Suppose that a*c=e=c*a. Then c=c*e=c*(a*b)=(c*a)*b=e*b=b, as desired.

As a result of the uniqueness assertions of the theorem, we may now give names to e and to b. We call e the *identity* of G and, if a*b=e=b*a, then we call b the *inverse* of a and denote it by a^{-1} .

Corollary 1.11. If G is a group and $a \in G$, then

$$(a^{-1})^{-1}=a.$$

Proof. By definition, $(a^{-1})^{-1}$ is that element $g \in G$ with $a^{-1} * g = e = g * a^{-1}$. But a is such an element, and so the uniqueness gives g = a.

Definition. If G is a group and $a \in G$, define the **powers** of a as follows: if n is a positive integer, then a^n is defined as in any semigroup; define $a^0 = e$; define $a^{-n} = (a^{-1})^n$.

Even though the list of axioms defining a group is short, it is worthwhile to make it even shorter so it will be as easy as possible to verify that a particular example is, in fact, a group.

Theorem 1.12. If G is a semigroup with an element e such that:

- (i') e*a = a for all $a \in G$; and
- (ii') for each $a \in G$ there is an element $b \in G$ with b * a = e, then G is a group.

Proof. We claim that if x * x = x in G, then x = e. There is an element $y \in G$ with y * x = e, and y * (x * x) = y * x = e. On the other hand, y * (x * x) = (y * x) * x = e * x = x. Therefore, x = e.

If b * a = e, let us show that a * b = e. Now (a * b) * (a * b) = a * [(b * a) * b] = a * [e * b] = a * b, and so our claim gives a * b = e. (Observe that we have used associativity for an expression having four factors.)

If $a \in G$, we must show that a * e = a. Choose $b \in G$ with b * a = e = a * b (using our just finished calculation). Then a * e = a * (b * a) = (a * b) * a = e * a = a, as desired.

Exercises

 \blacksquare 1.23. If G is a group and $a_1, a_2, \ldots, a_n \in G$, then

$$(a_1 * a_2 * \cdots * a_n)^{-1} = a_n^{-1} * a_{n-1}^{-1} * \cdots * a_1^{-1}.$$

Conclude that if $n \ge 0$, then $(a^{-1})^n = (a^n)^{-1}$.

1.24. Let a_1, a_2, \ldots, a_n be elements of an abelian semigroup. If b_1, b_2, \ldots, b_n is a rearrangement of the a_i , then

$$a_1 * a_2 * \cdots * a_n = b_1 * b_2 * \cdots * b_n$$

Groups 15

1.25. Let a and b lie in a semigroup G. If a and b commute, then $(a*b)^n = a^n*b^n$ for every $n \ge 1$; if G is a group, then this equation holds for every $n \in \mathbb{Z}$.

- 1.26. A group in which $x^2 = e$ for every x must be abelian.
- 1.27. (i) Let G be a finite abelian group containing no elements $a \neq e$ with $a^2 = e$. Evaluate $a_1 * a_2 * \cdots * a_n$, where a_1, a_2, \ldots, a_n is a list with no repetitions, of all the elements of G.
 - (ii) Prove Wilson's theorem: If p is prime, then

$$(p-1)! \equiv -1 \mod p.$$

(Hint. The nonzero elements of Z_p form a multiplicative group.)

- 1.28. (i) If $\alpha = (1 \ 2 \ ... \ r-1 \ r)$, then $\alpha^{-1} = (r \ r-1 \ ... \ 2 \ 1)$. (ii) Find the inverse of $\begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \\ 6 \ 4 \ 1 \ 2 \ 5 \ 3 \ 8 \ 9 \ 7 \end{pmatrix}$.
- 1.29. Show that $\alpha: \mathbb{Z}_{11} \to \mathbb{Z}_{11}$, defined by $\alpha(x) = 4x^2 3x^7$, is a permutation of \mathbb{Z}_{11} , and write it as a product of disjoint cycles. What is the parity of α ? What is α^{-1} ?
- 1.30. Let G be a group, let $a \in G$, and let $m, n \in \mathbb{Z}$ be (possibly negative) integers. Prove that $a^{m} * a^{n} = a^{m+n} = a^{n} * a^{n}$ and $(a^{m})^{n} = a^{mn} = (a^{n})^{m}$.
- 1.31. Let G be a group, let $a \in G$, and let m and n be relatively prime integers. If $a^{m} = e$, show that there exists $b \in G$ with $a = b^{n}$. (Hint. There are integers s and t with 1 = sm + tn.
- 1.32 (Cancellation Laws). In a group G, either of the equations a*b = a*c and b*a=c*a implies b=c.
- 1.33. Let G be a group and let $a \in G$.
 - (i) For each $a \in G$, prove that the functions $L_a: G \to G$, defined by $x \mapsto a * x$ (called *left translation* by a), and $R_a: G \to G$, defined by $x \mapsto x * a^{-1}$ (called right translation by a), are bijections.
 - (ii) For all $a, b \in G$, prove that $L_{a*b} = L_a \circ L_b$ and $R_{a*b} = R_s \circ R_b$.
 - (iii) For all a and b, prove that $L_a \circ R_b = R_b \circ L_a$.
- 1.34. Let G denote the multiplicative group of positive rationals. What is the identity of G? If $a \in G$, what is its inverse?
- 1.35. Let n be a positive integer and let G be the multiplicative group of all nth roots of unity, that is, G consists of all complex numbers of the form $e^{2\pi i k n}$, where $k \in \mathbb{Z}$. What is the identity of G? If $a \in G$, what is its inverse? How many elements does G have?
 - 1.36. Prove that the following four permutations form a group V (which is called the 4-group):

1.37. Let $\hat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$, and define $1/0 = \infty$, $1/\infty = 0$, $\infty/\infty = 1$, and $1 - \infty = 1$ $\infty = \infty - 1$. Show that the six functions $\hat{\mathbb{R}} \to \hat{\mathbb{R}}$, given by x, 1/x, 1 - x, 1/(1-x), x/(x-1), (x-1)/x, form a group with composition as operation.