- i) $(2)^s = ((1+i)^2)$, the square of a prime ideal in $\mathbb{Z}[i]$;
- ii) If $p = 1 \pmod{4}$ then $(p)^{\epsilon}$ is the product of two distinct prime ideals (for example, $(5)^{s} = (2 + i)(2 - i)$);
- iii) If $p \equiv 3 \pmod{4}$ then $(p)^{\theta}$ is prime in $\mathbb{Z}[i]$.

Of these, ii) is not a trivial result. It is effectively equivalent to a theorem of Fermat which says that a prime $p \equiv 1 \pmod{4}$ can be expressed, essentially uniquely, as a sum of two integer squares (thus $5 = 2^2 + 1^2$, $97 = 9^2 + 4^2$, etc.).

In fact the behavior of prime ideals under extensions of this sort is one of the central problems of algebraic number theory.

Let $f: A \rightarrow B$, a and 6 be as before. Then

Proposition 1.17. i) $a \subseteq a^{ac}$, $b \supseteq b^{cb}$;

- ii) $b^e = b^{eee}$, $a^e = a^{eee}$;
- iii) If C is the set of contracted ideals in A and if E is the set of extended ideals in B, then $C = \{\alpha | \alpha^{ec} = \alpha\}$, $E = \{b | b^{ee} = b\}$, and $\alpha \mapsto \alpha^e$ is a bijective map of C onto E, whose inverse is b -> b°.

Proof. i) is trivial, and ii) follows from i).

iii) If $a \in C$, then $a = b^{e} = b^{ee} = a^{ee}$; conversely if $a = a^{ee}$ then a is the contraction of as. Similarly for E.

Exercise 1.18. If a, a are ideals of A and if b, b are ideals of B, then

$$\begin{array}{lll} (a_1 + a_2)^e = a_1^e + a_2^e, & (b_1 + b_2)^e \supseteq b_1^e + b_2^e, \\ (a_1 \cap a_2)^e \subseteq a_1^e \cap a_2^e, & (b_1 \cap b_2)^e = b_1^e \cap b_2^e, \\ (a_1 a_2)^e = a_1^e a_2^e, & (b_1 b_2)^e \supseteq b_1^e b_2^e, \\ (a_1; a_2)^e \subseteq (a_1^e; a_2^e), & (b_1; b_2)^e \subseteq (b_1^e; b_2^e), \\ r(a)^e \subseteq r(a^e), & r(b)^e = r(b^e). \end{array}$$

The set of ideals E is closed under sum and product, and C is closed under the other three operations.

"ring" means commutative ring with 1 EXERCISES

- /1. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.
 - 2. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f = a_0 + a_1x + \cdots + a_nx^n \in A[x]$. Prove that

- / i) f is a unit in $A[x] \Leftrightarrow a_0$ is a unit in A and a_1, \ldots, a_n are nilpotent. [If $b_0 + b_0 x + \cdots + b_m x^m$ is the inverse of f, prove by induction on r that $a_n^{r+1}b_{m-r}=0$. Hence show that a_n is nilpotent, and then use Ex. 1.]
- /ii) f is nilpotent <> a₀, a₁, ..., a_n are nilpotent.
- iii) f is a zero-divisor \Leftrightarrow there exists $a \neq 0$ in A such that af = 0. [Choose a polynomial $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0. Then $a_n b_m = 0$, hence $a_n g = 0$ (because $a_n g$ annihilates f and has degree < m). Now show by induction that $a_n \cdot y = 0$ $(0 \le r \le n)$.
- iv) f is said to be primitive if $(a_0, a_1, \ldots, a_n) = (1)$. Prove that if $f, g \in A[x]$, then fy is primitive $\Rightarrow f$ and y are primitive.
- 3. Generalize the results of Exercise 2 to a polynomial ring $A[x_1, \ldots, x_r]$ in several indeterminates,
- In the ring A[x], the Jacobson radical is equal to the nilradical.
- 5. Let A be a ring and let A[[x]] be the ring of formal power series $f = \sum_{n=0}^{\infty} a_n x^n$ with coefficients in A. Show that
 - f is a unit in A[[x]] \(\to \alpha_0 \) is a unit in A.
 - ii) If f is nilpotent, then a_n is nilpotent for all $n \ge 0$. Is the converse true? (See Chapter 7, Exercise 2.)
 - iii) f belongs to the Jacobson radical of $A([x]) \Leftrightarrow a_0$ belongs to the Jacobson radical of A.
 - iv) The contraction of a maximal ideal m of A[[x]] is a maximal ideal of A, and m is generated by in and x.
 - v) Every prime ideal of A is the contraction of a prime ideal of A[[x]].
- 6. A ring A is such that every ideal not contained in the nilradical contains a non-Zero idempotent (that is, an element e such that $e^2 = e \neq 0$). Prove that the nilradical and Jacobson radical of A are equal.
- 7. Let A be a ring in which every element x satisfies $x^n = x$ for some n > 1(depending on x). Show that every prime ideal in A is maximal.
- 8. Let A be a ring \neq 0. Show that the set of prime ideals of A has minimal elements with respect to inclusion.
- 9. Let a be an ideal \neq (1) in a ring A. Show that $\alpha = r(\alpha) \Leftrightarrow \alpha$ is an intersection of prime ideals.
- 10. Let A be a ring, $\mathfrak N$ its nilradical. Show that the following are equivalent:
 - i) A has exactly one prime ideal;
 - ii) every element of A is either a unit or nilpotent;
 - iii) A/M is a field.
- 11. A ring A is Boolean if $x^2 = x$ for all $x \in A$. In a Boolean ring A, show that
 - i) 2x = 0 for all $x \in A$;
 - ii) every prime ideal p is maximal, and A/p is a field with two elements;
 - iii) every finitely generated ideal in A is principal.
- 12. A local ring contains no idempotent $\neq 0, 1$.

Construction of an algebraic closure of a field (E. Artin).

13. Let K be a field and let Σ be the set of all irreducible monic polynomials f in one

polynomial $x^n + \sigma_1 x^{n-1} + \cdots + \sigma_m$ where $\sigma_1, \ldots, \sigma_n$ are in K. But K is algebraic over F; therefore, by several uses of Theorem 5.1.3, $M = F(\sigma_1, \ldots, \sigma_n)$ is a finite extension of F. Since u satisfies the polynomial $x^n + \sigma_1 x^{n-1} + \cdots + \sigma_n$ whose coefficients are in M, u is algebraic over M. Invoking Theorem 5.1.2 yields that M(u) is a finite extension of M. However, by Theorem 5.1.1, [M(u):F] = [M(u):M][M:F], whence M(u) is a finite extension of F. But this implies that u is algebraic over F, completing proof of the theorem.

A quick description of Theorem 5.1.5; algebraic over algebraic is algebraic.

The preceding results are of special interest in the particular case in which F is the field of rational numbers and K the field of complex numbers.

DEFINITION A complex number is said to be an algebraic number if it is algebraic over the field of rational numbers.

A complex number which is not algebraic is called *transcendental*. At the present stage we have no reason to suppose that there are any transcendental numbers. In the next section we shall prove that the familiar real number ϵ is transcendental. This will, of course, establish the existence of transcendental numbers. In actual fact, they exist in great abundance; in a very well-defined way there are more of them than there are algebraic numbers.

Theorem 5.1.4 applied to algebraic numbers proves the interesting fact that the algebraic numbers form a field; that is, the sum, products, and quotients of algebraic numbers are again algebraic numbers.

Theorem 5.1.5 when used in conjunction with the so-called "fundamental theorem of algebra," has the implication that the roots of a polynomial whose coefficients are algebraic numbers are themselves algebraic numbers.

Problems

- 1. Prove that the mapping ψ :F[x] → F(a) defined by $h(x)\psi = h(a)$ is a homomorphism.
- ✓2. Let F be a field and let F[x] be the ring of polynomials in x over F. Let g(x), of degree n, be in F[x] and let V = (g(x)) be the ideal generated by g(x) in F[x]. Prove that F[x]/V is an n-dimensional vector space over F.
 - 3. (a) If V is a finite-dimensional vector space over the field K, and if F is a subfield of K such that [K:F] is finite, show that V is a finite-dimensional vector space over F and that moreover $\dim_F(V) = (\dim_K(V))([K:F])$.
 - (b) Show that Theorem 5.1.1 is a special case of the result of part (a).

- ✓4. (a) Let R be the field of real numbers and Q the field of rational numbers. In R, $\sqrt{2}$ and $\sqrt{3}$ are both algebraic over Q. Exhibit a polynomial of degree 4 over Q satisfied by $\sqrt{2} + \sqrt{3}$.
 - (b) What is the degree of $\sqrt{2} + \sqrt{3}$ over Q? Prove your answer.
 - (c) What is the degree of $\sqrt{2} \sqrt{3}$ over Q?
 - 5. With the same notation as in Problem 4, show that $\sqrt{2} + \sqrt[3]{5}$ is algebraic over Q of degree 6.
 - *6. (a) Find an element $u \in R$ such that $Q(\sqrt{2}, \sqrt[3]{5}) = Q(u)$.
 - (b) In $Q(\sqrt{2}, \sqrt[3]{5})$ characterize all the elements w such that $Q(w) \neq Q(\sqrt{2}, \sqrt[3]{5})$.
 - 7. (a) Prove that F(a, b) = F(b, a).
 - (b) If (i_1, i_2, \ldots, i_n) is any permutation of $(1, 2, \ldots, n)$, prove that

$$F(a_1, \ldots, a_n) = F(a_{i_1}, a_{i_2}, \ldots, a_{i_n}).$$

- ✓ 8. If a, b ∈ K are algebraic over F of degrees m and n, respectively, and if m and n are relatively prime, prove that F(a, b) is of degree mn over F.
- 19. Suppose that F is a field having a finite number of elements, q.
 - (a) Prove that there is a prime number p such that $a + a + \cdots + a = 0$ for all $a \in F$.
 - (b) Prove that $q = p^n$ for some integer n.
 - (c) If $a \in F$, prove that $a^q = a$.
 - (d) If $b \in K$ is algebraic over F, prove $b^{g^m} = b$ for some m > 0.

An algebraic number a is said to be an algebraic integer if it satisfies an equation of the form $a^m + \alpha_1 a^{m-1} + \cdots + \alpha_m = 0$, where $\alpha_1, \ldots, \alpha_m$ are integers.

- 10. If a is any algebraic number, prove that there is a positive integer n such that na is an algebraic integer.
- 11. If the rational number r is also an algebraic integer, prove that r must be an ordinary integer.
- 12. If a is an algebraic integer and m is an ordinary integer, prove
 - (a) a + m is an algebraic integer.
 - (b) ma is an algebraic integer.
 - 13. If α is an algebraic integer satisfying $\alpha^3 + \alpha + 1 = 0$ and β is an algebraic integer satisfying $\beta^2 + \beta 3 = 0$, prove that both $\alpha + \beta$ and $\alpha\beta$ are algebraic integers.
- **14. (a) Prove that the sum of two algebraic integers is an algebraic integer.