Sec. 3.4 idaals and Quotient Rings

unit clement 1 + £, We might ask: In what relation is &/ to B7 With
the experience we now have in hand this is easy 1o answer. There 15 a
homomorphism ¢ of R orte R{L given by ¢ia) = a + U for every a e R,
whose kernel 15 exactly L. (The reader should verify that ¢ so defined 15 a
homomaorphism of £ onto £/ £ with kernel ')

We summarizge these remarks in

LEMMA 3.41 4 U is an ideal of the ring R, then R/L7 is a ring and ir @
homemorfrhic Bage of R

With this consiruction ol the guotient ring of a ring by an ideal satisfaclorily
accomplished, we are ready 1o bring over w0 rings the howmomorphisim
theorems of groups. Since the proof is an exact verhatim translation of that
[or groups tnio the language of rings we merely state the theorem without
proof, referring the reader to Chapter 2 for the pronf.

THEQREM 341 [Lat R R be rings and o a2 homomorphisne of R onte R with
Earnel {1 Then R' is isomorphic to B Moreoper there is g one-towone correspondence
betiwesn the set of ideals of R' and the set of ideals of K which contain L' Thic
correspondence car be achicved &y associaling with an ideal W' in R the ideal TV in
R odefieed By W = {xe R di(x)e W' With W 1o defined, RIW i isomorphic
o B’/ W',

Problems

A1 I 0 an deal of R and 1 € £, prove that I = R,

# 2. ITFis a field, prove its only ideals are {0] and F itselll

# 3. Prove that any homomnrphism of a field is either an isomorphism or
lakes each element inlo 0.

# 4 1f Bis a commutative ring and a & &,
(a) Show that afl = {arir e R} is a two-sided eal of R,
{13} Show by an example that this inay be false if R is not coonmutative.

5 I D F are ideals of B, let T+ F={u+viuel’,ve¥}) Poove
that &7 + F is also an ideal,

6 IFE, Vare ideals of & let £7F be the set of all elements that can be
wrilien as finite sums of elements of the form wr where 2z e U7 and
ve V. Prove that UF s an ideal of £

Z 7. In Prollem 6 prove that UF = U7 n V.

# 4. T Ris the ring of integers, 1et £7 be the ideal consisting of all mulliples
of 17. Prove that if ¥ iz an ideal of # and # = ¥ o £ then either
V= Ror = U Generalize!
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s 9,

7 10.
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*12.

*13.

If U is an ideal of R, let r{U) ={xeR|xu =0forallue U}
Prove that r(U) is an ideal of R.

If U is an ideal of R let [R:U] = {xe R |rx € Ufor everyre R}.
Prove that [R:U] is an ideal of R and that it contains U.

Let R be a ring with unit element. Using its elements we define a
ring R by defining a@ b =a + 4 +1, and a+b =ab + a + &,
where a,# € R and where the addition and maultiplication on the
right-hand side of these relations are those of R.

(a) Prove that Fis a ring under the operations & and .

(b) What acts as the zero-element of R?

(c) What acts as the unit-clement of £?

(d) Prove that R is isomorphic to K.

In Example 3.1.6 we discussed the ring of rational 2 x 2 matrices,
Prove that this ring has no ideals other than (0) and the ring itself.

In Example 3.1.8 we discussed the real quaternions. Using this as a

model we define the quaterions over the integers mod p, p an odd

prime number, in exactly the same way; however, now considering

all symbols of the form ay + ot + o, + o3k, where o, o, %;, &3

are integers mod p,

(a) Prove that this is a ring with p* elements whose only ideals are
(0) and the ring itself,

**(bx) Prove that this ring is not a division ring.

If R is any ring a subset L of R is called a lgft-ideal of R if

1. L is asubgroup of R under addition.
2 reR, aelimpliesraecl.

(One can similarly define a nghitdeal.) An ideal is thus simultaneously a
left- and right-ideal of R.

s 14,
7 15,
7 16.

s 17,

s 18.

*19.

7 20.

For ae R let Ra = {xa|x € R}. Prove that Ra is a left-ideal of R.
Prove that the intersection of two left-ideals of R is a left-ideal of R.

What can you say about the intersection of a left-ideal and right-ideal
of R?

If Ris a ring and ae R let r(a) = {xe R |ax = 0}. Prove that
r(a} is a right-ideal of R.

If Ris a ring and L is a left-ideal of R let (L) = {xe R| xa = 0 for
alla e L}. Prove that (L) is a two-sided ideal of R.

Let R be a ring in which x* = x for every xe R. Prove that R is a
commutative ring.

If R is a ring with unit element 1 and ¢ is 2 homomorphism of R onto
R' prove that ¢(1) is the unit element of R’



Sec. 35 More ldaals and Quotiant Rings

# 21. I Ris a ring with unit element | and § is a homomaorphism of R inio
an integral domain & such that £(g] % A, prove that ¢+{1) is the unit
element of £

3.5 More idaals and Ouotient Rings

We continue the discussion of ideals and quotient rings.

Let us take the point of view, for the moment at least, that a ficld is the
mnst desirable kind of ring. Why? I for no other reason, we can divide in
a ficld, so operations and results in a field more closely approximale our
experience with real and complex numbers. In additinn, as was illustrated
by Froblem 2 in the preceding prohlem set, a field has no homomorphic
images other than itzelf or the wivial ring consisting of 0, Thus we cannnt
siinplify a feld by applying a homomorphisin to it. Taking these remarks
inta consideration it 13 natural that we Iry 10 link a general ring, in some
fashinn, with fields. What should thiz linkage involve® We have a machinery
whose companent paris are homomorphisms, ideals, and gquotient rings.
With these we will lorge the link,

But first we must make precise the rather vague remarks of the preceding
paragraph. We now ask the explicit question: Under what conditions is the
homomorphic image of a ring a feld? For cominutative rings we give a
conplete answer in this section.

Esszential to treating this question is the converse to the result of Problem
2 of the problem list at the end of Section 3.4

LEMMA 3.5 Lot K be a commutative ring with unil element whose onfy ideals
are (0 and R itsell. Them R iva field.

Proof.  In order to effect a proof of this lemma for any a 2 0 & we
tnust produce an clement & # 0 s & such thatab = 1.

Sn, supprse that a ¢ 0 iz in & Conzider the set 82 = {za| xg £
We claim that fais an ideal of &. In order to cstablish this as fact we must
show that it iz 2 mbgroup of & under addition and that if ¥ & £2 and
re R then ru iz alzo in #a. {We only need to check that ru iz in Ra for
then wr also is since e = ar)

Now, il w,ee Be, then 2 = 70, v = nya for some #,r, e 8 Thus
4+ v =10+ a =1t + ty)acRa;similarly ~v = —ra="{—racRa
Henece fais an additive subgroup of . Moreover, if r € R, ra = ¢{ra) =
(rr e e Ra. Ra therelore satishies all the delining conditions for an ideal
of 8, hence is an ideal of £ (INotice that both the distributive law and
associative law of multiplication were used in the proof of this fact.)

By our assumptions on &, 82 = (0} or 82 = K. Since 0 # a = lag Ra,
Ra # (055 thus we are kMl with the only other possibility, namely that
fla = X. 'l'his last cquation states that every clement in & is a multiple of
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