- Find the quotient and remainder in the division algorithm with divisor 17 and dividend
 - a) 100

c) -44

b) 289

- d) -100.
- 4. What can you conclude if a and b are nonzero integers such that $a \mid b$ and $b \mid a$?
- Show that if a, b, c, and d are integers with a and c nonzero such that a | b and c | d, then ac | bd.
- 6. Are there integers a, b, and c such that $a \mid bc$, but $a \nmid b$ and $a \mid c$?
- 7. Show that if a, b, and $c \neq 0$ are integers, then $a \mid b$ if and only if $ac \mid bc$.
 - 8. Show that if a and b are positive integers and $a \mid b$, then $a \leq b$.
- 9. Give another proof of the division algorithm by using the well-ordering property. (Hint: When dividing a by b, take as the remainder the least positive integer in the set of integers a-qb.)
 - 10. Show that if a and b are odd positive integers, then there are integers s and t such that a = bs + t, where t is odd and |t| < b.
 - 11. When the integer a is divided by the interger b where b > 0, the division algorithm gives a quotient of q and a remainder of r. Show that if $b \nmid a$, when -a is divided by b, the division algorithm gives a quotient of -(q+1) and a remainder of b-r, while if $b \mid a$, the quotient is -q and the remainder is zero.
 - 12. Show that if a, b, and c are integers with b > 0 and c > 0, such that when a is divided by b the quotient is q and the remainder is r, and when q is divided by c the quotient is t and the remainder is s, then when a is divided by bc, the quotient is t and the remainder is bs + r.
- ■13. a) Extend the division algorithm by allowing negative divisors. In particular, show that whenever a and $b \neq 0$ are integers, there are integers q and r such that a = bq + r, where $0 \leq r < |b|$.
 - b) Find the remainder when 17 is divided by -7.
 - 14. Show that if a and b are positive integers, then there are integers q,r and $e \pm 1$ such that a bq + er where $-b/2 < er \le b/2$.
 - 15. Show that if a and b are real numbers, then $[a+b] \ge [a] + [b]$.
 - 16. Show that if a and b are positive real numbers, then [ab] ≥ [a][b]. What is the corresponding inequality when both a and b are negative? When one is negative and the other positive?

- 6. Let a be a positive integer. What is the greatest common divisor of a and a + 2?
- 7. Show that if a and b are integers, not both 0, and c is a nonzero integer, then (ca, cb) = |c|(a, b).
- 8. Show that if a and b are integers with (a, b) = 1, then (a + b, a b) = 1 or 2.
- 9. What is $(a^2 + b^2, a + b)$, where a and b are relatively prime integers that are not both 0?
- 10. Show that if a and b are both even integers that are not both 0, then (a, b) = 2(a/2, b/2).
- 11. Show that if a is an even integer and b is an odd integer, then (a, b) = (a/2, b).
- 12. Show that if a, b, and c are integers such that (a, b) = 1 and $c \mid (a + b)$, then (c, a) = (c, b) = 1.
- 13. Show that if a, b, and c are mutually relatively prime nonzero integers, then (a, bc) = (a, b)(a, c).
- 14. a) Show that if a, b, and c are integers with (a, b) = (a, c) = 1, then (a, bc) = 1.
 - b) Use mathematical induction to show that if a_1, a_2, \ldots, a_n are integers, and b is another integer such that $(a_1, b) = (a_2, b) = \cdots = (a_n, b) = 1$, then $(a_1 a_2 \cdots a_n, b) = 1$.
 - 15. Find a set of three integers that are mutually relatively prime, but any two of which are not relatively prime. Do not use examples from the text.
 - 16. Find four integers that are mutually relatively prime such that any three of these integers are not mutually relatively prime.
 - 17. Find the greatest common divisor of each of the following sets of integers.
 - a) 8, 10, 12
- d) 6, 15, 21
- b) 5, 25, 75
- e) -7, 28, -35
- c) 99, 9999, 0
- f) 0, 0, 1001
- 18. Find three mutually relatively prime integers from among the integers 66, 105, 42, 70, and 165.
- 19. Show that if a_1, a_2, \ldots, a_n are integers that are not all 0 and c is a positive integer, then $(ca_1, ca_2, \ldots, ca_n) = c(a_1, a_2, \ldots, a_n)$.
- 20. Show that the greatest common divisor of the integers a_1, a_2, \ldots, a_n , not all 0, is the least positive integer that is a linear combination of a_1, a_2, \ldots, a_n .
- 21. Show that if k is an integer, then the integers 6k 1, 6k + 1, 6k + 2, 6k + 3, and 6k + 5 are pairwise relatively prime.
- 22. Show that if k is a positive integer, then 3k + 2 and 5k + 3 are relatively prime.
- 23. Show that 8a + 3 and 5a + 2 are relatively prime for all integers a.
- 24. Show that if a and b are relatively prime integers, then (a + 2b, 2a + b) = 1 or 3.
- 25. Show that every positive integer greater than 6 is the sum of two relatively prime integers greater than 1.

- 14. Use the least-remainder algorithm to find (384, 226).
- 15. Show that the least-remainder algorithm always produces the greatest common divisor of two integers.
- ** 16. Show that the least-remainder algorithm is always at least as fast as the Euclidean algorithm. (Hint: First show that if a and b are positive integers with 2b < a, then the least-remainder algorithm can find (a, b) with no more steps than it uses to find (a, a - b).)
- * 17. Find a sequence of integers v_0, v_1, v_2, \ldots , such that the least-remainder algorithm takes exactly *n* divisions to find (v_{n+1}, v_{n+2}) .
- * 18. Show that the number of divisions needed to find the greatest common divisor of two positive integers using the least-remainder algorithm is less than 8/3 times the number of digits in the smaller of the two numbers, plus 4/3.
- * 19. Let m and n be positive integers and let a be an integer greater than 1. Show that $(a^m-1, a^n-1) = a^{(m,n)}-1.$
- * 20. Show that if m and n are positive integers, then $(f_m, f_n) = f_{(m,n)}$.

The next two exercises deal with the game of Euclid. Two players begin with a pair of positive integers and take turns making moves of the following type. A player can move from the pair of positive integers $\{x, y\}$ with $x \ge y$, to any of the pairs $\{x - ty, y\}$, where t is a positive integer and $x - ty \ge 0$. A winning move consists of moving to a pair with one element equal

- 21. Show that every sequence of moves starting with the pair $\{a,b\}$ must eventually end with the pair $\{0, (a, b)\}.$
- * 22. Show that in a game beginning with the pair $\{a, b\}$, the first player may play a winning strategy if a = b or if $a > b(1 + \sqrt{5})/2$; otherwise, the second player may play a winning strategy. (*Hint*: First show that if $y < x \le y(1 + \sqrt{5})/2$, then there is a unique move from $\{x, y\}$ that goes to a pair $\{z, y\}$ with $y > z(1 + \sqrt{5})/2$.)
- * 23. Show that the number of bit operations needed to use the Euclidean algorithm to find the greatest common divisor of two positive integers a and b with a > b is $O((\log_2 a)^2)$. (Hint: First show that the complexity of division of the positive integer q by the positive integer d is $O(\log d \log q)$.)
- * 24. Let a and b be positive integers and let r_j and q_j , j = 1, 2, ..., n be the remainders and quotients of the steps of the Euclidean algorithm as defined in this section.

 - a) Find the value of $\sum_{j=1}^{n} r_{j}q_{j}$. b) Find the value of $\sum_{j=1}^{n} r_{j}^{2}q_{j}$.
 - 25. Suppose that a and b are positive integers with $a \ge b$. Let q_i and r_i be the quotients and remainders in the steps of the Euclidean algorithm for i = 1, 2, ..., n, where r_n is the last nonzero remainder. Let $Q_i = \begin{pmatrix} q_i & 1 \\ 1 & 0 \end{pmatrix}$ and $Q = \prod_{i=0}^n Q_i$. Show that $\begin{pmatrix} a \\ b \end{pmatrix} = Q \begin{pmatrix} r_n \\ 0 \end{pmatrix}$.