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and has his or her name entered into the record books. Because there are infinitely many
prime numbers, there is always a prime larger than the current record. Looking for new
primes is done somewhat systematically; rather than checking randomly, people examine
numbers that have a special form. For example, in Chapter 7 we will discuss primes of
the form 27 — 1, where p is prime; such numbers are called Mersenne primes. We will
see that there is a special test that makes it possible to determine whether 27 — 1 is
prime, without performing trial divisions. The largest known prime number has been a
Mersenne prime for most of the past hundred years. Currently, the world record for the
largest prime known is 224036383 _ 1,

Formulas for Primes Is there a formula that generates onty primes? This is an-
other question that has interested mathematicians for many years. No polynormnial in
one variable has this property, as Exercise 23 demonstrates. It is also the case that
no polynomial in n variables, where n is a positive integer, generates only primes
(a result that is beyond the scope of this book). There are several impractical for-
mulas that generate only primes. For example, Mills has shown that there is a con-
stant © such that the function f{(n) = {©"] generates only primes. Here the value
of ® is known only approximately, with € = 1.3064. This formula is impractical for
generating primes not only because the exact value of & is not known, but also be-
cause to compute ® you must know the primes that f(n) generates {see [Mid7] for
details).

If no useful formula can be used to generate large primes, how can they be generated?
In Chapter 6, we will tearn how to generate large primes using what are known as
probabilistic primality tests.

Primality Proofs

If someone presents you with a positive integer n and claims that » is prime, how can you
be sure that  really is prime? We already know that we can determine whether # is prime
by performing trial divisions of # by the primes not exceeding /7. If # is not divisible
by any of these primes, it itself is prime. Consequently, once we have determined that
n is not divisible by any prime not exceeding its square root, we have produced a proof
that » is prime. Such a proof is also known as a certificate of primality.

Unfortunately, using trial division to produce a certificate of primality is extremely
inefficient. To see this, we estimate the number of bit operations used by this test. Using
the prime number theorem, we can estimate the number of bit operations needed to show
that an integer 7 is prime by trial divisions of 2 by all primes not exceeding /1. The prime
number theorem tells us that there are approximately //log /it = 2./n/log n primes
not exceeding /7. To divide n by an integer m takes O(logy 1 - log; m) bit operations.
Therefore, the number of bit operations needed to show that » is prime by this method is
at least (2./12/log n)(c log, n) = c+/n (where we have ignored the log, m term because it
is at least 1, even though it sometimes is as large as (logy #)/2). This method of showing
that an integer # is prime is very inefficient, for it is necessary not only to know all the
primes not larger than /71, but to do at least a constant multiple of /1 bit operations.
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To input an integer into a computer program, we input the binary digits of the integer,
Consequently, the computationai complexity of algorithms for determining whether an
integer is prime is measured in terms of the number of binary digits in the integer. By
Exercise 11 in Section 2.3 we know that a positive integer » has [log, n] + 1binary digits.
Consequently, a big-O estimate for the computational complexity of an algorithm in
terms of number of binary digits of » translates to the same big-O estimate in terms of
log, n, and vice versa. Note that the algorithm using trial divisions to determine whether
an integer » is prime is exponential in terms of the number of binary digits of », or
in terms of log, », because /7 = 21°824/2_ That is, this algorithm has exponential time
complexity, measured in terms of the number of binary digits in n. As n gets large,
an algorithm with exponential complexity quickly becomes impractical. Determining
whether a number with 200 digits is prime using trial division still takes billions of years
on the fastest computers.

Mathematicians have looked for efficient primality tests for many years, In par-
ticular, they have searched for an algorithm that produces a certificate of primality in
polynomial time, measured in terms of the number of binary digits of the integer input.
In 1975, G. 1. Miller developed an algorithm that can prove that an integer is prime
using O((log n)”) bit operations, assuming the validity of a hypothesis calied the gener-
alized Riemann hypothesis. Unfortunately, the generalized Riemann hypothesis remains
an open conjecture. In 1983, Leonard Adleman, Carl Pomerance, and Robert Rumely
developed an algorithm that can prove an integer is prime using (log n)¢legloglogn
operations, where c is a constant, Although their algorithm does not run in polynomial
time, it runs in close to polynomial time because the function log log log n grows so
slowly. To use their algorithm with an up-to-date PC to determine whether a 100-digit
integer is prime requires just a few milliseconds, determining whether a 400-digit inte-
ger is prime requires less than a second, and determining whether a 1000-digit integer is
prime takes less than an hour, (For more information about their test, see [AdPoRug3]
and [Ru83])

Until 2002, no one was able to find a polynomtial time algorithm for proving that a
positive integer is prime. In 2002, M. Agrawal, N. Kayal, and N. Saxena, an Indian
computer science professor and two of his undergraduate students, amnounced that
they had found an algorithm that can produce a certificate of primality for an integer
n using O{(log n)'2) bit operations. Their discovery of a polynomial time algorithm
for proving that a positive integer is prime surprised the mathematical community,
Their announcement stated that “PRIMES is in P.” Here, computer scientists denote
by PRIMES the problem of determining whether a given integer # is prime, and P
denotes the class of problems that can be solved in polynomial time. Consequently,
PRIMES is in P means that one can determine whether 7 is prime using an algorithm
that has computational complexity bounded by a polynomial in the number of binary
digits in n, or equivalently, in log n. Their proof can be found in {AgKaSa02] and can
be understood by undergraduate students who have studied number theory and abstract
algebra. In this paper, they also show that under the assumption of a widely believed
conjecture about the density of Sophie Germain primes (primes p for which 2p -+ 1 is
also prime), their algorithm uses only O((log n)®) bit operations. Other mathematicians
have also improved on Agrawal, Kayal, and Saxena’s result. In particular, H. Lenstra
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and C. Pomerance have reduced the exponent 12 in the original estimate to 6 + €, where
€ is any positive 1eal number.

Itis important to note that in our discussion of primality tests, we have only addressed

deterministic algorithms, that is, algorithms that decide with certainty whether an integer
is prime. In Chapter 6, we will introduce the notion of probabilistic primality tests, that
is, tests that tell us that there is a high probability, but not a certainty, that an integer is
prime.

3.1 Exercises
1.
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Determine which of the following integers are primes.

a) 101 c) 107 ey 113
b) 103 d) 111 f)121

. Determine which of the following integers are primes.

a) 201 c)207 e) 213
b) 203 d) 211 fy221

. Use the sieve of Eratosthenes to find ali primes less than 150.

Use the sieve of Eratosthenes to find all primes less than 200.

. Find all primes that are the difference of the fourth powers of two integers.

. Show that no integer of the form »° + 1is a prime, other than 2 = P41

. Show that if 2 and  are positive integers with# > 1and 2" — 1is prime, thena =2 and

n is prime. (Hint: Use the identity @ — 1= (a* — D@~V a2 ... + a + 1))

. (This exercise constructs another proof of the infinitude of primes.) Show that the integer

11,

12.

13.

Q, =n!+ 1, where n is a positive integer, has a prime divisor greater than n. Conclude
that there are infinitely many primes.

. Can you show that there are infinitely many primes by looking at the integers S, =n!—1,

where n is a positive integer?

Using Euclid’s proof that there are infinitely many primes, show that the nth prime p,
does not exceed 22* ' whenever n is a positive integer. Conclude that when  is a positive
integer, there are at least n + 1 primes less than 27,

Let O, = p(ps- .- Py -+ 1, where py, pa, .. ., p, are the n smaliest primes. Determine
the smallest prime factor of @, forn = 1,2,3,4, 5, and 6. Do you think that (0, is prime
infinitely often? (Note: This is an unresolved guestion.)

Show that if p, is the kth prime, where k is a positive integer, then p, < p1p2 . - - Pu—y +1
for all integers i withn = 3.

Show that if the smallest prime factor p of the positive integer n exceeds U, thenn/p
must be prime or 1.



