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divides the characteristic polynomial of T.

(c) Let T be alinear operator on a finite-dimensional vector space V, and let
x and y be elements of V. If W is the T-cyclic subspace generated by x,
W' is the T-cyclic subspace generated by y, and W = W/, then x = y.

(d) If T is a linear operator on a finite-dimensional vector space V, then for
any x e V the T-cyclic subspace generated by x is the same as the T-
cyclic subspace generated by T(x).

(e) Let T be a linear operator on an n-dimensional vector space. Then there
exists a polynomial g(t) of degree n such that g(T) =T,

(f) Any polynomial of the form

(—=D)"ap + art+ -+ a,_ "7+ t7)

is the characteristic polynomial of some linear operator.

() If Tis a linear operator on a finite-dimensional vector space V, and if V
is a direct sum of k T-invariant subspaces, then there is a basis § for V
such that [T], is a direct sum of k matrices.

2. For each of the following linear operators T, determine if the given subspace

W is a T-invariant subspace of V.

(@) V= P5{R), T(f) = f', and W = P,(R)

(b) V = P(R), T(f)x) = xf(x), and W = Py(R)

(© V=R3T@b c=@+b+c,a+b+c,a+b+c),and
W={(t t): teR}

(d) V= C(0, 1), T(/)1) = U J) dX}T and

W = {f e V: f(f) = at + b for some a and b}
0
(&) V=M,,,(R), T4 = (1 é)A and W= {AdeV: 4'= 4}
N
-3. Let T be a linear operator on a finite-dimensional vector space V. Prove that
the following subspaces are T-invariant.
(a) {0} and V
(b) N(T) and R(T)
(c) E;, for any eigenvalue 4 of T
| 4, Let T be a linear operator on a vector space V, and let W be a T-invariant
~ subspace of V. Prove that W is g(T)-invariant for any polynomial g(z).

5. Let T be a linear operator on a vector space V. Prove that the intersection of
. any collection of T-invariant subspaces of V is a T-invariant subspace of V.
-6. For each linear operator T on the vectorspace V find a basis for the T-cyclic
- subspace generated by the vector z.

@ V=R*T@bcd)=@+bb—ca+c,a+d),and z=e,

) V=PyR), T(f) = f", and z =%
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290 | ' : Chap. 5 Diagonalization

7. Prove that the restriction of a linear operator T to a T-invariant subspace is
a linear operator on that subspace.

8. Let T be a linear operator on a vector space with a T-invariant subspace W.
Prove that if x is an eigenvector of T\, with corresponding eigenvalue 4, then
the same is true for T.

9. For each linear operator T and cyclic subspace W of Exercise 6, compute the
characteristic pelynomial of Ty, in two ways as in Example 6.

| B
10. Verify that 4 = (If; BZ) in the proof of Theorem 5.26.

3

11. Let T be a linear operator on a vector space V, let x be a nonzero element of
V, and let W be the T-cyclic subspace of V generated by x. Prove:

(a) W is T-invariant.
(b) Any T-invariant subspace of V containing x also contains W.

12. For each linear operator of Exercise 6, find the characteristic polynomial
f(¢) of Tiand verify that the characteristic polynomial of Ty, (computed in
Exercise 9)-divides f(¢). “

13. Let T be a linear operator on a vector space V, let x be a nonzero element of
V, and let W be the T-cyclic subspace of V generated by x. For any y eV,
prove that ye W if and only if there exists a polynomial g(f) such that
y = g(T)x.

14. Prove that the polynomial g(z) of Exercise 13 can always be chosen so that
its degreé is less than or equal to dim(W).

15. Use the Cayley—-—Hamllton theorem (Theorem 5. 28) to prove its corollary for
matrices.

16. Let T be a linear operator on a finite-dimensional vector space V.

(a) Prove that if the characteristic polynomial of T splits, then so does the
characteristic polynomial of the restriction of T to any T-invariant
subspace of V.

(b) Deduce that if the characteristic polynomial of T splits, then any
nontrivial T-invariant subspace of V contains an eigenvector of T.

17. Let A be an n x n matrix. Prove that
dim(span({I,, 4, 4%,...,}) <n.
18. Let A be an n x n matrix with characteristic polynomial
JO=(=0""+a,_t""' + - + a;t + a,.

(a) Prove that A is invertible if and only if ay # 0.
(b) Prove that if 4 is invertible, then

A7 = (= Hag(— 1 A + gy 72 4 e 4 ay],),
(¢) Use part (b) to cofnpute A~! for
1 2 1
A={ 0 2 3
0 0 -1
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19. Let A denote't‘h'é k x k matrix

20.

21.

22.

/0 0 -+ 0 —a
1 O - O -—a1

0 1 "" 0 —d, '

0 0 e 0 “—ak_.z

jr—y

where aq, ay,...,a,— are arbitrary scalars. Prove that the characteristic
polynomial of 4 is

(_l)k(ao + alt + .- +‘ak_.1tk—'1 + tk). '

Hint: Use mathematical induction on k, expanding the determinant along

the first row. -

Let T be a linear operator on a vector space V, and suppose that V is a T-
cyclic subspace of itself. Prove that if U is a linear operator on V, then
UT = TU if and only if U = g(T) for some polynomial g(f). Hint: Suppose
that V is generated by x. Choose g(t) according to Exercise 13 so that
g(ME) = U).

Let T be a linear operator on a two-dimensional vector space V. Prove that
either V is a T-cyclic subspace of itself or T = cl for some scalar c.

Let T be a linear operator on a two-dimensional vector space V and suppose
that T # cl for any scalar c. Show that if .U is any linear operator on V such
that UT = TU, then U = g(T) for some polynomial g(z).

23. Lt T be a diagonalizable linear operator on'a.finite-dimensional vector

space V, and let W be a T-invariant subspace of V. Suppose that x,, x,, ...,
x, are eigenvectors of T corresponding to distinct eigenvalues. Prove that if
Xy + X, + -+ + X, is in W, then x; e W for all i. Hint: Use mathematical
induction on k.

. Prove that the restriction of a diagonalizable linear operator T to any

nontrivial T-invariant subspace is also dlagonallzable Hint: Use the result
of Exercise 23.

. (a) Prove a converse of Exercise 16(a) of Section 52: If T and U are

diagonalizable linear operators on a ﬁmte-dlmensmnal vector space V
such that UT = TU, then T and U are simultaneously diagonalizable. (See
i the definition in the exercises of Section 5.2.) Hint: For any eigenvalue 4
of T show that E; is U-mvarlant and apply Exercise 24 to obtain a basis
- for E; of eigenvectors of T.
(b) State and prove a matrix version of (a).

-Exercises 26 through:30 require familiarity with Exercise 29 of Section 1.3 and

Exercise 30 of Section 2.1. It is also advisable to review Exercise 26 of Section 1.6

and Exern;m: 22 Of anfion 24
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BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA
FACULTAD DE CIENCIAS FISICO MATEMATICAS

Prof. CARLOS ALBERTO LOPEZ ANDRADE
Materia: ALGEBRA LINEAL

1) Encuentre todas las formas candnicas de Jordan posibles para aquéllas matrices cuyos
polinomio caracteristico p(t) y polinomio minimo m(¢) son:

a) p(t) = (t = 2)*(t = 3)*, m(t) = (t — 2)*(t — 3)°

b) p(t) = (t=7)°, m(t) = (t = 7)*
c) p(t) = (t=2)7, m(t) = (t - 2)°
d) plt) = (¢ =3)'(t = 5)%, m(t) = (=37t — 5
11) Hallar la forma canénica de Jordan para cada matriz A:
a)
-3 3 -2
A=1| -7 6 -3
1 -1 2
b)
2 -1 01
0 3 -10
A=1o 1 10
0 -1 0 3
c)
21 00
02 10
A= 00 30
01 -1 3
d) i i
20000 O
12000 0
-10200 O
A= 01020 O
11112 0
| 00001 —1]

111) El operador derivacion sobre el espacio de los polinomios de grado menor o igual a 3
estd representado en la base ordenada candnica por la matriz

o O OO
o O O
S O N O
S w o o

(Cual es la forma canénica de Jordan para esta matriz?

Carlos Alberto Lopez Andrade 1 FCFM-BUAP



1v) Para cada operador lineal 7" Encuentre la forma canénica de Jordan .J de 7.

a) V es el espacio vectorial sobre R generado por el conjunto {1,¢,t% €', te'} de
funciones definidas en R y 7" es el operador lineal sobre V' definido por T'(f) = f.

b) T es el operador lineal sobre Ms,2(R) definido por

T(A)—[(l) HA,

para cada A € My,o(R).

Puebla, Pue., a 30 de abril de 2017

Carlos Alberto Lopez Andrade 2 FCFM-BUAP



