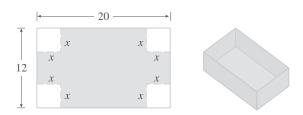
47–51 III Find a formula for the described function and state its domain.

- **47.** A rectangle has perimeter 20 m. Express the area of the rectangle as a function of the length of one of its sides.
- **48.** A rectangle has area 16 m². Express the perimeter of the rectangle as a function of the length of one of its sides.
- **49.** Express the area of an equilateral triangle as a function of the length of a side.
- **50.** Express the surface area of a cube as a function of its volume.
- **51.** An open rectangular box with volume 2 m³ has a square base. Express the surface area of the box as a function of the length of a side of the base.

. .

52. A Norman window has the shape of a rectangle surmounted by a semicircle. If the perimeter of the window is 30 ft, express the area *A* of the window as a function of the width *x* of the window.

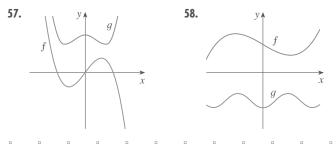
53. A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 12 in. by 20 in. by cutting out equal squares of side *x* at each corner and then folding up the sides as in the figure. Express the volume *V* of the box as a function of *x*.



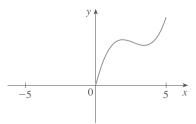
54. A taxi company charges two dollars for the first mile (or part of a mile) and 20 cents for each succeeding tenth of a mile (or part). Express the cost *C* (in dollars) of a ride as a function of the distance *x* traveled (in miles) for 0 < x < 2, and sketch the graph of this function.

- **55.** In a certain country, income tax is assessed as follows. There is no tax on income up to \$10,000. Any income over \$10,000 is taxed at a rate of 10%, up to an income of \$20,000. Any income over \$20,000 is taxed at 15%.
 - (a) Sketch the graph of the tax rate *R* as a function of the income *I*.
 - (b) How much tax is assessed on an income of \$14,000? On \$26,000?
 - (c) Sketch the graph of the total assessed tax *T* as a function of the income *I*.
- **56.** The functions in Example 10 and Exercises 54 and 55(a) are called *step functions* because their graphs look like stairs. Give two other examples of step functions that arise in everyday life.

57–58 III Graphs of f and g are shown. Decide whether each function is even, odd, or neither. Explain your reasoning.



- **59.** (a) If the point (5, 3) is on the graph of an even function, what other point must also be on the graph?
 - (b) If the point (5, 3) is on the graph of an odd function, what other point must also be on the graph?
- **60.** A function f has domain [-5, 5] and a portion of its graph is shown.
 - (a) Complete the graph of f if it is known that f is even.
 - (b) Complete the graph of f if it is known that f is odd.



61–66 III Determine whether f is even, odd, or neither. If f is even or odd, use symmetry to sketch its graph.

EXAMPLE 14 Simplify the expression $\cos(\tan^{-1}x)$.

SOLUTION 1 Let $y = \tan^{-1}x$. Then $\tan y = x$ and $-\pi/2 < y < \pi/2$. We want to find $\cos y$ but, since $\tan y$ is known, it is easier to find sec y first:

$$\sec^2 y = 1 + \tan^2 y = 1 + x^2$$

$$\sec y = \sqrt{1 + x^2} \qquad (\text{since sec } y > 0 \text{ for } -\pi/2 < y < \pi/2)$$

$$\cos(\tan^{-1} x) = \cos y = \frac{1}{\sec y} = \frac{1}{\sqrt{1 + x^2}}$$

Thus

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier to use a diagram. If $y = \tan^{-1}x$, then $\tan y = x$, and we can read from Figure 24 (which illustrates the case y > 0) that

$$\cos(\tan^{-1}x) = \cos y = \frac{1}{\sqrt{1+x^2}}$$

The inverse tangent function, $\tan^{-1} = \arctan$, has domain \mathbb{R} and range $(-\pi/2, \pi/2)$. Its graph is shown in Figure 25.

We know that the lines $x = \pm \pi/2$ are vertical asymptotes of the graph of tan. Since the graph of tan⁻¹ is obtained by reflecting the graph of the restricted tangent function about the line y = x, it follows that the lines $y = \pi/2$ and $y = -\pi/2$ are horizontal asymptotes of the graph of tan⁻¹.

The remaining inverse trigonometric functions are not used as frequently and are summarized here.

11 $y = \csc^{-1}x \ (|x| \ge 1) \iff \csc y = x \text{ and } y \in (0, \pi/2] \cup (\pi, 3\pi/2]$ $y = \sec^{-1}x \ (|x| \ge 1) \iff \sec y = x \text{ and } y \in [0, \pi/2) \cup [\pi, 3\pi/2]$ $y = \cot^{-1}x \ (x \in \mathbb{R}) \iff \cot y = x \text{ and } y \in (0, \pi)$

The choice of intervals for y in the definitions of \csc^{-1} and \sec^{-1} is not universally agreed upon. For instance, some authors use $y \in [0, \pi/2) \cup (\pi/2, \pi]$ in the definition of \sec^{-1} . [You can see from the graph of the secant function in Figure 26 that both this choice and the one in (11) will work.]

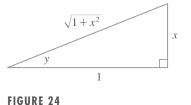
Exercises

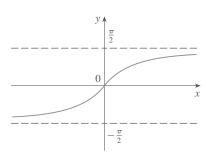
- (b) How can you tell from the graph of a function whether it is one-to-one?
- (a) Suppose f is a one-to-one function with domain A and range B. How is the inverse function f⁻¹ defined? What is the domain of f⁻¹? What is the range of f⁻¹?
 - (b) If you are given a formula for *f*, how do you find a formula for *f*⁻¹?

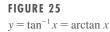
(c) If you are given the graph of f, how do you find the graph of f^{-1} ?

3–14 III A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

3.	x	1	2	3	4	5	6
	f(x)	1.5	2.0	3.6	5.3	2.8	2.0







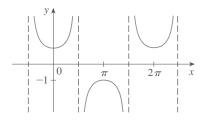
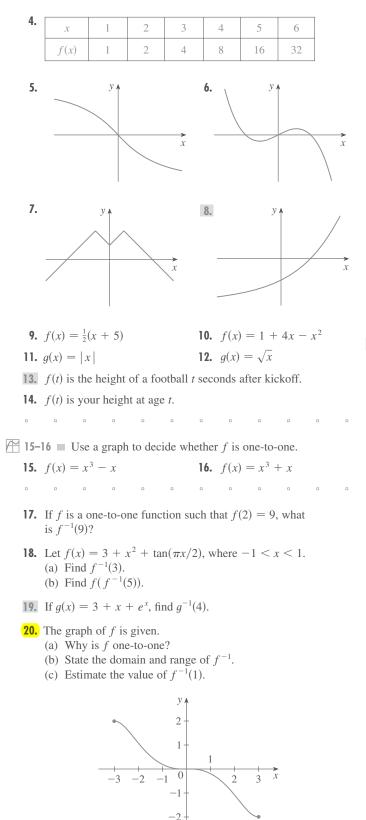


FIGURE 26

 $y = \sec x$

1.6



- **21.** The formula $C = \frac{5}{9}(F 32)$, where $F \ge -459.67$, expresses the Celsius temperature *C* as a function of the Fahrenheit temperature *F*. Find a formula for the inverse function and interpret it. What is the domain of the inverse function?
- **22.** In the theory of relativity, the mass of a particle with speed v is

$$m = f(v) = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

where m_0 is the rest mass of the particle and c is the speed of light in a vacuum. Find the inverse function of f and explain its meaning.

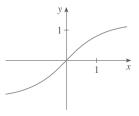
23–28 III Find a formula for the inverse of the function.

23. $f(x) = \sqrt{10 - 3x}$	24. $f(x) = \frac{4x - 1}{2x + 3}$
25. $f(x) = e^{x^3}$	26. $y = 2x^3 + 3$
27. $y = \ln(x + 3)$	28. $y = \frac{1 + e^x}{1 - e^x}$

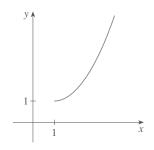
29–30 IIII Find an explicit formula for f^{-1} and use it to graph f^{-1} , f, and the line y = x on the same screen. To check your work, see whether the graphs of f and f^{-1} are reflections about the line.

29. $f(x) = 1 - 2/x^2$, x > 0**30.** $f(x) = \sqrt{x^2 + 2x}$, x > 0

31. Use the given graph of f to sketch the graph of f^{-1} .



32. Use the given graph of f to sketch the graphs of f^{-1} and 1/f.



- **33.** (a) How is the logarithmic function $y = \log_a x$ defined? (b) What is the domain of this function?
 - (c) What is the domain of this function?
 - (d) Sketch the general shape of the graph of the function $y = \log_a x$ if a > 1.