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Introduction

1 Summary

Electroencephalography (EEG) is the recording of electric potentials produced by neuronal activity

within the cerebral cortex by placing electrodes on specific locations of the scalp. In this thesis,

subjects performed real and imaginary movements of their right arm as EEG signals were recorded

using a 32-electrode cap at a sampling rate of 1 kHz. Our experiment consisted of twelve 30-

second tests, each composed of 5 repetitions of two opposite movements. Indications on timing,

speed, and type of movement were provided by a computer program during the experiment. The

12 tests included two base lines with open and closed eyes, four tests covering all degrees of

freedom of the shoulder and elbow, and one for hand movement, as well as imagination of all five

movements. We used the Wavelet Transform, with the complex Morlet mother wavelet, to identify

how characteristic frequencies changed over time. We then developed a method for generating

binary classifier functions capable of distinguishing between two sets of movements based on the

wavelet coefficients at a variety of frequencies over 30 electrode channels. Posteriorly, we used

the binary classifiers to generate a master classifier function which determined the most probable

movement at any given time. Furthermore, we identified the key frequencies and regions that

distinguish one arm movement from another.

2 Motivation

The primary goal of this thesis was to develop the mathematical and computational algorithms

necessary to decipher the neuronal signals that are generated in a person’s cerebral cortex when

they perform specific arm movements. That is to say, to create a brain-computer interface capable

of detecting how a person is moving their right arm or how they imagine they are moving their

arm, using noninvasive methods. If we could decipher just five actions (up, down, left, right and

one extra for click), a person could move a cursor around a computer screen just by thinking about

it. If two different states could be detected, a paralyzed person could answer yes or no questions,

and if 8 different states could be detected (up, down, left, right, pronation, supination, and two

for contraction and extension at the elbow), a person could move a robotic arm by either moving

or thinking about moving their own arm in the same fashion.

Brain-computer interface technology has an enormous range of applications, from natural con-

trol of prosthetic limbs, communication with locked-in patients, therapy of phantom limbs and

rehabilitation of patients with spinal cord injury to virtual reality, meditation training and neu-

rogaming. Furthermore, the technology is so revolutionary, that once popular, thousands of new
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vi INTRODUCTION

applications would be developed by the world community, giving rise to technologies that have

yet to be imagined. Since the invention of computers, user interfaces have become more and more

intuitive, evolving from control panels to mouse and keyboard to touch screen and accelerometers,

to body-recognizing cameras that detect from infrared to visible light. Brain-computer interfaces

that skip all intermediaries, converting signals directly from thought to command, seem to be a

rational next step in this process.

Similar experiments have been carried out, but to our knowledge, no experiment with so many

different states has ever yielded acceptable success rates. Zhang et al report 60-90% success rate for

an experiment with four very different movement options, described as free state, arm movement,

hand crawl and hand open [1]. Bhattacharyya et.al. report 65-70% success rates for 5 movements

(forward, backward, left, right and stop) [2].

3 Hypothesis

We hypothesize that for each of the arm movements performed during the experiment, certain

identifying patterns can be found in the corresponding brainwaves using wavelet analysis, which

are consistent among all individuals.

4 Aims

1. Identify the characteristic brain regions and frequencies which show increased or decreased

activity whenever one movement is performed, but not when other movements are performed.

2. Generate a classifier function capable of distinguishing what movement a subject is perform-

ing in real time based on EEG data.
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Chapter 1

Introduction to Concepts

1.1 Principles of Electroencephalography

Neuroscientists and other brain enthusiasts sometimes claim that the human brain is among the

most complicated systems in the universe. An average adult human brain contains around 8.6×1010

neurons and 1.5 × 1014 synapses, or connections, between them [3]. Whether or not this is more

complicated than an ecosystem, galaxy, black whole or proton is a matter of opinion and philosophy,

but the fact remains that brains are very complicated systems and even though the anatomy of

brains is well mapped out and enormous advances in neuroscience have been made over the past

few decades, many aspects of brains are still not very well understood. Furthermore, there are some

fundamental aspects, such as the nature of sentience or how the subjective experiences that make

up our everyday lives could possibly be encoded by chemical or electrical signals, which remain a

complete mystery [4].

Figure 1.1: Diagram of action potential when a neuron fires.
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CHAPTER 1. INTRODUCTION TO CONCEPTS
1.1. PRINCIPLES OF ELECTROENCEPHALOGRAPHY

The brain contains both neuronal and non-neuronal cells, but in this thesis, we will discuss

only the neuronal cells. Inside each cell, there are certain concentrations of ions such as Potassium

(K+) and Sodium (Na+), among others. These ions also exist outside the cell, but in different

concentrations. To be more specific, the sodium concentration is about nine times as high outside

the cell as inside, whereas the potassium concentration inside the cell is twenty times as much as

outside [5, p. 168]. Because ions are charged particles, this difference of concentrations leads to a

difference of voltage between the cell’s interior and exterior. The difference between interior and

exterior voltages is known as the membrane potential, and is normally around -65 mV, but can

vary from -80 to -40 mV depending on the type of neuron. The membrane of each cell contains

ion channels which, when open, allow ions of a specific type to pass into and out of the cell. If

the channels were always open, then the cell would quickly reach equilibrium with respect to the

exterior, but they are not; each ion channel has specific gating properties, which determine when

they open and close. Potassium and Sodium channels are voltage-gated, meaning that at higher

voltages they have a higher chance of opening. Because neurons are constantly being stimulated

and ion gates are probabilistic in nature, the voltage of the neuron does not remain constant and

fluctuates around the aforementioned resting potential of -65 mV. As long as the fluctuations are

small, ion pumps, which actively move ions into and out of the cell by consuming energy from

adenosine triphosphate (ATP) molecules, will very quickly return the neuron to its desired ion

concentrations and voltage. However, if the fluctuation is large enough to cross the threshold of

around -50 mV, then Sodium channels will begin to open, resulting in an influx of positively charged

Sodium ions, which will increase the voltage in the cell further, thus causing a chain reaction and

opening more Sodium channels. However, when a second threshold is crossed (around +40 mV),

Potassium channels will quickly begin to open up, resulting in a flow of positively charged Potassium

out of the cell, which eventually cancels then overpowers the effect of the inflowing Sodium, thus

reducing the voltage to below its initial value. By this time, both Sodium and Potassium channels

will have closed, and the ion pumps will restore the initial concentrations. This increase in a

neurons intracellular voltage followed by a rapid decrease is known as an action potential or a

spike, and the neuron is said to fire when an action potential occurs [6].

A long offshoot known as an axon leads out of the central cell body of the neuron and then

branches out into spines that each end in a presynaptic terminal. When a neuron fires, the action

potential does not just appear in a single location; the change of voltage in one part of the neuron

causes nearby ion channels to open as well, which increases the voltage there, opening nearby ion

channels, and so on. Like a spreading fire, the action potential propagates along the axon until it

reaches a presynaptic terminal, where there is a small chance (around 5%) that neurotransmitters

will be released and picked up by the post-synaptic terminal of another neuron, producing a voltage

increase in the post-synaptic terminal. If the post-synaptic neuron is stimulated in this way by

enough neurons within a sufficiently short time, the combined increase in voltage can cross the

threshold and cause this second neuron to fire as well. This is how neurons communicate with one

another and, at a very basic level, how thoughts are produced.

Due to the movement of charged particles, or ions, across the neuron’s membrane during this

process, an electrical field is produced with each firing. The electrical field of any given neuron is

much too small to be detected outside the skull, but the sum of the electrical activity of the millions

of neurons that are firing at any given moment adds up to form a field that can be detected. The

2



CHAPTER 1. INTRODUCTION TO CONCEPTS
1.1. PRINCIPLES OF ELECTROENCEPHALOGRAPHY

Figure 1.2: Diagrams of different types of neurons. Image taken from Principles of Neuroscience [5,
p. 67].

fields of neurons firing in random patterns produce destructive interference, but if many neurons

in a small region near the brain’s surface fire cohesively in more or less the same direction, the

component of the accumulated electric field that is perpendicular to the surface of the scalp can

be detected by electrodes placed on the scalp. Since neurons tend to be assembled into neural

circuits, which perform specific functions such as perception, movement or behavior, it is common

for these circuits to fire cohesively, thus producing a measurable signal [6, p. 10].

This is the basic principle underlying the function of electroencephalography, composed of the

root words “electro” electricity, “encephalo” brain, and “graph” write, and the suffix “-y” which

denotes a system or method. Thus electroencephalography is the method by which electrical signals

from the brain are written, and it is commonly abbreviated as EEG. However, the term EEG is also

used to refer to “electroencephalograph”, the machine used to perform the electroencephalography;

“electroencephalogram”, the recording obtained from the electroencephalograph; and “electroen-

cephalographical”, which is the adjective denoting relationship to electroencephalography. Within

this thesis, EEG will be used indiscriminately for all four of these purpose and it will be up to the

reader to determine which one is meant from context, although that shouldn’t represent much of

a problem.

Let us imagine that in one small section of the brain, a chain of neurons fires upward, then

activates a second chain which fires downward then activates the initial chain again, and this

happens every 0.5 seconds. Then we would expect to find an oscillation of 2 Hz in the EEG signal

corresponding to the electrode over that section of the brain. In reality, the pattern would be much

more complex, but any time a particular section of the brain is engaged in some periodic mental

activity, an oscillation should occur. However, we would also expect all sorts of other oscillations

to have been picked up by the electrode at the same time. One way to recover information from the

time series is to apply band-pass filters to the EEG data which eliminate oscillations of frequencies

that are above or below a certain range. In EEG, there are five commonly used frequency bands,

3



CHAPTER 1. INTRODUCTION TO CONCEPTS
1.1. PRINCIPLES OF ELECTROENCEPHALOGRAPHY

Figure 1.3: Example of 30 channels of brainwave recordings from an electroencephalograph.

known as δ (0.2 - 3.5 Hz), θ (4 - 7.5 Hz), α (8 - 13 Hz), β (14 - 30 Hz) and γ (30 - 90 Hz), each of

which has been found to be associated with specific brain activities. For example, an increase in

alpha waves can be seen when eyes are closed, and alpha waves are inhibited during arm movement.

Both of these results are in agreement with the findings of this thesis. Frequencies below delta are

known as infraslow waves and those above gamma are called high-frequency oscillations (HFO).

Band Frequencies Normally found in
Delta 0.2 - 3.5 Hz deep sleep, babies
Theta 4 - 7.5 Hz drowsiness, arousal, inhibition, creativity, young children
Alpha 8 - 13 Hz relaxation, closed eyes, rest state motor neurons
Beta 14 - 30 Hz alertness, anxiety, analytical thinking, concentration

Gamma 30 - 90 Hz cross-sensory perception, deep meditation, extreme concentration

Table 1.1: Conventional frequency bands for brainwaves, and the activities with which they are
associated.

4



CHAPTER 1. INTRODUCTION TO CONCEPTS
1.2. WAVELET TRANSFORM

1.2 Wavelet Transform

One of the best mathematical methods for determining the characteristics frequencies of an oscil-

latory signal that changes over time is the Wavelet Transform, defined mathematically as:

Wϕ(s, τ, x) =
1√
s

∫ ∞
−∞

ϕ

(
t− τ
s

)
x(t)dt (1.1)

where ϕ is a mother wavelet function, ϕ̄ indicates complex conjugate, s is scale, τ is time displace-

ment and x is the data to be analyzed. The result of this function is a scalar, known as the wavelet

coefficient of x at scale s and time τ .

In order to understand the wavelet transform, one should note that it is really not more than

a normalized scalar product of two functions. The scalar product, or dot product, of two n-

dimensional vectors ~x and ~y is defined as:

~x · ~y =

n∑
i=1

xiyi (1.2)

The scalar product denotes the degree of similarity between the vectors ~x and ~y. If the scalar

product is normalized, by dividing by the product of the norms of ~x and ~y: ~x·~y
xy , where x = |~x| =√

(~x · ~x) and similarly for y, the number obtained would be between -1 and 1, where 1 indicates

that x and y are parallel, -1 indicates that they are antiparallel, and 0 that they are perpendicular.

Similarly, the scalar product between two continuous functions f(x) and g(x), defined in the range

x ∈ (a, b) is defined:

f · g =

∫ b

a

f(x)g(x)dx (1.3)

and shows the degree of similarity between the two functions. If f ·g√
f ·f√g·g is near 1, then when

one function increases or decreases, so does the other. The peaks and valleys of one function are

closely aligned with those of the other. If the normalized scalar product is near -1, then increases

in one function correspond to decreases in the other. If the dot product is near zero, then the two

functions are completely unrelated.

Readers with a mathematical background may be familiar with the information in the previous

paragraph, but I include this reminder because it is essential for understanding the meaning of

a wavelet coefficient. In this light, equation (1.1) can be seen as the scalar product between the

function we wish to analyze and a mother wavelet, or template. This is to say, it is a measure of

how much a function x resembles a template ϕ.

There is a large variety of different mother wavelets and selection of one is not an arbitrary or

trivial task. A mother wavelet should be chosen depending on the shape of the signal that to be

analyzed. For example, the Haar wavelet could be used to identify step patterns, Daubechies to

find action potentials, or Morlet to look for sine or cosine oscillations. In some cases, analyzing a

signal with two different mother wavelets will provide similar results, but often, the results will be

very different.

5



CHAPTER 1. INTRODUCTION TO CONCEPTS
1.2. WAVELET TRANSFORM

Figure 1.4: Examples of six different mother wavelets, where the horizontal axis is time and the
vertical axis is the value of the corresponding mother wavelet at that time. The different shapes
of the mother wavelets determine what type of signal they can be used to analyze most effectively.
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The complex Morlet mother wavelet is defined as:

ϕ(t) = π−
1
4 exp

(
2πit− t2

2

)
(1.4)

This is simply the multiplication of a complex oscillation with a frequency of 1 by a Gaussian curve

centered at 0, with standard deviation 1 and height π−
1
4 .

The parameters of equation (1.1), scale and time displacement, adjust the size and position

of the mother wavelet curve. For example, a higher scale will correspond to a wider but shorter

mother wavelet, whereas a lower scale results in a taller and narrower mother wavelet. The time

displacement determines the center of the mother wavelet. The results of a continuous wavelet

analysis are commonly represented in the form of a scalogram, a 3-dimensional graph in which time

displacement is shown on the horizontal axis, scale on the vertical axis, and the wavelet coefficients

are represented either on a color scale or by equal-value contour lines.

Figure 1.5: The real part of a Morlet mother wavelet, at different scales and time displacements.
The horizontal axis is time (t) and the vertical axis is 1√

s
ϕ
(
t−τ
s

)
Blue: s=1, τ=0, Green: s=1,

τ=5, Yellow: s=2, τ=10, Orange: s=0.5, τ=15

It is important to note that for the Morlet wavelet defined in equation (1.4), the scale is the

inverse of the frequency, which means that it is equal to the period of one oscillation. This can

be observed directly in Figure 1.5. However, this is not the general case: scale is proportional to

period for all mother wavelets, but they are not necessarily identical.

When the experimental data to be analyzed is a discrete time series taken within a finite period

of time, equation (1.1) can be modified to:

Wϕ(s, τ, ~x) =
∆t√
s

∑
k

ϕ

(
k∆t− τ

s

)
xk (1.5)

where ∆t is the sampling time of the test and xk is the k-th element of the vector ~x which contains

the experimental data.

7
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1.2. WAVELET TRANSFORM

Figure 1.6: Top: A synthetic oscillatory function divided in three sections. For t < 20, f(t) =
3 cos (πt), for 20 ≤ t < 40, f(t) = 2 cos

(
πt
2

)
, and for t > 40, f(t) = 2 cos

(
πt
2

)
+ cos (2πt). Middle:

The real part of a wavelet scalogram for the function f(t), using the Morlet mother wavelet. The
horizontal axis represents time displacement and the vertical axis is scale. The color scale shows
the wavelet coefficient at each time displacement and scale, where red is high, blue is low, and
green is zero. Note that red circles correspond exactly to the peaks in f , and blue circles to the
low points. In the first 20 seconds, a single low scale oscillation is visible. In the following 20
seconds, there is a higher-scale oscillation, and in the final 20 seconds, the signal is decomposed
into two different scales: one high and one low. Bottom: The norm of the wavelet scalogram for
the function f(t). Here, all information about the phase of the oscillation is lost, thus focusing on
the amplitude.
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1.2. WAVELET TRANSFORM

Figure 1.7: Examples of the norm of continuous wavelet transform scalograms for actual test
data. The vertical axis is logarithmic and is separated into the traditional frequency bands δ, θ,
α, β and γ from top to bottom. The vertical lines separate the graph into 3-second intervals. In
the first scalogram, the subject’s eyes are closed, which can be easily identified by the high alpha
component, visible as a red band in the middle of the graph.
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1.3. BCI

1.3 BCI

A Brain-Computer Interface (BCI) is a system which receives signals originating in the brain

as input and interprets them to provide commands to a computer as output, without using the

brain’s standard pathways for interacting with the environment, such as muscle activation. BCI

has a wide range of applications. For example, if the brainwaves corresponding to hand and arm

movements could be correctly decoded, a person who has lost an arm could potentially receive an

intuitively-controlled prosthetic that responds to the same mental stimuli as a real arm, allowing

it to flex, extend, rotate and grasp like a natural arm without having to relearn how to use it.

Similarly, mechanical arms could be used to handle hazardous materials or manipulate dangerous

environments, granting technicians all the dexterity of their real hands without placing them in

physical danger. In a more extreme example, a quadriplegic or paraplegic patient who has suffered

spinal injury, severing the pathways from the brain to muscle could potentially obtain both a BCI to

decode mental commands and a neuronal stimulator capable of translating the mental commands

back into electrical signals to activate motor neurons, thus returning control to the paralyzed

portion of the body. A final application of BCI is in virtual reality, in which an animated character

in a computer-generated environment could be controlled in the same way a real body is controlled,

and could potentially be trained to perform tasks that a real body cannot, or control appendages

that humans lack, like wings, tails, tentacles, or extra arms.

1.4 Alternatives to EEG

Aside from EEG, there are a number of other technologies that can be used to gather data for a

BCI, each with their own advantages and disadvantages, including spatial and temporal resolutions,

as well as size and cost.

Functional Magnetic Resonance Imaging (fMRI) allows the user to view, in 3D, the Blood

Oxygen Level Dependent (BOLD) response of the entire brain. When part of the brain is more

active than usual, energy from adenosine triphosphate molecules is consumed in order to return the

activated neurons to their resting states of -65 mV. These ATP molecules must then be replenished,

resulting in an increase of blood flow to the activated brain region. The fMRI detects concentrations

of oxygenated and deoxy hemoglobin in the brain and compares the image of activated regions with

a reference image. It assumes that differences are due to blood flow and not rapidly deforming

brain tissue, and superimposes colorful image of neuronal activity on a grayscale anatomical image

of the brain to produce its characteristic images.

Compared to EEG, fMRI provides much higher spatial resolution (as small as 0.33 mm vs

20mm for EEG) and provides information of the entire brain as opposed to only the surface of the

cerebral cortex. However, the time resolution is much worse (2-3 seconds compared to .001 s or

faster with EEG), and presents a lag with respect to the actual neuronal activity. Furthermore,

the machinery required for fMRI is enormous and costs millions of dollars, and data analysis takes

hours, making it impractical for casual BCI users.

Another technique used for gathering data on brainwaves is Magnetoencephalography (MEG),

which is very similar to EEG, but collects information on the accumulated magnetic field produced

by the neurons on the cerebral cortex rather than the electrical field. The time resolution for MEG

10
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Figure 1.8: Example fMRI Scan. Image taken from http://psychcentral.com/lib/

what-is-functional-magnetic-resonance-imaging-fmri/.

is comparable to that of EEG and the spatial resolution is slightly better (10 mm). Additionally,

MEG has the advantage that the brain, skull, scalp and hair have different electrical permeability

but roughly the same magnetic permeability, reducing the noise and making it easier to model the

magnetic field than the electrical field. However, like the fMRI, the size and cost of MEG machines

also makes them prohibitive.

Functional Near Infrared Spectroscopy (fNIRS) is a method by which infrared lasers are used

to determine the BOLD response. Skin and bone are mostly transparent to light in the range

of 650-950 nm, but hemoglobin is not. Furthermore, oxy- and deoxy-hemoglobin have different

absorption spectra for all wavelengths besides 810 nm. Thus, by placing an infrared lasers near

the scalp and measuring the spectra of absorbed light, the relative concentrations of oxy- and

deoxy-hemoglobin can be determined, and therefore the amount of activity in the sampled part of

the brain. Like EEG, fNIRS is non-invasive and harmless to the subject. It is also relatively cheap

and portable, compared to other methods. Also like EEG, a signal can only be obtained from the

outermost 5-10 mm of brain tissue. The temporal resolution can be above 100 Hz, but there is a

delay between actual cerebral activity and the corresponding BOLD response.

The final option for obtaining functional brain data is Electrocorticography (ECoG). The func-

tioning of ECoG is very similar to that of EEG, and this technology could, in fact, be considered a

subset or specialization of EEG. The difference is that rather than placing electrodes on the scalp,

an array of electrodes is implanted directly on the surface of the cerebral cortex. Whereas EEG

records the sum of the activity of millions of neurons, ECoG can record the activity of individual

cortical neurons, providing unparalleled spatial and temporal resolution. The drawback of ECoG

is that it requires removal of a portion of the skull and implantation of an electrode array on the

brains surface, making it an unattractive option except in extreme circumstances.

We decided to use EEG because it is a non-invasive and relatively cheap and portable option

with high temporal resolution, which is essential for real-time control. One of the goals of this

11
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thesis is to overcome EEG’s inherent noisiness and low spatial resolution by way of solid, innovative

mathematical methods to allow its use in an effective BCI.

12



Chapter 2

Methods

2.1 Equipment

Data was collected using a Neuroscan Synamps EEG with a 32-electrode cap in the standard 10-20

configuration at a sampling rate of 1 kHz.

Figure 2.1: Diagram of positions of 32 electrodes plus ground in standard 10-20 configuration. G
represents the ground and A1 and A2 (placed on the earlobes) are used as reference points.

Aquagel conductive gel was used to improve conductivity between the scalp and electrodes.

Neuroscan SCAN 4.3 software was used for data acquisition during experimentation.
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2.2 Experimental Procedure

2.2.1 Preparation

All subjects were right-handed male students from the Facultad de Ciencias Fisico-matemáticas

(FCFM) of the Benemérita Universidad Autónoma de Puebla (BUAP). The experiment was carried

out in accordance with the Declaration of Helsinki. Subjects were provided with a brief description

of the experiment and signed a letter of informed consent before participating. On the day of the

experiment, subjects were asked about their recent drug consumption (including alcohol, caffeine

and pharmaceuticals) as well as mental wellness and sleep habits in order to control for mind-

altering affects. Data collection was carried out in the Laboratorio de Neurofisioloǵıa Integrativa

in the Instituto de Fisioloǵıa of the BUAP and in the Laboratorio de Psicofisioloǵıa Experimental

of the Facultad de Psicoloǵıa of the BUAP.

Before the experiment began, the subject removed all metallic objects from his person and sat

in a chair with his feet planted firmly on the floor.

The distance from the inion (located at the external occipital protuberance of the skull) to the

nasion (at the intersection of the nasal and the frontal bones) was measured over the top of the

head. Electrodes OZ and G were placed at 10% of this distance towards the top of the head from

the Inion and Nasion, respectively. Electrodes PZ, CPZ, CZ, FCZ and FZ were placed along the

center of the head at 20%, 30%, 40%, 50% and 60% of this distance from OZ, respectively. A second

distance was measured around the head from OZ to G, and electrodes O2, P8, TP8, T8, FT8, F8

and FP2 were placed at 10%, 20%, 30%, 40%, 50%, 60%, 70% and 90% of this second distance

from OZ. The other electrodes were placed using the aforementioned electrodes as guidelines, as

shown in Figure 2.1.

Once the electrodes were properly placed, Aquagel conductive gel was injected into each elec-

trode and the impedance was measured using Neuroscan SCAN 4.3 software. In order to ensure

accurate electrode readings, additional conductive gel was injected and electrodes were gently

rubbed to improve contact with the scalp until all electrodes showed impedances of 5 kΩ or lower.

The signals were filtered at DC-500 Hz bandpass with a notch filter at 60 Hz to remove noise

produced by the power line.

2.2.2 Experimental Protocol

Nine healthy right-handed male subjects between 20 and 29 years of age performed twelve 30-

second tests, each composed of 5 repetitions of two opposite movements. Each movement lasted

2.5 seconds with a half second rest between one movement and the next. Before each test, the

subject read instructions on a computer screen indicating what movement would be made. In

addition, the subject received oral instructions and a demonstration and was allowed to practice

the movement. The subject was asked to perform the movement at a continuous speed during each

2.5 second movement period. During the test, a model hand appeared on the screen and carried

out the two opposite movements while the subject followed its indications.

2.2.3 Description of Tests

1. Eyes Closed Resting State: The subject relaxed with eyes closed for 30 seconds.
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Figure 2.2: Diagram of movement timing during a test. Right and Left arrows are indicators of
the movement being performed at each time during test 3. For all other tests, timing was the
same, but the movements varied, as described in section 2.2.3.

2. Eyes Open Observation: The subject relaxed and watched a hand move horizontally

across the screen, beginning on the left.

3. Horizontal Movement: The subject extended his right arm and pointed it forward parallel

to the ground with hand open and thumb up. The subject moved his arm horizontally from

the shoulder at constant speed from 45 to 135 with respect to his chest. Movement speed

and timing were controlled by indications on a computer screen. The arm began on the left.

4. Horizontal Imagination: The subject rested his arm and imagined that he was performing

the same action as in the previous test while observing the hand movement on the screen.

5. Vertical Movement: The subject extended his right arm and pointed it forward parallel

to the ground with hand open and thumb up. The subject moved his arm vertically from the

shoulder at constant speed from 135 to 45 with respect to his torso. Movement speed and

timing were controlled by indications on a computer screen. The arm began at the top.

6. Vertical Imagination: The subject rested his arm and imagined that he was performing

the same action as in the previous test while observing the hand movement on the screen.

7. Rotation: The subject extended his right arm and pointed it forward parallel to the ground

with hand open and thumb up. The subject rotated his arm from the shoulder at constant

speed from 0◦ to 180◦ with respect to the initial position. Rotation speed and timing were

controlled by indications on a computer screen. The arm began with the thumb pointing up.

8. Rotation Imagination: The subject rested his arm and imagined that he was performing

the same action as in the previous test while observing the hand movement on the screen.

9. Finger Movement: The subject extended his right arm and pointed it forward parallel

to the ground with hand open and thumb up. The subject closed and opened his four

fingers towards the palm at constant speed. Movement speed and timing were controlled by

indications on a computer screen. The hand began open.

10. Finger Imagination: The subject rested his arm and imagined that he was performing the

same action as in the previous test while observing the hand movement on the screen.

11. Elbow Movement: The subject extended his right arm and pointed it forward parallel

to the ground with hand open and thumb up. The subject flexed and extended his arm at

the elbow at constant speed from 90◦ to 0◦ with respect to the floor. Movement speed and

timing were controlled by indications on a computer screen. The hand began pointing up.
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12. Elbow Imagination: The subject rested his arm and imagined that he was performing the

same action as in the previous test while observing the hand movement on the screen.

Figure 2.3: Diagram of the real and imaginary movements carried out in the experiments. The
part in red represents the initial position and the blue the final position.

2.3 Control Group

The method for data analysis used in this thesis was designed to find patterns. Ideally, the patterns

identified should correspond to the movements performed. However, it may also find patterns that

are coincidental and unrelated to the movements. It was therefore essential to include a control

group in which there was no difference between the tests. By evaluating both the experimental and

the control groups, we could identify how much of the success rate was due to the recognition of

patterns caused by movements and how much was due to the coincidental patterns. Therefore, in

addition to the experimental group, we included a control group of two right-handed male subjects.

For this group, all twelve tests were Eyes Closed Resting State. The control subjects sat with their

eyes closed and performed no movements during 30 seconds for all twelve tests.

2.4 Data Analysis

2.4.1 Problem Statement

EEG experimental data was exported in the form of matrices, the elements of which were voltages

acquired from each electrode at each time. One such matrix was obtained for every subject and test.

Each column of each matrix contained the readings of a single electrode and each row contained

the readings at a single time. Hereafter, we will refer to the column vectors of the matrix for

subject S, electrode ε, test T as:
~XS:ε:T (2.1)

and the k-th element of each column vector as:

XS:ε:T,k (2.2)

The data matrices were first processed to obtain feature vectors for each discrete time to provide

some insight into what cortical activity was taking place at that time. The goal of our data analysis

was to create a master classifier function which would take the feature vector corresponding to any

given time as input and identify what movement the subject was carrying out at that time.
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2.4.2 Feature Vector Creation

2.4.2.1 Normalization

The first step taken in preprocessing the experimental data was to normalize it. This step was

not necessary in order to create a classifier for the data, but it did allow us to compare data from

different subjects. Because the voltage detected by any given electrode on a particular subject

depended on factors such as the amount of hair present, conductive gel used, and other external

factors, both the baseline voltage and the amplitude of oscillations could vary greatly from subject

to subject. For this reason, the experimental data was preprocessed to create normalized data with

median 0 and standard deviation 1.

Given a n-dimensional vector ~x with components xi, the median and variance of the components

are defined as:

µ =
1

n

n∑
i

xi (2.3)

σ2 =
1

n

n∑
i

(xi − µ)2 (2.4)

respectively. In order to create a normalized vector ~x′ such that µ′ = 0 and σ′ = 1, we defined

x′i =
xi − µ
σ

(2.5)

The proof that µ′ = 0 and σ′ = 1 is straightforward and is provided below:

Proof:

µ′ =
1

n

n∑
i

x′i =
1

n

n∑
i

xi − µ
σ

=
1

nσ

n∑
i

(xi)−
nµ

nσ
=
µ

σ
− µ

σ
= 0 (2.6)

σ′2 =
1

n

n∑
i

(x′i − µ′)2 =
1

n

n∑
i

(
xi − µ
σ

)2

=
1

σ2n

n∑
i

(xi − µ)2 =
σ2

σ2
= 1 (2.7)

The data was normalized by calculating the median and standard deviation of the data corre-

sponding to test 1 (Eyes Closed Resting State) of each subject and electrode.

µS:ε =
1

n

n∑
k

xS:ε:1,k (2.8)

σS:ε =

√√√√ 1

n

n∑
k

(xS:ε:1,k − µ)
2

(2.9)

Then, normalized vectors were created for every subject, electrode and test using the following

formula:

x′S:ε:T,k =
xS:ε:T,k − µS:ε

σS:ε
(2.10)

Because test 1 was used to determine the offset and scale factors for all the tests, only test 1 for

each electrode and subject actually ended up with a median of zero and standard deviation of 1.

We assume that the impendence for each electrode remained roughly the same for one subject over

the course of an experiment.
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2.4.2.2 Wavelet Transform

Using equation (1.5) as a basis, we define the wavelet transform for the data set ~xS:ε:T at time

displacement τ and scale s as:

W (s, τ, S, ε, T ) =
∆t√
s

∑
k

ϕ

(
k∆t− τ

s

)
x′S:ε:T,k (2.11)

where ∆t = 0.001s is the time between samples (the inverse of the sampling rate of 1000 Hz) and

ϕ(t) = π−
1
4 exp

(
2πit− t2

2

)
(2.12)

is the Morlet mother wavelet.

The analysis began by performing the aforementioned wavelet transform on the normalized

EEG data for each subject, test and electrode. We used 1500 time displacements distributed evenly

in the range of 0 to 30 s and 4 scales distributed logarithmically between .01925 and 0.18257 s,

corresponding approximately to the centers of four of the five frequency bands commonly used

when analyzing brainwaves, namely, δ (0.2 - 3.5 Hz), θ (4 - 7.5 Hz), α (8 - 13 Hz), β (14 - 30 Hz)

and γ (30 - 90 Hz) [11].

Frequency Band Frequency Band Frequency Used Scale Used

Theta (θ) 4 - 7.5 Hz 5.477 Hz 0.18257 s
Alpha (α) 8 - 13 Hz 11.59 Hz 0.08625 s
Beta (β) 14 - 30 Hz 24.54 Hz 0.04075 s
Gamma (γ) 30 - 90 Hz 51.95 Hz 0.01925 s

Table 2.1: The four scales chosen as parameters for the wavelet transform, and their corresponding
frequencies and frequency bands. Because the scales are distributed logarithmically, each scale is
2.117 times the next one.

No frequency from the delta band was used because its use would be impractical for real-time

wavelet analysis. This is discussed further is section 4.2.

2.4.3 Vector Concatenation

Definition: Vector Concatenation Operator.

In this thesis, we will use the ⊕ operator to indicate vector concatenation.

Let ~x = (x1, ..., xn) and ~y = (y1, ..., ym) be two vectors.

~x⊕ ~y ≡ (x1, ..., xn, y1, ..., ym) (2.13)

For simplicity, we will also define vector concatenation between two scalars a and b as:

a⊕ b ≡ (a, b) (2.14)
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And between a vector ~x = (x1, ..., xn) and a scalar a as:

~x⊕ a ≡ (x1, ..., xn, a) (2.15)

a⊕ ~x ≡ (a, x1, ..., xn) (2.16)

We will also define the large operator

n⊕
(i=1)

ai = a1 ⊕ a2 ⊕ ...⊕ an (2.17)

where ai could be either vectors or scalars, or the abbreviated form⊕
i

ai (2.18)

for which the possible values of i are assumed to be known and ordered.

For every subject, test and time displacement, feature vector was created by concatenating the

absolute values of the wavelet coefficients for each scale and each electrode. Because 30 electrodes

and 4 frequencies were used, this resulted in feature vectors of length 120.

This is to say, for subject S, test T , and time displacement τ , the feature vector
−−−−→
AS:T,τ was

constructed in the following way:

−−−−→
AS:T,τ =

⊕
ε

⊕
s

|W (s, τ, S, ε, T )| (2.19)

For s ∈ (0.18257, 0.08625, 0.04075, 0.01925) and ε ∈ (O2, O1, OZ, PZ, P4, CP4, P8, C4, TP8, T8,

P7, P3, CP3, CPZ,CZ, FC4, FT8, TP7, C3, FCZ, FZ, F4, F8, T7, FT7, FC3, F3, FP2, F7, FP1)

Thus:

−−−−→
AS:T,τ = (|W (0.18257, τ, S,O2, T )|, |W (0.08625, τ, S,O2, T )|, |W (0.04075, τ, S,O2, T )|,

|W (0.01925, τ, S,O2, T )|, |(W (0.18257, τ, S,O1, T )|, ..., |W (0.01925, τ, S, FP1, T )|)

(2.20)

The complete list of the scales and electrodes for every component of
−−−−→
AS:T,τ can be found in

Appendix 3.

2.4.3.1 Feature Vector Grouping

The complete feature vectors were subsequently grouped into sets corresponding to the same move-

ment.

Let α be an ordered set of different states between which we wish to discriminate. Let β be

an ordered set of sets of feature vectors, such that all the feature vectors in βi correspond to the

state αi.

In this thesis, the values of αi are:

α1= RestClosed, α2= WatchRight, α3= WatchLeft, α4= Right, α5= Left, α6= RightIm, α7=

LeftIm, α8= Down, α9= Up, α10= DownIm, α11= UpIm, α12= RotCW, α13= RotCCW, α14=
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RotCWIm, α15= RotCCWIm, α16= CloseFing, α17= OpenFing, α18= CloseFingIm, α19= Open-

FingIm, α20= OpenElb, α21= CloseElb, α22= OpenElbIm, α23= CloseElbIm. We used the fol-

lowing algorithm to assign each vector to a set βi:

if T = 1⇒
−−−−→
AS:T,τ ∈ β1

if T = 2⇒

{
if 0 ≤ τ%6 ≤ 2.5→

−−−−→
AS:T,τ ∈ β2

if 3 ≤ τ%6 ≤ 5.5→
−−−−→
AS:T,τ ∈ β3

if T = 3⇒

{
if 0 ≤ τ%6 ≤ 2.5→

−−−−→
AS:T,τ ∈ β4

if 3 ≤ τ%6 ≤ 5.5→
−−−−→
AS:T,τ ∈ β5

if T = 4⇒

{
if 0 ≤ τ%6 ≤ 2.5→

−−−−→
AS:T,τ ∈ β6

if 3 ≤ τ%6 ≤ 5.5→
−−−−→
AS:T,τ ∈ β7

if T = 5⇒

{
if 0 ≤ τ%6 ≤ 2.5→

−−−−→
AS:T,τ ∈ β8

if 3 ≤ τ%6 ≤ 5.5→
−−−−→
AS:T,τ ∈ β9

if T = 6⇒

{
if 0 ≤ τ%6 ≤ 2.5→

−−−−→
AS:T,τ ∈ β10

if 3 ≤ τ%6 ≤ 5.5→
−−−−→
AS:T,τ ∈ β11

if T = 7⇒

{
if 0 ≤ τ%6 ≤ 2.5→

−−−−→
AS:T,τ ∈ β12

if 3 ≤ τ%6 ≤ 5.5→
−−−−→
AS:T,τ ∈ β13

(2.21)

if T = 8⇒

{
if 0 ≤ τ%6 ≤ 2.5→

−−−−→
AS:T,τ ∈ β14

if 3 ≤ τ%6 ≤ 5.5→
−−−−→
AS:T,τ ∈ β15

if T = 9⇒

{
if 0 ≤ τ%6 ≤ 2.5→

−−−−→
AS:T,τ ∈ β16

if 3 ≤ τ%6 ≤ 5.5→
−−−−→
AS:T,τ ∈ β17

if T = 10⇒

{
if 0 ≤ τ%6 ≤ 2.5→

−−−−→
AS:T,τ ∈ β18

if 3 ≤ τ%6 ≤ 5.5→
−−−−→
AS:T,τ ∈ β19

if T = 11⇒

{
if 0 ≤ τ%6 ≤ 2.5→

−−−−→
AS:T,τ ∈ β20

if 3 ≤ τ%6 ≤ 5.5→
−−−−→
AS:T,τ ∈ β21

if T = 12⇒

{
if 0 ≤ τ%6 ≤ 2.5→

−−−−→
AS:T,τ ∈ β22

if 3 ≤ τ%6 ≤ 5.5→
−−−−→
AS:T,τ ∈ β23

where % indicates the modulo operator, or remainder after division.

2.4.4 Feature Vector Reduction

Using large feature vectors has a number of disadvantages. The most obvious is that it requires

more computational resources to analyze than a smaller feature vector. The advantage is that the

more factors there are available, the easier it should be to find a pattern in them. Although this is

true, it is not always an advantage, as it can lead to overfitting, or finding solutions which apply

astonishingly well to the training data, but do not work for new data.
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We therefore reduced our feature vectors by selecting the components which individually were

most efficient at separating vectors from two sets βi and βj .

Definition: Separation Index:

χij =
|µi − µj |
σi + σj

(2.22)

where µi,j and σi,j are the mean and standard deviation of a series of real numbers γi,j , respectively.

In effect, χij is the distance between the averages of two distributions of numbers, as a multiple

of the sum of their standard deviations. The separation index remains invariant if a non-zero

constant is added to or multiplied by every number in γi and γj .

In order to create a reduced feature vector, the separation index of each component of the

original feature vectors was tested in turn by defining γli = {Al} ~A∈βi
and γlj = {Al} ~A∈βj

where

l was the index of the component being tested. After determining the separation index of each

component χlij , they were then ordered from highest to lowest and a list L was created, containing

the m component indices with the highest separation indices. Then, for every feature vector ~A, a

reduced feature vector ~Z was created
~Z =

⊕
l∈L

Al (2.23)

2.4.5 Binary Classifier Creation

The goal of our analysis was to create a function capable of taking any feature vector as input

and determining the movement to which that feature vector corresponds. That is to say, at any

given time during any given test, the subject was performing a specific movement. There is also a

feature vector associated with that time and test. The classifier function should guess the correct

movement for each feature vector as often as possible.

Let ~A = (A1, A2, , An) be a feature vector.

Our goal was to find a master classifier ψ : Rn → α which maximized the number of vectors ~A

that fulfill the relationship ψ( ~A) = αi ⇔ ~A ∈ βi.
In order to define ψ, it was first necessary to generate a series of binary classifier functions fij :

Rn → {αi, αj} which discriminated between two particular states αi and αj .

In order to do this, we first created discriminating functions gij : Rn → R and then defined

fij( ~A) =

{
αi if gij( ~A) < 0

αj otherwise
(2.24)

Given two sets of state vectors, βi and βj , it was relatively easy to generate a linear discriminating

function gij using minimum squares, as follows:

gij( ~Ak) =

m∑
l=1

ClZkl (2.25)

where Cl are unknown constants to be determined.

We defined a vector Y containing information about whether each feature vector belonged to
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βi or βj :

Yk =

{
−1 if ~Ak ∈ βi
1 if ~Ak ∈ βj

(2.26)

Determining the constants C could then be done relatively easily using minimum squares:

C = (ZTZ)−1ZTY (2.27)

2.4.6 Master Classifier Creation

The method described in the previous section was used for creating binary classifiers. However, the

goal was to create a master classifier which would discriminate between all 23 movements. There

are two common methods for doing this: One vs All and One vs One. To exemplify these two

methods, let us assume we want to discriminate between four states: A, B, C, and D.

The One vs All method would involve creating four binary classifiers: each of which groups all

states except one into a single set and compares against the one state which was excluded. Namely,

the four classifiers would be: A vs B+C+D, B vs A+C+D, C vs A+B+D and D vs A+B+C. Then,

in order to determine the most probable state for any given feature vector, the feature vector is

evaluated with the four aforementioned binary classifiers. If in only one evaluation the single state

was chosen and in all other evaluations the grouped states are chosen, then that single state would

be determined to be the correct answer. In any other case, the result would be indecisive.

The One vs One method for the same four states would require the creation of six binary

classifiers: A vs B, A vs C, A vs D, B vs C, B vs D, and C vs D. In order to determine the

most probable state for any given feature vector, the feature vector would be evaluated with all

six binary classifiers and a record would be kept of which state was selected in each evaluation.

Because in this example we are considering 4 states, each state appears in 3 different evaluations, so

if any one state were chosen 3 times, that state would be selected as the most probable. Otherwise,

no movement would be selected. For our experiment, we used a One vs One system, creating 253

binary classifiers to distinguish between each pair of movements. The master classifier evaluated

each feature vector using all 253 binary classifiers and kept track of the selected movement in each

case. If any movement was selected 22 times, that movement was returned as the result of the

master classifier. Otherwise, no movement was selected and the result “None” was returned.

2.5 Evaluation

A binary or master classifier can be evaluated by allowing it to determine the most likely movements

for a set of vectors for which the correct movements are already known. The real movement and

the guessed movement can then be compared to create a confusion matrix whose elements Mij are

equal to the fraction of the time movement αj was guessed when the real movement was αi.

In medicine, 2x2 confusion matrices are often used to show how successful a particular method

is at diagnosing a condition. If a patient has a condition and is diagnosed with the condition, that

is known as a true positive. If the patient has a condition but is diagnosed as not having it, that is

a false negative. If the patient does not have the condition but is diagnosed with the condition, this

is known as a False Positive, and when the patient does not have the condition and is diagnosed
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as not having it, it is called a True Negative.

In our case, the matrix had not two options, but 23. Additionally, the master classifier had the

possibility of returning the diagnosis of “None”, meaning that the confusion matrix had a total size

of 24x23. In this case, using terms such as True or False Positive or Negative doesn’t make much

sense, but all results in the diagonal of the matrix can be considered to be “True” or “correct”.

For simplicity, we synthesize the information in the confusion matrix by averaging the results in

the diagonal and call this the Success Rate.

2.5.1 Self-validation and Cross-validation

Let us denominate the set of feature vectors used to create the master classifier “training data”

and those used for evaluation “test data”. The relationship between the training and test data is

important and the selection of each can make an enormous impact on the results. When training

and test data are the same, this is known as self-validation and can give spectacular results that

do not really have any statistical significance or validity.

If a set of feature vectors can be partitioned, with one partition functioning as training data

and the other as test data, and the partitions can be changed so that all vectors get a turn as both

training and test data, this is called cross-validation.

In this thesis, because each test consisted of five cycles, we chose to partition the data into

these five sections. We then used four sections for training and one for testing, and alternated the

test section until each section had been used for testing once. Thus, whenever the term “cross-

validation” is used hereafter, the results refer to the average of the results of these five evaluations.

Aside from self- and cross-validation, we also performed evaluations for which the training and

test groups were completely independent, where the data from one subject or group of subjects

was used for training, and the data from another subject or independent group of subjects was

used for testing. We call these “cross-subject evaluations”.

2.5.2 Key Components

Aside from creating and evaluating classifiers, the secondary objective of this thesis was to identify

which frequencies and brain regions showed an increase or decrease in activity when certain move-

ments were performed. Since each component of the feature vectors contains information regarding

the neural activity in a certain region and at a certain frequency, this objective is analogous to

determining which components of the feature vector have the highest effect on the success rate of

the evaluation.

For each pair of movements αi, αj , we created a list Lij of the top m components using the

separation index, as described in section 2.4.3 and created a reduced feature vector with these m

components. We then generated a binary classifier function fij and evaluated its base success rate,

Sij .

We subsequently cycled through each component index k of the complete feature vector, and

performed the following algorithm:

If k ∈ Lij , that is to say, the k-th component was already included in the top m components as

determined by separation index, then a new list of components L−kij was created which included

all the elements of Lij except k. That is to say, L−kij = {l ∈ Lij |l 6= k}.
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We then created the reduced feature vector containing only components in L−kij , generated the

binary classifier f−kij and evaluated its success rate, S−kij .

Finally, we determined the effect of the inclusion of the k-th element in the reduced feature vector

∆Skij = Sij − S−kij .

In the case that k 6= Lij , we created a new list of components L+k
ij = Lij ∪{k}. We then generated

the binary classifier f+kij and evaluated its success rate, S+k
ij .

In this case, ∆Skij = S+k
ij − Sij .

In this way, we were able to determine how much the success rate of a binary classifier was effected

by including or excluding any particular component. Those components with the highest ∆Skij
were labelled “Key Components” in discriminating between αi and αj .

Furthermore, by defining

∆Ski =
1

(p− 1)

p∑
j=1,j 6=i

∆Skij (2.28)

where p=23 is the number of different movements, we obtain a number which indicates the im-

portance of the k-th component in determining αi, thus providing an indication of a characteristic

pattern in the region and frequency associated with the k-th component, when performing move-

ment αi.

2.5.3 Key Component Evaluation

After determining the key components for each binary classifier, new binary classifiers were created

using reduced feature vectors that contained the key components, rather than the top components

by separation index. Furthermore, this process could be iterated to continuously find new compo-

nents that work well together, until there was no change from one iteration to the next. However, it

is important to bear in mind that because these classifiers were created to optimize the evaluation

of the test data, they needed to be evaluated with an independent data set, which was mutually

exclusive from both the training and test data.
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Figure 2.4: Data Analysis Flowchart. Blue boxes represent data, green ovals represent processes,
and orange boxes represent the variables involved in each process.

Figure 2.5: Confusion matrix for a binary classifier with only two possible outcomes: Positive or
Negative.
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Chapter 3

Results and Discussion

In this chapter, the results of different analyses are presented, and interpretations of those results

are provided.

3.1 Parallelization and Algorithm Benchmarking

During the initial phase of this thesis, the calculation of wavelet transforms was a critical computa-

tional bottleneck, with analyses taking months to finish. Therefore, many months were dedicated

to the development of code that would run in parallel to reduce analysis time from months to weeks

and periodic data saving so that the progress of such long analyses would not be lost if the program

were interrupted. However, in the end, the implementation of new algorithms made the effects of

these efforts negligible in comparison. The development of faster algorithms proved a critical step

to making the subsequent steps in the analysis possible within a reasonable time frame, and this

is one of the most important contributions of this thesis. Four versions of the wavelet transform

algorithm were developed, all of which gave the same results, but in different amounts of time. The

first version was very inefficient and will be ignored. Version 2 (v2) was a simple wavelet transform

as described in section 2.4.2.2 which returned the wavelet coefficient at a given time displacement

and scale. Version 3 (v3) made two critical changes. First, it implemented numpy’s vector dot

product rather than a purely python-based one I had written. The second critical change was that

rather than determining the wavelet coefficient at a single time displacement, it determined all the

time displacements at once for a single scale, which eliminated the need to evaluate the mother

wavelet more than once per scale. Version 4 (v4) further improved upon Version 3 by approximat-

ing the value of the mother wavelet to 0 outside a window of τ ± 4s, essentially reducing equation

(1) to:

Wϕ(s, τ, x) =
1√
s

∫ t+4s

τ−4s
ϕ

(
t− τ
s

)
x(t)dt (3.1)

This simplification allowed for much smaller vector dot products to be carried out, since the entire

time series did not need to be included, but only a relatively small window. The code for Algorithms

v2 and v4 is provided in Appendix 1.

In Figure 3.1 it can be observed that algorithm v2 was quadratically dependent on the number

of data. Algorithm v3 was roughly 25 times as fast as v2, but remained quadratically dependent.
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Figure 3.1: Comparison in performance of three different wavelet transform algorithms when
analyzing synthetic time series of different lengths. Time series were generated by evaluating an
arbitrary predefined function at n homogeneously distributed points in time, where n is graphed
in the horizontal axis. The wavelet transform was then evaluated at each of the n times, and the
total analysis time is graphed on the vertical axis.

Algorithm v4 was as fast as v3 for small data sets, but calculation time was linearly dependent on

the number of data.

Algorithm Cores Used Time (s) Speedup

v2 1 18837 1.0x
v3 1 563.76 33.41x
v4 1 19.079 987.3x

Table 3.1: Processing times for the same wavelet analysis using three different algorithms on a
single core. 31240 data were analyzed to create a scalogram with a resolution of 1200 x 400 pixels,
using a 3.4 GHz Intel Core i7 processor. Algorithm v4 performed the task almost a thousand times
as fast as v2.

As can be observed in Tables 3.1 and 3.2, algorithm v4 was nearly 3 orders of magnitude faster

than v2 when creating scalograms similar to those used in this thesis. Parallelization was useful

for reducing the processing time of the slower algorithms, but algorithm v4 was faster when using

a single core than when using four, due to the overhead in assigning tasks to different cores when

parallel processing.

3.2 Effects of Algorithm Parameters on Success Rate

Many stages in the data analysis process outlined in chapter 3 have parameters that could have

a large effect on the results, such as the scales to use when performing the wavelet transform,

the number of components to include in the reduced feature vector, the criteria for selecting the
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Algorithm Cores Used Time (s) Speedup

v2 1 2286 1.0 x
v3 1 138.3 16.5 x
v4 1 2.873 795.9 x
v2 4 452.8 5.1 x
v3 4 49.99 45.7 x
v4 4 15.36 148.8 x

Table 3.2: Processing times for the same wavelet analysis using three different algorithms, using
single core and parallel. 44800 data were analyzed to create a 100 x 25 pixel scalogram using a
1.00 GHz AMD A6 CPU with 4 cores.

aforementioned components, the type of function to use for the classifier (e.g. linear, quadratic,

polynomial), and the selection of data for training and testing. Before analyzing all our data, we

first evaluated some of these parameters using a sample of our data, to determine their effects of

each on success rate.

3.2.1 Number of Components vs Success Rate

One of the most important parameters to determine was the number of components to use in the

reduced feature vector. To do this, a sample data set was used to train and test binary classifiers.

Classifiers were created using from 2 to 49 components in the reduced feature vectors and the

self-validated and cross-validated evaluation results were recorded.

Figure 3.2: Effect of the number of components included in the reduced feature vector on the
success rate of binary classifiers. Success rate was evaluated using training data (self-validated)
and using independent data from the same set as the training data (cross-validated).

It can be observed in Figure 3.2 that the self-validated success rate increases with the number

of components, but the cross-validated score remains practically unchanged for 9 components or

more. We chose to reduce the feature vectors to 18 components.
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3.2.2 Test Section vs Success Rate

Each 30 second test was divided into five six-second cycles, and as described in section 3.5.1, when

performing cross-validation, four cycles were used as training data and one as test data. We were

curious to see if the selection of the one test section had a significant effect on success rate.

Figure 3.3: Box-and whisker plot showing correlation between test section and success rate.
Self-validated results are in blue and cross-validated results are in red. When performing cross-
validation, four of the five cycles are used as training data while the remaining one is used as test
data. This plot shows the range of scores when each of the five cycles is used for testing.

The variations between test section are insignificant with respect to the variations within each

test section, for both self- and cross-validated classifiers. This indicates that any test section is

equally valid when creating and evaluating a binary classifier with our experimental setup. For

increased statistical accuracy, we evaluated all test sections and averaged the results.

3.3 Binary Classifier Evaluation Histograms

After evaluating the discriminating functions using test data from the two movements i and j, the

results were plotted in a histogram, where vectors corresponding to one movement are in red and

those corresponding to another are in blue. The binary classifier considers all negative results to

correspond to i and positive results to belong to j. If the two distributions are well separated, the

classifier will have a high success rate. Left: Two distributions with a separation index of 2.198.

All red results are positive and most blue results are negative, indicating a very high success rate.

Right: Two distributions with a separation index of 0.192, meaning that the distributions are on

top of each other and this classifier is not reliable.

30



CHAPTER 3. RESULTS AND DISCUSSION
3.4. SEPARATION INDEX VS SUCCESS RATE

Figure 3.4: Examples of histograms of the linear discriminating functions gij:Rn R described in
section 2.4.4.

3.4 Separation Index vs Success Rate

For both self- and cross-validated data, there is a clear correlation between separation index and

success rate. As would be expected, when the separation index is near zero, the success rate is near

50%, since it is basically impossible to distinguish between the two data sets. As the separation

index increases, the success rate does as well. In the cross-validation case, the lower part of the

curve below 50% occurs because the separation index is defined with an absolute value. This

means that the distributions of linear discriminating function evaluations for the two data sets are

crossed, so that although the two distributions are separate, the one that should be on the left is

on the right, and vice versa.

A classifier is generated using training data and the separation index of the classifier can be

determined using the same training data. However, the classifier is intended to be used to classify

unknown test data. It is therefore important to determine the correlation between the separation

index using training data and the success rate for independent test data. This shows us how well

the separation index predicts the success rate for new data. In the figure, we see two different

tendencies. On one hand, separation indices between 0.2 and 1.3 seem to show no correlation to

success rate, and on the other, separation indices above 1.4 are strongly related to success rate.

This indicates that when a binary classifier is generated, its separation index can be evaluated.

With the experiment and data presented in this thesis, it appears that separation indices above 1.4

indicate a reliable binary classifier, whereas those below 1.4 do not mean much at all. It would be

very interesting to determine if this tendency appears for other experimental data as well. Upon

further inspection, the high separation index data all corresponded to binary classifiers between

movements from different tests. Binary classifiers discriminating between opposite movements all

had separation indices below 1.4
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Figure 3.5: Scatter plot comparing separation index to binary classifier success rates for both
self-validated and cross-validated classifiers. 5704 binary classifiers were generated using different
subjects, movement pairs, and numbers of components. The separation index and success rate of
each binary classifier was determined with both self-validated and cross-validated evaluations.

Figure 3.6: Scatter plot showing correlation between training data separation index and test data
success rate.
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3.5 Confusion Matrices

3.5.1 Single Subject self-validated

3.5.1.1 Experimental Group Results

The final column in Table 3.3, labelled “None”, indicates the percentage of master classifier evalua-

tions which yielded indecisive results. Remember that the master classifier evaluates a total of

276 binary classifiers (all iterations of two different movements out of 23 options), each of which

determines which of two possible states the feature vector is more likely to belong. If any one state,

or movement, is chosen 22 times, that movement is the result of the master classifier. Otherwise, the

result is None. For all movements except RestClosed, around 50% of master classifier evaluations

return None.

The diagonal orange-red line in Table 3.3 shows that the most common response of the master

classifier evaluations were correct. The yellow boxes to the right or below the diagonal indicate

that the next most common responses were the opposite movement. That is to say, there is much

higher confusion between movements belonging to the same test (ie: Right and Left) than between

any two movements belonging to different tests.

Table 3.3: Confusion matrix showing the average of the confusion matrices of 9 experimental
subjects. Each row of the confusion matrix shows which move was guessed by the master classifier
for vectors corresponding to the movement shown in the first column of the row. This confusion
matrix shows the results when the training and test data are the same.
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Table 3.4: Summary of the results in the confusion matrix of Table 3.3. The column labelled
“Correct” shows the overall success rate, which is the average of the matrixs diagonal. “Opposite”
shows the rate at which the opposite movement is chosen. “Incorrect Test” shows the total of all
cells that are not correct, opposite or None, and “None” shows the average of the None column.
“Intertest” shows the rate at which the correct test is chosen; it is the sum of the Correct and
Opposite columns. Intratest shows the rate at which the correct movement is chosen between
the two movements of the same test; it is the Correct column divided by the sum of Correct and
Opposite. The right box, labelled “Normalized” shows the same numbers, if None results are
ignored. That is to say, if all the elements of each row of the matrix are multiplied by (1 N)
where N is the None value for that row. The “All” row contains data averaged from all rows of the
confusion matrix. The “Real” row contains data only corresponding to real physical movements
(Right, Left, Up, Down, RotCW, RotCCW, CloseFing, OpenFing, OpenElb and CloseElb). The
“Imagination” row contains data corresponding to imaginary movements, and the “Eyes Open”
row contains information about all rows except the first one.

It can be seen in Table 3.4 that the master classifier success rate is 27.2%, which is outstanding,

especially considering that not only are there 23 options to choose from, but in order to be chosen

by the master classifier, a move must be chosen 22 times by 22 different binary classifiers. This

means that the success rate of random chance is 2−22 = 2.38×10−7, meaning that our success rate

is over a million times the success rate of an algorithm that just randomly chooses between two

options for each binary classifier. The normalized success rate is 55.8%, which is over 10 times the

normalized random chance success rate of 123=4.35%. Of the responses that are neither correct

nor None, 1/3 correspond to the opposite movement, and the other 2/3 are divided among all other

21 movements, indicating a much higher confusion among the two movements of the same test.

3.5.1.2 Control Group Results

By any measure, results shown in Tables 3.3 and 3.4 look very promising. However, when compared

to those in Tables 3.5 and 3.6 they are a bit less spectacular. The control group performed no

movements at all, meaning there was no real difference between the state vectors corresponding to

one movement and those corresponding to another. Although the experimental group did achieve

higher success rates and None rates and lower opposite and incorrect test rates than the control

group, the difference was minimal and statistically insignificant, and corresponded almost entirely

to the higher success rate of RestClosed in the experimental group.
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Table 3.5: Confusion matrix showing the average of the self-validated confusion matrices of 2
control subjects.

Table 3.6: Summary of the results in Table 3.5.

Table 3.7: Confusion matrix showing the average of the cross-validated confusion matrices of 9
experimental subjects.
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Table 3.8: Summary of the results in Table 3.7.

3.5.2 Single Subject cross-validated

3.5.2.1 Experimental Group Results

Cross-validated results are significantly more reliable than self-validated ones. Although the train-

ing and test data are from the same subject, and are in fact subsets of the same larger data set,

they are still mutually exclusive.

In tables 3.7 and 3.8, we can observe a number of tendencies. As is to be expected, None is the

most common result at around 60%. The exception is in the case of RestClosed, which has a 74.4%

success rate and only 19.7% None rate. We also observe a thick yellow diagonal line, showing that

although the classifier can choose the correct test, it is basically just guessing between the two

movements within each test.

3.5.2.2 Control Group Results

Table 3.9: Confusion matrix showing the average of the cross-validated confusion matrices of 2
control subjects.

Again, the control group’s results cast a shadow on those of the experimental group. Here, we

see very similar results. Although there is a bit more confusion in the control group, the thick

yellow line tendency is definitely present, suggesting that there are some short-term patterns exist

within the brain, which remain more or less constant during a 30-second test, but not from one test
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Table 3.10: Summary of the results in Table 3.9.

to another, and these patterns are in no way related to the movements being carried out, hence

their appearance in both experimental and control groups.

The one significant difference between experimental and control groups is the correct identifi-

cation of Eyes Closed Resting State. This means that at the very least, the master classifiers can

effectively detect when a subject’s eyes are closed.

3.5.3 Cross-subject

3.5.3.1 Experimental Group Results

Table 3.11: Average of 107 confusion matrices using training data from individual subjects and
groups of subjects and testing data from all subjects not included in the training data.

When one subject or group of subjects is used for training and another is used for testing,

the results are rather dismal. In Table 3.11 it can be seen that any resemblance of a diagonal

line has disappeared. In fact, the results for the experimental group are worse than those for the

control group, with the exception of Eyes Closed Resting State, which can be determined with

29.1% success rate. When normalized to exclude the None rate, this increases to 69.2%, which is

excellent. Excluding RestClosed, the normalized Eyes Open success rate is 4.0%, which is lower

than the 4.3% random chance.
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Table 3.12: Summary of the results in Table 3.11.

In conclusion, a master classifier created using data for one group of subjects can effectively

determine if a feature vector from a subject outside the training group corresponds to Eyes Closed

Resting State with a high degree of accuracy. However, if it does not correspond to this state, the

classifier cannot determine better than chance which move was made.

3.5.3.2 Control Group Results

Table 3.13: Average of 32 confusion matrices with the same training subjects as used in Table
X.9, but using 2 control subjects for testing data.

The confusion matrix in which the test data was taken from the control group looks very similar

to the one for the experimental group, except that RestClosed is more often selected as the correct

movement for the control group. Since all tests for the control group were really Eyes Closed

Resting State, RestClosed is in fact the correct answer.

3.5.4 Cross-subject training group size

For cross-subject evaluations, we created many master classifiers using different groups of subjects

as training data, and were curious to see if the number of subjects used had any effect on success

rate. Figure 3.7 shows the normalized success rates for training groups between 1 and 6 subjects.

In each case, the size of the test group was 9-n, where n is the number of subjects in the training

38



CHAPTER 3. RESULTS AND DISCUSSION
3.6. KEY COMPONENTS AND KEY COMPONENT CLASSIFIERS

Table 3.14: Summary of the results in Table 3.13.

group. For the control group, shown in red, the test size was always 2. There is no clear relationship

between training group size and success rate. The results for the experimental group are better

than those for the control group in all cases, but as we saw in the previous section, this is due to

the correct identification of Eyes Closed Resting State.

Figure 3.7: Scatter plot showing the relationship between the number of subjects used for training
data and the normalized master classifier success rate, for both experimental and control groups.

3.6 Key Components and Key Component Classifiers

One of the aims of this thesis was to identify the key brain regions and frequencies which show

an increase or decrease in activity when one movement is performed, but not when others are

performed. Since each electrode reads activity from a specific brain region, this problem is analo-

gous to identifying the components of the feature vector that most improve the success rate of all

binary classifiers which include any given movement. We therefore identified the key components

for each binary classifier, then determined the average effect of all binary classifiers containing each

movement.
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Table 3.15: Example of component effects for the Down vs RestClosed binary classifier for one
subject. Each column shows the effects of one frequency, and each row corresponds to one electrode.
The numbers in the matrix show the percentage of increase in the binary classifier success rate when
the wavelet coefficient for the corresponding frequency and electrode is included in the reduced
feature vector.
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Figure 3.8: Left shows a geometrical representation of the information provided in Table Y, where
each electrode is placed in its relative location on the scalp. The top of the graph represents the
front of the head. The height of the Red bar represents 5.4 Hz (Theta), Orange: 11 Hz (Alpha),
Yellow: 24 (Beta) Hz, and Green: 51 Hz (Gamma). The Right graph highlights the 10 electrode-
frequency combinations with the highest effect.

3.7 4-movement Key Components

A series of simpler analyses were run in which only four movements were used: Right, Left, Down

and Up. The idea was that if a classifier could be created that successfully determined between these

four movements, it could be applied to allow a user to navigate a 2-D environment. Furthermore,

it much easier to visualize the data in these tests than for the 23-movement tests.

For all tests, the same four subjects were used for training, and five pairs of subjects were used

for testing, including two subsets of the training group (essentially self-validation), an optimization

group, an independent test group, and the control group.

Initially, reduced feature vectors were created using the top ten components as determined by

separation index. Subsequently, the top ten key components were determined, as described in

the previous section, but optimized for their effect on the success rate when using data from the

optimization group.

3.7.1 Key Component Evolution

After determining the key components, a new generation of classifier functions was created which

used the top 10 key components in their reduced feature vectors, rather than the top 10 components

as determined by separation index.

We would expect this process to result in an increased success rate for the optimization group,

and if the key components selected really contained information pertaining to the movement, then
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Figure 3.9: Graphs showing the 10 electrodes and frequencies which have the highest positive
effect on success rate during cross-subject trials for each movement. The colors of the circles
around each electrode indicate frequency, as follows: Red: 5.4 Hz (Theta), Orange: 11 Hz (Alpha),
Yellow: 24 (Beta) Hz, Green: 51 Hz (Gamma).

the independent group should also show an improvement which is greater than that of the control

group.

This process was iterated four times, with each generation using the components that were

determined to have the greatest effect by the previous generation.

It can be seen in Figure 3.12 that the first generation classifier did in fact improve the success

rate of the optimization group by 8.2% (9.3% normalized). However, the initial success rate for

the optimization group was astonishingly low (far below that of random chance), and the first

generation only improved this rate up to that of random chance. Increases were also seen in

the success rates of the independent and control groups, but both remain below random chance.

Repeated iterations did not have any clear effect on the success rates beyond generation 2, and

the independent and control groups had success rates very near that of random chance (25%)

independently of the generation.

We should bear in mind that the method for determining key components involved first deter-

mining the top components based on separation index, and then determining the change in success

rate when new components were added or elements of that list were removed. Therefore, the key

components found were those that best complement the top separation index components. We

discovered that they did not necessarily complement each other, however. In further generations,

this difficulty remained.
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Figure 3.10: Top 10 key component diagrams for each of the six binary classifiers necessary to
create a 4-movement master classifier. The colors of the circles around each electrode indicate
frequency, as follows: Red: 5.4 Hz (Theta), Orange: 11 Hz (Alpha), Yellow: 24 (Beta) Hz, Green:
51 Hz (Gamma).

Figure 3.11: Top 10 key component diagrams for each of the four movements, creating by averaging
the key component results for each of the three binary classifiers that include each movement.
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Figure 3.12: The effect of the classifier generation on success rate. Subjects 14,15,16,17 were used
for training and 18,19 for optimization. The top graph shows master classifier success rate, and the
bottom graph shows the normalized master classifier success rate, where None results are ignored.
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Conclusions

4.1 Key Points

1. A pattern recognition algorithm was successfully developed which can assign a feature vector

to one of any number of states.

23-movement master classifier functions can be evaluated in an average of 4.8 milliseconds

on a single CPU at 2.8 GHz, allowing it to easily be used in real time. 4-movement master

classifiers can be evaluated in as little as 0.07 ms.

Unfortunately, the success rate of the master classifiers for determining the correct move-

ment using EEG experimental data was not significantly higher than for control data. This

indicates that although the classifiers did identify patterns, those patterns were not related

to the movement signal we had hoped to identify, with the exception of Eyes Closed Resting

State. The master classifiers show a high degree of accuracy when detecting which test was

performed, but much lower accuracy at determining the correct movement within each test.

In part this is due to EEG’s low spatial resolution. Since the motor cortex, which controls

conscious movements, is covered by only a couple of electrodes, it is difficult to detect a

difference between very similar movements.

Nevertheless, the algorithm created could be applied to other problems or to cleaner BCI

data such as those obtained from ECoG recordings.

2. A fast Wavelet Transform algorithm was developed which reduces the time taken to perform

by three orders of magnitude, thus overcoming a tremendous computational obstacle. No

comparison has been made with commercial software to determine if this algorithm is an

improvement on existing knowledge.

3. A method was developed for determining the effect of the inclusion of each component of a

feature vector in a reduced feature vector. Furthermore, the knowledge of key components

can be implemented to create improved second generation classifiers. Unfortunately, due to

the ineffectiveness of the master classifiers, it is difficult to determine how important the key

components identified really are.
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4. A graphing module was developed for python which creates scatter plots, line graphs, his-

tograms and box-and-whiskers plots, as well as 3-d graphs. The only prerequisite for the

module is pygame.

5. Using a sample set of binary classifiers, it was determined that a separation index of above 1.4

indicates that the classifier can effectively determine between two states. Below 1.4, there is

no guarantee of the effectiveness of the binary classifier. It would be interesting to determine

if this tendency exists with other types of data as well.

6. The confusion matrix results show a clear example of the importance of the relationship

between training and test data in pattern classification problems. It is possible to obtain very

high success rates if the training and test data are the same. However, this has absolutely

no bearing on the actual effectiveness of the classifier. Self-validation is like asking a mother

if her son is handsome.

4.2 Considerations

The following assumptions and considerations were made during the design of this thesis which

play an important role in the experimental design and implementation:

1. We assume that a “move” signal exists in the cortex, which is constant during the entire

process of arm movement. This is not necessarily the case, however. There could be instead

“start moving” and “stop moving” signals that are sent from the cortex, but the control to

continue moving between those two signals could reside in a lower brain region or in the

spinal column.

2. It is known that each hemisphere of the brain controls the contralateral side of the body. Since

we study only right arm movements, we would expect the activity to be primarily in the left

hemisphere. However, it has been seen that split-brain subjects can in fact move both their

contralateral and their ipsilateral arm with either hemisphere but only their contralateral

hand. It is also known that motor activity is primarily controlled by the motor cortex

(denoted by C in the electrode configuration) and that a reduction in alpha waves is associated

with muscular movement. This indicates that we would expect alpha frequencies in electrode

C3, and possible C4, to be the primary indicators of physical movement. However, one or

two electrodes and a single frequency are not enough to effectively discriminate between 23

possible movements, 10 of which are actually involve physical action. We therefore apply

no bias on what electrodes and frequencies will be taken into account based on previous

knowledge.

3. The determination of a wavelet coefficient requires the evaluation of an integral from negative

infinite to positive infinite time. For practical purposes, this is impossible and the integral

must be evaluated in some finite time period. In this thesis, we chose to integrate in a time

frame between τ − 4s and τ + 4s, where τ and s are the parameters for the wavelet function

(time displacement and scale, respectively). Because the morlet mother wavelet tends to

zero as time tends to plus or minus infinity, over 99.99% of the wave information is contained
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within these bounds. (Note: if the bounds are set to τ ± 3s, 99.73% of the information is

contained, for τ ± 2s, it is roughly 95.45% and for τ ± s, it is around 68.27%). This implies

two inherent difficulties:

1. The beginning and end of any time series to be studied with wavelet transform do not

provide reliable wavelet coefficients, because part of the mother wavelet is “cut off” by the

lack of time series data. How much of the beginning and end depends on the scale. The

delta frequency range varies from 0.2 to 3.5 Hz, which corresponds to scales of .286-5 s.

This means, if we use a τ ± 4s time period, the first and last 20 seconds of data do not

provide accurate information. Considering that our data is only 30 seconds in length, this

means that none of it is reliable at a scale of 5. For the second lowest frequency range,

theta, the maximum scale is 0.25 s, meaning that only the first and last second of the data

set provide inaccurate information.

2. The primary application of this research is for the brainwaves detected to be able to control

something, be it a prosthetic arm or a computer. This means that the time between the

moment a command is sent and the moment the response is made is crucial. After a

signal is sent, it must be read by the EEG, then wavelet transforms must be performed, a

feature vector created, and a classifier evaluated to determine what command was given.

Then that command must be carried out by the arm or computer. Even if the hardware

and algorithms were perfect, carrying these operations out in almost no time, it would

still be necessary to wait until 4 times the scale seconds have passed before the wavelet

analysis can even be performed. Again, for low frequency beta waves, this amounts to 20

seconds. If a friend 20 meters away threw a Frisbee to you at 14 m/s, without going into

the dynamics of Frisbee flight, you would have to respond about 18 seconds before your

friend even began to throw. With practice, you may be able to catch a Frisbee, throw it

and catch it again in 20 seconds, allowing you to always be responding to the previous

throw, but it would be difficult to set up your entire life in 20 second cycles. Anyone who

has played online computer games can tell you that a time lag of over 100 ms between

command time and response time is noticeable, above 250 ms is annoying and with a lag

over 1 s, it is practically impossible to do anything.

Due to this inconvenience of real-time wavelet transform evaluation, we decided against

including beta wave oscillations.

4.3 Author’s Note

From the beginning, I wanted to have a complete knowledge and control of all the mathematics

and programming involved in my thesis. Many libraries already exist which allow a programmer to

use the math without really having any idea of what it means, but my idea was that if I understood

all the math well enough to program it myself, then I would be able to improve it. So, I went

ahead and wrote every single part of the code on my own in python 2.7, from the program that

gives instructions during the experiment and the graphing library to the mathematical methods

and complex analysis processes. For the sake of fair attribution, I want to clarify that my graphing

library does use pygame for opening windows and manipulating pixel colors, and I eventually
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included numpy for its speedy vector and matrix operations, as well as for loading large amounts

of data. Openpyxl is the final third-party module I used, which optionally allows data to be saved

in excel format rather than text.

Initially, analysis time was a serious obstacle. Each wavelet scalogram took hours to complete.

The first method of data analysis attempted was wavelet coherence, which was abandoned because

each graph would have taken months to generate. In order to overcome this obstacle, a number of

months was dedicated to developing software that would analyze data in parallel and periodically

save progress so that in the event of an error, the entire analysis would not be lost. A scheduler

program was also developed so that computers could be left running for weeks, performing one

analysis after another without human involvement. The parallelization phase ended when new

algorithms were developed (described in section 4.1) which reduced processing time by almost

three orders of magnitude.

The next method attempted was to perform a continuous wavelet transform to create a scalo-

gram with different scales on the vertical axis and time displacements on the horizontal axis, then

average all the column vectors corresponding to different time displacements to obtain a single

spectrum for each movement. These spectra were then used as templates to compare against the

individual column vectors at any given time and determine which template spectrum was most

similar using convolutions.

Figure 4.1: Example spectra of all 23 movements for electrode C3 of a single subject.

I tried to improve on this method by adjusting my definition of convolution between spectra.

Rather than being a simple dot-product between two vectors iAiBi , where A is the spectra at

time t and B is one of the comparison template spectra, I made it a weighted dot-product iAiBiCi

where C was a vector of the importance of each frequency. The C vector should have peaks at the

frequencies that provide the most information about the movement being performed and drop to

zero at frequencies that are entirely random or have no effect at all. Since I didn’t know what the
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key frequencies were, I created a number of different genetic algorithms to generate C iteratively

over a number of generations. Initially this provided promising results, but they turned out to be

anomalous.

Afterwards, Primary Component Analysis and Neural Networks were both attempted but gave

unsatisfactory results. The next method attempted was an iterative method for creating classifier

functions to distinguish between two sets of data. This method also gave very promising initial

results but had the tendency to overfit to the training data, making it ineffective when analyzing

new data.

In total, over 1 MB of python code was written, corresponding to around 22,000 lines, in

addition to the 29 MB of auto-generated code (around 632,000 lines) written by my code. I made

at least 2500 graphs, analyzed the order of 108 data points and also evaluated around 108 wavelet

transforms.

The moral of the story is that it’s easy to come up with promising results, but there is no

guarantee that the interpretation given to the results corresponds to reality.
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Appendix 1

Code Snippets

The following code snippets, written in python 2.7, show explicitly how the wavelet analysis pro-

cessing time can be decreased by multiple orders of magnitude. The CWT() function is a basic

wavelet transform for a given time series, scale, time displacement and mother wavelet, referred

to as Version 2 elsewhere in this thesis. fWT is the improved “Fast Wavelet Transform” which

returns all the wavelet coefficients at different times with the same scale, and is referred to as

Version 4. The complete fWT() function returns the wavelet coefficients for all time displacements

and scales required to create a complete scalogram. The dimensions of the scalogram are given by

a Canvas instance. The Canvas class is not included in this appendix because it is too large, but

a surrogate Canvas class is provided at the end, which contains only the necessary properties for

complete fWT() to work.

from math import pi, e

def morlet (t):

'''

Morlet mother wavelet'''

return pi∗∗-.25∗e∗∗(2∗pi∗complex(0,1)∗t-t∗∗2/2.)

def integrate (X,dt=1,initial=0):

'''

Optimized Trapezoidal Integration with constant dt

X = time series

dt = sampling time

initial = value of integral at beginning of time series'''

return dt∗((X[0]+X[len(X)-1])∗.5+sum(X[1:len(X)-2]))+initial

def CWT(X,s,tau,psi,dt=1):

'''

Returns the Continuous Wavelet Transform of the time series X at time tau and

scale s
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X = time series

s = scale = 1/omega = 1/(2∗pi∗f)

tau = time offset

psi = mother wavelet function

dt = sampling time'''

return s∗∗-.5∗integrate([psi((n∗dt-tau)/s).conjugate()∗X[n] for n in

range(len(X))],dt)

def fWT(X,psi,s,dt,mrange=None,handle complex=''abs''):

'''fast Wavelet Transform: returns the wavelet coefficients for all the time

displacements at a specific scale

X = time series data to be analyzed. Should be a numpy array

psi = mother wavelet function

s = scale

dt = sampling time of time series

mrange = a list of data indices to be used. The time displacements are [m∗dt

for m in mrange]. The data returned is as long as mrange.

handle complex = what sort of data to return

handle complex=''abs''returns the norm of the wavelet coefficient,

handle complex=''real''returns the real part of the wavelet coefficient

any other value will return the complex value of the wavelet coefficient'''

N=len(X)

if not mrange:

mrange=range(N)

A=float(dt)/s

B=float(dt)∗s∗∗-.5

p=min(N,int(4∗s/dt)+1)

phi=[psi(A∗k) for k in range(-p,p)]

WX=[]

for m in mrange:

if m-p>=0:

x low=m-p

phi low=0

else:

x low=0

phi low=p-m

if m+p<=N:

x high=m+p

phi high=2∗p

else:

x high=N

phi high=p-m+N

try:
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## This conditional allows the norm, real part or complex value to be

returned, but it will slow down the algorithm a little.

## For actual use, two options should just be commented out, with no

"handle complex" variable in the function declaration.

if handle complex==''abs'':

WX.append((m∗dt,s,abs(B∗X[x low:x high].dot(phi[phi low:phi high]))))

## norm of wavelet coefficient

elif handle complex==''real'':

WX.append((m∗dt,s,B∗X[x low:x high].dot(phi[phi low:phi high]).real))

## real part of wavelet coefficient

else:

WX.append((m∗dt,s,B∗X[x low:x high].dot(phi[phi low:phi high])))

## complex value of wavelet coefficient

except ValueError, e:

print ''X.shape:'',X.shape

print ''len(phi):'',len(phi)

print ''x low,x high:'',x low,x high

print ''phi low,phi high:'',phi low,phi high

print e

raise Exception

return WX

def complete fWT(X,canv,mother,dt,handle complex=''abs''):

'''returns the wavelet coefficients for every pixel on the canvas canv

X = time series data to be analyzed

canv = Canvas object

mother = mother wavelet function

dt = sampling rate of time series

handle complex = what sort of data to return

handle complex=''abs''returns the norm of the wavelet coefficient,

handle complex=''real''returns the real part of the wavelet coefficient

any other value will return the complex value of the wavelet

coefficient'''

mrange=[int(.5+t/dt) for t in canv.x values()]

return sum([fWT(X,mother,s,dt,mrange,handle complex) for s in

canv.y values()],[])

class Canvas:

def init (self, xdomain=(0,1), ydomain=(0,1), width=100, height=100,

xlog=False, ylog=False):

self.xdomain=xdomain

self.ydomain=ydomain

self.width=width

55



APPENDIX 1. CODE SNIPPETS

self.height=height

self.xlog=xlog

self.ylog=ylog

def get x(self,pixel): ## returns the x value of the X pixel

if self.xlog:

return self.xdomain[0]∗(float(self.xdomain[1])/self.xdomain[0])∗∗

(float(pixel)/(self.width-1))

else:

return self.xdomain[0]+float(pixel)∗(self.xdomain[1]-self.xdomain[0])

/(self.width-1)

def get y(self,pixel): ## returns the y value of the Y pixel

if self.ylog:

return self.ydomain[1]∗(float(self.ydomain[0])/self.ydomain[1])∗∗

(float(pixel)/(self.height-1))

else:

return self.ydomain[1]+float(pixel)∗(self.ydomain[0]-self.ydomain[1])

/(self.height-1)

def y values(self):

for Y in range(self.height):

yield self.get y(Y)

def x values(self):

for X in range(self.width):

yield self.get x(X)
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Movement Names

In the code written for data analysis, abbreviations are used to refer to each of the 23 movements.

These abbreviations also appear in some graphs and charts.

Test Test Name Movement 1 Movement 2

1 Eyes Closed Resting State RestClosed RestClosed
2 Eyes Open Observation WatchRight WatchLeft
3 Horizontal Movement Right left
4 Horizontal Imagination RightIm LeftIm
5 Vertical Movement Down Up
6 Vertical Imagination DownIm UpIm
7 Rotation RotCW RotCCW
8 Rotation Imagination RotCWIm RotCCWIm
9 Finger Movement CloseFing OpenFing
10 Finger Imagination CloseFingIm OpenFingIm
11 Elbow Movement OpenElb CloseElb
12 Elbow Imagination OpenElbIm CloseElbIm

RotCW means rotate clockwise this is also known as supination. RotCCW is rotate counter-

clockwise and is also known as pronation.
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Appendix 3

Feature Vector Components

The 120 component feature vectors contain wavelet transforms for different frequencies using the

information from different electrodes. The following table shows which electrode and frequency is

associated with each index of the feature vector.
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Appendix 4

Presentations

Three posters and one presentation derived from this thesis have been presented in the following

four scientific conventions:

VI Congreso Nacional de Tecnoloǵıa Aplicada a Ciencias de la Salud

Puebla, Pue, Mexico: June 4-6, 2015

Poster: “Diseño de Software para Análisis de Señales Neuronales”

Society for Neuroscience Annual Meeting 2015

Chicago, IL, USA: October 17-21, 2015

Poster: “Wavelet Analysis on Electroencephalographic Time Series to Identify Key Patterns Cor-

responding to Arm Movements”

LVIII Congreso Nacional de F́ısica

Merida, Yucatan, Mexico: October 5-9, 2015

Poster: “Identificación de Patrones Caracteŕısticos en Señales Electroencefalográficas para Interfaz

Cerebro-Computadora”

XIV Mexican Symposium on Medical Physics

Mexico City, Mexico: March 16-17, 2016

Presentation: “Wavelet Analysis on Electroencephalographic Time Series to Identify Key Patterns

Corresponding to Arm Movements for Brain-Computer Interface”
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[7] Buzsáki György. “Rhythms of the Brain”. Oxford University Press. 2006.

[8] Bolner Federico, Rohu Victor. “Decoding Movement Direction for Brain-Computer Interfaces

using Depth and Surface EEG Recordings”. Aalborg University, Aalborg. 2012.

[9] Duda Richard, Hart Peter, Stork David. “Pattern Classification”. John Wiley & Sons. 2nd

Edition. 2001.

[10] Gazzaniga Michael. “Tales from Both Sides of the Brain: A Life in Neuroscience”. Ecco. 1st

Edition. 2015.

[11] Lopes da Silva Fernando. “EEG and MEG: Relevance to Neuroscience”. Neuron. Vol 80 Issue

5, pp 1112-1128. 2013. http://dx.doi.org/10.1016/j.neuron.2013.10.017

[12] Chambers J.A., Sanei Saeid. “EEG Signal Processing”. John Wiley & Sons. 2007.

[13] Compo Gilbert, Torrence Christopher. “A Practical Guide to Wavelet Analysis”. Bulletin of

the American Meteorological Society. Vol 79. pp 61-78. 1998.

63

http://dx.doi.org/10.1016/j.robot.2015.01.007
http://dx.doi.org/10.1016/j.robot.2015.01.007
http://dx.doi.org/10.1016/j.neuron.2013.10.017


[14] Torrence Christopher, Webster Peter. “Interdecadal Changes in the ENSO-Monsoon System”.

Journal of Climate. Vol 12. pp 2679-2690. 1999.


	Acknowledgements
	Introduction
	1 Summary
	2 Motivation
	3 Hypothesis
	4 Aims

	General Index
	Introduction to Concepts
	Principles of Electroencephalography
	Wavelet Transform
	BCI
	Alternatives to EEG

	Methods
	Equipment
	Experimental Procedure
	Preparation
	Experimental Protocol
	Description of Tests

	Control Group
	Data Analysis
	Problem Statement
	Feature Vector Creation
	Vector Concatenation
	Feature Vector Reduction
	Binary Classifier Creation
	Master Classifier Creation

	Evaluation
	Self-validation and Cross-validation
	Key Components
	Key Component Evaluation


	Results and Discussion
	Parallelization and Algorithm Benchmarking
	Effects of Algorithm Parameters on Success Rate
	Number of Components vs Success Rate
	Test Section vs Success Rate

	Binary Classifier Evaluation Histograms
	Separation Index vs Success Rate
	Confusion Matrices
	Single Subject â•ﬁ self-validated
	Single Subject â•ﬁ cross-validated
	Cross-subject
	Cross-subject training group size

	Key Components and Key Component Classifiers
	4-movement Key Components
	Key Component Evolution


	Conclusions
	Key Points
	Considerations
	Author's Note

	Code Snippets
	Appendix 1. Code Snippets
	Movement Names
	Appendix 2. Movement Names
	Feature Vector Components
	Appendix 3. Feature Vector Components
	Presentations
	Appendix 4. Presentations
	Bibliography

