72 CHAPTER VI

n=4. We can think of A and B as made up of blocks of size 2×2 : $A=\begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix}$

and $B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$. We now calculate matrices $P_1, \ldots, P_6 \in \mathcal{M}_{2\times 2}(F)$ as above and use them to compute $C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = AB$. To do this we need a

total of 49 multiplications and $198 = 7 \cdot 18 + 4 \cdot 18$ additions, as opposed to 64 multiplications and 46 additions using the ordinary method. In general, if n = 2^h then the number of multiplications needed to compute AB by the Strassen-Winograd method is $M(h) = 7^h$ and the number of additions is $A(h) = 6(7^h - 4^h)$. Thus $M(h) + A(h) < 7^{h+1}$ and we see that the number of arithmetic operations in F needed is on the order of n^c , where $c < log_2 7 = 2.807...$, as opposed to an order of n^3 by the ordinary method. If n is large, this can lead to a considerable savings in computational power. More sophisticated algorithms of this sort can reduce the number of arithmetic operations needed to an order of n^c , where c < 2.4.

Problems

1. Find the linear transformations from \mathbb{Q}^4 to \mathbb{Q}^3 represented by the matrix

$$\begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3 \\
2 & 3 & 1 & 4
\end{bmatrix}$$

with respect to each of the following pairs of bases:

- (i) $\{[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]\}$ and $\{[1,0,0],[0,1,0],[0,0,1]\}$;
- (ii) $\{[1,1,1,1],[0,1,1,1],[0,0,1,1],[0,0,0,1]\}$ and $\{[1,1,1],[0,1,1],[0,0,1]\}$;
- (iii) $\{[1,0,0,1],[0,1,0,1],[0,0,1,1],[0,0,0,1]\}$ and $\{[2,0,0],[0,3,1],[0,0,1]\}$;
- (iv) $\{[1,2,0,0],[0,1,2,0],[0,0,1,2],[0,0,0,1]\}$ and $\{[1,2,3],[2,1,2],[2,2,2]\}$.
- 2. Let V be the subspace of $\mathbb{R}[X]$ consisting of all those polynomials having degree at most 2 and let W be the subspace of $\mathbb{R}[X]$ consisting of all those polynomials having degree at most 3. Let $\alpha: V \to W$ be the linear transformation defined by α : $a+bX+cX^2 \mapsto (a+b)+(b+c)X+(a+c)X^2+(a+b+c)X^3$. Find $\Phi_{BD}(\alpha)$ when
 - (i) B and D are the canonical bases;
 - (ii) $B = \{1, X+1, X^2+X+1\}$ and $D = \{X^3-X^2, X^2-X, X-1, 1\};$ (iii) $B = \{X^2, X, 1\}$ and $D = \{X^3-3, X^2-3, X-1, -1\}.$

 - 3. Let $\alpha: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation defined by

$$\alpha{:}\left[a,b,c\right] \mapsto \left[a+b+c,b+c\right]\!.$$

Find the matrices which represent α with respect to the following bases:

- (i) The canonical bases;
- (ii) $\{[-1,0,2],[0,1,1],[3,-1,0]\}$ and $\{[-1,1],[1,0]\}$;
- (iii) $\{[3,-1,0],[0,1,1],[-1,0,2]\}$ and $\{[1,0],[-1,1]\}$;
- (iv) $\{[0,1,1],[3,-1,0],[-1,0,2]\}$ and $\{[-1,1],[1,0]\}$.

- 4. Let α be the endomorphism of the vector space \mathbb{R}^3 defined by $[a,b,c] \mapsto$ [3a+2b,-a-c,a+3b]. Find $\Phi_{BB}(\alpha)$ for each of the following bases B of \mathbb{R}^3 over
 - (i) $\{[1,-1,0],[1,0,-1],[0,1,0]\};$
 - (ii) $\{[-1, -1, -1], [2, 0, 3], [1, 2, 3]\};$
 - (iii) $\{[1, 1, 2], [1, 0, 0], [0, -5, 0]\}.$
- 5. Let α be the endomorphism of the vector space \mathbb{R}^3 over \mathbb{R} represented with respect to some basis by the matrix $\begin{bmatrix} 0 & 2 & -1 \\ -2 & 5 & -2 \\ -4 & 8 & -3 \end{bmatrix}$. Is α idempotent?
- 6. Let V be the subspace of $\mathbb{R}[X]$ consisting of all polynomials of degree at most 2, and let $B = \{1, X, X^2\}$ and $D = \{1, 1 + X, 3 + 4X + 2X^2\}$ be bases for V. Let

 α be the endomorphism of V satisfying $\Phi_{BB}(\alpha) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$. Find $\Phi_{DD}(\alpha)$.

<u>7.</u> Let V be the subspace of \mathbb{R}^3 with basis $\{[1,1,0],[0,1,1]\}$ and let W be the subspace of \mathbb{R}^5 with basis $\{[1, 1, 1, 0, 0], [0, 0, 1, 1, 0], [0, 0, 0, 1, 1]\}$. Let $\alpha: V \to \mathbb{R}^5$ be the linear transformation defined by

$$\alpha\colon\! [a,b,c]\mapsto [a+b+c,a+b+c,a-b+c,-2b,0].$$

Show that $im(\alpha) \subseteq W$ and find the matrix which represents α with respect to the given bases.

- 8. Let W be the subspace of $\mathbb{R}^{\mathbb{R}}$ generated by the linearly-independent set of vectors $D = \{1, x, e^x, xe^x\}$ and let δ be the endomorphism of W defined by $\delta: f \mapsto f'$. Find the matrix represented δ with respect to D.
- 9. Let $D = \{1+i, 2+i\}$ be a basis for \mathbb{C} as a vector space over \mathbb{R} and let α be the endomorphism of \mathbb{C} given by $\alpha: z \mapsto \bar{z}$. Find the matrix representing α with respect to D.
- 10. Let $F = \mathbb{Z}/(3)$. Let $\alpha: F^3 \to F^2$ be the linear transformation defined by $\alpha: [a,b,c] \mapsto [a-b,2a-c]$ and let $\beta: F^2 \to F^4$ the linear transformation defined by $\beta: [a,b] \mapsto [b,a,2b,2a]$. Find the matrix which represents $\beta\alpha$ with respect to the canonical bases.
 - 11. Calculate $\begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 4 & 3 & 2 \\ 1 & 4 & 2 \end{bmatrix}$ in $\mathcal{M}_{3\times3}(\mathbb{Z}/(5))$.
 - 12. If $A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 3 & 4 & 0 \\ 3 & 2 & 0 & 1 \end{bmatrix} \in \mathcal{M}_{3\times 4}(\mathbb{R})$, find all matrices $B \in \mathcal{M}_{4\times 3}(\mathbb{R})$ satisfy-

 $ing AB = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

74 CHAPTER VI

13. If
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 2 \\ -1 & 3 & 1 \\ 2 & 1 & -1 \end{bmatrix} \in \mathcal{M}_{4\times3}(\mathbb{R})$$
, find all matrices $B \in \mathcal{M}_{3\times4}(\mathbb{R})$ satisfying $BA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

14. Find the set of all matrices $A \in \mathcal{M}_{4\times 3}(\mathbb{R})$ satisfying

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} A = A \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

15. Let n be a positive integer. A matrix $[a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})$ is called a *stochastic matrix* if and only if $a_{ij} \geq 0$ for all $1 \leq i, j \leq n$ and $\sum_{i=1}^{n} a_{ij} = 1$ for all $1 \leq j \leq n$. Show that the set of all stochastic matrices is closed under matrix multiplication.

16. Do the elements
$$A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$ of

 $\mathcal{M}_{4\times 4}(\mathbb{Q})$ satisfy AB = BA?

<u>17.</u> Let F be a field, let n be a positive integer, and let $H \in \mathcal{M}_{n \times n}(F)$ be a given matrix. Let $\alpha: \mathcal{M}_{n \times n}(F) \to \mathcal{M}_{n \times n}(F)$ be the function defined by $\alpha: A \mapsto AH + HA$. Is α an endomorphism of the vector space $\mathcal{M}_{n \times n}(F)$?

18. Let α be the endomorphism of \mathbb{R}^4 represented with respect to the canonical bases by the matrix

$$\begin{bmatrix} 3 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}.$$

If $v \in \mathbb{R}^4$ is a vector satisfying the condition that all components of $\alpha(v)$ are nonnegative. Show that all components of v are nonnegative.

- 19. Let V and W be vector spaces over a field F, which are not necessarily finitely generated over F. Pick bases $\{v_i \mid i \in \Omega\}$ and $\{w_j \mid j \in \Lambda\}$ for V and W respectively. Let $p: \Omega \times \Lambda \to F$ be function satisfying the condition that the set $\{j \in \Lambda \mid p(i,j) \neq 0_F\}$ is finite for all $i \in \Omega$ and let $\alpha_p: V \to W$ be the function defined as follows: if $v = \sum_{i \in \Gamma} a_i v_i$, where Γ is a finite subset of Ω and the a_i are scalars in F, then $\alpha_p(v) = \sum \{a_i p(i,j) w_j \mid i \in \Gamma; j \in \Lambda\}$. Show that α_p is a linear transformation and that all of the linear transformations from V to W are of this form.
- 20. Let k and n be positive integers and let $v \in \mathbb{R}^n$. If $A \in \mathcal{M}_{k \times n}(\mathbb{R})$, show that $Av^T = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ if and only if $A^T A v^T = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$.