80

let W be the group of real numbers 1 and -1 under multiplication. Define $\psi:S_{\bullet} \to W$ by $\psi(s) = 1$ if s is an even permutation, $\psi(s) = -1$ if s is an odd permutation. By the rules 1, 2, 3 above ψ is a homomorphism onto W. The kernel of ψ is precisely A_{α} ; being the kernel of a homomorphism A_{α} is a normal subgroup of S_{\bullet} . By Theorem 2.7.1 $S_{\bullet}/A_{\bullet} \approx W$, so, since

$$2 = o(W) = o\left(\frac{S_n}{A_n}\right) = \frac{o(S_n)}{o(A_n)},$$

we see that $o(A_n) = \frac{1}{2}n!$. A_n is called the alternating group of degree n. We summarize our remarks in

LEMMA 2.10.3 S. has as a normal subgroup of index 2 the alternating group, A, consisting of all even permutations.

At the end of the next section we shall return to S_* again.

Problems

- 1. Find the orbits and cycles of the following permutations:
 - (a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix}$. (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$.
- 2. Write the permutations in Problem 1 as the product of disjoint cycles.
- 3. Express as the product of disjoint cycles:
 - (a) (1, 2, 3)(4, 5)(1, 6, 7, 8, 9)(1, 5).
 - (b) (1, 2)(1, 2, 3)(1, 2).
- 4. Prove that $(1, 2, ..., n)^{-1} = (n, n 1, n 2, ..., 2, 1)$.
- 5. Find the cycle structure of all the powers of (1, 2, ..., 8).
 - 6. (a) What is the order of an n-cycle?
 - (b) What is the order of the product of the disjoint cycles of lengths m_1, m_2, \ldots, m_k ?
 - (c) How do you find the order of a given permutation?
- 7. Compute a⁻¹ba, where
 - (1) a = (1, 3, 5)(1, 2), b = (1, 5, 7, 9).
 - (2) a = (5, 7, 9), b = (1, 2, 3).
- **8**. (a) Given the permutation x = (1, 2)(3, 4), y = (5, 6)(1, 3), find a permutation a such that $a^{-1}xa = y$.
 - (b) Prove that there is no a such that $a^{-1}(1, 2, 3)a = (1, 3)(5, 7, 8)$.
 - (c) Prove that there is no permutation a such that $a^{-1}(1,2)a =$ (3, 4)(1, 5).
- 9. Determine for what m an m-cycle is an even permutation.

- 10. Determine which of the following are even permutations:
 - (a) (1, 2, 3)(1, 2).
 - (b) (1, 2, 3, 4, 5)(1, 2, 3)(4, 5).
 - (c) (1, 2)(1, 3)(1, 4)(2, 5).
 - 11. Prove that the smallest subgroup of S_n containing (1, 2) and (1, 2, ..., n) is S_n . (In other words, these generate S_n .)
 - *12. Prove that for $n \geq 3$ the subgroup generated by the 3-cycles is A_n .
 - *13. Prove that if a normal subgroup of A_n contains even a single 3-cycle it must be all of A_n.
 - *14. Prove that A₅ has no normal subgroups N ≠ (e), A₅.
 - Assuming the result of Problem 14, prove that any subgroup of A₅
 has order at most 12.
 - Find all the normal subgroups in S₄.
 - *17. If $n \geq 5$ prove that A_n is the only nontrivial normal subgroup in S_n .

Cayley's theorem (Theorem 2.9.1) asserts that every group is isomorphic to a subgroup of A(S) for some S. In particular, it says that every finite group can be realized as a group of permutations. Let us call the realization of the group as a group of permutations as given in the proof of Theorem 2.9.1 the permutation representation of G.

- 18. Find the permutation representation of a cyclic group of order n.
- 19. Let G be the group $\{e, a, b, ab\}$ of order 4, where $a^2 = b^2 = e$, ab = ba. Find the permutation representation of G.
 - 20. Let G be the group S_3 . Find the permutation representation of S_3 . (Note: This gives an isomorphism of S_3 into S_6 .)
 - 21. Let G be the group $\{e, \theta, a, b, c, \theta a, \theta b, \theta c\}$, where $a^2 = b^2 = c^2 = \theta$, $\theta^2 = e$, $ab = \theta ba = c$, $bc = \theta cb = a$, $ca = \theta ac = b$.
 - (a) Show that θ is in the center Z of G, and that $Z = \{e, \theta\}$.
 - (b) Find the commutator subgroup of G.
 - (c) Show that every subgroup of G is normal.
 - (d) Find the permutation representation of G.

(Note: G is often called the group of quaternion units; it, and algebraic systems constructed from it, will reappear in the book.)

Let G be the dihedral group of order 2π (see Problem 17, Section 2.6).
 Find the permutation representation of G.

Let us call the realization of a group G as a set of permutations given in Problem 1, Section 2.9 the second permutation representation of G.

23. Show that if G is an abelian group, then the permutation representation of G coincides with the second permutation representation of G (i.e., in the notation of the previous section, $\lambda_{\sigma} = \tau_{\sigma}$ for all $g \in G$.)