*3.17 (\boldsymbol{R}. \boldsymbol{A}. Dean) Defi ne \mathbb{E}_{4} to be the set of all 2×2 matrices

$$
\mathbb{F}_{4}=\left\{\left[\begin{array}{cc}
a & b \\
b & a+b
\end{array}\right]: a, b \in \mathbb{F}_{2}\right\}
$$

(i) Prove that \mathbb{F}_{4} is a commutative ring whose operations are matrix addition and matrix multiplication.
(ii) Prove that \mathbb{F}_{4} is a fi eld having exactly 4 elements.
(iii) Show that \mathbb{I}_{4} is not a fi eld.
3.18 Prove that every domain R with a fi nite number of elements must be a fi eld. Using Proposition 3.12, this gives a new proof of suffi ciency in Proposition 3.19.
*3.19 Find all the units in the ring $\mathbb{Z}[i]$ of Gaussian integers.
3.20 Show that $F=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a field.
*3.21 (i) Show that $F=\{a+b i: a, b \in \mathbb{Q}\}$ is a fi eld.
(ii) Show that every $u \in F$ has a factorization $u=\alpha \beta^{-1}$, where $\alpha, \beta \in \mathbb{Z}[i]$. (see Exercise 3.49(ii) on page 249.)
*3.22 If R is a commutative ring, defi ne a relation \equiv on R by $a \equiv b$ if there is a unit $u \in R$ with $b=u a$.
(i) Prove that \equiv is an equivalence relation.
(ii) If $a \equiv b$, prove that $(a)=(b)$, where $(a)=\{r a: r \in R\}$. Conversely, prove that if R is a domain, then $(a)=(b)$ implies $a \equiv b$.
3.23 If R is a domain, prove that there is no subfi eld K of $\operatorname{Frac}(R)$ such that

$$
R \subseteq K \subsetneq \operatorname{Frac}(R)
$$

*3.24 Let k be a fi eld with one ε, and let R be the subring

$$
R=\{n \varepsilon: n \in \mathbb{Z}\} .
$$

(i) If F is a subfi eld of k, prove that $R \subseteq F$.
(ii) Prove that a subfi eld F of k is the prime fi eld of k if and only if it is the smallest subfi eld of k containing R; that is, there is no subfi eld F with $R \subseteq F^{\prime} \subsetneq F$.
(iii) If R is a subfi eld of k, prove that R is the prime fi eld of k.
3.25 (i) Show that every subfi eld of \mathbb{C} contains \mathbb{Q}.
(ii) Show that the prime fi eld of \mathbb{R} is \mathbb{Q}.
(iii) Show that the prime fi eld of \mathbb{C} is \mathbb{Q}.
*3.26 (i) For any fi eld F, prove that $\Sigma(2, F) \cong \operatorname{Aff}(1, F)$, where $\Sigma(2, F)$ denotes the stochastic group (defi ned in Exercise 2.42 on page 144).
(ii) If F is a fi nite fi eld with q elements, prove that $|\Sigma(2, F)|=q(q-1)$.
(iii) Prove that $\Sigma\left(2, \mathbb{F}_{3}\right) \cong S_{3}$.

3.3 Polynomials

Even though the reader is familiar with polynomials, we now introduce them carefully. One modest consequence is that the mystery surrounding the "unknown" x will vanish.

Informally, a polynomial is an "expression" $s_{0}+s_{1} x+s_{2} x^{2}+\cdots+s_{n} x^{n}$. The key observation is that one should pay attention to where the coefficients of polynomials live.

Definition. If R is a commutative ring, then a sequence ${ }^{8}$ in R is a function $\sigma: \mathbb{N} \rightarrow R$.

Informally, the expression $s_{0}+s_{1} x+s_{2} x^{2}+\cdots+s_{n} x^{n}$ corresponds to the sequence ($s_{0}, s_{1}, s_{2}, \ldots, s_{n}, 0,0, \ldots$) of its coefficients.

As any function, a sequence σ is determined by its values; for each $i \in \mathbb{N}$, write $\sigma(i)=s_{i} \in R$, so that

$$
\sigma=\left(s_{0}, s_{1}, s_{2}, \ldots, s_{i} \ldots\right)
$$

The entries $s_{i} \in R$ are called the coefficients of the sequence. The term coefficient means "acting together to some single end." Here, coefficients combine with powers of x to give the terms of a sequence.

By Proposition 2.2, two sequences σ and τ in R are equal if and only if $\sigma(i)=\tau(i)$ for all $i \geq 0$; that is, $\sigma=\tau$ if and only if they have the same coefficients.

Definition. A sequence $\sigma=\left(s_{0}, s_{1}, \ldots, s_{i}, \ldots\right)$ in a commutative ring R is called a polynomial if there is some integer $n \geq 0$ with $s_{i}=0$ for all $i>n$; that is,

$$
\sigma=\left(s_{0}, s_{1}, \ldots, s_{n}, 0,0, \ldots\right) .
$$

A polynomial has only finitely many nonzero coefficients.
The sequence $\sigma=(0,0,0, \ldots)$ is a polynomial, called the zero polynomial; it is denoted by $\sigma=0$.

Definition. If $\sigma \neq 0$ is a polynomial, then there is a natural number n with $s_{n} \neq 0$ and $s_{i}=0$ for all $i>n$. One calls s_{n} the leading coefficient of σ, one calls n the degree ${ }^{9}$ of σ, and one denotes it by $\operatorname{deg}(\sigma)$.

The zero polynomial 0 does not have a degree because it has no nonzero coefficients; every other polynomial does have a degree.

Notation. If R is a commutative ring, then the set of all polynomials with coefficients in R is denoted by $R[x]$.

[^0]We will soon prove that a polynomial $\left(s_{0}, s_{1}, \ldots, s_{n}, 0,0, \ldots\right)$ of degree n can be written as $s_{0}+s_{1} x+s_{2} x^{2}+\cdots+s_{n} x^{n}$, but, until then, we proceed formally. Equip $R[x]$ with the following operations. Define

$$
\sigma+\tau=\left(s_{0}+t_{0}, s_{1}+t_{1}, \ldots, s_{i}+t_{i}, \ldots\right)
$$

and

$$
\sigma \tau=\left(a_{0}, a_{1}, \ldots, a_{k}, \ldots\right)
$$

where $a_{k}=\sum_{i+j=k} s_{i} t_{j}=\sum_{i=0}^{k} s_{i} t_{k-i}$; thus,

$$
\sigma \tau=\left(s_{0} t_{0}, s_{0} t_{1}+s_{1} t_{0}, s_{0} t_{2}+s_{1} t_{1}+s_{2} t_{0}, \ldots\right)
$$

We will soon prove that $R[x]$ is a commutative ring. The next proposition shows where the formula for multiplication comes from.

Proposition 3.23. If R is a commutative ring and $r, s_{i}, t_{j} \in R$ for $i \geq 0$ and $j \geq 0$, then

$$
\left(s_{0}+s_{1} r+\cdots\right)\left(t_{0}+t_{1} r+\cdots\right)=a_{0}+a_{1} r+\cdots+a_{k} r^{k}+\cdots,
$$

where $a_{k}=\sum_{i+j=k} s_{i} t_{j}$ for all $k \geq 0$.

Remark. This proof should be an induction on $k \geq 0$, but we give an informal proof instead.

Proof. Write $\sum_{i} s_{i} r^{i}=f(r)$ and $\sum_{j} t_{j} r^{j}=g(r)$. Then

$$
\begin{aligned}
f(r) g(r)= & \left(s_{0}+s_{1} r+s_{2} r^{2}+\cdots\right) g(r) \\
= & s_{0} g(r)+s_{1} r g(r)+s_{2} r^{2} g(r)+\cdots \\
= & s_{0}\left(t_{0}+t_{1} r+\cdots\right)+s_{1} r\left(t_{0}+t_{1} r+\cdots\right) \\
& \quad+s_{2} r^{2}\left(t_{0}+t_{1} r+\cdots\right)+\cdots \\
= & s_{0} t_{0}+\left(s_{1} t_{0}+s_{0} t_{1}\right) r+\left(s_{2} t_{0}+s_{1} t_{1}+s_{0} t_{2}\right) r^{2}+ \\
& \quad\left(s_{0} t_{3}+s_{1} t_{2}+s_{2} t_{1}+s_{3} t_{0}\right) r^{3}+\cdots .
\end{aligned}
$$

Lemma 3.24. Let R be a commutative ring and let $\sigma, \tau \in R[x]$ be nonzero polynomials.
(i) Either $\sigma \tau=0$ or $\operatorname{deg}(\sigma \tau) \leq \operatorname{deg}(\sigma)+\operatorname{deg}(\tau)$.
(ii) If R is a domain, then $\sigma \tau \neq 0$ and

$$
\operatorname{deg}(\sigma \tau)=\operatorname{deg}(\sigma)+\operatorname{deg}(\tau)
$$

Proof.
(i) Let $\sigma=\left(s_{0}, s_{1}, \ldots\right)$ have degree m, let $\tau=\left(t_{0}, t_{1}, \ldots\right)$ have degree n, and let $\sigma \tau=\left(a_{0}, a_{1}, \ldots\right)$. It suffices to prove that $a_{k}=0$ for all $k>m+n$. By definition,

$$
a_{k}=\sum_{i+j=k} s_{i} t_{j}
$$

If $i \leq m$, then $j=k-i \geq k-m>n$ (because $k>m+n$), and so $t_{j}=0$ (because τ has degree n); if $i>m$, then $s_{i}=0$ because σ has degree m. In either case, each term $s_{i} t_{j}=0$, and so $a_{k}=\sum_{i+j=k} s_{i} t_{j}=0$.
(ii) Now let $k=m+n$. With the possible exception of $s_{m} t_{n}$ (the product of the leading coefficients of σ and τ), the same calculation as in part (i) shows that each term $s_{i} t_{j}$ in

$$
a_{m+n}=s_{0} t_{m+n}+\cdots+s_{n-1} t_{m+1}+s_{n} t_{m}+s_{n+1} t_{m-1}+\cdots+s_{m+n} t_{0}
$$

is 0 . If $i<m$, then $m-i>0$, hence $j=m-i+n>n$, and so $t_{j}=0$; if $i>m$, then $s_{i}=0$. Hence

$$
a_{m+n}=s_{m} t_{n} .
$$

Since R is a domain, $s_{m} \neq 0$ and $t_{n} \neq 0$ imply $s_{m} t_{n} \neq 0$; hence, $\sigma \tau \neq 0$ and $\operatorname{deg}(\sigma \tau)=m+n=\operatorname{deg}(\sigma)+\operatorname{deg}(\tau)$.

Proposition 3.25.

(i) If R is a commutative ring, then $R[x]$ is a commutative ring that contains R as a subring.
(ii) If R is a domain, then $R[x]$ is a domain.

Proof.
(i) Addition and multiplication are operations on $R[x]$: the sum of two polynomials σ and τ is a sequence which is also a polynomial (indeed, either $\sigma+\tau=0$ or $\operatorname{deg}(\sigma+\tau) \leq \max \{\operatorname{deg}(\sigma), \operatorname{deg}(\tau)\}$, while the lemma shows that the sequence which is the product of two polynomials is a polynomial as well. Verifications of the axioms for a commutative ring are again routine, and they are left to the reader. Note that the zero is the zero polynomial, the one is the polynomial $(1,0,0, \ldots)$, and the negative of $\left(s_{0}, s_{1}, \ldots, s_{i}, \ldots\right)$ is $\left(-s_{0},-s_{1}, \ldots,-s_{i}, \ldots\right)$. The only possible problem is proving associativity of multiplication; we give the hint that if $\rho=\left(r_{0}, r_{1}, \ldots, r_{i}, \ldots\right)$, then the ℓ th coordinate of the polynomial $\rho(\sigma \tau)$ turns out to be $\sum_{i+j+k=\ell} r_{i}\left(s_{j} t_{k}\right)$, while the ℓ th coordinate of the polynomial $(\rho \sigma) \tau$ turns out to be $\sum_{i+j+k=\ell}\left(r_{i} s_{j}\right) t_{k}$; these are equal because of associativity of the multiplication in R.

It is easy to check that $R^{\prime}=\{(r, 0,0, \ldots): r \in R\}$ is a subring of $R[x]$, and we identify R^{\prime} with R by identifying $r \in R$ with $(r, 0,0, \ldots)$.
(ii) If R is a domain and if σ and τ are nonzero polynomials, then Lemma 3.24 shows that $\sigma \tau \neq 0$. Therefore, $R[x]$ is a domain.

Just as our assertion (in Theorem 3.21) that a domain is a subring of its fraction field was not quite true, so, too, our assertion here that a commutative ring R is a subring of $R[x]$ is not quite correct. There is a subring of $R[x]$, namely $R^{\prime}=\{(r, 0,0, \ldots): r \in R\}$, which strongly resembles R, and the statement of Proposition 3.25 will be made precise once the notion of isomorphism is introduced (see Example 3.31).

We can now recapture the usual notation.

Definition. Define the indeterminate to be the element

$$
x=(0,1,0,0, \ldots) \in R[x]
$$

Even though x is neither "the unknown" nor a variable, we call it the indeterminate to recall one's first encounter with it in high school (see the discussion on page 238). However, the indeterminate x is a specific element in the ring $R[x]$, namely, the polynomial $\left(t_{0}, t_{1}, t_{2}, \ldots\right)$ with $t_{1}=1$ and all other $t_{i}=0$. One reason we insist that commutative rings have ones is to enable us to make this definition; if the set E of even integers were a commutative ring, then $E[x]$ would not contain x (it would contain $2 x$, however). Note that if R is the zero ring, then $R[x]$ is also the zero ring.

Lemma 3.26.

(i) If $\sigma=\left(s_{0}, s_{1}, \ldots, s_{j}, \ldots\right)$, then

$$
x \sigma=\left(0, s_{0}, s_{1}, \ldots, s_{j}, \ldots\right)
$$

that is, multiplying by x shifts each coefficient one step to the right.
(ii) If $n \geq 1$, then x^{n} is the polynomial having 0 everywhere except for 1 in the nth coordinate.
(iii) If $r \in R$, then

$$
(r, 0,0, \ldots)\left(s_{0}, s_{1}, \ldots, s_{j}, \ldots\right)=\left(r s_{0}, r s_{1}, \ldots, r s_{j}, \ldots\right)
$$

Proof.
(i) Write $x=\left(t_{0}, t_{1}, \ldots, t_{i}, \ldots\right)$, where $t_{1}=1$ and all other $t_{i}=0$, and let $x \sigma=\left(a_{0}, a_{1}, \ldots, a_{k}, \ldots\right)$. Now $a_{0}=t_{0} s_{0}=0$ because $t_{0}=0$. If $k \geq 1$, then the only nonzero term in the sum $a_{k}=\sum_{i+j=k} s_{i} t_{j}$ is $s_{k-1} t_{1}=s_{k-1}$, because $t_{1}=1$ and $t_{i}=0$ for $i \neq 1$; thus, for $k \geq 1$, the k th coordinate a_{k} of $x \sigma$ is s_{k-1}, and $x \sigma=\left(0, s_{0}, s_{1}, \ldots, s_{i}, \ldots\right)$.
(ii) An easy induction, using (i).
(iii) This follows easily from the definition of multiplication.

If we identify $(r, 0,0, \ldots)$ with r, then Lemma 3.26(iii) reads

$$
r\left(s_{0}, s_{1}, \ldots, s_{i}, \ldots\right)=\left(r s_{0}, r s_{1}, \ldots, r s_{i}, \ldots\right)
$$

We can now recapture the usual notation.

Proposition 3.27. If $\sigma=\left(s_{0}, s_{1}, \ldots, s_{n}, 0,0, \ldots\right)$, then

$$
\sigma=s_{0}+s_{1} x+s_{2} x^{2}+\cdots+s_{n} x^{n}
$$

where each element $s \in R$ is identified with the polynomial $(s, 0,0, \ldots)$.
Proof.

$$
\begin{aligned}
\sigma & =\left(s_{0}, s_{1}, \ldots, s_{n}, 0,0, \ldots\right) \\
& =\left(s_{0}, 0,0, \ldots\right)+\left(0, s_{1}, 0, \ldots\right)+\cdots+\left(0,0, \ldots, s_{n}, 0, \ldots\right) \\
& =s_{0}(1,0,0, \ldots)+s_{1}(0,1,0, \ldots)+\cdots+s_{n}(0,0, \ldots, 1,0, \ldots) \\
& =s_{0}+s_{1} x+s_{2} x^{2}+\cdots+s_{n} x^{n} .
\end{aligned}
$$

We shall use this familiar (and standard) notation from now on. As is customary, we shall write

$$
f(x)=s_{0}+s_{1} x+s_{2} x^{2}+\cdots+s_{n} x^{n}
$$

instead of $\sigma=\left(s_{0}, s_{1}, \ldots, s_{n}, 0,0, \ldots\right)$.

Definition. If R is a commutative ring, then $R[x]$ is called the ring of polynomials over R.

Here is some standard vocabulary associated with polynomials. If $f(x)=$ $s_{0}+s_{1} x+s_{2} x^{2}+\cdots+s_{n} x^{n}$, where $s_{n} \neq 0$, then s_{0} is called its constant term and, as we have already said, s_{n} is called its leading coefficient. If its leading coefficient $s_{n}=1$, then $f(x)$ is called monic. Every polynomial other than the zero polynomial 0 (having all coefficients 0) has a degree. A constant polynomial is either the zero polynomial or a polynomial of degree 0 . Polynomials of degree 1 , namely, $a+b x$ with $b \neq 0$, are called linear, polynomials of degree 2 are quadratic, ${ }^{10}$ degree 3 's are cubic, then quartic, quintic, etc.

[^1]Corollary 3.28. Polynomials $f(x)=s_{0}+s_{1} x+s_{2} x^{2}+\cdots+s_{n} x^{n}$ and $g(x)=t_{0}+t_{1} x+t_{2} x^{2}+\cdots+t_{m} x^{m}$ are equal if and only if $s_{i}=t_{i}$ for all $i \in \mathbb{N}$.

Proof. We have merely restated the definition of equality of polynomials in terms of the familiar notation.

We can now describe the usual role of the indeterminate x as a variable. If R is a commutative ring, each polynomial $f(x)=s_{0}+s_{1} x+s_{2} x^{2}+\cdots+s_{n} x^{n} \in$ $R[x]$ defines a polynomial function $f^{b}: R \rightarrow R$ by evaluation: if $r \in R$, define $f^{b}(r)=s_{0}+s_{1} r+s_{2} r^{2}+\cdots+s_{n} r^{n} \in R$ [usually, one is not so fussy, and one writes $f(r)$ instead of $\left.f^{b}(r)\right]$. The reader should realize that polynomials and polynomial functions are distinct objects. For example, if R is a finite ring, e.g., \mathbb{I}_{m}, then there are only finitely many functions from R to itself; a fortiori, there are only finitely many polynomial functions. On the other hand, if R is not the zero ring, there are infinitely many polynomials. For example, all the powers $1, x, x^{2}, \ldots, x^{n}, \ldots$ are distinct, by Corollary 3.28.

Definition. Let F be a field. The fraction field of $F[x]$, denoted by $F(x)$, is called the field of rational functions over F.

Proposition 3.29. The elements of $F(x)$ have the form $f(x) / g(x)$, where $f(x)$, $g(x) \in F[x]$ and $g(x) \neq 0$.
Proof. By Theorem 3.21, every element in the fraction field $F(x)$ has the form $f(x) g(x)^{-1}$.

Proposition 3.30. If p is a prime, then the field of rational functions $\mathbb{F}_{p}(x)$ is an infinite field whose prime field is \mathbb{F}_{p}.
Proof. By Proposition $3.25, \mathbb{F}_{p}[x]$ is a domain. Its fraction field $\mathbb{F}_{p}(x)$ is a field containing $\mathbb{F}_{p}[x]$ as a subring, while $\mathbb{F}_{p}[x]$ contains \mathbb{F}_{p} as a subring, by Proposition 3.25. That \mathbb{F}_{p} is the prime field follows from Exercise 3.24 on page 232.

In spite of the difference between polynomials and polynomial functions (we shall see, in Corollary 3.52, that these objects coincide when the coefficient ring R is an infinite field), one often calls $R[x]$ the ring of all polynomials over R in one variable (or polynomials over R in one indeterminate). If we write $A=R[x]$, then the polynomial ring $A[y]$ is called the ring of all polynomials over R in two variables x and y (or indeterminates), and it is denoted by $R[x, y]$. For example, the quadratic polynomial $a x^{2}+b x y+c y^{2}+d x+e y+f$ can be written $c y^{2}+(b x+e) y+\left(a x^{2}+d x+f\right)$, a polynomial in y with coefficients in $R[x]$. By induction, one can form the commutative ring $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of all polynomials in n variables (or indeterminates) with coefficients in R.

[^0]: ${ }^{8}$ Sequences in R are also called formal power series (see Exercise 3.36 on page 240).
 ${ }^{9}$ The word degree comes from the Latin word meaning "step."

[^1]: ${ }^{10}$ Quadratic polynomials are so called because the particular quadratic x^{2} gives the area of a square (quadratic comes from the Latin word meaning 'four," which is to remind one of the 4 -sided fi gure); similarly, cubic polynomials are so called because x^{3} gives the volume of a cube. Linear polynomials are so called because the graph of a linear polynomial in $\mathbb{R}[x]$ is a line.

