308

8.3

8.4

Cryptology

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Encrypt some messages for your classmates to decrypt using exponentiation ciphers.

2. Decrypt messages encrypted by your classmates using exponentiation ciphers, given the
encryption key and prime modulus. |
Programming Projects

Write computer programs using Maple, Mathematica, or a language of your choice to do the
following.

1. Encrypt some messages for your classmates to decrypt using exponentiation ciphers.

2. Decrypt messages encrypted by your classmates using exponentiation ciphers, given the
encrypting key and prime modules.

Public Key Cryptography

The cryptosystems we have discussed so far are all examples of private key, or symmetric
cryptosystems, where the encryption and decryption keys are either the same or can be
easily found from each other. For example, in a shift cipher, the encrypting key is an
integer k and the corresponding decrypiing key is the integer —k. In an affine cipher, the
encrypting key is a pair (g, b) and the corresponding decrypting key is the pair (@, —ab),
where @ is an inverse of @ modulo 26. In a Hill cipher, the encrypting key is an n X 1
matrix A and the corresponding decrypting key is the n X n matrix A, where A is an
inverse of the matrix A modulo 26. In the Pohlig-Hellman exponentiation cipher, the
encrypting key is (g, p), where p is a prime, and the corresponding decrypting key
is (d, p), where d is an inverse of ¢ modulo p - 1. For the DEA, the encrypting and
decrypting keys are exactly the same.

For that reason, if one of the cryptosystems discussed so far is used to establish se-
cure communications within a network, then each pair of communicants must employ an
encryption key that is kept secret from the other individuals in the network, because once
the encryption key in such a cryptosystem is known, the decryption key can be found us-
ing a small amount of computer time. Consequently, to maintain secrecy, the encryption
keys must themselves be transmitted over a channel of secure communications.

To avoid assigning a key to each pair of individuals, which must be kept secret from
the rest of the network, a new type of cryptosystem, called a public key cryptosystem, was
invented in the 1970s. In this type of cryptosystem, encrypting keys can be made public,
because an unrealistically large amount of computer time is required to find a decrypting
transformation from an encrypting transformation. To use a public key cryptosystem to
establish secret communications in a network of # individuals, each individual produces
a key of the type specified by the cryptosystemn, retaining certain private information that
went into the construction of the encrypting transformation E (k), obtained from the key

8.4 Public Key Cryptography 309

k according to a specified rule. Then a directory of the n keys &, ky, ..., k, ispublished.
When individual wishes to send a message to individual j, the letters of the message
are translated into their numerical equivalents and combined into blocks of specified
size. Then, for each plaintext block 7 a corresponding ciphertext block ¢ — E (P) is
computed using the encrypting transformation Ekj. To decrypt the message, individual
7 applies the decrypting transformation Dkf_ to each ciphertext block C to find P; that s,

ij((:) = DR}(EkJ(P)) =P.

Because the decrypting transformation Dkf cannot be found in a realistic amount of time
by anyone other than individual ;, no unauthorized individuals can decrypt the message,
even though they know the key k ;- Furthermore, cryptanalysis of the ciphertext message,
even with knowledge of & -, is extremely infeasible due to the large amount of computer
time needed.

Many cryptosystems have been proposed as public key cryptosystems. All but a
few have been shown to be unsuitable, by demonstrating that ciphertext messages can
be decrypted using a feasible amount of computer time. In this section, we will introduce
the most widely used public key cryptosystem, the RSA cryptosystem. In addition, we
will introduce several other public key cryptosystems, including the Rabin public key
cryptosystem, which we will discuss at the end of this section, and the ElGamal public
key cryptosystem, which we will discuss in Chapter 10. The security of these systems
rests on the difficulty of two computationally intensive mathematical problems, factoring
integers (discussed in Chapter 3} and finding discrete logarithms (to be discussed in
Chapter 9). In Section 8.5, we will describe a proposed public key cryptosystem, the
knapsack cryptosystem, that turned out not to be suitable as a basis for a public key
cryptosystem. (See [MevaVa97] for a comprehensive look at most of the important public
key cryptosystems.)

Although public key cryptosystems have many advantages, they are not extensively
used for general-purpose encryption. The reason is that encrypting and decrypting in
these cryptosystems require too much time and memory on most computers, generally
several orders of magnitude more than required for symmetric cryptosystems currently
in use. However, public key cryptosystems are used extensively to encrypt keys for
symmetiic cryptosystems such as DES, so that these keys can be transmitted securely.
They are also used in a wide variety of cryptographic protocols, such as in digital
signatures (discussed in Section 8.6). They are also particularly useful for applications
involving smart cards and electronic commerce,

Alsonote thatin modern cryptography, the cryptosystem used to encrypt messages is
publicly known. Consequently, the secrecy of encrypted messages does not depend on the
secrecy of the encryption algorithm in use. For symmetric key cryptosystems, the secrecy
of messages depends on the secrecy of the encryption key in use and the computational
difficulty of finding this key from other information (such as plaintext-ciphertext pairs).
For public key cryptosystems, secrecy rests on the secrecy of the decryption key and
the computational difficulty of finding this key from the encryption key and other public
information (such as plaintext-ciphertext pairs).

310

Cryptology

The RSA Cryptosystem

The RSA cryptosysten, invented by Ronald Rivest, Adi Shamir, and Leonard Adleman
[RiShAd78] in the 1970s {(and patented by them [RiShAd83] in 1983) is a public key
cryptosystem based on modular exponentiation, where the keys are pairs (e, n1) consisting
of an exponent e and a modulus # that is the product of two jarge primes; that is, n = pg,
where p and g are large primes, so that (e, ¢(n)) = 1. To encrypt a message, we first
translate the letters into their numerical equivalents and then form blocks of the lgrgest
possible size (with an even number of digits). To encrypt a plaintext block P, we form
a ciphertext block C by

E(P)=C=Pf(modn), 0xC<n.

The decrypting procedure requires knowledge of an inverse d of ¢ modulo ¢ {(x), which
exists because (e, ¢(n)) = 1. To decrypt the ciphertext block C, we find

RONALD RIVEST (b. 1948) received his B.A. from Yale University in 1969
and his Ph.D. in computer science from Stanford University in 1974. He is 2
professor of computer science at MLLT,, and a cofounder of RSA Data Security,
Inc. {now a subsidiary of Security Dynamics), the company that holds the patents
on the RSA cryptosystem. Rivest has worked in the areas of machine learning,
computer algorithms, and VLSI design. He is one of the authors of a popular
textbook on algorithms ([ColeRi01]).

ADI SHAMIR (b. 1952) was born in Tel Aviv, Israel. He received his under-
graduate degree from Tel Aviv University in 1972, and his Ph.D. in computer
science from the Weizmann Institute of Science in 1977, He held a research as-
sistantship at the University of Warwick for one year, and in 1978 he became an
assistant professor at M.L'T. He is now a professor in the Applied Mathermatics
Department at the Weizmann Institute in Tsrael, where he formed a group to
study computer security. Shamir has made many contributions to cryptography
besides coinventing the RSA cryptosystem, including cracking the knapsack

o h
= 5o

cryptosystem proposed as a public cryptosystem by Merkle and Hellman, developing numerous cryp-
tographic protocols, and creative cryptanalysis of DES. '

LEONARD ADLEMAN (b. 1945) was born in San Francisco, California. He
received his B.S. in mathematics and his Ph.D. in computer science from the
University of California, Berkeley, in 1968 and 1976, respectively. He was a
member of the mathematics faculty at M.LT. from 1976 until 1980; during his
stay atM.I.T., he helped invent the RSA cryptosystem. In 1980 he was appointed
to a position in the computer science department of the University of Southem
California, and to a chaired professorship in 1985. Adleman has worked in
the areas of computational complexity, cornputer security, immunology, and

molecular biology, in addition to his work in cryptography. He coined the term “computer virus” His
recent work on computing using DNA has attracted great interest. Adleman served as the technical
adviser for the movie Sneakers, in which computer security figured prominently.

8.4 Public Key Cryptography 311

D(C)=C? = (P4 = ped — prpi)+1
= (P*"N'P = P (mod n),

whete ed = k(1) + 1 for some integer k, because ed = 1 (mod @ (n)), and by Euler's
theorem, we have P#%) = 1 (mod), when (P, n) = 1 the (probability that P and # are
not relatively prime is extremely small; sce Exercise 4 at the end of this section). The
pait (d, n) is a decrypting key.

Example 8.16. To illustrate how the RSA cryptosystem works, suppose that the en-
crypting modulus is the product of the two primes 43 and 59 (which are smaller than the
large primes that would actuall y be used); thus, we have n = 43 . 59 = 2537 as the mod-
ulus. We take e = 13 as the exponent; note that we have (e, ¢ (n)) = (13,42 - 58) = 1, To
encrypt the message

PUBLIC KEY CRYPTOGRAPHY,

we first translate the letters into their numerical equivalents, and then group these
numbers together into blocks of four. We obtain

1520 0111 0802 1004
2402 1724 1519 1406
1700 1507 2423,

where we have added the dummy letter X == 23 at the end of the passage to fill out the
finat block.

We encrypt each plaintext block into a ciphertext block, using the relationship
C = P"¥ (mod 2537).
For ipstance, when we encrypt the first plaintext block 1520, we obtain the ciphertext
block
C = (1520)"* = 95 (mod 2537).
Encrypting all the plaintext blocks, we obtain the ciphertext message

0095 1648 1410 1299
0811 2333 2132 0370
1185 1957 1084.

To decrypt messages that have been encrypted using this RSA cipher, we must find an
inverse of ¢ = 13 modulo ¢(2537) = @(43-59) =42 . 58 = 2436, A short computation
using the Euclidean algorithm, as done in Section 4.2, shows thatd = 937 is an inverse of
13 modulo 2436. Consequently, to decrypt the ciphertext block C, we use the relationship

P =C%% (mod 2537), 0< P <2537,
which is valid because

€7 = (P13 = (P2365p = p (mod 2537).

312

Cryptology

Note that we have used Euler’s theorem to see that
po@Es3n — p246 = | (mod 2537),

when (P, 2537) = 1 (which is true for all of the plaintext blocks in this example). g

The Security of the RSA Crypfosystem 'To understand how the RSA cryptosystem
fulfills the requirements of a public key cryptosystem, first note that each individual can
find two large primes p and g, each with 100 decimal digits, in just a few minutes of
computer time. These primes can be found by picking odd integers with 100 digits at
random; by the prime number theorem, the probabitity that such an integer is prime
is approximately 2/log 10190, Hence, we expect to find a prime after examining an
average of 1/(2/log 1010%), or approximately 115, such integers. To test these randomly
chosen odd integers for primality, we use Rabin’s probabilistic primality test (discussed
in Section 6.2). For each of these 100-digit odd integers we perform Miller’s test for 100
bases less than the integer; the probability that a composite integer passes all these tests
is less than 107%0. The procedure we have just outlined requires only a few minutes of
computer time to find a 100-digit prime, and each individual need do so only twice.

Once the primes p and g have been found, an encrypting exponent ¢ must be chosen
such that (e, (pg)) = 1. One suggestion for choosing e is to take any prime greater than
both p and g. No matter how e is found, it should be true that 2¢ > n = pq, so that it
is impossible to recover the plaintext block P, P # 0 or 1, just by taking the eth root of
the integer C with C = P* (mod n), 0 = C <n. Aslong as 2° > n, every message, other
than P = 0 and 1, is encrypted by exponentiation followed by a reduction modulo n.

We note that the modular exponentiation needed for encrypting messages using
the RSA cryptosystem can be done using only a few seconds of computer time when
the modulus, exponent, and base in the modular exponentiation have as many as 200
decimal digits. Also, using the Euclidean algorithm, we can rapidly find an inverse d
of the encryption exponent ¢ modulo ¢ () when the primes p and g are known, so that
¢(n) = (pg) =(p— (g — 1 is known.

To see why knowledge of the encrypting key (e, 1) does not easily lead to the
decrypting key (d, n), note that to find d, an inverse of e modulo ¢ (1}, requires that
we first find ¢ () = ¢ (pg) = (p — D(g — 1. Note that finding ¢ (n) is not easier
than factoring the integer n. To see why, note that p +-g=n — d(r)+1land p—
g=+p+q?—dpg=+(p+q?—adnandthat p=;[(p+q) +(p—g)andg =
%[(p +q) — (p — @)). Consequently, p and g can easily be found when n = pg and
&)= (p — (g — 1) are known. Note that when p and g both have approximately
100 decimal digits, n = pgq has approximately 200 decimal digits. Using the fastest
factorization algorithm known, millions of years of computer time are required to factor
an integer of this size. Also, if the integer 4 is known, but ¢{n) is not, then n may also
be factored casily, since ed — 1is a multiple of ¢(n) and there are special algorithms for
factoring an integer 1 using any multiple of ¢ (n} (see {MIi76]).

It has not been proven that it is impossible to decrypt messages encrypted using the
RSA cryptosystem without factoring 7, but so far no such method has been discovered.

8.4 Public Key Cryptography 313

As yet, all decrypting methods that work in general are equivalent to factoring # and, as
we have remarked, factoring large integers seems to be an intractable problem, requiring
tremendous amounts of computer time. If no method of decrypting RSA messages
without factoring the modulus # is found, the security of the RSA system can be
maintained as factoring methods and computational power improve, by increasing the
size of the modulus. Unfortunately, messages encrypted using the RSA will become
vulnerable to attack when factoring the modulus 7 becomes feasible. This means that
extra care should be taken—for example, by using primes p and ¢ each with several
hundred digits—to protect the secrecy of messages that must be kept secret for tens, or
hundreds, of years.

Note that a few extra precautions should be taken in choosing the primes p and
¢ to be used in the RSA cryptosystem, to prevent the use of special rapid techniques
to factor # = pg. For example, both p — land g — 1 should have large prime factors,
(P — 1,4 — 1) should be small, and p and ¢ should have decimal expansions differing
in length by a few digits.

As we have remarked, the security of the RSA cryptosystem depends on the difficulty
of factoring large integers. In particular, for the RSA cryptosystem, once the modulus
n has been factored it is easy to find the decrypting transformation from the encrypting
transformation. Note, however, that it may be possible to somehow find the decrypting
transformation from the encrypting transformation without factoring n, although this
seems unlikely at present.

Attacks on Implementations of the RSA Cryptosystem

After 20 years of scrutiny, a variety of attacks on particular implementations of the
RSA cryptosystem have been devised. These attacks show that care must be taken
when implementing RSA to avoid particular vulnerabilities. Note that no fundamental
vulnerability has been found that would make RSA unsuitable for use as a public key
cryptosystem. We will describe a variety of these attacks. The interested reader should
consult {Bo99).

Encrypting the same plaintext message with different keys can lead to a successful
Hastad broadcast attack. For example, when the encryption exponent 3 is used by three
different people with different encryption moduli to encrypt the same plaintext message,
someone who has the three ciphertext messages produced can recover the original plain-
text. In general, it is possible to recover a plaintext message from ciphertext produced
by encrypting the message using different RSA encryption keys when sufficiently many
copies of the message have been encrypted. This type of attach can even succeed if the
original message is altered for each recipient in a way that produces linearly related
plaintext. To avoid this vulnerability, different random paddings of the message should
be encrypted.

We now describe a vuinerability of RSA found by M. Wiener [Wi90]. He showed
that the decrypting exponent of an RSA cryptosystem with encrypting key (e, 1) canbe
efficiently determined if n = pg, p and g are primes with g < p < 2¢g, and the decrypting
exponent d is less than n¥/*/3. (In Chapter 12 we will use the theory of continued

314

Cryptology

fractions to develop this attack.) This result shows that primes p and ¢ that are not
too close together should be used to produce the encrypting modulus and a decrypting
exponent d that is relatively Jarge should be used, Although it is customary to first select
the encryption key in an RSA cipher, we can make the decrypting exponent large by
selecting it first, and then using it to compute the encrypting exponent €.

Disclosing partial information about one of the primes that make up the encrypting
modulus 7 leads to another weakness of the RSA cryptosysteii. Suppose that n = pg
has m digits. Then knowing the initial n/4 or the final m /4 digits of p allows n to be
efficiently factored. Yor example, when both p and g have 100 decimal digits, if we
know the first 50 or the last 50 digits of p, we will be able to factor n. Details of this
partial key disclosure attack can be found in [Co97]. A similar resutt shows that if we
know the last m/4 digits of the decrypting exponent d, then we can efficiently find d
using O{e log e) operations. This shows that if the encryption exponent e is small, the
decryption exponent d can be found if we know the Iast 1/4 of its digits.

The final type of attack we mention was discovered by Paul Kocher in 1995 when
he was an undergraduate at Stanford University. He demonstrated that the decryption
exponent in the RSA cryptosystem can be determined by carefully measuring the time
required for the system to performa series of decryptions. This provides information that
can be used to determine the decryption key d. Fortunately, it is easy to devise methods
to thwart this attack. For a description of this attack, see [Trwa02] and the article by
Kocher [Ko%6al.

The widespread acceptance and use of the RSA cryptosystem makes in an inviting
target for attack. That only minor vulnerabilities have been found has given people con-
fidence in the practical use of this cryptosystem. This fuels the search for vulnerabilities
in this popular cryptosystem. -

The Rabin Cryptosystem

Michael Rabin [Ra79] discovered a variant of the RSA cryptosystem for which factor-
ization of the modulus # has almost the same computational complexity as obtaining
the decrypting transformation from the encrypting transformation. To describe Rabin’s
cryptosystem let n = pg, where p and g are odd primes, and let & be an integer with
0 < b < n. To encrypt the plaintext message F, we form

C == P(P - b) (mod n).

We will not discuss the decrypting procedure for Rabin ciphers here, because it relies
on some concepts that we have not yet developed (see Exercise 4% in Section 11.1).
However, we remark that there are four possible values of P for each ciphertext C such
that C = P(P + b) (mod n}, an ambiguity that complicates the decrypting process. When
p and g are known, the decrypting procedure for a Rabin cipher can be carried out rapidly
because O (log n) bit operations are needed.

Rabin has shown that if there is an algorithm for decrypting in this cryptosysten,
without knowledge of the primes p and g, that requires f{n) bit operations, then
there is an algorithm for the factorization of n requiring only 2(f(n) + log n) bit

