- 14. Use the least-remainder algorithm to find (384, 226).
- 15. Show that the least-remainder algorithm always produces the greatest common divisor of two integers.
- ** 16. Show that the least-remainder algorithm is always at least as fast as the Euclidean algorithm. (Hint: First show that if a and b are positive integers with 2b < a, then the least-remainder algorithm can find (a, b) with no more steps than it uses to find (a, a - b).)
- * 17. Find a sequence of integers v_0, v_1, v_2, \ldots , such that the least-remainder algorithm takes exactly *n* divisions to find (v_{n+1}, v_{n+2}) .
- * 18. Show that the number of divisions needed to find the greatest common divisor of two positive integers using the least-remainder algorithm is less than 8/3 times the number of digits in the smaller of the two numbers, plus 4/3.
- * 19. Let m and n be positive integers and let a be an integer greater than 1. Show that $(a^m-1, a^n-1) = a^{(m,n)}-1.$
- * 20. Show that if m and n are positive integers, then $(f_m, f_n) = f_{(m,n)}$.

The next two exercises deal with the game of Euclid. Two players begin with a pair of positive integers and take turns making moves of the following type. A player can move from the pair of positive integers $\{x, y\}$ with $x \ge y$, to any of the pairs $\{x - ty, y\}$, where t is a positive integer and $x - ty \ge 0$. A winning move consists of moving to a pair with one element equal

- 21. Show that every sequence of moves starting with the pair $\{a,b\}$ must eventually end with the pair $\{0, (a, b)\}.$
- * 22. Show that in a game beginning with the pair $\{a, b\}$, the first player may play a winning strategy if a = b or if $a > b(1 + \sqrt{5})/2$; otherwise, the second player may play a winning strategy. (*Hint*: First show that if $y < x \le y(1 + \sqrt{5})/2$, then there is a unique move from $\{x, y\}$ that goes to a pair $\{z, y\}$ with $y > z(1 + \sqrt{5})/2$.)
- * 23. Show that the number of bit operations needed to use the Euclidean algorithm to find the greatest common divisor of two positive integers a and b with a > b is $O((\log_2 a)^2)$. (Hint: First show that the complexity of division of the positive integer q by the positive integer d is $O(\log d \log q)$.)
- * 24. Let a and b be positive integers and let r_j and q_j , j = 1, 2, ..., n be the remainders and quotients of the steps of the Euclidean algorithm as defined in this section.

 - a) Find the value of $\sum_{j=1}^{n} r_{j}q_{j}$. b) Find the value of $\sum_{j=1}^{n} r_{j}^{2}q_{j}$.
- \geq 25. Suppose that a and b are positive integers with $a \geq b$. Let q_i and r_i be the quotients and remainders in the steps of the Euclidean algorithm for i = 1, 2, ..., n, where r_n is the last nonzero remainder. Let $Q_i = \begin{pmatrix} q_i & 1 \\ 1 & 0 \end{pmatrix}$ and $Q = \prod_{i=0}^n Q_i$. Show that $\begin{pmatrix} a \\ b \end{pmatrix} = Q \begin{pmatrix} r_n \\ 0 \end{pmatrix}$.