inversion formula is that we can turn this statement around. That is, if the summatory function F of an arithmetic function f is multiplicative, then so is f.

Theorem 7.17. Let f be an arithmetic function with summatory $F = \sum_{d|n} f(d)$. Then, if F is multiplicative, f is also multiplicative.

Proof. Suppose that m and n are relatively prime positive integers. We want to show that f(mn) = f(m)f(n). To show this, first note that by Lemma 3.7, if d is a divisor of mn, then $d = d_1d_2$ where $d_1 \mid m$, $d_2 \mid n$, and $(d_1, d_2) = 1$. Using the Möbius inversion formula and the fact that μ and F are multiplicative, we see that

$$f(mn) = \sum_{d|mn} \mu(d) F\left(\frac{mn}{d}\right)$$

$$= \sum_{d_1|m, d_2|n} \mu(d_1 d_2) F\left(\frac{mn}{d_1 d_2}\right)$$

$$= \sum_{d_1|m, d_2|n} \mu(d_1) \mu(d_2) F\left(\frac{m}{d_1}\right) F\left(\frac{n}{d_2}\right)$$

$$= \sum_{d_1|m} \mu(d_1) F\left(\frac{m}{d_1}\right) \cdot \sum_{d_2|n} \mu(d_2) F\left(\frac{n}{d_2}\right)$$

$$= f(m) f(n).$$

7.4 Exercises

Find the following values of the Möbius function.

a)
$$\mu(12)$$
 d) $\mu(50)$ g) $\mu(10!)$ b) $\mu(15)$ e) $\mu(1001)$

- c) $\mu(30)$ f) $\mu(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13)$
- 2. Find the following values of the Möbius function.

a)
$$\mu(33)$$
 d) $\mu(740)$ g) $\mu(10!/(5!)^2)$
b) $\mu(105)$ e) $\mu(999)$
c) $\mu(110)$ f) $\mu(3\cdot7\cdot13\cdot19\cdot23)$

- \rightarrow 3. Find the value of $\mu(n)$ for each integer n with $100 \le n \le 110$.
 - 4. Find the value of $\mu(n)$ for each integer n with $1000 \le n \le 1010$.
- -5. Find all integers $n, 1 \le n \le 100$ with $\mu(n) = 1$.
 - 6. Find all composite integers n, $100 \le n \le 200$ with $\mu(n) = -1$.

The Mertens function M(n) is defined by $M(n) = \sum_{i=1}^{n} \mu(i)$.

- 7. Find M(n) for all positive integers not exceeding 10.
- **8.** Find M(n) for n = 100.

- 9. Show that M(n) is the difference between the number of square-free positive integers not exceeding n with an even number of prime divisors and those with an odd number of prime divisors.
- 10. Show that if n is a positive integer, then $\mu(n)\mu(n+1)\mu(n+2)\mu(n+3)=0$.
- 11. Prove or disprove that there are infinitely many positive integers n such that $\mu(n) + \mu(n+1) = 0$.
- 12. Prove or disprove that there are infinitely many positive integers n such that $\mu(n-1) + \mu(n) + \mu(n+1) = 0$.
- 13. For how many consecutive integers can the Möbius function $\mu(n)$ take a nonzero value?
- 14. For how many consecutive integers can the Möbius function $\mu(n)$ take the value 0?
- \longrightarrow 5. Show that if n is a positive integer, then $\phi(n) = n \sum_{d|n} \mu(d)/d$. (Hint: Use the Möbius inversion formula.)
 - 16. Use the Möbius inversion formula and the identity $n = \sum_{d|n} \phi(n/d)$, demonstrated in Section 7.1, to show the following.
 - a) $\phi(p^t) = p^t p^{t-1}$, whenever p is prime and t is a positive integer.
 - b) $\phi(n)$ is multiplicative.
- \rightarrow 7. Suppose that f is a multiplicative function with f(1) = 1. Show that

$$\sum_{d|n} \mu(d) f(d) = (1 - f(p_1))(1 - f(p_2)) \cdots (1 - f(p_k)),$$

where $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ is the prime-power factorization of n.

- 18. Use Exercise 17 to find a simple formula for $\sum_{d|n} d\mu(d)$ for all positive integers n.
- 19. Use Exercise 17 to find a simple formula for $\sum_{d|n} \mu(d)/d$ for all positive integers n.
- 20. Use Exercise 17 to find a simple formula for $\sum_{d|n} \mu(d) \tau(d)$ for all positive integers n.
- 21. Use Exercise 17 to find a simple formula for $\sum_{d|n} \mu(d)\sigma(d)$ for all positive integers n.
- \rightarrow 22. Let *n* be a positive integer. Show that

$$\prod_{d|n} \mu(d) = \begin{cases} -1 & \text{if } n \text{ is a prime;} \\ 0 & \text{if } n \text{ has a square factor;} \\ 1 & \text{if } n \text{ is square-free and composite.} \end{cases}$$

-23. Show that

$$\sum_{d|n} \mu^2(d) = 2^{\omega(n)},$$

where $\omega(n)$ denotes the number of distinct prime factors of n.

4. Use Exercise 23 and the Möbius inversion formula to show that

$$\mu^2(n) = \sum_{d|n} \mu(d) 2^{\omega(n/d)}.$$

- 25. Show that $\sum_{d|n} \mu(d)\lambda(d) = 2^{\omega(n)}$ for all positive integers n, where $\omega(n)$ is the number of distinct prime factors of n. (See the preamble to Exercise 43 in Section 7.1 for a definition of $\lambda(n)$.)
- **26.** Show that $\sum_{d|n} \lambda(n/d) 2^{\omega(d)} = 1$ for all positive integers n.

Exercises 27–29 provide a proof of the Möbius inversion formula and Theorem 7.17 using the concepts of the Dirichlet product and the Dirichlet inverse, defined in the exercise set of Section 7.1.

- 27. Show that the Möbius function $\mu(n)$ is the Dirichlet inverse of the function $\nu(n) = 1$.
- 28. Use Exercise 38 in Section 7.1 and Exercise 27 to prove the Möbius inversion formula.
- 29. Prove Theorem 7.17 by noting that if $F = f \star \nu$, where $\nu = 1$ for all positive integers n, then $f = F \star \mu$.

The Mangoldt function Λ is defined for all positive integers n by

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k, \text{ where } p \text{ is prime and } k \text{ is a positive integer;} \\ 0 & \text{otherwise.} \end{cases}$$

- 30. Show that $\sum_{d|n} \Lambda(d) = \log n$ whenever n is a positive integer.
- 31. Use the Möbius inversion formula and Exercise 30 to show that

$$\Lambda(n) = -\sum_{d|n} \mu(d) \log d.$$

7.4 Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or *Mathematica*, or programs you have written, carry out the following computations and explorations.

- 1. Find $\mu(n)$ for each of the following values of n.
 - a) 421,602,180,943
- b) 186,728,732,190
- c) 737,842,183,177
- 2. Find M(n), the value of the Mertens function at n, for each of the following integers. (See the preamble to Exercise 7 for the definition of M(n).)
 - a) 1000
- b) 10,000
- c) 100,000
- 3. A famous conjecture made in 1897 by F. Mertens, and disproved in 1985 by A. Odlyzko and H. te Riele (in [Odte85]), was that $|M(n)| < \sqrt{n}$ for all positive integers n, where M(n) is the Mertens function. Show that this conjecture, called Mertens' conjecture, is true for all integers n for as large a range as you can. Do not expect to find a counterexample, because the smallest n for which the conjecture is false is fantastically large. What is known is that there is a counterexample less than $3.21 \cdot 10^{64}$. Before the conjecture was shown to be false, it had been checked by computer for all integers n up to 10^{10} . This shows that even a tremendous amount of evidence can be misleading, because the smallest counterexample to a conjecture can nevertheless be titanically large.