
Houston Journal of Mathematics
© 2022 University of Houston

Volume 48, Number 1, 2022, Pages 205–225

FINITE GRAPHS HAVE UNIQUE n-FOLD SYMMETRIC

PRODUCT SUSPENSION
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Abstract. Let Z be a metric continuum and n be a positive integer. We

consider the hyperspace Fn(Z) of all nonempty closed subsets of Z with at

most n points. Given n > 1, the n-fold symmetric product suspension of Z

is the quotient space Fn(Z)/F1(Z), denoted by SFn(Z). In this paper we

prove that if n ≥ 4, X is a finite graph, and Y is a continuum such that

SFn(X) is homeomorphic to SFn(Y ), then X is homeomorphic to Y . This

result answers a question posed by Alejandro Illanes.

1. Introduction

Recently, the study of the uniqueness of hyperspaces has become a relevant

field in continuum theory.

A continuum is a nonempty compact, connected metric space. The set of

positive integers is denoted by N.

Given a continuum Z and n ∈ N, we consider the following hyperspaces of Z:

2Z = {A ⊂ Z : A is a nonempty closed subset of Z},
Fn(Z) = {A ∈ 2Z : A has at most n points}, and

Cn(Z) = {A ∈ 2Z : A has at most n components}.
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All these hyperspaces are metrized by the Hausdorff metric H [29, Theorem 2.2].

The hyperspace Fn(Z) is called the n-fold symmetric product of Z.

In 1979 Sam B. Nadler, Jr. introduced the hyperspace suspension of a contin-

uum Z, HS1
1(Z), in [36]. Later in 2004, S. Maćıas defined the n-fold hyperspace

suspension of a continuum Z, HSnn(Z), where n ∈ N with n ≥ 2 (see [32]).

Furthermore, in 2008, Juan C. Maćıas introduced the n-fold pseudo-hyperspace

suspension of a continuum HSn1 (Z), in [30]. The study of the (n,m)-fold hyper-

space suspension of a continuum Z, HSnm(Z), where n,m ∈ N, and n ≥ m, is a

generalization of the latter research, that has gained recent interest (see [2]).

The n-fold symmetric product suspension of a continuum Z was defined in 2010

by F. Barragán [3] to be the quotient space Fn(Z)/F1(Z), denoted by SFn(Z)

for each n ∈ N with n ≥ 2, is obtained from Fn(Z) by identifying F1(Z) to a

one-point set, with the quotient topology.

Given a continuum Z, the symbol qZ denotes the natural projection qZ : Fn(Z)

→ SFn(Z), and FZ denotes the element qZ(F1(Z)), notice that qZ |Fn(Z)−F1(Z) :

Fn(Z)− F1(Z)→ SFn(Z)− {FZ} is a homeomorphism. We write q∗Z instead of

qZ |Fn(Z)−F1(Z).

For a continuum Z, let H(Z) be any of the hyperspaces defined above. We

say that a continuum Z has unique hyperspace H(Z) provided that the following

implication holds: if Y is a continuum and H(Z) is homeomorphic to H(Y ), then

Z is homeomorphic to Y .

Problem 1.1. For n ∈ N with n ≥ 2 find conditions on a continuum Z, so that

Z has unique hyperspace SFn(Z).

The problem on finding conditions on a continuum Z in order that Z has

unique H(Z) has been widely studied (see [1], [2], [4]–[6], [8]–[27], [32], [33], [35]).

Recall that a finite graph is a continuum that can be written as the union of

finitely many arcs, each two of which are either disjoint or intersect only at one

or both of their end points.

The following are well-known results regarding this subject, for the particular

case of finite graphs.

(a) If X is a finite graph and n ∈ N, then X has unique hyperspace Fn(X)

(see [4, Corollary 5.9]).

(b) If X is a finite graph different from an arc or a simple closed curve, then

X has unique hyperspace C1(X) (see [1, Theorem 1] and [6, 9.1]).

(c) If X is a finite graph and n ∈ N with n ≥ 2, then X has unique hyperspace

Cn(X) (see [24] and [25, Theorem 3.8]).
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(d) If X is a finite graph and n,m ∈ N with n ≥ m, then X has unique

hyperspace HSnm(X) (see [2, Theorem 3.6], [15, Theorem 3.2], and [35,

Theorem 5.7]).

Related to Problem 1.1, the aim of this paper is to prove that:

(e) If X is a finite graph and n ∈ N with n ≥ 4, then X has unique hyperspace

SFn(X) (see Theorem 3.8).

2. Definitions and Preliminary Results

Given a continuum Z and a subset A of Z, intZ(A), clZ(A), and bdZ(A) denote

the interior, the closure and boundary of A in Z, respectively. If A is a set, |A|
denotes the cardinality of A. If dZ is the metric of Z, ε > 0, and p ∈ Z, the set

{z ∈ Z : dZ(p, z) < ε} is denoted by BZ(p, ε).

Given n ∈ N, an n-cell is a space which is homeomorphic to [0, 1]n. An arc is

an 1-cell. A simple closed curve is a space which is homeomorphic to S1 in the

plane.

Let Z be a continuum, z ∈ Z, and β be a cardinal number. We say that z

has order less than or equal to β, in Z, written ord(z, Z) ≤ β, whenever z has

a basis of neighborhoods B in Z such that the cardinality of the boundary of

U in Z is less than or equal to β, for each U ∈ B. We say that z has order

equal to β, in Z (ord(z, Z) = β) provided that ord(z, Z) ≤ β and ord(z, Z) ≤ α

for any cardinal number α < β. Let E(Z) = {z ∈ Z : ord(z, Z) = 1} and

R(Z) = {z ∈ Z : ord(z, Z) ≥ 3}. The elements of E(Z) (respectively, R(Z)) are

called end points (respectively, ramification points) of Z.

Let n, r ∈ N and let U1, . . . , Ur be subsets of a continuum Z. We denote

by 〈U1, . . . , Ur〉 the set 〈U1, . . . , Ur〉2Z ∩ Fn(Z), where 〈U1, . . . , Ur〉2Z = {A ∈
2Z : A ⊂ U1 ∪ · · · ∪ Ur and A ∩ Ui 6= ∅, for each i ∈ {1, . . . , r}}. Recall that the

family of all sets 〈U1, . . . , Ur〉2Z is a basis for the topology in 2Z [29, Theorem

1.2].

Given n ∈ N and a continuum Z, we consider the following subspaces of Fn(Z):

En(Z) = {A ∈ Fn(Z) : A has a neighborhood in Fn(Z) which is an n-cell},
Rn(Z) = {A ∈ Fn(Z) : A ∩R(Z) 6= ∅},

if n > 1, let Nn(Z) = {A ∈ Fn(Z)− Fn−1(Z) : A ∩R(Z) = ∅}, and

G(Z) = {z ∈ Z : z has a neighborhood in Z which is a finite graph}.
Recall that, as in [10], a continuum Z is said to be almost meshed whenever

G(Z) is a dense subset of Z.
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Given a finite graph X, a free arc in X is an arc J with end points x and z

such that J − {x, z} is an open subset of X. A maximal free arc in X is a free

arc in X that is maximal with respect to the inclusion. A cycle in X is a simple

closed curve J in X such that J − {a} is an open set in X for some a ∈ J . Let

AR(X) = {J ⊂ X : J is a cycle in X},
AS(X) = {J ⊂ X : J is a maximal free arc in X} ∪ AR(X), and

AE(X) = {J ⊂ X : J is a maximal free arc and |J ∩R(X)| = 1}.
The elements of AS(X) are known as edges of X.

The word map means a continuous function. We shall make use of other

concepts not defined here, which will be taken as in [29].

From now on, when we refer to X as a finite graph, we mean that X has

E1, . . . , Em edges, with m ∈ N.

Let n ∈ N and let X be a finite graph. Given i1, . . . , im ∈ N ∪ {0} such that

i1 + · · ·+ im = n, we consider KX(i1, . . . , im) to be the subset of Fn(X) such that

each member of KX(i1, . . . , im) has exactly ij elements in the interior of edge Ej ,

for each j ∈ {1, . . . ,m}. Given j, l ∈ {1, . . . ,m}, define

KjX = KX(i1, . . . , im), provided that ij = n, and

KX(j, l) = KX(i1, . . . , im), provided that j 6= l and ij + il = n.

Notice that KjX ( 〈intX(Ej)〉 and clFn(X)(KjX) = 〈Ej〉.

Lemma 2.1. Let n ∈ N. If X is a finite graph, then

(a) KX(i1, . . . , im) is arcwise connected.

(b) KX(i1, . . . , im)∩KX(l1, . . . , lm) = ∅ if and only if there is j ∈ {1, . . . ,m}
such that ij 6= lj.

(c) KX(i1, . . . , im) is an open subset of En(X).

Proof. (a) Let A,B ∈ KX(i1, . . . , im) with A 6= B. Let M = {j ∈ {1, . . . ,m} : ij
6= 0}. Fix j ∈ M . Let Aj = A ∩ intX(Ej) and Bj = B ∩ intX(Ej). Let L be an

interval in the real line which is homeomorphic to intX(Ej). We identify intX(Ej)

with L. Thus, we may suppose that Aj = {a1, . . . , aij} and Bj = {b1, . . . , bij},
where a1 < · · · < aij and b1 < · · · < bij . Let µj : [0, 1] → 〈intX(Ej)〉 be defined

as µj(t) = {tb1 + (1 − t)a1, . . . , tbij + (1 − t)aij}, for each t ∈ [0, 1], which is

continuous, µj(0) = Aj and µj(1) = Bj . Moreover, |µj(t)| = ij , for each t ∈ [0, 1].

Let µ : [0, 1] → KX(i1, . . . , im) be defined as µ(t) =
⋃
{µj(t) : j ∈ M}, for each

t ∈ [0, 1], which is continuous. Thus, µ([0, 1]) is a locally connected continuum.

Since A,B ∈ µ([0, 1]), there exists an arc in µ([0, 1]) with end points A,B.

(b) The proof is straightforward.
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(c) Let A ∈ KX(i1, . . . , im). Notice that A ∈ Nn(X). Assume that A =

{a1, . . . , an}. Let J1, . . . , Jn be pairwise disjoint arcs of X such that Ji∩R(X) = ∅
and ai ∈ intX(Ji), for each i ∈ {1, . . . , n}. Thus, A ∈ 〈intX(J1), . . . , intX(Jn)〉.
Since 〈J1, . . . , Jn〉 is homeomorphic to J1 × · · · × Jn, we have that 〈intX(J1), . . . ,

intX(Jn)〉 is an open subset of En(X). If B ∈ 〈intX(J1), . . . , intX(Jn)〉 − {A},
then |B| = n. Let j ∈ {1, . . . ,m}. Since |A∩ intX(Ej)| = ij , we may assume that

J1, . . . , Jij ⊂ intX(Ej). Hence, B ∩ intX(J1) ⊂ intX(Ej), . . . , B ∩ intX(Jij ) ⊂
intX(Ej). This implies that |B ∩ intX(Ej)| = ij . So, B ∈ KX(i1, . . . , im). Thus,

〈intX(J1), . . . , intX(Jn)〉 ⊂ KX(i1, . . . , im). Therefore, KX(i1, . . . , im) is an open

subset of En(X). �

Lemma 2.2. Let n ∈ N with n ≥ 4. If X is a finite graph, then the components

of En(X) are the sets KX(i1, . . . , im).

Proof. Notice that each KX(i1, . . . , im) is a subset of Nn(X). Let A ∈ Nn(X).

For each k ∈ {1, . . . ,m}, let lk = |A∩intX(Ek)|. Since |A| = n, then l1+· · ·+lm =

n. Thus, A ∈ KX(l1, . . . , lm). Therefore, the union of the sets KX(i1, . . . , im) is

Nn(X). Corollary 4.4 of [4] implies that Nn(X) = En(X). Therefore Lemma 2.1

implies that the sets KX(i1, . . . , im) are the components of En(X). �

Lemma 2.3. Let X be a finite graph and n ∈ N with n ≥ 4.

(a) If A ∈ clFn(X)(KX(i1, . . . , im)), then |A ∩ intX(Ej)| ≤ ij , for each j ∈
{1, . . . ,m}.

(b) The only component of En(X) contained in clFn(X)(KX(i1, . . . , im)) is

KX(i1, . . . , im).

Proof. (a) Let A ∈ clFn(X)(KX(i1, . . . , im)). Suppose that there exists j ∈
{1, . . . ,m} such that |A∩intX(Ej)| > ij . Let {Ak}∞k=1 be a sequence in KX(i1, . . . ,

im) which converges to A. Notice that |A ∩ Ej | ≥ |A ∩ intX(Ej)| > ij . On the

other hand, the sequence {Ak ∩ Ej}∞k=1 converges to A ∩ Ej and |Ak ∩ Ej | = ij
which is a contradiction.

(b) By Lemma 2.2, KX(i1, . . . , im) is a component of En(X) contained in

clFn(X)(KX(i1, . . . , im)). Suppose that there exists KX(l1, . . . , lm) component

of En(X) distinct of KX(i1, . . . , im) contained in clFn(X)(KX(i1, . . . , im)). By

Lemma 2.1(b), there exists j0 ∈ {1, . . . ,m} such that ij0 6= lj0 .

Case 1. ij0 < lj0 .

Let A ∈ KX(l1, . . . , lm). Thus, lj0 = |A∩ intX(Ej0)|. Since A ∈ clFn(X)(KX(i1,

. . . , im)), by (a), |A ∩ intX(Ej0)| ≤ ij0 . Thus, lj0 ≤ ij0 which is a contradiction.

Case 2. ij0 > lj0 .
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This implies that there exists j1 ∈ {1, . . . ,m} such that ij1 < lj1 . In a similar

way as the Case 1, we have a contradiction.

Thus (b) holds. �

Given n ∈ N with n ≥ 2 and a continuum Z, let

SEn(Z) = {A ∈ SFn(Z) : A has a neighborhood in SFn(Z) which is an n-cell}.

Remark. Let n ∈ N. If Z is a continuum, then En(Z) is an open subset of Fn(Z)

and SEn(Z) is an open subset of SFn(Z).

Lemma 2.4. Let n ∈ N, with n ≥ 4. If Y is an almost meshed locally connected

continuum, then no neighborhood of FY in SFn(Y ) can be embedded in Rn.

Proof. Let U be an open subset of SFn(Y ) such that FY ∈ U . We have that,

U − {FY } is an open subset of SFn(Y ), and since the quotient q∗Y is contin-

uous, (q∗Y )−1(U − {FY }) is an open subset of Fn(Y ). Let V = (q∗Y )−1(U −
{FY }). Let {a} ∈ F1(Y ). Since qY is continuous, there exists δ > 0 such that

qY (BFn(Y )({a}, δ)) ⊂ U . Since Y is connected, the cardinality of BY (a, δ) is

not finite. Let b ∈ BY (a, δ) − {a}. So, {a, b} ∈ BFn(Y )({a}, δ). Therefore,

q∗Y ({a, b}) ∈ U . Furthermore, q∗Y ({a, b}) ∈ U − {FY }. Hence, {a, b} ∈ V.

Since Y is an almost meshed locally connected continuum, by [22, Theorem

3.1], En(Y ) is a dense subset of Fn(Y ). Furthermore, {a, b} ∈ Fn−1(Y ) and V is a

neighborhood of {a, b} in Fn(Y )− F1(Y ). Hence, by [22, Theorem 3.5], we have

that V cannot be embedded in Rn. Thus, q∗Y (V) = U−{FY } cannot be embedded

in Rn. Since U − {FY } ⊂ U , then U cannot be embedded in Rn. �

Lemma 2.5. Let n ∈ N with n ≥ 4.

(a) If Y is an almost meshed locally connected continuum, then q∗Y (En(Y )) =

SEn(Y ).

(b) If X and Y are almost meshed locally connected continua and h : SFn(X)

→ SFn(Y ) is a homeomorphism, then h(q∗X(A)) 6= FY , for each A ∈
En(X).

Proof. (a) By [22, Theorem 3.8(b)], En(Y ) ⊂ Fn(Y )−F1(Y ). Let A ∈ En(Y ) and

let U be a neighborhood of A in Fn(Y ) such that U is an n-cell. By [13, proposition

1], we may suppose that U ⊂ Fn(Y )−F1(Y ). Since q∗Y is a homeomorphism, q∗Y (U)

is a neighborhood of q∗Y (A) in SFn(Y ) which is an n-cell. Thus, q∗Y (A) ∈ SEn(Y ).

Therefore, q∗Y (En(Y )) ⊂ SEn(Y ).

On the other hand, by Lemma 2.4, FY 6∈ SEn(Y ). Thus, SEn(Y ) ⊂ SFn(Y )−
{FY }. Since q∗Y is a homeomorphism, in a similar way as before, (q∗Y )−1(SEn(Y ))

⊂ En(Y ).
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(b) The proof follows from Lemma 2.4 and (a). �

Remark. Let n ∈ N with n ≥ 4. If X is a finite graph, then the components of

SEn(X) are the sets q∗X(KX(i1, . . . , im)).

Lemma 2.6. Let n ∈ N with n ≥ 4. If X and Y are finite graphs and h :

SFn(X)→ SFn(Y ) is a homeomorphism, then En(X) = (q∗X)−1(h−1(q∗Y (En(Y ))).

Proof. By Lemma 2.5(a), we obtain that

q∗Y (En(Y )) = SEn(Y ) = h(SEn(X)) = h(q∗X(En(X))).

�

Lemma 2.7. Let n ∈ N and Z be a continuum. Then En(Z) is a dense subset of

Fn(Z) if and only if SEn(Z) is a dense subset of SFn(Z).

Proof. Notice that q∗Z : Fn(Z)−F1(Z)→ SFn(Z)−{FZ} is a homeomorphism

and q∗Z(En(Z)−F1(Z)) = SEn(Z)−{FZ}. Thus, En(Z)−F1(Z) is a dense subset

of Fn(Z)−F1(Z) if and only if SEn(Z)−{FZ} is a dense subset of SFn(Z)−{FZ}.
Then the lemma follows from the fact that Fn(Z)−F1(Z) is dense in Fn(Z) and

SFn(Z)− {FZ} is dense in SFn(Z). �

Lemma 2.8. Let n ∈ N, with n ≥ 4. Let Z, Y be continua such that SFn(Z)

is homeomorphic to SFn(Y ). Then Z is an almost meshed locally connected

continuum if and only if Y is an almost meshed locally connected continuum.

Proof. Let h : SFn(Z) → SFn(Y ) be a homeomorphism and assume that Z

is an almost meshed locally connected continuum. By [3, Theorem 5.2], Y is a

locally connected continuum. By [22, Theorem 3.1], we have that En(Z) is a dense

subset of Fn(Z) and hence, by Lemma 2.7, SEn(Z) is a dense subset of SFn(Z).

Thus, h(SEn(Z)) is a dense subset of SFn(Y ). Since h(SEn(Z)) = SEn(Y ), by

Lemma 2.7, we deduce that En(Y ) is a dense subset of Fn(Y ). Therefore, by [22,

Theorem 3.1], Y is an almost meshed locally connected continuum. �

3. Main results

Theorem 3.1. Let n ∈ N with n ≥ 4. If X and Y are continua such that SFn(X)

is homeomorphic to SFn(Y ), then X is a finite graph if and only if Y is a finite

graph.

Proof. Suppose that X is a finite graph. Recall that En(X) is a dense subset of

Fn(X) with a finite number of components [4, Theorem 3.4]. By Lemma 2.7, we

have that SEn(X) is a dense subset of SFn(X). By Lemma 2.5(a), we have that
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SEn(X) has a finite number of components. Thus, SEn(Y ) is a dense subset of

SFn(Y ) with a finite number of components. On the other hand, by Lemma 2.8,

Y is an almost meshed locally connected continuum. By Lemma 2.7 and Lemma

2.5(a), we deduce that En(Y ) is a dense subset of Fn(Y ) and En(Y ) has a finite

number of components. By [4, Theorem 3.4], Y is a finite graph. �

Let m ∈ N with m ≥ 3. A θm-graph is the union of m arcs E1, . . . , Em sharing

the same end points u and v and satisfying Ei ∩ Ej = {u, v}, for i 6= j (see [35,

p. 221]).

Theorem 3.2. Let n ∈ N with n ≥ 2. If X is a finite graph with R(X) 6= ∅, then⋂
{clSFn(X)(qX(KjX)) : Ej ∈ AS(X)}

=

{
{FX}, if X is not a θm-graph,

{FX , qX({u, v})}, if X is a θm-graph.

Proof. Let Ej ∈ AS(X) and p ∈ intX(Ej). Since {p} can be approximated by

elements in KjX , we have that {p} ∈ clFn(X)(KjX). Thus, FX ∈ clSFn(X)(qX(KjX)).

Hence, FX ∈
⋂
{clSFn(X)(qX(KjX)) : Ej ∈ AS(X)}. Furthermore, if X is a θm-

graph, then u, v ∈ Ej , for each j ∈ {1, . . . ,m}. Since n ≥ 2, we may approxi-

mate {u, v} by elements of KjX . This implies that {u, v} ∈ clFn(X)(KjX). Thus,

qX({u, v}) ∈ clSFn(X)(qX(KjX)). Therefore, qX({u, v}) ∈
⋂
{clSFn(X)(qX(KjX)) :

Ej ∈ AS(X)}.
Suppose that there exists χ ∈

⋂
{clSFn(X)(qX(KjX)) : Ej ∈ AS(X)} − {FX}.

Let A ∈ Fn(X) − F1(X) be such that qX(A) = χ. Since X is a finite graph and

R(X) 6= ∅, we know that |AS(X)| ≥ 2 and |
⋂
AS(X)| ≤ 2. Given Ej ∈ AS(X),

there exists a sequence {Ai}∞i=1 in KjX such that {qX(Ai)}∞i=1 converges to χ. In

fact, {Ai}∞i=1 converges to A. Thus, A ⊂ Ej . Therefore,

(3.1) A ⊂
⋂
AS(X).

Since |A| ≥ 2, by (3.1), we have that |
⋂
AS(X)| = 2, so |A| = 2.

If X is not a θm-graph, we have that |
⋂
AS(X)| < 2. By (3.1), we deduce

that |A| < 2, which is a contradiction. In conclusion, χ does not exist. Thus,⋂
{clSFn(X)(qX(KjX)) : Ej ∈ AS(X)} = {FX}.
If X is a θm-graph, then

⋂
AS(X) = {u, v}. Since A ⊂

⋂
AS(X) and

since A 6∈ F1(X), then A = {u, v}. In fact, qX({u, v}) = χ. Therefore, χ ∈
{FX , qX({u, v})}. Thus,⋂

{clSFn(X)(qX(KjX)) : Ej ∈ AS(X)} ⊂ {FX , qX({u, v})}.
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�

If M is a manifold, its manifold boundary is denoted by ∂M.

Theorem 3.3. Let n ∈ N with n ≥ 2 and let Z be a continuum.

(a) If SFn(Z) is homeomorphic to SFn([0, 1]), then Z is an arc.

(b) If SFn(Z) is homeomorphic to SFn(S1), then Z is a simple closed curve.

Proof. Let X be equal to [0, 1] or S1 and let h : SFn(X) → SFn(Z) be a

homeomorphism. By [3, Theorem 5.2 ], we have that Z is a locally connected

continuum.

Case 1. n ∈ {2, 3}.
Allow us to prove that R(Z) = ∅. In order to do this, let a1 ∈ R(Z).

Let a2 ∈ Z − {a1}. If qZ({a1, a2}) = h(FX), then qZ({a1, a}) 6= h(FX), for

each a ∈ Z − {a1, a2}. Therefore, we may suppose that qZ({a1, a2}) 6= h(FX).

Let A = {a1, a2}. Notice that h−1(qZ(A)) ∈ SFn(X) − {FX , h−1(FZ)}. Thus,

(q∗X)−1(h−1(qZ(A))) ∈ Fn(X)−F1(X). Since R(X) = ∅, according to [4, Lemma

5.1], we have that (q∗X)−1(h−1(qZ(A))) ∈ En(X). Hence, there exists a neigh-

borhood U of (q∗X)−1(h−1(qZ(A))) in Fn(X) − F1(X) which is an n-cell. Thus,

qX(U) is an n-cell that is a neighborhood of h−1(qZ(A)) in SFn(X)−{FX}. Fur-

thermore, there exists a neighborhood U ′ of h−1(qZ(A)) which is an n-cell such

that U ′ ⊂ qX(U) ∩ (SFn(X) − {FX , h−1(FZ)}). So, h(U ′) is an n-cell that is

a neighborhood of qZ(A) in SFn(Z) − {h(FX), FZ}. Hence, (q∗Z)−1(h(U ′)) is an

n-cell that is a neighborhood of A in Fn(Z)−F1(Z). Then A ∈ En(Z). According

to [4, Lemma 3.1], A 6∈ En(Z). Thus, we have a contradiction.

Therefore, Z is either an arc or a simple closed curve.

(Case n = 2) Since SF2(S1) is homeomorphic to the real projective plane RP2

and SF2([0, 1]) is homeomorphic to [0, 1]2 ([3, Examples 3.1 and 3.3]), we deduce

that Z is homeomorphic to X.

(Case n = 3) Since SF2(S1) can be embedded in SF3(S1), then SF3(S1) cannot

be embedded in R3. On the other hand, a model for F3([0, 1]) is the unit sphere

(see [27, Section 3]), where F1([0, 1]) is a diameter. Hence, SF3([0, 1]) can be

embedded in R3. Therefore, Z is homeomorphic to X.

Case 2. n ≥ 4.

By Theorem 3.1, Z is a finite graph.

Since |AS(X)| = 1, by Lemma 2.2, we have that En(X) has only one compo-

nent. By Lemma 2.6, En(Z) is connected. Hence, |AS(Z)| = 1. Therefore, Z is

an arc or a simple closed curve.
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Claim 1. If B ∈ En(S1) and M is a neighborhood of B in Fn(S1) which is an

n-cell, then B is in the manifold interior of M.

Proof of Claim 1. Since R(S1) = ∅, by [4, Corollary 4.4], we have that B ∈
Fn(S1)− Fn−1(S1). By [22, Theorem 2.5], there exist pairwise disjoint open and

connected subsets V1, . . . , Vn of S1 such that B ∈ 〈V1, . . . , Vn〉 ⊂ intFn(S1)(M).

Notice that Vi is homeomorphic to (0, 1), for each i ∈ {1, . . . , n}. So, 〈V1, . . . , Vn〉
is homeomorphic to (0, 1)n. Hence, B is in the manifold interior of M.

Claim 2. If A ∈ En([0, 1]) and A ∩ {0, 1} 6= ∅, then there is a neighborhood M
of A in Fn([0, 1]) which is an n-cell such that A ∈ ∂M.

Proof of Claim 2. We may assume that 0 ∈ A. Since A ∈ En([0, 1]), A ∈
Fn([0, 1]) − Fn−1([0, 1]). Thus, A = {0, a2, . . . , an}, for some a2, . . . , an in [0, 1].

Let α1, . . . , αn in [0, 1] be pairwise disjoint arcs such that 0 ∈ int[0,1](α1), a2 ∈
int[0,1](α2), . . . , an ∈ int[0,1](αn). Let M = 〈α1, . . . , αn〉. Hence, A ∈ intFn([0,1])

(M). Notice thatM is an n-cell which is a neighborhood of A in Fn([0, 1]). Since

0 ∈ ∂α1, we have that A ∈ ∂M.

From Claim 1 and Claim 2, it follows that En(S1) is not homeomorphic to

En([0, 1]). By Lemma 2.6, we have that En(X) is homeomorphic to En(Z). Since

Z is an arc or a simple closed curve, we conclude that X is homeomorphic to

Z. �

From now on when Y is a finite graph, we mean that Y has E′1, . . . , E
′
m′ edges,

with m′ ∈ N.

Theorem 3.4. Let X,Y be finite graphs, let n ∈ N with n ≥ 4 and let h : SFn(X)

→ SFn(Y ) be a homeomorphism.

(a) For each Ej ∈ AS(X), we have that h(qX(KjX)) = qY (KjhY ), for some

E′jh ∈ AS(Y ).

(b) The association Ej 7→ E′jh is a bijection between AS(X) and AS(Y ).

Proof. (a) By Lemma 2.2 and Lemma 2.6, we obtain that h(qX(KjX)) = qY
(KY (i1, . . . , im′)), for some component KY (i1, . . . , im′) of En(Y ). Let M ′ = {j ∈
{1, . . . ,m′} : ij 6= 0} and r′ = |M ′|. For convenience, let M ′ = {j1, . . . , jr′}.
Notice that KY (i1, . . . , im′) ⊂ 〈intY (E′j1), . . . , intY (E′jr′ )〉.

We will prove that r′ = 1. In order to do this, assume that r′ ≥ 2.

Claim. intFn(Y )(clFn(Y )(KY (i1, . . . , im′))) = KY (i1, . . . , im′).

Proof of claim. Notice that

KY (i1, . . . , im′) ⊂ intFn(Y )(clFn(Y )(KY (i1, . . . , im′))).

We will show that intFn(Y )(clFn(Y )(KY (i1, . . . , im′))) ⊂ KY (i1, . . . , im′).
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Let A ∈ intFn(Y )(clFn(Y )(KY (i1, . . . , im′))). We claim that (i) A ∩ R(Y ) = ∅
and (ii) A ∈ Fn(Y )− Fn−1(Y ).

In order to prove (i), suppose that there exists p ∈ A ∩ R(Y ). Let r >

0. Since A ∈ clFn(Y )(KY (i1, . . . , im′)), there exists B ∈ KY (i1, . . . , im′) such

that H(A,B) < r
4 . Thus, there exists b ∈ B such that dY (p, b) < r

4 . Since

B ∈ 〈intY (E′j1), . . . , intY (E′jr′ )〉, there exists E′s ∈ {E′j1 , . . . , E
′
jr′
} such that

b ∈ intY (E′s). Since p ∈ R(Y ), there exists E′t ∈ AS(Y ) − {E′s} such that

p ∈ E′t. Let c ∈ intY (E′t)−B be such that dY (c, p) < r
4 and C = (B−{b})∪{c}.

Since dY (c, b) < r
2 , we have that H(C,B) < r

2 . Hence, H(A,C) < r. Moreover,

|C ∩ intY (E′t)| = 1 + |B∩ intY (E′t)|. Since B ∈ KY (i1, . . . , im′), we have that |C ∩
intY (E′t)| = 1 + it. By Lemma 2.3(a), we have that C 6∈ clFn(Y )(KY (i1, . . . , im′)).

Hence, A 6∈ intFn(Y )(clFn(Y )(KY (i1, . . . , im′))), which is a contradiction.

Therefore, A ∩R(Y ) = ∅.
In order to prove (ii), suppose that A ∈ Fn−1(Y ). Since A ∩ R(Y ) = ∅, we

have that A ∈ 〈intY (E′j1), . . . , intY (E′jr′ )〉 ∩ clFn(Y )(KY (i1, . . . , im′)). By Lemma

2.3(a), we have that |A ∩ intY (E′j)| ≤ ij , for each j ∈ M ′. Since A ∈ Fn−1(Y ),

there exists jk ∈ M ′ such that |A ∩ intY (E′jk)| < ijk . Since r′ ≥ 2, we may take

js ∈ M ′ − {jk}. Let l = n − |A|. Let r > 0. Choose pairwise distinct points

b1, . . . , bl ∈ intY (E′js) − A such that H(A,B) < r, where B = A ∪ {b1, . . . , bl}.
Notice that |B ∩ intY (E′j)| = |A ∩ intY (E′j)|, for each j ∈M ′ − {js}.

Suppose that |B ∩ intY (E′js)| ≤ ijs . Notice that

|B| =
∑
j∈M ′

|B ∩ intY (E′j)|

=
∑

j∈M ′−{jk,js}

|B ∩ intY (E′j)|+ |B ∩ intY (E′jk)|+ |B ∩ intY (E′js)|

=
∑

j∈M ′−{jk,js}

|A ∩ intY (E′j)|+ |A ∩ intY (E′jk)|+ |B ∩ intY (E′js)|.

By Lemma 2.3(a) and since |A ∩ intY (E′jk)| < ijk , it follows that

|B| ≤
∑

j∈M ′−{jk,js}

ij + |A ∩ intY (E′jk)|+ ijs

<
∑

j∈M ′−{jk,js}

ij + ijk + ijs .

Since
∑
j∈M ′

ij = n, we have that |B| < n which is a contradiction. Thus, |B ∩

intY (E′js)| > ijs . By Lemma 2.3(a), B /∈ clFn(Y )(KY (i1, . . . , im′)). Hence, given
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r > 0, B(A, r) 6⊂ clFn(Y )(KY (i1, . . . , im′)). Therefore, A /∈ intFn(Y )(clFn(Y )(KY (i1,

. . . , im′))), which is a contradiction.

Therefore, A ∈ Fn(Y )− Fn−1(Y ).

According to [4, Corollary 4.4], A ∈ En(Y ). Let C be the component of En(Y )

that contains A. By Remark 2, we obtain that C is an open subset of Fn(Y ).

Since A ∈ clFn(Y )(KY (i1, . . . , im′)), then C ∩ KY (i1, . . . , im′) 6= ∅. By Lemma

2.2, we have that C = KY (i1, . . . , im′). Hence, A ∈ KY (i1, . . . , im′). Therefore,

intFn(Y )(clFn(Y )(KY (i1, . . . , im′))) ⊂ KY (i1, . . . , im′). This concludes the proof of

the claim.

Let A ∈ Fn(X) be such that h(qX(A)) = FY and let A′ ∈ Fn(Y ) be such that

h−1(qY (A′)) = FX . Let F = Fn(X) − (F1(X) ∪ {A}) and let F ′ = Fn(Y ) −
(F1(Y )∪{A′}). We consider the homeomorphism g = (qY |F ′)−1 ◦h◦ (qX |F ) from

F onto F ′.
By Lemma 2.5(b), KjX ⊂ F , and thus KY (i1, . . . , im′) ⊂ F ′. Since clF (KjX) =

〈Ej〉 ∩ F , we have that intF (clF (KjX)) = 〈intX(Ej)〉 ∩ F . By the claim and since

F ′ is an open subset of Fn(Y ), we obtain that intF ′(clF ′(KY (i1, . . . , im′)))

= intF ′(clFn(Y )(KY (i1, . . . , im′)) ∩ F ′)
= intFn(Y )(clFn(Y )(KY (i1, . . . , im′)) ∩ F ′) ∩ F ′
= intFn(Y )(clFn(Y )(KY (i1, . . . , im′))) ∩ intFn(Y )(F ′) ∩ F ′
= intFn(Y )(clFn(Y )(KY (i1, . . . , im′))) ∩ F ′
= KY (i1, . . . , im′) ∩ F ′
= KY (i1, . . . , im′).

Notice that g(intF (clF (KjX)) = intF ′(clF ′(KY (i1, . . . , im′))). Thus,

g(〈intX(Ej)〉 ∩ F) = KY (i1, . . . , im′).

Since intF (clF (KjX)) 6= KjX and g(KjX) = KY (i1, . . . , im′), we have a contradic-

tion. Therefore, r′ = 1.

(b) Since KjX is associated to KjhY , then Ej is associated to E′jh . Assume

that El is associated to E′lh and E′jh = E′lh . So, KjhY = KlhY . Thus, qY (KjhY ) =

qY (KlhY ). By (a), h(qX(KjX)) = h(qX(KlX)), this implies that qX(KjX) = qX(KlX).

Consequently, KjX = KlX . Hence, Ej = El. �

The following result shows that the θm-graphs have unique n-fold symmetric

product suspension.

Theorem 3.5. Let m,n ∈ N with n ≥ 4. If X is a θm-graph, then X has unique

n-fold symmetric product suspension.
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Proof. Let Y be a continuum and let h : SFn(X) → SFn(Y ) be a homeomor-

phism. By Theorem 3.1, Y is a finite graph. By Theorem 3.3, R(Y ) 6= ∅. From

Theorem 3.2 and Theorem 3.4, we obtain that

2 = |{FX , qX({u, v})}|
= |h({FX , qX({u, v})})|
= |h(

⋂
{clSFn(X)(qX(KjX)) : Ej ∈ AS(X)})|

= |
⋂
{clSFn(Y )(h(qX(KjX))) : Ej ∈ AS(X)}|

= |
⋂
{clSFn(Y )(qY (KjhY )) : E′jh ∈ AS(Y )}|.

By Theorem 3.2, Y is a θm′ -graph. By Theorem 3.4(b), X is homeomorphic to

Y . �

Theorem 3.6. Let n ∈ N with n ≥ 4. Let X,Y be finite graphs with R(X) 6=
∅ and R(Y ) 6= ∅ such that X is not a θm-graph, for any m ∈ N, and let

h : SFn(X)→ SFn(Y ) be a homeomorphism. Then h(FX) = FY .

If we also suppose that

(a) Ej ∈ AR(X) if and only if E′jh ∈ AR(Y ) and

(b) Ej ∈ AE(X) if and only if E′jh ∈ AE(Y ),

then X is homeomorphic to Y .

Proof. By Theorem 3.2,

(3.2)
⋂
{clSFn(X)(qX(KjX)) : Ej ∈ AS(X)} = {FX}.

By Theorem 3.5, Y is not a θm′ -graph, for any m′ ∈ N. So, by Theorem 3.2,

(3.3)
⋂
{clSFn(Y )(qY (KjhY )) : E′jh ∈ AS(Y )} = {FY }.

Now, by Theorem 3.4(a), (3.2) and (3.3), we have that

h({FX}) =
⋂
{clSFn(Y )(h(qX(KjX))) : Ej ∈ AS(X)}

=
⋂
{clSFn(Y )(qY (KjhY )) : E′jh ∈ AS(Y )} = {FY }.

For each Ej ∈ AS(X), let

Kn(Ej , X) = clFn(X)(KjX)− F1(X), and Kn(E′jh , Y ) = clFn(Y )(KjhY )− F1(Y ).

We consider the homeomorphism g = (q∗Y )−1 ◦ h ◦ q∗X .

Claim 1.

(I) g(Kn(Ej , X)) = Kn(E′jh , Y ).

(II) |Ej ∩R(X)| = |E′jh ∩R(Y )|.
(III) If A ∈ Kn(Ej , X), then |A ∩R(X)| = |g(A) ∩R(Y )|.
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(IV) If A,B ∈ Kn(Ej , X) satisfy A ∩ R(X) = {p} and B ∩ R(X) = {p}, then

g(A) ∩R(Y ) = g(B) ∩R(Y ).

Proof of Claim 1. (I) It follows from

clFn(Y )(KjhY )− F1(Y ) = clFn(Y )−F1(Y )(KjhY ) = g(clFn(X)−F1(X)(KjX)) = g(clFn(X)

(KjX)− F1(X)) = g(Kn(Ej , X)).

(II) It follows from (a) and (b).

(III) Let A ∈ Kn(Ej , X).

Notice that |A ∩ R(X)| = 0 if and only if A ∈ intFn(X)(〈Ej〉) if and only if

g(A) ∈ intFn(Y )(〈E
′

jh
〉) if and only if |g(A) ∩R(Y )| = 0.

Case 1. |Ej ∩R(X)| = 1.

|A ∩ R(X)| = 1 if and only if A ∈ bdFn(X)(〈Ej〉) − F1(X) if and only if

g(A) ∈ bdFn(Y )(〈E′jh〉)− F1(Y ) if and only if |g(A) ∩R(Y )| = 1.

Case 2. |Ej ∩R(X)| = 2.

Assume that Ej ∩ R(X) = {p, q} and E
′

jh
∩ R(Y ) = {p′, q′}, where p 6= q and

p′ 6= q′. Let

A1 = {B ∈ bdFn(X)(〈Ej〉)− F1(X) : B ∩R(X) = {p}},

A2 = {B ∈ bdFn(X)(〈Ej〉)− F1(X) : B ∩R(X) = {q}},

A3 = {B ∈ bdFn(X)(〈Ej〉)− F1(X) : B ∩R(X) = {p, q}}.

Notice that bdFn(X)(〈Ej〉)− F1(X) = A1 ∪ A2 ∪ A3. In a similar way, we define

A′1,A
′

2,A
′

3, and we have that bdFn(Y )(〈E
′

jh
〉) − F1(Y ) = A′1 ∪ A

′

2 ∪ A
′

3. Notice

that:

(i) A1, A2 are open subsets of bdFn(X)(〈Ej〉)− F1(X) and A′1,A
′

2 are open

subsets of bdFn(Y )(〈E
′

jh
〉)− F1(Y ).

(ii) A3 has empty interior in bdFn(X)(〈Ej〉 ) − F1(X) and A′3 has empty

interior in bdFn(Y )(〈E
′

jh
〉)− F1(Y ).

We know that g(A1 ∪ A2) ⊂ A′1 ∪ A
′

2 ∪ A
′

3. By (i) and (ii), we have that

g(A1 ∪A2) ⊂ A′1 ∪A
′

2. Similarly, we obtain that g−1(A′1 ∪A
′

2) ⊂ A1 ∪A2. Thus,

g(A1 ∪ A2) = A′1 ∪ A
′

2. Therefore, g(A3) = A′3. This completes the proof of

Claim 1(III).

(IV) Suppose that A = {p, a1, . . . , as} and B = {p, b1, . . . , bl} with l ≤ s.
Let αi : [0, 1] → Ej be a map such that αi(0) = ai and αi(1) = bi, for each

i ∈ {1, . . . , l}. Given i ∈ {1, . . . , l}, since ai, bi ∈ intX(Ej), we may suppose that

αi(t) 6∈ R(X), for each t ∈ [0, 1].
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If l < s, for each k ∈ {l + 1, . . . , s}, let αk : [0, 1] → Ej be a map such that

αk(0) = ak and αk(1) = p. Given k ∈ {l+ 1, . . . , s}, since ak ∈ intX(Ej), we may

suppose that αk(t) 6∈ R(X), for each t ∈ [0, 1).

The function α : [0, 1] → Kn(Ej , X) defined by α(t) = {p} ∪
⋃s
i=1{αi(t)}, for

each t ∈ [0, 1], is continuous, α(0) = A and α(1) = B. Notice that p ∈ α(t)∩R(X),

for each t ∈ [0, 1]. Given t ∈ (0, 1), let w ∈ α(t) ∩ R(X). Thus, w = p or

w ∈
⋃s
i=1{αi(t)}. If w ∈

⋃s
i=1{αi(t)}, then there exists s0 ∈ {1, . . . , s} such

that αs0(t) = w. Thus, αs0(t) ∈ R(X) which is a contradiction. Thus, w = p.

Therefore, α(t) ∩ R(X) = {p}, for each t ∈ [0, 1]. By Claim 1(III), we have

|g(A) ∩R(Y )| = 1. Let {p′} = g(A) ∩R(Y ).

Let T = {t ∈ [0, 1] : p′ ∈ g(α(t))}. Notice that T is a closed subset of [0, 1]

and 0 ∈ T . Suppose that T 6= [0, 1]. Let t0 = inf([0, 1]− T ) and let {ti}∞i=1 be a

sequence of elements in [0, 1]−T which converges to t0. Let w ∈ E′jh∩R(Y )−{p′}.
Then w ∈ g(α(ti)), for each i ∈ N. Since {g(α(ti))}∞i=1 converges to g(α(t0)),

we have w ∈ g(α(t0)). Since t0 ∈ T , then w, p′ ∈ g(α(t0)). By Claim 1(III),

|g(α(t0)) ∩ R(Y )| = 1, so we have a contradiction. Thus, T = [0, 1]. Hence,

g(B)∩R(Y ) = {p′}. Therefore, g(A)∩R(Y ) = g(B)∩R(Y ). This completes the

proof of Claim 1.

We are going to define a bijection between R(X) and R(Y ).

Let p ∈ R(X). Suppose that p ∈ E1. Fix A ∈ Kn(E1, X) such that A ∩
R(X) = {p}, by Claim 1(I), we have that g(A) ∈ Kn(E′1h

, Y ). By Claim 1(III),

|g(A) ∩ R(Y )| = 1. Let p′ ∈ Y be such that g(A) ∩ R(Y ) = {p′}. Notice that

p′ ∈ E′1h
.

We claim that p′ does not depend on A and, in fact, it does not depend on the

choice of E1. That is, if t ∈ {2, . . . ,m} is such that p ∈ Et and B ∈ Kn(Et, X) is

such that B ∩R(X) = {p}, then g(B) ∩R(Y ) = {p′}. In order to prove this, we

take E1, Et, A and B as described.

Using Claim 1 (I) and (III), we have that g(B) ∈ Kn(E′th , Y ) and |g(B) ∩
R(Y )| = 1. Let q′ ∈ Y be such that g(B) ∩R(Y ) = {q′}. Notice that q′ ∈ E′th .

We are going to prove that q′ = p′.

Fix t ∈ {2, . . . , n} such that i1 + it = n. Since KX(1, t) is a component of

En(X), g(KX(1, t)) is a component of En(Y ). By [4, Lemma 4.1], there exists a

component 〈intY (E′l1), . . . , intY (E′lr′ )〉 of Fn(Y )−Rn(Y ) such that

(3.4) g(KX(1, t)) ⊂ 〈intY (E′l1), . . . , intY (E′lr′ )〉.

Claim 2. There are w, z ∈ {l1, . . . , lr′} such that E′w = E′1h
and E′z = E′th .
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Proof of Claim 2. Let a ∈ intX(E1) and C = {p, a}. Thus, C ∈ clFn(X)(KX(1,

t))∩Kn(E1, X). By (3.4) and Claim 1(I), we have g(C) ∈ clFn(Y )(〈intY (E′l1), . . . ,

intY (E′lr′ )〉) ∩ Kn(E′1h
, Y ). By Claim 1(III), |g(C) ∩ R(Y )| = 1. Since g(C) 6∈

F1(Y ), we have that g(C)∩ intY (E′1h
) 6= ∅. If E′1h

6= E′j for each j ∈ {l1, . . . , lr′},
then g(C) /∈ clFn(Y )(〈intY (E′l1), . . . , intY (E′lr′ )〉), which is a contradiction. Thus,

there exists w ∈ {l1, . . . , lr′} such that E′w = E′1h
. In a similar way, there exists

z ∈ {l1, . . . , lr′} such that E′z = E′th . This completes the proof of Claim 2.

Now, from equation (3.4) and Claim 2, the following condition is satisfied

(3.5) g(KX(1, t)) ⊂ 〈intY (E′1h
), intY (E′th), . . . , intY (E′lr′ )〉.

Claim 3. p′, q′ ∈ E′1h
∩ E′th .

Proof of Claim 3. Fix C ∈ clFn(X)(KX(1, t)) ∩ Kn(E1, X) such that C ∩R(X) =

{p}. Since g(A)∩R(Y ) = {p′}, by Claim 1(IV), g(C)∩R(Y ) = {p′}. By (3.5) and

Claim 1(I), g(C) ∈ 〈E′1h
, E′th , . . . , E

′
lr′
〉 ∩ Kn(E′1h

, Y ). Since g(C) ∈ Kn(E′1h
, Y )

and g(C) ∩ R(Y ) = {p′}, we have that g(C) − {p′} ⊂ intY (E′1h
). Since g(C) ∈

〈E′1h
, E′th , . . . , E

′
lr′
〉, we have that g(C) ∩ E′th 6= ∅. Thus, g(C) ∩ E′th = {p′}.

Therefore, p′ ∈ E′th .
Similarly, if we fix D ∈ clFn(X)(KX(1, t)) ∩ Kn(Et, X) and D ∩ R(X) = {p},

then g(D) ∩ E′1h
= {q′}. Thus, q′ ∈ E′1h

.

Therefore, p′, q′ ∈ E′1h
∩ E′th . This completes the proof of Claim 3.

Let P = {Ej ∈ AS(X) : p ∈ Ej} and k = |P|.
Suppose that q′ 6= p′.

Let Ej ∈ P. Fix C ∈ Kn(Ej , X) such that C ∩ R(X) = {p}, by Claim 1(III),

|g(C) ∩ R(Y )| = 1. Let p∗ ∈ Y be such that g(C) ∩ R(Y ) = {p∗}. Notice

that p∗ ∈ E′jh . Exchanging Et by Ej in Claim 2 and Claim 3, we have that

p′, p∗ ∈ E′1h
∩ E′jh .

In a similar way, we may prove p∗, q′ ∈ E′jh ∩ E
′
th

. Hence,

(3.6) p′, q′ ∈ E′jh , for each Ej ∈ P.

Since Y is not a θm′ -graph, there exists E′λh
∈ AS(Y ) such that p′ ∈ E′λh

and

q′ 6∈ E′λh
, or p′ 6∈ E′λh

and q′ ∈ E′λh
. It is enough to consider the case when

p′ ∈ E′λh
and q′ 6∈ E′λh

. The other case, also conduces to contradiction.

Let B′ ∈ Kn(E′λh
, Y ) be such that B′ ∩ R(Y ) = {p′}. By Claim 1(III),

|g−1(B′) ∩ R(X)| = 1. Let q1 ∈ X be such that g−1(B′) ∩ R(X) = {q1}. Notice

that q1 ∈ Eλ.

Remember that g(A) ∈ Kn(E′1h
, Y ) and g(A) ∩ R(Y ) = {p′}. Moreover, A ∩

R(X) = {p} and p ∈ E1.
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Since Y satisfies symmetric conditions as X, with similar arguments to Claim

2 and Claim 3, we obtain that q1, p ∈ Eλ ∩E1. Thus, Eλ ∈ P. By (3.6), we have

that p′, q′ ∈ E′λh
, which is a contradiction.

Therefore, q′ = p′.

Let P ′ = {E′j ∈ AS(Y ) : p′ ∈ E′j}. Therefore, Ej ∈ P if and only if E′jh ∈ P
′.

Thus, |P| = |P ′|. Using this fact and hypothesis (a), (b), ord(p,X) = ord(p′, Y ).

Since p′ does not depend on the choice of Ej ∈ P nor the choice of B ∈
Kn(Ej , X), we denote it by ph. In this way we have a function ϕ : R(X)→ R(Y )

given by ϕ(p) = ph. Notice that ϕ satisfies the following property: if p ∈ R(X)

and A ∈ Kn(Ej , X) are such that A ∩ R(X) = {p}, then g(A) ∈ Kn(E′jh , Y )

satisfies that g(A) ∩R(Y ) = {ph}.
According to Theorem 3.4, X and Y satisfy symmetric conditions. Hence, anal-

ogously as ϕ was defined, we may construct a function φ : R(Y )→ R(X) given by

φ(q) = qh−1 with the following property: if q ∈ R(Y ) andB ∈ Kn(E′jh , Y ) are such

that B ∩R(Y ) = {q}, then g−1(B) ∈ Kn(Ej , X) satisfies that g−1(B) ∩R(X) =

{qh−1}.
By the properties that satisfy ϕ and φ, we obtain that φ is the inverse of ϕ.

Therefore, ϕ is a bijection from R(X) onto R(Y ).

Now we can extend ϕ to a homeomorphism between X and Y . Take Ej ∈
AS(X). If |Ej ∩R(X)| = 2, then Ej is an arc. Let p and q be the end points

of Ej . Then {p, q} = Ej ∩ R(X). By Claim 1(II), E′jh is an arc with end points

ϕ(p) and ϕ(q). We may consider a homeomorphism ϕj : Ej → E′jh such that

ϕj(p) = ϕ(p) and ϕj(q) = ϕ(q). In the case that |Ej ∩R(X)| = 1, assuming that

Ej ∩ R(X) = {w}, we know that E′jh ∩ R(Y ) = {ϕ(w)}. By (a) and (b), there

exists a homeomorphism ϕj : Ej → E′jh such that ϕj(w) = ϕ(w).

Let ψ : X → Y be the function defined as ψ(x) = ϕj(x), if x ∈ Ej . By [7,

Theorem 9.4, p. 83], ψ is a homeomorphism between X and Y . �

Theorem 3.7. Let n ∈ N with n ≥ 4. If X is a finite graph such that R(X) 6= ∅
and X is not a θm-graph, for any m ∈ N, then X has unique n-fold symmetric

product suspension.

Proof. Let Y be a continuum and let h : SFn(X) → SFn(Y ) be a homeomor-

phism. Since X is a finite graph, by Theorem 3.1, Y is a finite graph. By Theorem

3.3 and Theorem 3.5, we obtain that R(Y ) 6= ∅ and Y is not a θm′-graph, for any

m′ ∈ N.
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Let Ej ∈ AS(X), by Theorem 3.4, we consider E′j
h
∈ AS(Y ) such that

h(qX(KjX)) = qY (KjhY ). Thus, h(qX(〈Ej〉)−{FX}) = qY (〈E′jh〉)−{FY }. By The-

orem 3.6, we have that h(qX(〈Ej〉)) = qY (〈E′jh〉). Since qX(〈Ej〉) and qY (〈E′jh〉)
are homeomorphic to SFn(Ej) and SFn(E′jh), respectively, then SFn(Ej) is home-

omorphic to SFn(E′jh). By Theorem 3.3, we have that Ej is a cycle if and only if

E′jh is a cycle and Ej in an arc if and only if E′jh is an arc.

Let Ej ∈ AE(X). Then E′jh is an arc. Suppose that E′jh 6∈ AE(Y ). Let

g : Fn(X) − F1(X) → Fn(Y ) − F1(Y ) be defined as g(A) = (q∗Y )−1 ◦ h ◦ q∗X(A).

Since Ej ∈ AE(X), we have that |Ej ∩ R(X)| = 1. Let p ∈ X be such that

Ej ∩R(X) = {p}. Let a ∈ X be the other end point of Ej . Take pairwise distinct

points a2, . . . , an ∈ intX(Ej)−{a}. Let A = {a, a2, . . . , an}. Notice that A ∈ KjX .

By Theorem 3.4(a), g(A) ∈ KjhY . Using Claim 2 of Theorem 3.3, there exists a

neighborhood M of A in Fn(Ej) which is an n-cell such that A ∈ ∂M. By [13,

Proposition 1], we may assume that M⊂ KjX . Thus, g(M) is a neighborhood of

g(A) which is an n-cell such that g(A) ∈ ∂g(M). Since g(A) ∈ KjhY , we have that

|g(A)| = n. By [22, Theorem 2.5], there exist pairwise disjoint open and connected

subsets V1, . . . , Vn of E′jh such that g(A) ∈ 〈V1, . . . , Vn〉 ⊂ intFn(E′jh
)(g(M)).

Since E′hj
/∈ AE(Y ) and g(A) ∈ KjhY , we have that g(A) does not have end points

of E′jh . Moreover, we may assume that Vi ∩ R(Y ) = ∅, for each i ∈ {1, . . . , n}.
Thus, Vi is homeomorphic to (0, 1). Therefore, 〈V1, . . . , Vn〉 is homeomorphic to

(0, 1)n, which is a contradiction since g(A) ∈ ∂g(M). Therefore, E′jh ∈ AE(Y ).

By symmetry, if E′jh ∈ AE(Y ), then Ej ∈ AE(X).

We have proved (a) and (b) of Theorem 3.6. Therefore, X is homeomorphic

to Y . �

So, as a consequence of Theorem 3.3, Theorem 3.5 and Theorem 3.7, we have

our main result.

Theorem 3.8. If X is a finite graph and n ∈ N with n ≥ 4, then X has unique

n-fold symmetric product suspension.

Related to Problem 1.1, it is reasonable to ask whether this holds for n = 2 or

n = 3.

Question 3.9. Let n ∈ {2, 3}. If X and Y are finite graphs, R(X) 6= ∅, R(Y ) 6=
∅, and SFn(X) is homeomorphic to SFn(Y ), is X homeomorphic to Y ?
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continua without unique n-fold hyperspace suspension, Houston J. Math., 44 (4) (2018),

1335–1365.
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