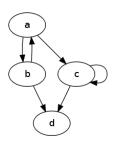
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

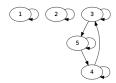
Prof. Carlos Alberto López Andrade

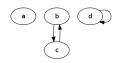
Materia: Introducción a las Estructuras Algebraicas

Tarea # 5 **Relaciones**

- 1. Enumera todos los pares ordenados de la relación \mathcal{R} de $X=\{0,1,2,3,4\}$ a $Y=\{0,1,2,3\}$ definida por:
 - a) $(x,y) \in \mathcal{R} \operatorname{ssi} x > y$.
 - b) $(x, y) \in \mathcal{R}$ ssi x divide a y.
- 2. Enumera todos los pares ordenados de cada relación y construya su digrafo.
 - a) Sea $\mathcal R$ la relación en $X=\{1,2,3,4\}$ definida por $(x,y)\in \mathcal R$ ssi $x^2\geq y$
 - b) Sea $\mathcal R$ la relación en $X=\{1,2,3,4,5,6\}$ definida por $(x,y)\in\mathcal R$ ssi x divide a y
 - c) Sea $\mathcal R$ la relación en $X=\{1,2,3,4,5\}$ definida por $(x,y)\in\mathcal R$ ssi x=y-1
- 3. Enumera todos los pares ordenados de cada una de las relaciones que corresponden a los digrafos:







- 4. ¿Cuál de las relaciones del ejercicio anterior es una relación de equivalencia? ¿Por qué?
- 5. Sea \mathcal{R} la relación en $X = \{1, 2, 3, 4, 5\}$ definida por $x\mathcal{R}y$ ssi $x+y \leq 6$. ¿La relación \mathcal{R} es reflexiva, simétrica, transitiva, antisimétrica, de equivalencia, de orden parcial?
- 6. Determine si cada relación \mathcal{R} definida en el conjunto de los enteros positivos es reflexiva, simétrica, transitiva, antisimétrica, de equivalencia, de orden parcial.
 - a) $(x,y) \in \mathcal{R} \operatorname{ssi} x = y^2$.
 - b) $(x, y) \in \mathcal{R} \operatorname{ssi} x > y$.
 - c) xRy ssi 3 divide a x y.
- 7. Proporcione ejemplos de relaciones en $X = \{1, 2, 3, 4\}$ que posean las propiedades que se especifican:
 - a) Reflexiva, simétrica, no transitiva.
 - b) Reflexiva, no simétrica, no transitiva.
 - c) Reflexiva, antisimétrica, no transitiva.
 - d) No reflexiva, simétrica, no antisimétrica, transitiva.
 - e) No reflexiva, no simétrica, transitiva.
- 8. Sea X un conjunto no vacío. Se define una relación en $\mathcal{P}(X)$, el conjunto potencia de X, como $A\mathcal{R}B$ ssi $A\subseteq B$. Muestre que \mathcal{R} es una relación de orden parcial.
- 9. Muestre que en el conjunto $X = \mathbb{N}$, la relación de divisibilidad R en X definida por $x\mathcal{R}y$ ssi x|y, es una relación de orden parcial.
- 10. Sean $X = \mathbb{Q}$ y \mathcal{R} la relación en X definida por $x\mathcal{R}y$ $ssi\ \exists h \in \mathbb{Z}: \ x = \frac{3y+h}{3}$. Probar que \mathcal{R} es una relación de equivalencia en X.

Puebla, Pue., a 14 de octubre de 2020