By conditions (4) and (4'), we have $\mu_j \pi_i = \pi_i \mu_j$ for all $1 \le i \le k$ and all $1 \le j \le t$. Therefore $\theta_{ij} = \pi_i \mu_j$ is an idempotent endomorphism of V for all such i and j. Moreover, $\theta_{ij}\theta_{st} = \sigma_0$ if $(i,j) \ne (s,t)$ and

$$\sigma_1 = \left(\sum_{i=1}^k \pi_i\right) \left(\sum_{j=1}^t \mu_j\right) = \sum_{i=1}^k \sum_{j=1}^t \theta_{ij}.$$

This suffices to show that α and β can be simultaneously represented by diagonal matrices with respect to some basis of V over F. \square

Problems

1. Let α be the endomorphism of \mathbb{R}^3 defined by

$$\alpha: [a, b, c] \mapsto [a - b, a + 2b + c, -2a + b - c].$$

Find the eigenvalues of α and the eigenspaces associated with them.

- 2. Let $F = \mathbb{Z}/(2)$ and let A be a nonempty set having a given subset B. Let α be the endomorphism of the vector space F^A over F given by $\alpha: f \mapsto \chi_B f$, where χ_B is the characteristic function on B. Find the eigenvectors of α .
- 3. Let α be an endomorphism of a a vector space V finitely generated over a field F.
 - (i) Show that every eigenvector of α is also an eigenvector of $p(\alpha)$ for any $p(X) \in F[X]$;
 - (ii) Show that the converse of (i) is false.
- 4. Find the eigenvalues of the following matrices and the eigenspaces associated with them.

$$\begin{aligned} & \text{(i)} \quad \begin{bmatrix} 5 & 6 & -3 \\ -1 & 0 & 1 \\ 2 & 2 & -1 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}); \\ & \text{(ii)} \quad \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & 3 \\ -1 & -3 & 0 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{C}); \\ & \text{(iii)} \quad \begin{bmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{C}). \end{aligned}$$

- 5. Let n be a positive integer, let F be a field and let $A \in \mathcal{M}_{n \times n}(F)$ be nonsingular. Given the eigenvalues of A, find the eigenvalues of A^{-1} .
- <u>6.</u> Let n be a positive integer, let F be a field and let $A = [a_{ij}] \in \mathcal{M}_{n \times n}(F)$ be a matrix having eigenvalue c. If $b, d \in F$, show that bc + d is an eigenvalue of the matrix bA + dI.

140 CHAPTER X

7. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R})$ If $t \in \mathbb{R}$ is a zero of the polynomial $bX^2 + (a-d)X - c \in \mathbb{R}[X]$, show that [1,t] is an eigenvector of A associated with the eigenvalue a + bt.

- 8. Let $A \in \mathcal{M}_{2\times 2}(\mathbb{C})$ have two distinct nonzero eigenvalues. Show that there are precisely four matrices $B \in \mathcal{M}_{2\times 2}(\mathbb{C})$ satisfying $B^2 = A$.
- 9. Find a matrix $A = \begin{bmatrix} 1 & a_{12} & a_{13} \\ 1 & a_{22} & a_{23} \\ 1 & a_{32} & a_{33} \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$ having eigenvectors [1, 1, 1], [1, 0, -1], and [1, -1, 0].
- 10. Find the eigenvalues of the matrix $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{C})$ and for each eigenvalue find the associated eigenspace.
- 11. Let c be a nonzero complex number and let m and n be positive integers. Let $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{C})$ and let $B = [b_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{C})$ be the matrix defined by $b_{ij} = c^{m+i-j}a_{ij}$ for all $1 \leq i, j \leq n$. Show that if $d \in \mathbb{C}$ is an eigenvalue of A then $r^m d$ is an eigenvalue of B.
 - 12. Show that every matrix in $S_{2\times 2}(\mathbb{R})$ has a real eigenvalue.
 - 13. Characterize magic matrices in terms of their eigenvalues.
 - 14. Let $A \in \mathcal{M}_{2\times 2}(\mathbb{C})$ have distinct eigenvalues a and b. Show that

$$A^{n} = \frac{a^{n}}{a-b}(A-bI) + \frac{b^{n}}{b-a}(A-aI)$$

for all integers n > 1.

- 15. Let $A \in \mathcal{M}_{2\times 2}(\mathbb{C})$ have a unique eigenvalue c. Show that $A^n = c^{n-1}(cA (n-1)cI)$ for all integers n > 1.
- 16. Let n be a positive integer. Show that every eigenvector of a matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is also an eigenvector of adj(A).
- 17. Let n be a positive integer and let \mathcal{A} be the set of all matrices in $\mathcal{M}_{n\times n}(\mathbb{C})$ be the set of all matrices having the property that their eigenvectors generate all of \mathbb{C}^n . Is \mathcal{A} closed under addition? Is it closed under multiplication?
- 18. Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. If $p(X) \in \mathbb{C}[X]$, calculate |p(A)| using the eigenvalues of A.
- 19. Let n be a positive integer and let c be a nonzero real number. Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be the matrix every entry of which equals c. Find the eigenvalues of A and, for each eigenvalue, find the associated eigenspace.
- 20. Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{Q})$. Find infinitely-many different matrices in $\mathcal{M}_{n \times n}(\mathbb{Q})$ having the same eigenvectors as A.

21. Find the spectra of the following matrices.

(i)
$$\begin{bmatrix} a & b & c \\ a-d & b+d & c \\ a-e & b & c+e \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R});$$
(ii)
$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{Z}/(2)).$$

22. Find the characteristic polynomials of the following matrices.

(i)
$$\begin{bmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ 2 & -4 & -1 \end{bmatrix} \in \mathcal{M}_{3\times3}(\mathbb{R});$$
(ii)
$$\begin{bmatrix} 7 & 4 & -4 \\ 4 & -8 & -1 \\ -4 & -1 & -8 \end{bmatrix} \in \mathcal{M}_{3\times3}(\mathbb{R});$$
(iii)
$$\begin{bmatrix} 1 & 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \in \mathcal{M}_{5\times5}(\mathbb{R});$$
(iv)
$$\begin{bmatrix} 0 & 0 & 0 & a \\ 1 & 0 & 0 & b \\ 0 & 1 & 0 & c \\ 0 & 0 & 1 & d \end{bmatrix} \in \mathcal{M}_{4\times4}(\mathbb{R}).$$

- <u>23.</u> Let n be a positive integer and let $\alpha: \mathcal{M}_{n \times n}(\mathbb{C}) \to \mathbb{C}^n$ be the function defined by $\alpha: A \mapsto [b_0, \ldots, b_{n-1}]$, where $X^n + b_{n-1}X^{n-1} + \cdots + b_1X + b_0$ is the characteristic polynomial of A. Is α a linear transformation?
- <u>24.</u> Let n be a positive integer, let F be a field, and let $A, B \in \mathcal{M}_{n \times n}(F)$. Show that AB and BA have the same characteristic polynomial.
- 25. Find six different matrices in $\mathcal{M}_{2\times 2}(\mathbb{R})$ which annihilate the polynomial X^2-1 .

26. Are the matrices
$$\begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ in $\mathcal{M}_{2\times 2}(\mathbb{R})$ similar?

27. Find diagonal matrices in $\mathcal{M}_{3\times3}(\mathbb{R})$ which are similar to each of the following matrices:

(i)
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix};$$
(ii)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix};$$
(iii)
$$\begin{bmatrix} 8 & 3 & -3 \\ -6 & -1 & 3 \\ 12 & 6 & -4 \end{bmatrix};$$

142 CHAPTER X

(iv)
$$\begin{bmatrix} 1 & -1 & 1 \\ -2 & 1 & 2 \\ -2 & -1 & 4 \end{bmatrix};$$
(v)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

28. Show that

$$\begin{bmatrix} 0 & 1 & a \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & b \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

for all $a, b \in \mathbb{R}$.

29. Let $F = \mathbb{Z}/(5)$. Show that the matrices $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ in $\mathcal{M}_{3\times 3}(F)$ are similar.

30. Show that the matrix $A = \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{C})$ is not similar to a diagonal matrix.

31. Let a be an element of a field F and let $A = \begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix} \in \mathcal{M}_{3\times 3}(F)$. For any polynomial $p(X) \in F[X]$, show that

$$p(A) = \begin{bmatrix} p(a) & p'(a) & \frac{1}{2}p''(a) \\ 0 & p(a) & p'(a) \\ 0 & 0 & p(a) \end{bmatrix},$$

where f'(X) denotes the formal derivative of a polynomial $f(X) \in F[X]$.

- 32. Let n be a positive integer and let V be the vector space over \mathbb{R} consisting of all polynomial functions from \mathbb{R} to itself having degree no more than n. Find the minimal polynomial of the differentiation endomorphism $\delta: f \mapsto f'$ of V.
- 33. Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be a matrix of rank h. Show that the degree of the minimal polynomial of A is at most h + 1.
- 34. Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that there exist nonsingular matrices B and C in $\mathcal{M}_{n\times n}(\mathbb{R})$ satisfying A=B+C.
 - 35. Let α and β be the endomorphisms of \mathbb{Q}^4 represented respectively by the

36. Let $a \neq -1$ be a real number and let $A = \begin{bmatrix} 1 - a + a^2 & 1 - a \\ a - a^2 & a \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Calculate A^n for each n > 1.