(4) (Modular law for subspaces): If $W_{1} \subseteq W_{3}$ then

$$
W_{3} \cap\left(W_{2}+W_{1}\right)=W_{1}+\left(W_{2} \cap W_{3}\right) .
$$

Proof: Parts (1) and (2) follow immediately from the definition, while (4) is a special case of (3). We are therefore left to prove (3). Indeed, if v belongs to $W_{3} \cap\left[W_{2}+\left(W_{1} \cap W_{3}\right)\right]$, then we can write $v=w_{2}+y$, where $w_{2} \in W_{2}$ and $y \in W_{1} \cap W_{3}$. Since $v, y \in W_{3}$, it follows that $w_{2}=v-y \in W_{3}$, and so $v=y+w_{2} \in\left(W_{1} \cap W_{3}\right)+\left(W_{2} \cap W_{3}\right)$. Thus we see that $W_{3} \cap\left[W_{2}+\left(W_{1} \cap W_{3}\right)\right] \subseteq\left(W_{1} \cap W_{3}\right)+\left(W_{2} \cap W_{3}\right)$. Conversely, assume that $v \in\left(W_{1} \cap W_{3}\right)+\left(W_{2} \cap W_{3}\right)$. Then, in particular, $v \in W_{3}$ and we can write $v=w_{1}+w_{2}$, where $w_{1} \in W_{1} \cap W_{3}$ and $w_{2} \in W_{2} \cap W_{3}$. Thus $v=w_{1}+w_{2} \in W_{3} \cap W_{2}+\left(W_{1} \cap W_{3}\right)$. This shows that $\left(W_{1} \cap W_{3}\right)+\left(W_{2} \cap W_{3}\right) \subseteq W_{3} \cap\left[W_{2}+\left(W_{1} \cap W_{3}\right)\right]$ and so we have the desired equality.

Exercises

Exercise 48 Let $V=\mathbb{Q}^{2}$, with the usual vector addition. If $a+b \sqrt{2} \in$
$\mathbb{Q}(\sqrt{2})$ and if $\left[\begin{array}{l}c \\ d\end{array}\right] \in \mathbb{Q}^{2}$, set $(a+b \sqrt{2})\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{c}a c+2 b d \\ b c+a d\end{array}\right]$. Do these operations turn \mathbb{Q}^{2} into a vector space over $\mathbb{Q}(\sqrt{2})$?

Exercise 49 Is it possible to define on $V=\mathbb{Z} /(4)$ the structure of a vector space over GF(2) in such a way that the vector addition is the usual addition in $\mathbb{Z} /(4)$?

Exercise $5 \mathbf{0}$ Consider the set \mathbb{Z} of integers, together with the usual addition. If $a \in \mathbb{Q}$ and $k \in \mathbb{Z}$, define $a \cdot k$ to be $\lfloor a\rfloor k$, where $\lfloor a\rfloor$ denotes the largest integer less than or equal to a. Using this as our definition of "scalar multiplication", have we turned \mathbb{Z} into a vector space over \mathbb{Q} ?

Exercise 51 Let $V=\{0,1\}$ and let $F=G F(2)$. Define vector addition and scalar multiplication by setting $v+v^{\prime}=\max \left\{v, v^{\prime}\right\}, \quad 0 v=0$, and $1 v=v$ for all $v, v^{\prime} \in V$. Does this define on V the structure of a vector space over F ?

Exercise 52 Let $V=C(0,1)$. Define an operation \boxplus on V by setting $f \boxplus g: x \mapsto \max \{f(x), g(x)\}$. Does this operation of vector addition, together with the usual operation of scalar multiplication, define on V the structure of a vector space over \mathbb{R} ?

Exercise 53 Let $V \neq\left\{0_{V}\right\}$ be a vector space over \mathbb{R}. For each $v \in V$ and each complex number $a+b i$, let us define $(a+b i) v=a v$. Does V, together with this new scalar multiplication, form a vector space over \mathbb{C} ?

Exercise 54 Let $V=\left\{i \in \mathbb{Z} \mid 0 \leq i<2^{n}\right\}$ for some given positive integer n. Define operations of vector addition and scalar multiplication on V in such a way as to turn it into a vector space over the field $G F(2)$.

Exercise 55 Let V be a vector space over a field F. Define a function from $G F(3) \times V$ to V by setting $\quad(0, v) \mapsto 0_{V}, \quad(1, v) \mapsto v$, and $(2, v) \mapsto-v$ for all $v \in V$. Does this function, together with the vector addition in V, define on V the structure of a vector space over $G F(3)$?

Exercise 56 Let $V=\mathbb{R} \cup\{\infty\}$ and extend the usual addition of real numbers by defining $v+\infty=\infty+v=\infty$ for all $v \in V$. Is it possible to define an operation of scalar multiplication on V in such a manner as to turn it into a vector space over \mathbb{R} ?

Exercise 57 Let $V=\mathbb{R}^{2}$. If $\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}a^{\prime} \\ b^{\prime}\end{array}\right] \in V \quad$ and $\quad r \in \mathbb{R}$, set $\left[\begin{array}{l}a \\ b\end{array}\right]+\left[\begin{array}{l}a^{\prime} \\ b^{\prime}\end{array}\right]=\left[\begin{array}{c}a+a^{\prime}+1 \\ b+b^{\prime}\end{array}\right]$ and $r\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}r a+r-1 \\ r b\end{array}\right] . \quad D o$ these operations define on V the structure of a vector space over \mathbb{R} ? If so, what is the identity element for vector addition in this space?

Exercise 58 Let $V=\mathbb{R}$ and let \circ be an operation on R defined by $a \circ b=a^{3} b$. Is V, together with the usual addition and "scalar multiplication" given by \circ, a vector space over \mathbb{R} ?

Exercise 59 Show that \mathbb{Z} cannot be turned into a vector space over any field.

Exercise $6 \mathbf{0}$ Let V be a vector space over the field $G F(2)$. Show that $v=-v$ for all $v \in V$.

Exercise 61 Give an example of a vector space having exactly 125 elements.

Exercise 62 In the definition of a vector space, show that the commutativity of vector addition is a consequence of the other conditions.

Exercise 63 Let W be the subset of \mathbb{R}^{5} consisting of all vectors an odd number of the entries in which are equal to 0 . Is W a subspace of \mathbb{R}^{5} ?

Exercise 64 Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V containing the constant function $x \mapsto 0$ and all of those functions $f \in V$ satisfying the condition that $f(a)=0$ for at most finitely-many real numbers a. Is W a subspace of V ?

Exercise 65 Let $V=\left\{\left.\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{5}\end{array}\right] \right\rvert\, 0<a_{i} \in \mathbb{R}\right\}$. If $v=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{5}\end{array}\right]$ and
$w=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{5}\end{array}\right]$ belong to V, and if $c \in \mathbb{R}$, set $v+w=\left[\begin{array}{c}a_{1} b_{1} \\ \vdots \\ a_{5} b_{5}\end{array}\right]$ and
$c v=\left[\begin{array}{c}a_{1}^{c} \\ \vdots \\ a_{5}^{c}\end{array}\right]$. Do these operations turn V into a vector space over \mathbb{R} ?
Exercise 66 Let $F=G F(3)$. How many elements are there in the subspace of F^{3} generated by $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]\right\}$?
Exercise 67 A function $f \in \mathbb{R}^{\mathbb{R}}$ is piecewise constant if and only if it is a constant function $x \mapsto c$ or there exist $a_{1}<a_{2}<\ldots<a_{n}$ and c_{0}, \ldots, c_{n} in \mathbb{R} such that

$$
f: x \mapsto \begin{cases}c_{0} & \text { if } x<a_{1} \\ c_{i} & \text { if } a_{i} \leq x<a_{i+1} \quad \text { for } 1 \leq i<n . \\ c_{n} & \text { if } a_{n} \leq x\end{cases}
$$

Does the set of all piecewise constant functions form a subspace of the vector space $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R} ?
Exercise 68 Let V be the vector space of all continuous functions from \mathbb{R} to itself and let W be the subset of all those functions $f \in V$ satisfying the condition that $|f(x)| \leq 1$ for all $-1 \leq x \leq 1$. Is W a subspace of V ?

Exercise 69 Let $F=G F(2)$ and let W be the subspace of F^{5} consisting of all vectors $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{5}\end{array}\right]$ satisfying $\sum_{i=1}^{5} a_{i}=0$. Is W a subspace of F^{5} ?

Exercise $7 \mathbf{0}$ Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of all monotonically-increasing or monotonically-decreasing functions. Is W a subspace of V ?
Exercise 71 Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of the constant function $a \mapsto 0$, and all epic functions. Is W a subspace of V ?

Exercise 72 Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V containing the constant function $a \mapsto 0$ and all of those functions $f \in V$ satisfying the condition that $f(\pi)>f(-\pi)$. Is W a subspace of V ?

Exercise 73 Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of all functions f satisfying the condition that there exists a real number c (which depends on f) such that $|f(a)| \leq c|a|$ for all $a \in \mathbb{R}$. Is W a subspace of V ?

Exercise 74 Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of all functions f satisfying the condition that there exist real numbers a and b such that $|f(x)| \leq a|\sin (x)|+b|\cos (x)|$ for all $x \geq 0$. Is W a subspace of V ?

Exercise 75 Let F be a field and let $V=F^{F}$, which is a vector space over F. Let W be the set of all functions $f \in V$ satisfying $f(1)=f(-1)$. Is W a subspace of V ?

Exercise 76 For any real number $0<t \leq 1$, let V_{t} be the set of all functions $f \in \mathbb{R}^{\mathbb{R}}$ satisfying the condition that if $a<b$ in \mathbb{R} then there exists a real number $u(a, b)$ satisfying $|f(x)-f(y)| \leq u(a, b)|x-y|^{t}$ for all $a \leq x, y \leq b$. For which values of t is V_{t} a subspace of $\mathbb{R}^{\mathbb{R}}$?

Exercise 77 Let U be a nonempty subset of a vector space V. Show that U is a subspace of V if and only if $a u+u^{\prime} \in U$ for all $u, u^{\prime} \in U$ and $a \in F$.

Exercise 78 Let V be a vector space over a field F and let v and w be distinct vectors in V. Set $U=\{(1-t) v+t w \mid t \in F\}$. Show that there exists a vector $y \in V$ such that $\{u+y \mid u \in U\}$ is a subspace of V.

Exercise 79 Let V be a vector space over a field F and let W and Y be subspaces of V^{2}. Let U be the set of all vectors $\left[\begin{array}{c}v \\ v^{\prime}\end{array}\right] \in V^{2}$ satisfying the condition that there exists a vector $v^{\prime \prime} \in V \quad$ such that $\left[\begin{array}{c}v \\ v^{\prime \prime}\end{array}\right] \in W$ and $\left[\begin{array}{c}v^{\prime \prime} \\ v^{\prime}\end{array}\right] \in Y$. Is U a subspace of V^{2} ?
Exercise 80 Consider \mathbb{R} as a vector space over \mathbb{Q}. Given a nonempty subset W of \mathbb{R}, let \bar{W} be the set of all real numbers b for which there exists a sequence a_{1}, a_{2}, \ldots of elements of W satisfying $\lim _{i \rightarrow \infty} a_{i}=b$. Show that \bar{W} is a subspace of \mathbb{R} whenever W is.

Exercise 81 Let V be a vector space over a field F and let P be the collection of all subsets of V, which we know is a vector space over $G F(2)$. Is the collection of all subspaces of V a subspace of P ?

