18 Chapter 2

The notation for a diagonal matrix does not include the size of the matrix. This will cause no confusion in what follows. The size of a diagonal matrix will always be clear from the context in which it appears.

EXERCISES

- 1. Show the ring $M_{n\times n}(\mathbb{Z})$ has infinitely many two-sided, proper ideals. Contrast this with the situation in Exercise 1 of Chapter 1.
- 2. Let $T = M_{n \times n}(R)$. Set

$$S = \{E_{ii} \mid 1 \le i, j \le n\} \cup \{0\}$$

Show S is closed under multiplication in T.

3. Suppose $R = R_1 \oplus \cdots \oplus R_s$ is a direct sum of (commutative) rings R_1, \ldots, R_s . Show

$$M_{n\times n}(R) \cong M_{n\times n}(R_1) \oplus \cdots \oplus M_{n\times n}(R_s)$$

4. Let T be a ring. The center, C(T), of T is defined as follows:

$$C(T) = \{x \in T \mid xy = yx \text{ for all } y \in T\}$$

Compute $C(M_{n\times n}(R))$.

- 5. Let T be a ring. Let $M_{n\times n}(T)$ denote the set of all $n\times n$ matrices with entries from T. Define addition and multiplication in the usual ways: If A,B $\in M_{n\times n}(T)$, then $[A + B]_{ij} = [A]_{ij} + [B]_{ij}$ and $[AB]_{ij} = \sum_{k=1}^{n} [A]_{ik} [B]_{kj}$ for all $i,j=1,\ldots n$. Show that $M_{n\times n}(T)$ is an associative ring with identity. Is $M_{n\times n}(T)$ a T-algebra ?
 - 6. Show $M_{n \times n}(M_{m \times m}(R)) \cong M_{nm \times nm}(R)$ by using block addition and multiplication.
- 7. Let X be an indeterminate over the commutative ring R. Let $(M_{n \times n}(R))[X]$ denote the set of all polynomials in X with coefficients from $M_{n \times n}(R)$. Show that $(M_{n \times n}(R))[X]$ is a ring with the usual definitions of addition and multiplication of polynomials. Is $(M_{n \times n}(R))[X]$ commutative?
 - 8. Using the notation in Exercise 7, show $(M_{n \times n}(R))[X] \cong M_{n \times n}(R[X])$.
 - Let Tr: M_{n×n}(R) → R denote the trace mapping. Thus, if A ∈ M_{n×n}(R), then Tr(A) = ∑_{i=1}ⁿ [A]_{ii}. Verify the following statements:
 - (a) Tr $\in \operatorname{Hom}_R(M_{n \times n}(R),R)$.
 - (b) Tr(AB) = Tr(BA) for all $A, B \in M_{n \times n}(R)$.
 - (c) Tr(A') = Tr(A) for all $A \in M_{n \times n}(R)$.
 - (d) The R-submodule Ker(Tr) is generated as an R-module by the following set of matrices:

$$\{E_{ij} \mid 1 \le i \ne j \le n\} \cup \{E_{11} - E_{ii} \mid i \ne 1\}$$

Prove the assertions in 2.13 and 2.14.