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W+ W =U+U’'+U". We claim that, in fact, W + W' = U ® U’ ® U”. Indeed,
assume that u + v’ + v’ = Oy, where u € U, v € U’, and u” € U”. Then
v =-u"—-ueWnW =U. But v’ € U’ and the intersection of U’ and U is
{0v}. Therefore v’ = Oy and so u = —u”. But then this is in U NU"” = {0y},
which implies that u = u” = Oy. We have thus shown that the set {U,U’,U"} is
independent and hence have established our claim. Moreover, in this case we have
dim(W + W') = dim(U @ U' ® U")

=dim(U) + dim(U’) + dim(U")

= dim(W) + dim(U")

= dim(W) + dim(U") + dim(U) — dim(U)

= dim(W) + dim(W') — dim(U)

= dim(W) + dim(W') — dim(W N W’)
as desired O

EXAMPLE

Consider the subspaces
w1 =R{[1,0,2],(1,2,2]}

and

W, = R{[l’ 170]’[07 1, 1]}

of R, Each of these subspaces has dimension 2 over R and so 2 < dim(W; +W>) <
3. By Proposition 3.14 we see that this implies that 1 < dim(W; NW;) < 2. In
order to ascertain the exact dimension of W; N W, we have to find a basis for it. If
v € Wi N W, then there exist real numbers a, b, ¢, d satisfying

v=a[1,0,2] +b[1,2,2] = ¢[1, 1,0] + d[0, 1, 1]

andso a+b =c¢, 2b = c+d, and 2a+ 2b = d. This can happen only when b = —3a,
¢ = —2a, and d = —4a and so we see that v must be of the form

a[~2, —6,4] = (=2a)[1, 1,0] + (~4a)[0, 1, 1].

From this we conclude that {[—2,—6,—4]} is a basis for W; N W», and so the
dimension of Wy N W, 1s 1.

Problems

1. Let V be a vector space over a field F. Let vy, vy, v3 be elements of V and let
¢1,C2,c3 be scalars in F'. Show that the set of vectors

{szs — C3V2,C1V2 — C2V1,C3V1 — Clvs}
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1s linearly dependent.

2. Find rational numbers a and b such that the subset {[2,a — b, 1], [a, b, 3]} of
Q3 is linearly dependent.

3. Is the subset {[1+i,3+8i,5+7i], [1—i,5,2+1], [1+i,3+2i,4—i]} of V = C°
linearly dependent over C? Is it linearly dependent when we consider V as a vector
space over R?

4. For each nonnegative integer n let f,:]R — R be the function defined by
fn:t— sin™(t). Is the subset {f, | n > 0} of RE linearly independent?

5. Let V' be the vector space over R consisting of all continuous functions from
the interval [—1,1] to R. Let f,g € V be the functions defined by f:z +— z? and
g:& — z|z|. Is the set {f, g} linearly independent over R?

6. Let V be a vector space over the field F = Z/(5) and let vy, vz, v3 be vectors in
V. Is the set of vectors {vy + v2, v1 — v2 +vs, 203+ v3, v2 + v3} linearly independent?

7. Let F be a field of characteristic not equal to 2 and let V' be a vector space
over F' containing a linearly-independent set of vectors {vy, ve,v3}. Show that the
set {v; + v3, v2 + v3,v1 + va} is also linearly independent.

8. Let F =7Z/(3). Is the subset {[1,1,2,2],1,2,1,2],[1,1,1,2],[0,2,2,0]} of F*
linearly independent?

9. Let t < n be positive integers and for all 1 < i < t let v; = [a;1, ..., ain] be
a vector in R” satisfying the condition 2|aj;| > 30i_, |ai;| for all 1 < j < n. Show
that the set of vectors {vi,...,v;} is linearly independent.

10. Let F = Z/(2) and let A be a nonempty set. If B # C are nonempty subsets
of A, show that {xp, xc} is a linearly-independent subset of F'4.

11. Let A be a subset of R having at least three elements. Let f1, f2, and f3 be
the elements of R4 defined by fi:t — 2071 fort — 12!71 and fa:t — 22071 Is
the set {f1, f2, f3} linearly independent?

12. Let F = Z/(5) and let V = FF  which is a vector space over F. Let
f:z — z? and g: ¢ — 23 be elements of V. Find another element h of V such that
the set {f, g, h} is linearly independent.

13. Find a basis for the subspace of R* generated by
{[47 2a 6’ —2]a [1’ _1) 37 _1]) [la 27 0’ 0]7 [1’ 5) _3) 1]}
14. For each real number a let f, € RE be the function defined by

1, when r = g,

n ={

0, otherwise.

Is {f. | a € R} a basis for RE over R?

15. Let F = Z/(2) and let A be a nonempty finite set. Is {x{a} | a € A} a basis
for the vector space for F'4 over F?
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16. Let a, b, ¢ be elements of a field F'. Show that

{[1F,a,b},[0F, 1F,c],[0F,OF, 1F]}

is a basis for F'3 over F.

17. Let F = Z/(p), where p is a prime integer, and let V be a vector space of
dimension n over F'. How many distinct bases are there for V over F'?

18. Let F be a field and let V be the subspace of F[X] consisting of all polyno-
mials of degree no greater than 9. Is the set {1p, X — 1p,...,(X — 1f)°} a basis
for V over F?

19. Let {v1, vy, v3} be a given basis for a vector space V over a field F. Is the
set {v; + vy, vy + v3,v; — v3} also a basis for V over F?

20. Let V be a vector space finite dimensional over C having a basis D =
{v1....,v,}. Show that {vi,...,v,,iv1,...,iv,} is a basis for V as a vector space
over R.

21. Let V be the subspace of Q[X] consisting of all polynomials having dimension
at most 5. Extend the set {X% + X*, X5 - 7X3 X% -4X? X543X} to a basis for
V over Q.

22. Let W = R{[-1,1,1,1],[1,2,1,0]} and Y = R{[2,—1,0,1],[=5,6"0]} be
subspaces of R%. Calculate the dimensions of WNY and W + Y.

23. Let F' be a subfield of a field K satisfying the condition that the dimension
of K as a vector space over F' is finite and equal to r > 0. Let V be a vector space
over K having finite dimension n > 0. What 1s the dimension of V as a vector
space over F'7

24. Let V be a vector space over a field F and let n be a positive integer. A
matrix A = [ai;] € Mpxn(V) is called a Toeplitz matriz if and only if the entries
along each diagonal parallel to the principal diagonal are equal. Thus, for example,
the matrix

A=

<@ 8
8 2 <
e < 8

is a Toeplitz matrix of size 3 x 3. Show that the set of all Toeplitz matrices of size
n x n is a subspace of M,,x,(V). Find the dimension of this subspace for the case
V=F.

25. Let V be a vector space of dimension 6 over a field F' and let W and Y
be distinct subspaces of V of dimension 4. What are the possible dimensions of
wny?

26. Let V be a vector space which is not finite dimensional over a field F and let
W be a proper subspace of V. Show that there exists an infinite set {Y;,Y>,...}
of subspaces of V satisfying the condition that (;_, Y; € W for each n > 1 but
NZ Yicw.
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27. Let V be a vector space which is not finite dimensional over a field F'. Show

that there exists a countable set of proper subspaces of V' the union of which equals
V.

28. Let V be the space of all continuous functions from R to itself and consider
the subspaces Y and W of V defined by

Y ={f€eV| f(a) = f(—a) for all a € R}
and
W ={f€eV]|—f(a) = f(—a) for all a € R}.
Show that V=W @Y.

29. Let F be a field and let W be the subspace of F[X] consisting of all polyno-
mials of degree no greater than 4. Find a complement for W in F[X].

30. Let A be a nonempty set and let B be a subset of A. Let F' be a field and
let W be the subspace of F4 consisting of all those functions f: A — F satisfying
f(b) = 0F for all b € B. Find a complement for W in F4.

31. Let W a be a subspace of a vector space V over a field F and let W’ be a
complement of W in V. Use W’ to construct a complement for W2 in V2.
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