Sec. .3 Roots of Polynomials

Ft By Theorem 5.3.2, [E:F] <€ 3! = 6; by the above remark, since
x? — 2 is irreducible over F and since [F({;’é} :F] = 3, by the corollary to
Theoraw 5.1.1, 3 = [F(/2).F] | [EF]. Finally, [E:F] > [F(¥/2):F] = 3.
The only way out is [E:F] = 6. We could, of course, get this result by
making two extensions F, = F[%} and E = F,(w) and showing that @
satisfies an irreducible quadratic equation over F;,

3. Let F be the field of rational numbers and let
flx) =x*+ 22 + 1eF[x].

We claim that £ = F(w), where @ = (—1 + \fgi)fﬂ, is a splitting field
of f(x}. Thus [E:F] = 2, far short of the maximum possible 4 = 24.

Problems

l. In the proof of Lemma 5.3.1, prove that the degree of g{x) is one less
than that of p(x}.
2. In the proof of Theorem 5.3.1, prove in all detail that the elements
1+ Vox + V..., ! + Vform a basis of E over F.
3. Prove Liemma 5.3.3 in all detail.
4. Show that T** in Lemma 5.3.4 is well defined and is an isomorphism
of Flx]{(f (x}} onto F[t]/(f'(e}).
5. In Example 3 at the end of this section prove that F (@} is the splitting
field of x* + x* + 1.
6. Let F be the field of rational numbers. Determine the degrees of the
splitting fields of the following polynomials over F.
() x* + 1. (b) x% + 1.
Epxt — 2. (dy «* — 1.
(e) ¥ +x3+ 1.
7. If p is a prime number, prove that the splitting field over F, the field
of rational numbers, of the polynomial x* — 1 is of degree p — 1.
*%8. If » > 1, prove that the splitting field of »* — 1 over the field of
rational numbers is of degree ®(n) where @ is the Euler ®-function.
(This is a well-known theorem. I know of no easy solution, so don’t
be disappointed if you fail to get it. If you get an easy proof, I would
like tosee it. This problem occurs in an equivalent form as Problem 15,
Section 5.6.)

*0. If F is the field of rational numbers, find necessary and sufficient
conditions on a and ¢ so that the splitting field of x* + ax + & has
degree exactly 3 over F.

10. Let p be a prime number and let F = J,, the field of integers mod p.
{a) Prove that there is an irreducible polynomial of degree 2 over F.
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228 Flalds Ch. 5

(b) Use this polynomial to construct a field with p? elements.
*(c) Prove that any two irreducible polynomials of degree 2 over F
lead to isomorphic fields with p? ele ments.

11. If £ is an extension of F and if f(x) € F[x] and if ¢ s an automor-
phism of £ leaving every element of F fixed, prove that ¢ must take a
root of f (x) lying in £ into a root of f(x) in £

12. Prove that F(VE], where F is the field of rational numbers, has no
automorphisms other than the identty automorphism.

13. Using the result of Problem 11, prove that if' the complex number
a is a root of the polynomial p(x) having real coefficients then @, the
complex conjugate of o, is also a root of p(x).

14." Using the result of Problem 11, prove that if m is an integer which is
not a perfect square and if & + Bdm (x, B rational) is the root of a
polynomial p(x) having ralfonal coefficients, then o — B\/; is also a
root of p(x).

®15. If F is the field of real numbers, prove that if ¢ is an automorphism
of F, then ¢ leaves every element of F fixed.

16 (a) Find all real guaternions ¢ = a4 + a,f + dy5 + a:k satisfying

2= —]
®(b) For a { as in part {a) prove we can find a real guaternion s such
that sts™?! = i,

54 Construction with Straightedge and Compass

We pause in our general development to examine some implications of the
results obtained so far in some familiar, geometric situations.

A real number x is said to be a constructibie number if by the use of straight-
edge and compass alone we can construa a line segment of length o2 We
assume that we are given some fundamental unit length, Recall that from
high-school geometry we can construct with a straightedge and compass a
line perpendicular to and a line paralle] to a given line through a given
point. From this it is an easy exercise (see Problem 1) to prove that if
a and § are constructible numbers then so are o + §, af,, and when § £ 0,
#/B. Therefore, the set of constructible numbers form a subfield, IV, of the

field of real numbers.
In particular, since 1 e W, W must contain F,, the field of rational

numbers. We wish to study the relation of I to the rational field.

Since we shall have many occasions to use the phrase “construct by
straightedge and compass” (and variants thereof) the words consirwct, con-
structible, consiruction, unll alivays mean by straightedge and compass.

If v € W, we can reach w from the rational field by a finii¢e number of

constructions.
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of K. But then they have a nontrivial greatest common divisor over K,
which must be a divisor of x — & Since the degree of x — # is 1, we see
that the greatest common divisor of g(x) and A(x) in K[x] is exactly x — 4.
Thus x — & € K[x], whence & e K; remembering that X = F(¢), we obtain
that & e F{¢). Since a = ¢ — pb, and since b,c e F(s), ye F < F(d), we
get that ae F(¢), whence F(a, b) « F(¢). The two opposite containing
relations combine to yield F (s, &) = F{¢).

A simple induction argument extends the result from 2 elements to any

finite number, that is, if «,, ..., &, are algebraic over F, then there is an
clement ¢e Fa,,...,a,) such that F{¢) = F(a,,...,«,). Thus the

COROLLARY Auny finite extension of a field of characteristic O is a simple extension.

Problems

. If F is of characteristic 0 and f(x) e F[x] is such that f'(x) = 0,
prove that f(x) = ¢t e F.

2. If F is of characteristic p % 0 and if F(x) e F[x] is such that
SF(x) =0, prove that f(x) = g(x") for some polynomial g(x) € F[x].

3. Prove that {f(x) + g(x})) =f'(x) + g'(x) and that (af (x)})' =
af ‘(x) for f (x)}, g(x) € F[x] and ¢ € F.

4. Provethat there s no rational functionin F(x) such thatits square i x.

5. Complete the induction needed to establish the corollary to Theorem
3.3.1.

An element g in an extension K of F is called separabie over F ifit satisfies
a polynomial over F having no multiple roots. An extension K of F is
called separabie over F if all its elements are separable over F. A field F
is called perfect if all finite extensions of F are separable,

6. Show that any field of characteristic 0 is perfect.
7. () If Fis of characteristic p 0 show that for a, b F, {a + b)7" =
a?™ + 67",
(b) If F is of characteristic p % 0 and if X is an extension of F let
T = {ae K| a” € Ffor somen}. Prove that T is a subfield of
K.
8. If X, T, F arc as in Problem 7(b) show that any automorphism of X
leaving every element of F fixed also leaves every element of T fixed.

*9. Show that a field F of characteristic p ¢ 0 is perfect if and only if
for every a € F we can find a # € Fsuch that b = a,

10, Using the result of Problem 9, prove that any finite field is perfect.
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