Proof. As we already know, there is a homomorphism θ of G onto G/N defined by $\theta(g) = Ng$. We define the mapping $\psi: G \to G/N$ by $\psi(g) = N\phi(g)$ for all $g \in G$. To begin with, ψ is onto, for if $g \in G$, $g = \phi(g)$ for some $g \in G$, since ϕ is onto, so the typical element Ng in G/N can be represented as $N\phi(g) = \psi(g)$. If $a, b \in G$, $\psi(ab) = \mathcal{N}\phi(ab)$ by the definition of the mapping ψ . However, since ϕ is a homomorphism, $\phi(ab) = \phi(a)\phi(b)$. Thus $\psi(ab) = \mathcal{N}\phi(a)\phi(b) = \mathcal{N}\phi(a)\mathcal{N}\phi(b) = \psi(a)\psi(b)$. So far we have shown that ψ is a homomorphism of G onto G/\mathcal{N} . What is the kernel, T, of ψ ? Firstly, if $n \in \mathcal{N}$, $\phi(n) \in \mathcal{N}$, so that $\psi(n) = \mathcal{N}\phi(n) = \mathcal{N}$, the identity element of G/\mathcal{N} , proving that $N \subset T$. On the other hand, if $t \in T$, $\psi(t) = \text{identity element of } G/\mathcal{N} = \mathcal{N}$; but $\psi(t) = \mathcal{N}\phi(t)$. Comparing these two evaluations of $\psi(t)$, we arrive at $\mathcal{N} = \mathcal{N}\phi(t)$, which forces $\phi(t) \in \mathcal{N}$; but this places t in N by definition of N. That is, $T \subset N$. The kernel of ψ has been proved to be equal to N. But then ψ is a homomorphism of G onto G/\mathcal{N} with kernel N. By Theorem 2.7.1 $G/\mathcal{N} \approx G/\mathcal{N}$, which is the first part of the theorem. The last statement in the theorem is immediate from the observation (following as a consequence of Theorem 2.7.1) that $G \approx G/K$, $\mathcal{N} \approx \mathcal{N}/K$, $G/\mathcal{N} \approx (G/K)/(\mathcal{N}/K)$. ## **Problems** - 1. In the following, verify if the mappings defined are homomorphisms, and in those cases in which they are homomorphisms, determine the kernel. - (a) G is the group of nonzero real numbers under multiplication, G = G, $\phi(x) = x^2$ all $x \in G$. - (b) G, \bar{G} as in (a), $\phi(x) = 2^x$. - (c) G is the group of real numbers under addition, G = G, $\phi(x) = x + 1$ all $x \in G$. - (d) G, \overline{G} as in (c), $\phi(x) = 13x$ for $x \in G$. - (e) G is any abelian group, $\bar{G} = G$, $\phi(x) = x^5$ all $x \in G$. - 2. Let G be any group, g a fixed element in G. Define φ:G → G by φ(x) = gxg⁻¹. Prove that φ is an isomorphism of G onto G. - 3. Let G be a finite abelian group of order $\alpha(G)$ and suppose the integer n is relatively prime to $\alpha(G)$. Prove that every $g \in G$ can be written as $g = x^n$ with $x \in G$. (Hint: Consider the mapping $\phi: G \to G$ defined by $\phi(y) = y^n$, and prove this mapping is an isomorphism of G onto G.) - 4. (a) Given any group G and a subset U, let \widehat{U} be the smallest subgroup of G which contains U. Prove there is such a subgroup \widehat{U} in G. (\widehat{U} is called the subgroup generated by U.)