BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

Prof. Carlos Alberto López Andrade

Materia: Introducción a las Estructuras Algebraicas

Tarea # 6 Relaciones de equivalencia

- 1. Determine si la relación dada es una relación de equivalencia en $X=\{1,2,3,4,5\}$. Si la relación es de equivalencia, indique las clases de equivalencia.
 - a) $\mathcal{R} = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,3), (3,1)\}$

b)

$$\mathcal{R} = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,5), (5,1), (3,5), (5,3), (1,3), (3,1)\}$$

- c) $\mathcal{R} = \{(x, y) | 3 \text{ divide a } x + y \}.$
- 2. Enuncie los elementos de la relación de equivalencia en $X = \{1, 2, 3, 4\}$ definida por la partición dada y determine las clases de equivalencia.
 - a) $\mathcal{F} = \{\{1, 2\}, \{3, 4\}\}$
 - b) $\mathcal{F} = \{\{1\}, \{2\}, \{3\}, \{4\}\}$
 - c) $\mathcal{F} = \{\{1, 2, 3, 4\}\}$
 - d) $\mathcal{F} = \{\{1\}, \{2,4\}, \{3\}\}$
- 3. Enuncie los elementos de la relación de equivalencia en $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$ definida por la partición $\mathcal{F} = \{\{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8\}\}$ y determine las clases de equivalencia.
- 4. Sea \mathcal{R} la relación definida en el conjunto de cadenas de ocho bits de manera que $b_1\mathcal{R}b_2$ si y sólo si coinciden los cuatro primeros bits de b_1 y b_2 .
 - a) Demuestre que \mathcal{R} es una relación de equivalencia.
 - b) ¿Cuántas clases de equivalencia hay?
 - c) Escriba un representante de cada clase de equivalencia.
- 5. Proporcione un ejemplo, mediante una lista de pares ordenados, de una relación de equivalencia en $X=\{1,2,3,4,5,6\}$ que tenga exactamente cuatro clases de equivalencia.
- 6. Demostrar que la familia $\mathcal{F} = \{[n, n+1) : n \in \mathbb{Z}\}$ es una partición de \mathbb{R} .

- 7. $\mathcal{R} = \{(m,n) : m,n \in \mathbb{Z}, m \equiv n \pmod{2}\}$ es una relación de equivalencia en \mathbb{Z} y $\mathbb{Z}/2\mathbb{Z} = \{0+2\mathbb{Z}, 1+2\mathbb{Z}\}$. Usar lo anterior para demostrar que para todo $m \in \mathbb{Z}$ se cumple una y sólo una de las siguientes afirmaciones:
 - a) 2|m
 - b) $\exists n \in \mathbb{Z} : m = 2n + 1$
- 8. Supóngase que X es un conjunto no vacío y sea f una función que tiene al conjunto X como su dominio. Sea \mathcal{R} la relación en X dada por:

$$\mathcal{R} = \{(x, y)|f(x) = f(y)\}$$

- a) Mostrar que \mathcal{R} es una relación de equivalencia en X.
- b) ¿Cuáles son las clases de equivalencia de \mathcal{R} ?
- 9. Sea \mathcal{R} la relación en el conjunto de pares ordenados de enteros positivos definida por $(a,b)\mathcal{R}(c,d)$ ssi ad=bc. Mostrar que \mathcal{R} es una relación de equivalencia.
- 10. Mostrar que la relación $\mathcal R$ en el conjunto de todas las funciones diferenciables de $\mathbb R$ a $\mathbb R$ dada por:

$$\mathcal{R} = \{ (f, g) | \forall x \in \mathbb{R}, f'(x) = g'(x) \}$$

es una relación de equivalencia. ¿Qué funciones están en la misma clase de equivalencia que la función $f(x)=x^2$?

Puebla, Pue., a 14 de octubre de 2020