

5.22. Erlang Loss Formula. Consider the M/M/s queue with Poisson
input of rate a where there are s servers. Service times are iid exponential
random variables with parameter b. Customers, who arrive when all s
servers are busy, leave; nobody waits. Model this as a birth—death process.
What are the parameters of the birth-death process? Let Q(t) be the
number of busy servers at time ¢{. Find

ps = Jim PIQ(t) = o]

This represents the probability that an arriving customer finds the system
blocked and is lost. Why is this also the long run percentage of customers
who are lost?

5.23. Little’s Formula. In a queueing model suppose customers arrive
at times £1,%3,... and that the number of arrivals by time ¢ is N4(2).
Label the customers c;,cz,... and suppose w, is the time in the system
(queueing and service time) of ¢;. Let Q(t) be the number in the system
at time ¢. Assume some limits exist:
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{(a) the long run average time in the system of a customer,

(b) the long run average arrival rate,

i Ne(® _ 5
] i

(¢) the long run average number of customers in the system,

1
lim J0 Q)8 _
t—00 t

Prove Little's formula, L = Mw, which equates the average number in
the system to the arrival rate times the average wait per customer in the
system.

(Hint: Write

Na(e)

j Qs = 3 wiA(t—15).)
0 =

Consider the stable M/M/1 queue with Poisson input rate ¢ and ex-
ponential service times parameter b. Show that L is the mean of the
stationary distribution for the process Q(t). Do this also for the M/M/s
queue.

5.24. Virtual Waiting Times. Let Q(f) be the number in the system
for a stable M/M/1 queue, and let W(t) be the load on the server at time
t, the length of time the server serving at unit rate would have to work if
the input was shut off at time . Another description is that W(t) is the

waiting time of a fictitious customer named FIC who arrives at time .

Check that
i _
W(t) = { % QW) =0,
v;+ve t.. - UQ(t) if Q(t) > 0.

Here vp,vs, ... are iid service times and v}is the residual service time of
the customer in service at time t. Show that if p<land 2> 0

PW(t) < z] = P[W(o0) <z]:=1- pe—bi=p),

which is a distribution of mixed type having an atom at 0 and a density
away from 0 on the region (0,o¢). Show also that

Var(W(co)) = 227

_ [
EW(oo)_b = RI=

(1-p)’
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Check also that
EW(xc) + b7 =w,

where w is from Little'’s formula.
Hint: Proceed by noting that

PIW(E) <2 = PR =0+ 3 P[3 o < alPIQE) = nl.

n=1 1

5.25. For the stable M/M/s queueing model with Q(t} representing the
number of customers in the system at time ¢, let the traffic intensity be
p = a/(sb) and show that the stationary distribution can be written in the
form "
{ weet i< n<s
Tin = ™
n:p" %, ifn>s.

Write out an explicit expression for 7o, ugly though it may be. Further-
more, show that

Nsf
(1-p)?

L=EQ(0)=) nn.=sp+

For the virtual waiting time W (t), note

0 if Q(2) < s,
W(t)={ ! TQ() .
Di+:++ Doy—s+1, Q)28

where D4, D, ... are independent and
L]
D; L A Ei;(b) £ E(sb)
j=1

and the E’'s are independent exponential random variables with the
parameter in the parentheses. Show that, for z > 0, W(t) has a limit
distribution given by

Jim PW(t) < z] = P[W(o0) < 7]

=1- Na e—bs(l—p):z:

1-p
with mean and variance
1ls
EW ="
(00) = 5= 75
Var{(W{oo)) = Ta

Py )
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5.26. For M/M/2 show that when p < 1

_1-»
=1

What is 5,7

5.27. For a stable M/M/1 queue, what is the long run fraction of time
the server is busy? For M/M/s, if p < 1 and each server is utilized equally,
what is the long run proportion that a given server, say the sth, is free?
Hint: The proportion should be

X_: (8 ; n)nﬂ

5.28. For an M/M/1 queue, let N,(t) be the number in the queue exclusive
of the customer being served so that

Ne (1) = (Q(t) — L)+

The process {Ny(t),t > 0} is not Markov. Check this,

5.29. In the M/M/s queue, let Ny(t) be the number of customers (if any)
actually waiting. Assuming p < 1, prove
(a) the limit distribution of N,(t) is given by {v,} where

&
1 a,.
U0=?1023.",('5)’, Vp = Nep"
— J!

forn>1;
{b) the mean number of waiting customers, given that someone waits,
is
E(Ng(00))|Ny(o0) > 0) = (1~ p)7;

(c) The mean waiting tirme, given a customer waits, is

E(W(c0)|W(oc) > 0) = (sb~a)™".

5.30. For M/M/1 compute
(a) the expected number of arrivals during a service period; and
{b) the probability that no customers arrive during a service period.
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5.31. If the queue length Q{f) in some queueing model can be characterized
as a birth-death process with parameters A, and pin (n = 0), for which the
Hmit distribution {n,} exists (so that

:l-lfgo P[Q(t) = n] =n

for any n > 0), prove that
Z /\Tlnn = Zﬂnnn-
I n

This means that the expected input rate equals the expected output rate,

5.32. In M/M/s let R(t) be the number of busy servers at time ¢. If p < 1,
show that a limit distribution exists. Find it. What is the mean of the
limit distribution?

5.33. Rework—Dissatisfied Customers at Harry’s. The grill at
Harry's restaurant is modelled as an M/M/1 queue with a wrinkle. Harry
has hired an inexperienced college student to do the grilling; customers
may be dissatisfied with the item they receive and may ask to be served
again. (This paradigm corresponds to rework in manufacturing settings.)
The college student is only capable of working on one item at a time. Sup-
pose on receiving an order, there is probability 1 — a (where 0 < a < 1)
that the customer is dissatisfied, independent of whether that customer
had been dissatisfied one or more times previously. Subsequent service
times (times to get the new order), if any, are also independent and have
the same exponential distribution with parameter b.

(a)} Check that the length of time it takes for a customer to be satisfied
with his order is exponentially distributed. What is the parameter?

{b) Supppose dissatisfied customers are served again immediately until
they are satisfied. What are the conditions for the queue to be stable?
What is the total amount of time a hungry customer can expect to wait
between arriving and receiving a satisfactory order?

(c) Some patrons object to a dissatisfied customer being treated with
priority, so a new rule is initiated requiring a dissatisfied customer to go to
the end of the line. How does this affect the birth and death rates? How
are answers in {b) affected?

5.34. Define the efficiency EFF of the M/M/1 system relative to the
M/M/s system with the same total service rate as

E( time in system in M/M/s )

BFF = E{ time in system M/M/1} ~

Show that as p -+ 0, EFF — s while as p— 1, EFF — 1. (Prabhu, 1981.)
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5.35. In M/M/1 with finite capacity ¢, prove the following:
(a) The stationary distribution of the queue length is

(1—p)p"
M= e 0SmEo

and find the mean.

(b) Define the delay at time t (time to enter service) of our virtual
customer FIC as

fQ(t)=0orc

0,
D(t) = { Q(t) f1<Q(t)<e-1,

i=1 Vi

since if Q(t) = 0 or ¢ there is no waiting; here vy,...,v.—; are iid with
exponential distribution with parameter b. Show that the distribution
function of the delay at stationarity is given by

c—1 n—1 e_bz (b.’ﬂ)r
PiD(w) <z]=1 —Znnz —r
n=1 r=0
and the mean delay is
ED(o0) = 2 — (p +c)p°
b(l1-p) b(l-p*1)
{c) If ¢ = 1, verify
1 P

5.36. More Loss Systems. In an M/M/2 queueing model with no queue
allowed (arriving customers at a busy server depart without waiting}, we
suppose each channel is operated by one server. According to the records
of the servers, during 10,000 hours of operation, 40,000 customers received
service and 8,000 man-hours of service were dispensed. These figures are
the total for both channels.

(a) During the 10,000 hours above, estimate the number of Jost cus-
tomers.

(b} Suppose lost revenue per customer is $5.00 and the cost of operating
a channel (busy or not) is $4.00 per hour. Is it desirable to add another
channel? (Wolf, 1989.)
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5.37. Records and the Linear Birth Process. Consider a linear birth
process and thin the birth time according to the mechanism: The kth birth
time is deleted with probability 1 — k™! and retained with probability &—!
independently of all other points. Show that the process of retained points
is a homogeneous Poisson process.

This has the following interpretation: Given an iid sequence of random
variables {£,,n > 1} from common continuous distribution F(z). Mark
the kth birth time with the random variable £, and retain this birth time
only if £ is a record value of the £-sequence. The times of records form a
homogeneous Poisson process. (Browne, 1991; Bunge and Nagaraja, 1992.)
5.38. More Loss Systems. Harry Plans Scientifically. During
a particularly prosperous period, Harry plans for expansion. He buys the
vacant lot next door and plans to erect a parking garage for the convenience
of his customers who drive by to purchase take out food. He estimates that
during rush hour cars will arrive to the restaurant according to a Poisson
process at rate of 10 per minute and that the length of time cars stay in
the garage has an exponential density with mean three minutes. How large
should the parking garage be if there is to be only a 1% chance or less of
a car being turned away because the garage is full? (This is not a problem
vou should work out with pencil and paper; you may wish to make a dash
for the nearest computer terminal.)

5.39. Separate Lines at Harry’s. Harry tries organizing the traffic
flow in the restaurant. He organizes three separate counters: One is for
take out food, and the other two are buffet lines for customers who eat
in the restaurant. One of the buffet lines is for vegetarian food, and the
other is for fesh eaters. Each counter has a server, and each counter has
its own input. Assume that customers arrive needing service from only one
line. The service times at all three counters have an exponential density
with a mean of 15 seconds. The arrivals to the take out, vegetarian and
flesh-eating counters form three Poisson processes, with mean interarrival
times of 20, 18, 30 seconds, respectively.

(a) What is the average waiting time EW ({oc) for each of the three coun-
ters? (Give three numbers corresponding to take out, vegetarian, flesh.)

(b) Average the three numbers obtained in (a} as a measure of the overall
waiting times at the restaurant.

{c) Harry considers the possibility of a better traffic flow if the restaurant
is redesigned so that each counter is capable of handling all three types of
customers. Merge the three input streams into one input Poisson process
so that the system can be analyzed as M/M/3. What is the average waiting
time for this system?

(d) Compare the average obtained in (¢) with that obtained in (b).
Conclusions? What is Harry's best strategy?
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5.40. A Queue with Balking—Impatient Customers During the
Super Bowl, During the Super Bowl, Harry’s take out customers are
very impatient. Consider the take out line an M/M/1 system with input
parameter a and service rate b in which customers are impatient. Upon
arrival, a customer estimates his wait by n/b if there are n people in the
system. The customer then joins the queue with probability exp{—an/b}
(or leaves with probability 1 — exp{—an/b}). Assume a > 0.

(a) For a > 0, b > 0, under what conditions will a stationary distribu-
tion for the queue exist; what are the stability conditions?

{b) When the queue is stable, give an expression for the stationary
probabilities {n,}.

(c) Let @ — oo. To what does the stationary distribution converge
as @ -» 0o? Use this limit to compute an approximation of the average
number in the system when « is large.

5.41. M/M/2 Queue with Heterogeneous Servers. Consider a two-
server queue with a Poisson input rate a. Suppose servers 1 and 2 have
exponential service rates b; > bg. If server 1 becomes idle, then the cus-
tomer being served by server 2 switches to server 1. Give the birth-death
rates, stability condition and stationary distribution for Q{t).

5.42. Another Balking Model. In the system M/M/1, customers join
the system with probability 1 if the server is free and with probability p < 1
otherwise. Find the limit distributions of Q(¢) and of the virtual waiting
time W(t).

5.43. More Impatience—Reneging. Consider an M/M/1 system with
arrival rate a and service rate b where customers in the queue (but not the
one in service) may get discouraged and leave without receiving service.
Each customer who joins the queue will leave after a time distributed like
an exponential random variable with parameter -y if the customer has not
entered service before that time.

(a) Represent the number in the system as a birth-death model.

(b) What fraction of arrivals are served?

(¢) Suppose an arriving customer finds one customer in the system and
that the order of service is first cotne, first served. What is the probability
this customer is served, and, given that this customer is served, what is
the expected delay in queue?

{d) Compute the Laplace transform of the waiting time until service of
a fictitious arrival at time ¢t named FIC, assuming FIC cannot reneg and
that at time ¢ we have Q(t) = n. (Those waiting in front of FIC can
reneg.)

5.44. Harry Hires Scientifically. Harry must decide which of two
potential work/study students to hire as bartenders. Amos, who is willing
but slow, can be hired for ¢, = $6.00 per hour , while Boris, who is faster,
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demands a higher rate Cy per hour. Both dispense service at exponential
rates by = 20 customers per hour and bz = 30 customers per hour. Bar
customers arrive according to a Poisson process of rate 10 per hour. Harry
guesses that on the average a customers time is worth five cents per minute
and should be considered.

(a) Give the expected cost per hour incurred by hiring either Amos or
Boris.

(b) At most, how much should Harry be willing to pay Boris?

5.45. Harry Compares One Fast Worker with Two Slow Workers.
Harry is unsure whether it is better to hire a speedy energetic worker or
to split the work between two slower workers. To decide which is a better
strategy, he compares an M/M/1 system with an M/M/2 system in the
following manner: Suppose the input for both is Poisson with parameter
a, and suppose overall service rates are the same. In the M/M/s system
(s = 1,2), each worker works at rate b(s) so that the overall rate is sb(s) =
b’ where b’ is constant, independent of s.

(a) Check that w® from Little’s formula, the expected time in the
system, is

w® =51 (SP):/ !
YW1 — p)2(ass P + )

where p = ¢ /b is a constant independent of s. Verify that w® is miniraum
for s =1.

(b) As before, let Nés)(oo) represent for the M/M/s system the number
waiting in the quene (not counting the customer in service) at equilibrium,
with respect to the limit distribution. Verify

a+1
EN{®(c0) = p -
O = T

and show that E‘Nq(2)(oo) < EN{P(o0).
5.46. Consider the Markov chain {X (t),# > 0} with state space {1, 2} and

generator matrix
-1 1
2 2

Suppose {X(2)} is stationary. Is it reversible?

5.47. Cousider two queues in tandem, and suppose a/b; < 1, i = 1,2.
Compute the average number in the system L, and compute the average
time in system w of a customer.

5.48. Consider three queues labelled 1, 2, 3. The input is to queue 1 and
has rate a. Customers leaving queue 1 do not necessarily go to queue 2
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but choose between 2 and 3 with probabilities p and ¢ = 1 — p. Show
that if queue 1 has Poisson arrivals and has a stationary distribution, then
in equilibrium the input processes for queues 2 and 3 are independent
Poisson processes. (Recall what happens when you thin a Poisson Process.)
Let Q(t) = (Q1(t), @2(t}, Q1(t)) be the number at each queue at time ¢.
When does this have a stationary distribution? Show that the stationary
distribution has & product form.
5.49. Consider a closed queueing network with k nodes and m customers.
Suppose at node j service times are exponentially distributed with param-
eter b;(n;) if there are n; customers at the jth node.

(a} If node j operates as an M/M/s queue, what is b;j(n;)?

(b} Mimic the derivation of the invariant distribution of a closed queue-
ing network with homogeneous service rates to conclude that the stationary
distribution is (n = (ny,...,n4))

nj
]

k
=6l

where 7 is the stationary distribution of the routing matrix and §,, is
chosen to guarantee 3~ 7, =1.

(c) Show that the number of states in the state space S is

m+k—1
k-1 )
Thus, calculating the norming constant S, appearing in the expression for

the stationary probabilities can be impractical even for small values of &
and m.

(d) Consider the following alternative. Define the generating functions

— Hr:l bj(r)
ﬁ(z) = i bt-_lzi.

i=0

®;(2) = i _{mE)”
n=0

Show that N
B(z) = [] #:(2).
i=1

Thus 3, can be computed by multiplying together the functions ®; (z), i=
1,2,..., k after they have each been truncated to the first m + 1 terms.
The number of steps required to do this is of order km? (Kelly, 1979).
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{e) UPS in Ithaca has 35 trucks. Times between breakdowns for each
truck are exponentially distributed with mean 90 days. There are three
mechanics on the UPS staff who each work at an exponential rate of six per
day. At equilibrium, what is the expected number of operating vehicles?
(Pen and paper will not suffice fo get a number. Mathematica is helpful,
or some programming is necessary.)

5.50. More on Phase Distributions. Consider a finite Markov chain
{X(t), t > 0} with state space {1,...,m + 1}. Assume that state m + 1 is
absorbing, and let o’ = (a,...,@n,0) be some initial distribution. Let

r=inf{t >0: X)) =m+1}
be the absorbtion time in state m + 1. Then
F(t) = Palr <]

is a phase distribution. Call the class of phase distributions (as m + 1, &,
and A vary) the PH-class.

(a) If A ={A;;,1 <47 < m+ 1} is the generator matrix and A~ =
{A;i;,1<4,j<m}and a” =(a;,1 <i < m),show

m

F(t)=1- Ziai (e*“'*)i =1-aled1,

3=1i=1 o

where
Ame o= (AT)Re
e = P
k=0 '

Also, the Laplace transform is

m m
FO)=1->Y a(I-07A7)j=1-(I-67"A7)""L.
=1 i=1
(Unlike Problem 5.5, try not to derive the transform equation first. What is
the probability of the Markov chain wandering around without absorption

until time ¢? ¢t should govern the behavior of the process up to time 7.)
(b) A hyper-exponential density is a density of the form

k
f(.'.t) = Z a,‘bie_b‘z, x> 0.

im=]

Show such a density is also in the PH-class. (Do not use (a). Construct a
suitable Markov chain.)
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(c) Show an Erlang density is a phase density.

(d) Show mixtures of Erlangs are phase densities. A density is a mixture
of Erlangs if it is of the form Y% o, fi(z), where f;, 1 < i < k are Erlangs
of perhaps varying number of phases. Describe the associated Markov chain
for generating the phase distribution.

{e) The squared coefficient of variation of a random variable X is de-
fined to be Var(X)/(EX)?. Compute this in (b}, (c), (d). Check that for
hyperexponential it is at least 1 and for Erlang it is at most 1. A crude
fitting method is to compute an empirical squared coefficient of variation,
and if this is at least 1 we try to fit hyperexponential, and if this is at most
1 we try Erlang.

(f) Let X and Y be two independent non-negative random variables,
each with a phase distribution. Show that X + Y has a phase distribution.
(Each of the random variables has an interpretation as the absorption time
in some Markov chain. Put the Markov chains together suitably.)

5.51. At the library, requisitions for new books (monographs) and period-
icals (serials) are received at random. The requisitions are first processed
by Aaron, who verifies certain information and, if necessary, completes the
requisition form. Aaron then sends requisitions for monographs to Brown
and requisitions for serials to Craig. Brown and Craig check to see if the
monograph or serial is either in the library collection or already on order.
If neither is the case, then the requisition is sent to Davis, who enters
the necessary data on an official university purchase order form. The cost
of the monograph or serial is determined, and the appropriate account is
charged.

Aaron receives requisitions according to a Poisson process at a rate of
eight per hour. Approximately 70% of the requisitions are for monographs.
For both monographs and serials, 60% of the requisitions are returned to
the person who initiated the request with the notification that the mono-
graph or serial is either on hand or on order. Service time at each stage
of the acquisition process is exponentially distributed with a mean of 6
minutes for Aaron, 7.5 minutes for Brown, 15 minutes for Craig and 15
minutes for Davis.

(a) Find the expected total number of requisitions being processed at
any time in the library (at equilibrium).

(b) Find the expected processing time for a requisition for a monograph.
(This is the expected elapsed time in equilibrium between when a requi-
sition for a monograph arrives until either the order is completed or the
initiator of the requisition is notified the item is already on order or in the
collection. Prabhu, 1981.)

5.52. A Closed Cyclic Network with Feedback. Consider a closed
network consisting of k nodes and m customers. Customers cycle through
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the nodes in increasing order, meaning that p; ;11 = 1, § < k. Upon
leaving the last node k, a migration to node i takes place with probability
Di (2?:1 pi = 1) so that px; = p;. Assume the service rate at node j is b;.
Find the throughput rates {r;} and the stationary probability distribution.
Give the condition that node j should be a bottleneck. If by =--- = by = b,
where is the bottleneck?

5.53. Suppose that a stream of customers arriving at a queue forms a
Poisson process of rate a and that there are two servers who possibly differ
in efficiency so that a customer’s service time at server i is exponentially
distributed with mean b,-‘l, for ¢ = 1,2. To ensure that equilibrium is
possible, suppose & + by > a. If a customer arrives to find both servers
free, he is equally likely to be allocated to either server. The queue can
be represented as a Markov process where the state variable is the number
in the system; the state space should be taken to be {0,1a,15,2,3,...},
where la represents one person in the system at server 1 and 1b represents
one person in the system at server 2. What is the stationary distribution?
Is the process reversible? If so, describe the departure process. (Warning:
This is not a birth—death process. Compare this problem with 5.41; the
difference is that, in this problem, a customer being served by the slow
server cannot switch to the faster server.)

5.54. An arbitrary stochastic process {X(t),—oo <t < 0o} is called time
reversible if for any T we have

[{X(£),~00 < t < oo} L {X(r—t),~00 < t < co}.

Show such a process is stationary. If {X(t)} is reversible, then so is
{f(X(£)} even though the latter process may not be Markov even if X
is Markov (Kelly, 1979).

5.55. Use reversibility to verify that a stationary M/M/co has a Poisson
output.

5.56. Consider a Markov chain {X(t),t > 0} on the state space with
generator matrix _
@, fk=j+1,
Ajg=< b ifk=0,
0, otherwise.

Is the process regular for ¢ > 1?7 Find the stationary distribution when
a>1,b> 0 (Kelly, 1979).

5.57. If X;(t) and X,(t} are two independent reversible Markov chains,
then (X, (¢}, X3(2)) is a reversible Markov chain (Kelly, 1979).

5.58. Consider the foliowing generalizations of Proposition 5.9.4.
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(a) Suppose there are r queues in series, with r > 2, and the ¢th queue
has one server working at rate b;. The servers operate independently of
each other.

{(b) Suppose there are r queues in series, and the ith queue has s; servers
with each serving at exponential rate b;. All the servers serve independently
of each other.

{c) Suppose there are r queues in series, and the ith queue has one server
serving at a state dependent rate of b;(n) when Q;(t) = n.

In each case show that the stationary distribution has a product form.

5.59. Consider two Markovian queues in series as in Section 5.9. Compute
the average number L in the system and the average wait in the system.

5.60. Consider two tandem Markovian queues as in Section 5.9. Let W;(t)
for ¢ = 1,2 be the virtual waiting time in queue %; that is, W;(t) is the
time that a customer would have to wait for service at the ith counter
if he arrived at time ¢. Check that for a fixed ¢, Wi(t) and Wy() are
independent if # is the initial distribution.
5.81. Consider two tandem Markovian queues as in Section 5.9. Compute
the generator matrix of Q(-) = (Q1(-),@2(-)), and use this to verify that
the stationary distribution is a product distribution.
5.62. System Busy Period for M/M/s. Consider an M/M/s queue
and define

T=inf{t >0:Q(t) < s},

where, as usual, Q(t) is the number in the system at time t. We are
interested in T when the initial condition is (0} = i, where ¢ > 5. In this
case, T has the interpretation of the first time some server is free and is
called the system busy period. You should review Problem 3.26.

Show

(a) P[T<oo|Q(0)=s]=1iﬁp=-ES-51.

In the case p < 1 show

O ETRO=9= 55—
Var(TIQW) = ) = Tt

(c) E(T|Q(0) =s) =0 iff p= 1.
(Hint: Let {X(t)} be a birth-death process with birth parameters a and

pe = sb for k > 1. Argue that the distribution of T is the distribution
of the first passage time of X from s to s — 1. Note for our problem the
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values of the birth-death parameters for k£ > s are irrelevant. The problem
is equivalent to finding the distribution of the first time X moves down by
1 and hence is equivalent to finding the distribution of the first time an
M/M/1 queue moves from state 1 to state 0. This is the busy period for
M/M/1. Apply Problem 3.26.

5.63. Queue Discipline. Consider the M/M/s queue under two queue
disciplines. Let {Qf)} be the queue length process when the order of
service is first come, first served, and let {Q;(i)} be the queue length when
the order of service is last come, first served. Show

{Qr 1)} £ {Q®)),

by showing both are birth-death processes with the same parameters. The
queue length process ignores the differences between the queue disciplines,
but the waiting times will be different. Let W;(t) be the virtual waiting
tirne; i.e., the waiting time for service of a fictitious customer named FIC
wheo arrives at time £ assuming the queue discipline is last come, first served.
Argue thag
mo={7 oSy

, HQ) 2,

where T* has the distribution of the system busy period of an M/M/s
queue with initial condition that there are s customers present at time 0.

Show
PIT* <z, ifp>1,

1-P[T* >x]f’_f—p, ifp<t,

where the distribution of T* is as discussed in Problem 5.62 and 7, is given
as in Problem 5.25.

5.64. Harry’s Bar. The ladies’ room in Harry’s bar has one toilet
and, in accordance with local ordinances, also possesses a couch where two
ladies may sit and wait their turn. Others who arrive when the couch and
toilet are fully occupied must stand and wait their turn. Ladies spend an
average of five minutes in the toilet, the actual time being exponentially
distributed. Between 6 PM and midnight, ladies come to use the facility
according to a Poisson process with a rate of one every 15 minutes.

(a) What percentage of time is the toilet busy?

(b} What is the expected time that any particular lady will have to
spend standing up?

The men’s room at the bar contains one toilet and no couch. Men arrive
at the men’s room according to a Poisson process with average time of 10
minutes between one arrival and the next. Each user of the toilet takes an
exponential amount of time with mean three minutes. Arriving men who
find the toilet occupied wait; the quene spills out into the hall if necessary.

Jim PIW(t) < 2] = {
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(c} What is the probability that an arriving man will have to wait more
than 10 minutes to use the toilet?

(d) What is the probability that an arriving man will spend more than
10 minutes away from the bar?

(e) Harry will install a second toilet in the men’s room if he is convinced
the expected time away from the bar is at least three minutes. What would

the arrival rate to the men’s room have to be to justify the extra toilet?
(Cf. Problem 5.24.)

5.65. A pgas station has room for seven cars including the ones at the
pumps. The installation of a pump costs $50 per week, and the average
profit on a customer is 40 cents. Customers arrive in a Poisson process at
a rate of four per minute, and the service times have exponential density
with mean 1 minute. Find the number of pumps which will maximize the
expected net profit (Prabhu, 1981).

5.66. Suppose {X(t), > O} is a Markov chain with discrete state space
5. Let C C § be a closed set (with respect to the embedded discrete time
Markov chain {X,.}). Suppose 1/ = (7,4 € §) is a stationary distribution
for {X(t)}. Show

) 4 .
eo=(=—"—.,icC
¢ Ekecﬂk )

is also a stationary distribution for {X(2)}.
5.67. Consider a two node closed queueing network with routing matrix

01
P-(1 )
and N people and with service rates at the two nodes being by, bs. Show
the stationary distribution can be written as

aﬂ

’?(nsN—ﬂ)=m&'}-,

where a = by /by.

5.68. Kelly’s Lemma. Let {X(t)} be a Markov chain with discrete
state space S and inﬁnitesirga.l generator matrix A. Let 7 be a probability
distribution on S, and let A be an infinitesimal generator matrix of some
Markov chain with state space S. If

mAy =n;An, i,7€8,

then prove
(a) m is a stationary distribution for {X ()} and
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(b) A is the generator matrix of the reversed time process (Kelly, 1979).

{c) Suppose now that we have a two node queue in series with feedback.
The service rate in node i is b; for i = 1,2, and customers arrive at node 1
according to a Poisson process of rate a. Upon service completion in node
1, customers proceed to node 2. After service completion at node 2, there
is probability p {0 < p < 1) that rework will be necessary, in which case
the customer needing rework rejoins the quene at node 1. Let @;(t) be
the number at node 7 at time ¢ for : = 1,2. Then Q(t) = (@:1(2), @=2(t))
is Markov. Guess what the structure of the model obtained by reversing
the time should be and use Kelly’s Lemma to prove that the stationary
distribution is of product form

n(n,m) = (1 - p1)pT(1 - p2)p?".

What are the values of p;, i = 1,27

(d) Multiclass M/M/1 Queue. Consider a first come , first served
single server quene with the added wrinkle that customers are of different
types 1,2,...,T. Assume each type customer arrives via an independent
Poisson process with rate a; but that service rates are independent of
customer type and equal to b. Let the state space be of the form

{(n.e1,...,ca) 020, € {1,...,T}},

where ¢, ..., ¢, represent the types of customers present in the order of
their arrival. Using Kelly’s Lemma or by thinning a Poisson process of rate
a:=aj + -+ + ar, show the stationary distribution is of the form

m{(n,e1,-..,6n) = p*(1 — P)Pe, - - Pens

where p = a/b and p; = a;/a. Of course, assume p < 1. (Walrand, 1939.)

5.69. Erlang Systems, M/E; /1 Queue. Consider a single server queue
with Poisson input of rate a. Assume service requires k stages, and that
each stage of service requires a random amount of time with exponential
density with mean b~!. Stages are independent of each other and of the
input. Let Q(t) be the number of customers in the system at time ¢, and
let R(t}) be the number of residual stages a customer must pass through
before exiting the queune. If at time ¢ it happens that the queue is empty,
set R(t} = 0. (Note that whenever a customer is traversing the stages, no
customer can enter service.) For example, if at time ¢ the customer is still
in the first of the k stages, we have R(t) = k.

(a) Argue that the traffic intensity should be ka/b.

(b) Argue that {Q{(t)} is not Markov.

(c) Argue that {(Q(t), R(t))} is Markov with state space § = {0,1,.. . }x
{0,1,...,k}.
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(d) Check that the following are permitted transitions of this system:
Fori>0and m > 2,

(4, m) — (i,m — 1) (phase completion before arrival)
{3,m) — (i +1,m) (arrival before phase completion)

and, for i > 0,

{0,0) w (1, k) (arrival to empty system)
(1,1) ~ (0,0) (phase completion and customer leaves)
(4,1} — (i — 1,k) (departure before arrival).

Compute the generator of this Markov process. Write out the equations
determining the stationary distribution.
(e) Let Qy(t) be the total number of stages of work in the system; i.e.,

0, if Q(t) =0,

t) = .
@ ={ HQW - 1)+ RE), #Q() >0

Check that {Q1(2)} is Markov. Give the generator. Write out the equations
determining the stationary distribution.

The equations in (d) and/or (e) can be solved using generating functions.
The solution requires skill and patience (cf. Prabhu, 1981; Wolff, 1989).
Omne obtains

EQ(o)=L=p+ -—Lz—(l + l)
BEGETTE A
where p is the traffic intensity assumed to be less than 1. For the mean of
the limit distribution of the virtual waiting time, under the same conditions
we have
k+1 p?

2ka 1—p’

Note that both L and EW (co) decrease as k increases (assuming p is held
fixed). The square coefficient of variation (Problem 5.50) decreases with
k. The more regular the system, the better the performance.

(f) The Optima Street Computer Company carefully checks each 486
class computer shipped to a customer. Machines arrive at the inspector
according to a Poisson process rate of five per hour. Inspection consists of
10 separate tests, each taking one minute on average. The tests must be
done sequentially in an order specified by company policy. Actual times
for each test were found to be roughly exponentially distributed.

{a) Find the average waiting time a machine experiences.

EW (00) =
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{(b) Find the average number of sets with the inspector.

(c) Suppose there were only two tests that had to be done. The company
has the choice of hiring two inspectors with each inspector specializing in
one test or hiring one inspector to do both the tests. Assume the single
inspector would work at rate 2b on each inspection and that each of the
single inspectors would work at rate b. Compare the two schemes from the
point of view of the average waiting time a machine experiences. Assume
machines arrive according to a Poisson process rate a. (Distinguish between
single server queues in series, Le., tandom queues, and single server queues
with Erlang service times.)

5.70. The Arrival Theorem. Review or do problems 2.26, 2.53 and 2.55.
Consider a continuous time Markov chain {X(t),t > 0} with state space
S, an embedded jump process {X,,} with transition probability matrix
Q. Assume the continuous time process jumps at {T,} and, as usual,
the generator matrix is A. Suppose the stationary distribution n exists,
Suppose further that

B=2 mA(E) < co.

Check that this condition implies that {X,} has a stationary distribution
.

Suppose J C 52\ {(s,s} : s € S}. Think of the elements of J as
highlighted state transitions. Such movements as occur in J can be inter-
preted as traffic due to customers moving about a queueing system. For
example, if J = {(n,n —1) : n > 1}, we could interpret J as transitions
corresponding to departures.

Define A = Z(t.,j)e‘, n;Ai; and assume A\ > 0. Also define forn > 0

sy =inf{n: (Xn, Xn41) € J}
Sn4l = inf{k > 85t (Xk,.Xk+1) € J}

Let
Sn = Tsn-}-l

be the time of the nth jump within J, and let the counting function be
K(t) =3 n1s.<t)-

(a) Show {(X(t}, K(t),t > 0} is Markov. What is its generator? Express
EK(t) in terms of A and {P[X(u) = j],j € S,u < t}.

{(b) (Harder) If for every t we have X(¢) and K(t) independent, then
{K({t),t > 0} is Poisson. What is the mean function? (Check that K has
independent increments.)

(¢} {X(Ts.+1),n = 1} is a Markov chain with stationary distribution

mF =AY mAgligen
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{Recall that {Z, = (X, Xns1} is Markov and so is {Z,,}. With the
stationary distribution as an initial distribution, {Z,_} is stationary, and
hence so are the marginal processes. It remains to show that the second
marginal process is Markov. But {X; } is {X,} sampled at successive
iterates of a stopping time and hence is a Markov chain (¢f. Problem
2.55).)

(d) By time reversal, show that {X(T%,.),n > 1} is a Markov chain with
stationary distribution

T =AY mAyl pes):

J

(e) (Harder) For every t > 0 we have {K(t + s} — K(t),s > 0} indepen-
dent of X (t) with respect to P, iff w; =m; for all j € S. In this case K is
Poisson with rate .

(f) (Harder) By time reversal show that for every £ > 0 we have
{K(s),s < t} and X(t) independent with respect to P, iff 7 = n; for
all 7 € S. In this case K is Poisson with rate A, (Walrand, 1988, page 75;
Melamed, 1979).

5.71. Open Networks with State Dependent Service Rates. Con-
sider an open network with k nodes such that if n; customers are present at
node j, then the service time is exponential with parameter b;(n;). Verify
that the invariant measure is of the form

H

Give a condition that a stationary probability distribution exists.

1«_1 J

5.72. The Batch Markovian Arrival Process. (a) A Poisson process
of buses arrives at Harry’s restaurant according to a Poisson process of rate
a. Each bus contains k hungry passengers with probability pe. Let N(t)
be the total number of arrivals by time ¢. Show {N(t),t > 0} is Markov
with generator of the form

dy di d2 ds
0 dy d1 ds
A=19 0o 4y 4

Give an expression for {d;}.
(b) Consider the following generalization of (a). We have a two dimen-
sional Markov chain {(N(t), J{t)),t > 0} on the state space § = {(i,7) :
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i20,1<j <m}. Think of N{t) as a counting variable, and think of J(¢)
as an environmental variable which helps to determine the distribution of
N(t). The infinitesimal parameters are specified as follows: For the holding
time parameters in a state ({,%) we have

A7) = A(D),

and the embedded discrete time Markov chain has transition probabilities
of the form

Qi (1+i.0 = Pild. k),

which we interpret as the probability starting from (I,4) that the environ-
ment changes from { to k and that a baich of size j arrives.
(bl) Check that the infinitesimal generator A is

Ay, = —Al, 1) = A(E)
Ay, (4,0 = Mi)pi(3, k)
and that, if we order 5 as
S ={(0,1),(0,2),...,(0,m},(1,1),... L(1,m),. ..

this matrix can be written as

Dy Dy Dy
Dy Dy Dy .
A= Do .D1 [ !

where Dy, k > 0 are m x m matrices, Dy has negative diagonal elements
and nonnegative off-diagonal elements and Dy, k > 1, are nonnegative.
Specify the matrices D, k > 0.

(b2) Check that {J(t),¢ > 0} is Markov with infinitesimal parameters
Ali) and Qe = > 420 Pi(d, k) and, therefore, for k # i,

o0 [=0]
Aik = Z )\(E)IA(J, ZDJ 2 k)
i=0 i=0
Assume {J{(t)} is irreducible, so that it is a Markov chain with generator
matrix A= 3777, D;.
(b3) Let nj,1 < j < mn, be the stationary distribution of J so that

7D =0.
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Show the long run arrival rate for the arrival process N(t) is

o
7> kD,
k=1

where 1 is a column vector of 1’s.
(b4) Define

Fij(n,t) = PIN(t) = n, J(t) = j|N(0) = 0, J(0) = i].

From the Chapman-Kolmogorov equations show that the matrices P(n, f)
satisfy
L3
P'(n,t) =) " P(j,t)Dp_j, n21t20,
j=0

P(0,0)=1.
Set (0<s<1)

P*(s,t) = i P(n,t)s"

n=0

so that d
EP‘(s, ) = P*(s,t)D(s}, P*(s,0)=1,

and therefore
P*(s,t) = P,

How can one compute EN(t)?

{b5) Discuss: Dy governs transitions that correspond to no arrivals, and
for j > 1, we have D; governing transitions that correspond to arrivals of
batches of size j.

(b6) If Dy = —a, Dy = @, check that IV is Poisson with rate .

(b7) If D; = p; Dy for j > 1 where {p;,j > 1} is a probability distribu-
tion, discuss the structure of N.

(b8) Discuss why the Markov modulated Poisson process {Problem 5.3)
is an example of a batch Markovian arrival process (Lucantoni, 1991; Neuts,
1989.)

5.73. Terminal Feedback. Consider an open network where a3 =
a,az = - - = g = 0. Customers enter the system only at node 1. Routing
is as in Problem 5.52 in that p; ;41 = 1, i =1,...,k—1 and feedback from
k occurs in that px; = p;, j=1,...,k Suppose g=1- ZLlp,- > 0, s0
from node k there is a possibility of exiting from the system. Assume the
service rate at node j is b;. Find the throughput rates and the condition
that a stationary distribution exists. Give the stationary distribution when
it exists. Specialize to the case by = --- = b;.
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5.74. Reversing an Open Network. Consider a stationary open Mar-
kovian network {Q(t}, —oc <t < oo} with k nodes, input rates a1,...,ax,
service rates by,...,bx, throughput rates r;,...,rx and routing matrix
(pij,1 <14,7 < k). Let Q(t) = Q(~1) be the reversed process.

(a) Compute A the generator of Q.

{b) Conclude Q is a Markov chain model of an open queue with param-
eters

&; = g5r5, by = by, Py =Py s
Ti

What is the stationary distribution of Q?

(¢} Conclude that the departure processes which count exits from the
different nodes of Q are independent Poisson processes. From node ¢,
departures from the system are Poisson with rate r;g;.

5.75. Apportioning Effort in an Open Network. Consider an open
network with k nodes. Suppose a3 =--+ = ax = 1, h,..., bx are the ser-
vice rateg and ry, ..., Tk are the throughput rates. Suppose the stationary
distribution exists. Let Q{co) = (@1(00), .. ., @x(c0)) be a vector with the
stationary distribution. Set L; = EQ;(c0).

(a) Compute L; for j =1,...,k and ELI L;.

(b) Suppose we can control by, ...,b; subject to 2__:;1 b; = b. How do

we assign service rates by, ..., by S0 as to minimize E?=1 L;, subject to the

constraint that 2?:1 b; = b7 (Hint: Use the Lagrange method.) (Kelly,
1979.)

5.76. Let n = (mp,71,...) be a probability distribution. Show there is a
birth-death process with 1 as the stationary distribution.

5.77. Harry Visits the Customs Office. Harry is sent a present from a
relative living abroad and must go to the customs office to claim it. He takes
his statistically inclined niece along and together they become fascinated
by the traffic patterns in the office. There are three windows. Harry’s niece
notices that external arrivals at the windows follow independent Poisson
processes with rates 5, 10, 15. Service times at the three windows seem to
be exponentially distributed with rates 10, 50, 100. A customer completing
his business at window 1 seems equally likely to migrate to window 2,
window 3 or leave the office. A customer departing from window 2 always
goes to window 3. A customer from window 3 is equally likely to migrate
to window 2 or leave the system.

(a) Compute the stationary distribution for this system.

(b) Find the average number in the system in equilibrium (with respect
to the stationary distribution} and the average time spent in the system
by a customer.
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5.78. Consider a closed network with two nodes and two customers. Sup-
pose the routing matrix is
b5 5
r=(3 3)

Let the service rates be b1,b;. Find the stationary distribution and the
average number at node i, i = 1,2,

5.79. Consider an infinite server gueue. Service times at each server are
iid exponentially distributed random variables with mean b~!. Customers
arrive in pairs, the arrival times constituting a Poisson process with mean
rate a. Let Q(t) be the number of customers in the system at time ¢.
Assuming that the service times and the interarrival times are independent,
argue that () is a Markov chain and write down the generator of {Q(¢)}.
If Q(0) = 0, find the expected time at which the last of the first pair of
arrivals leaves the system.

5.80. Particles arrive at the surface of a bacterium according to a Poisson
process with mean rate A. Each arriving particle is either of type 2 with
probability 2 (0 < # < 1) or of type 1 with probability 1 — 8. The
state X () of the bacterium at time ¢ is a Markov chain with state space
§ = {0,1,2} and initial value X(0) = 0. If the bacterium is in state 0,
then an arriving type 2 particle takes it to state 2 where it stays forever,
and an arriving type 1 particle takes it to state 1, where it remains for an
exponentially distributed time with mean z~! before returning to state 0.
If the bacterium is in states 1 or 2 then arriving particles have no efiect.
Show that

B ol BA H g™t H AL
P[X(1) =2|X(0)=0]=1 P ((1+sl) (1+32) )

where 81,82 are the roots of the equation
8% +8(A + p) + BAp=0.

5.81. The Poisson Process is Markov.

(a) Treat a Poisson process N(t),t > 0, as a Markov process and write
down the generator.

(b) Now pretend you know only the generator. Solve the forward equa-
tions to determine

PIN(t) =n|N(0) =0}, n>0.

5.82. Happy Hour. Harry's happy hour customers arrive according to a
Poisson process of rate a. Each customer is either a yuppie or a computer
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nerd with respective probabilities p and ¢ (where p,g > 0, r+aqg=1)
independent of past arrivals. Let X (£) be the type of the last arrival before
time ¢. Show {X (¢)} is a Markov chain, and give the transition probability
matrix P(t).

5.83. The Order Statistic Property for a Linear Birth Process.
(a) Consider the linear birth process of Section 5.11. Prove a version of
the order statistic property: Given n births in (0,t], what is the joint
conditional distribution of the times of the r births?

(b) Generalize Problem 4.53 to the non-homogeneous case: Let N =
2.x€7, be a point process on (0,00) with points {T:} satisfying
0<Ty <T;... and set N(t) = N({0,]). Suppose m(t) = EN(t) < co.
Also suppose that for each ¢ > 0 there is a distribution function Fi(z) such
that the conditional distribution of (T4, ...,7,) given N(¢) = n is the same
as the distribution of the order statistics from a sample of size n from the
distribution function Fi(z). Show that

O<z <t

Then show that there exists a homogeneous Poisson process N* on (D, x0)
and an independent non-negative random variable W, both defined on the
same probability space as N, such that

N() = NY{(Wm(-)).
(c) Combine (a) and (b) to provide an alternate proof of Kendall’s result

in Section 5.11. (Feigin, 1979; Neuts and Resnick, 1971; Waugh, 1970,
Keiding, 1974.)



CHAPTER 6

Brownian Motion

HE BROWNIAN motion process, sometimes called the Wiener pro-

cess, was originally posed by the English botanist Robert Brown as
a mode! for the motion of a small particle immersed in a liquid and thus
subject to molecular collisions. Brownian motion assumes a central role in
the modern theory of stochastic processes and in the modern large sam-
ple theory of statistics. It is basic to descriptions of financial markets,
the construction of a large class of Markov processes called diffusions, ap-
proximations to many queueing models and the calculation of asymptotic
distributions in large sample statistical estimation problems.

6.1. INTRODUCTION.

We will need some notation before the basic definitions. Let C[0, 0o) denote
the collection of real valued continuous functions defined on the domain
[0,00). We denote the normal distribution function with mean 4 and vari-
ance o2 by N(u,0?, ), and similarly, the normal density will be denoted
by n{u, 0?,x). We write N(z) = N(0,1,z) and n(z) = N'(z) = n(0,1,z).

Definition. The stochastic process B = {B(t),t > 0} is standard Brown-
ien motion if the following holds:

(1) B has independent increments.
(2) For0<s<t,

B(t) — B(s} ~ N(0,t — s),
meaning the increment B{t) — B(s) is normally distributed
with mean 0 and variance equal to the length of the increment
separating ¢ and t.
(3) With probability 1, paths of B are continuous; that is,
P[B e Cf0,)] =1.

(4) B(©0)=0.
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Property (4) is merely a normalization and is a convenience rather
than & basic requirement. If a process {W(t),t > 0} satisfied the first
three postulates but not the last, then the process {W(t) — W(0),t > 0}
would be standard Brownian motion. Property (3} follows from {1) and
(2) in the sense that given a process W satisfying (1) and (2), there always
exists a version satisfying (3) (see Docb, 1953} so properties (1) and (2)
are the most basic. Property (1) says incremental behavior in one interval
does not affect incremental behavior in a disjoint interval. This is a rather
strong assumption. Likewise, assuming Brownian increments are normally
distributed in property (2) is also a rather special assumption.

If you have nagging doubts about whether there really exists a process
satisfying properties (1)~(4), these should be laid to rest by reading Section
6.3, which shows how to construct Brownian motion starting from a supply
of iid N(0,1) random variables.

Brownian motion can be thought of as a continuous time approxima-
tion of a random walk where the size of the steps is scaled to become
smaller (necessary if an approximation is to have continuous paths) and
the rate at which steps are taken is speeded up. Let {X,,n > 0} be iid
with £X,, = 0 and Var(X,}) = 1. Define the random walk by Sy = 0, and,
forn>1,let 5, = X7+ --- + X,. Define the continuous time process

Sint)
>
/o 120

where [t] is the integer part of ¢, i.e., the greatest integer less than or equal
to t. Then we have that

(6.1.1) Bn(t) =

(6.1.2) B, = B,

where “=" denoctes convergence in distribution. For the time being, we
interpret (6.1.2) as meaning convergence of the finite dimensional distribu-
tions, that is, for any k and 0 € £y <+ -- < { and real numbers z;,...,z,
we have

lim PlB,(t;) <zii=1,... k= PiB(t) <zii=1,...,k.

To check (6.1.2), we rely on the central limit theorem. First note that
for any ¢t > 0 we have

Sy _ Sy [Int]

Vo = TV

S—»\-/-_"— = N(0,1),

and since

n
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by the central limit theorem, where N(0,1) is a normal random variable,
we have that

b:/["_‘] = tN{0,1) £ B(t).

Also, for ¢t > s, we have

ZEML,] 1
B.() — Bu(s) = T;

2 Sprt)—rs]
Jn
= (t — s)N(0,1) = B(t) — B(s).
Since the variables
(Bﬂ(tl)? Bﬂ(tz) - Bn(tl)v ey B‘n(tk) - Bﬂ (tk—l)

are independent due to being composed of sums of X’s from disjoint blocks,
we have joint convergence:

P[Bn(tl) < 11, Balta) — Bu{t1) < 12,..., Bp(te) — Bp(te—1) < z]
= P[Bn{t;) < $1]P[Bn(t2) — Ba(t1) £ :L‘g] v P{Bn(tk) - Bﬂ(tk_l) < :L'k]

— P[B(tl) < xl]P[B(tz) - B(tl) < 562] .. .P[B(tk) — B(tk_l) < SCkI-
Therefore,
(Bn(t1), Bn(t2) — Bn{t1),. .., Ba(tx) — Baltk—1)
= (B(tl),B(tz) - B(tl), .- ,B(tk) — B(t}c._l)

in R*, and applying the map

(bl,bg,...,bk)l—? (bl,bl+bg,...,b1+bg+"‘+bk)

from R* — R* yields the k-dimensional convergence

(Bﬂ.(tl))Bn(t2)1 . (tk) (-B(tl) B tZ), ] (tk))

The invariance principle. The convergence in (6.1.2) is, in fact,
stronger than convergence of the finite dimensional distributions. We now
explain this stronger form of convergence which is called an invariance
principle or functional central limit theorem. Suppose we make C[0, co)
into a metric space in such a way that convergence in the metric space
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C[0,0) is the same as local uniform convergence. The usual metric is
defined for f, g € C[0, 00} by

plfg)=>" 1A S“Pos:s;nlf - g(t)[.

n=1

Thus for f, € C[0,0), n >0, p(fn, fo) — 0 if and only if for any k

lim sup. | falt) —

noo gt

folt} = 0.

The process {B,(t),t > 0} defined in (6.1.1) is not continuous, so we
modify it so that the paths of the modification are in C [0, 00}. Define

S, X
BO(¢) = \[/—hi]- + (nt - ) 24 45

vn

This is a continuous function Wthh is obtained by placing dots in the

[0,00) x R plane at points {(£ 77-) J 2 0} and then connecting the dots.
See Figure 6.1.

51/V4
S3/v4E

Sa/vd

1/1 2/4 3/4 4/

$2/vE
FIGURE 6.1.
The strengthening of (6.1.2) is that for any real valued function
C{0,00) — R,
which is continuous from its metric space domain C[0, 00) into its range

R, we have
T(BY) = T(B).
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For instance, if T(f) = supy<,<; f(t) then, as n — oo,

(e _ St
T(B, )_o?_zligl Vi
_ SUPgcicn Sy
=T m
= sup B(t) =: M(1).
0<t<1

The distribution of M({t) will be found in Section 6.5, and thus we obtain
: SUPg<j<n S _
Jim PI=20S50 0 < o) = PIM(1) < 2).

What makes an invariance principle so powerful and flexible is some-
thing called the continuous mepping theorem: If ¢ : C[0,00) — X is any
map from C[0,20) into a nice (complete and separable) metric space X
and 1 satisfies

{6.1.3)
then

P|B € {f € C[0,00) : ¢ is continuous at f}j=1,

W(BL) = ¢(B)
as random elements of the space X', If 1 is continuous (i.e., continuous at all
f € C[0,00)), then (6.1.3) is automatically satisfied. However, condition
(6.1.3) says that 1 does not have to be continuous everywhere, only on
Brownian paths constituting a full set.

This helps explain the importance of Brownian motion in large sample
statistics, An estimator which is a function of partial sums of a random
sample will frequently converge in distribution to some function of Brown-
ian motion. An example of this use for Brownian motion is given in Section
6.10.

Another reason for the importance of Brownian motion is the role it
plays in constructing diffusions. Briefly, imagine a continuous path process
{X(t),t 2 0} which, given that it is at a state = of its state space, adds an
increment which is N(u(z), 0%(z)) distributed. A way to think about such
a process is through stochastic differentials:

(6.1.4) dX(t) = p(X (1)) dt + o(X (2) dB(t),

so that the change in the process at time ¢ results from a drift of (X (t))
and a Brownian increment with variance 02(X (t)}. The quantities p(z) and
o%(x) are called the infinitesimal mean and variance respectively. Existence
and properties of solutions of the equations (6.1.4) is the subject of the
theory of stochastic differential equations and such processes transform
according to rules called the Ito calculus.

6.2 PRELIMINARIES 487

6.2. PRELIMINARIES.

Before undertaking the study of the properties of Brownian motion, we
pause to survey some results needed for later work.

6.2.1. BOREL-CANTELLI LEMMA, For events {An}, define
[Aﬂ. i'o' ] = [Z lAﬂ = 00]
n
= Mn=1Unzm An
= {w: w € A, for infinitely many n}

to be the event that infinitely many of the events A4, occur.
Borel-Cantelli Lemma 6.2.1. If ), PA, < o, we have

P[A, io |=0.

If the events {A,} are independent, the converse is true as well.

Proof. If 3 PA, < o0 then o0 > 3}, PA, = EY 1, , and thus
P}, 14, < oo] =1 which is the same as P[4, i.0. | =0.

Conversely, if the events {A,} are independent and 3 PA, = oo,
then, for 0 < 5 < 1,

Bmian = T[ 5™ = T[(1— (1 - 5)PAy)
n

n

by independence. From Lemma 2.9.1, this is zero since

Y A-(1-(1-9)PAn)=(1-9))  PA, =co.

Therefore, P[3 14, = 0o] =1, as required. W

Mill’s ratio for the normal distribution tail. Calculations involv-
ing Brownian motion invariably involve the normal density and distribu-
tion and facility with handling tail probabilities is essential. The following
result saves much effort.

Lemma 6.2.2. Mill’s Ratio. Asz — oo,

(6.2.1) 1—N(z) ~n(z)/z
and

ad -z /2 ® —u? 2 1 —z2/2
(6.2.2) T+ 2¢ < .[: e du < =€ .
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Proof. We have
oo
L cme‘“gl‘zdfuv> —}—e'"zﬂdu.
z2 [ . ul

An integration by parts gives (d{—1) = %‘;) the right side equal to

= 15‘“’2/2 - foo e~ 2,
T T

Thus

o0
(1 + iz) f e Pu> e,
T " T

which is equivalent to the left hand inequality in (6.2.2). Furthermore,

18_22/2 = [00 le™* 2du + /00 lze_“zﬂdu

x z U

= / (1 + iz—) e~ 24y
x U
2 [ e,

which is the right hand inequality in (6.2.2). ®

The Cauchy and normal densities. Suppose N1, Nz are iid normal
random variables with mean 0 and variance 1. Then the ratio N, /|Ny| has
a Cauchy density

1

(6.2.3) flz)= ‘m,

-0 LT <o,

with distribution function

(6.2.4) F(z) = % +r larctanz, —o0 <z < 00.

To see this, observe that for x > 0

p[I*’NV_zll > = [MJ.D[N1 > va] P(|Ng| € dv].
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Differentiating with respect to z, the density is
(e
f(z) =] vn(vz)P[|No| € dv]
000
=[ vn(vz)(n(v) + n(—v))dv
0

= 2]0 va{vz)n(v)dv

2

172,32
=— [ weTTWT gy,
2 Jg

Making the change of variable y = %(1 + z?) yields

1 =}
_- -V
T
1
7(1+ %)
as desired. The formula for the distribution function can be verified by
differentiating (6.2.4) to get (6.2.3).

6.3. CONSTRUCTION OF BROWNIAN MOTION*.

There are numerous ways to construct Brownian motion. One way uses as
primitive building blocks a supply of iid ¥(0, 1) random variables.

Theorem 6.3.1. Brownian motion exists and may be constructed from a
sequence of iid N(0,1) random variables.

The construction depends heavily on the following elementary lemma,
which uses the fact that normal random variables are independent if and
only if they are uncorrelated.

Lemma 6.3.2. Suppose we have two random variables X (s), X (t) defined
on the same probability space such that X (t) — X(s) has a N{0,t — s)
distribution. Then there exists a random variable X (t52) defined on the
same space such that

t+s
2

t+s

X{ 5

) - X(s) £ X(t) - X(

)

* This section contains advanced material which may be skipped by begin-
ning readers, who are advised to read the statement of Theorem 6.3.1 and then
proceed to Section 6.4.
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with X (&%) — X(s) and X(t) — X(4?)} independent and each having a
N(0, %52) distribution.

Proof of Lemma 6.3.2. Define U := X (t) — X(s). Suppose V ~ N(0,t—s)
is independent of U, and define X(%) by

t+s U+V
x@-x(E2 =Y
X122 - x()= 5,
so that
X(t) - X(s) =
(6.3.1) X(t) +X(s)—2X(t—+—s)—

Thus X (t) — X (1£2) £ X(&2) — X(s), and both have a N(0, &) distri-
bution.
To check independence, merely note

EU+V)U-V)=EU?+0-0-EV? =0,

since I/ and V are independent and identically distributed. W
For later use, observe from (6.3.1) that

t;%_XM;X@)=%Wh V ~ N(O,t - s).

(6.3.2) X{

Construction of Brownian motion. Now we show how to construct Brown-
ian motion on [0, 1]. The extension of the construction to [0,0c) is easy.

Find a probability space in which there is a supply of independent
normal random variables:

3

V),VE). VLV -

that is,
{V(;ﬂ),k =12,...,2", n>1}

It will turn out that we need

1

V( N0, 7)-

z
) ™
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Define X(0) = 0, X(1) = V(1), and use V(}) to construct X (1) using the
procedure glven in Lemma 6.3.2, so that X (3) — X(0) and X(1) — X(3)
are iid N(0, ;) random variables.

Now we use induction: Suppose {X (2,,) 0 < k < 2"} is defined using
{V(3),0 < k < 27} where {X(£)— X(%2),1 < k < 2"} are iid with
N(0, 5=} distributions. For each k < 2", construct X (-2—';“,—1-;1-) using V(254
in such a way that

2k+1 k.4 kE+1 2k+1 1
X( ntl ) X(zn)—X( an )'-X( 2n.+1) (0’211_-.}-?1.)’

and the sequence of random variables {X (3%7),0 < k < 2"*'} has inde-
pendent increments.
For each n = 1,2,..., define the process { B™(t),t > 0} by

B™(t,w) = X(t,w), forte {2%, 0<k <27}
and make B(n) linear in each interval [, ££1}. Also define

(n) = (r+1) _ gin)
A wyﬂg%p (t,w)— B @m|

= max max

BOHD @ ) — Bl w)l.
0<k<2"~1 % <i<hil ? !

In Figure 6.2, the solid line represents B(“)(t) on the interval [-2’%, kzi,}],
and the dotted line is B+ (t) on [£, &),

B

B(‘Hrl)(%i_)

-
+ 4
=N

241
zl|+l

";lvr -

ul
:

FIGURE 6.2.
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From the figure or geometry,

B B (& 2k+ 1
max IB(n+1) (t) _ B(n) (t)l — ( ) + (2 ) B(n+1)( )
Pt 2
X(E) + X(£) w21
which from (6.3.2), is
2k+1
= sV{mml
Therefore, .
1 2 +
(n} =
aw) = 3 e VD)

where V(2541 is N(0, 2% ). For the following calculations we let N (g, 0?)
stand both for the normal distribution and for a random variable with that
distribution. We have for £ > 1 that

z/2
N

2k+1
(Fwr) 2\/2_n
1

N(O: 2—11) > ﬁ]
< P2PIN(O, 52) > o

N(O, 5=
= 2“+1P[M > ]

PAM™ > 2] = P[

2 k<2“ 1

<2*P|

n
= 21 P[N(0,1) > 1]
2
< 2n+1n(a:) _ 2n+1 e= T /2

T o V2r x

Let £ = 24/n, and from the previcus calculation, with ¢ > 0, we get

2 T
PIA® 5 M < come-(vA?/2 — gong _zn_c( ) ’
[ =

el

and, therefore,

;P[A(") > \/—\/22;] < gc(e%)“ < 00.
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The Borel-Cantelli Lemma 6.2.1 gives
PlAM > \/\/2; io]=

so there is a last time (depending on w) that A > % Eventually, for
all large n, we have Al® < v/ 7=> and therefore (with probability 1)

Z A <o
n
The sequence of continnous functions

{B™,n>1} = {{B™(®),0<t<1},n>1}

is Cauchy in the metric space C[0,1], the space of real valued, continuous
functions on [0, 1], since for n <m
sup |B™(t) — BM@#)| < AM ... Aln-1) L g
0<t<1
as n, m — o0. Therefore, since C[0, 1} is a complete metric space, we have
limy 00 B™ exists in C[0,1], with probability 1. Define the process

B { lim, oo B™, if lim, e BM™ exists
=0, otherwise (on a set of probability 0).

This gives a Brownian motion process on [0, 1]. Note the following:

(1) B is continuous since it is the uniform limit of B™ which is
continuous. (Recall uniform limits of continnous functions are
continuous. )

(2) B(t) — B(s) has a N(0,t — s) distribution since

B(t) — B(s) = lim B®™ (["’2_2:_]) _ g (@)

n—+00 on

and B(™ (%2;?1) — B (ﬁ’ﬂ) hasa N (0 I&]:L‘il) distri-

bution which converges, as n — oo, to a N(0,¢ — s) distribu-
tion.

(3} B has independent increments, since this is true for B™, and
the independent increment property is preserved by taking lim-
its. For instance, using the characteristic function transform
for0<u<v<s<t,

Bet(01(B(t)-B(s))+8:(B(v) - B(u))

= lim Eei®(B™ )-8 (0))+62(B™ (0)-B™ ()

n—00

= lim Ee®(B™®-B"™(a)) g i62(B™(1)-B() (u))

n—o0
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(since B( has independent increments)
_ Bt (BW)-B(s) g if2(B(v)~B(u))

This completes the construction. B

6.4. SIMPLE PROPERTIES OF STANDARD BROWNIAN MOTION.

In this section we discuss some fairly simple properties of standard Brown-
ian motion B(-), which will increase our familiarity with the process and
be useful later. We will frequently write

{A(t),t > 0} £ {B(r),t > 0}

to mean that the finite dimensional distributions of the processes 4 and B
are the same.

1. The Markov Property. Brownian motion is a Markov process
with stationary transition probabilities

pe(z, A) 1 = P[B(t + s) € A|B(s) = z]
= P[B(t +s) — B(s) € A— z|B(s) = a}

= f (0,1, v)dv
A-z
= f n(z, t, v)dv.
A
To check this we merely need to write
B(t + s) = B(s) + (B(t + s) — B(s)),

which represents the new state B(t + s) as a sum of the old state B(s)
and an independent normal random variable B{t+ s) — B(s). The Markov
property and the caleulation of the transition probabilities follow from this.

2. Differential Property. For any s > 0,
{Bs(t) = B(t + s} — B(s),t > 0}

is a standard Brownian motion process independent of {B{u),u < s}.
(This will be generalized later so that s can be replaced by special random
times.) To check this, note that B,(t) is continuous in ¢ and has inde-
pendent increments and the increments are normally distributed with the
correct variance.
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3. Scaling Property. For any ¢ > 0 we have

{VEB(), 12 0} £ (B, ¢ 2 0},

and the process .
'{\/EB(E)’ i 2 0}

is standard Brownian motion.

Check this by noting that the process {+/cB(%),t > 0} has continuous
paths, stationary independent increments, normal marginal distributions
and the correct variance.

4. Symmetry. The negative of a Brownian motion is still a Brownian
motion:

—-B(-) £ B().

Again, we just note that the process —B has contimious paths, station-
ary independent increments, normal marginal distributions and the correct
variance.

5. Gaussian Process. A standard Brownian motion B is character-
ized as a continuous path, zero mean Gaussian process {that is, the finite
dimensional joint distributions are multivariate normal) with B(0) = 0 and
covariance function

Cov(B(s), B(t)) = EB(s)B(t) = s At

for s > 0,1 > 0. To check the covariance calculation we use the independent
increment property: For s <t
EB(s)B(t) = EB(s)}(B(s)+ B(t) — B(s))
= EB%(s) + EB(s)(B(t) — B(s))
=s54+0=3s,

so EB(s)B(t) = s At as asserted.

6. Time Reversal. We have
{tB(1/t),t > 0} £ {B(t),¢ > 0}.

If we define 1B 1) 150
3 >
.B(l) i) = t/ 1 1
®) { 0, ift =0,
then
BW() £ B(),
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and B} is a standard Brownian motion.

Since B(-) is a Gaussian process, B(!) is as well. Also B("} has zero
means and is continuous (we must check continuity at zero). Finally, if
0<s <,

EBW(s)BO () = EsB(%)tB(-i-)

=st(-§—) A (%) = st2

i
— s = EB(s)B(t).
Therefore, the finite dimensional distributions of 1) and B are the same

multivariate normal distributions, and B(" 2B
It remains to verify that B() is continuous at 0; ie.,

. 1 . B(s)
(1) — 1 —_— —
gmll)B (t)= thr% tB(t) = lim

58— 00 S

=0

almost surely. To verify lim, .o, B(s)/s = 0, note B{n)/n — 0 by the
strong law of large numbers. For s € [r, n + 1] we have

|B£3) _ B?(:,)’ SIB£8) B Bin)'+ IB‘gn) B szn)l
<IBO| I - 71+ 5 swp 1B(s) - B)
LB, 7
n n

where

Z, = sup |B(s + 1) — B(n)| £ Vo<o<1|B(s),
0<s<1

and {Z,,,n > 0} are iid by the stationary independent increment property
of B. By the strong law of large numbers,

B(n) 2;4(B() - B(i-1)

= —

n2 n?

To show Z,/n — 0 it suffices to show for any € > 0 that
P(|Z,/n] > e io. | =0,

which, by the Borel-Cantelli Lemma 6.2.1, will be true if

ZP[[Z,,| >en| = ZP[]Zlf > en] < oo.

Since E|Z)| = [, P[|Z)] > z]dz, it is readily checked that the latter sum
converges if E|Z;| < co. This will become apparent after the discussion
of the distribution of the maximum of a Brownian motion over a finite
interval.

0.

This completes the discussion of simple properties.
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6.5. THE REFLECTION PRINCIPLE AND THE
DISTRIBUTION OF THE MAXIMUM.

There is an easy reflection argument yielding the distribution of the max-
imum M (t) = Vi_;B(s) of Brownian motion up to time ¢. The argument
rests on the following fact.

Theorem 6.5.1. Reflection. Fora > 0 let
T, = inf{¢ : B(t) = a}

be the first time the Brownian motion hits level a. Define

BHt) = B(t), ft<T,
‘{2a—3(t), ift > T,.

Then B* is a Brownian motion.

To get B*, we wait until B reaches height ¢ and then reflect the part
of the path past the hitting time of a about the horizontal line at height
a. This is illustrated in Figure 6.3.

I
|
I
|

Y

T,

a

FIGURE 6.3.
Note that T, < oo, since {B(n)} is a mean {} random walk and hence

limsup B(n) = +o00, liminf B(n) = —oc.
00 n—oo
This fact about random walks is proven in Chapter 7.
The reflection principle is proven rigorously in Section 6.6, but it is
easy to see why it must be true. Suppose that ¢t > T,. Run the Brownian
motion up to time Ty,. The differential property (2) of Section 6.4 suggests
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that the process {B(T, + $) - B(T,) = B(T, + 8) — a,s > 0} is a standard
Brownian motion independent of the process B up until the time level a
has been attained. (But this requires a proof—see Section 6.6). By the
symmetry property (4), {—B(Ta+3)+a,s > 0} should also be a Brownian
motion. Setting s + T, = £ > T, this means that if

e+ (B(t) - B(T,)) = B(?)
is & Brownian motion, then
a+ {B(T,) — B(t)) = 2a — B(t) = B*(t)

should also be a Brownian motion.

The reflection principle readily yields the distribution of the maximum.
Recall the notation M(t) = Vo<s<: B(s).

Proposition 6.5.2. For standard Brownian motion and e > 0,y = 0,

P{B(t) <a-y,M(t) 2 o] = P[B(t) > a+y)

Proof. We have
[M(t) 2 a] = [Ta < 1]

and
To =T, :=inf{t: B*(t) = a}.

Therefore,

P[B(t)<a-y,M(t) 2a] = P[B(t} <o —9,T5 < 1]

Since B 2 B* and T, = T, this equals

=P[B*(t)<a—y,Ts <1
= Pl2a— B{t) <a-y,T, <1
=P[B(t) 2 a+y,T. <1

= P[B(t) 2 a + 9]

since, for y > 0,
Bt)>e+yClTa<t. W
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Corollary 6.5.3. Fora >0,
(6.5.1) P{M(t) > o) = 2P[B(t) > a] = P[|B(t)| 2 a].

Proof. We have
PIM(t) > o] = P[M(t) 2 a, B(t) < a] + PIM(t) > a, B(t) > a].
Applying Proposition 6.5.2 with y = 0, we get

= P[B(t) > a] + P{M(t) > a, B(t) > d]
= 2P{B(t) > a]. B
It is now easy to compute the densities of the random variables M(t)
and T, explicitly.
Corollary 6.5.4. For a > 0, the density of M(t) is

(652) fM{t) (G) = \/%e-—an/ﬂ_[lolm)(a),

and the distribution function is

3
2
(6.5.3) PIM, < d] = [ y e s,
0 7t

The distribution function of Ty is
P[T, < 2] =2(1 - N{a/yx)), >0,

and its density is

a _a? -3

(6.5.4) fr.(z) = \/_2_;8 =x-2, z>0.

The Lapiace transform of T, is

(6.5.5) EeXTe = ¢ VBa 350,

Proof. Recall (6.5.1), so that

P[T, < 1] = P[M(¥) > q]
=2P[B(t) > a
_L.p[Bl) &
=2k [ i «z]
=2(1 — N(a/vt)).
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Then the density of M{t) is obtained by differentiating with respect to a,
d
faya) = _BEZP[B(t) > a] = 2n(0,t, a),

and the density of T, is obtained by differentiating with respect to ¢.
To obtain the Laplace transform of T, we must evaluate the integral

If you are good with integrals you can try to evaluate this one; alternatively,
one can use a table of Laplace transfroms to find the Laplace transform
of the density of T,. (Abramowitz and Stegun, 1972, page 1026, Formula
29.3.82 gives the answer.) W

We can also obtain the joint density of (M(t), B(t)).
Corollary 8.5.5. For £ > 0 and ¢ < £, we have

P[M(t) € d£, B(t) € da]
- \/g (%) e_ﬁ{‘_‘ﬁdfdw “110,00) (€)1 (o0 ) (2)-

Proof. Recall from Proposition 6.5.2
P(B(t) < a—y,M(t)2a) = P[B(t) > a+ 1)
Leta =¢£,6 ~y =1 to get
PIB(t) <z, M(t) 2 & = PIB(t) = 2 — 1.

The required density is obtained by taking 5—? a% of the right side to obtain

-8 8 &
R, 2t — = —2 Qt,2 ke
g 85P[B(t> £ - z] P n( £ — )
g 2 _@e-at
- e b
az /2wt
2 s (26 —x)
_ e 9
27t 2t
2 2{—1‘8_13%—‘3)3
T V2rt ¢
2 (2% —2)\ _aea?
= E( 7572 )e T
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Corollary 6.5.6. Let {X,,n > 1} be iid random variables with EX; =0
and Var(X;) = o%. Then

P[\—/ii\"% <z]— P[M(1) < ]

= PiB(1)| < 7]
2
- v2r Jo

e~ 2y,

Proof. The invariance principle discussed in Section 6.1 says
B = B;

recall that Bff) is the continucus path process obtained by putting dots at
the points {(Z, U—S\/’Jﬁ), j > 0} in the plane and then connecting them. For
FeC0,00), T : C[0,00) — R defined by

Tf= sup f(s)
0<s<1
is continuous and hence

k] S
©=\/ 2o M
TBY ,\'=/o —== M(1)

in R. The distribution of M(1) is given in Corollary 6.5.3. B

There are some fairly easy extensions of these techniques that yield the
probability that B hits level 0 in the time interval (fp,t1) (0 < tp < £1).

Proposition 6.5.7. For standard Brownian motion {B(t),t > 0}, the
probability of a zero in (tg,t:) Is

P{ U [B(t)=0]}= %arccos \/g.

to<t<ty
Proof. We begin by observing that, for @ > 0,

P[ A\ B(w<0[B0)=d=1-P \ B(u)>0|B(0) = a.

0<u<t o<u<t

Since B 2 —B, this is



502 BROWNIAN MOTION
=1-P- A —B(w)<0|- B(0)=ad
0<ust

=1-P[ \/ B(w) <0|B(0) = —d]
0<ut

=P \/ B(x)>0|B(0) = -q]

G<ult
=Pl \} B(u) > q|B(0) =0].
0<u<t

Applying Corollary 6.5.3 yields

=2P[B(t) > a).
Thus if we define for a € R
9(@=P{ |J [B{t)=0}B(0)=a},

0<t <ty —ty
we have fora > 0

9)=P{ A\ Blw)<0B(0)=4d|
O<ust; —ty

=2P[B(t; — t) > al.
Therefore, for any e € R, one readily checks that
g(a) = 2P[B(t1 —to) > |al]-
Thus the probability that B has a zero in (£o,11) can now be computed:
PLU BoO=01= [ P [B0)=01Blo) = a}PIB() € da),
to<t<ty T f<i<hy

and uwsing the Markov or stationary, independent increment property of
Brownian motion yields

= f ~ P U B(t) = 0]|B(0) = a} PB(t;) € dal
T o<t~y

=/_ g(a)P[B(to) € da]
= /_‘” 2P[B(t — to) > |a|]n(0, to, a)da,

which, by the stationary independent increment property of Brownian mo-
tion
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= 2P[B(t1) — B(to) > {B{to)l}.

Let Nq, N2 be two iid N(0,1) random variables. Since B(t) L1 VtNy, we
! have

= 2P[Vi1 — N1 > Vt0|N2“
Ny to

> .
| N2} t - tu]

— 2P|

Recalling from (6.2.3) and (6.2.4) that N; /|N2| has a Cauchy distribution,

we obtain
1 1 to

—2(1—(§+;arctan1ltl_tu))
2 to

=1- —arct \/
Wa.r an Py

= E . arctan to

m\2 ti — o

2 {to
= — AI¢cos —.
kig tl

The last step is justified by trigonometry. See Figure 6.4. W

Vi1,

TIGURE 6.4.



504 BROWNIAN MOTION

6.6. THE STRONG INDEPENDENT INCREMENT PROPERTY
AND REFLECTION®.

If you had misgivings about the rigor of the derivation of the reflection
principle in the previous section, this section should make you happier.
Suppose {B(t),¢t > 0} is a Brownian motion. We frequently have need of
the differential property (2) of Section 6.4 when the differences are taken
relative to a random time. Provided this random time is a stopping time
the differential property will continue to hold. Recall that a non-negative
random variable T is a stopping time with respect to the process B if for
every t > 0 the event [T < #] is determined by the process up to time £.
This means that the information necessary to determine whether stopping
occurred at or before time ¢ is contained in the path B{s),0 < s <t.

For us, the most important examples of stopping times are the hitting
times defined, for @ # 0, by

T, =inf{t > 0: B(t) = a}.

The next result may be compared to Proposition 1.8.2 about splitting
iid sequences.

Proposition 6.6.1. Strong Independent Increments. Suppose {B(t),
t > 0} is a Brownian motion and T is a stopping time of B. Suppose both
are defined on the probability space (2, A, P).

(a) If T is a stopping time which is finite almost surely, then
(6.6.1) {B(t),t > 0} :={B(T +t) — B(T),t > 0}
is a Brownian motion process which is independent of events determined
by B up to time T

(b} If T" is a stopping time such that P[T = co] > 0, then on the trace
probability space

(QF, A% P#) .= (QN[T < oc], {BN[T < 0] : B e A}, P{|[T < o0]})

B defined in (6.6.1) is a Brownian motion independent of events in A%
determined by B up to time T'.

Remark. For those who know o-fields, the more precise wording of these
concepts is as follows: Suppose {B;, t > 0} is an increasing family of o-fields

* A beginning student should concentrate on understanding the statement
of Proposition 6.6.1(a).
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such that for every t > 0 we have that B(t) is measurable with respect to
B,. Then T is a stopping time, if for ¢ > 0, we have

[T <t € B

Events determined by B up to time 7' constitute the o-field Br which
contains all events A such that for every £ > 0

AN[T <# €B..

(One readily checks that Br is indeed a o-field.} The strong independent
increments property then says that if T is a stopping time which is finite
almost surely, then B(T+-)—B(T) is Brownian motion and is independent
of BT.

Proof Let E* denote expectation with respect to P#. It suffices to show
for f : R* — R bounded and continuous, 0 < t; < --- <1, and an event
A determined by the Brownian motion up to time T, that

E* (f(é(tl), s é(u))u) = E*f(B(t),..., B(t))P*(A)
(6.6.2) = Ef(B(ty),...,B(t:))P*(A).
(The reason this is sufficient is that we can imagine f as a continuous
approximation to the indicator function of a k-dimensional set in the state
space of B.)

Suppose first that T restricted to Q# has a countable range 7,72, .. ..
Then the left side of (6.6.2) yields

Y E#f(B(tr), ., B(tr))1ar=rad)

Ef(B(t] + Ta) - B(Ta), ey B(tk + Ta) — B(Ta))lAr'\{T='r,,]
=2 P[T < o ’

o

which, because Brownian motion has stationary independent increments
and AN [T = 7,) is determined by the process up to time 7,, is the same
as

PAN[T = 1))

= 3" BS(B(t +7a) = Bra).., Blts + ) ~ Bre)) = prp o

= Zﬁ:Ef(B(h), ... ’B(tk))‘jj(—g}%'zg]r;.])

= Bf(B(ty),..., B(tx)) P*(A).
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Thus we get
B* (§(B(t),.... Bt))1a) = Ef (B(ta), .., B(t:))PH(4),
and setting A = [T’ < oo] shows

E*f(B(t1),-..,B(t)) = Ef(B(t2),- -, B(ts)),

E* ($(B(ty), .., Bt)1a) = E#f(B(t),.... Btx)) P*(4)
= Ef(B(1),..., B(t))P¥(A),

as required.
If T does not have a countable range, we approximate T on Q¥ from
above by a countably valued variable T},. Define

ey .
Tn=3 o LTel5t, o))

j=1

so that T, | T as n — 0. Approximating T from above lets T, be a
stopping time, since if ¢ € [-77_,,1, #) then

-1

_ I
[Tn<t]“{T$ on ];

which is determined by the process up to time -75_;‘1 and hence by the process
up to time t. This verifies that T, is a stopping time. Also, any event A
determined by the process up to time T' will be contained in the collection
of events determined by the process up to time T, and (still supposing

te [ &)

An[TﬂSt]=Aﬂ[TS'1:;1].

Thus we have

E* (f(.é(tl), cie, B(tk))lA)
= lim E# (f(B(t1+Tn) ~ B(Tn),-.., B(ts + Tn) ~ B(Tn))14)

(since both B and f are continuous, f is bounded, and T,, | T')
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= lm E*{f(B(t +Tn) - B(Tu),. .., Bltx + Tn) - B(T,)) P*(4)
= Iim Ef(B(t;), .., B(t))P*(4)

(by the first part of this proof)

= E# f(B(t1),-.., B(tx)) P*(A4)
= Ef(B(t1),.--, B(tk))P#(A) u

Now we give a more rigorous proof of the reflection principle using
Proposition 6.6.1. Since T, is finite almost surely (random walk theory in
Chapter 7 assures us that limsup,,_,., B(n) — oo almost surely) part (a) of
Proposition 6.6.1 is applicable. For convenience, we review the statement

of the reflection principle.

Theorem 6.5.1. Reflection. Fora > 0 jet
T, = inf{i: B(t) = a}
be the first time the Brownian motion hits level a. Define

B(t), ft<T,
*(t) =
B (1) {2a—B(t), ift > T,.

Then B* is a Brownian motion.

Proof. (Freedman (1971)) Let f and g be continuous functions on [0, co)
with g{0) = 0. Suppose t; > 0. Define C[0,00) to be the continuous
functions on {0,00), and let Cp be the subset of C|[0,00) consisting of
functions g with g(0) = 0. Define ¢/ : C[0,00) x [0,00) x Cg — C[0,00) by

f(t)a iftStO

¢(f| tD!g) = { f(t(}) + g(t — tﬂ)& if t = to.

Now let

ft,w) =B AT, (w)) = { aB(t, w), 1f: i;:gz;,

and define
g{t,w) = B(To(w) +t) — B(Ta(w)).

Then the random variables T, and f are determined by the Brownian
motion up to time T, and are independent of g or —g. Note by the strong
independent increments property that

4

d
g=-g=BbB.
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Therefore, (f,Ts,g) = (f,Ta,—g) as random elements of C[0, co0) x [0, 00) x
Cy, and by applying the ¢ map, we obtain

(6.6.3) W{f, Tay 9) £ ¥(f, T, ~9)-

On the left side of (6.6.2) we have

F), ift < Ty
¥(f.Tw9) = { FTo) + 9t —Ta), ift>Ts,
B(t), ift<T,
h { B(T)+ BT, +t—T,) - B(T,), #t>T,
= B(t),

and on the right side of (6.6.2) we find

Fit), ift <T,
ESER ) —glt-To), ift>T.
B(t), ift <T,
- { a— (B(Ta+t—T,) — B(T,), ift>T,
= B*(t). W

6.7. ESCAPE FROM A STRIP.

As in Section 6.5, let T be the first time Brownian motion hits the point
z # 0, and suppose b < (0 < a. Starting from position 0, the first time
standard Brownian motion escapes from the strip [, a] is

Tap := T AT

We will determine the Laplace transform of Ty, and its mean and the
probabilities
P[B(Ta)=a], P[B(Tw)=1

of exiting the strip at the upper or lower boundaries.

Comparable calculaticns for diffusions determine basic characteristics
of the diffusion. There are many ways to perform the calculations, martin-
gale methods being among the shortest. We rely on elementary arguments
using Laplace transforms and the strong independent increments property.
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We begin by computing the Laplace transform of Typ. From (6.5.5) we
know the Laplace transform of T}, s0

EE-AT° = B_\/ﬁa = Ee_’\T"l[T.<Tb] + Ee_’\T“ 1[Ta_>.Tb]

= Ee™ e l1p oqy) + Be o1z 5,
=I+1I

Concentrate on the second summand IJ. We have that the set
[Ta > T) = [Bu) #£ a,0 < u < T
depends cn the Brownian path up to time T}, and on this set

To=Ty+inf{s >0: B(Th +s) =a}
=T;,+inf{s>0:B(Tb-I—s)—B(Tb):a—b}
=Tb+Tﬂ+|b|J

where Taﬂbl refers to the first passage time of the Brownian motion
{B(s) = B(Ty + s) — B(T}), s > 0}. By the strong independent increments
property,

inf{s > 0: B(Ty+s)—B(Ty) =a-— b} = Ta+ibl 4 Ta+fb|

and is independent of the path up to time T,. Thus, Proposition 6.6.1
allows us to rewrite I as

II = Ee_’\TnbI[TGZTB]EE—ATI:-HH

— Ee_XTab 1[T3>T5]e_‘/ﬁ(a+lbn'

Putting I and IT together, we conclude

e—V2Xal _ pe—iT., —m(|a|+1b|)Ee—AT..

bl[Tcl(Tb] t+e "1, >13)-

Likewise, interchanging the roles of a and b, we get
e~ VM _ Ee o 1g, o + e~ VA(lal+1p)) Ee T 5.

We now have two equations in two unknowns. Set

o1 = e“/”"‘|, ey = e~ VDbl
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and

—AT, -AT,
1 = Ee “51[T0<Tb}, 9 = Ee ﬂblin<T¢,1:

and the two equations become
€] = Iy + e1€2T2
€z = ej1ea7 + Ta.
Solving the equations gives

1

ey —ey
= "e““"""'lez — 61_1851’

so we find

ar _ V2| _ o—VEXlb)
(6.7.1) Ee lir,«my) = eV (lal+[b]) _ g—v2A(lal+1b])
(6.7.2) = sish{vaA) :

smh(\/ﬁ(kﬂ + |b]))

and

Y = e/l — ¢ Vil
(6.7.3) Ee lir<r,) = eVZA(jal+Hb]) — g—VZA(jal+b])
(6.7.4) ssh{yae)

~ sinh(V2A(ja| + b))

We may sum these two expressions to get the Laplace transform of
Top.
Observe that if we let A — 0 we obtain

EE‘AT“].[T“(_T&] — P[Ta < Tb].

In order to evaluate this limit, note that for any ¢ > 0

Ac

A
e
=2c

e -
. —e

i
by L’Hépital’s rule or by a Taylor expansion. Thus we find by taking limits
in (6.7.1) that

P[B(Tab) = a] = P[Ta < Tb] = |a—llg_ﬁ

We summarize our findings.
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Theorem 6.7.1. Let b < 0 < a. For standard Brownian motion we have
the following facts about how the process escapes from a strip [b, a):

Be-¥Tan . SB(YZNa]) + sinh(/ZX})

$) = =T sinh(vVax(bl + la]))
and 1o jal
PB(Ty) =a] = PEaTE P[B(To) =b) = al+ 7ol
and
ETab = Ia'”bl'

Verifying the last fact about the expected value is elementary but a
bit tedious. We must evaluate —¢'(\) at A = 0 to get ET,5. A bit of work
can be saved by noting that

&3 _
e — ab

A A=D
The advantage of this is that

eAIbl — e_)‘lbl

Ee‘aﬁiT“" =
elal+Ho]) 4 e—A(lal+18])

is a simpler expression to differentiate. If you differentiate and use
L’Héopital's rule three times you get the correct answer.

6.8. BROWNIAN MOTION WITH DRIFT.

Let B be a standard Brownian motion. For u € R define
B,(t)=B(t)+put, t>0.

The process B, is called Brownian motion with drift u.
Suppose the drift is negative; that is, p < 0. Since almost surely

i P8 _ iy B0 24

t—oo t t—oo

p<0

(see Section 6.4, property 6), we have lim,_,o, B,{t) = —oc, and thus

M, (00) 1= {7 B,(s) <
a=0
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almost surely. Here we compute the distribution of M,;(co) and show that
it is exponential. Section 6.9 discusses an interesting application of this
result to heavy traffic approximations in queueing theory.

The approach is to use the strong independent increments property of
B to derive a functional equation for the tail of the distribution of M, (cc).
Analogous to the hitting times of Sections 6.5 and 6.7, we define for x # 0

Tz =inf{t >0: B,(t) = z} =inf{t > 0: B(t) + pt =z},

which is the first hitting time of # by B,. Note that 7, is a stopping time
of the standard Brownian motion B. We continue to use the notation

T, =inf{s > 0: B(s) = z}.
For z; > 0,z > 0, we have

P[M,,(oo) >+ :t':z]
= P[B,(t) = 1 + z2, for some t > 0].

Since B, cannot hit z1 + 2 without first hitting x,, this is

= P[B(t) + ut = x; + 2 for some ¢ > 0, 7z, < )
= P[B(s+ e, ) + p(8 + 72,) = 1 + 2 for some 5 > 0, 7, < ).

Since B(7z,) + U7z, = F1, We get
= P[B(38 + 7z,) — B{7a,) + tis = 2 for some s > 0, 7, < o0].
Now apply the strong independent increments property of Proposition

6.6.1(b). Since the post-r;, process is a standard Brownian motion in-
dependent of the process up to time 7, we get the above equal to

= P#(B(s + 7z,) — B(7s,) + ps = z; for some 8 > 0]Plr, < o0]
= P[M,(c0) 2 2] P[M,(00) > z1).

Therefore, P[M,(c0) > z] satisfies the functional equation
P[My(o0) 2 x1 + 22] = P[My(00) = 21]P[M,(0) = z2].

The only sclutions to this functional equation are the exponential functions;
hence for some ¢ = c(u) > 0 we must have

(6.8.1) PlMy(oc) 2 zf =€, z>0.
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To determine the unknown constant ¢, for z > 0 we write
P[M,(o0) > z] = P[B(s} + ps = z for some s > 0]
and since B,, crosses z after B because of the negative drift, this is
= P[B{(s+ T;) + p(s + T} = x for some s > 0]. -
We now use B(T}) = z to get
= P[B(s+ T;) — B(T:) + pu(s + T;) = 0 for some s > 0].

Now let us recall the fact that {B(s) = B(s + Ty) — B(Ty),s > 0} is a
Brownian motion independent of the path of B up to time T; and hence Bis
independent of T, Conditioning on T, shows that the previous expression
can be rewritten as

= f P[B(s) + p(s +y) = 0 for some s > 0|P[T, € dy]
0

= f P[B(s) + pus = july for some s > 0|P[T; € dy]
0

= fo ” P[M,(c0) = |uly|PIT; € dy],

and (6.8.1) gives

o0
- / &<l PIT, € dy]
1)

— —clp|T=
= Ee~clulT=

which we recognize as the Laplace transform of T at c|u|. From (6.5.5)
this is equal to

(6.8.2) = g~ V3lz,
Comparing (6.8.1) and (6.8.2), we get the equality

e~V¥lulz — g=cz g5,
and thus
2clpl=c,
which implies
¢ = 2Jul.

‘We summarize these findings.

Proposition 6.8.1. For Brownian motion B, with negative drift u < 0,
the supremum M, (c0) := Vi2,B,(s) is finite and has exponential distri-
bution:

P[M,(c0) > z] = e72e 2 >0,
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6.9. HeEAvY TRAFFIC APPROXIMATIONS IN QUEUEING THEOCRY.

Brownian motion with drift aids in obtaining approximations for the mo-
ments and distribution of the equilibrium waiting time in a fairly general
queneing model. Related material is discussed in Sections 3.12.3 and 7.8
where regenerative and random walk methods are used. Here we empha-
size the reliance on functional central limit theorems and Brownian motion
to obtain our results.

In what follows we again describe the G/G/1 queneing model. Recall
that the symbols G/G/1 stand for a queueing model with general input (ar-
rivals occur according to a renewal process), general service times (service
times of successive customers are iid) and one server. Customer number 0
arrives at time 0. Let op41 be the interarrival time between the nth and
the (n+4 1)st arriving customer, and we assume oy, 2 2> 1 are iid with com-
mon distribution A{x) = Ploy < 7). Set a™! = Eo; < 0o and customers
arrive at rate a. Let t; be the time of arrival of customer k, k > 0, so that
ty =0, ty = o1+ -+ + 0k, k > 1. The renewal counting function v is

v(t) = number of arrivals in [0, t]

= Z Liey<a)-
k=0

To describe the service mechanism, let 7, be the service time of the nth
arriving customer, and suppose {74, n > 0} is iid with common distribution
B(x) = P € ). Set b~ = E1y < oo for customers to be served at rate
b. Define the traffic intensity p by

(6.9.1) p=afb=Ery/Eoy = (Boy) "} /(Emo)72,

and p is the ratio of the arrival rate to the service rate. If p < 1, then
on the average, the server is able to cope with his load. Assume {r,} and
{c,)} are independent. {Sometimes it suffices that {{7,0on+1),n = 0} be
iid.)

We assume that there is one server and that he serves customers on a
first come, first served basis. A basic process of interest is W,, the waiting
time of the nth customer until his service commences. This is the elapsed
time between the arrival of the nth customer and the beginning of his
service period. A basic recursion for W, is

(6'9'2) WO = OJ Wﬂ+1 = (Wn + Tn — 0n+1)+3 n 2 01

where z+ =z if £ > 0,, and zt = 0 if z < 0. The validity of (6.9.2) is
checked at the beginning of Section 3.12.3. The reader is referred to that
discussion and to Figure 3.12.16.
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For n > 0, define
(6.9.3) Xnt1l = Tu — Onyy,
so that {X,,n > 1} is iid. With this notation,
Whni1 = (Wa+ Xnya)*.

It is evident that {W,} is a random walk with a boundary at 0, that
is, a sum of iid random variables, that is prevented from going negative.
{See also Chapter 7.) Denote the random walk by {S,,n > 0}, where
Sp = X1+ + X,,. Note that if p = EX, then g = a~(p ~ 1), and

< 0 if and only if p < 1,
p=0if and only if p=1,

and
g > 0 if and only if p > 1.

Proposition 6.9.1. For the waiting time W, of the G/G/1 queueing
model, we have

n
(694)  Wa=max{0,Xn, Xo+Xn-1,..., ) Xe, Sn}
L
d g ‘
£V s
=0

Proof. The proof of (6.9.4) proceeds by induction. The equality (6.9.4) is
trivially true for n = 0 and n = 1. Assume that it holds for n. Then

Wn.+1 = (Wn + Xn+1)+

n
= (max{0, Xn, Xa + Xn-1,.. -, 3_ Xi} + Xny1)*

i=1
(by the induction hypothesis)

n41
= (max{Xpn41, Xnt1 + Xny.op 3 XiPT
=1

n+1l
= ma.x{O, Xn+1) Xn+1 + Xn, .- ,Z X,}

i=1
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Therefore, if (6.9.4) holds for n, it also holds for n + 1.

To prove the equality in distribution W, 2 VieoS;, we observe that

(X1, Xn) Xy  X0),

since both vectors consist of 1id random variables. Therefore,

W, = max{0, Xn, Xn + X .ﬁl,.--,ZXi,Sn}

i=2

n—1
g mﬂx{O,Xl;X]_ + X2J - -,ZXiISn}
i=1

This simple result allows us to calculate the asymptotic distribution of
{Wn}-

Proposition 6.9.2. For the waiting time W, of a G/G/1 queueing model,
the following are true.
(a) If p =1 and o := Var(X,) < co, then for x > 0 asn - co we have
Wo )= prl=® oy
ovn
— P[M(1) < z] = P[|N| < 2,

Pl

™
ovn

where M (1) = Vy<,<1B(s) is the maximum of a standard Brownian motion
on [0,1] and N is a N(0,1) random variable.

(b) If p < 1, then Wy, 1= V{2, 5; < 00 and

PW, <z] - P[W,, < zj.

fc) Ifp>1, thenasn — oo

% —a(p—1)=p=FEX;, almost surely.

Proof. For (a) and (b), the critical fact is that W, & Vi-oS;. Then (a)
follows from the invariance principle for sums of iid random variables with
mean (0 and finite variance converging to Brownian motion. (This was

discussed in Section 6.1.) That M(1) £ |N] is easily checked, since we
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know the explicit distribution of M(1); cf. Exercise 6.4. For (b), note
that since p < 1, we have u < 0, so by the strong law of large numbers,
Se — —o0. Thus W, < oo, and

P[Wn<z] =P[\ﬂ/8j Sx]—-»P[v S; < z].

j=0 =0
For (c), observe that p > 1 means u > 0, so S, — oo. Since
k)
Wn = ma‘x{U,Xﬂ!Xﬂ +X =15 ')ZXI"S‘H} > S‘n —+ 00,
i=2
there is a last time that W, = 0. Therefore, define
1 = sup{n: W, = 0},
then Plp < o] = 1. For k > 1 we must have Wyt > 0, so
Wi = Wy + Xpg1 = Xon

Woto = W1 + Xppa = Ko + X2
Wiota = Xot1+ Xnpz + Xopys

Wik = Stk — S
We have

W,
lim —= = lim —2*%
n-—s00 1N k—oo T]-]-k

S, S,
= i ntk n
oo n+k q+k)
=FEX;=u M

When evaluating the usefulness of Proposition 6.9.2, one should keep
in mind that the most important case is when p < 1, since this corresponds
£0 a queue where the server is able to cope with the work input and not fall
hopelessly behind. However, it is just in the p < 1 case that the previous
result is not particularly helpful, since we will see in Chapter 7 that it is
difficult to compute the distribution of the maximum of a random walk
with negative drift, W..; thus for the case p < 1 Proposition 6.9.2 does
not provide a particularly helpful approximation. Keeping in mind that
p can be interpreted as the long run percentage of time that the server is
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occupied, we see that economic constraints will force us to consider models
with p < 1 (stability) but with p near 1 where server utilization is high.
The case where p < 1 but p is close to 1 is the heavy treffic case. If an
approximation to the distribution of W, can be developed as p 1 1, we
will call it a heavy traffic approzimation. We will consider a sequence of
G/G/1 queueing models indexed by &, and the traffic intensity for the kth
model will be pr. We will assume pr, <1 and g 71 as k — 0.

Since we know waiting times in the G/G/1 model are related to the
maxima of random walks, we begin by considering a sequence of random
walks indexed by k. For each k, let {X(¢x,0%),n 2 1} be iid random vari-
ables with EX;(ux,0%) = ux and Var{X; (ug, 03)) = of. Let the associated
random walk be

S(gk) — {), SS‘) = EX{(P]:JO%): n 2 1
i=1

We need an invariance principle for such random walks. An outline of the
proof will be given later in this section.

Proposition 6.9.3. Suppose pu; < 0 and
e 10,08 —1
as k — co. In addition, suppose that
{X1(ux,08)% k 21}
is uniformly integrable, that is,

lim sup EXf(uk,U;":)lml(uk,a:)bb] =0.

b—roa k>1
Define for t > 0

[t/pi]

Xi(t) o= el Y (Xeprs o) — )

i=1

Then an invariance principle holds, and the sequence of processes { Xi(-)}
converges to a standard Brownian motion: As k — 00

Xe(t) = B(t).

If this is your first encounter with the notion of uniform integrability,
think of it as a condition which requires the tails of the distributions of
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X3(px,02), k > 1 to be small uniformly over k. It is a standard condition
which relates convergence of moments of a sequence of random variables
to convergence of the sequence of random variables.

Now this invariance principle is stretched into a new one. For the kth
random walk write

sl a1 = Lkl (S, — /e ) — it/ )
= Xi(t) — pilt/nd)-

From Proposition 6.9.3 we get an invariance principle:

(k) -
!“k|S[t/p'-,;] =B(t) —t=: B (t),
where the limit is Brownian motion with drift —1. The magic of the invari-
ance principle allows us to apply to the previous convergence the functional

that takes a function into its maximum on [0,T]. Therefore, for any T > 0,
as k — oo we have

T T
(6.9.5) sl ng’“i] = \/ BLi(1).
t=0 t=0

We are interested in an approximation for the distribution of V‘?":OS?)
and so we write

oQ
v = | \/ 557

=0
") o 7 k)
(|#k| X)Siﬁ/ﬁ‘i]) V (lﬂvk’ t!" S[t/.uil)

=Y®<T)vY®ET).

The second piece turns out to be asymptotically negligible for large T
and large k which is the content of the next proposition. Comments on the
proof of Proposition 6.9.4 are reserved for the end of this section.

Proposition 6.9.4. Suppose the assumptions of Proposition 6.9.3 hold.
Then
Tlim lim sup P[|p| V S_gk) >0]=0.
e koo i>Tipa]-2

Therefore for any T > 0,

Y& =y (< Ty vYE (> T),
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and we know from (6.9.5) that the first piece on the right converges in
distribution as k — oo

T
Y®(<T)y= \/ B_y(2).
t=0

As T — oo, it is clear that

T -]
V Bt — \/ B
t=0

t=0

Also, for any € > 0, from Proposition 6.9.4 we have

lim limsup P{Y® — YN < T)| > ¢

T—o0 pooo

< Tlim limsup P[Y®) (> T) > 0] = 0.

OO0 koo

This says the distributions of Y*) and Y*)(< T') must be close for large T
and large k. A standard technique for proving convergence in distribution
{Billingsley, 1986, Theorem 25.5, page 342) then allows the conclusion that

Y® = \/ B

0<t<oo

If you believe Propositions 6.9.3 and 6.9.4, we have the following result.

Proposition 6.9.5. For a sequence of random walks with negative drift
satisfying the assumptions of Proposition 6.9.3,

lim PY® <a] = lim Pllul \/ 557 <l

k—o0
j=0
=P \/ BL(t)<4]
<t <o
=1-¢2®

for z > 0.

Recall the distribution of Vy<i<ooB_1(t) was shown to be exponential
in Proposition 6.8.1.

Before grappling with the proofs of Propositions 6.9.3 and 6.9.4, con-
sider again a sequence of G/G/1 queueing models. For the kth model
suppose the following: the interarrival distribution is Ax(z) with mean
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a;'; the service time distribution is B(xz) with mean b;’; and the traffic
intensity is pr = ax/br < 1 so that g = b;l - ak_l < 0. For each fixed
k, Proposition 6.9.2 assures us that the limiting waiting time distribution
exists:

lim P < z] = PIWP < 7).

—>00
Suppose pp T 0 or equivalently pr T 1 and also the variances converge

o0 o0
ol = f (x — a; 1) dAs(z) +j (z — b V)¥dBx(z) — 1.
o 0

Further, assume the uniform integrability conditions

e =]
lim sup / 22dAx(z) =0

b—oa k>1Jp
and
[+ =]
lim sup / z%dBy(z) = 0.
b—roo k31 Jp
Then
(6.9.6) Jim PlluxWR < 2] =1 -2,
—r OO

The assumption that ¢ — 1 is stronger than needed is used here
to simplify matters. Further discussion of this and related matters is
presented nicely in Asmussen (1987). It is sufficient to suppose that
{6,k > 1} is a sequence which is bounded away from 0. (As we will
show, the main ingredient in the proof of Proposition 6.9.3 is the verifi-
cation of a condition called Lindeberg’s condition, which is easily seen to
hold under the weaker condition that the #'s are bounded away from 0.)
Under this weaker condition, Proposition 6.9.3 can be modified to state
that the following invariance principle holds:

I‘ukl [ta?:/l":]
o Z (Xi{pe, o) — k) = B(2).
i=1

Under the weaker condition, (6.9.6) can be modified to read
(6.9.6") Jim P{'—’(f;-lwo(ﬁ <zl=1-e"2=,
— 00 k

One can also justify that the means converge in (6.9.6") and so we get

(k)

2 b
o 2
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1/2 being the mean of the limiting exponential distribution. This suggests
that the approximation for the limiting waiting time distribution in a stable
G/G/1 queue with traffic intensity less than but near 1 should be

W,
PIWio >3] = Pl g > 12

n g~ HEX1ly/Var(Xs),

Now we discuss the justifications for Proposition 6.9.3 and Proposition
6.9.4. A beginning reader may wish to omit this discussion or proceed onty
with the first paragraph of the proof of Proposition 6.9.3.

Proof of Proposition 6.9.3. We first show X (1) = B(l), which means
we need to show that X;(1) is asymptotically normally distributed. The
standard method of proving the central limit theorem for triangular arrays
where each variable in the kth row is iid is to verify the Lindeberg condition
{(Feller, 1971). Thus we must show as k — oo

[1/ui)
(6.9.7) Z E ([ﬂk‘(Xi(.U'k, a,%) - I“""’))21|Ixi(#k.0’:)"#kl>e/|#k|] — 0.
i=1

Because the random variables are iid for different i, we have the left side
equal to

= [1/iRIAEIXa (ks 0R) = il 1116, Gun 8 s >/l
< 2B (Xu (s 08)* + 118) L1, o) e/ 2l )
< 2E X (e 02) L1t (uy o2/t + i
< 28D EX1 (45, 03) Lty s rpioer anh) + (1)
—0

as k — oo since {X1{x;,07),7 > 1} is uniformly integrable.

This verifies the Lindeberg condition (6.9.7) and shows Xx(1) = B(1).
Now we must extend this to show that finite dimensional distributions
converge; for any m > 1 and 0 < #; < -+- < tr, 88 k — 00 we have

(Xx(t1), . Xe(tm)) = (B(t1),. .., Bltm))
in R™. This can be accomplished exactly as in Section 6.1. The final

step in the proof is to show a property called tightness (Billingsley, 1968),
and this can be accomplished in a manner almost identical to the proof
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of tightness in Donsker’s theorem (Billingsley, 1968, page 68; see also the
discussion of Prohorov’s theorem in Billingsley, 1968, page 77). W

An elegant martingale proof of Proposition 6.9.4 is contained in
Asmussen, 1989. Here is a plausibility argument based on the invariance
principle that should be convincing. We need to show

lim limsup P} V S_,Sk) >0]=0.
To® koo .
F>Tluxl—2

For continuous functions f(£),t > 0, such that lim . f(t) = —00, define
a functional x(f) by

x(f) = sup{s : f(s) > 0}.
For the kth random walk define
Br. = sup{m : S&) > 0}
to be the last time the kth random walk is positive. The assertion we are

trying to prove is rephrased as

T—o0 k—oo

T
lim lim P[Bx> —]=0.
B

We know that the following invariance principle holds:

|} SL)

t/uz) = B-1(t)

as k — co. We hope it is true that if we apply x then convergence still
holds in R; namely

x(pse1Sfyzy) = x(B-1(t))-

Since
k
X(ik|Si),z)) = HEBr,

then, as k — oc,
Pl > 1 = Pl > T) = P(B-o) > T}
k

Since the probability on the right tends to zero as T — o< (recall that
B_1(t) — —oo as t — 00), the desired result should follow.
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6.10. THE BROWNIAN BRIDGE AND THE
KoOLMOGOROV—SMIRNOV STATISTIC.

Consider the problem of either estimating a population distribution or
testing the null hypothesis that a random sample came from a particular
distribution against the alternative that the null hypothesis is false. Sup-
pose Xy,...,Xn is a random sample from the distribution function F(z};
that is, in probabilists terms, X, ..., X,, are iid with common distribution
F.

In order to estimate F'(r) we may use the empirical distribution func-
tion F,(z) defined by

. 1 1~
Fr(z) = ;foi((-—ooa g]) =~ > Lixical:
i=1

i=1

Thus £,(z) is the fraction of the sample which is less than or equal to z.
Here are some elementary properties of the empirical distribution func-
tion:
(1) For fixed z, nF,(z) is a binomial random variable with mean
nF(z) and variance nF(z)(1 — F(z)). Thus

Blu(@)= F(s), Va(Fa(e) = SF@)(1 - Flo)).

(2) By the strong law of large numbers, we get for each fixed =

. i
Fn(x) = E Z l[X‘SE] - E]-[Xlsz] = F(:L‘)

i=1l

almost surely as n — oo. If F were continuous, then by Dini’s
Theorem, the convergence would automatically be uniform;
see for instance Resnick, 1987, page 3. However, there is a re-
sult called the Qlivenko-Cantelli Theorem (Chung, 1974, page
133) which guarantees uniform convergence even if F is not
continuous:

sup |F(z) — F(z)| = 0
TeR

almost surely as n — oco. Thus the empirical distribution
function closely approximates the true distribution for large
sample sizes.
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(3) For fixed z, the central limit theorem applied to the sums of
iid random variables 377, 1jx,<» implies

> i {lpxi<a] ~ Fl)
nF(z)(1 - F(z))

= N{0,1)

as n — 0o (remember that “=>" denotes convergence in distri-
bution), and therefore

Va(Fn(z) = F(2)) = N(0, F@)(1 ~ F(z))).

‘We may elaborate this statement to get a multivariate version.
Note first that if 2y < x; then

COV(I[X.'SM]! 1[4"&51'2]) = El[XiSm]l[XiS:m] - El[XiSII]EI[XiS-Tzl
= F(Il /‘\3:2) - F(ml)F(xg)
= F(z1}(1 - F(z3)),

so by the multivariate central limit theorem (see, for example,
Billingsley, 1986, page 398),

2 () - (529)
((Fe)-(Re)

F(z1)(1 - F(z1)) Flz)(l - F(z2))
=N (0’ (F(ml)(l — F(z2)) F(z2)(1— F(fi)) ))

in R2. Suppose G{z),z € R is a zero mean Gaussian process
with covariance function

B

(6.10.1) Cov(G(xy), G(.‘I!z)) = F(z;){(1 - F(SL‘Q)), T < Z3.

Then an elaboration of the previous argument shows that in
the senge of convergence of finite dimensional distributions

(6.10.2) V(Ea(z) - F(z)) = G(z).
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The Brownian Bridge. Let {B(t),t > 0} be a standard Brownian

motion and define a new process {B©)(t),0 <t < 1} by
BO(t)= B(t) -tB(1), 0<t<1.
Then B{® is a Gaussian process and B®(0) = B(®)(1) = 0 and EB® {t) =
0. Furthermore if 0 < #; <tz <1 then
(6.10.3) COV(B(O) (tl),B(o)(tz)) = t1(1 — tg).
To check (6.10.3) is easy since we know the covariance function of B is
Cov(B(s),B(t)) = sAt. Thus, if F(z) = U(z) :=z for 0 < z < 1,
that is, if F' is the uniform distribution function, then G in (6.10.2) is the
Brounian bridge. However, more importantly, we may represent the limit
G in (6.10.2) as a function of a Brownian bridge. If {B@(#),0 <t < 1} is
a Brownian bridge, define & new process G# by
G*(z) = BO(F(z)), z€R.
Then using {6.10.1) and (6.10.3), we see that
G*(z) £ G(z)

in the sense of equality of finite dimensional distributions, since both G

and G* are Gaussian processes with the same covariance function given in
(6.10.1). Thus (6.10.2) can be rewritten

(6.10.4) Va(Fp{z) - F(z)) = BOYF(z)).

This hints at the relationship between the Brownian bridge and the em-
pirical distribution function.

The Kolmogorov—Smirnov Statistic. Suppose we have a random
sample of size n and we wish to test the simple hypothesis Hy that the
sample comes from the distribution function F(x) against the composite
alternative hypothesis that Hy is false. We compute

R 18
Flz) = - Ellxig,]
i=1

as an approximation to the true population distribution. We reject the
null hypothesis if the discrepancies of F,(z) from F(z) are large for some
. One way to measure these discrepancies is to compute the Kolmogorov-
Smirnov statistic Dy, given by

D, = sup |F,(z) — F(z)).
zeR

We hope to use D, as a test statistic and reject when D, is large. The
use of this statistic is feasible because, for any continuous distribution F,
the distribution of D, is the same as if F = U/, the uniform distribution.
Thus, within the class of continuous distributions, Dy is a distribution free
statistic. We state this formally.
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Propf)sition 6.10.1. Suppose X,,..., X, are iid with common continu-
ous distribution F(z) and Uy, ..., U, areiid uniformly distributed random
variables with common distribution U(z) =z, 0 < 2 < 1, and empirieal
distribution function

. 1<
Un(2) = = lical
i=1

Then
Dy := sup |F(z) — F()| £ sup |Un(z) - U(z)].
TR z€R

Proof. Some basic facts that we need, which follow from the continuity of
F, are as follows:
(1) The inverse function of F
F™(y) = inf{u: F(u) > y}

is strictly increasing for y € (0, 1), and

(6.10.5) F(y)<tiff y < F().
The last equivalence follows because F is a right continuous
distribution function and therefore the set {u : F(u) > y} is
closed.
(2) We have
(6.10.6) F(F—=(t)) =t.

(3) If X is a random variable with distribution F(x) then F(X)is
& random variable with uniform distribution U(x). To check
this, note that, for 0 < z < 1, (6.10.5) yields

P[F(X) 2 z] = P[X > F~(=z)]
— 1- F(F™(z))

which, by (6.10.6), is
=1—-z=P[U; > z].

"To understand the idea of the proof of Proposition 6.10.1, suppose not
only that F' is continuous, but also that F is strictly increasing on R. Then
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F* is continuous and strictly increasing with domain (0, 1) and range R.
Thus

Dy, = sup |Fy(z) — F(z)|
zER

= Sup |ﬁ‘n(F‘_(u)) - F(Fh(u))l

ue(0,1)
= sup |F(F(u))—ul.
ue{0,1)

Now
. 1
Fo(F(u) = - Z L, < e (u]
i=1

1 ki3
= > lirxozu

i=1

1< .
< n > lwi<u) = Un(w),
i=]

and the desired result follows.

If you are happy understanding the proof under the extra assumption
that F is strictly increasing, skip the rest of this discussion. We now
proceed with the proof assuming only the continuity of F.

Let S be the support of F'; that is, the smallest closed set carrying all
the probability in ¥. So F'(S) = 1 and 5° is open in B. Any open set
can be represented as a union of open intervals, so we write S = Upl,,
where {I, = (ay,b,)} are open intervals with F(I,) = 0. This means
F(a,) = F(b,), and since

we have
2 1
Fy(ln) =~ > ex,(In) =0,

i=1

from which ﬁ'n(bn) = Fn(an). Therefore, neither F nor £, change on the
intervals I,,, and thus

D,= sup |I:"n(:t:) — F(z}|
TER\UnIn

= sup |Fu(z) - F(2)|
zES
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The proof now proceeds as in the simpler case discussed above. As u sweeps
through (0,1), F*(u) sweeps through S and therefore

sup | Fn(z) — F(z)| = sup |Fo(F~(u)) - F(F~(u))|. B
z€S ue(0,1}

Because the Kolmogorov-Smirnov statistic has the same distribution
for all continuous distributions F, the test is fairly easy to apply. Critical
values k, satisfying

PD, 2 k)=«
are given for various values of o and moderate sized values of n, say,
n < 80, in many texts. See, for example, Bickel and Doksum (1977)
and for additional information, Birnbaum (1952). In practice, Dy, can be
computed as follows: Let X3y < -++ < X(5) be the order statistics of the
sample X1,...,X,. Then, since ﬁ',,(X(.;)) = i/n and E, (x) does not change
value except at an order statistic, we get

i i—1

(6.10.7) Dn = max | - P(X@)|V IF(Xg) = “—

Asymptotic Theory. For small or moderate values of n, say n < 80,
we know how to use the Kolmogorov-Smirnov statistic. For larger values
of nz, we rely on the fact that D, has a limiting distribution when properly
normalized. As n — oo, we will show

vnD, = D,
where
= 232
(6.10.8) PD>d)=2) (—1)Fte %,
k=1

Critical points can now be evaluated numerically for D,, by using the limit
distribution.

To understand why /nD,, has a limit distribution, review (6.10.2).
The convergence in (6.10.2) was stated for the sense of convergence of
finite dimensional distributions. If this convergence could be strengthened
to an invariance principle, then we could apply the supremum functional
to the convergence to obtain

VaDa = Vasup|Fu(z) - F(z)| = sup|G(z)|

Since, for continuous distributions the distribution of D,, is the same as if
F is the uniform distribution, we would then cbtain

(6.10.9) VnDy = ynsup [F(z) - F(z)| = sup |BO(z)].
z 0<z<1
In fact, the invariance principle strength version of (6.10.2) does exist when

formulated properly. See, for example, Billingsley, 1968 or Pollard, 1984.
However, it is relatively easy to prove (6.10.9) directly.
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Proposition 6.10.2. If {X,,n > 1} are iid with a common continuous
distribution funetion F, then

(610.9)  VaDn = Vnsup|Fi(e) - Fla)l = sup |BO(x) =: D.

Proof. Since D, has the same distribution as if F = U, the uniform dis-
tribution function, we may as well suppose that {X,,} is replaced by an
iid sequence {0} of random variables uniformly distributed on (0,1). We
will choose our uniform random variables in a particular way. Recall from
Lemma 4.5.1(b) that if { E,,} are iid unit exponential random variables, and
if {T',, = E1+ --+ Ep,n > 1} is the renewal Poisson process generated by
the E’s, then, in R®

d I‘1 rn )
Unay, -+ Umy) = peer=—— 1},
Vo ) (Fn+1 "Tnp1
where (U, . .., Uiny) are the order statistics from a sample of size n from
(1) (n)

U{z). Thus
VAD, £y/msup |Un(z) — Ulz)),

which, from (6.10.7), is

" i i—-1
=ﬁV\U(i)—E|V|U(i)—T|

i=1
= Va1 - Uol+ ()

VAV 1 - g =l +0()

_n \"/ri—z‘ ilwpnoml 51,
NI IV IR A
n . .
n Ii—-¢t illy—-n
= - = +opil),
1—-“+1i=1 ﬁ n \/7—1 P()

where 0p(1) = 0 as n — oo. Note 0p(1) is of the order of

Fng1—=Tn  Ean

v vn'’
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which converges to zero in distribution.

Now, as described in Section 6.1, let B,(f)(t) be the continuous modifi-
cation of the process

T [nt] — [nt]
ﬁ 1

so that the paths of BY (t) are continuous. The invariance principle holds
and BY(t) = B(t). The mapping

f() = sup Lf(2) —¢f(1)|
0<t<1

0<t <1,

is continuous from C[0, 00) into R. Thus, since o7 — 1 almost surely by
the strong law of large numbers, we get

n

n i 1
VaDs £ 5= \/ IBO(2) = ZBP(1){ + 0,(1)

F1'1+1 i=1
= sup [BL(t) — tBL(1)] + 0,(1)
n+1 0<i<1

= sup |B(t) - tB(1}|
0<t<1

= sup |BO(3)],
0<t<1

as desired. B

We now know the asymptotic distribution of D, the Kolmogorov—
Smirnov statistic, is determined by D, the supremum of the absolute value
of the Brownian bridge process, and we must figure out how to compute
the distribution of D. Since we know a fair amount about Brownian mo-
tion, a good approach may be to try to relate B(®) to B. Since we know
that B®)(1) = 0, we may try to tie down Brownian motion at time 1 by
conditioning on B(1) being in a neighborhood of 0. We hope this produces
an approximation to B(®. The next proposition shows that this works.

Proposition 6.10.3. Suppose, as usual, that B is a standard Brownian
motion. Let {B()(t),0 <t < 1} be a continuous path process whose finite
dimensional distributions satisfy

P[BO(t)) < z1,..., BO(t) < 4]
= P[B(t1) S z1,...,B(tk) < 2|0 < B(1) < ¢].

forany k, 0<t1 St <... <ty < 1. Then, ase— 0, we have

(6.10.10) B(E)(.) = BO(.},
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in the sense of convergence of finite dimensional distributions. In fact,
(6.10.10) is also an invariance principle, which implies

1 1
(6.10.11) V 1BE&)) = \/ |1BO(s)].
s=0 s=0

This says that we may think of & Brownian bridge as a Brownian
motion conditioned to be zero at time 1. Sometimes a Brownian bridge is
called a tied-down Brownian motion.

The proof of this result is made much easier by the following simple
lemma.
Lemma 6.10.4. If B is standard Brownian motion and BO(¢) = B(t) —
tB(1) is the corresponding Brownian bridge, then B(1) is independent of
the Brownian bridge process {B®(t),0 <t < 1}.
Proof of Lemma 6.10.4. It suffices to show for fixed ¢ that B{®}(¢} and B(1)
are independent. Since (B{®)(t), B(1)) are jointly normally distributed, it
suffices to show they are uncorrelated. This is easy to show, however, since

EBO(t)B(1) = E((B(t) - tB(1))B(1)) = EB(t)B(1) — tE(B(1)?),

and, from the formula for the covariance function of Brownian motion
(property (5) of Section 6.4), this becomes

=t—t1=0,
as desired. W

Proof of Proposition 6.10.3. We only prove finite dimensional convergence
in (6.10.10). For a proof of the invariance principle, consult, for example,
Billingsley, 1968.

Once we write the calculation for k = 2, the procedure for general k
will be clear. For 0 < t; <tg <1, consider the densities

P[BU)(t;) € dx,, B(t,) € dx;]
= P[B(tl) 1S3 dIl,B(tz) S d:r:2|0 < B(].) < E]
P[B(1) € dw]

- /D PIB(t1) € do, B(ta) € dmal B(1) = wl g —5mee

€
= f P[B(tl) —Hhw € dry - tyw, B(l2) — taw € dzg — fg'wlB(l) = w]
0

n{w)dw

N((0, €]}
= fﬁP[B(O)(tl) € dz; — tiw, BO{ty) € dxg - tow|B(1) = w) n(w)dw
: o N(©,4)

and, because of the independence proven in Lemma 6.10.4, the conditioning
on the previous line disappears to yield
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Divide numerator and denominator by ¢, and let € — 0. By the mean value
theorem for integrals the previous expression converges to

— P[BO(t)) € dx1, BO(t;) € dirgJn(0)/n(0)
= P{BO)(t,) € dz1, BO(t;) € dxy). M

This gives us a way to calculate the limit distribution of the Kolmogorov—
Smirnov statistic.

Corollary 6.10.5. We have

PID>d] = P[\l/ IBO(s)| > d]

=0

1
= % (e)
= i Pl\/ B9 > d
3=0
1
=1l < < €}.
lim P[XJ |B(s)| > d|0 < B(1) < ¢]

This reduces the problem of computing the distribution of D to a
Brownian motion calculation. The result that we need is contained in the
next proposition, whose proof using reflection and the strong independent
increments property of Brownian motion is deferred until the end of the
section.

Proposition 6.10.6. For a standard Brownian motion B, we have

1 1
Play < A\ B(s) < \/ B(s) < ez, B(1) € [, d]

8=0 =0

= i N(c+ 2k(ag — a1),d + 2k(az — a1))

k=—00
(=]
— > N(2a2 - d+2k(az - 61), 202 - ¢+ 2k(az — ay))
k=—00
for a1 < 0 < az and [c,d] C [a1,aq].

We use this result to derive the formula for the distribution of D. We
will check (6.10.8) in the equivalent form

o0
(6.10.12) PID <v]=1+2) (-1)*¢ %", u>o0.
k=1
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If we apply Proposition 6.10.6 with a; = —v,a2 = v,c=0and d = ¢, we
get

P|D < v)

1 1
= lim Pl-v < N B(s) < \/ B(s) <v,B(1) € [0,€]]/P[0 < B(1) < ¢

=0 a=0

— lim Y e oo N((4kv, € + 4ko]) — 350 N((2v — € + kv, 2v + 4kv))

e N((0,€)}

Since one can check that the series converge uniformly in ¢, the limit may
be taken under the summations to yield

= ( > ndkv)— Y n((4k+2)v)) /n(0)

km=—o00 k=—00

=1+ (i 2n(dkv) — i 2n{(4k + 2)’0)) /n(0)

k=1 k=0
o 2,2 = 1( 2,2
=1+2(Ee—8ku _Ze—g4k+2)u)‘
k=1 k=0

We can check that the expression on the previous line is the same as the
series in (6.10.12),

Our last task in this section is to prove Proposition 6.10.6. The proof
is an elaborate application of the reflection principle.

Proof of Proposition 6.10.6. We set I = [¢,d]. For a,b € R, we write
a+bl={a+bz:zel}
Then we have

1 1
Play < A\ B(s) < \/ B(s) < az,B(1) € ]

8=0 s=0

1 1
= P[B(1) € I] - P{[B(1) € IIN a1 < A B(s) < \/ B(s) < aol°}
=0 s=0
(6.10.13)
=1I-1II

To evaluate I, let

J =

o 1, T, AT, = Tan
2, ifTo, ATuy =Ty,
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and define

T = Tﬂl A Ta._, = Ta._.,-- '
Ta =17 + inf{s : B(‘Tl + S) = 0441 mod 2}=
T3 = 1o +inf{s : B(72 + 8} = Gj~12 mod 2},

ete. If 7* =1, B hits e, before a,, and at time 73, hits as, and at time 73,
hitSO.;, and .... Let

NS e =31 <1
k=1 k=1

be the number of alternating hits of the boundary of the interval (a,, az)
before time 1. The relevance of N is that

II = P[N > 1,B(1} e ).
Becanse B is continuous with probability 1, we have N < oo almost surely.
Thus P[N > n} — 0 as n — o0, and therefore

11 = nllugoi(P[N > k,B(1) €] - PIN>k+1,B(1) e I))

k=1

= i(P[N > k,B(1) € I]— P[N > k+1,B(1) € I))
k=1

]

(-1)**1 (PN > k,BQ)eIl+ P[N 2k + 1, B(l) e I]}

I

12 s

(-1)**1(PIN > k,5* = 1,B(1) € I}

k=1
+ PN 2k +1,j*=2,B(1) €]
+ i(—nk“ (PIN 2 k,j*=2,B(1) € ]]
k=1
(6.10.14) + P[N 2 k+1,57" =1, B(1) € I]).

Now

PIN>kj*=1,BQ1)el]+PIN2k+1,5"=2,B(1) €|
(6.1015) =P{([N>k,;*=1JUN=k+1,j" =2)n[BQ) €I}
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This is the probability that B(1) € I, that B hits a; before time 1,
then hits as before 1, then a; before 1, ... alternating at least k — 1 times
after the initial hit of a;. To evaluate (6.10.15), we define

Sl =T017
S2 = S+ inf{s: B(S + s) = a2},
S; =Sy +inf{s: B(S:+8)=a1},

etc. Set A = a; — a1, and define

By(t) = B(t)
_ Bg(t), if t < 5,
Bi(t) = { 2Bo(S1) — Bo(t), ift> 8y,
_ Bl(t), ift< Sg,
Balt) = { 2B1(5,) — Bolt), ift> Sy,

etc. Then we may write
S = inf{s : By(s) = a1}
Sy = mf{s: Bi(s) = a1 — A}
S3 = inf{s : By(s) = a; — 2A},
and, in general,
S =inf{s: Br_1{s) = a1 — (k— 1)A}.

See Figure 6.5 for a caricature of a path. The solid line in this figure is B,
the dotted line is By, and the little circles represent Bo.

So By, is Bi_; reflected about the horizontal line at height a1 —(k—1)A,
and

(6.10.16) Bk_l(Sk) =a; - (k - 1)A

By the strong independent increments property, each process By is a
Brownian motion. Also, if §5 <1, we have

B(l)el
iff B1(1) = 2Bo(S1) — Bo{l) € 2a1 — I =: I,
iff Bo(1) =2B4(5;) —Bi(l}€2{a; - A)—- I =T —-2A =I5,
iff By(1) = 2B2(S3) — Ba(1) € 2(ay — 208) — I = 2a; — 28 — I =: Iy
iff B4(1) =2B3(S1) —Ba(1) €2(a; -3A) -3 =T —4A = I,
iff By(1) = 2B4(Ss) — Ba(1) € 2(ay —4A) — Iy = 2a; —4A — I = I;.
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az

[ —
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FiGURE 6.5

In general, if S < 1, we observe that
B(l) e Iiff Bk(l) € I,

where
I { I — kA, if k is odd,
k —

2¢; —{(k— 1A -1, if kis even.
The crucial thing about this construction is that

N>k =1JUN2k+1,7 =2 =[S < 1]

and
[Sk < l,B(l) (S I] = [Bk(l) € Ik],

and, therefore for the expression in (6.10.15),
PN > k7" = JUIN > k+1,5" =2) N [BO) € ]
= P8, €1,B(1) € I| = P[B(1) € I]
{6.10.17) = P[B(l) € Ik]
since B £ By by the strong independent increments property.

For the second infinite sum in (6.14) we have similarly that a typical
term,

PN >k j*=2BQ1)el]+ PN > k+1,5* =1,B(1) € I],

is the probability that B(1) € I, B hits ag and then makes alternating
visits to the boundary of {a;,a2) at least k — 1 more times before time 1.
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Since B £ —B, this is also the probability that —B(1) € I, —B hits a; and
then makes alternating visits to the boundary of (2,,az) at least k—1 more
times before time 1, which is the same as the probability that B(1) € —I, B
hits —as and then makes alternating visits to the boundary of (—agz, —a,)
at least k —1 more times before time 1. By examining (6.10.17), we obtain

PIN > k, 57 =2,B(1) € I|4+P[N > k+1,7* = 1,B(1) € I| = P[B(}) € I}

where

if k is even,

Ii: — { ""I_JAa
if k is odd.

—2a; — (k- 1)A+1,

The expression for I}, is obtained from the definition of I by replacing a1
with —ay and replacing g, with —a;. Thus {6.10.13) becomes

Play < A B(s) < \/ B(s} < a2, B(1) € ]

8=0 5=0

= PIB(1) € 1} - 3(-1)* (PIB) € 1) + PIBQ) € 1)

k=1

=P[B(1)e I+ i(—l)" {(P{B(1) € k] + P[B(1) € I])

k=1
= P[B(1) e I|+ > (P|B(1) € Ini) + P[B(1) € I}])

o0
k=

fory

=Y (PIB(1) € Ioeq1] + P[B(1) € I,.1,])
k=0
— PIB) € 1]+ 3 (PIB(1) € I - 2%A] + PIB(L) € I + 2k
k=1

~ > (PIB(1) € 2a1 — 2kA — I] + P[B(1) € 202 + 2kA — 1))
k=0

= i PIB(1) € I + 2kA]

k=00
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- i (P[B(1) € —2(az — a1) + 20z — 2kA — ]|
k=0
+P[B(1) € 2ap + 2kA —I])

= i P[B(1) € I +2kA]

k=—00

- i (P[B(1) € 2a; — 2(k + 1)A — I] + P[B(1) € 2a3 + 2kA — I))
k=0

= i P[B(1) € I +2kA] — i P[B(1) € 2ap + 2kA — IJ,

k=—00 k=—o0c

which is the desired resuit. B

6.11. PATH PROPERTIES*.

The paths of Brownian motion possess many intriguing and bizarre prop-
erties; they are continuous but badly behaved. We begin by showing that
the paths are nowhere differentiable,

It is convenient to assume the probability space is complete, which
means that all subsets of events of probability 0 are events. This is no loss
of generality.

Theorem 6.11.1. Almost all paths of Brownian motion are nowhere dif-
ferentiable, since

t+ h)— B(t)

P[Vt_>_0:1imsup|B( | =400] =1.
h—0 h

Proof. 1t suffices to show that for any M we have PAM) = 0 where

AWM — [, : There exists some ¢ € [0, 1] such that

lim sup ]_Bﬁi)‘i(ﬂ| < M}.

h—0 h
If w € A, there exists a t and ng such that n > ng implies
|B(s) — B(t)] < 2M]t - o

* This section is more technically demanding and can be skipped by a be-
ginning student; or the student can just examine the statements of the results
without proofs.
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if Is — t] < 2/n. Define
A, = {w: There exists t € [0,1] such that

|B(t,w) — B(s,w)| < 2Mit — s| if [t — 5] < %}

Then we know AM) c U, A, and that {An} is monotone: For any n, we
have A, C Any1. Suppose w € A, and ¢ has the property

|B(s,w) — B(t,w)| < 2M|t —~ 3|
if |t — 5| < 2n. Let k = sup{j : < t}. Define

BB -y ie ) - B E ).

We claim Yy (w)} < 6M/n if w € A,. To verify this claim, we observe that

kx2y_ B(%)I < IB(k_:?‘z‘) Aol IBO - B(ﬁ_’:_l)',

Y, = max{|B(

ko

1) |B(

and, since w € A,, we have

n

<oM| B2 g poame - BEY
n T
<om? poml M
n n T
k+1 k ko1 k
2 kL By <Aty i _pk
@ 1B By < EE - poy)+150) - )

which, by the fact that w € A, yields the upper bound

J2M M oM
n n n
(3) The third case follows similarly; the verification of the assertion is

concluded.

,_.
:slau_L
el
+ 1

—
x
+
[}

FIGURE 6.6.
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‘We now know that
n=2 6M
: < —} =: B,.
&chnM_n} B

k=1

Therefore

PAM) < P{| JAu} = lim PA, < lim PB,.
n— n—oa

Thus it suffices to show that PB, — . We have that

n—2
P8, = P{ e < 2]}
k=1

6M]

n

n—-2
<Y PYi<
k=1

and, using the stationary independent increments property of Brownian
motion, we get the bound

<nPlBC) - BO)vIBC) - B VIB(I) < 21,

which, from independent increments, is

=n(PIB()] < )y

= nP[ [3(1%)! < %}3
vn
= nP(N(O,1] < 2P
sM/ R
=mf n(z)dz)®.
—6M/ VR

Because the normal density n(z) is non-zero at 0, this is asymptotically
equivalent to

L%)l‘
Var V/n
n

1

Nn(
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as n — oo where K > 0 is a positive constant. This proves the desired
result. W

A real valued function f with domain [0, 1] has bounded veriation if it
is rectifiable; that is, the graph has finite length. This means that

sup ) If(t) = flta-)| < oo,
i=1

where the sup is taken over all finite partitions of [0,1] of the form 0 <
tp <t < - - <ty =1 and where we allow n and t1,...,%, to vary. A well
known result from analysis is that a function which has bounded variation
is almost everywhere differentiable. Since we know from the previous result
that almost no Brownian path is differentiable anywhere, we conclude that
Brownian paths do not have bounded variation.

Corollary 6.11.2. Almost no path of Brownian motion has bounded vari-
ation.

Therefore, almost no path is rectifiable.

6.12. QUADRATIC VARIATION.

We know Brownian paths are badly behaved continuous functions. They

are neither differentiable nor rectifiable. In trying to calculate the length

of a path B(t),0 <t <1, we choose division points for [0, 1] which we call
N={0=te<t1 < <tp =1}

An important characteristic of the division points IT is how far apart any
two successive points can be, so we define

A() = max [tk — te—1].

Any two successive division points are at most A(II) units apart. To cal-
culate the length of the path, we compute

Zn: |B(tk, w) — B(tk_l,w)l
k=1

and let A(II) go to zero. The resulting limit is almost surely infinite. If
A(II) is small, each individual difference |B(tg,w) — B(tx—1,w)}| is small by
continuity, but not small enough to make the sums converge. If we make
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the individual differences smaller by, say, squaring each, then there is a
chance the limit will be finite.
Thus we define

QI w) := zﬂ: |B(tk,w) — B{tx—1,w)|?
k=1

and call Q(II,w) the gquadratic variation of {B(t,w),0 <t < 1} over IL
If the limit exists as A — 0, we call the limit the quadratic variation of
B on [0,1]. If instead of [0,1] we had taken [0,%] for ¢ > 0, then the
quadratic variation of B on {0,t] would be a function of ¢ and hence a
stochastic process which is called the quadratic variation process. In the
theory of stochastic integration such processes are important as increasing
processes which can be subtracted from submnartingales to give martin-
gales. Quadratic variation processes are also used as random time changes
which turn processes constructed from Brownian motions using stochastic
integration into new Brownian moticns.

Theorem 6.12.1. If

i < gt+b
and

A@Hy -0

fast enough, then almost surely
Q®) -1,

which is the length of the interval we have decomposed. (If, instead of
decomposing [0, 1], we decompose [0,t], then the limit would be t.)

Fancier versions of this result exist; the present statement and proof,
modelled after the treatment in Breiman, 1968, are given because of their
simplicity. See, for example, McKean, 1969, page 28; Doob, 1953; and
Karatzas and Shreve, 1988,

Before giving the proof, we need to recall the following simple fact.

Lemma 6.12.2. Let N be a N(0, 1) random variable. Then the moment
generating function is

2
Ee*N =2 /? _so<a< oo,

and
E(N*) =3,
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Proof of the lemma. We have

N oo 6—32/2
Ee®Y = e dz
—00

Ve
® o —3(z*—~2az)
= —dx
—c0 v
P 2
222 o0 e—“%(:_a)ad:r
=g R
N
— ecx2/2

since the integral is the integral of a normal density and hence equals 1.
Thus, on the one hand,

ec::2/2 — i E(Nk)ak

!
S

and, on the other,

X (1N X 9—j 25
/2 _ (32®)? 273
€ _Z 4! _Z [T

=0 3=0

Equating powers of a?! yields the result.
Proof Theorern. We begin by observing that if

09 = {0 =ty <t; <..<tp=1}

then

QUIM) —1 = {[B(t:) — Blti-1)]* — (t: — ti—1)}

i=1
n

= E Bil
i=1

where {0; := [B(t:) — B(t;-1)]? — {t; — ti-.1)} forms a sequence of inde-
pendent, zero mean randomn variables. Because the variance of a sum of
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independent random variables is the sum of the variances, we have
) 2 n 2 n
E (Q(H(‘)) - 1) =E{> 0| = E6
i=1 i=1

=Y E((B(t:) - B(ti-1))*
i=1

—2(B(ti) —- B(ti_l))z(ti - ti_l) -+ (ti - ti_1)2) .
Applying Lemma 6.12.2 yields

= Zn: (8t —t:ia)? = 2(ti — t:1)® + (8 — 8:1)%)

qa=]

= i Q(t-.' - ti_l)z

i=1

n
< 2A(09) Y (i — ;1)
i=1
= 2A ()1,
For typographical ease, set A®) = A(TI¥). If, for instance,

. €;
AW = o

: where ¢; — 0, then
PQE®) -1 > iy/24(19)] = PIQM®) - 17 > 2],
‘ which, by Chebychev’s inequality, is bounded by
< B(Q(O®) —1)2
- 2¢;
LAY _ 2% _ .,
- 2¢; 2e;12 ’

Therefore,

ZP[[Q(H(‘)) — 1] > i4/2A(I)] < 0.

From the Borel-Cantelli lemma, we conclude

P{IQUI®) - 1] > iy/2A(TI6)] io. } =0,

and for all large ¢ (depending on the sample point w),

IRMY) — 1] < V2 — 0,
as required. W
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6.13. KHINTCHINE'S LAW OF THE ITERATED LOGARITHM FOR
BROWNIAN MOTION®.

The law of the iterated logarithm is a very precise statement about how
Brownian motion oscillates in a neighborhood of the origin. Let

hit) = v/2tloglogt-1.
Then we have the following result.

Theorem 6.13.1, For standard Brownian motion B

Plimep 5 = =1
and B

Remark 6.13.1. The second statement foliows from the first. Since
B() 2 —B('), the first result yields

~B(t)
lim su =1
to . h(t)
almost surely; that is
Bt
- ﬁmsup—!ﬂ = lim inf --(-—)— = -1

L0 h{t) tio ht)

almost surely.

Remark 6.13.2, Khintchine's law also gives us a law of the iterated
logarithm near infinity:

: B(t) . B(t)
P[ii — 1 liminf ———
[ Ersolclp V2tloglogt ks v2tloglogt

This follows from the time reversal property (6) in Section 6.4: We have

=-1=1

tB(1/t), ift>0

BO @ = { 0, ift=0,

* Beginners should study the statement of Theorem 6.13.1 as well as the
remarks that follow, but skip the proofs.
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is a Brownian motion, so almost surely

B(1)
1=1I —_—
0T hD)
tB(1/t
= limsup (/9

120 +/2tloglogt—1

Let t = 1 s0 s — 00, and we find

limsup B: lim sup B() 1
up ————— = e =
t=oe (f2Lloglogs 0 25log log 5

almost surely.

Remark 6.13.3. An important conclusion from the law of the iterated
logarithm is that almost all paths B(t,w) of Brownian motion pass through
0 infinitely often in every neighborhood of zero. Thus, for any € > 0,8 > 0,
B(t,w) is infinitely often in the region {(t,3) : 8 <t < §,(1 — e)h(t) <
y < (1 + e)h(t)} and also infinitely often in the region {(t,y) : 0 <
t <8, —(1+e€h{t) <y < —(1—e)h(t)}. Therefore, the path oscillates
near 0 jumping from being positive to negative infinitely many times. See
Figure 6.7.

(1+¢€)h(t)
g infinitely often here
(1-€)h(t)
~(1-€)h(1)
‘_—-IT(_t)—_— infinitely often here
~(1+€}h(2)
FIGURE 6.7.

The proof is rather technical. The first part is easier than the second
part, which requires some patience. We need the following lemma.

Lemma 6.13.2. Suppose B is standard Brownian motion. For oo > 0,
B8 > 0 and any t > 0, we have

P\ (B(s) - 3) > Bl < e

s<t
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Proof of Lemma 6.13.2. Let u = —a/2 < 0. As in Section 6, let B,(t) =
B(t) + ut = B(t) — 2at be Brownian motion with drift. Then

P\/(B(s) - —5-) > B = P[\/(B(s) + ps) > ]

a<t 3<t

= P(\/ Bu(s) > 4]

<t

<Pl \/ Bus)>4]

O<s<oo
Applying Proposition 6.8.1, this is
=g 2B = g=of

as required. W

Proof of Theorem 6.13.1. Part 1. We show

For0<0<i0<dé<],let

tn =61

an =L D1,)

1 T

Thus

= (1+4} —I- &) h2(29"

_ (1 + 6)29" loglog 8~
B 26m
={1+6)loglogé™™

= log (log ™) e

and

e—anBn _ o~ log(log g

1 1 145
- (log §—m)1+6 - (nlog 9—1)
_ K
T opl+é
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for a constant X > 0. Then, applying Lemma 6.13.2, we have

P 186) %> < = K
a<tn
50 On S
ZP [V Bls) - —-1> Bal <

<ty

By the Borel-Cantelli lemma, ultimately, for all sufficiently large (depend-
ing on w) n,

V B) - 571 < .

8ty

For such n we have

V Bls) - 2= <4,

<ty

Paraphrasing the previous statement, we have

Q’ntn

V Bls) < B+

s<iln
For such n, if ¢ € [07,0™ ) = [tn41,tn), We have

a:ﬂtﬂ

B(ty< \/ B(s)<Ba+
<ty

RE™ 146, .o
==t o o h(0)8

= he)y + 120

Using the fact that %(t) is non-decreasing in a neighborhood of 0, we get
the bound

<O+ 20

We may conclude that forany 0 < <land 0<é <1

lim sup Bt
tlo h{t

)_1+5
)[

Observe that the left side is independent of 8 and &, so in right side we let
6 10, and & 7 1. This gives the desired assertion for part 1.
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Part 2. We show

lim sup —= B(t) 2 L

tio  A{t)
Define independent events

An = [B(™) - B(6™) 2 (1 - VB)A(6™)].

Thus

PA, =P

B(6™) - B(6") _ 20" Jog log 6™
(11— (1 f) m(1-8) )
The random variable
B(g™) — B(6™+1)
£/8n{1-6)

is N(0,1). Call the right side of the inequality above z,,. Since §~™ — o0,
we have z,, — oo. Applying Mill’s ratio we have

PA, = P[N(0,1) > zn] ~ "(‘”“)

1 1““/3\/21051%9"]
B ;21r

148 /logn
2
_ K exp{-1 [ﬁ}g] (2loglogf—™)}

Since

we obtain the lower bound

K

ogn

K-f
ogn’

— -
e log log ¢

v

]

We conclude ), PA, = oo, and by the Borel-Cantelli lemma (Section
6.2), we get that P{ A, i.0o } = 1. Thus, for infinitely many n, we have

B(6™) - B(6"1) > (1 - V)h(6™)
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or, equivalently,
(6.13.1) B(6™) > B(8™)) + (1 — VOh(6™).

From part 1 of this proof, we have that B(t) < 2h(t) for small . Since
—B(t) is also Brownian motion, we have that —B(t) < 2h(t) for ¢ suf-
ficiently small; ie., B(t) > ~2h(t). For n sufficiently large, B(6"+?) >
—2h(#™*1). From (6.13.1), for infinitely many n,

B(#™) > (1 — VO)R(6™) — 2R(6™T1).
Thus for infinitely many sufficiently laxge n, we have

B(E™) 2R(0™H1)
oke 1—vo - SR

n41 {n+1)
—1- VB 267+1 loglog 6~ .
20™ log log 87

=1—v8-2/8(1+o(1))
>1-v8-3/9=1-4V8.

QOur conclusion is that

B(t)
111:1:19311) RE) >1-4v8.

Note that the left side is independent of ¢ so that on the right side we may
let # 1 0 to obtain the desired result. B

EXERCISES

6.1. Derive the joint density of (M(t), M(t)— B(t)) for standard Brownian
motion.

6.2. Prove M(t)— B(t) 2 |B(¢)]. Prove that {[B(t)),t > 0} is Markov, and
give its transition density.

6.3. For b < 0 < a and & € (b,a), compute P[Tqp = b B(0) = z] and
E(T,|B(0) = z).

6.4. Compute the conditional density of B(s) given that B(t) =
A, B(t2) = B where G < t; < s < 1. Specialize to the case that A=0= B,
8.5. Check FT, = co, for standard Brownian motion, a # 0.
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6.6. Check that for standard Brownian motion, {7,,a > 0} is a stable
Lévy motion: Show it has stationary independent increments.

6.7. Compare the covariance function of Brownian motion
Cov(B(t),B(s)), 0<s<t

with that of a homogeneous Poisson process {N(t),t > 0} of rate A. Are
they ever equal?

6.8. For standard Brownian motion, derive

PB(t)>y, A\ B(u)>0|B(0) =a].

DEust

(Use reflection.)

6.9. Let B be standard Brownian motion, and define geometric Brounian
motion Y by
Y(t) = e%®,

Determine the diffusion coefficients:

E(Y(t+h) - Y)Y () =)

a(y) :=lim - ,

e ey EXE+R) Y)Y (E) =)
by) = lim -

fory > 0.

6.10. For standard Brownian motion, compute

Pl \/ Bt)>q

Uy <t<ug

for 0 < u; < us.

6.11. Let B((t),0 < t < 1} be a Brownian bridge; that is, a continuous
path Gaussian process with covariance function

Cov(B®(s), B®)) =s(1—1t), 0<s<t<1.

Define B(t) by
B(®) = (1 + 9B (),

and show B is a Brownian motion.
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6.12. For standard Brownian motion, verify

P\ |B@#) <t = i (—1)¥P[(2k — 1)b < B(1) < (2k + 1)b].

0<t<1 k=—o00

6.13. If {X1,...,X,} are iid with common continuous distribution F(z),
show that the statistics

Dyt = sup(£,(z) - F(z))
and
D; = inf(Fy(z) - F(z))

are distribution free, and show they have limit distributions when mul-
tiplied by +/n. Identify the limit distributions in terms of the Brownian
bridge.

6.14. For i = 1,2, consider the maps T; : C([0,1]) — R defined for
feC(10,1]) by

T(f) = suwp |f(E),

0<t<1
T2(f) = sup |f(t) —tf(1)].
p<t<1

Show that both T3 and T, are continuous.

8.15. Let B be standard Brownian motion.
(a) Prove S(w) := {t € [0,1]: B(t,w) = 0} has Lebesgue measure zero
for almost all w. (Hint: Compute the expectation of

fnﬂmma
0

(b} Prove that with probability 1, S(w) is a closed perfect set. (A
perfect set S is a compact set dense in itself; that is, for each point © € §,
every neighborhood of z contains points of S other than . There can
be no isolated points.) Show that S{w) is therefore non-countable with
probability 1.

{c) For any ¢ € R, show {t € [0,} : B(¢,w) = a} is, with probability 1,
either empty or a closed perfect set of Lebesgue measure zero.
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6.16. Let {Z,,n > 0} be iid N(0,1) random variables. Show

B(#) = tZ 2°°sinmtz
0= 72tz 2 =

m=]

is a standard Brownian motion.

6.17. Let B be a standard Brownian motion. Find expressions for the
following quantities:

(1) P{\l/ B(s) £ z,u < B(l) < v};

3=0
1 1
2 PI\VB(s) <z, A\Bs) 24, y<0<z
a=0 2=D
1
3 PV IB(s)<a]
a=0

6.18. Let {B©®(t),0 < t < 1} be a Brownian bridge. Find expressions
for the following quantities:

1

1
(1) Pla < ABO(s)< \/ BO(s) < az], a1<0<ay;

s=0 3=0

1
2 PV IBO@G) <a], =26
a=0

1
3) PI\/ BO(s)<s], z20.
=0

6.19. Let {B{~9(t),0 < ¢ < 1} be a continuous path process whose finite
dimensional distributions are given by

PBUOW) <my,i=1,...,k| = P[B(t:) < zii=1,...,kj—e < B(1) < 0]
forz; e Rand 0<t; €1,i=1,...,k Prove, as ¢ — 0,
B("‘)(-) =>B(°)(-)

in the sense of convergence of finite dimensional distributions.
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6.20. Let {B(t),t > 0} be a continuous path process which has stationary,
independent increments, EB(t) = 0, and Var(B{t)) = t. In addition,
suppose the finite dimensional distributions of B are the same as the scaled
process

{71 B(c?t),t > 0}
for any ¢ > 0. Show B is a Brownian motion.
6.21. Let B be standard Brownian motion. Define

2n . .
Yo =S 1B(L) - B
3B - Bl 5o
Show
EY, = 2*2E(B(1)]), Vax(Y,) = Var(IB(1)])
and that

EP[Y“ < n] < 0.

Conclude that B does not have paths which have bounded variation on
[0, 1] (Billingsley, 1986) .

6.22. For standard Brownian motion, show that the probability of no zero
in (,1) is

2
Z arcsin V1t ,
m

and hence that the position of the last zero preceding 1 is distributed over
(0,1) with density

a1 -4)"Y2, 0<t<1
(Hint: Review Proposition 6.5.7.)

6.23. For standard Brownian motion:

(a) calculate the distribution of the position of the first zero following
time 1;

(b) calculate the joint distribution of the last zero before time 1 and
the first zero after time 1;

(c) show

P[Bhas no zeros in (zt,t)] = %arcsin V.

6.24. Compute
1)u1 < TL]‘(]E}

6.25. You own one share of a stock whose price is approximated by a
Brownian motion. Suppose you purchased the stock at & price b4-¢, ¢ > 0,
and the present price is b You will sell the stock either when it reaches
price b+ ¢ or when £ time units have passed, which ever comes first. What
is the probability that you do not recover your purchase price (Ross, 1985).
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6.26. Suppose the present value of a stock is y and that its price varies
according to a geometric Brownian motion (see problem 6.9) Y(t) =
exp{B(f)}. One has the option of purchasing at a future time T one unit
of stock at a fixed price K. Compute the expected worth of owning the
option; that is, compute

E((Y(T) - K) v 0).

6.27. Ornstein—Uhlenbeck process. Let {B(t),t > 0} be standard
Brownian motion. Define the Ornstein—Uhlenbeck process by

It)=e /2 B(e**), t>0,a>0.

Verify that the process I is stationary.

6.28. Let B be a standard Brownian motion.
(a) Show

P[\/ B(s) > ol \/ B(s) =B(#)] =e~*/%*, a>0.
s=0 9=0

(Hint: Find the conditional density given Y'(t) = V:=o B(s)— B(t)=0.
{(b) Prove

1
PB(1} <zl A Blu) 20| =1~/

u=0

(Hint: B'(t) := B(1)—B(1-1),0 <t < 1 is Brownian motion on the index
set [0,1].)

6.29. A Lindley Process in Continuous Time. For u € R, define
Brownian motion with drift, as usual, by

B,(t) = B(t} + ut.

Now define the Lindley process W(t) by

W(t) = (W(0) + Bu(t) v \/ (Bt} - Bu(s))-

8=0

Verify that {W(t)} is Markov.
Now set

M.u(t) = \/ B(s),

5=0
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and show that for each ¢
Wit) £ (W(0) + Bu(t)) V Mu(t).

If 1 < 0, verify that M, {00) < oo almost surely and W(t) = M, (c0).
Verify that

7:=inf{t > 0: W(0) + B,(t) < 0} = inf{t > 0: W(t) = 0},

and then W(t) = W(0) + B,(t) for t < 7.
If p =0, show {W(t)} is a Brownian motion with reflection at zero
which can be represented as {|W(0) + B(t)|}.

6.30. Let By, B; be two independent standard Brownian motions, and let
T =inf{t > 0: Ba(t) =y}, v>0.

Calculate the distribution of By (T52).

6.31. Brownian meander. Let B be a standard Brownian motion and
define Brownian meander {B*(t),0 < t < 1} to be the continuous path
process whose finite dimensional distributions are obtained in the following
way: Forany kand 0 <ty <ta <+ < <1,

PB*(t) < ziyi=1,... K|
1
= P_I%P[B(t,e) <z,i=1,... k| /\ B(s) > —¢].

s=0
(a) Give the finite dimensional distributions of BY. Verify

PB*Q)<z]=1- 6_32/2’ x> 0.
(b) Verify
1
P[V Bt(s) <z, BM(1) <y

=0

o
- Z [e_(2k.q)2/2 - E—(zkx+y)’/2]’ O<y<<ue.

k=—0a

(c) Compute P[\/:=0 B*{s} < z). (Set y =z in (b).)
(d) Compute

E (\1/ B"'(s)) =v2rlog2
s=0

(Durrett and Iglehart, 1977).
6.32. For standard Brownian motion, check that for g2 > 0,1 > 0

P(B(t) < pt+v, forall t > 0|B(0) = w] = 1 — e~ 20 —),

for w < v.



CHAPTER 7

The General Random Walk*

HAT IS this mathematical model called a random walk? Let
{Xn,n > 1} be iid real valued random variables. Define S; = 0,
and for n > 1 define S, = X; + ... + X,. Then {S,,n > 0} is a random
walk. The random variables {X;} are called the steps of the random walk,
and the distribution F{z) = P{X; < z] is called the step distribution.
This chapter contains advanced material. Part of the treatment is some-
what non-standard and follows ideas learned from P. Greenwood. (See
Greenwood, 1976; Greenwood and Shaked, 1977; Greenwood and Pitman,
1979.) Conscientious readers are urged to broaden their view of this subject
by consulting the excellent standard treatments presented in, for example,
the books of Feller (1971), Breiman (1968), and Chung (1974).
Basic topics in the study of the the random walk are

{1} Recurrence: How often does the process hit neighborhoods of
points? We do not treat this subject. Consult the references just
given.

(2) Global properties of {S,n > 0} studied by means of ladder vari-
ables.

(3) Wiener-Hopf factorizations, which lead to the joint distribution of
the ladder height and ladder time in terms of a double transform.

(4) Behavior of {V}.45;, Aj—oSj,n = 0}.

(5) Connections with queueing theory and storage models.

The random walk is a basic model underlying many other models. 1t
is simple to describe but offers many challenging problems. Many of the
problem solving methods used for the random walk are common to more
complicated models. Standard models in queueing theory, storage theory
and time series analysis contain embedded random walks. Also, the random
walk is the discrete time prototype of the fundamental continuous time
process Brownian motion studied in Chapter 6.

We begin by reviewing some material on stopping times before launching
into a discussion of the global properties of the random walk.

* This chapter contains advanced material not suitable for beginning readers.
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7.1. STOPPING TIMES.

‘We have encountered the notion of stopping time several times in previous
chapters with varying degrees of formality. Yt is now time to review our
knowledge of this important technical concept, so please reread carefully
the material contained in Sections 1.8, 1.8.1, and 1.8.2.

For random walks, prominent stopping times are the first strict
ascending ladder epoch

N=imf{n>1:8, > 0}
and the first descending ladder epoch

N=inf{n>1:85,<0}.
It is frequently the case that N or N is infinite with positive probability so
that in reviewing the important result Proposition 1.8.2 on splitting an iid
sequence at a stopping time, keep in mind that the case where the stopping
time is infinite with positive probability is crucial and not something of only
pathological interest.

Iterates of stopping times: Let E = UJ2,R™ be the set of all finite
sequences of reals where RO is . Define the natural o-algebra £ by

E={GCE:GNR"eB(R") for n > 1},
where B(R™) are the Borel subsets of R".

Set Fn = 0(Xh,...,Xy) and F, = 0(Xpt1, Xnto,.-- ). Now suppose
that o is a finite stopping time for {F,,n > 1}. For this entire chapter,
{Xn,n > 1} is iid. For each n there exists B, € B(R") such that

[@=n]=[(X1,...,Xn) € Bp}.
Define a(0) = 0,a(1) = a; a(2) is defined hy
[x(2) =n] = [(Xa(1)+g'a 1<j<n)e B}

for n > 1, so a(2) is obtained by stopping (X4(1)+n,n > 1) in the same
way we stopped {X,,n > 1}. Proceeding inductively, define a(k + 1) by

[alk +1) = n} = [(X4k)45,1 < < n) € B

for all n. The next result shows that 3{0) = 0, 8(k) = a(1)+- +a(k), k>
1 is a renewal process. (Cf. Chung, 1974, page 261.)
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Proposition 7.1.1. Let o be a finite stopping time for the iid sequence
{Xn,n>1}. Then
{(adk), Xph—1)415-- - X)), k£ > 1}

are iid random elements of {1,2,...} x E.
Proof. Forany Ac £,
[a(1) =a]N[(Xy,--. Xay) € Al = [a(l) =n]n[(X1,...,Xn) € Al € F,
so the random element (a(1), X1,...,Xq()) is Fa(1) measurable. Similarly,

[0(2) = n’] n [(Xa(1)+1} o "Xa(1)+o:(2)) € A]

= [(Xa(1)+1,. .. 7Xn:(1)+n € Bn]ﬂ[(Xa(1)+1, . :Xa(1)+n) S A] S .7'-;(1),
50 (a(2), Xaqy1r- - » Xa()+a(2) € .7;(1). From Proposition 1.8.2 we
know that

(e(1), X1, ..., Xaqy) and (a(2), Xo(1)+1s - -+ » Xa(1)+a(2))

are iid random elements of E. Proceed by induction for the general state-
ment. W

In the case Pla = co] > 0 we get from Proposition 1.8.2 that

{{lalk), Xpk—1)415- - - X)) k < m}

is iid on the trace probability space
P{-0p a(k) < o]}
P{N_[e(k) < oo]}
In this case, {3(k), k > 0} is a terminating renewal process.

Special cases of outstanding interest are when {8(k),k > 0} =
{N(k).k > 0}, the ascending ladder indices, or {8(k)} = {N(k),k = 0},
the descending ladder indices. The previous results tell us

{Xaoe-1)+ -+ + Xowy = Spmy — Spe-1), 5 2 1}
is iid (possibly with respect to appropriate trace spaces if P{3(1) = oo >

0), 50 {S3(k), & = 0} is a sum of iid variables. In the case of N and N, we
may thus conclude that the following are all renewal processes:

{N(k)ak 2 0}:{N(k))k 2 0}! {SN(k)a k> 0}’ {Sﬁ(k)vk 2 0}

{N¢} are the ascending ladder epochs, and {Snx)} are the ascending lad-
der heights. Similarly, {N(k)} are the descending ladder epochs, and
{55 (x)} are the descending ladder heights. Note that {NV(k)} are the epochs
when the random walk achieves record heights strictly larger than previ-

ous heights. The values of these record heights are the ascending ladder
heights.

QM [alk) < oo, F MRy [afk) < o], P =
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7.2. GLOBAL PROPERTIES.

Here we investigate relations between N,limsup,,_, o, Sn, Moo = V§2,5;
and classify random walks according to whether or not ladder renewal
processes are terminating.

Recall

N=inf{n>0:5,>0}, N=inf{n>0:8,<0}

and set My, = V7_5;, 0 < n < oo

Proposition 7.2.1. The following are equivalent:
(a) PIN <o0| =1,
{b) Pllimsup,,_, . S, =cc] =1,
{c}) P[M,, =o0] =1.
Also, the following are equivalent:
(a') PIN = o0} > 0,
(v') Pllimsup,,_,,, Sn = 00} =0,
(c') P[M, = c0] =0.

Remarks. The first set of equivalences describes the situation where both
{N(k)} and {Sn(x)} are non-terminating renewal processes. Similar state-
ments obviously hold for N, liminf, ., S, and A;f‘:on and describe when
{N(k)} and {—Sn)} are non-terminating.

Proof. (a) — (b): If N < 00 a.s. then Sy > 0 is a.s. well-defined and
ESy > 0, since if ESy = 0 we have Sy = 0 a.s., which contradicts the
definition of N. Apply (7.1.1) to get that

(Svpy — Sne-1),k 2 1)

are iid proper random variables. By the strong law of large numbers, we

have
k

k7 Sy = Y (Snigy — Sng-n)/k — ESn >0

J=1

as k — co, and hence Sy(xy — oo a.s. This entails lim sup,,_, ., Sn = 00,
so (b) holds.

(b) — (c): This should be clear since limsup,,_, , Sp < M.

{(c) — (a): This should be clear since on the set [My, = oo] we have
N < oo0.

{a'y — (b)) : If {a') holds, then (e) fails and therefore (b} fails.
This means P[limsup, ., S, = oo] < 1. However, limsup,_ ., S, is a
permutable random variable (interchanging X; and X; leaves the value
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of limsup,,_,., S, unchanged), and so, by the Hewitt-Savage 0-1 Law
(Billingsley, 1986, page 304; Chung, 1974, page 255; Feller, 1971, page
124) we have limsup,,_, ., Sy is a.s. constant. Therefore, if

Pllimsup S, = o0] < 1,
n—oo
we must have
Pllimsup Sy, = c0] =0,
n—od
and consequently (b') holds.
(¥') — (¢): If imsup,,_ o, Sn(w) < oo for a.a. w, we have a finite
K (w) with
limsup S, (w) < K(w).

Given some ¢ > 0, there exists ng(w) such that n > ng(w) implies
Gu(w) < K(w) +e.

Hence, My (w) < oco.
{(¢') — (a'): If (¢) holds, then (¢) does not, and hence (a) fails. If (a)
fails, (a’) holds. W

The next result says a random walk either drifts to an infinity or
oscillates between infinities.

Proposition 7.2.2. Suppose P[X; = 0] < 1. Then one of the following
holds:

(i) S, — +o0 as,,

(ii} Sy, — —c0 a.s,
or

(ili}) —oo = liminfy, e, Sp < limsup,, ., S, = +00 a.s.

Proof. Set Sy, = limsup,_,, Sn. Then Sy is a permutable random vari-
able and hence a.s. constant, i.e., there exists a constant ¢ (possibly +o0)
and S = ¢ a.5. Now

n
S =X +l.imsupZX.-.

LR T < R
i=2

Since {X,,n > 1} 4 {Xn,n > 2}, we have S £ lim sup,, o0 > g Xi
and thus almost surely
c= X1 + C.

Since P[X; # 0] > 0, we see that ¢ = %00, So either
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(A) Lmsup,,_, o Sn = +oo or (B)limsup,, . Sn = —o0, and the lat-
ter possibility means lim,_,., Sy, = —ooc. A similar argument with 1im inf
gives

{A’) iminf,, oo Sy = +00, s0 that limy,_, . S, = +00, or alternatively
(B') liminf,_,, S, = —oco. Combine the possibilities A+ A’ = (i), A+B' =
(é53), B+ A' =0, B+ B' = (ii). B

When the mean exists and equals zero, we get the oscillation case.
Proposition 7.2.3. If E|X;| < co and P[X; = 0] <1, then

(i) if EX; >0, S, — oo as.,

(ii) f EX; <0, S, - —oo a.s.,

(iii) if EX, = {0, we have

—00 = liminf S, < limsup S, = +o0.

n—oq n—oo

Proof. Statements (i) and (ii) follow straightforwardly from the strong law
of large numbers, 50 we concentrate on (iii).
Suppose, for the purposes of obtaining a confradiction, that

P[N=00]=¢q>0.
From Proposition 7.2.1(c), we have M, = V;>08; < co as. Let v =
inf{j > 0:5; = My} with inf @ = oo if necessary. We have

lziP[vzn]

n=0
[+ o]

=" P[S; < 82,0 £ j <1,k £ Sn, k> 1]
n=0

(interpret n = 0 sensibly)

-] n k
=5 P{[Y Xi>0,0<j<nin[ ) X<0k>n]}

n=0 i=j+1 i=n+l

by independence, this is

oo n k
=Y P Xi>0,0<j<nlP[ )Y Xi<0,k>7

n=0 i=j+1 i=n+1l

S P[Xp > 0,Xn + Xn1> 0,0, 3 Xi > 0]P[S; < 0,5 > 0]

n=( =1

o0
=3 P[X1>0,X,+ X3 >0,...,5, > 0]P[N = oq]

n=0

(since (X, Xn_1,.--, X1) 2 (X1,..., Xn))
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=ZP[N > n|g = ENg.

n=0

Because ¢ > 0, we conclude EN < co. Wald’s identity (Proposition 1.8.1)
implies _ _

ESg =ENEX, =EN0=0.
Since Sz < 0 a.5. we know Sy = 0 a.s., which violates the definition of N

because
PSSy < 0] > P[X, < 0] >0if EX; =0.

We get a contradiction, which means ¢ = 0. Similarly, P[N = o] = 0.
Finish by applying Proposition 7.2.1(b) and its liminf counterpart. B

7.3. PRELUDE TO WIENER-HOPF THEORY: PROBABILISTIC INTERPRE-
TATIONS OF TRANSFORMS.

The Wiener-Hopf factorization concerns itself with joint transforms such
as
Ee“SvgV, 0<g<1,(€R

Our treatment of such transforms is based on probabilistic rather than
analytic arguments. To better understand this procedure, it is beneficial
to discuss some historical attempts to interpret transforms as probabilities.
This interpretation is frequently called the method of collective marks and
is usually attributed to David Van Dantzig (1948). See also Neuts, 1973,
p. 137, and Runnenburg, 1958, 1965.

Here is one interpretation of generating functions: Let {pg, k > 0} be
a probability sequence so that pr = 0 and }_ px = 1. Imagine k objects
are chosen with probability py. Independent of the choice mechanism is a
marking mechanism: An object is marked with probability 1 — q and left
unmarked with probability ¢, 0 < ¢ £ 1. Then

o0
P[ no object is marked | = Z P[k objects chosen, none of k is marked |
k=0

= md" = P(q),
k=0

which, of course, is the generating function corresponding to {ps}-
Here is a second interpretation using geometric random variables: Let
Y be a non-negative integer valued random variable with P[Y = k| =
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Pk, Pk = 0, 3 4o, Pk = 1. Suppose the random variable T is independent
of Y and T has a geometric distribution, and suppose

PT>k=¢"k>0.
Then

ngﬂ=§ﬁwzwwgﬂ
k=0

-—-ipkff = P(q).
o

Similar interpretations are possible for Laplace transforms. For
example, suppose T is the waiting time for a catastrophe which has an
exponentially distributed waiting time with parameter A. (Why this sub-
ject traditionally uses such apocalyptic terminology is not clear.) Let ¥ be
the waiting time until a picnic; ¥ has distribution ' and is independent
of the eatastrophe time 7. Then

P[ picnic takes place before the catastrophe ]

=HY5ﬂ=/mPﬁsﬂHﬁ)
\]
= f""-’ e~ MP(dt) = F(A)

0

We concentrate on the integer-valued case. If P[T" > k] = ¢*, then a
useful property for T is the discrete forgetfulness property:

(7.3.1) PT>n+kT>n]=P[T >k
This holds since

PT>n+kT>n]

PT>n+klT>n]=

P[T > 7]
= P[T 2 n+k]/P[T >n] = ¢"tF/g"
=¢* = P[T > k.

There is a random analogue: If ¥ and Z are independent, non-negative
and integer valued and each is independent of T, then

(7.3.2) PIT>Y+ZIT>Y]=P[T > Z].
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This is readily checked once one observes

oo
PT2Y+2]=> ¢*PlY +Z =k = E¢'*?
0
= B¢*E¢® = P[T > Y|PIT > ZJ;
the generating function Py 1z{q) of Y + Z satisfies

Py z(q) = Py(q)Pz{q).

For (7.3.2), we now have

PIT>2Y+ZIT>Y]|=P[T>Y +Z|/P[T >Y]
=PI >Y|P[T > Z}/P[T >2Y)= P[T > Z].

As a final warm-up, consider again the material of Section 1.6 on the
Bernoulli random walk. We have P[X; =1]=a¢ =1~ P[X; = —1]. Let
N =inf{n > 1: S, = 1}, and compute P(g) = Eg". The classical method
of solution discussed in Section 1.6 is to write a difference equation for
P[N = n|, multiply through by ¢, and sum over n to get an equation
in the unknown P(g). The methods discussed above allow us to bypass
the step of writing a difference equation and go directly to an equation in
which the unknown is the generating function. This is done as follows.

Let T be geometrically distributed, P[T > n| = ¢*, and independent
of the random walk. Then

P(g)=P[N <T}=P[NLT,X; =-1]+ P[N <T,X; = +1].
On the set {X; = 41] we have N =1, so
PINST, X, =+l =P <T, X1 =1] = qa.

If Xy = —1, then the random walk must start at —1, move eventually to 0
in N_; g steps, and then from 0 to 1 in Ng; steps. From Sections 1.6, 1.8.2
and Proposition 7.1.1 we confidently assert N_;gq, Ny, are independent
and

N N_i1p £ Not,

S0
PINST, X, =-1]=P[1+ N_10+ Ny £ T)(1 - a)
= P[T > 1}P[T 2 N_1,0]P{T > Np,](1 —a)
= ¢P*(g)(1—a).
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Therefore,
P(q) = qa +g(1 — a)P*(q),

and solving the quadratic for P(q) yields

1+ /1 —4q%a(1 —
Plg) = Call—a) 0<¢g<1

24(1 - a} '

The solution with the plus sign is ruled out, since it is unbounded as ¢ | 0
in violation of the behavior of generating functions.

In general random walk theory, basic results describe the joint distri-
bution of (N, Sy) as well as the joint distribution of (¥, Sx). In deriving
these distributions we will be led to consider the measures

(7.3.3) Hy(-) = P[Sy €, N < T]
and
(734) Hq() = P[Sﬁ = '?N < T],

where T is independent of {S,}, P[T" 2 n] = ¢™. The relevance of H; and
H, comes from the fact that, for ( € R,

] ¢*Hy(dz) = Z / e P[S, € dz,n < T,N =n]
{0,00) {000}

n=1

o0
= Z/ e* P[S, € dz, N = n|¢"
(6,00}

n=1

(7.3.5) = EqNelSn,

which is the joint transform of (N, Sy). Similarly,
(7.3.6) / e* Hy(dz) = Eq™e¥57.
(—o0,0]

Note H, concentrates on (0,00) and H, concentrates on (—c0,0]. The
Wiener-Hopf factorization informs us that if F' is the step distribution of
the random walk and 6 is the measure concentrating mass one at the origin
then

(6 - aF) = (6 - Hy)» (5 — Ho).

Techniques exist which allow us to solve for each factor. We pursue
these issues in the next two sections.
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7.4. DUAL Pairs oF STOPPING TIMES.

Duality is the basic property leading to a Wiener-Hopf factorization.
Henceforth it will be convenient to have a concrete probability space,
s0 suppose 2 = R® F = B(R*>). Suppose P is a product measure on
(R>, B(R>)) such that each marginal measure is F(-}, the step distribution
of the random walk. When w = (21, 22, ...}, we define the coordinate maps
by
Xn(w) = Xn((zl,zz, N =2p, B2l

Under P, {X,,n > 1} is iid. H o« is a stopping time for F, =
o(X1,...,Xn), n > 1, then the iterates of a can be reinterpreted as fol-
lows: ap = 0,1 = a and ax{w) = as(z1,Z2,...) = a(Tat1, Tat2,- - )
etc. These ox's form an iid sequence. Let My(w) = {31, c:i(w),n > 0},
i.e.,, M,(w) is the (random) set formed by the renewal sequence generated
by iterates of a. Note M, is a.s. a finite set if Pla = co] > 0.

As a final preparation, define for each n > 1 the reversal maps r, :
R*® — R™ by

T'n(ﬂ','l, T2,- -1 Tn; Tnt+1, o422y - ) = (In, Tn—1y+++3 L1 In+1: Tnt2s 0 ).

Define rg as the identity from R® — R, and note r, = r;! and r, 01y
is the identity. Further, P = Por,!, which merely says that in R®

(X1, X2,...) 2 (Xny Xn-1,..-, X1, Xn11, Xnga,.-. ).

Definition. Suppose T and 7 are stopping times for {Fn, n > 1}. Then r
is dual to 7 if for every n we have

(74.1) {w:ne M (W)} ={w:n<nor,(w)}

Thus n is an iterate of 7 iff when we reverse time from n, looking
backward, we see no iterates of 7. The most important example of this
concept is N, N as is shown in the next proposition.

Proposition 7.4.1. N is dual to N,

Proof. Try drawing a picture. The analytic approach is as follows: We have
that n € My(w) iff n = Ni(w) for some k > 0, iff Sp(w) > S;(w), for j =
0,1,...,n— 1, #f Sp(w) = Sj(w) >0, 5=0,...,n— 1, if Tp ., Xi(w) >
0, 7=0,...,n =1, iff Sp_j(rpw) >0, 5 =0,...,n— 1, iff Si(raw) >
0, k=1,...,n,ifn< Norw. R

Re-examine Proposition 7.2.3 {o see how duality has already been used.
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We will need the following characterization of duality due to Green-
wood and Shaked (1978) with an assist from J. Pitman. For a stopping
time 7, define for n > 0

L{r,n)(w) = max{i <n:ie M,(w)},

so that L(r,n} is the last renewal generated by iterates of 7 at or before
index n.

Proposition 7.4.2. Let T and 7 be stopping times for {F,}. Then 7 is
dual to n iff for all n

(74.2) n— L{r,n) = L{n,n) o r,.

(Note that L{n,n) o r, is the random variable with value at w equal to
L('L n) (Tﬂw)')

If we rephrase (7.4.2) by substituting rp,w in both sides, we get the
equivalent statement

n— L(r,n)or, = L{n,n),
which is illustrated in Figure 7.1.

No elements of M, (w) here

—_——
— ' : >
0 Limn)(w) n v
No elements of M. (r,w) here
—_—

o } + t

n L{t,n)(rw) o

FIicure 7.1

Before the proof of Proposition 7.4.2, we give some corollaries.
Corollary 7.4.3. Reflexivity. 7 is dual to 5 iff 5 is dual to 7.

Proof of Corollary 7.4.3. We have 7 is dual to n iff n—L(7,n} = L{n,n)or,
for all n, iff n — L(7,n) or, = L(n,n) o ry o 1y, (recall that r,, o 7, is the
identity), iff n— L{n,n) = L{r,n)or, for all n. Applyir.; Proposition 7.4.2,
the above holds true iff n is dual to 7. B

Henceforth we talk of dual pairs.
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Corollary 7.4.4. Forn > 0,
L(n,n) L. L{r,n).

Proof. Since 7, preserves measure (that is, P = Por;1}, we have
n— L{r,n) = L{nn)or,

(from Proposition 7.4.2)

Corollary 7.4.5. Forn > 0,

L{T,n}

Yy ox £ i X;.
i=1

i=L{nn}+1

Proof. Since r, preserves measure,

L{Tn) L(r,n)or,
3 x = > Xiors,
i=1 i=1
which, by Proposition 7.4.2, is
n—L(n,n)
= Z X;or,.
i=1
Since

(Xl(rn):X2(Tn):- o ,X,,(Tn), Xn+1(rﬂ)1 e
= (X‘ran-—la " ’XI:Xﬂ+ls v )!

we know for i =1,...,n, that X; or, = X, _;4+1. Therefore, _
n—L{nn) n—L(nn)

Z Xiorgy = Z Xn—it1,
i=1 i=1

and changing dummy indices, say § = n — i + 1, gives the above equal to
2 j=L{nm)+1 X7, as required. M
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Proof of Proposition 7.4.2. We first show (7.4.2) implies (7.4.1). We have
ne M, (w) if n — L{r,n){w) =0
If we apply (7.4.2), this last statement holds iff L(%, n){r,w) = 0 which is
equivalent to np(ryw) > n, as desired.

For the converse, we now prove characterization 7.4.2 based on the
definition of duality. It is convenient to define the shift operators 6, :
R*® - R®fork>1hby

Ok(z1,22,.-.) = (Th41, Thtz,-- - )-
Now suppose L{7,n}{w) = v, n — v = m. We must show

L(n,n)(raw) = m.

Suppose for now m < n as a separate (but simpler) argument for
m =n (ie., v =0) is necessary. If w = (x1,%2,...) € R, observe

Omrnw = O {Tn, Tao1, .., T1, Tnily Tnt2s -0 )
= (wﬂ.—fﬂq Ton—m=—1y++ -1 L1 Tn41, Tnt2;--- )
and also
Fr_mW = (mn—m, Tnem~1--- 1 T, Tn—m+1: Tn—m+2, - - )

We therefore conclude

(74.3)  the first n — m components of 8y, r,w and r,_,w are equal.

Since v = L(r,n)(w), we bave v € M, (w)}, and hence, from the defini-
tion of duality
N—M=U<HOTy = 7O Tyl

Since 7 is a stopping time, and since the first v terms of the sequence
Tr,—mw match the first v terms of #,,rpw, we have

(7.4.4) n—m <oy, oraw.
If (to be proved) it is also the case that

(7.4.5) m € My(raw),
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then on the one hand m is a renewal epoch generated by iterates of 5 for
the realization r,w and on the other hand (7.4.4) says there are no other
renewal epochs between n — m and n for this realization. Hence m is the
last renewal epoch before 1, and

m = L{n,n){r.w),

as was to be shown.
To prove (7.4.5) it is enough to prove

(7.4.6) m = L(n, m)(r.w).

Set k = L(n, m)(rpw) so that £ < m. We wish to show ¥ = m. For the
purpose of obtaining a contradiction, suppose k < m. As before,

Ogrpw = (w'n--k, Tn—k—1)-+-1T1; Tntty Tntls - - - )
and
Fo—kfyw = rm—k(xv+1, [ ATES PR mv+m-—k,$v+m—k+l,...)
= (xu-l—m—kx Tytm—k—1y-+ s I’U+2}xv+17$‘v+m—k+13 e )1

so0 because v -+ m = n, we have that
(7.4.7)  the first m — k components of fxrpw and rp, 8w are equal.

Since k = L(n, m)(r,w) there are no 7 iterates on the r,w path between k
and m and thus
n(eraw) > m — k.

Using (7.4.7) gives
Nrm—kbyw) >m —k,

which implies, since T is dual to n, that
(7.4.8) m—k € M. (0,w).

The original assumption, however, was that L{r,n){w) = v > 0, and thus
(v,n]N M {w) = 0. If k < m, however, then ) <m —k <m < n,and a
reinterpretation of (7.4.8) gives

(v,n] N M, (w) # 0,

a contradiction. Hence k = m, and (7.4.6) holds.
If m = n, the proof is handled by reading the foregoing starting from
(7.4.6). M
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7.5. WIENER-HOPF DECOMPOSITIONS.

As a first step in deriving the distributions of (N, Sy) and (N, Sg), we
factor the step distribution F' into a convolution product. The only prop-
erty of (N, N) that is used is duality, so we proceed with an arbitrary dual
pair of stopping times r and 7. Pick ¢ € [0,1], and let T be a non-negative
integer valued random variable independent of {S5,} with a geometric dis-
tribution: P[T > n] = g™. Set
H‘F,Q(') = P[S‘r €T T], Hn,q(') = PESn €E,m< T]'

We denote by 6 the probability measure which concentrates all mass at 0.

Theorem 7.5.1. We have the following factorization of F, the step dis-
tribution:
(7.5.1) 6 —qF = (6~ Hy,g) x (6 — Hy,q)-

The decomposition in (7.5.1) is known as the Wiener-Hopf factoriza-
tion. Eventually we will apply a separation technique to the factorization
in (7.5.1) which allows us to solve for each factor on the right side.

The proof proceeds via a series of fairly simple lemmas. The idea is to
write

L(r,T) T
Sr=Y X+ Y. X
i=1 i=L{r,T)+1

The two sums on the right must be shown to be independent, and they
lead to the convolution factors in (7.5.1).

Let us choose a convenient probability space on which to do our analy-
gis. Let (', F') = (R*, B(R*™)), and set P’ to be product measure which
makes the coordinate random variables { X } iid with common distribution
F. Let (0", F",P") be any probability space supporting a geometrically
distributed random variable T, i.e., P”/[T" > n] = ¢". Define as usual

(QF,P)=(xQ",F xF', P x P")
and
Xa(w' o) =X (), n21,
T(W,w") =T"(w").
Definer, : Q0 —Q, 6 :Q— Q,n > 1,k > 1, in the following manner. For
(W = (z1,22,-..))
(W', ") = ((Tn, Tn-1; -+ -1 Z1, Tng1, - - - )"
O(w’,w") = (Zk41, Zit2, - - )y w"),
so that shift and reversal operators have no effect on T.

We begin the proof of the Wiener-Hopf decomposition {7.5.1) with the
following lemma.
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Lemma 7.5.2. We have

L(n,T}

T
> xE Y X

i=L{r,T)}+1 i=1

Proof. Corollary 7.4.5 yields, for n > 0,

3 X, 2 i X;.

i= i=L{r,n)+1

Hence, for x € R,

Pl Y X;Sn:]=iP[ Y.  Xi<z]P[T =n]

i=L(r,T)+1 n=0 {i=L(rn)+1l
o0 L(’Tr")

=3P X:i<alP[T=n]

n=0 i=1
L(n,T)

= P[ Z X.' S .'L‘]. |
i=1
Lemma 7.5.3. Let {7(i),i > 0} be the renewal process generated by T
(r(0) =0,7(1) = 7,7(2) = 7 + T 0 8y, eic.). As before, set
H,q4(z)= P[S; <z,7 <T).
(a) Forz; € R,i=1,...,k,

k
P[Sf(‘) - 87(5_1) < I,;,'l: = 1, ‘e .,k;Tk S T] = H H-,-,q(.'ti).

=1

b} Fork >0

P(Spxy < z,7(k) < T} = HF: ().
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Proof. {a) We have
P(S;) = Sppi-1y S2ii=1,... ki7(k) £ T]

o0
= EP[TU") —7(k~1) = 0,84 — Srg-1) < T4y
n=0

i=1,...,k7k—1)+n<T]

[ ]
= ZP {NE5 [Sr) = Sriieny < @i, (k= 1) + 0 < TY

n=0

N[r(k) ~ T(k —1) = n, S;e) — Sr(k—1) < Tk}

The first square-bracketed event belongs to Fr(;_1) Vo(T'), and the second
belongs to .7:,,'_(,:_1). Hence by the facts about splitting an iid sequence at
a stopping time, these two events are independent. Thus the above equals

L= s}
D PlSe(iy = Sr-p STi,i=1,...,k—1L,7(k = 1) +n < T]

n==0

-Plr=mn,8; <z

(we have applied a slight variation of Proposition 7.1.1)

o0
= ZP{T =n, S‘l’ S xk]E(l[S,.(i) —S,(;_l)gzg,i=1,...,k—1]

n=0

Plr(k - 1) + n < T}Fre—n))

o0
- Z Plr=mn,5-< 2:k]q'nE(]'[sr(i)‘51-(4--1)S-T-i.i:l,...,k—l]"ﬂ-(k_l))

n=0
o0
=Y Plr=nn<T,8 <zlE(Loas, s peo)@ o)
n=0
o0
= Z P[’T =n,7=< T, Sr < xk}E(l{”fo[Sr(.—)—S,“_l)sz,]}qr(k_l))
n=>0

= Plr <T,8; < 2] E(1 -

i=1

k—1
[s,m—s,(i_,)gz,-]}qr( ))

= Hrg(@) BE( (s, -8, 0on<edd T Fre-1))
= H,4(zx) EP {N{Z Sy — Sriimn) S @] N7k = 1) S T|Frgeyy }
= H-,-,q(:t:k)P[S.r(‘-) - S'r(t'—l) <myi=1,...,k- I,T(k — l) < T]

The proof is completed by induction.
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(b) We may rewrite (a} as

PINE_1[S-(i) = Srgi—1y S x|k < T
k
=[] Herglw:)/Plre < T

i=1

- HH ’q(l';)/P[E(T(Z — (i~ 1)) < T

g1

and from {7.3.2) this is

= HHrq z,)/HP[‘T(%) "T(i_ 1) < T']

i=1
— [[(Hnated/Plr <TD.
i=1
Therefore
PIS, ) < ol ST = (Hy )/ Plr < T (a)
and

P[S.,-(k) <T,Te < T] H’" ). |

Lemma 7.5.4. The distribution of 3"2(7T) X, is

L(T,T) oo
PLY Xi<a]=) HEyx)(1- P>
i=1 k=0
Proof. We have
L(TIT)
P Z X; < 1]
oo (k)
=Y P X<z, r(k) ST <7(k+1)]
k=0 i=1

(k) (k)

—S B Kby < T PO X < 2,74 1) £ 7]

k=0 i=1 i=1
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Applying Lemma 7.5.3, the above is

(Hh (:L‘) P[S.,.(k <z, Sr(k+1) - S-,-(k) <oo,7(k+1) < T])

(HEy(z) — Hyg(2)Hrq(00))

o Ebuﬂs i

(@1 = Plr <T)).

x
Il
=}

Lemma 7.5.5. The random variables Y207 X, and 7 Lirm)+1 Xi 2re
independent.

The proof of this important lemma rests on the following result (see
for example, Freedman, 1971, p. 137) and is a special case of the découpage
de Lévy (e.g., Resnick, 1987, pages 196ff).

Lemma 7.5.6. Suppose (R, F, P) is a probability space and (E,£) is
measurable space. Let X1, X,,... be iid random elements from (%, F) mto
(E,£). Suppose V € £ Is fixed and

PIX, € VY =8¢ (0,1).

Define
=inf{n>1:X, € V°}L.
Now suppose T, Z,Y1,Ya,... are independent and defined on (2, F) satis-
fying
(8) P[T =n]=61-6)*"1 n>1,
(b) P[Ze A]=PX1eAX eV ) forAc &,
(c) P[:e A]=P[X1€eAlX,eV], A&, i21.

Then
(leX'Z)"‘ ,.XL_]_,XL,L) g (YI:Y-B: . ‘1YT—1121T)

on U 4 (E* % {0,1,...}).
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Proof. Forn>1land A; €€EnV,i=1,...,n~1, B € £nV*, we have

PlL=n,X; € A i=1,...,n-1,X, € B]
=PIX; € Ayi=1,...,n-1,X, € B]

- ﬁ P[X; € A)P[X, € B]
i=1
- "ﬁ (P[X; € Ai|X; € V(1 — 6)) P[Xn € B|Xn € VI8
i=1
(- e)"-leﬁ P{Y; € A;|P|Z € B)
i=1
= P[T =1 "ﬂl P[Y; € Ai|P|Z € B

=P[’I=n,}1-eA,-,i:l,...,n—l,ZeB].l

Proof of Lemma 7.5.5. Let {6;,j > 1} be iid Bernoulli random variablgs
with P[6, = 1] = p,Pl6; = 0] = ¢, and suppose further that {J;} is
independent of {S }. Define

n
T=sup{n20:26,-=0}
i=1
(interpret Y.0_, = 0) so that

P[Tzn]_;P{i&l:O]:P[é]:O::6ﬂ]=qﬂ'

i=1

Fori=> 1, set

W, = (X'r(i-l)+1) v 9X'r(i); 61'(i—1)+1# (R 357(:'.))

so that {W;,i > 1} are iid random elements of

o0

(R x{0,1}").

n=0
Suppose o
L=mf{i>1: Y  &+#0}

j=r(i-1)+1
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and, by Lemma 7.5.6,
WI: WZa ey WL—-I; WL: L

are independent. However,

L{r,T) oo
3T Xi=3 SrmlirsT<r (4]
i=1 k=0

oo
= ZSf(k)llzz'il;)‘si___o,z_r(k+l) 5:#0]

s i=r (k)41
= Z Sreydiz=k+1) = Srz—1) € o(Wh,..., Wi_1)
k=0
and
T 5]
> Xi=) (5~ Sem)lprm<r<r i)
i=L{r,T)+1 k=0
[+.+]
=3 (St = Sei))ljL=ks1)
k=0
=81 — S;(1—1) € a(WL);
hence independence follows. W
We now derive the Wiener-Hopf factorization. Since
L{r, T bl
Sr= ) Xi+ )y, X
i=1 i=L(r,T)+1
is a sum of two independent terms {Lemma 7.5.5), we have
L(~T) T
Plsr<a]=P[ Y Xi<]+P[ > X:i<(@),
=1 i=L(r,T)+1

which, from Lemma 7.5.2, is

L{7,T) L{n,T)
=P[Y X< 1x P Y Xi< (@),
i=1 =1
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Note that P[Sp < 2] = 300, P[S» < z]P[T =n] =3¢
applying Lemma 7.5.4 yields

g*pF™*(z), and

(7.5.2)

Z pg"F™ (x) = Z

0

HI ()1 - Pl <T))+ ZHI,‘,’;( )1 = Plp £ T))(=).

We now invert (7.5.2) to get the Wiener-Hopf factorization using the
following observation: Set F** = §, the probability measure which concen-
trates all mass at 0, and we have

fs+] [=.0] o0
anFn* — 5+anF"* =5+Zq"F“"*qF,
0 1 0
and therefore
(7.5.3) > g F™ % (6 —qF) =8,
0 .
a useful inversion formula. To use this formula on the right side of (7.5.2),

we need to re-express the convolution factors. Write

Ce)=P[S, <zjr<T), ¢z=PF<T|=1-p,
Colz) = PISy S aln < T, @ = Pln<T)=1-p,

Then

Z HY(2)(1—Plr <T]) = Z prgrCY(2),

n=0

and likewise for the second factor, so (7.5.2) becomes

(= o) o0
F™ =3 prg?Crr+ Y pudyCp'-

n=0 n=0

(7.5.4) > e
n=0

Convolve (7.5.4) successively with § — gF,§ — ¢, C; and § — ¢,Cy, and use
the inversion formula (7.5.3) to obtain

pé = prq:c:* pr,q"c"* * (6 —qF),

n=0

=p, anq"C"* * (6 —gF),

n=0

p(6 —q'r -r
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p(6 - chr) * (6 - quCn) = P-.-P-q(5 - qF)-
Since ¢-C = Hy 4,940y = Hy o we have

_’p(ﬁ - H-r,q) * (6 - Hf,!,q) = P'rpn(5 - QF)-

It remains for us to show
P = Drly-
Notice, however, that
prpn=(1—-Plr<T))(1- P <T))
=(1- Eq")(1 ~ Eq"),

which, using duality (verify this as Exercise 7.3) equals p. The derivation
is complete.

7.6. CONSEQUENCES OF THE WIENER-HOPF FACTORIZATION.

We now specialize to the case of (N, N) and solve for the factors in the
Wiener-Hopf equation. We first state Baxter's equations, which determine
the joint distributions of (N, Sy) and (N, Sg).

Theorem 7.6.1., For0 <¢<1,{ € R:

1— Eq" exp{i¢Sn} = exp{— E / T F™ (dz)}
1~ B expficsnl el >- L [ sereaa)
n=1 n (—00,0]

The Baxter equations of Theorem 7.6.1 (as well as Spitzer's formula
presented in Section 7.7) are crowning intellectual achievements of classical
random walk theory. The joint distribution of (N, Sy) is determined by a
mixed transform

Eq" exp{i(Sn}.
In principle, this mixed transform can be inverted to get joint probabilities
associated with (¥, Sy). Similar remarks apply to (¥, Sg). These formu-
las are rather complex and depend on knowledge of F** foralln > 0. In
this and later sections we will explore the extent to which these complex
formulas can be made to yield useful information about random walks and
associated queueing and storage models.

Before the proof we need the following preliminary result (cf. Breiman,
1968, page 197; Feller, 1970.) In order not to disturb the flow of logic, the
proof of Lemma 7.6.2 is presented at the end of this section. The lemma
will be applied in equation {7.6.2).
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Lemma 7.6.2. Suppose vy, are two messures on R such that
[ nvma) <on, =12
If, for all { € R,
[~ atan) = [ (@7 i)

then vy = .

Proof of Bagter's equations. First observe that, for any distribution func-
tion F, and 0 < ¢ < 1,p=1 — q, we have

a6y losp/-a©)= [ -0 T,

where F(¢) = [ e*®*F(dz). To check this, note
logp/(1 — ¢F(()) = log(1 — g) — log(1 - ¢F(C))

= — i n lg" + Zﬂ_lqnﬁ'"(C)

n=1

= En"l "f( -1 F“"(d:r:)-t-zn_l "_[Re"CIF"*(dz)

n=1

- j (€% — 1)(): =" F™ (dz)).
R

n=1

Set v{dz) = 3o, n~'¢"F"*(dz) and observe

] (2] A D)w(dz) < oo,
R
This is readily verified since

= n—l 'nFnt _111
f“ CE Y it P11

n=l1

= p_l i n—lpun(Sn € ["1! 11]

n=1

=p Y T PlSn € (1,1, T =1

n=1

<p? iP[ST €[-1,1,T=n]

n=1

< p 'P{Sr€[~1,1]} < co.
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Similarly, we may show

] v{dz) < co.
[l=1>1]

Now set
Hy(z)=P[Sn <2,T < N], ¢4 =P[T <N}, py =1—gqy,
Hy(z)=P[Sy <z,T < N], q =P[T<JV], p-=1-q,
C4(2) = PlSw <3lT < N] = Hy(e)/as
C-(z)= P[Sy < z|T < N = H,(z)/q—.

Note the crucial fact that C, concentrates on (0, oo} and C_ concentrates

on {—c0,0]. Recall from duality (see the argument at the end of Section
7.5 and Exercise 7.3)

P=pyp—.
The Wiener-Hopf equation is

§—qF = (6§ — Hy) » (6 — Hy).

Transforming, we get

1—gP(0) = (1 - Hy(0))(1 — Hy(C)),

2] (=2v5)
1—gF{¢) 1-¢4+CL(Q)/ \1-¢-H_(0)

Take logarithms and apply (7.6.1) to obtain

f(eiCz _ 1) zn—lanﬂ.n(dz)
R n=1
=/ (€ -1)S n g O (de
(0,00)

n=1

o =]
+f (%= — 1) Z n~1q"C™*{dx).
{—00,0]

n=1

so that

Now the importance of Lemma 7.6.2 is apparent, since it permits the fol-
lowing conclusions:

(7.6.2) Zn"lq“F"* (dz) = Z n~1gtCT (dz), T3>0,

n=1 n=1
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(7.6.3) S o nTlgtFm(dz) = ) TR O (dz), =<0
n=1

n=1

If we evaluate (7.6.2) on the set (0,c0),we get

[= 4] o3
> n1g"Fm0,00) = > g3 CT(0,0)

n=1 n=1
o0

(7.6.4) => g} = —log(l —g4) = —logpy-
n=1

Finally, we have

log(p+/1 — 4+ C4(0)) = f(o =D 3O (ea)

k4 n=1

(from (7.6.1))

_ [ (692 —1) 3 n~lg"F™ (do)

{0,00) n=1
oo
= f ' Z n~1¢" F™(dz)
{0,00) n=l
oo
_ Z n—lannm(O’ OO)
n=1
00
= f ei? E n 1" F™(dr) + log p+
(0,00) n=1

(from (7.6.4)) so that
g1~ G (@) = [ D n T ae)
0,0 n=1

Remembering that g C1(¢) = H,(¢) = EqVe¥S~, the desired result
follows. M

We now specialize these results and consider some facts about the
moments of N and N.
The Wiener-Hopf equation can be written as

1 gf(C) = (1 — BeiSvgN)(1 — EeXSngl),
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and setting ¢ = 0 yields
1-g=(1-Eq")(1- Eq").
Therefore,

(1-Eq™)/(1-q)= (1~ Eq")~2.
Let ¢ T 1, and we have

EN =1im(1~ Eq")/(1-q) = (1 - PIN <od)™ = (P[N = 00])7,
and
EN = (P[N =)])™}, EN=(P[N=cd)7},

30 EN < oo iff N is defective. Furthermore, if N and N are both proper
(which holds iff —o0 = liminf, o S5 < limsup,_, . Sn = -+oco), then
EN=EN =co.

In Baxter’s equation, set { = 0 to obtain

n=l

(7.6.5) EdN =1-exp {— i %q"P[Sn > 01} )

Proposition 7.6.3. We have
(a) P[N <oo]=1iffy o0 1 P[S, > 0] = oo.

n=1n

(b) If P[N < o0] =1, then
EN=exp{i%P[Sn 501}.

Remark. Y > n~'P[S, > 0] is a useful measure of the strength with
which the random walk pushes to +o0.

Proof. (a) Let ¢ 11 in {7.6.5) to obtain

PIN < ] =1—exp{—i%P[Sn >o]}.
n=1

(b} We have

1-EBgV _ exp{-3 72, n"1¢"P[Sa > 0]}
1-¢ exp{— 3y}

(from (7.6.5))
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= exp{z %q"’(l - P[Sn > 0])}

n=1
=1
= exp {E anP[S“ < 0]} .
n=1
Now let g T 1 and apply the monotone convergence theorem. W
When moments of the step distribution exist we have the following
criteria:

Proposition 7.6.4. Suppose EX; exists.
(a) If EX; =0, then both N and N are proper and EN = EN = .
(b) If o0 > EXy > 0, then N is proper, EN < oo and N is defective.
(¢) If —o0 < EX; <0, then N is proper, EN < 0o and N is defective.

Proof. {a) Suppose for the purposes of getting a contradiction that N is
defective. Then EN < oo, and, by the strong law of large numbers,
-1 “1¢ _ Yom L1 -1
0= lim n™'S, = lim k™" Snge/(k N(k})

— ESy/EN,

so ESy = 0. Since Sy > 0, we have the desired contradiction. Thus, N is
proper, and similarly, so is N. Hence EN = EN = co.

(b) The law of large numbers implies S, — 00, 80 My, the set of
descending ladder epochs, is finite; there is a last descending ladder epoch.
Hence N is defective. Therefore,

EN=1/PIN=x]<x. B
The last order of business in this section is the deferred proof of Lemma
7.6.2.
Proof of Lemma 7.6.2. Define ¥:(() = fR(ei‘:’ —1y;(dz), i =1,2, so that
Tl
B0 [ G+ R+ (¢~ W)
0
1
—a =1 L[ qeiterm= _ i-M2 _ 1))y,
== § [HEHT 1) (D7 - 1)us(am)an]
1  gihz o p~ihz
(=1 [ e - e
1
= ¥:i{¢) — [_[R ei“/o (cos hz — 1)dhiy{dz)]

(from Fubini's Theorem)
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= 0(0) - [ (e sinz ~ ()
R
Therefore, if ¥; = 12, we have

Leicz(l —z ' sinz)in(dz) = / €%*(1 — z7 1 sin 2}y (dx),
R
and hence, by the uniqueness theorem for characteristic functions,

(1 — ™ sinz)w (dz) = (1 — =~ ' sin z)ra(dz).

Since
0< irfxif(l -z tsinz) < sup(l — 2™ !sinz) < o0,
R

we get
1 = . [ |

7.7. THE MAXIMUM OF A RANDOM WALK.

We begin by giving the celebrated Spitzer’s formula.
Theorem 7.7.1. Wehavefor( € R,0<g <1,

S g Eexplic Vs =en(y L petst}.

n=>0

Spitzer's formula is another pinnacle in classical random walk theory.
The left side of Spitzer's formula is the generating function of the sequence
{E exp{i¢ VI; S;},n > 0}, and knowing the generating function means
we know the sequence. Since for any n we know the characteristic function
Eexp{i{ V}_o 5;}, in principle we know the distribution of V}_y5; for
any n. The practical implications of this formula, however, remain to be
explored, since the right side of Spitzer’s formula is quite complicated.
Although it involves only the step distribution F, the formula requires us
to calculate all the powers of F',

Proof. Since V;;D.S'j is the last ascending ladder height before T', we have

T
Vi=0S; = SLv,7)-
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The distribution of Sp(v ) was computed in Lemma 7.5.4, and hence

T
P\ 8; < 2] = P[Syv1) < 7]
4=0

o0
=Y H¥(@)(1-P[N<T)).
k=D
* Setting ¢, = P[N < T], H, = ¢+C4 gives for the above
o
> prdiCY ().
k=0
Therefore, taking transforms,

T
Eexp{i¢ \/ S5}

=0

=Y pg"Eexp{i¢ \/ 5;}

n=0 J=0

= ZP#I:C";(C)
n=0
=p4/(1 - ¢+C+(0))

- ¢ 1) S B o (g b
_exp{-[(moo)( b2 nOr (dx)}

n=1
Applying (7.6.1), we have
(7.7.1)

ifr - q“ *
=exp{-/(.ulm)(e‘: -1)2;1:“ (d:c)}.

Now, applying (7.6.2) yields
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0 n o0
i q
exp / e E _F™(dz) —
{ {0ye0) 1 n ( )

n= n=1

i": q° s oo q" oo q"
exp —f e¥ndP—» —+ 3 —P[S, <0
n=1 " JISn>0] Z n ,; n [ ]

n=1

= exp { log(l—g)+ Y En- f eiéSd dP}
n=1

%P[Sn > o]}

(7.7.2)
o0 qﬂ' "
— I o
pexp {; ” Ee } .

The result follows. R

We now specify the distribution of Mo = V3205;. Set M, = V]_,5;
so that 0 < M,, T M as n — oc.

Theorem 7.7.2. We have

M, < 0o almost surely iff » %P[S,, > 0] < o0,

n=1

in which case

i =1 gt
E Mo _ _(E ST .
e exp{zn( e 1)

n=1

Proof. The first statement is immediate: From the global result in Proposi-
tion 7.2.1, we have M, < oo a.s. iff N is defective. From Proposition 7.6.3
we have N defective iff > n~1P[S, > 0] < co. Suppose now M, < oo. For
the rest of the proof we need to have the dependence of T on ¢ explicit, so
we write T{g). Note for any n

PlT{g) zn]=¢" -1
as ¢ T 1, so we conclude
T(q) 5 oo
as g T 1. Therefore, Mp(, 5 My, as ¢ — 1, since for any € > 0
PliMrg) —~ M| > €] = P[|Mrp(g) — Mx| > €,T{q) 2 1]

+ P{|Mr(q) — Moo| > €,T(q) < n]
< Pl|M, — Mo| > €] + P[T(g) < n].
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Therefore

lim sup P|Mr(y — Mol > € < P[|Ma — Meo| > €]
qT1

This holds for all n, so upon letting n — oo we get zero for the right
side. Finally, since Mp(g £ Mg, we have E¢Mrto — EeMe. Since

MT(I]') = SL(N,T(Q’))’ (7-7.1) yields
iz Z"" q" e
o0) (€ g n (d‘t)}

EeMT@) = exp {[
(0 n=1
o0
= exp i / eXSndP — P[S,, > 0]) }
B\ J[5n>0)
— exp i i / ¢45~dP — 1+ PS, < 0])}
n [Sn>0]
L -
= exp { %— (Ee‘cS: - 1)} .
n=1

Because E exp{i¢Mr(g)} — Eexp{i{Mcc}, it remains to show

— q" . icst = 1 Ee¥ST —1)| - 0
(7.7.3) ;Z:-;(Ee " —1)-2-1;( e

n=1

as ¢ T 1. Recall that we assume 3} n~'P[S, > 0] < co. The difference in
(7.7.3) is bounded by

o0

(7.7.4) Y 20— MEe{icst) -1,

n=1

and since

|Eexp{i¢St} -1 = |] 5% 4 P[S, < 0] - 1] < 2P[S, > 0],
Sn>0
we have (7.7.4) bounded by

zi %(1 — q")P[Sa > 0.

ne=l

This converges to zero as ¢ T 1 by dominated convergence. W
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7.8. RANDOM WALKS AND THE G/G/1 QUEUE.

Recall the set-up for the queuveing model known as G/G/1. This is a
model for a single server queueing system where arrivals occur according
to a renewal process and customers are served on a first come, first served
basis. The service times of successive customers are iid random variables
and independent of the input to the service facility. Let interarrivals be
represented by the iid sequence {6,,n > 0} } where 0wy represents the in-
terarrival time between the nth and (n+1)st customer. Suppose customers
arrive at rate g and that

Ploy <z)= A(z), Eoy =a"! € (0,).

The service time of the nth customer is 7, n > 0, where {r,,n > 0} is iid.
The service rate is b, and

P{’Tg S .'E] = B(x), ETU = b_l.
Recall p = a/b. Assume {7} and {o,,} are independent. Define
Xng1 = Tn — Onyl, N0,

so that Sy = 0,5, = X1 + --- + X, is a random walk. Now define the
waiting time process {W,,n > 0} by Wy = 0 and

Woga = (Wn +Xn+1)+| n >0,

so that W, represents the time that customer n + 1 has to wait before
entering service. See the related discussion in Sections 6.9 and 3.12.3, and
also review Figure 3.16.

Here are the basic facts about the waiting time process. (See also
Propositions 6.9.1 and 6.9.2.)

Proposition 7.8.1. Let M, = V}_,5;.
(i) For each fixed n > 0,

M, LW,

(ii) Suppose the ascending ladder process is defective, so that by The-
orem 7.7.2 we get Mo, < co. (Recall that this is true iff P[N = oo] > 0, iff
Y n1P[S, > 0] < co.) Then in R we get W,, converging in distribution
to Myo:

Wo = W = M.
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Reminder: A sufficient condition for the ascending ladder process to
be defective is that

0> FEX;=Ern—FEo = bt "-0‘._1,

ie,p=afb< 1.
Proof. Since {M,)} is non-decreasing, M, 1 My, and thus (ii) follows
directly from (i}.
For the proof of (i) observe
W, = 8, for 0 < n < N(1),
Wy = 0 since Sgy <0,
Wian = Wra) + Xew+)t = Eea))s
Wray+s = Xy + 0+ X4 for N{1) +7 < N(2),
WN(2) = ().

In general, we have
Wigyrs = X+ +Xgw4s = Suwas—Saw A Nk)+i < F(k+1),

8o we conclude
W,=8,- SL(N',n)'

Note that Sy 5 n) = AJ=0S;, 0
Wa=5.—ASi= V(5 -5
0 i=0

n n
= IIlﬂ.X{Sn, Z XinXi) R Xn—l:Xn)O}
i=2 i=3
n-2

n—1

£ max{Sn, > Xis 3 Xy, X1 + X2, X1, 0}
n=1 n=1

= V3i=05,

since {X1,..., Xn} = {Xn, Xn-t1,..., X1}. 1

With queueing applications in mind, we now turn to consideration of
random walks whose step distributions have exponential tails. Consider a
random walk {S,} with step distribution F' subject to the Wiener-Hopf
factorization

§—qF = (6§ ~ Hy) » (6§ — Hy).
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Recall
Hy(z) = P[Sy <z,N <T]

concentrates on {0, 00} and
Eq(m) = P[Sﬁ < st =< T]

concentrates on (—o0,0]. Since

we know from Wiener-Hopf that

[ <]
E—qu(ﬁ—qF)*Zﬁgt

k=0
o oo
(7.8.1) =Y AF - qF»y B
k=0 k=0

If A € B((D,c0)), then since & concentrates on {0} and H, concentrates on
(—00,0] (7.8.1) yields

—Hy(A)=0—gq j F(A—y) Y B*(dy).

(--00,0] k=0
Let ¢ T 1, so that T'(g) L oo, and set
H(A4)=P[Sy € A,N < ]
H()=P|Sxz € -, N <
o0
Gdy) =Y H*(dy).
k=0
We obtain the following result.
Proposition 7.8.2. For A € B((0, c0)), we have
H(A)=PSy € AN <o0] = / F(A - y)G(dy),
(_wsO]
where

Gldy) =D  H*(dy) =D PlSx € dy, N (k) < o]

k=0 k=0

=Y PlSycdy, N < oot
k=0
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(by means of Lemma 7.5.3(b) wih ¢ = 1}. Likewise, for A € B((—00,0]),

H(4) = PlSy € AN < oo} = ]!D _ Fa-ya),

where
G(dy) = 3 PlSny;) € dy, N(j) < o0
=0

oo
= EP[SN € dy, N < )",
=0

We next review the relationship between the maximum of a random
walk and the ladder heights.

Proposition 7.8.3. Suppose P[N = oo > 0 (which is true iff
> n~lP{S. > 0] < 00,

so that M, < co a.s. Then for z >0

P[Moo 53:] = P[N =OO]§:P[SN(;¢) < :L‘,N(k) < 00]
k=0

- PIN = oo}ij{SN <a,N <o

k=0
= PN = x|G(z).

Proof. We have that
P[M, < 7]

=3 PlSxgy < 2 N (k) < oo, Nk +1) = o]

k=0
= iP[SN(k) < z,N(k) < 00, N(k+1) — N(k} = oo
k=0
= iP[SN(k) < z,N(k+1) - N(k) = co|N(k} < 0o] P[N (k) < o0].
k=0

On the trace probability space
(AN [N(k) < 00, F N[N (k) < oo], P(-|N (k) < 00)},
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the events [Snx) < z] and [N(k+1)— N(k) = oo| are independent (review
Proposition 1.8.2 and Proposition 7.1.1), and the above becomes

> PlSnp < 2| N(k) < 0] P[N (k) < co] PIN = o]
k=0

=" PlSyw < z,N(k) < o] PN = c0].
k=0

We finish with an application of Lemma 7.5.3(b). W
7.8.1. EXPONENTIAL RiGHT TAIL.
Suppose the right tail of F' is of the form

1-F(z)=¢te ™, z>0,

and £ € (0,1), b > 0. Before considering the distribution of M,,, we
examine the form of &. For = > 0, write

P[N =n,55 > z] = P] ;.‘;‘}S,- <0,8 >z}

Recalling Fn.1 = {50, 51,...,5n-1), this is
= EPV}238; 0,8, > z|Fn]
= El[V;';olS,SD]P{Xn >T— S ~1 [.Fn—]_],

and, because X,, is independent of F,,_, and 5,,_; < 0, we get the above
equal to

~b(z—8n-1) _ - e
Blypas,<ofe” "7 = e Bl pog g et
=e EPVITIS; <0, Xp > —Sn_1]Fn-1]
=e ®PVET1S; <0< Sn)
= e % P[N =n).
Therefore we may record the two equalities:
PI[N=n,Sy > 2] = P[N =nle ™
(7.8.1.1) : N >l [b J
P[Sy > z,N < 00] = e " P|N < 0,

where the second is obtained by summing over n in the first equality. Pug
p = P|N < 00|, and we may compute

G(dy) = ZP[SN € dy, N < co)®
k=0
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as follows: From (7.8.1.1) with z > 0 we get

P[Sy € dx,n < co] = be~b=p,
and, therefore, for £k > 1,

(bﬂ.’:)k_le_bz

P[Sy € dz, N < oo]® =p*b =

Surnming over k for the case p < 1 gives

S PlS € do, N < ool = 3 )Tt - 1)
k=1 k=1

— pbepbz—-b::
— pbe—b(l—p).‘l: ;

hence, for z > 0

Gla) =1+ [ phe-t0i-Pvay
0
=1+ 1%(1 - C“b(l-p)z)

—1+-2 __P -pe

l1-p 1-—p

so that

1 P —b1—
7.8.1.2 Glz) = —— — L _¢bt1-p)=,
(78.1.2) @ =1 155
We now continue under the assumption g = EX; < 0, which is the
case of most relevance to queueing theory.

Proposition 7.8.4. (Billingsley, 1986, p. 329ff.) Suppose EX; = p < 0
and, forz > 0,
PlX; >z]=¢e7, £>0,b>0.

Then
(i) p=P[N <] <1,
(if) P[My > z] = pe~®(1-P}= 1 > 0, and
(ili) p can be determined as follows: b(1 — p) is the unique root of

fls) = [_ : e* F(dz) = 1
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in the range 0 < 8 < b.

Proof. (i) This is obvious since u < 0 implies S, — —00, and therefore
P[N =00] >0.
(it} From Proposition 7.8.3, we have

PlMy < z] = (1 - p)G(a);
applying (7.8.1.2) yields

PlMs < 2] = (1-p) (15 - et
p 1l-p
=1 —pﬁ_b(lhp)m.

(iii) Recall from Proposition 7.8.2 that, for z <0,
PlSy <2, N < 0] = f F(z — y)G(dy).
0,00)

When p < 0 we have N, Sy both proper and S5 < 0. Setting £ = 0 we
have

PSSy <0,N <o) =1= /m )F(—y)G(dy)-

Use the form of G given by (7.8.1.1) and recall that G has an atom of size
1 at zero to obtain

1= F(0)+ bpe~M1=PV F(—g)dy
(D’W)

= F(0)+ bpeb—PW F(y)dy
(—co,U)

= F(0) + f bpeb(1—P)¥ / F(du)dy
v&(—o0,0) uE(—c0,y)

= F(0) + b1-Plyg
( ) ~[uE(—oo 0) (Le(u 0) bpe y) F(dU)

— F(O)+ /( o 1—-5(1 _ D)) ()

= F(0) + ——F(O) -

b(1-p)u
€ F(dy).
T2 J iy (dy}

since 1 — F(0) = £, some algebra gives

(7.8.1.3) f PRy =1 - p1¢.
(_0010)
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We may now show that b(1 — p) is the unique root of f(s) = 1in (0,b).
Observe that for s € (0, b)

R R N

= [ emran+ /09

The first term exists for all s > 0, and the second term holds for 5 € (0,5,
Since p > 0,

b(1~p} <b.
f exists at b(1 — p), and by evaluating J we get
F0-p) = [ SOPEE) + /(6= K1-p)
{—00,0)

Using (7.8.1.3), this is
1-p lE+ép7 =1

Now that we know b(1 — p) is a root in (0,b) of the equation f(s)= ?,
we prove it is the unique root. Note that F(0) = f(bQ1 - p))=1and fis
continuous on [0, b). Furthermore, f is strictly convex, since

f'(s) = / ” z2e** F(dz) > 0

=00

on (0,b). The graph of f is pictured in Figure 7.2.

b(1-p)

FIGURE 7.2. GRAPH OF f

There can be no other roots of f(s) =1 on (0,5). B
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7.8.2, APPLICATIONS TO THE G/M/1 QUEUEING MODEL,

This is a queueing model with renewal input and exponentially distributed
service times, 50 the interarrival distribution A(x} is an arbitrary distribu-
tion on [0, c0) with mean a~! and Laplace transform

N oo
AN = f e~ A(dx).
o
The service time distribution B is
B(z)=1—-¢%, >0, b>0,
and we assume p = a/b < 1. We have
Xnt1 = T = Ony1y
and thus, for = > 0,
1--F(I)=P[Tg-—0‘1 >fL‘]
o0
= j Plry > y + 2] A(dy)
000
= / e~ blytz) Aldy)
o
= e """ A(b)

and X
¢ =1— F(0) = A(b).
To find p = P|N < 0], we compute

fla) = Ee*X1 = Eet(ro—a1)

= Ee’ Ee™ %72

= ( -/; ~ e’*be-‘mdx) A(s),

and, assuming s € (0, b), we get

The equaticn
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becomes bes

-
Let s* be the unique solution in {0,b) guaranteed by Proposition 7.8.4.
Then b(1 — p) = ¢* and

fl(s) =

PIN=o0] =1=-p=10b"1s"
By applying Proposition 7.8.3 and equation (7.8.1.2), we get for z > 0
P{My < 2] = P[Wy < x| = P[N = 00]G(z)

=(1-p) ((1 -p)t-(1- p)“‘m"’“"”‘)
=1— peb1-2)

(7.8.2.1) =1-(1-b"1s")e*"".
If we further specialize to the M/M/1 queue and suppose
Alz)=1-¢""%, x>0,

then .
A(s)=a/{a+s), s5>0,

so that the equation
fls)=1, 0<s<bh

becomes
A(s) = (b—3s)/b=a/(a+s)

or, equivalently,
52— (b—a)s = 0.

The rocts are s =0 and b—a > 0 (since p = ¢/b < 1), 50 3* = b— a. Thus
b(l-p)=s*=b—a, and

PIN=o]=1-p=1-afb=1~p
We find for > 0 that (7.8.2.1) reduces to

P[M,, < ] = P[W,, < g
=1-(1—(1-b"ta)e o>
(7.8.2.2) =1— pe~(b-2)=,

Note P[We =0l =1—p.
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Before leaving exponential right tails, let us examine what kappens if
p# = EXy > 0. We continue to suppose 1 — Fla)y=¢(e™*, 22>0, ¢ >
0,6>0.1f u>0, p= P[N < oo} = 1, 8y is proper and P[My = 00] =1.
From (7.8.1.1),

PiSy >z]=e ™, z>0,

so that Sy has an exponential distribution. Thus, since we know the
renewal function for a Poisson process, we have

oo
G(z) =ZP[SN <z =14bz, z>0.
0
From Proposition 7.8.2, if A € B((—c0,0]) we get
P{Sy € AN < oo = f G(dy)F(A —y)
[0,00)
so for z < 0

PlSg <2,N < 0] = F(z) +/ F(z — y)bdy

{0,00)

(7.8.2.3) = F(z)+b / * Fly)dy.

Assuming F_'_ is continuous at 0 (which, from the previous equation, implies
PlSg <z, N < oo] is continuous at 0), letting T 0 yields

P[Sg <0,N < 00] = P[N < 0]

0
= F(0) +b f_ Fy)dy

=1—§+b£ﬂw/_LF(du)dy
=1—§+b./:°/uodyF(du)

0
=1 —§+bf —uF(du)
- 00
=1-£+bEXT.
Observe
G
EXT = EX} - EX, = f fe™bdx —
0

=&/b—p.
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Thus

PN <o) =1—£+b(Eb™! — p)
:1_bp'!

and P[N = oc] = 1/EN = by, which can also be obtained from the Wald
identity and the fact that Sy is exponentially distributed.

7.8.3. EXPONENTIAL LEFT TAIL.

If we assume F is continuous we can reduce the case of F' having exponen-
tial left tail to the case just considered. We merely reflect about zero using
the map z — —=z.

Proposition 7.8.5. Consider a random walk with continuous step distri-
bution F with p = EX; < 0 and an exponential left tail; i.e.,

F(z) = P[X) <] = £e*, z<0,a>0, £€(0,1).

Then
p=P[N <] =1+ayp,

and, for y > 0,

PN < o0, Sx <yl = F(0,] +a /0 (1 - Fa)du

Proof. Consider the reflected random walk {Sf(f),n z 0} ={-85,n 2 0}.
With obvious notation we have

1- FO(z) = PIX{7 > 2] = P[- X3 > 2]
=P[X1 < -—:B] =P[X1 < —:It]

(since F is continuous)
= F(—z).
Therefore, for y > 0,
1-F(y) = F(-y) = €™,
and F%) has exponential right tail as studied in Section 7.8.1. Note that

EX{) = —EX; = >0,
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and applying (7.8.2.3) gives, for z < 0,

(7.831)  PISY), <2, F < oof = FO)(z) 4 a f FO) (y)dy.

—o0

It remains to see what this formula means in terms of the original random
walk {5, }. We have for y > 0

P[ngr) < _y’N(") < oo] = ZP[A (""Sk) >0,-5, =< _y]

n=1 k<n
=3 Pl- A (~S¥) <0,5, > 1,
n=]1 k<n

1a?.nd, because — Agc, (—5%) = Vie, Sk and F is continuous, this is equal
0

=Y P\ 5<0,8 >

n=1 k<n

oo
=2P[N=n,SN>y]=P[SN >y, N < o0

n=1

Therefore, for y > 0,
PSn >y, N < oo} = P|ST), < —y, N0 < 0],
and applying (7.8.3.1) yields

F'(—y) +a j: ” FOu)du=1—-F(y) +a f

v
- (1 - F(~u))du

—1-Flg)+a f (1= F(s))ds.
v
Thus
p=PIN < 0] = PN < 00,5y > 0]
=1 —F(O)-’ra.f (1 — F(s))ds
0
=1-§+a(EX]) — EX])+aEX]
=1-{+ap+ata

=1-&+&+au
=1+ap
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since EX{ = f°(1— F(s))ds and EX| = J° _genvdz = o™l
Finally, for y > 0,

P[N < o0] = P|Sx >y, N < 0]+ P[Sy <y, N < ox]-
Therefore,
P[Sy <y, N < o] = P[N < o0} — P{Sn > 9, N < 0]
“ttau= (1-F@)+a [ (1= Fe)as)
=F(y)+ap— (aEX+ — al (1—- F(s))ds)
= F(y) +au — o(EX{ ~ EXy + EX7)
v
+ a-/; (1~ F(s))ds
v
— F(y)+ap — o — afa~1 + afo (1— F(s))ds

= Fly)~ ) +a [ (L~ Flo)ds

since F(0) =§ =afa™. B
We now derive the distribution of the maximum M, of {S.}. Recall
Proposition 7.8.3,

oo
P[M,, <z]=P[N = OO]ZP[SN <z,N < oo, x>0,
k=0

30 that for A > 0 the Laplace transform of My is

oo 00 k
Ee M= = (1 —p)z (j; e P[N < 00,8y € d:r])
k=0

1-p
T 1- [ eP[N <o0,Sy €dz]

To evaluate this, we set

~

) = /D " e F(dz)
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and use the formula for P[N < 00, Sy < z} given in Proposition 7.8.5 to
get

/m e PIN < 00,8y € dz] = F;y(\) + afoo e (1 — F(z))dz
0 0 :

oo pOO

=P\ +a [ Fldu)e *dz

=0 Ju=z
=F (A +a /; :) ( /; . e—"wdm) F(du)
BN +a fo " (1 = e M)A F(du)

=B (A) +ar? (1 - F(0) — ﬁ‘+(A))
=Fr()(1-ad ) +ar1(1-¢).

Using this and the formula for p given in Proposition 7.8.5, we obtain

(7.8.3.2) Ee M= - —aF N—
1—a6A=1(1 — &) — (1 —ar~)FL(A)

which is a versicn of the Pollaczek-Khintchine formula.

7.8.4. THE M/G/1 QUEUE.

Consider a queue with arrivals according to a Poisson process. Then
{on+1,m = 0} are iid, Ploy > z] = ¢7%%, £ > 0, {rn,n > 0} are iid
and, finally, P[rp < z] = B(z). Assume p = a/b = Enn/Eocy < 1, so
p=EX; < 0. Observe that forz <0

F(z)=P[X;<z]=Plrp— 01 < 7]
= Plrg—z < o]

= [" Py-= < o)
= f b e~%v=2) B(dy)
o

o0

e“’f e "V B(dy)
0

= ™% B(a),

s0 that F' has exponential left tail and
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To evaluate (7.8.3.2) we need £ ()\). For this we have
F.)= fo = e 2 F(dz) = Ee ***11x, >
- Ee—x(m—al)lmzm

=F (E(e—)\('ro—-o'l) 1[,,.02,1] |O’1))

=F (e’“" f:’ e-J\aB(dS))
= _/Ow et ([ym e""B(dS)) ae~*Vdy
= ./3:3 (.[,:—.o ae—(a—.\)ydy) =% B(ds)

=ala—A)"! f m(l — e~ (a=X8)e= B(ds)
i)

=alg — -1 me—)\s_e—as

~afa- ) f?( B

=afa - A)"Y(B(}) - B(a)).

We may now evaluate (7.8.3.2) using £ = B(e) and pa = p— 1. We have

Ee-)\Mm — Ee—AWm

- —Ha _
1-aA"1(1-8) - A"1(A - a){a{a — A)"H(B(A) — £)}
_ 1-p
T 1-aA11— &) +ar-1B(\) - A lag
- 1-¢
T 1-ad 4 adlB())
1-p

= 7BV
1-3 (ITPIL.\J)
Recall that Bo(z) = b J; (1 — B(s))ds has transform

b1 - B(\)

By(\) = A ,

Be W = (1~ p)/1- pBo(})

=3 (- p)p" B3O,
n=0
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and, for z > 0,
0
PW, <z] =Y (1 —p)p"By*(x).
n=0
7.8.5. QUEUE LENGTHS.
Continue to suppose g < 1. Recall the notation

th=on+'-+or, k=1,
which is the time of arrival of the kth customer, and
v(t) =1+sup{k:tx <t},

which is the number of arrivals in [0, ¢]. Let Q,, be the size of the queue left
behind when the nth customer terminates service and leaves the system.
Since customer number n arrives at ¢,, enters service at t, + W, and
departs at t, + W, + 1, we haveforn > 0, k> 1

@n < k] =[tn + W, + Tn < tnei
n+k
=[Watmm— Y o:<0l.

i=n+1

For model buiiding purists, the previous set identity can be used to define
the non-negative integer valued random variable ¢,. Recall

Wn S U(TOa---:Tn—hali' . ’o-ﬂ)!

hence Wy, ,, z:‘:: 1 0; are all independent. From Proposition 7.8.5, we
have that

Wa £ My, = VI3S; T Moo £ Wi,
Set W(z) = P[W(co) < z]. Let 7%, {} be independent and independent of
the random walk with 7* = 7 and ¢} £ RN 104 Then
n-+k
PlQn<k=PWnt+7m— > oi<0

i=n+1
= P[M, +7* — 1 <0},

as n — 00, which converges to

PlQo < k| := P[M+ 7" — 1} < 0] = P[My +71* <},
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where M,,, 7", t; are independent. Therefore, if we difference, we get for
k>0

@ = P[Qu = = lim P[Qn =K
= P[Mo + 7° < tpy1] = P[Moo + 7" < ]
= Pty € Moo + 7" < t144}
= Ply(Mo +7%) =k +1]

= fm Ply(t) = k + 1|W * B(dt).
0

In the case of the M/G/1 queue where A(z) =1 —e™ %", we have
Plv(t) = k + 1] = e™*(at)*/k!

and thus

—-at a k
(7.8.5.1) T = /Om e—-];(-!mQ—W*B(dt).

Finally, consider the special case of the M/M/1 queue, where
Bz)=1-¢%, Alz)=1-¢"%, a>0,b>0,2>0,
Recall from (7.8.2.2) that in this case
Wiz) = P[Mo < 2] = P[Wo < z]=1-pe %2 z>0,

so that the distribution W{-) has an atom size 1 — p at zero. The distribu-
tion W % B has density

/ be~ V=2 (dx)
(o]

= {1 —p)be™™ 4 be= 2= p(b — a)e~ -2 dx
(0.1

(the first term comes from the atom at zero)

y
= (1 — p)be™ % + bp(b ~ a)e f e**dx
0

= (1 — p)be ™ + bp(b — a)e ¥ (e® — 1)/a
={(1—phbe ™ +(b- a){e~ (b= _ g=tv)

(recall that ba~1p=1)

7. EXERCISES 609

=(b-a)e W —(b—a)e+ (b—q)e~ -

= (b - a)e"(b"a)fd"

We may now evaluate (7.8.5.1) to get for £ > 0

oc —at + k
g = / e___.(ﬁ.)_(b_ a)e~ -ty
s K

“k(b—a) ® kb
_ 020 [ g

ak

= T~ )+ f s*e=ds
: 0

= (%)k(l — ab"YYI'(k + 1) /k!
= pk(l - p),
yielding a geometric distribution.

EXERCISES

7.1. Here is a meta-theorem: If £ and &' are two random sequences such
that ¢ 4 ¢’, then £ and &' are probabilistically indistinguishable in the
sense that they behave the same. Two examples are the following:

() If £ = (&1,82,...) and & = (€1,€),...), then if £, —+ £ a.5. then also
there exists a random variable £’ such that ¢/, — ¢ a.s.

(b) If £ = (€1,£2,...) and & = (€,£,...), then if &, > ¢ then also
there exists a random variable £ such that £, LA £,
7.2. Use the definition of duality of stopping times to check the following
statements:

(a) If both 7 and 7' are dual to 5, then 7 = 7;

(b) K r is dual to both 5 and 7/, then 7 = 7/ (Greenwood and Shaked,
1977).

7.3. If 7,71 are dual stopping times, show

o0 oo
Y uPir>n) = Y (B,
n={) n=0
that is,
{1-—- Eu7) 1

1-u  1-Eu?
Proceed directly from the definition.
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7.4. In the M/G/1 queue, compute the Laplace transform ‘of the limiting
virbual waiting time distribution V. What if B is exponential?

7.5. Suppose (7,7) and (n,7) are two dual pairs of stopping times. Define

r=min{n:n € M, My}
F=FAT

Show (7, 7) are dual (Greenwood and Shaked, 1977).
7.6. Set b > 0 and n = inf{n: X, > b}. Let

1, X, <b
T"{oo, if X1 > b.

Show (7,7) are dual. Generate other dual pairs using Problem 7.5 (Green-

wood and Shaked, 1977).
7.7. Let (7,7) be dual. Suppose Plr = oo > 0, and define

L{7) = max{n € M.}.

Express the distribution of Sg(;) in terms of S, and use duality to express
this distribution in terms of B, S,. If 7 = N, interpret Sy

7.8. Uniqueness of Wiener-Hopf Factors. Suppose for n > 1 t_here
exist measures Hp, H,, concentrating on {0, 00) and {—c0,0] respectively
such that T2, Ha(0,00) < 1, 302y Ha(—00,0] < 1. Set

x(@¢) = d" /(0 - €'* Hy(dz)

r=1

g, () = - n i(zﬂn(dx)‘
%(q,¢) g;lqj( e

—00,0]
For a distribution F with F(() = [5e¥*F(dz), if
q—gF =(1-x)1-%),

then . 8 is
x(q,¢) = EqVeiSN | x(g,() = Eq" 7.

7.9. If F is continuous and symmetric, derive the generating function of
N and check that N is proper.

7. EXERCISES 611

7.10. Give a direct proof that u < 0 implies
1
3 —P[Sn> 0] <00
n

by showing that
(a)
S PIXij>n] < oo, and
n

(&) 1
Y SEX{IX)] S nloo

(Feller, 1971).
7.11. In a random walk, suppose EX; > 0. Set

Nx=inf{n:Sﬂ>z}, z>0,

R(z)=1+)Y_P[S >0,...,8 >0,5; <.
=1
Show
EN; = ENyR(z).

What is the relationship between R(z) and the distribution of Sx?
7.12. Consider the following variant of the G/G/1 queue: Customers
arrive at fixed intervals appearing at time points n = 0,1,2,.... Service
times 7,, n > 0, are integer valued with P[ry = j] = p;, 7 2 1. Sup-
pose By < 1 and Wy = k for k > 1. Compute the expected number of
customers served in the initial busy period and the expected umber of cus-
tomers served in subsequent busy periods (A. Lemoine, communication).
7.13. Consider the waiting time process {W,} associated with the random
walk {S,}.

(a) Suppose My = V32,48, < oo. Show for any 7o > 0 that

PW, < z|Wp = x| = W(z)

as n — 00. Show W satisfies

(*) W(:B) = F(I - y)W(dy), z 2 0)

[o’m)

and that W is a probability distribution concentrating on [0, o).
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(b) For the G/M/1 queueing model with EX; = 0 show that

0, ifx<0,
1+p5 1z, ifz>0,

W) = {

is an unbounded solution of *.
(c) Let Jny1 = min{0, Xpp1 + Wy}, If p= EX; 2 0, then J, = 0,
while if 4 < 0 then J, = Joo and P|Je < ] = J{z) is proper and satisfies

**) J(x)= F(r —yW(dy), =<0

[0,00)

(Assume F is continuous. What if EX; does not exist?)

(d) To solve * consider the auxiliary equation ** for z < 0 in the un-
knowns W and J. (Assume as in (a) that M, < co as.) Then J is
non-decreasing with J(—c0) = 0, J(0) < co. Define

Wie) = [0 ” e w(de),

f(¢) = 2 J(dz),
o= [ o)
and show )
W) - J)
w(¢)

Using the Wiener-Hopf factorization (g = 1) prove (remember Mo, < 00)

1-F($) =

- w0
W(Q) = — s

J(¢) = W(0)EeiS5m.
(e) For the M/G/1 queueing model, show J(z) is given by
J(z) = de**

for some constant d. Derive the Pollaczek-Khintchine formula for W.
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"Definitelv the best textbook for a second course in probability now available.
Written with excruciating lucidity, and with an excellent choice of exercises.”
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among professors preparing an introductory course on stochastic processes.”
—Int'le Math. Nachrichten

"A splendid book to bring home the value and importance of stachastic
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"This book is different from the classical textbooks on probability theory in that
it treats the measure theoretic background not as a prerequisite but as an inte-
gral part of probability theory. The result is that the reader gets a thorough and
well-structured framework needed to understand the deeper concepts of cur-
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