28 3. Vector spaces over a field

(4) (Modular law for subspaces): If $W_1 \subseteq W_3$ then

 $W_3 \cap (W_2 + W_1) = W_1 + (W_2 \cap W_3).$

Proof: Parts (1) and (2) follow immediately from the definition, while (4) is a special case of (3). We are therefore left to prove (3). Indeed, if v belongs to $W_3 \cap [W_2 + (W_1 \cap W_3)]$, then we can write $v = w_2 + y$, where $w_2 \in W_2$ and $y \in W_1 \cap W_3$. Since $v, y \in W_3$, it follows that $w_2 = v - y \in W_3$, and so $v = y + w_2 \in (W_1 \cap W_3) + (W_2 \cap W_3)$. Thus we see that $W_3 \cap [W_2 + (W_1 \cap W_3)] \subseteq (W_1 \cap W_3) + (W_2 \cap W_3)$. Conversely, assume that $v \in (W_1 \cap W_3) + (W_2 \cap W_3)$. Then, in particular, $v \in W_3$ and we can write $v = w_1 + w_2$, where $w_1 \in W_1 \cap W_3$ and $w_2 \in W_2 \cap W_3$. Thus $v = w_1 + w_2 \in W_3 \cap W_2 + (W_1 \cap W_3)$. This shows that $(W_1 \cap W_3) + (W_2 \cap W_3) \subseteq W_3 \cap [W_2 + (W_1 \cap W_3)]$ and so we have the desired equality. \Box

Exercises

Exercise 48 Let $V = \mathbb{Q}^2$, with the usual vector addition. If $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ and if $\begin{bmatrix} c \\ d \end{bmatrix} \in \mathbb{Q}^2$, set $(a + b\sqrt{2}) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ac + 2bd \\ bc + ad \end{bmatrix}$. Do

these operations turn \mathbb{Q}^2 into a vector space over $\mathbb{Q}(\sqrt{2})$?

Exercise 49 Is it possible to define on $V = \mathbb{Z}/(4)$ the structure of a vector space over GF(2) in such a way that the vector addition is the usual addition in $\mathbb{Z}/(4)$?

Exercise 50 Consider the set \mathbb{Z} of integers, together with the usual addition. If $a \in \mathbb{Q}$ and $k \in \mathbb{Z}$, define $a \cdot k$ to be $\lfloor a \rfloor k$, where $\lfloor a \rfloor$ denotes the largest integer less than or equal to a. Using this as our definition of "scalar multiplication", have we turned \mathbb{Z} into a vector space over \mathbb{Q} ?

Exercise 51 Let $V = \{0, 1\}$ and let F = GF(2). Define vector addition and scalar multiplication by setting $v + v' = \max\{v, v'\}$, 0v = 0, and 1v = v for all $v, v' \in V$. Does this define on V the structure of a vector space over F?

Exercise 52 Let V = C(0,1). Define an operation \boxplus on V by setting $f \boxplus g : x \mapsto \max\{f(x), g(x)\}$. Does this operation of vector addition, together with the usual operation of scalar multiplication, define on V the structure of a vector space over \mathbb{R} ?

Exercise 53 Let $V \neq \{0_V\}$ be a vector space over \mathbb{R} . For each $v \in V$ and each complex number a + bi, let us define (a + bi)v = av. Does V, together with this new scalar multiplication, form a vector space over \mathbb{C} ?

Exercise 54 Let $V = \{i \in \mathbb{Z} \mid 0 \leq i < 2^n\}$ for some given positive integer *n*. Define operations of vector addition and scalar multiplication on V in such a way as to turn it into a vector space over the field GF(2).

Exercise 55 Let V be a vector space over a field F. Define a function from $GF(3) \times V$ to V by setting $(0,v) \mapsto 0_V$, $(1,v) \mapsto v$, and $(2,v) \mapsto -v$ for all $v \in V$. Does this function, together with the vector addition in V, define on V the structure of a vector space over GF(3)?

Exercise 56 Let $V = \mathbb{R} \cup \{\infty\}$ and extend the usual addition of real numbers by defining $v + \infty = \infty + v = \infty$ for all $v \in V$. Is it possible to define an operation of scalar multiplication on V in such a manner as to turn it into a vector space over \mathbb{R} ?

Exercise 57 Let	$V = \mathbb{R}^2$. If	$\left[\begin{array}{c}a\\b\end{array}\right], \left[\begin{array}{c}a'\\b'\end{array}\right] \in \mathbf{V}$	V and $r \in \mathbb{R}$, set
		ГаЛ	[

 $\begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} a' \\ b' \end{bmatrix} = \begin{bmatrix} a+a'+1 \\ b+b' \end{bmatrix} \text{ and } r \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ra+r-1 \\ rb \end{bmatrix}. Do$ these operations define on V the structure of a vector space over \mathbb{R} ? If

these operations define on V the structure of a vector space over \mathbb{R} ? If so, what is the identity element for vector addition in this space?

Exercise 58 Let $V = \mathbb{R}$ and let \circ be an operation on R defined by $a \circ b = a^3b$. Is V, together with the usual addition and "scalar multiplication" given by \circ , a vector space over \mathbb{R} ?

Exercise 59 Show that \mathbb{Z} cannot be turned into a vector space over any field.

Exercise 60 Let V be a vector space over the field GF(2). Show that v = -v for all $v \in V$.

Exercise <u>61</u> Give an example of a vector space having exactly 125 elements.

Exercise 62 In the definition of a vector space, show that the commutativity of vector addition is a consequence of the other conditions.

Exercise 63 Let W be the subset of \mathbb{R}^5 consisting of all vectors an odd number of the entries in which are equal to 0. Is W a subspace of \mathbb{R}^5 ?

Exercise 64 Let $V = \mathbb{R}^{\mathbb{R}}$ and let W be the subset of V containing the constant function $x \mapsto 0$ and all of those functions $f \in V$ satisfying the condition that f(a) = 0 for at most finitely-many real numbers a. Is W a subspace of V?

30 3. Vector spaces over a field

Exercise 65 Let
$$V = \left\{ \begin{bmatrix} a_1 \\ \vdots \\ a_5 \end{bmatrix} \mid 0 < a_i \in \mathbb{R} \right\}$$
. If $v = \begin{bmatrix} a_1 \\ \vdots \\ a_5 \end{bmatrix}$ and $w = \begin{bmatrix} b_1 \\ \vdots \\ b_5 \end{bmatrix}$ belong to V , and if $c \in \mathbb{R}$, set $v + w = \begin{bmatrix} a_1b_1 \\ \vdots \\ a_5b_5 \end{bmatrix}$ and $cv = \begin{bmatrix} a_1^c \\ \vdots \\ a_5^c \end{bmatrix}$. Do these operations turn V into a vector space over \mathbb{R} ?

Exercise <u>66</u> Let F = GF(3). How many elements are there in the subspace of F^3 generated by $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\1 \end{bmatrix} \right\}$?

Exercise 67 A function $f \in \mathbb{R}^{\mathbb{R}}$ is **piecewise constant** if and only if it is a constant function $x \mapsto c$ or there exist $a_1 < a_2 < \ldots < a_n$ and c_0, \ldots, c_n in \mathbb{R} such that

$$f: x \mapsto \begin{cases} c_0 & \text{if } x < a_1 \\ c_i & \text{if } a_i \le x < a_{i+1} \text{ for } 1 \le i < n \\ c_n & \text{if } a_n \le x \end{cases}$$

Does the set of all piecewise constant functions form a subspace of the vector space $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R} ?

Exercise 68 Let V be the vector space of all continuous functions from \mathbb{R} to itself and let W be the subset of all those functions $f \in V$ satisfying the condition that $|f(x)| \leq 1$ for all $-1 \leq x \leq 1$. Is W a subspace of V?

Exercise <u>69</u> Let F = GF(2) and let W be the subspace of F^5 con-

sisting of all vectors $\begin{bmatrix} a_1 \\ \vdots \\ a_5 \end{bmatrix}$ satisfying $\sum_{i=1}^5 a_i = 0$. Is W a subspace of F^5 ?

Exercise 70 Let $V = \mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of all monotonically-increasing or monotonically-decreasing functions. Is W a subspace of V?

Exercise 71 Let $V = \mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of the constant function $a \mapsto 0$, and all epic functions. Is W a subspace of V?

Exercise 72 Let $V = \mathbb{R}^{\mathbb{R}}$ and let W be the subset of V containing the constant function $a \mapsto 0$ and all of those functions $f \in V$ satisfying the condition that $f(\pi) > f(-\pi)$. Is W a subspace of V?

Exercise 73 Let $V = \mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of all functions f satisfying the condition that there exists a real number c (which depends on f) such that $|f(a)| \leq c|a|$ for all $a \in \mathbb{R}$. Is W a subspace of V?

Exercise 74 Let $V = \mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of all functions f satisfying the condition that there exist real numbers a and b such that $|f(x)| \leq a |\sin(x)| + b |\cos(x)|$ for all $x \geq 0$. Is W a subspace of V?

Exercise 75 Let F be a field and let $V = F^F$, which is a vector space over F. Let W be the set of all functions $f \in V$ satisfying f(1) = f(-1). Is W a subspace of V?

Exercise 76 For any real number $0 < t \leq 1$, let V_t be the set of all functions $f \in \mathbb{R}^{\mathbb{R}}$ satisfying the condition that if a < b in \mathbb{R} then there exists a real number u(a,b) satisfying $|f(x) - f(y)| \leq u(a,b) |x-y|^t$ for all $a \leq x, y \leq b$. For which values of t is V_t a subspace of $\mathbb{R}^{\mathbb{R}}$?

Exercise <u>77</u> Let U be a nonempty subset of a vector space V. Show that U is a subspace of V if and only if $au + u' \in U$ for all $u, u' \in U$ and $a \in F$.

Exercise 78 Let V be a vector space over a field F and let v and w be distinct vectors in V. Set $U = \{(1-t)v + tw \mid t \in F\}$. Show that there exists a vector $y \in V$ such that $\{u + y \mid u \in U\}$ is a subspace of V.

Exercise 79 Let V be a vector space over a field F and let W and Y be subspaces of V². Let U be the set of all vectors $\begin{bmatrix} v \\ v' \end{bmatrix} \in V^2$ satisfying the condition that there exists a vector $v'' \in V$ such that $\begin{bmatrix} v \\ v'' \end{bmatrix} \in W$ and $\begin{bmatrix} v'' \\ v' \end{bmatrix} \in Y$. Is U a subspace of V^2 ?

Exercise 80 Consider \mathbb{R} as a vector space over \mathbb{Q} . Given a nonempty subset W of \mathbb{R} , let \overline{W} be the set of all real numbers b for which there exists a sequence a_1, a_2, \ldots of elements of W satisfying $\lim_{i \to \infty} a_i = b$. Show that \overline{W} is a subspace of \mathbb{R} whenever W is.

Exercise 81 Let V be a vector space over a field F and let P be the collection of all subsets of V, which we know is a vector space over GF(2). Is the collection of all subspaces of V a subspace of P?