BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA
 FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

Prof. Carlos Alberto López Andrade

Materia: Teoría de Grupos

Tarea \# 9

I) List all the conjugate classes in S_{3}, find the $C(a)$'s, and verify the class equation.
II) List all the conjugate classes in S_{4}, find the $C(a)$'s, and verify the class equation.
III) Prove that

$$
(1,2, \ldots, r-1, r)=(2,3, \ldots, r, 1)=(3,4, \ldots, 1,2)=\cdots=(r, 1, \ldots, r-2, r-1) .
$$

Conclude that there are exactly r such notations for this r-cycle.
Iv) In S_{n}, prove that if $1 \leq r \leq n$, then there are $\frac{1}{r} \frac{n!}{(n-r)!}$ distinct r-cycles.
v) If in a finite group G an element a has exactly two conjugates, prove that G has a normal subgroup $N \neq(e), G$.
Using Theorem 2.11.2 (If $o(G)=p^{n}$ where p is a prime number, then $Z(G) \neq(e)$) as a tool, prove that:
vi) If $o(G)=p^{n}, p$ a prime number and $G \neq(e)$, then G has a normal subgroup H of order p which is a subgroup of the center of G.
VII) If $o(G)=p^{n}, p$ a prime number, then G has a subgroup of order p^{α} for all $0 \leq \alpha \leq n$.

Puebla, Pue., a 9 de mayo de 2019

