COROLLARY 1 If R is a unique factorization domain then so is $R[x_1, \ldots, x_n]$.

A special case of Corollary 1 but of independent interest and importance is

COROLLARY 2 If F is a field then $F[x_1, ..., x_n]$ is a unique factorization domain.

Problems

- I. Prove that R[x] is a commutative ring with unit element whenever R is.
 - 2. Prove that $R[x_1, \ldots, x_n] = R[x_{i_1}, \ldots, x_{i_n}]$, where (i_1, \ldots, i_n) is a permutation of $(1, 2, \ldots, n)$.
- 3. If R is an integral domain, prove that for f(x), g(x) in R[x], deg(f(x)g(x)) = deg(f(x)) + deg(g(x)).
- 4. If R is an integral domain with unit element, prove that any unit in R[x] must already be a unit in R.
- 5. Let R be a commutative ring with no nonzero nilpotent elements (that is, $a^n = 0$ implies a = 0). If $f(x) = a_0 + a_1x + \cdots + a_mx^m$ in R[x] is a zero-divisor, prove that there is an element $b \neq 0$ in R such that $ba_0 = ba_1 = \cdots = ba_m = 0$.
 - *6. Do Problem 5 dropping the assumption that R has no nonzero nilpotent elements.
 - *7. If R is a commutative ring with unit element, prove that $a_0 + a_1x + \cdots + a_nx^n$ in R[x] has an inverse in R[x] (i.e., is a unit in R[x]) if and only if a_0 is a unit in R and a_1, \ldots, a_n are nilpotent elements in R.
 - 8. Prove that when F is a field, $F[x_1, x_2]$ is not a principal ideal ring.
 - 9. Prove, completely, Lemma 3.11.2 and its corollary.
- 10. (a) If R is a unique factorization domain, prove that every $f(x) \in R[x]$ can be written as $f(x) = af_1(x)$, where $a \in R$ and where $f_1(x)$ is primitive.
 - (b) Prove that the decomposition in part (a) is unique (up to associates).
- 11. If R is an integral domain, and if F is its field of quotients, prove that any element f(x) in F[x] can be written as $f(x) = (f_0(x)/a)$, where $f_0(x) \in R[x]$ and where $a \in R$.
 - 12. Prove the converse part of Lemma 3.11.4.
 - 13. Prove Corollary 2 to Theorem 3.11.1.
 - 14. Prove that a principal ideal ring is a unique factorization domain.
 - 15. If f is the ring of integers, prove that $f[x_1, \ldots, x_n]$ is a unique factorization domain.