10 RIN{IS AND IDEALS

Example. Consider Z ~» Z[i], where i = v'—1. A prime ideal (p) of Z may or
may net stay prime when extended 1o Z[{). 1n fact Z[{] iz a principal ideal
domain {because it has a Euclidean algorithm) and the situation is as follows:

1) (2F = {(I + i)®), the square of a prime idzal in Z[i];

u) If p = 1 (mod 4) then (p) is the product of two distinet prime ideals

{for example, (5¥ = (2 + H(2 ~ §);

i) If p = 3 {mod 4) then (z)* is prime in Z[i].
Of these, ii} is not a trivial result, It is effectively cquivalent to a theorem of
Fermat which says that 2 prime p = 1 {mod 4) can be expressed, essentially
uniguely, as a sum of two integer squares (thus 5 = 22 + 12,97 = 99 4+ 42
etc. ).

In fact the behavior of prime ideals under extensions of this sort is one of the
central problems of algebraic number theory.

Let /i 4 —+ B, nand b be ag before. Then
Prapesition 1.17. 1) a = a*, b = b,
11] bt = ﬁcs-:l I “sca;

liiy If C is the set of contructed ideals in 4 and if E is the set of extended ideals
in B, then C = {a|o* = o}, £ = {8]6° = b}, and 2+ o* is a bijective map
of C vnte E, whote inverse is b~ b°
Proof. i) is trivial, and if) follows from .
i) If ac, then @ = b* = poee — oo conversely if o = a then a is the
contraction of o°. Smnilarly for £ =

Exercise 1.18, I u., a, are ideals of 4 and i 01, %y are ideals of B, then

(0 + @)* = a7 = af, (b, + b = B§ + b3,
([ Mag)l < afmag, o (B M B)T = B M bE,
{oa:)° = ajaj, {0,8:)° = hibg,
(1702 & (af:af), (By:62)° < (B{:B5).
rial* = rfa®), riby = r(B°).

The set of ideals E is efosed wmder son and product, and C is closed under
the other three operations.

"ring" means commutative ring with 1
EXERCISES :

# 1. Let x be a nilpotent element of 3 ting A, Bhow that | + xisaunit of 4. Deduce
that the sum of a nilpotent element and a unit iz a unit,

2. Let 4 be a ring and let Alx] be the ring of polynoemials in an indeterminate X,
with coefficients in 4, Let F=wo+ax+- -+ ax"=d[x] Prove that

EXERCSES 11

S0 Fis a unit in Alx) = 8, is a unit in 4 and 1.« .5 dn 2r¢ nilpotent, ([If
ba + b:x +-. 4 Bux™ iz the inverse of £ prove by induction on + thar
67" bm_. = 0. Hence show that s, is nilpotent, and then use Ex, 1.]

1) £i5 nilpotent <= gy, @1, ...y Uy are nilpotent.

i) fis 2 zero-divisor < there cxists 2 # 0in A4 such that qf = 0. [Choose 3
polynomial g = by + byx 4+ -+ + &% of least degrec # such that 7 = g,
Then g.b, = 0, henee a8 = 0 (because anx annikilates £ and has degree
< m), MNow show by induction that -k =005 rs5 m]

v} £issaid to be primitive if (#m ...y @) = (1% Prove that if F. &£ e Alx], then
J¥ 15 primitive = Fand g are primitive,

Generalize the sesults of BExervize 2 to g palynomizl ving Alx., . .., x.] in several

indcterninates,

4. In the ring 4[x), the Jacobson radical is equal to the nilradical,

5. Let 4 be s ring and let Al[*]] be the ring of formal power series Ff= 30 s
with coefficicnts in 4. Show that
iy £is a umit in Af[x]] <= a; is & unit in 4.
ii} 1f § is nilpotent, then a, is nilpotent for all 7 = 0. [s the converse trie ?
(See Chapter 7, Exercise 2.3
ili] fbelongs to the Jacobson radjcal of A([x]] += 2, belngs to the Jacobson
radical of 4.
iv} The contraction of a maximai ideal m of A{[x1] is & maximal ideal of A, and
t is generated by m® and x.
v} Every prime ideal of 4 iz the contraction of o prime ideal of A[[x]].
6. A ring A i3 mch that every ideal not contained in the nilradica) containg & non-

Zer0 idempotent {that s, an element ¢ such that ¢° = ¢ # 0. Prove that the
nilradical and Jacobson radical of A are squal.

7. Let 4 be a ring in which évery clement x satisfics x" = x for some n > 1
(depending on x). Shew that every prime ideal in 4 is maximal.

8. Let 4 be aring # 0. Show that the sct of prime ideals of A has minimal elz-
rments with respect to inclusion.
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9. Leta be anideal # {1)in a ring 4. Show thata = rlay = ais an intersection
of prime ideals.

10. Let 4 be # ring, M its nilradical. Show that the following are equivalens:
i} 4 has exactly one prime ideal;

iiy every element of 4 is either 2 umir or nilpotent;

i) 4% is 2 field,

Aring 4is Booleonifx®* = xforallxc 4. Ina Boolean ring A, show that
i}2x = 0forall xe4;

i) every prime jideal p (s maximal, and Aip i3 & figld with two clements;

ili} every finitcly generated idealin A j3 pringipal.

12, A local ting contains no [dempotent = 0, 1.

Construction of an alyebraic closure of o field (E. Artin).
L3, Let £ be a field and let X be che set ol all irreducible mnic polynomizls £io one
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polynomial 2® + &2 ' + -+ + 6, where 6,,...,06, are in K. But K
is algebraic over F; therefore, by several uses of Theorem 5.1.3, M =
Flm,...,0.} iz a finite extension of F. Since u satisfies the polynomial
2+ o x4 g, whose coefficients are in M, v is algebraic over
M. Invoking Theorem 5.1.2 vields that Mu) iz a Anite extension of M
However, by Theorem 5.1.1, [M{u) ] = [M{u):M][M:F], whence
M{u) iz a finite extension of #. But this implies that u iz algebraic over F,
completing proof of the theorem.

A quick description of Theorem 3.1.5:; algebraicoveralgebraicis algebraic,

The preceding results are of special interest in the particular case in
which Fis the field of rational numbers and K the field of complex numbers.

DEFINITION A complex number is said to he an .:z{ge.ﬁra{c numher if it s
algebraic over the field of rational numbers.

A complex number which iz not algebraic iz called transcendenial. At the
presentstage we have no reason to suppose that there are any transcendental
numbers. In the next section we shall prove that the familiar real number
¢ iz transcendental. This will, of course, establish the existence of trans-
cendental numbers. In actual fact, they exist in great abundance; in a
very well-defined way there are more of them than there are algebraic
numbers.

Theorem 5.1.4 applied w algebraic numbers proves the inderesting fact
that the algebraic numbers farm a field; that is, the sum, products, and quotients
of algebraic numbers are again algebraic numbers.

Theorem 5.1.5 when used in conjunction with the so-called *fundamenta)
theorem of algebra,™ has the implication thai the roow of a polynomial
whose coefficients are algebraic numbers are themselves algebraic numbers,

Problems

2 1. Prove that the mapping J:F[x] = Fla) defined by Az = Ala)
is a homomorphism,

/2. Let F be a field and let F[x] be the ring of polynomials in x over F,
Let g{x), of degree n, be in F[x] and let ¥ = {g(x]) be the ideal
generated by glx) in Fx]. Prove that F[«x/F is an a-dimensional
vector space over f,

3 (a}) IV iz a finite-dimensional vector space over the field K, and if
F iz a subfield of K such that [K:F] is finite, show that I¥ is a
finite-dimenzional vector space over F and that moreover
dimg (V) = {dimg (V) (1K:F]).

(b) Show that Theorem 5.1.1 iz a special case of the result of part {a}.
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v i : = 3
5. With the same notation as in Problem 4, show that LR,

*,

Sec. 5.1 Extension Fields

{a) Let R he the field ﬂF real numhc,rs and  the field of rational
numbers, In R + /2 and '3 are both alg:bra.m over Q Exhibit
a polynomial of degree ¢ over ¢ satisfied by + fo + 43

b} What is the depree of 2+ 3 over 7 Prove vour answer.

i) What is the degree of V2 '3 over Qe

e
F 15

algebraic over £ of degree B
(a) Find an clement « € & such that /2, »':Er} = Qu).

{b) In J'.?(\.f-, 3,-';] characterize all the clements o such that w) #
=y -

Q2 ¥a).
7#(a) Prove that F(a, &) = Fib, a).
(L) IF (i), 45, ..., 1,) i5s anv permutation of {1, 2,..., n), prove that
F':ﬂl:l Ao }dl:l - F{aiﬁ Figsrnas ﬂh:"
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If ¢, b & K arc algebraic over F of degrees m and n, respectively,
and il m and » are relatively prime, prove that Fia, #) is of degree mn
over F.

Suppose that Fis a feld having a finite number of elements, g,

{a) Prove that there is a prime number psuch that e +a ++ - +a=0
for alle e F. T

(bl Prove that ¢ = p" for some integer

(c) Ifa e F, prove that a7 = a,

{d) If # € K is algebraic over F, prove §° = b for some m > 0.

An algebraic number 2 is said to be an afgebrate fnfeger if it satisfies an
equation of the form a™ + 0™ ! + <<« + 2, =0, where 2,..., &, are
integers.
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If a is any algebraic number, prove that there is a positive integer 8
such that na is an algebraic integer.

IT the rational number » is also an algebraic integer, prove that «
must be an ordinary integer.

If 2 is an algebraic integer and m 1s an ordinary integer, prove

(a) & + mis an alpebraic integer.

{bb] o is an algebraic integer.

. If @ is an algebraic integer satisfying @® + @ + 1 = 0 and f is an

algebraic integer satisfying f° + B — 3 = 0, prove that both

¢ + f and aff are alpebraic integers.

{a) Prove that the sum of two algebraic integers is an algebraic
integer.
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