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Theoremd.7. Ifa, b, k, and m are integers such thatk > 0, > 0, anda = b {mod m1),
then a* = b* (mod m). .

Progf.  Because a = b (mod m), we have m | (a — b), and because
a =t =(a— b)Y+t apt B*Y,

we see that (@ — b) | (a* — b5). Therefore, by Theorem 1.8 it follows that m | {a* — b5,
Hence, a* = p* (mmod m). n

Example 4.11. Since 7 =2 (mod 5), Theorem 4.7 tells us that 343 — 73 =23 =
8 (mod 5). «

The following result shows how to combine congruences of two numbers to different
moduli.

Theorem4.8. Ifa =5 (modm,),a =b (mod m3), . .. ,a=b (modny), where a, b,

My, M, .. ., Iy are integers with my, mo, . . . | my, positive, then
a=b(modmy,m,,. .. oD,

where [, m,, . . ., m;] s the least common multiple of my, my, ..., my.

Progf. Because a = b {mod m ha=b(modm,),...,a=h {mod 1), we know that
mylla—>b),my|(a-b,.., -1y | (@ — b). By Exercise 39 of Section 3.5 we see that

[mpmy, .o mp )| (@ —b).
Consequently,
a=b(mod[my,my,. .., m. n
The following result is an immediate and useful consequence of this theorem.
Corollary 4.8.1. If ¢ = b (mod psa=b{modm,),...,a=h {mod m,}, where a

and b are integers and my, mt,, . . . » M1 are pairwise relatively prime positive integers,
then

a=b (mod mm, - - - my).

Proof.  Since my,my, . .., my are pairwise relatively prime, Exercise 68 of Section 3.5
tells us that

lmymy, . ml=mumy - my.
Hence, by Theorem 4.8, we know that

a=b (mod nyniy - - - my). - n

Modular Exponentiation

In our subsequent studies, we will be working with congruences involving large pow-
ers of integers. For example, we will want to find the least positive residue of 26
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modulo 645. If we attempt to find this least positive residue by first computing 2644,
we would have an integer with 194 decimal digits, a most undesirable thought. Instead,
to find 2% modulo 645 we first express the exponent 644 in binary notation:

(644) 1o = (1010000100),.

Next, we compute the least positive residues of 2, 22,24 28, ..., 2312 by successively
squaring and reducing moduto 645. This gives us the congruences

2 = 2 (mod 645),

22 = 4 (mod 645),

24 = 16 (mod 645),

28 = 256 (mod 645),

216 = 391 (mod 645),

232 = 16 (mod 645),

284 = 256 (mod 645),

2128 = 391 (mod 645),

286 = 16 (mod 645),

2512 = 256 (mod 645).

We can now compute 28 modulo 645 by multiplying the least positive residues of the
appropriate powers of 2. This gives

9644 _ 951212844 _ 9512912804 _ 556 .391. 16 = 1,601,536 = 1 (mod 645).

‘We have just illustrated a general procedure for nmodular exponentiation, that is, for
computing " modulo mt, where b, m, and N are positive integers. We first express the
exponent N in binary notation, as N = (agaz_1 - . . ajap)y. We then find the least positive
residues of b, b2, b%, . . . , b* modulom, by successively squaring and reducing modulo
. Finally, we multiply the least positive residues modulo m of b* for those j witha ;=1
reducing modulo m after each multiplication.

1n our subsequent discussions, we will need an estimate for the number of bit opera-
tions needed for modular exponentiation. This is provided by the following proposition.

Theorem 4.9. Let b, m, and N be positive integers such that » < m. Then the least
positive residue of b modulo m can be computed using O({log, m)? log, N} bit
operations,

Proof. To find the least positive residue of b¥ modulo m, we can use the algorithm
just described. First, we find the least positive residues of b, b bt ..., »* modulo n,
where 2% < N < 21, by successively squaring and reducing modulo m. This requires
a total of O ((log, m)* log, N) bit operations, because we perform [log, N] squarings
modulo mt, each requiring O ((log, m)%) bit operations. Next, we multiply together the
least positive residues of the integers b2’ corresponding to the binary digits of N that
are equal to one, and we reduce modulo /n after each multiplication. This also requires
O((log, m)2 log, N) bit operations, because there are at most logy; N multiplications,
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each requiring O((log, m)?) bit operations. Therefore, a total of O{(log, m)* log, N)
bit operations is needed. (]

4.1 Exercises
1. Show that each of the foliowing congruences holds.

a)13=1 (mod 2) e) —2 = I (mod 3)

b) 22 =7 (mod 5) f) —3=30 (mnod 11}
¢)91=0(mod 13) g) 111 = -9 (mod 40)
d) 69 =62 (mod 7) h) 666 = 0 (mod 37)

2. Determine whether each of the following pairs of integers is congruent modulo 7.

a) 1,15 d) —1.8
b) 0,42 e) —9,5
c)2,99 ) —1,699

3. For which positive integers m is each of the following statements true?

a) 27 =35 (mod m)
b) 1000 = ! (mod m)
c) 1331 =0 (mod m)

4. Show that if a is an even integer, then a? = {mod 4), and if & is an odd integer, then
al=1 (mod 4).
e 5. Show that if a is an odd integer, then ¢ = 1 (mod 8).

6. Find the least nonnegative residue modulo 13 of each of the following integers.

ay22 d) -1
b} 100 e) —100
¢) 1001 £) —1000
7. Find the least positive residue of 1!+ 2!+ 3! + - . . 4 100! modulo each of the following
integers.
a2 c) 12
b} 7 d) 25

8, Showthatifa, b, m, and n are integers such thatm > 0,5 > 0, n | m,and a = b (mod m),
then @ = b (mod n).

9. Showthatifa, b, ¢, and m are integers such that ¢ > 0, m > 0, and g = b (mod m), then
ac = be (mod mc).

10, Show that if a, b, and ¢ are integers with ¢ > 0 such thata = b(mod c¢), then (a, c) =
(b, c).

11. Show that if ap=b; (modm)for j=1,2,...,n wheremisa positive integer and ay,
bj, J=12,...,n, areintegers, then



