On the uniqueness of the n-fold pseudo-hyperspace suspension for locally connected continua

Antonio Libreros-López, Fernando Macías-Romero, David Herrera-Carrasco
Facultad de Ciencias Físico Matemáticas de la Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Edificio FM7-212, Ciudad Universitaria, C.P. 72570, Puebla, Mexico

A R T I C L E I N F O

Article history:

Received 30 April 2021
Received in revised form 12
February 2022
Accepted 15 February 2022
Available online 22 February 2022

MSC:

54B20
54F15

Keywords:
Continuum
Meshed
Hyperspace
n-fold pseudo-hyperspace suspension
Unique hyperspace

Abstract

Let X be a metric continuum. Let n be a positive integer, we consider the hyperspace $C_{n}(X)$ of all nonempty closed subsets of X with at most n components and $F_{1}(X)=$ $\{\{x\}: x \in X\}$. The n-fold pseudo-hyperspace suspension of X is the quotient space $C_{n}(X) / F_{1}(X)$ and it is denoted by $P H S_{n}(X)$. In this paper we prove that: (1) if X is a meshed continuum and Y is a continuum such that $P H S_{n}(X)$ is homeomorphic to $P H S_{n}(Y)$, then X is homeomorphic to Y, for each $n>1$. (2) There are locally connected continua without unique hyperspace $P H S_{n}(X)$.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

A continuum is a nondegenerate compact connected metric space. The set of positive integers is denoted by \mathbb{N}. Given a continuum X and $n \in \mathbb{N}$, we consider the following hyperspaces of X :

$$
\begin{gathered}
2^{X}=\{A \subset X: A \text { is a nonempty closed subset of } X\}, \\
C_{n}(X)=\left\{A \in 2^{X}: A \text { has at most } n \text { components }\right\}, \\
F_{n}(X)=\left\{A \in 2^{X}: A \text { has at most } n \text { points }\right\} \text { and } \\
C(X)=C_{1}(X)
\end{gathered}
$$

[^0]https://doi.org/10.1016/j.topol.2022.108053
0166-8641/© 2022 Elsevier B.V. All rights reserved.

All the hyperspaces considered are metrized by the Hausdorff metric H [13, Theorem 2.2].
Related to a continuum X, Sam B. Nadler, Jr. [20], introduced the hyperspace suspension of a continuum, $H S(X)$, as the quotient space $C(X) / F_{1}(X)$. Twenty five years later in [15], Sergio Macías gave a generalization of it, defining the n-fold hyperspace suspension of a continuum, $H S_{n}(X)$, as the quotient space $C_{n}(X) / F_{n}(X)$. In 2008, Juan C. Macías [16] introduced the n-fold pseudo-hyperspace suspension of a continuum, $P H S_{n}(X)$, as the quotient space $C_{n}(X) / F_{1}(X)$. Given a continuum X, let $\mathcal{H}(X)$ be any of the hyperspaces $2^{X}, C_{n}(X), F_{n}(X), H S_{n}(X)$, or $P H S_{n}(X)$. The continuum X is said to have unique hyperspace $\mathcal{H}(X)$ provided that the following implication holds: if Y is a continuum and $\mathcal{H}(X)$ is homeomorphic to $\mathcal{H}(Y)$, then X is homeomorphic to Y.

One of the problems that has been widely studied lately on the theory of continua and their hyperspaces is to search for continua with unique hyperspace $\mathcal{H}(X)$. The problem of finding conditions for X in order that X has unique $\mathcal{H}(X)$ has been widely studied for several families of continua, especially for finite graphs, meshed continua and almost meshed locally connected continua. In [12], Alejandro Illanes proved that finite graphs have unique $C_{n}(X)$ and later, in [6] Rodrigo Hernández-Gutiérrez, A. Illanes and Verónica Martínez-de-la-Vega studied the uniqueness of the hyperspace $C_{n}(X)$ for locally connected continua and proved that meshed continua have unique $C_{n}(X)$. Later, adopting some of the techniques presented in [12] it was proved that finite graphs have unique $H S_{n}(X)$, see [7]. Later, in [8] María de J. López jointly with the second and third authors proved that framed continua have unique $H S_{n}(X)$. In relation to this topic, Germán Montero-Rodríguez, M. de J. López jointly with the second and third authors proved that finite graphs have unique hyperespace $F_{n}(X) / F_{1}(X)$, for each $n \geq 4$, see [19, Theorem 3.8]. Recently, in [18] it was proved that finite graphs have unique $P H S_{n}(X)$. Following the study of this property in the hyperspace $P H S_{n}(X)$, in the present work we prove that
(1) Meshed continua have unique n-fold pseudo-hyperspace suspension, for $n>1$, see Theorem 4.8.
(2) There are almost meshed locally connected continua without unique n-fold pseudo-hyperspace suspension, see Theorem 5.3.
(3) There exists an almost meshed locally connected continuum that is not meshed with unique 2 -fold pseudo-hyperspace suspension, see Example 5.4.
(4) There exist locally connected continua that are not almost meshed without unique n-fold pseudohyperspace suspension, see Theorem 5.5.

2. Definitions

Let X be a continuum. Given a subset A of $X, \operatorname{int}_{X}(A), \operatorname{cl}_{X}(A)$, and $\operatorname{bd}_{X}(A)$, denote the interior, the closure, and the boundary of A in X, respectively, and when there is no possible confusion with the underlying continuum in which A lies, we simply will use A° instead of $\operatorname{int}_{X}(A)$. Through this paper, we write d for the metric associated to the continuum X. Let $\varepsilon>0$ and $p \in X$; the set $\{x \in X: d(p, x)<\varepsilon\}$ is denoted by $B_{X}(p, \varepsilon)$, when there is no possible confusion with the underlying continuum in which d lies, we use $B(p, \varepsilon)$ instead of $B_{X}(p, \varepsilon)$. The Hausdorff metric H is defined as follows: for each $A, B \in 2^{X}$,

$$
H(A, B)=\inf \{\varepsilon>0: A \subset N(\varepsilon, B) \text { and } B \subset N(\varepsilon, A)\}
$$

where $N(\varepsilon, A)=\{x \in X: d(x, A)<\varepsilon\}$. The hyperspaces $F_{n}(X)$ and $C_{n}(X)$ are called the n-fold symmetric product of X and the n-fold hyperspace of X, respectively. The cardinality of A is denoted by $|A|$. Let $p \in X$ and β be a cardinal number. We say that p has order less than or equal to β in X, $\operatorname{written} \operatorname{ord}(p, X) \leq \beta$, whenever p has a basis of neighborhoods \mathfrak{B} in X such that the cardinality of $\mathrm{bd}_{X}(U)$ is less than or equal to β, for each $U \in \mathfrak{B}$. We say that p has order equal to β in $X(\operatorname{ord}(p, X)=\beta)$ provided that $\operatorname{ord}(p, X) \leq \beta$ and $\operatorname{ord}(p, X) \nless \alpha$ for any cardinal number $\alpha<\beta$. Let $E(X)=\{x \in X: \operatorname{ord}(x, X)=1\}, O(X)=\{x \in$
$X: \operatorname{ord}(x, X)=2\}$, and $R(X)=\{x \in X: \operatorname{ord}(x, X) \geq 3\}$. The elements of $E(X)$ (respectively, $O(X)$ and $R(X)$) are called end points (respectively, ordinary points and ramification points) of X. A map is a continuous function.

A finite graph is a continuum which is a finite union of arcs such that every two of them meet at a subset of their end points.

Given a continuum X, a free arc in X is an arc J with end points p and q such that $J-\{p, q\}$ is an open subset of X. A maximal free arc in X is a free arc in X that is maximal with respect to the inclusion. A cycle in X is a simple closed curve J in X such that $J-\{a\}$ is an open subset of X, for some $a \in J$. Notice that if X is not a simple closed curve and J is a cycle in X, then $J \cap R(X)=\{a\}$. Let

$$
\begin{gathered}
\mathfrak{A}_{R}(X)=\{J \subset X: J \text { is a cycle in } X\} \\
\mathfrak{A}_{E}(X)=\{J \subset X: J \text { is a maximal free arc in } X \text { and }|J \cap R(X)|=1\} \\
\mathfrak{A}_{S}(X)=\{J \subset X: J \text { is a maximal free arc in } X\} \cup \mathfrak{A}_{R}(X) \\
\mathcal{G}(X)=\{x \in X: x \text { has a neighborhood in } X \text { which is a finite graph }\} \text { and } \\
\mathcal{P}(X)=X-\mathcal{G}(X)
\end{gathered}
$$

According to [6, p. 1584] a continuum X is said to be almost meshed whenever the set $\mathcal{G}(X)$ is dense in X. An almost meshed continuum X is meshed provided that X has a basis of neighborhoods \mathcal{B} such that $U-\mathcal{P}(X)$ is connected, for each $U \in \mathcal{B}$.

Given a continuum X and $n \in \mathbb{N}$, the function $q_{X}^{n}: C_{n}(X) \rightarrow P H S_{n}(X)$ is the natural projection, and F_{X}^{n} denotes the element $q_{X}^{n}\left(F_{1}(X)\right)$. Notice that

$$
\begin{equation*}
\left.q_{X}^{n}\right|_{C_{n}(X)-F_{1}(X)}: C_{n}(X)-F_{1}(X) \rightarrow P H S_{n}(X)-\left\{F_{X}^{n}\right\} \text { is a homeomorphism. } \tag{2.1}
\end{equation*}
$$

Given $m \in \mathbb{N}$ and U_{1}, \ldots, U_{m} subsets of X, let

$$
\left\langle U_{1}, \ldots, U_{m}\right\rangle_{n}=\left\{A \in C_{n}(X): A \subset U_{1} \cup \cdots \cup U_{m} \text { and } A \cap U_{i} \neq \emptyset, \text { for each } i \in\{1, \ldots, m\}\right\}
$$

By [13, Theorem 1.2], it is known that the family of all sets $\left\langle U_{1}, \ldots, U_{m}\right\rangle_{n}$, where each U_{i} is an open subset of X, forms a basis for the topology in $C_{n}(X)$.

A topological manifold M (possibly with boundary) of dimension $n<\infty$ is a metrizable topological space M such that each point x in M admits an open neighborhood U and a homeomorphism $\kappa: U \longrightarrow \kappa(U)$ onto an open subset of the Euclidean half-space $\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1} \geq 0\right\}$. The points x in M that correspond to points $\kappa(x)$ in the hyperplane $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n}: x_{1}=0\right\}$ form the manifold boundary of M. The manifold interior of M is defined as the complement of the manifold boundary on M, as in [14, p. 7].

We use the following notations: $\operatorname{dim}[X]$ stands for the dimension of X, and $\operatorname{dim}_{p}[X]$ stands for the dimension of X at the point $p \in X$, as in [22, p. 5].

Given a continuum X and $n \in \mathbb{N}$, let

$$
\begin{gathered}
\mathcal{L}_{n}(X)=\left\{A \in C_{n}(X): A \text { has a neighborhood in } C_{n}(X) \text { which is a } 2 n \text {-cell }\right\}, \\
\partial \mathcal{L}_{n}(X)=\left\{A \in C_{n}(X): A \text { has a neighborhood } \mathcal{N} \text { in } C_{n}(X)\right. \text { such that } \\
\mathcal{N} \text { is a } 2 n \text {-cell and } A \text { belongs to the manifold boundary of } \mathcal{N}\}, \\
\mathcal{D}_{n}(X)=\left\{A \in C_{n}(X): A \notin \mathcal{L}_{n}(X) \text { and } A\right. \text { has a basis of neighborhoods } \\
\mathcal{A} \text { in } C_{n}(X) \text { such that for each } \mathcal{U} \in \mathcal{A}, \operatorname{dim}[\mathcal{U}]=2 n \\
\text { and } \left.\mathcal{U} \cap \mathcal{L}_{n}(X) \text { is arcwise connected }\right\}
\end{gathered}
$$

$\mathcal{P H} \mathcal{L}_{n}(X)=\left\{B \in P H S_{n}(X): B\right.$ has a neighborhood in $P H S_{n}(X)$ which is a $2 n$-cell $\}$,
$\partial \mathcal{P H} \mathcal{L}_{n}(X)=\left\{B \in P H S_{n}(X): B\right.$ has a neighborhood \mathcal{N} in $P H S_{n}(X)$ such that
\mathcal{N} is a $2 n$-cell and B belongs to the manifold boundary of $\mathcal{N}\}$,
$\mathcal{P H}_{n}(X)=\left\{B \in P H S_{n}(X): B \notin \mathcal{P H} \mathcal{L}_{n}(X)\right.$ and B has a basis of neighborhoods \mathcal{B} in $P H S_{n}(X)$ such that for each $\mathcal{V} \in \mathcal{B}, \operatorname{dim}[\mathcal{V}]=2 n$
and $\mathcal{V} \cap \mathcal{P H} \mathcal{L}_{n}(X)$ is arcwise connected $\}$, and

$$
\mathcal{P H}_{n}(X)=\left\{B \in P H S_{n}(X): \operatorname{dim}_{B}\left[P H S_{n}(X)\right]=2 n\right\} .
$$

By (2.1), we have the following remark.
Remark 2.1. Let X be a continuum and $n \in \mathbb{N}$. Then
(a) $q_{X}^{n}\left(\mathcal{L}_{n}(X)-F_{1}(X)\right)=\mathcal{P} \mathcal{H} \mathcal{L}_{n}(X)-\left\{F_{X}^{n}\right\}$,
(b) $q_{X}^{n}\left(\partial \mathcal{L}_{n}(X)-F_{1}(X)\right)=\partial \mathcal{P} \mathcal{H} \mathcal{L}_{n}(X)-\left\{F_{X}^{n}\right\}$ and
(c) $q_{X}^{n}\left(\mathcal{D}_{n}(X)-F_{1}(X)\right)=\mathcal{P H D} \mathcal{D}_{n}(X)-\left\{F_{X}^{n}\right\}$.

3. Preliminary results

Lemma 3.1. Let X be a locally connected continuum and $J, K \in \mathfrak{A}_{S}(X)$. Then
(a) $J^{\circ} \cap R(X)=\emptyset$,
(b) $\operatorname{bd}_{X}(K) \subset R(X)$ and
(c) if $J^{\circ} \cap K \neq \emptyset$, then $J=K$.

Proof. (a) Take $p \in J^{\circ}$. Let U be an open subset of X such that $p \in U$. Then, there exists an arc L in J such that $p \in \operatorname{int}_{J}(L) \subset L \subset U \cap J^{\circ}$. Then $\operatorname{int}_{J}(L)$ is an open connected subset of X. Moreover, $\operatorname{bd}_{X}\left(\operatorname{int}_{J}(L)\right) \subset L-\operatorname{int}_{J}(L)$ and $L-\operatorname{int}_{J}(L)$ has at most 2 elements. Thus, $p \notin R(X)$. Consequently, $J^{\circ} \cap R(X)=\emptyset$.
(b) If $R(X)=\emptyset$, by [21, 8.40], we have that X is an arc or a simple closed curve and the result follows. Suppose that $R(X) \neq \emptyset$. Let $p \in \operatorname{bd}_{X}(K)$ and \mathfrak{B} be a basis of neighborhoods of p in X.

Case 1. K is a cycle.
Let $q \in X-K$ and L be an arc in X with end points p and q. Since $K-\{p\}$ is an open subset of X, we have that $K \cap L=\{p\}$. Let $r=d(p, q)$ and $U \in \mathfrak{B}$ be such that $U \subset B(p, r)$ and $K \not \subset U$. Notice that $\operatorname{bd}_{X}(U)$ has at least 3 elements. This implies that $p \notin E(X) \cup O(X)$. Therefore, $p \in R(X)$.

Case 2. K is an arc.
Notice that p is an end point of K. Let a be the other end point of K. Let $s=\min \left\{\frac{\operatorname{diam}(K)}{2}, \frac{d(a, p)}{2}\right\}$ and let W be an open connected subset of X such that $p \in W \subset B(p, s)$. By [21, 8.26], W is arcwise connected. Let $q \in W-K$ and L be an arc in W with end points p and q. Notice that $K \not \subset L$ and $a \notin L$. Since $K-\{a, p\}$ is an open subset of X, we have that $K \cap L \subset\{a, p\}$. Hence, $K \cap L=\{p\}$. Suppose that there exists $\delta>0$ such that $B(p, \delta) \subset K \cup L$. Let C_{p} be the component of $B(p, \delta)$ such that $p \in C_{p}$ and $L_{p}=\mathrm{cl}_{X}\left(C_{p}\right)$. Hence, L_{p} is an arc. Since X is locally connected, C_{p} is an open subset of X. Let l, k be the end points of L_{p}, where $l \in L$ and $k \in K$. Notice that $K \cup L_{p}-\{a, l\}=C_{p} \cup(K-\{a, p\})$. Thus, $K \cup L_{p}$ is a free arc. This contradicts the maximality of K. Therefore, for any $\varepsilon>0, B(p, \varepsilon) \not \subset K \cup L$. This implies that there exists an arc M such that $(K \cup L) \cap M=\{p\}$. Let z be the other end point of M and $r=\min \{d(p, a), d(p, q), d(p, z)\}$. Thus, there exists $V \in \mathfrak{B}$ such that $V \subset B(p, r)$. Notice that $\operatorname{bd}_{X}(V)$ has at least 3 elements. This implies that $p \notin E(X) \cup O(X)$. Therefore, $p \in R(X)$.
(c) Given $p \in J^{\circ} \cap K$, by (a), we know that $p \notin R(X)$. Using (b), we have that $p \in K^{\circ}$. Hence, $J^{\circ} \cap K^{\circ}=J^{\circ} \cap K$. Consequently, $J^{\circ} \cap K$ is a nonempty open and closed subset of the connected set J°. Thus, $J^{\circ}=J^{\circ} \cap K$ and $J \subset K$. By the maximality of J, we have that $J=K$.

In [17], Verónica Martínez-de-la-Vega computed the dimension of the n-fold hyperspace for a finite graph G with the following formula

$$
\begin{equation*}
\operatorname{dim}_{A}\left[C_{n}(G)\right]=2 n+\sum_{p \in A \cap R(G)}(\operatorname{ord}(p, G)-2), \text { where } A \in C_{n}(G) . \tag{3.1}
\end{equation*}
$$

Lemma 3.2. [6, Theorem 4] Let X be a locally connected continuum, $n \in \mathbb{N}$ and $A \in C_{n}(X)$. Then the following conditions are equivalent.
(a) $\operatorname{dim}_{A}\left[C_{n}(X)\right]$ is finite,
(b) there exists a finite graph G contained in X such that $A \subset \operatorname{int}_{X}(G)$,
(c) $A \cap \mathcal{P}(X)=\emptyset$.

Lemma 3.3. [6, Lemma 28] Let X be a locally connected continuum and $n \geq 3$. Then $\mathcal{D}_{n}(X)=\{A \in$ $C_{n}(X): A$ is connected and there exists $J \in \mathfrak{A}_{S}(X)$ such that $\left.A \subset \operatorname{int}_{X}(J)\right\}$.

The proof of following result is a modification of [7, Lemma 2.3].
Lemma 3.4. Let X be a locally connected continuum and $n \in \mathbb{N}$. If $A \in C_{n}(X)-F_{1}(X)$ and $A \cap R(X) \neq \emptyset$, then $\operatorname{dim}_{q_{X}^{n}(A)}\left[P H S_{n}(X)\right] \geq 2 n+1$.

Proof. From (2.1), we have that $\operatorname{dim}_{q_{X}^{n}(A)}\left[P H S_{n}(X)\right]=\operatorname{dim}_{A}\left[C_{n}(X)\right]$. If $\operatorname{dim}_{A}\left[C_{n}(X)\right]$ is not finite, the result follows. Suppose that $\operatorname{dim}_{A}\left[C_{n}(X)\right]$ is finite. By Lemma 3.2, there exists a finite graph G such that $A \subset \operatorname{int}_{X}(G)$. Notice that $\operatorname{dim}_{A}\left[C_{n}(X)\right]=\operatorname{dim}_{A}\left[C_{n}(G)\right]$. Since $A \cap R(X) \neq \emptyset$ and $A \subset \operatorname{int}_{X}(G)$, we have that $A \cap R(G) \neq \emptyset$. Thus, by (3.1), $\operatorname{dim}_{A}\left[C_{n}(G)\right] \geq 2 n+1$. Therefore, the result follows.

The proof of following result is a modification of [7, Lemma 2.4].
Lemma 3.5. Let X be a locally connected continuum such that $R(X) \neq \emptyset$ and $n \in \mathbb{N}$. Then for each neighborhood \mathcal{U} of F_{X}^{n} in $P H S_{n}(X), \operatorname{dim}[\mathcal{U}] \geq 2 n+1$.

Proof. Let \mathcal{U} be an open neighborhood of F_{X}^{n} in $P H S_{n}(X)$ and $\mathcal{V}=\left(q_{X}^{n}\right)^{-1}(\mathcal{U})$. Then \mathcal{V} is an open subset of $C_{n}(X)$. Fix a point $p \in R(X)$. Since $\{p\} \in \mathcal{V}$, there exists $r>0$ such that $B_{C_{n}(X)}(\{p\}, r) \subset \mathcal{V}$. Let C be the component of $B(p, r)$ containing p. Since C is an open connected subset of X, by [21, 8.26], C is arcwise connected. Hence, there exists an arc A such that $p \in A \subset B(p, r)$. Notice that $A \in \mathcal{V}$. Thus, $q_{X}^{n}(A) \in \mathcal{U}$. Therefore, by Lemma 3.4, $\operatorname{dim}_{q_{X}^{n}(A)}[\mathcal{U}] \geq 2 n+1$.

The proof of following result is a modification of [7, Lemma 2.9 (b)].
Lemma 3.6. Let X be a locally connected continuum such that $R(X) \neq \emptyset, n \in \mathbb{N}$ with $n \geq 3$. Then $\mathcal{P H D} \mathcal{D}_{n}(X)=\left\{q_{X}^{n}(A) \in P H S_{n}(X): A \in C(X)-F_{1}(X)\right.$ and $\left.A \cap[R(X) \cup \mathcal{P}(X)]=\emptyset\right\}$.

Proof. Given $B \in \mathcal{P H} \mathcal{D}_{n}(X)$, there exists $A \in C_{n}(X)$ such that $B=q_{X}^{n}(A)$. Since $R(X) \neq \emptyset$, by Lemma 3.5, $B \neq F_{X}^{n}$, thus, $A \notin F_{1}(X)$. Moreover, by Remark $2.1(c), A \in \mathcal{D}_{n}(X)$. By Lemma 3.3, $A \in C(X)-F_{1}(X)$ and $A \subset \operatorname{int}_{X}(J)$, for some $J \in \mathfrak{A}_{S}(X)$. This implies that $A \cap[R(X) \cup \mathcal{P}(X)]=\emptyset$.

On the other hand, to prove the opposite inclusion, let $A \in C(X)-F_{1}(X)$ be such that $A \cap[R(X) \cup$ $\mathcal{P}(X)]=\emptyset$. In order to prove that $q_{X}^{n}(A) \in \mathcal{P H} \mathcal{D}_{n}(X)$, by Remark $2.1(c)$, it will be enough to prove that $A \in \mathcal{D}_{n}(X)$. By Lemma 3.2, there exists a finite graph G contained in X such that $A \subset \operatorname{int}_{X}(G)$. Since $A \cap R(X)=\emptyset$, we have that $A \cap R(G)=\emptyset$. Thus, there exists a free arc L in G such that $A \subset \operatorname{int}_{G}(L)$. Since $A \subset \operatorname{int}_{X}(G), A \subset \operatorname{int}_{X}(L)$ so we may assume that $L \subset \operatorname{int}_{X}(G)$. This implies that L is a free arc in X. By [6, Lemma 10], there exists $J \in \mathfrak{A}_{S}(X)$ such that $L \subset J$. Therefore, by Lemma 3.3, $A \in \mathcal{D}_{n}(X)$.

The proof of following result is a modification of [7, Lemma 2.10 (a) and (d)].

Lemma 3.7. Let X be a locally connected continuum such that $R(X) \neq \emptyset$ and $n \in \mathbb{N}$.
(a) For $n \geq 3$, the components of $\mathcal{P H} \mathcal{D}_{n}(X)$ are the sets $q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{1}\right)-\left\{F_{X}^{n}\right\}$, where $J \in \mathfrak{A}_{S}(X)$.
(b) The components of $\mathcal{P H E} \mathcal{E}_{n}(X)$ are the sets $q_{X}^{n}\left(\left\langle J_{1}^{\circ}, \ldots, J_{m}^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}$, where $J_{1}, \ldots, J_{m} \in \mathfrak{A}_{S}(X)$ and $m \leq n$.

Proof. (a) By Lemma 3.6, $\mathcal{P H}_{n}(X)=\bigcup\left\{q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{1}\right)-\left\{F_{X}^{n}\right\}: J \in \mathfrak{A}_{S}(X)\right\}$. It is easy to see that the sets $q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{1}\right)-\left\{F_{X}^{n}\right\}$ are arcwise connected and, therefore, connected. Moreover, the sets $q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{1}\right)-\left\{F_{X}^{n}\right\}$ are open in $\mathcal{P H}_{n}(X)$ and pairwise disjoint. We conclude that they are the components of $\mathcal{P H} \mathcal{D}_{n}(X)$.
(b) By Lemma 3.5, $F_{X}^{n} \notin \mathcal{P H \mathcal { E }} \mathcal{E}_{n}(X)$. Given $B \in \mathcal{P H} \mathcal{E}_{n}(X)$, there exists $A \in C_{n}(X)$ such that $B=q_{X}^{n}(A)$. Notice that $\operatorname{dim}_{A}\left[C_{n}(X)\right]=\operatorname{dim}_{B}\left[P H S_{n}(X)\right]=2 n$. By [6, Lemma 11], there exist $J_{1}, \ldots, J_{m} \in \mathfrak{A}_{S}(X)$, with $m \leq n$, such that $A \in\left\langle J_{1}^{\circ}, \ldots, J_{m}^{\circ}\right\rangle_{n}$. This implies that $\mathcal{P H} \mathcal{E}_{n}(X) \subset \bigcup\left\{q_{X}^{n}\left(\left\langle J_{1}^{\circ}, \ldots, J_{m}^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}\right.$: $\left.J_{1}, \ldots, J_{m} \in \mathfrak{A}_{S}(X)\right\}$. To prove the other inclusion, let $A \in\left\langle J_{1}^{\circ}, \ldots, J_{m}^{\circ}\right\rangle_{n}-F_{1}(X)$. Thus, $A \cap[R(X) \cup$ $\mathcal{P}(X)]=\emptyset$. By Lemma 3.2, there exists a finite graph G contained in X such that $A \subset \operatorname{int}_{X}(G)$. Since $A \cap R(X)=\emptyset$, we have that $A \cap R(G)=\emptyset$. Hence, by (3.1), $\operatorname{dim}_{A}\left[C_{n}(G)\right]=2 n$. Since $\operatorname{dim}_{q_{X}^{n}(A)}\left[P H S_{n}(X)\right]=$ $\operatorname{dim}_{A}\left[C_{n}(X)\right]=\operatorname{dim}_{A}\left[C_{n}(G)\right], q_{X}^{n}(A) \in \mathcal{P H} \mathcal{E}_{n}(X)$. Therefore, $\mathcal{P H} \mathcal{E} \mathcal{E}_{n}(X)=\bigcup\left\{q_{X}^{n}\left(\left\langle J_{1}^{\circ}, \ldots, J_{m}^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}:\right.$ $\left.J_{1}, \ldots, J_{m} \in \mathfrak{A}_{S}(X)\right\}$. The rest of the proof is similar to the proof of (a).

Let X be a locally connected continuum such that $R(X) \neq \emptyset$. Given $J \in \mathfrak{A}_{S}(X)$, let $\mathcal{E}(J)=\mathrm{cl}_{C(X)}\left(\left\langle J^{\circ}\right\rangle_{1}\right)$. Notice that

$$
\mathcal{E}(J)=\left\{\begin{array}{cl}
C(J)-\left\{A \in C(J): A \text { is an arc and } \operatorname{int}_{J}(A) \cap R(X) \neq \emptyset\right\}, & \text { if } J \text { is a cycle, } \\
C(J), & \text { if } J \text { is an arc. }
\end{array}\right.
$$

Let $D_{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$ and $D_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+\left(y+\frac{1}{2}\right)^{2} \leq \frac{1}{4}\right\}$. Let $L_{0}=D_{1}-\operatorname{int}_{\mathbb{R}^{2}}\left(D_{2}\right)$. Notice that if J is a cycle, then $\mathcal{E}(J)$ is homeomorphic to the continuum L_{0}.

The proof of following result is a modification of [18, Lemma 3.4].

Lemma 3.8. Let X be a locally connected continuum such that $R(X) \neq \emptyset, p \in X$ and let $J \in \mathfrak{A}_{S}(X)$.
(1) If J is an arc, then $\left\{q_{X}^{2}(\{p\} \cup A): A \in \mathcal{E}(J)\right\}$ is a 2 -cell in $P H S_{2}(X)$.
(2) If J is a cycle, then $\left\{q_{X}^{2}(\{p\} \cup A): A \in \mathcal{E}(J)\right\}$ is homeomorphic to the continuum L_{0}.

Proof. Let g be the embedding of $C(X)$ into $C_{2}(X)$ given by $g(A)=\{p\} \cup A$. Since the set $g(\mathcal{E}(J)) \cap F_{1}(X)$ is either the set \emptyset or the set $\{p\}$, we have that $g(\mathcal{E}(J)) / F_{1}(X)$ is homeomorphic to $\mathcal{E}(J)$. Notice that in (1), the set $\mathcal{E}(J)$ is a 2 -cell, and in (2), it is homeomorphic to continuum L_{0}. Now, we finish the proof by mentioning that $g(\mathcal{E}(J)) / F_{1}(X)$ is clearly homeomorphic to $\left\{q_{X}^{2}(\{p\} \cup A): A \in \mathcal{E}(J)\right\}$.

Lemma 3.9. Let X be a locally connected continuum. If Y and Z are either arcs or simple closed curves of X such that $Y \cap Z=\emptyset$, then $\langle Y, Z\rangle_{2}$ is a 4-cell and $\{y, z\}$ belongs to its manifold boundary, for each $y \in Y, z \in Z$.

Proof. Let $f:\langle Y, Z\rangle_{2} \longrightarrow C(Y) \times C(Z)$ be defined as $f(A)=(A \cap Y, A \cap Z)$. Notice that f is a bijection. Moreover, given a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ contained in $\langle Y, Z\rangle_{2}$ which converges to A, for some $A \in\langle Y, Z\rangle_{2}$, we have that $\left\{A_{n} \cap Y\right\}_{n=1}^{\infty}$ converges to $A \cap Y$ and $\left\{A_{n} \cap Z\right\}_{n=1}^{\infty}$ converges to $A \cap Z$. Thus, $\left\{\left(A_{n} \cap Y, A_{n} \cap Z\right)\right\}_{n=1}^{\infty}$ converges to ($A \cap Y, A \cap Z$). Hence, f is a homeomorphism.

By $[13,5.1 .1$ and 5.2$]$, we have that $C(Y)$ and $C(Z)$ are 2-cells such that $F_{1}(Y)$ is contained in the manifold boundary of $C(Y)$ and $F_{1}(Z)$ is contained in the manifold boundary of $C(Z)$. Hence, $\langle Y, Z\rangle_{2}$ is a 4-cell. Let $y \in Y$ and $z \in Z$. Since $\{y\}$ belongs to the manifold boundary of $C(Y)$, there exist an open neighborhood \mathcal{U} of $\{y\}$ in $C(Y)$ and a homeomorphism $\kappa_{1}: \mathcal{U} \longrightarrow \kappa_{1}(\mathcal{U})$ onto an open subset of \mathbb{R}_{+}^{2} such that $\kappa_{1}(\{y\})=(0, r)$, for some $r \in \mathbb{R}$. Similarly, there exist an open neighborhood \mathcal{V} of $\{z\}$ in $C(Z)$ and a homeomorphism $\kappa_{2}: \mathcal{V} \longrightarrow \kappa_{2}(\mathcal{V})$ onto an open subset of \mathbb{R}_{+}^{2} such that $\kappa_{2}(\{z\})=(0, s)$, for some $s \in \mathbb{R}$. Notice that $\mathcal{U} \times \mathcal{V}$ is an open neighborhood of $(\{y\},\{z\})$ in $C(Y) \times C(Z)$. Let $\kappa_{+}: \mathcal{U} \times \mathcal{V} \longrightarrow \kappa_{+}(\mathcal{U} \times \mathcal{V})$ be defined as $\kappa_{+}(A, B)=\left(\kappa_{1}(A), \kappa_{2}(B)\right)$. Thus, κ_{+}is a homeomorphism, moreover, $\kappa_{+}(\mathcal{U} \times \mathcal{V})=\kappa_{1}(\mathcal{U}) \times \kappa_{2}(\mathcal{V})$ is an open subset of $\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}$.

Now, let $g: \mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2} \longrightarrow \mathbb{R}_{+}^{4}$ be defined as $g((a, b),(c, d))=\left(2 a c, b, a^{2}-c^{2}, d\right)$ and let $h: \mathbb{R}_{+}^{4} \longrightarrow \mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}$ be defined as

$$
h(a, b, c, d)=\left(\left(\sqrt{\frac{1}{2}\left(\sqrt{a^{2}+c^{2}}+c\right)}, b\right),\left(\sqrt{\frac{1}{2}\left(\sqrt{a^{2}+c^{2}}-c\right)}, d\right)\right) .
$$

Notice that g and h are maps. Moreover, $h \circ g=\operatorname{id}_{\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}}$ and $g \circ h=\operatorname{id}_{\mathbb{R}_{+}^{4}}$. Hence, g is a homeomorphism. By definition of $f, f^{-1}(\mathcal{U} \times \mathcal{V})$ is an open neighborhood of $\{y, z\}$ in $\langle Y, Z\rangle_{2}$. Let $\kappa: f^{-1}(\mathcal{U} \times \mathcal{V}) \longrightarrow \kappa\left(f^{-1}(\mathcal{U} \times \mathcal{V})\right)$ be defined as $\kappa(A)=g \circ \kappa_{+} \circ f(A)$. Thus, κ is a homeomorphism, $\kappa\left(f^{-1}(\mathcal{U} \times \mathcal{V})\right)=g\left(\kappa_{1}(\mathcal{U}) \times \kappa_{2}(\mathcal{V})\right)$ is an open subset of \mathbb{R}_{+}^{4} and $\kappa(\{y, z\})=(0, r, 0, s)$. Therefore, $\{y, z\}$ belongs to the manifold boundary of $\langle Y, Z\rangle_{2}$.

Given $J, K \in \mathfrak{A}_{S}(X)$, let

$$
\begin{gathered}
\mathcal{D}(J, K)=\operatorname{cl}_{C_{2}(X)}\left(\partial \mathcal{L}_{2}(X) \cap\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right) \cap \operatorname{cl}_{C_{2}(X)}\left(\partial \mathcal{L}_{2}(X)-\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right) \text { and } \\
\mathcal{P H} \mathcal{D}(J, K)=\operatorname{cl}_{P H S_{2}(X)}\left(\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X) \cap q_{X}^{2}\left(\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)\right) \cap \operatorname{cl}_{P H S_{2}(X)}\left(\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X)-q_{X}^{2}\left(\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)\right) .
\end{gathered}
$$

Lemma 3.10. Let X be a locally connected continuum such that $R(X) \neq \emptyset$ and let $J, K \in \mathfrak{A}_{S}(X)$. Then $F_{X}^{2} \in \mathcal{P H D}(J, K)$ if and only if $J \cap K \neq \emptyset$.

Proof. Suppose that $F_{X}^{2} \in \mathcal{P H} \mathcal{D}(J, K)$. Then, there exists a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ contained in $\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}$ such that $\lim q_{X}^{2}\left(A_{n}\right)=F_{X}^{2}$. Since q_{X}^{2} is a map, $\lim A_{n}=\{a\}$, for some $a \in X$. Thus, $\{a\} \in\langle J, K\rangle_{2}$. Therefore, $J \cap K \neq \emptyset$.
Now suppose that $J \cap K \neq \emptyset$. We consider the following cases.
Case 1. $J \neq K$.
Let $p \in J \cap K \cap R(X)$. Then, there are two sequences $\left\{j_{n}\right\}_{n=1}^{\infty}$ and $\left\{k_{n}\right\}_{n=1}^{\infty}$ contained in J° and K°, respectively, such that $\lim j_{n}=p$ and $\lim k_{n}=p$. Thus, $\lim q_{X}^{2}\left(\left\{j_{n}, k_{n}\right\}\right)=F_{X}^{2}$. Let J_{n} and K_{n} be subarcs of J° and K°, respectively, such that $j_{n} \in J_{n}^{\circ}$ and $k_{n} \in K_{n}^{\circ}$, for each $n \in \mathbb{N}$. Fix $n \in \mathbb{N}$. Notice that $\left\langle J_{n}, K_{n}\right\rangle_{2}$ is a neighborhood of $\left\{j_{n}, k_{n}\right\}$ in $C_{2}(X)$. Since J_{n} and K_{n} are disjoint arcs, by Lemma 3.9, we have that $\left\langle J_{n}, K_{n}\right\rangle_{2}$ is a 4 -cell such that $\left\{j_{n}, k_{n}\right\}$ belongs to its manifold boundary. This implies that $\left\{j_{n}, k_{n}\right\} \in \partial \mathcal{L}_{2}(X)$. By Remark $2.1(b), q_{X}^{2}\left(\left\{j_{n}, k_{n}\right\}\right) \in \partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X)$. Therefore, $F_{X}^{2} \in \operatorname{cl}_{P H S_{2}(X)}\left(\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X) \cap q_{X}^{2}\left(\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)\right)$.

Now, let $\left\{p_{n}\right\}_{n=1}^{\infty}$ and $\left\{q_{n}\right\}_{n=1}^{\infty}$ be two sequences contained in K° such that $\lim p_{n}=p, \lim q_{n}=p$ and $p_{n} \neq q_{n}$, for each $n \in \mathbb{N}$. Let P_{n} and Q_{n} be disjoint subarcs of K such that $p_{n} \in P_{n}^{\circ}$ and $q_{n} \in Q_{n}^{\circ}$, for each $n \in \mathbb{N}$. By Lemma 3.9, we have that $\left\langle P_{n}, Q_{n}\right\rangle_{2}$ is a 4 -cell and $\left\{p_{n}, q_{n}\right\}$ belongs to its manifold boundary. By Remark $2.1(b),\left\{q_{X}^{2}\left(\left\{p_{n}, q_{n}\right\}\right)\right\}_{n=1}^{\infty}$ is a sequence contained in $\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X)-q_{X}^{2}\left(\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)$. Therefore, $F_{X}^{2} \in \mathcal{P H} \mathcal{D}(J, K)$.

Case 2. $J=K$.
Let $p \in J \cap R(X)$. Then, there exist two sequences $\left\{j_{n}\right\}_{n=1}^{\infty}$ and $\left\{k_{n}\right\}_{n=1}^{\infty}$ contained in J° such that $\lim j_{n}=p$, $\lim k_{n}=p$, and $j_{n} \neq k_{n}$, for each $n \in \mathbb{N}$. Let J_{n} and K_{n} be disjoint subarcs of J° such that $j_{n} \in J_{n}^{\circ}$ and $k_{n} \in K_{n}^{\circ}$, for each $n \in \mathbb{N}$. By Lemma 3.9, we have that $\left\langle J_{n}, K_{n}\right\rangle_{2}$ is a 4 -cell such that $\left\{j_{n}, k_{n}\right\}$ belongs to its manifold boundary. This implies that $\left\{j_{n}, k_{n}\right\} \in \partial \mathcal{L}_{2}(X)$. By Remark $2.1(b), q_{X}^{2}\left(\left\{j_{n}, k_{n}\right\}\right) \in \partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X)$. Therefore, $F_{X}^{2} \in \mathrm{cl}_{P H S_{2}(X)}\left(\partial \mathcal{P H} \mathcal{L}_{2}(X) \cap q_{X}^{2}\left(\left\langle J^{\circ}\right\rangle_{2}\right)\right)$.

Since $p \in R(X)$, there exists $L \in \mathfrak{A}_{S}(X)-\{J\}$ such that $p \in L$. Thus, $p \in J \cap L \cap R(X)$. In a similar way as Case 1, we can prove that $F_{X}^{2} \in \operatorname{cl}_{P H S_{2}(X)}\left(\partial \mathcal{P H} \mathcal{L}_{2}(X)-q_{X}^{2}\left(\left\langle J^{\circ}\right\rangle_{2}\right)\right)$. Therefore, $F_{X}^{2} \in \mathcal{P H D}(J, K)$.

The proof of following result is a modification of [7, Lemma 2.15].
Lemma 3.11. Let X be a locally connected continuum with $R(X) \neq \emptyset$. If $J, K \in \mathfrak{A}_{S}(X)$, then $\mathcal{P H} \mathcal{D}(J, K)=$ $\left\{q_{X}^{2}(\{p\} \cup G): p \in \operatorname{bd}_{X}(J)\right.$ and $G \in \mathcal{E}(K)$ or $p \in \operatorname{bd}_{X}(K)$ and $\left.G \in \mathcal{E}(J)\right\}$.

Proof. Let $B \in \mathcal{P H} \mathcal{D}(J, K)$. By Lemma 3.10, we may assume that $B \neq F_{X}^{2}$. Let $A \in C_{2}(X)-F_{1}(X)$ be such that $q_{X}^{2}(A)=B$. Since $B \in \operatorname{cl}_{P H S_{2}(X)}\left(\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X) \cap q_{X}^{2}\left(\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)\right)$, there exists a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ contained in $\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}-F_{1}(X)$ such that $\lim q_{X}^{2}\left(A_{n}\right)=B$ and $q_{X}^{2}\left(A_{n}\right) \in \partial \mathcal{P H} \mathcal{L}_{2}(X)$, for each $n \in \mathbb{N}$. By the continuity of $q_{X}^{2}, \lim A_{n}=A$. By Remark $2.1(b), A_{n} \in \partial \mathcal{L}_{2}(X)$, for each $n \in \mathbb{N}$. Hence, $A \in \operatorname{cl}_{C_{2}(X)}\left(\partial \mathcal{L}_{2}(X) \cap\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)$. Moreover, since $B \in \operatorname{cl}_{P H S_{2}(X)}\left(\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X)-q_{X}^{2}\left(\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)\right)$, there exists a sequence $\left\{B_{n}\right\}_{n=1}^{\infty}$ contained in $\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X)-q_{X}^{2}\left(\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)$ such that $\lim B_{n}=B$ and $B_{n} \neq F_{X}^{2}$, for each $n \in \mathbb{N}$. Given $n \in \mathbb{N}$, let D_{n} be the unique element of $C_{2}(X)-F_{1}(X)$ such that $q_{X}^{2}\left(D_{n}\right)=B_{n}$. Then $\lim D_{n}=$ A. By Remark $2.1(b), D_{n} \in \partial \mathcal{L}_{2}(X)-\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}$, for each $n \in \mathbb{N}$. Hence, $A \in \operatorname{cl}_{C_{2}(X)}\left(\partial \mathcal{L}_{2}(X)-\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)$. We have shown that $A \in \mathcal{D}(J, K)$. By [6, Lemma 33], $A=\{p\} \cup G$, where $p \in \operatorname{bd}_{X}(J)$ and $G \in \mathcal{E}(K)$ or $p \in \operatorname{bd}_{X}(K)$ and $G \in \mathcal{E}(J)$. This completes the proof of the first inclusion.

To prove the opposite inclusion, let $B=q_{X}^{2}(\{p\} \cup G)$, where $p \in \operatorname{bd}_{X}(J)$ and $G \in \mathcal{E}(K)$ or $p \in$ $\operatorname{bd}_{X}(K)$ and $G \in \mathcal{E}(J)$. By Lemma 3.10, we may assume that $G \neq\{p\}$. Let $A=\{p\} \cup G$. By [6, Lemma 33], $A \in \mathcal{D}(J, K)$. Then, there exists a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ contained in $\partial \mathcal{L}_{2}(X) \cap\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}$ such that $\lim A_{n}=A$ and $A_{n} \notin F_{1}(X)$, for each $n \in \mathbb{N}$. Hence, $q_{X}^{2}\left(A_{n}\right) \in \partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X) \cap q_{X}^{2}\left(\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)$. Thus, $B \in$ $\operatorname{cl}_{P H S_{2}(X)}\left(\partial \mathcal{P H} \mathcal{L}_{2}(X) \cap q_{X}^{2}\left(\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)\right)$. Similarly, $B \in \operatorname{cl}_{P H S_{2}(X)}\left(\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X)-q_{X}^{2}\left(\left\langle J^{\circ}, K^{\circ}\right\rangle_{2}\right)\right)$. Therefore, $B \in \mathcal{P H} \mathcal{D}(J, K)$.

Now, we are ready to describe models of $\mathcal{P H} \mathcal{D}(J, K)$ for each possible case. Let $J, K \in \mathfrak{A}_{S}(X)$, where X is a locally connected continuum such that $R(X) \neq \emptyset$. We consider nine cases.

Case I. $J=K, J$ is an arc and $J \notin \mathfrak{A}_{E}(X)$.
By Lemma 3.11, $\mathcal{P H D}(J, J)=\left\{q_{X}^{2}(\{p\} \cup G): G \in \mathcal{E}(J)\right\} \cup\left\{q_{X}^{2}(\{q\} \cup G): G \in \mathcal{E}(J)\right\}$, where $p, q \in$ $J \cap R(X)$. By Lemma 3.8, we have that $\mathcal{P H D}(J, J)$ is the union of two 2 -cells whose intersection is the set $\left\{F_{X}^{2}, q_{X}^{2}(\{p, q\}), q_{X}^{2}(J)\right\}$. It is easy to see that this set is contained in the manifold boundary of both 2-cells.

Case II. $J=K, J$ is an arc and $J \in \mathfrak{A}_{E}(X)$.
Then $J \cap R(X)=\{p\}$. Thus, $\mathcal{P H} \mathcal{D}(J, J)=\left\{q_{X}^{2}(\{p\} \cup G): G \in \mathcal{E}(J)\right\}$ which is a 2-cell.
Case III. $J=K$ and $J \in \mathfrak{A}_{R}(X)$.
Then $J \cap R(X)=\{q\}$. Thus, $\mathcal{P H} \mathcal{D}(J, J)=\left\{q_{X}^{2}(\{q\} \cup G): G \in \mathcal{E}(J)\right\}$ which is homeomorphic to L_{0}. For the remaining cases we assume that $J \neq K$.

Case IV. J and K are arcs and $J, K \notin \mathfrak{A}_{E}(X)$.

Let $p_{1}, p_{2} \in J \cap R(X)$ and $q_{1}, q_{2} \in K \cap R(X)$. Then $\mathcal{P H D}(J, K)=\mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{Q}_{1} \cup \mathcal{Q}_{2}$, where $\mathcal{P}_{1}=$ $\left\{q_{X}^{2}\left(\left\{p_{1}\right\} \cup G\right): G \in \mathcal{E}(K)\right\}, \mathcal{P}_{2}=\left\{q_{X}^{2}\left(\left\{p_{2}\right\} \cup G\right): G \in \mathcal{E}(K)\right\}, \mathcal{Q}_{1}=\left\{q_{X}^{2}\left(\left\{q_{1}\right\} \cup G\right): G \in \mathcal{E}(J)\right\}$ and $\mathcal{Q}_{2}=\left\{q_{X}^{2}\left(\left\{q_{2}\right\} \cup G\right): G \in \mathcal{E}(J)\right\}$. By Lemma 3.8, $\mathcal{P H D}(J, K)$ is the union of four 2-cells. Now let us consider three subcases.
$I V(a) . J \cap K=\emptyset$.
Then $\mathcal{P}_{1} \cap \mathcal{P}_{2}=\emptyset=\mathcal{Q}_{1} \cap \mathcal{Q}_{2}$. Also, $\mathcal{P}_{i} \cap \mathcal{Q}_{j}=\left\{q_{X}^{2}\left(\left\{p_{i}, q_{j}\right\}\right)\right\}$ with $i, j \in\{1,2\}$.
$I V(b) . J \cap K$ is an one point set. Suppose that $p_{1}=q_{1}$.
Similar to case $I V(a)$ with the exception that $\mathcal{P}_{1} \cap \mathcal{Q}_{1}=\left\{F_{X}^{2}\right\}$.
$I V(c) . J \cap K$ is a two point set. Suppose that $p_{1}=q_{1}$ and $p_{2}=q_{2}$.
Then $\mathcal{P}_{1} \cap \mathcal{P}_{2}=\left\{F_{X}^{2}, q_{X}^{2}\left(\left\{p_{1}, p_{2}\right\}\right), q_{X}^{2}(K)\right\}$ and $\mathcal{Q}_{1} \cap \mathcal{Q}_{2}=\left\{F_{X}^{2}, q_{X}^{2}\left(\left\{p_{1}, p_{2}\right\}\right), q_{X}^{2}(J)\right\}$. Moreover, $\mathcal{P}_{i} \cap \mathcal{Q}_{j}=$ $\left\{F_{X}^{2}, q_{X}^{2}\left(\left\{p_{1}, p_{2}\right\}\right)\right\}$ with $i, j \in\{1,2\}$.

Case V. J and K are arcs, $J \notin \mathfrak{A}_{E}(X)$ and $K \in \mathfrak{A}_{E}(X)$.
Let $p_{1}, p_{2} \in J \cap R(X)$ and $q \in K \cap R(X)$. Then $\mathcal{P H} \mathcal{D}(J, K)=\mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{Q}$, where $\mathcal{P}_{1}=\left\{q_{X}^{2}\left(\left\{p_{1}\right\} \cup G\right)\right.$: $G \in \mathcal{E}(K)\}, \mathcal{P}_{2}=\left\{q_{X}^{2}\left(\left\{p_{2}\right\} \cup G\right): G \in \mathcal{E}(K)\right\}$ and $\mathcal{Q}=\left\{q_{X}^{2}(\{q\} \cup G): G \in \mathcal{E}(J)\right\}$. Thus, $\mathcal{P H} \mathcal{D}(J, K)$ is the union of three 2 -cells. Now let us consider two subcases.
$V(a) . J \cap K=\emptyset$.
Then $\mathcal{P}_{1} \cap \mathcal{P}_{2}=\emptyset$. Also, $\mathcal{P}_{i} \cap \mathcal{Q}=\left\{q_{X}^{2}\left(\left\{p_{i}, q\right\}\right)\right\}$ with $i \in\{1,2\}$.
$V(b) . J \cap K$ is an one point set. Suppose that $p_{1}=q$.
Similar to case $V(a)$ with the slightly difference that $\mathcal{P}_{1} \cap \mathcal{Q}=\left\{F_{X}^{2}\right\}$.
Case VI. $J, K \in \mathfrak{A}_{E}(X)$.
Then $\mathcal{P H} \mathcal{H}(J, K)=\left\{q_{X}^{2}(\{p\} \cup G): G \in \mathcal{E}(K)\right\} \cup\left\{q_{X}^{2}(\{q\} \cup G): G \in \mathcal{E}(J)\right\}$, where $p \in J \cap R(X)$ and $q \in K \cap R(X)$. Thus, $\mathcal{P H D}(J, K)$ is the union of two 2-cells whose intersection is the set $\left\{q_{X}^{2}(\{p, q\})\right\}$, or $\left\{F_{X}^{2}\right\}$ in the case that $p=q$.

Case VII. J is an arc, $J \notin \mathfrak{A}_{E}(X)$ and $K \in \mathfrak{A}_{R}(X)$.
Similar to case V with the slightly difference that $\mathcal{P H D}(J, K)$ is the union of a 2-cell and two continua L_{0}.
Case VIII. $J \in \mathfrak{A}_{E}(X)$ and $K \in \mathfrak{A}_{R}(X)$.
Similar to case VI with the slightly difference that $\mathcal{P H D}(J, K)$ is the union of a 2-cell and a continuum L_{0}.
Case IX. $J, K \in \mathfrak{A}_{R}(X)$.
Similar to case VI with the difference that $\mathcal{P H} \mathcal{D}(J, K)$ is the union of two continua L_{0}.

Remark 3.12. Let X and Y be locally connected continua such that $R(X) \neq \emptyset$ and $R(Y) \neq \emptyset$, and let $J, K \in \mathfrak{A}_{S}(X)$ and $J_{h}, K_{h} \in \mathfrak{A}_{S}(Y)$. If $\mathcal{P H} \mathcal{D}(J, K)$ is homeomorphic to $\mathcal{P H D}\left(J_{h}, K_{h}\right)$, then
(a) J and K are as in Case I if and only if J_{h} and K_{h} are as in Case I,
(b) J and K are as in Case II if and only if J_{h} and K_{h} are as in Case II and
(c) J and K are as in Case III if and only if J_{h} and K_{h} are as in Case III.

4. Main results

In this section we present the proof of our first main result. The first step is to mention that Ulises Morales-Fuentes has proven that the finite graphs have unique n-fold pseudo-hyperspace suspension, see [18, Theorem 5.7]. We prove that if X is a meshed continuum such that $\left|\bigcap \mathfrak{A}_{S}(X)\right|=2$, then X is a finite graph, and therefore it has unique n-fold pseudo-hyperspace suspension. Finally, we prove that for a meshed continuum X such that $R(X) \neq \emptyset$ and $\left|\bigcap \mathfrak{A}_{S}(X)\right| \neq 2$ the uniqueness of the n-fold pseudo-hyperspace suspension holds, see Theorem 4.8.

Using [6, Lemma 2] and [5, Theorem 3.1] we have the following properties for meshed continua, which will be used without quoting them in the proof of Theorem 4.7.

Lemma 4.1. If X is a meshed continuum, then
(a) X is locally connected,
(b) $J \cap \mathcal{P}(X)=\emptyset$, for each $J \in \mathfrak{A}_{S}(X)$, and
(c) $\mathcal{G}(X)=\bigcup \mathfrak{A}_{S}(X)$.

The following result is proved in [4, Theorem 5.1] for case $n=1$ and [16, Theorem 4.1 (a)] for case $n \geq 2$.
Lemma 4.2. Let X be a continuum and $n \in \mathbb{N}$. Then X is locally connected if and only if $P H S_{n}(X)$ is locally connected.

Given a continuum X and $n \in \mathbb{N}$, let

$$
\mathfrak{F}_{n}(X)=\left\{A \in C_{n}(X): \operatorname{dim}_{A}\left[C_{n}(X)\right] \text { is finite }\right\} .
$$

Theorem 4.3. Let X be a meshed continuum and $n \in \mathbb{N}$. If Y is a continuum such that $P H S_{n}(X)$ is homeomorphic to $P H S_{n}(Y)$, then Y is a meshed continuum.

Proof. Let $h: P H S_{n}(X) \longrightarrow P H S_{n}(Y)$ be a homeomorphism. Since X is a locally connected continuum, using Lemma 4.2, we have that Y is a locally connected continuum. Let $A \in C_{n}(X)$ and $B \in C_{n}(Y)$ be such that $h\left(q_{X}^{n}(A)\right)=F_{Y}^{n}$ and $h^{-1}\left(q_{Y}^{n}(B)\right)=F_{X}^{n}$. Let $\mathcal{K}=C_{n}(X)-\left(F_{1}(X) \cup\{A\}\right)$ and $\mathcal{L}=C_{n}(Y)-$ $\left(F_{1}(Y) \cup\{B\}\right)$. Then $g: \mathcal{K} \longrightarrow \mathcal{L}$ defined by $g=\left(q_{Y}^{n} \mid \mathcal{L}\right)^{-1} \circ h \circ q_{X}^{n} \mid \mathcal{K}$ is a homeomorphism. Moreover, $g\left(\mathfrak{F}_{n}(X) \cap \mathcal{K}\right)=\mathfrak{F}_{n}(Y) \cap \mathcal{L}$. Since X is meshed, by [6, Theorem 5], we know that $\mathfrak{F}_{n}(X)$ is a dense subset of $C_{n}(X)$. This implies that $\mathfrak{F}_{n}(Y) \cap \mathcal{L}$ is dense in \mathcal{L}. Finally, by the density of \mathcal{L} in $C_{n}(Y)$, we conclude that $\mathfrak{F}_{n}(Y)$ is a dense subset of $C_{n}(Y)$. Therefore, by [6, Theorem 5], Y is a meshed continuum.

The following result extends [18, Lemma 5.2].
Lemma 4.4. Let $n \geq 2$. If X is a locally connected continuum with $R(X) \neq \emptyset$ and $\left|\mathfrak{A}_{S}(X)\right| \geq 2$, then

$$
\bigcap\left\{\mathrm{cl}_{P H S_{n}(X)}\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}\right): J \in \mathfrak{A}_{S}(X)\right\}= \begin{cases}\left\{F_{X}^{n}\right\} & i f\left|\bigcap \mathfrak{A}_{S}(X)\right| \neq 2, \\ \left\{F_{X}^{n}, q_{X}^{n}(\{p, q\})\right\} & i f \bigcap \mathfrak{A}_{S}(X)=\{p, q\}\end{cases}
$$

Proof. Let $J \in \mathfrak{A}_{S}(X)$ and $a \in J^{\circ}$. Since $\{a\}$ can be approximated by elements in $\left\langle J^{\circ}\right\rangle_{1}-F_{1}(X)$, we have that $\{a\} \in \operatorname{cl}_{C_{n}(X)}\left(\left\langle J^{\circ}\right\rangle_{n}-F_{1}(X)\right)$. Hence, $F_{X}^{n} \in \operatorname{cl}_{P H S_{n}(X)}\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}\right)$. Moreover, if $\bigcap \mathfrak{A}_{S}(X)=$ $\{p, q\}$, then $p, q \in J$ and since $n \geq 2,\{p, q\}$ can be approximated by elements in $\left\langle J^{\circ}\right\rangle_{n}-F_{1}(X)$. Hence, $q_{X}^{n}(\{p, q\}) \in \operatorname{cl}_{P H S_{n}(X)}\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}\right)$. This implies the second inclusion.

Now, let $B \in \bigcap\left\{\operatorname{cl}_{P H S_{n}(X)}\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}\right): J \in \mathfrak{A}_{S}(X)\right\}$.
Suppose that $B \neq F_{X}^{n}$. Let $A \in C_{n}(X)-F_{1}(X)$ be such that $q_{X}^{n}(A)=B$. Let $J \in \mathfrak{A}_{S}(X)$. Since $B \in$ $\mathrm{cl}_{P H S_{n}(X)}\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}\right)$, there exists a sequence $\left\{B_{m}\right\}_{m=1}^{\infty}$ contained in $q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}$ which converges to B. Let $A_{m} \in\left\langle J^{\circ}\right\rangle_{n}-F_{1}(X)$ be such that $q_{X}^{n}\left(A_{m}\right)=B_{m}$, for each $m \in \mathbb{N}$. Notice that $\left\{A_{m}\right\}_{m=1}^{\infty}$ converges to A. Hence, $A \subset J$, for each $J \in \mathfrak{A}_{S}(X)$. Therefore, $A \subset \bigcap \mathfrak{A}_{S}(X)$. Since $\left|\mathfrak{A}_{S}(X)\right| \geq 2$, we have that $\left|\cap \mathfrak{A}_{S}(X)\right| \leq 2$.

Consider the following cases.
Case 1. $\left|\bigcap \mathfrak{A}_{S}(X)\right| \neq 2$.
Then $\left|\bigcap \mathfrak{A}_{S}(X)\right| \leq 1$. Hence, $|A| \leq 1$. This is a contradiction since $A \in C_{n}(X)-F_{1}(X)$. Therefore, $B=F_{X}^{n}$.
Case 2. $\bigcap_{A_{S}}(X)=\{p, q\}$.
Since $A \in C_{n}(X)-F_{1}(X)$, we have that $A=\{p, q\}$. Hence, $B \in\left\{F_{X}^{n}, q_{X}^{n}(\{p, q\})\right\}$, as desired.
From these cases, the result follows.

Theorem 4.5. Let X be a meshed continuum such that $R(X) \neq \emptyset$. If $\left|\cap \mathfrak{A}_{S}(X)\right|=2$, then X is a finite graph.

Proof. Let $p, q \in \bigcap \mathfrak{A}_{S}(X)$. Thus, p and q are the end points of each maximal free arc. Suppose that there exists $a \in \mathcal{P}(X)$. By [5, Theorem 3.3], there is a sequence of pairwise distinct elements contained in $R(X) \cap \mathcal{G}(X)$ which converges to a. However, this is not possible since $R(X) \cap \mathcal{G}(X) \subset\{p, q\}$. Hence, $\mathcal{P}(X)=\emptyset$. Therefore, X is a finite graph.

Using Theorem 4.5 and [18, Theorem 5.7] we obtain the following result.
Theorem 4.6. Let X be a meshed continuum such that $R(X) \neq \emptyset$. If $\left|\cap \mathfrak{A}_{S}(X)\right|=2$, then X has unique n-fold pseudo-hyperspace suspension.

The following result extends [18, Lemma 5.1 and Lemma 5.5].
Theorem 4.7. Let X and Y be meshed continua such that $R(X) \neq \emptyset, R(Y) \neq \emptyset$ and $\left|\cap \mathfrak{A}_{S}(X)\right| \neq 2$, $\left|\bigcap \mathfrak{A}_{S}(Y)\right| \neq 2, n \geq 2$ and let $h: \operatorname{PHS}_{n}(X) \longrightarrow P H S_{n}(Y)$ be a homeomorphism. Suppose that for each $J \in \mathfrak{A}_{S}(X)$, there exists $J_{h} \in \mathfrak{A}_{S}(Y)$ such that $h\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{1}\right)-\left\{F_{X}^{n}\right\}\right) \subset q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{n}\right)$ and $\mathfrak{A}_{S}(Y)=\left\{J_{h}: J \in\right.$ $\left.\mathfrak{A}_{S}(X)\right\}$. Then
(a) for each $J \in \mathfrak{A}_{S}(X), h\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}\right)=q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{n}\right)-\left\{F_{Y}^{n}\right\}$,
(b) for each $J \in \mathfrak{A}_{S}(X), h^{-1}\left(q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{n} \cap C(Y)\right)-\left\{F_{Y}^{n}\right\}\right) \subset q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}$,
(c) the association $J \rightarrow J_{h}$ is a bijection between $\mathfrak{A}_{S}(X)$ and $\mathfrak{A}_{S}(Y)$.
(d) $h\left(F_{X}^{n}\right)=F_{Y}^{n}$.

If we also suppose that
(1) if $J \in \mathfrak{A}_{R}(X)$, then $J_{h} \in \mathfrak{A}_{R}(Y)$ and
(2) if $J \in \mathfrak{A}_{E}(X)$, then $J_{h} \in \mathfrak{A}_{E}(Y)$,
then X is homeomorphic to Y.
Proof. (a) Let $J \in \mathfrak{A}_{S}(X)$ and A be a subarc of J° such that $h\left(q_{X}^{n}(A)\right) \neq F_{Y}^{n}$. By Lemma 3.7 (b), we have that $h\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}\right)$ and $q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{n}\right)-\left\{F_{Y}^{n}\right\}$ are components of $\mathcal{P H} \mathcal{E}_{n}(X)$. Notice that $h\left(q_{X}^{n}(A)\right) \in$ $h\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}\right) \cap\left(q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{n}\right)-\left\{F_{Y}^{n}\right\}\right)$. Therefore, $h\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}\right)=q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{n}\right)-\left\{F_{Y}^{n}\right\}$.

Clearly, (b) follows from (a).
To prove (c), it is enough to prove that the correspondence is one to one. Let $J, L \in \mathfrak{A}_{S}(X)$ and suppose that $J_{h}=L_{h}$. Using (a) we conclude that $q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}=q_{X}^{n}\left(\left\langle L^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}$. Let A be a subarc of J°. Then $q_{X}^{n}(A) \in q_{X}^{n}\left(\left\langle L^{\circ}\right\rangle_{n}\right)$ and $A \subset L^{\circ}$. Therefore, by Lemma 3.1 $(c), J=L$.
(d) By Lemma 4.4 and using (a) we have that

$$
\begin{aligned}
h\left(\left\{F_{X}^{n}\right\}\right) & =\bigcap\left\{\operatorname{cl}_{P H S_{n}(Y)}\left(h\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\}\right)\right): J \in \mathfrak{A}_{S}(X)\right\} \\
& =\bigcap\left\{\operatorname{cl}_{P H S_{n}(Y)}\left(q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{n}\right)-\left\{F_{Y}^{n}\right\}\right): J \in \mathfrak{A}_{S}(X)\right\} \\
& =\bigcap\left\{\operatorname{cl}_{P H S_{n}(Y)}\left(q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{n}\right)-\left\{F_{Y}^{n}\right\}\right): J_{h} \in \mathfrak{A}_{S}(Y)\right\}=\left\{F_{Y}^{n}\right\} .
\end{aligned}
$$

Therefore, $h\left(F_{X}^{n}\right)=F_{Y}^{n}$.
Let $g: C_{n}(X)-F_{1}(X) \longrightarrow C_{n}(Y)-F_{1}(Y)$ be defined as $g=\left(q_{Y}^{n}\right)^{-1} \circ h \circ q_{X}^{n}$. Notice that g is a homeomorphism. Given $J \in \mathfrak{A}_{S}(X)$, let $\mathcal{K}_{n}(J, X)=\operatorname{cl}_{C_{n}(X)}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-F_{1}(X)$.

The proofs of Claim 1 and Claim 2 are similar to the proofs of Claim 1 and Claim 2 from [7, Theorem 3.1], respectively. The proof of Claim 3 is similar to arguments given in [7, Theorem 3.1, p. 88-89].

Claim 1. If $J \in \mathfrak{A}_{S}(X)$, then
(e) $\mathcal{K}_{n}\left(J_{h}, Y\right)=g\left(\mathcal{K}_{n}(J, X)\right)$,
(f) $\left\{\operatorname{dim}_{A}\left[C_{n}(X)\right]: A \in \mathcal{K}_{n}(J, X)\right\}=\left\{\operatorname{dim}_{B}\left[C_{n}(Y)\right]: B \in \mathcal{K}_{n}\left(J_{h}, Y\right)\right\}$,
(g) $|J \cap R(X)|=\left|J_{h} \cap R(Y)\right|$,
(h) if $A \in \mathcal{K}_{n}(J, X)$, then $|A \cap R(X)|=|g(A) \cap R(Y)|$.

Proof of Claim 1. Let $J \in \mathfrak{A}_{S}(X)$. Notice that $\mathrm{cl}_{C_{n}(X)}\left(\left\langle J^{\circ}\right\rangle_{n}\right)-F_{1}(X)=\operatorname{cl}_{C_{n}(X)-F_{1}(X)}\left(\left\langle J^{\circ}\right\rangle_{n}\right)$. From this, clearly (e) is true and (f) follows from (e). Now, since X is a meshed continuum, $J \cap \mathcal{P}(X)=\emptyset$. Thus, by Lemma 3.2, there exists a finite graph G contained in X such that $J \subset \operatorname{int}_{X}(G)$. Using (3.1), we have that $\left|\left\{\operatorname{dim}_{A}\left[C_{n}(X)\right]: A \in \mathcal{K}_{n}(J, X)\right\}\right| \geq 3$ if and only if $|J \cap R(X)|=2$ and $\left|\left\{\operatorname{dim}_{A}\left[C_{n}(X)\right]: A \in \mathcal{K}_{n}(J, X)\right\}\right|=2$ if and only if $|J \cap R(X)|=1$. Notice that J_{h} also satisfies the same conditions as J, such as $J_{h} \cap \mathcal{P}(Y)=\emptyset$. This proves (g). Moreover, given $A \in \mathcal{K}_{n}(J, X)$. If $|A \cap R(X)|=2$, then $|J \cap R(X)|=2$. Thus, $\left|J_{h} \cap R(Y)\right|=2$ and $\operatorname{dim}_{A}\left[C_{n}(X)\right]=\max \left\{\operatorname{dim}_{E}\left[C_{n}(X)\right]: E \in \mathcal{K}_{n}(J, X)\right\}$. Hence, $\operatorname{dim}_{g(A)}\left[C_{n}(Y)\right]=\max \left\{\operatorname{dim}_{B}\left[C_{n}(Y)\right]:\right.$ $\left.B \in \mathcal{K}_{n}\left(J_{h}, Y\right)\right\}$. This implies that $|g(A) \cap R(Y)|=2$. Similarly, if $|g(A) \cap R(Y)|=2$, then $|A \cap R(X)|=2$. If $|A \cap R(X)|=0$, then $2 n=\operatorname{dim}_{A}\left[C_{n}(G)\right]=\operatorname{dim}_{A}\left[C_{n}(X)\right]=\operatorname{dim}_{g(A)}\left[C_{n}(Y)\right]$. Hence, $|g(A) \cap R(Y)|=0$. Similarly, if $|g(A) \cap R(Y)|=0$, then $|A \cap R(X)|=0$. Finally, if $|A \cap R(X)|=1$, then $|g(A) \cap R(Y)| \notin\{0,2\}$. Thus, $|g(A) \cap R(Y)|=1$. This completes the proof of Claim 1.

Claim 2. If $J \in \mathfrak{A}_{S}(X)$ and $v \in J \cap R(X)$, then $\mathcal{K}(v, J)=\left\{A \in \mathcal{K}_{n}(J, X): A \cap R(X)=\{v\}\right\}$ is arcwise connected.

Now, given $v \in R(X) \cap \mathcal{G}(X)$, there is $J \in \mathfrak{A}_{S}(X)$ such that $v \in J$. Let $A \in \mathcal{K}(v, J)$. By Claim 1, $g(A) \in \mathcal{K}_{n}\left(J_{h}, Y\right)$ and there exists a unique point $v_{h}(A) \in R(Y) \cap g(A)$. Notice that $v_{h}(A) \in J_{h}$ and $v_{h}(A) \in R(Y) \cap \mathcal{G}(Y)$.

Claim 3. Let $v \in R(X) \cap \mathcal{G}(X)$ and $J, L \in \mathfrak{A}_{S}(X)$ with $v \in J \cap L$. If $A \in \mathcal{K}(v, J)$ and $E \in \mathcal{K}(v, L)$, then $v_{h}(A)=v_{h}(E)$ (in other words, $v_{h}(A)$ depends neither on the choice of J nor on the choice of A).

Proof of Claim 3. In order to prove this, take A_{1} and E_{1} arcs in J and L, respectively, such that v is an end point of A_{1} and $E_{1}, A_{1} \neq J$ and $E_{1} \neq L$. Notice that $A_{1} \in \mathcal{K}(v, J)$ and $E_{1} \in \mathcal{K}(v, L)$. By Claim 2, there exist maps $\alpha_{A}:[0,1] \longrightarrow \mathcal{K}(v, J)$ and $\alpha_{E}:[0,1] \longrightarrow \mathcal{K}(v, L)$ such that $\alpha_{A}(0)=A, \alpha_{A}(1)=A_{1}, \alpha_{E}(0)=E_{1}$ and $\alpha_{E}(1)=E$. Moreover, since $A_{1} \cup E_{1}$ is an arc, we may define a map $\alpha_{0}:[0,1] \longrightarrow C\left(A_{1} \cup E_{1}\right)$ with the following properties: $\alpha_{0}(0)=A_{1}, \alpha_{0}(1)=E_{1}$ and for each $t \in[0,1], \alpha_{0}(t) \cap R(X)=\{v\}$ and $\alpha_{0}(t) \notin F_{1}(X)$. Let $\alpha:[0,1] \longrightarrow \mathcal{K}(v, J) \cup C\left(A_{1} \cup E_{1}\right) \cup \mathcal{K}(v, L)$ be defined as

$$
\alpha(t)= \begin{cases}\alpha_{A}(3 t) & \text { if } t \in\left[0, \frac{1}{3}\right], \\ \alpha_{0}(3 t-1) & \text { if } t \in\left[\frac{1}{3}, \frac{2}{3}\right], \\ \alpha_{E}(3 t-2) & \text { if } t \in\left[\frac{2}{3}, 1\right] .\end{cases}
$$

Notice that $\alpha(t) \subset J \cup L$. Thus, $g(\alpha(t)) \subset J_{h} \cup L_{h}$, for each $t \in[0,1]$. Let $i_{0}=\operatorname{ord}(v, X)$. Since $(J \cup L) \cap \mathcal{P}(X)=\emptyset$, by Lemma 3.2 and (3.1), we have that for each $t \in[0,1]$,

$$
2 n+\left(i_{0}-2\right)=\operatorname{dim}_{\alpha(t)}\left[C_{n}(X)\right]=\operatorname{dim}_{g(\alpha(t))}\left[C_{n}(Y)\right] .
$$

Since $v_{h}(A)$ is the only ramification point of Y in the set $g(A)=g(\alpha(0))$, this implies that $\operatorname{ord}\left(v_{h}(A), Y\right)=$ i_{0}. Let $T=\left\{t \in[0,1]: v_{h}(A) \in g(\alpha(t))\right\}$. Notice that T is a closed subset of $[0,1]$ and $0 \in T$. Suppose that $T \neq[0,1]$ and let R be a component of $[0,1]-T$. Then $t_{0}=\inf R \in T$ and there exists a sequence $\left\{r_{m}\right\}_{m=1}^{\infty}$ of elements of R which converges to t_{0}. Since $\left(J_{h} \cup L_{h}\right) \cap R(Y)$ is finite, we may assume that there exists $w \in\left(J_{h} \cup L_{h}\right) \cap R(Y)$ such that $w \in g\left(\alpha\left(r_{m}\right)\right)$. Hence, $w, v_{h}(A) \in g\left(\alpha\left(t_{0}\right)\right)$. Notice that $w \neq v_{h}(A)$. Hence, $\operatorname{dim}_{g\left(\alpha\left(t_{0}\right)\right)}\left[C_{n}(Y)\right]>2 n+\left(i_{0}-2\right)$, a contradiction. Therefore, $T=[0,1]$. On the other hand, we know that $v_{h}(E)$ is the only ramification point of Y in the set $g(E)=g(\alpha(1))$. Consequently, $v_{h}(A)=v_{h}(E)$. This proves Claim 3.

From now on, we simply write v_{h} instead of $v_{h}(A)$. Thus, we have a function

$$
\begin{aligned}
\varphi: R(X) \cap \mathcal{G}(X) & \longrightarrow R(Y) \cap \mathcal{G}(Y) \\
v & \longmapsto v_{h}
\end{aligned}
$$

Since Y satisfies similar conditions to those of X, we have that φ is a bijection.

Claim 4. There exists a homeomorphism $\phi: \mathcal{G}(X) \longrightarrow \mathcal{G}(Y)$ such that $\left.\phi\right|_{R(X) \cap \mathcal{G}(X)}=\varphi$.
Proof of Claim 4. Let $J \in \mathfrak{A}_{S}(X)$.
Case 1. $|J \cap R(X)|=2$.
Suppose that $J \cap R(X)=\{p, q\}$. Thus, $p_{h}, q_{h} \in J_{h}$. Since J and J_{h} are arcs, we may consider a homeomorphism $\varphi_{J}: J \longrightarrow J_{h}$ such that $\varphi_{J}(p)=p_{h}$ and $\varphi_{J}(q)=q_{h}$.

Case 2. $|J \cap R(X)|=1$, assuming that $J \cap R(X)=\{a\}$.
Notice that $J_{h} \cap R(Y)=\left\{a_{h}\right\}$. By (1) and (2), we may take a homeomorphism $\varphi_{J}: J \longrightarrow J_{h}$ such that $\varphi_{J}(a)=a_{h}$. Hence, we define $\phi: \mathcal{G}(X) \longrightarrow \mathcal{G}(Y)$ given by $\phi(x)=\varphi_{J}(x)$, where $x \in J$. Therefore, ϕ is a homeomorphism.

If X is a finite graph, then $\mathcal{G}(X)=X$. Thus, $\phi(X)=\mathcal{G}(Y)$ is a nonempty open and closed subset of Y. Therefore, $\mathcal{G}(Y)=Y$ and X is homeomorphic to Y. Now, suppose that X and Y are not finite graphs.

Claim 5. If $a \in \mathcal{P}(X)$ and $\left\{a_{m}\right\}_{m=1}^{\infty}$ is a sequence contained in $\mathcal{G}(X) \cap R(X)$ which converges to a, then $\left\{\phi\left(a_{m}\right)\right\}_{m=1}^{\infty}$ converges.

Proof of Claim 5. Let $\left\{\phi\left(b_{l}\right)\right\}_{l=1}^{\infty}$ be a convergent subsequence which converges to some $z \in Y$. By [5, Theorem 3.3], $z \in \mathcal{P}(Y)$. We are going to prove that $\lim \phi\left(a_{m}\right)=z$. Suppose to the contrary that
there is $\varepsilon_{1}>0$ such that for each $N \in \mathbb{N}$, there exists $k>N$ such that $\phi\left(a_{k}\right) \notin B\left(z, \varepsilon_{1}\right)$.
Since $\lim \phi\left(b_{l}\right)=z$, there exists $N_{1} \in \mathbb{N}$ such that if $l>N_{1}$, then $\phi\left(b_{l}\right) \in B\left(z, \frac{\varepsilon_{1}}{2}\right)$. By [6, Lemma 3], there exists a basis \mathcal{B} of open connected subsets of X such that, for each $U \in \mathcal{B}, U-\mathcal{P}(X)$ is connected. Let $V_{1} \in \mathcal{B}$ be such that $a \in V_{1}$ and $\operatorname{diam}\left(V_{1}\right)<1$. Thus, there is $N_{2}>N_{1}$ such that if $m>N_{2}$, then $a_{m} \in V_{1}-\mathcal{P}(X)$. Let $l_{1}>N_{2}$. Hence, $b_{l_{1}} \in \phi^{-1}\left(B\left(z, \frac{\varepsilon_{1}}{2}\right)\right) \cap\left(V_{1}-\mathcal{P}(X)\right)$. By (4.1), there exists $k_{1}>N_{2}$ such that $\phi\left(a_{k_{1}}\right) \notin B\left(z, \varepsilon_{1}\right)$. Notice that $a_{k_{1}}, b_{l_{1}} \in V_{1}-\mathcal{P}(X)$. Since $V_{1}-\mathcal{P}(X)$ is an open connected subset of X, by [21, 8.26], $V_{1}-\mathcal{P}(X)$ is arcwise connected. Then, there exists an arc α_{1} in $V_{1}-\mathcal{P}(X)$ with end points $a_{k_{1}}$ and $b_{l_{1}}$. Hence, $\gamma_{1}=\phi\left(\alpha_{1}\right)$ is an arc with end points $\phi\left(a_{k_{1}}\right)$ and $\phi\left(b_{l_{1}}\right)$. Notice that diam $\left(\gamma_{1}\right) \geq \frac{\varepsilon_{1}}{2}$. Now, let $V_{2} \in \mathcal{B}$ be such that $a \in V_{2}, \operatorname{diam}\left(V_{2}\right)<\frac{1}{2}$ and $\alpha_{1} \cap V_{2}=\emptyset$. Thus, there is $N_{3}>N_{2}$ such that if $m>N_{3}$, then $a_{m} \in V_{2}-\mathcal{P}(X)$. Let $l_{2}>N_{3}$. Hence, $b_{l_{2}} \in \phi^{-1}\left(B\left(z, \frac{\varepsilon_{1}}{2}\right)\right) \cap\left(V_{2}-\mathcal{P}(X)\right)$. By (4.1), there exists $k_{2}>N_{3}$ such that $\phi\left(a_{k_{2}}\right) \notin B\left(z, \varepsilon_{1}\right)$. Notice that $a_{k_{2}}, b_{l_{2}} \in V_{2}-\mathcal{P}(X)$. Then, there exists an arc α_{2}
in $V_{2}-\mathcal{P}(X)$ with end points $a_{k_{2}}$ and $b_{l_{2}}$. Therefore, $\gamma_{2}=\phi\left(\alpha_{2}\right)$ is an arc with end points $\phi\left(a_{k_{2}}\right)$ and $\phi\left(b_{l_{2}}\right)$ and $\operatorname{diam}\left(\gamma_{2}\right) \geq \frac{\varepsilon_{1}}{2}$. Proceeding in a recursive way, we obtain

- a sequence $\left\{V_{i}-\mathcal{P}(X)\right\}_{i=1}^{\infty}$ such that each $V_{i}-\mathcal{P}(X)$ is an open connected subset of $X, a \in V_{i}$ and $\operatorname{diam}\left(V_{i}\right)<\frac{1}{i}$,
- a sequence $\left\{\phi\left(a_{k_{i}}\right)\right\}_{i=1}^{\infty}$ such that $\phi\left(a_{k_{i}}\right) \notin B\left(z, \varepsilon_{1}\right)$ and $a_{k_{i}} \in V_{i}-\mathcal{P}(X)$,
- a subsequence $\left\{\phi\left(b_{l_{i}}\right)\right\}_{i=1}^{\infty}$ of the sequence $\left\{\phi\left(b_{l}\right)\right\}_{l=1}^{\infty}$ such that $\lim \phi\left(b_{l_{i}}\right)=z$ and $b_{l_{i}} \in \phi^{-1}\left(B\left(z, \frac{\varepsilon_{1}}{2}\right)\right) \cap$ $\left(V_{i}-\mathcal{P}(X)\right)$,
- a sequence $\left\{\alpha_{i}\right\}_{i=1}^{\infty}$ of pairwise disjoint arcs such that $\alpha_{i} \subset V_{i}-\mathcal{P}(X)$ whose end points are $a_{k_{i}}$ and $b_{l_{i}}$, and $\alpha_{i} \cap V_{i+1}=\emptyset$,
- a sequence $\left\{\gamma_{i}\right\}_{i=1}^{\infty}$ of pairwise disjoint arcs such that $\gamma_{i} \subset \mathcal{G}(Y)$, where $\gamma_{i}=\phi\left(\alpha_{i}\right), \operatorname{diam}\left(\gamma_{i}\right) \geq \frac{\varepsilon_{1}}{2}$, and $\phi\left(a_{k_{i}}\right), \phi\left(b_{l_{i}}\right)$ are the end points of γ_{i}.

We may assume that the sequence $\left\{\phi\left(a_{k_{i}}\right)\right\}_{i=1}^{\infty}$ converges to some point $w \in Y$. Notice that the sequence $\left\{\gamma_{i}\right\}_{i=1}^{\infty}$ is contained in $C(Y)$. By [21, 4.17], we may suppose that $\left\{\gamma_{i}\right\}_{i=1}^{\infty}$ converges to some $\gamma \in C(Y)$. Since $\phi\left(a_{k_{i}}\right) \notin B\left(z, \frac{\varepsilon_{1}}{2}\right)$, for each $i \in \mathbb{N}$, we have that $w \neq z$. Notice that $w, z \in \gamma$. Thus, $\gamma \in C(Y)-F_{1}(Y)$. Since g^{-1} is a homeomorphism, we have that $\lim g^{-1}\left(\gamma_{i}\right)=g^{-1}(\gamma)$, where $g^{-1}(\gamma) \in C_{n}(X)-F_{1}(X)$. On the other hand, since $\lim a_{k_{i}}=a, \lim b_{l_{i}}=a$ and $\lim \operatorname{diam}\left(\alpha_{i}\right)=0$, we have that $\lim \alpha_{i}=\{a\}$.

Fix $i \in \mathbb{N}$. Since $a_{k_{i}}, b_{l_{i}} \in \mathcal{G}(X) \cap R(X)$ and $\alpha_{i} \cap \mathcal{P}(X)=\emptyset$, we have that $\alpha_{i}=J_{1} \cup \cdots \cup J_{s_{i}}$, where $J_{1}, \ldots, J_{s_{i}} \in \mathfrak{A}_{S}(X)$. Thus, $\gamma_{i}=\phi\left(J_{1}\right) \cup \cdots \cup \phi\left(J_{s_{i}}\right)$. By definition of $\phi, \gamma_{i}=\left(J_{1}\right)_{h} \cup \cdots \cup\left(J_{s_{i}}\right)_{h}$. Notice that $\left\langle\left(J_{1}\right)_{h}^{\circ} \cup \cdots \cup\left(J_{s_{i}}\right)_{h}^{\circ}\right\rangle_{1}=\left\langle\left(J_{1}\right)_{h}^{\circ}\right\rangle_{1} \cup \cdots \cup\left\langle\left(J_{s_{i}}\right)_{h}^{\circ}\right\rangle_{1}$. Hence,

$$
q_{Y}^{n}\left(\left\langle\left(J_{1}\right)_{h}^{\circ} \cup \cdots \cup\left(J_{s_{i}}\right)_{h}^{\circ}\right\rangle_{1}\right)-\left\{F_{Y}^{n}\right\}=q_{Y}^{n}\left(\left\langle\left(J_{1}\right)_{h}^{\circ}\right\rangle_{1}\right) \cup \cdots \cup q_{Y}^{n}\left(\left\langle\left(J_{s_{i}}\right)_{h}^{\circ}\right\rangle_{1}\right)-\left\{F_{Y}^{n}\right\} .
$$

By (b), we have that

$$
h^{-1}\left(q_{Y}^{n}\left(\left\langle\left(J_{1}\right)_{h}^{\circ} \cup \cdots \cup\left(J_{s_{i}}\right)_{h}^{\circ}\right\rangle_{1}\right)-\left\{F_{Y}^{n}\right\}\right) \subset q_{X}^{n}\left(\left\langle J_{1}^{\circ}\right\rangle_{n}\right) \cup \cdots \cup q_{X}^{n}\left(\left\langle J_{s_{i}}^{\circ}\right\rangle_{n}\right)-\left\{F_{X}^{n}\right\} .
$$

Consequently, $g^{-1}\left(\left\langle\left(J_{1}\right)_{h}^{\circ} \cup \cdots \cup\left(J_{s_{i}}\right)_{h}^{\circ}\right\rangle_{1}-F_{1}(Y)\right) \subset\left\langle J_{1}^{\circ} \cup \cdots \cup J_{s_{i}}^{\circ}\right\rangle_{n}-F_{1}(X)$. This implies that $g^{-1}\left(\left\langle\gamma_{i}\right\rangle_{1}-F_{1}(Y)\right) \subset\left\langle\alpha_{i}\right\rangle_{n}-F_{1}(X)$ and $g^{-1}\left(\gamma_{i}\right) \subset \alpha_{i}$. Therefore, $g^{-1}(\gamma) \subset\{a\}$, a contradiction. This proves Claim 5 .

Claim 6. If $a \in \mathcal{P}(X)$ and $\left\{a_{m}\right\}_{m=1}^{\infty}$ is a sequence contained in $\mathcal{G}(X)$ such that $\lim a_{m}=a$, then $\left\{\phi\left(a_{m}\right)\right\}_{m=1}^{\infty}$ converges.

We may assume that there exists a sequence $\left\{J_{m}\right\}_{m=1}^{\infty}$ of pairwise distinct elements of $\mathfrak{A}_{S}(X)$ such that $a_{m} \in J_{m}$, for each $m \in \mathbb{N}$. By [6, Lemma 8], we obtain that $\left\{J_{m}\right\}_{m=1}^{\infty}$ converges to $\{a\}$. Let $r_{m} \in J_{m} \cap R(X)$, for each $m \in \mathbb{N}$. Thus, $\left\{r_{m}\right\}_{m=1}^{\infty}$ is a sequence contained in $\mathcal{G}(X) \cap R(X)$ which converges to a. By Claim 5, there exists $z \in Y$ such that $\lim \phi\left(r_{m}\right)=z$. Notice that $\phi\left(r_{m}\right) \in\left(J_{m}\right)_{h}$, for each $m \in \mathbb{N}$. By [6, Lemma 8], we obtain that $\left\{\left(J_{m}\right)_{h}\right\}_{m=1}^{\infty}$ converges to $\{z\}$. Since $\phi\left(a_{m}\right) \in\left(J_{m}\right)_{h}, \lim \phi\left(a_{m}\right)=z$, for each $m \in \mathbb{N}$. This proves Claim 6.

Moreover, let $a \in \mathcal{P}(X),\left\{a_{m}\right\}_{m=1}^{\infty}$ and $\left\{a_{m}^{\prime}\right\}_{m=1}^{\infty}$ be sequences in $\mathcal{G}(X)$ which converge to a. By Claim 6, $\left\{\phi\left(a_{m}\right)\right\}_{m=1}^{\infty}$ and $\left\{\phi\left(a_{m}^{\prime}\right)\right\}_{m=1}^{\infty}$ are convergent sequences. Now, let $b_{2 k-1}=a_{k}$ and $b_{2 k}=a_{k}^{\prime}$, for $k \in \mathbb{N}$. Hence, $\left\{b_{m}\right\}_{m=1}^{\infty}$ is a sequence in $\mathcal{G}(X)$ which converges to a. By Claim 6, there exists $z \in Y$ such that $\lim \phi\left(b_{m}\right)=z$. Since $\left\{\phi\left(a_{m}\right)\right\}_{m=1}^{\infty}$ and $\left\{\phi\left(a_{m}^{\prime}\right)\right\}_{m=1}^{\infty}$ are convergent subsequences of $\phi\left(\left\{b_{m}\right\}\right)_{m=1}^{\infty}$, we have that $\lim \phi\left(a_{m}\right)=z$ and $\lim \phi\left(a_{m}^{\prime}\right)=z$. From this, we may associate to each $a \in \mathcal{P}(X)$ a unique element of $\mathcal{P}(Y)$ which will denote by a_{ϕ}. Consequently, we define a map $\Phi: X \longrightarrow Y$ given by

$$
\Phi(x)= \begin{cases}\phi(x) & \text { if } x \in \mathcal{G}(X) \\ x_{\phi} & \text { if } x \in \mathcal{P}(X)\end{cases}
$$

Since Y satisfies similar conditions as X, the following claim is true.
Claim 7. If $b \in \mathcal{P}(Y)$ and $\left\{b_{m}\right\}_{m=1}^{\infty}$ is a sequence contained in $\mathcal{G}(Y)$ which converges to b, then $\left\{\phi^{-1}\left(b_{m}\right)\right\}_{m=1}^{\infty}$ converges to an unique element $b_{\phi^{-1}} \in \mathcal{P}(X)$, which does not depend on the sequence $\left\{b_{m}\right\}_{m=1}^{\infty}$.

From Claim 7, we have that Φ is one to one. Now, let $b \in \mathcal{P}(Y)$. By [5, Theorem 3.3], there exists a sequence $\left\{b_{m}\right\}_{m=1}^{\infty}$ contained in $\mathcal{G}(Y) \cap R(Y)$ which converges to b. Thus, by Claim 7 , the sequence $\left\{\phi^{-1}\left(b_{m}\right)\right\}_{m=1}^{\infty}$ converges to an unique element $b_{\phi^{-1}} \in \mathcal{P}(X)$. Notice that $\Phi\left(b_{\phi^{-1}}\right)=b$. Hence, Φ is surjective. Therefore, Φ is a homeomorphism and X is homeomorphic to Y.

The proof of following result, except Case 2, is a modification of [7, Theorem 3.2].
Theorem 4.8. Let X be a meshed continuum such that $R(X) \neq \emptyset$ and $n \geq 2$. If $\left|\cap \mathfrak{A}_{S}(X)\right| \neq 2$, then X has unique n-fold pseudo-hyperspace suspension.

Proof. Let Y be a continuum and let $h: P H S_{n}(X) \longrightarrow P H S_{n}(Y)$ be a homeomorphism. By Theorem 4.3, we know that Y is a meshed continuum. Moreover, if Y is an arc or a simple closed curve, by [18, Theorem 5.7] it follows that X is homeomorphic to Y. This is a contradiction since $R(X) \neq \emptyset$. Hence, $R(Y) \neq \emptyset$. Moreover, by Theorem 4.6, we have that $\left|\bigcap \mathfrak{A}_{S}(Y)\right| \neq 2$. We consider two cases:

Case 1. $n \geq 3$.
Since the definition of $\mathcal{P H} \mathcal{L}_{n}(X)$ is given in terms of topological properties, we have that $h\left(\mathcal{P H} \mathcal{L}_{n}(X)\right)=$ $\mathcal{P H} \mathcal{L}_{n}(Y)$. This implies that $h\left(\mathcal{P H} \mathcal{D}_{n}(X)\right)=\mathcal{P H} \mathcal{D}_{n}(Y)$. Given $J \in \mathfrak{A}_{S}(X)$, by Lemma $3.7(a)$, we know that $h\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{1}\right)-\left\{F_{X}^{n}\right\}\right)$ is a component of $\mathcal{P} \mathcal{H} \mathcal{D}_{n}(X)$. Hence, there exists $J_{h} \in \mathfrak{A}_{S}(Y)$ such that $h\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{1}\right)-\left\{F_{X}^{n}\right\}\right)=q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{1}\right)-\left\{F_{Y}^{n}\right\} \subset q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{n}\right)$. Moreover, with similar arguments for Y, we have that $\mathfrak{A}_{S}(Y)=\left\{J_{h}: J \in \mathfrak{A}_{S}(X)\right\}$. Thus, (a), (b), (c) and (d) from Theorem 4.7 are satisfied.

Now we verify conditions (1) and (2) from Theorem 4.7. Let $J \in \mathfrak{A}_{S}(X)$ be such that $|J \cap R(X)|=1$. We will show that if J is an arc, then J_{h} is an arc (and, by symmetry, the converse implication also holds). Suppose that J is an arc with end points p and q, where $q \in R(X)$. Suppose that J_{h} is a cycle. Let A be a subarc of J such that $p \in A$ and $q \notin A$. We know that $h\left(q_{X}^{n}\left(\left\langle J^{\circ}\right\rangle_{1}\right)-\left\{F_{X}^{n}\right\}\right)=q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{1}\right)-\left\{F_{Y}^{n}\right\}$. Let $D=q_{X}^{n}(A)$ and $E=h(D)$. Thus, $E \in q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{1}\right)-\left\{F_{Y}^{n}\right\}$. Then there exists $B \in\left\langle J_{h}^{\circ}\right\rangle_{1}-F_{1}(Y)$ such that $q_{Y}^{n}(B)=E$. Notice that B is a subarc of J_{h}. Since X and Y are meshed continua, we have that $J \cap P(X)=\emptyset=J_{h} \cap P(Y)$. By Lemma 3.2, there exist finite graphs M in X and M_{h} in Y such that $J \subset M^{\circ}$ and $J_{h} \subset M_{h}^{\circ}$. By (3.1), $2 n=\operatorname{dim}_{A}\left[C_{n}(M)\right]=\operatorname{dim}_{A}\left[C_{n}(X)\right]=\operatorname{dim}_{D}\left[P H S_{n}(X)\right]=\operatorname{dim}_{E}\left[P H S_{n}(Y)\right]=$ $\operatorname{dim}_{B}\left[C_{n}(Y)\right]$. Thus, $B \cap R(Y)=\emptyset$. Since $C\left(J_{h}\right)$ is a 2-cell such that its manifold boundary is $F_{1}\left(J_{h}\right)$, we have that B has a neighborhood \mathcal{M} in $\left\langle J_{h}^{\circ}\right\rangle_{1}-F_{1}(Y)$ which is a 2 -cell and B belongs to its manifold interior. Hence, $q_{Y}^{n}(\mathcal{M})$ is a neighborhood of E in $q_{Y}^{n}\left(\left\langle J_{h}^{\circ}\right\rangle_{1}\right)-\left\{F_{Y}^{n}\right\}$ such that $q_{Y}^{n}(\mathcal{M})$ is a 2-cell and E belongs to its manifold interior. Since $h\left(F_{X}^{n}\right)=F_{Y}^{n}$, it implies that $\left(q_{X}^{n}\right)^{-1} \circ h \circ q_{Y}^{n}(\mathcal{M})$ is a neighborhood of A in $\left\langle J_{h}^{\circ}\right\rangle_{1}-F_{1}(Y)$ which is a 2 -cell and A belongs to its manifold interior. This is a contradiction since A belongs to the manifold boundary of $C(J)$. Therefore, J_{h} is an arc. Moreover, by Claim $1(g)$ of Theorem 4.7, we have that $\left|J_{h} \cap R(Y)\right|=1$ and $J_{h} \in \mathfrak{A}_{E}(Y)$. Consequently, $J \in \mathfrak{A}_{E}(X)$ if and only if $J_{h} \in \mathfrak{A}_{E}(Y)$. Thus, conditions (1) and (2) from Theorem 4.7 are satisfied. Therefore, X is homeomorphic to Y.

Case 2. $n=2$.
Notice that $h\left(\mathcal{P H E}_{2}(X)\right)=\mathcal{P H}_{\mathcal{E}}(Y)$. Given $J \in \mathfrak{A}_{S}(X)$, by Lemma 3.7 (b), there exist $J_{h}, K_{h} \in \mathfrak{A}_{S}(Y)$ such that $h\left(q_{X}^{2}\left(\left\langle J^{\circ}\right\rangle_{2}\right)-\left\{F_{X}^{2}\right\}\right)=q_{Y}^{2}\left(\left\langle J_{h}^{\circ}, K_{h}^{\circ}\right\rangle_{2}\right)-\left\{F_{Y}^{2}\right\}$. By Lemma 3.5, we have that $F_{X}^{2} \notin \partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X)$, $F_{Y}^{2} \notin \partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(Y)$ and $h\left(\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(X)\right)=\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(Y)$. Thus,

$$
\begin{gathered}
h\left(\partial \mathcal{P H} \mathcal{L}_{2}(X) \cap q_{X}^{2}\left(\left\langle J^{\circ}\right\rangle_{2}\right)\right)=\partial \mathcal{P H} \mathcal{L}_{2}(Y) \cap q_{Y}^{2}\left(\left\langle J_{h}^{\circ}, K_{h}^{\circ}\right\rangle_{2}\right), \text { and } \\
h\left(\partial \mathcal{P H} \mathcal{L}_{2}(X)-q_{X}^{2}\left(\left\langle J^{\circ}\right\rangle_{2}\right)\right)=\partial \mathcal{P H} \mathcal{L}_{2}(Y)-q_{Y}^{2}\left(\left\langle J_{h}^{\circ}, K_{h}^{\circ}\right\rangle_{2}\right) .
\end{gathered}
$$

Hence, $h(\mathcal{P H} \mathcal{D}(J, J))=\mathcal{P H} \mathcal{D}\left(J_{h}, K_{h}\right)$. By Remark 3.12, we have that $J_{h}=K_{h}$. Consequently, $h\left(q_{X}^{2}\left(\left\langle J^{\circ}\right\rangle_{2}\right)-\left\{F_{X}^{2}\right\}\right)=q_{Y}^{2}\left(\left\langle J_{h}^{\circ}\right\rangle_{2}\right)-\left\{F_{Y}^{2}\right\}$ and $h\left(q_{X}^{2}\left(\left\langle J^{\circ}\right\rangle_{1}\right)-\left\{F_{X}^{2}\right\}\right) \subset q_{Y}^{2}\left(\left\langle J_{h}^{\circ}\right\rangle_{2}\right)$. Moreover, under similar arguments for Y, we have that $\mathfrak{A}_{S}(Y)=\left\{J_{h}: J \in \mathfrak{A}_{S}(X)\right\}$. Finally, by Remark $3.12(b)$ and (c), conditions (1) and (2) from Theorem 4.7 are satisfied. Therefore, X is homeomorphic to Y.

The notions of framed and almost framed continua appear in [11, p. 48]. Given a continuum X, notice that $\bigcup\{J: J$ is a free arc in $X\}$ is dense in X if and only if $\bigcup\left\{J^{\circ}: J\right.$ is a free arc in $\left.X\right\}$ is dense in X. By [6, Lemma 1], we have that $\bigcup\{J: J$ is a free arc in $X\}$ is dense in X if and only if $\mathcal{G}(X)$ is dense in X. From this the following remark holds.

Remark 4.9. Let X be a locally connected continuum. Then X is almost framed if and only if X is almost meshed. Moreover, X is framed if and only if X is meshed distinct to a simple closed curve.

Theorem 4.10. If X is a meshed continuum and $n \in \mathbb{N}$, then X has unique n-fold pseudo-hyperspace suspension.

Proof. Suppose that X is a meshed continuum and let $n \in \mathbb{N}$. By [18, Theorem 5.7], we may assume that X is not a finite graph. So that we consider the following two cases:

Case 1. $R(X) \neq \emptyset$ and $n=1$.
Since $P H S_{1}(X)=H S_{1}(X)$, by [8, Theorem 3.4] the result follows.
Case 2. $R(X) \neq \emptyset$ and $n \geq 2$.
As a consequence of Theorem 4.6 and Theorem 4.8, we have that X has unique n-fold pseudo-hyperspace suspension.

5. Locally connected continua without unique hyperspace

Given a continuum X, a nonempty closed subset K of X, and $n \in \mathbb{N}$, let

$$
\begin{gathered}
F_{n}(X, K)=\left\{A \in F_{n}(X): A \cap K \neq \emptyset\right\} \text { and } \\
C_{n}(X, K)=\left\{A \in C_{n}(X): A \cap K \neq \emptyset\right\} .
\end{gathered}
$$

For two disjoint continua X and Y, and given points $p \in X$ and $q \in Y$, let $X \cup_{p} Y$ be the continuum obtained by attaching X to Y, identifying p to q.

Given a continuum X with metric d, a closed subset A of X is said to be a Z-set in X provided that, for each $\varepsilon>0$, there is a map $f_{\varepsilon}: X \longrightarrow X-A$ such that $d\left(f_{\varepsilon}(x), x\right)<\varepsilon$ for all $x \in X$. A map between compacta $f: X \longrightarrow Y$ is called a Z-map provided that $f(X)$ is a Z-set in Y. Let $\varepsilon>0$ and $A \in 2^{X}$, the generalized closed d-ball in X of radius ε about A, denoted by $C_{d}(\varepsilon, A)$, is defined as follows: $C_{d}(\varepsilon, A)=\{x \in X: d(x, A) \leq \varepsilon\}$. Whenever $A=\{p\}$, we write $C(\varepsilon, p)$ instead of $C(\varepsilon,\{p\})$. A metric d for X is said to be convex provided that, for any $p, q \in X$, there exists $m \in X$ such that $d(p, m)=\frac{1}{2} d(p, q)=d(m, q)$. By [2, 22], if X is a locally connected continuum, then X admits a metric convex.

Given a locally connected continuum X with convex metric d and $\varepsilon>0$, define $\Phi_{\varepsilon}: 2^{X} \longrightarrow 2^{X}$ by $\Phi_{\varepsilon}(A)=C_{d}(A, \varepsilon)$. By [13, Proposition 10.5], Φ_{ε} is a map.

Lemma 5.1. Let $n \in \mathbb{N}$ and K, L be closed subsets of a locally connected continuum X. Then $F_{m}(X, L)$ is a Z-set in $C_{n}(X, K)$, for each $m \in\{1, \ldots, n\}$.

Proof. Let $\varepsilon>0$ and $m \in\{1, \ldots, n\}$. We assume that the metric for X is convex. Given $A \in C_{n}(X, K)$, by [13, Proposition 10.6], we have that $C_{d}\left(\frac{\varepsilon}{2}, A\right) \in C_{n}(X, K)$. Moreover, $C_{d}(\varepsilon, A) \notin F_{m}(X)$. Let $f_{\varepsilon}=$ $\left.\Phi_{\frac{\varepsilon}{2}}\right|_{C_{n}(X, K)}$. Hence, f_{ε} is a map from $C_{n}(X, K)$ to $C_{n}(X, K)-F_{m}(X, L)$. Notice that $C_{d}\left(\frac{\varepsilon}{2}, A\right) \subset N(\varepsilon, A)$ and, clearly, $A \subset N\left(\varepsilon, C_{d}\left(\frac{\varepsilon}{2}, A\right)\right)$. Thus, $H\left(C_{d}\left(\frac{\varepsilon}{2}, A\right), A\right)<\varepsilon$, which is equivalent to $H\left(f_{\varepsilon}(A), A\right)<\varepsilon$. Therefore, $F_{m}(X, L)$ is a Z-set in $C_{n}(X, K)$.

Theorem 5.2. [1, Corollary 10.3] (Anderson's homogeneity theorem). If $h: A \longrightarrow B$ is a homeomorphism between Z-sets in a Hilbert cube \mathcal{Q}, then h extends to a homeomorphism of \mathcal{Q} onto \mathcal{Q}.

Theorem 5.3. Let X be an almost meshed locally connected continuum and $n \in \mathbb{N}$. Suppose that there exist a contractible closed subset R of $\mathcal{P}(X)$ and pairwise disjoint nonempty open subsets U_{1}, \ldots, U_{n+1} of X such that
(a) $X-R=U_{1} \cup \cdots \cup U_{n+1}$ and
(b) $R \subset \operatorname{cl}_{X}\left(U_{i}\right)$, for each $i \in\{1, \ldots, n+1\}$.

Then X does not have unique hyperspace $P H S_{m}(X)$, for each $m \leq n$.

Proof. Let $m \leq n$ and fix $p \in R$. By [6, Theorem 18], there exists a dendrite D without free arcs and disjoint to X such that $Y=X \cup_{p} D$ is a locally connected continuum not homeomorphic to X.

By the proof of [6, Theorem 22], we have that $C_{m}(Y)$ is homeomorphic to $C_{m}(X)$. In fact, the homeomorphism $h: C_{m}(X) \longrightarrow C_{m}(Y)$ constructed in such proof satisfies $h(A)=A$, for each $A \in C_{m}(X)-C_{m}(X, R)$. In particular, $h\left(F_{1}(\mathcal{G}(X))\right)=F_{1}(\mathcal{G}(X))$ and since X is almost meshed, we obtain that

$$
h\left(F_{1}(X)\right)=h\left(\operatorname{cl}_{C_{m}(X)} F_{1}(\mathcal{G}(X))\right)=\operatorname{cl}_{C_{m}(Y)} F_{1}(\mathcal{G}(X))=F_{1}(X) .
$$

Let $q_{X, Y}^{m}: C_{m}(Y) \longrightarrow C_{m}(Y) / F_{1}(X)$ be the quotient function and $q_{X, Y}^{m}\left(F_{1}(X)\right)=\left\{F_{X, Y}^{m}\right\}$. Since $\left.q_{X}^{m}\right|_{C_{m}(X)-F_{1}(X)},\left.h\right|_{C_{m}(X)-F_{1}(X)}$ and $\left.q_{X, Y}^{m}\right|_{C_{m}(Y)-F_{1}(X)}$ are homeomorphisms, $P H S_{m}(X)-\left\{F_{X}^{m}\right\}$ is homeomorphic to $C_{m}(Y) / F_{1}(X)-\left\{F_{X, Y}^{m}\right\}$. Thus, $P H S_{m}(X)$ is homeomorphic to $C_{m}(Y) / F_{1}(X)$.

In order to conclude, we only need to show $C_{m}(Y) / F_{1}(X)$ is homeomorphic to $P H S_{m}(Y)$. First, we are going to prove that $q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)$ and $q_{X, Y}^{m}\left(C_{m}(Y, R \cup D)\right)$ are Hilbert cubes. By [6, Theorem 16], we know that $C_{m}(Y, R \cup D)$ is a Hilbert cube. Notice that $q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)$ is homeomorphic to $C_{m}(Y, R \cup D) / F_{1}(Y, R \cup D)$ and $q_{X, Y}^{m}\left(C_{m}(Y, R \cup D)\right)$ is homeomorphic to $C_{m}(Y, R \cup D) / F_{1}(Y, R)$. By [3, Theorem 1.2 (21)], we know that D is contractible. Thus, $R \cup_{p} D$ is contractible. Hence, $F_{1}(Y, R \cup D)$ and $F_{1}(Y, R)$ are contractible. Since Y is locally connected, by Lemma 5.1, we have that $F_{1}(Y, R \cup D)$ and $F_{1}(Y, R)$ are Z-sets of $C_{m}(Y, R \cup D)$. By [10, Corollary 2.7], we have that $C_{m}(Y, R \cup D) / F_{1}(Y, R \cup D)$ and $C_{m}(Y, R \cup D) / F_{1}(Y, R)$ are Hilbert cubes. Therefore, $q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)$ and $q_{X, Y}^{m}\left(C_{m}(Y, R \cup D)\right)$ are Hilbert cubes.

Claim. The space $\operatorname{bd}_{P H S_{m}(Y)}\left(q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)\right)$ is a Z-set of $q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)$.
Proof of Claim. We denote the metric of $P H S_{m}(Y)$ by \bar{H}. Let $\varepsilon>0$. Since $C_{m}(Y)$ is compact, we have that q_{Y}^{m} is uniformly continuous. Thus, there exists $\delta>0$ such that if $A, B \in C_{m}(Y)$ with $H(A, B)<\delta$, then $\bar{H}\left(q_{Y}^{m}(A), q_{Y}^{m}(B)\right)<\frac{\varepsilon}{2}$. By [6, Theorem 22, Claim 2], there exists a map

$$
g_{\delta}: C_{m}(Y, R \cup D) \longrightarrow C_{m}(Y, R \cup D)-\operatorname{bd}_{C_{m}(Y)}\left(C_{m}(Y, R \cup D)\right)
$$

such that $H\left(g_{\delta}(A), A\right)<\delta$, for each $A \in C_{m}(Y, R \cup D)$.

On the other hand, by [10, Remark 2.6], the one point sets of the Hilbert cube are Z-sets. Thus, there is a map

$$
\gamma: q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right) \longrightarrow q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)-\left\{F_{Y}^{m}\right\}
$$

such that $\bar{H}(\gamma(B), B)<\frac{\varepsilon}{2}$, for each $B \in q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)$. Let $f=\left.q_{Y}^{m}\right|_{C_{m}(Y)-F_{1}(Y)}$. By [10, Lemma 2.8], we know that $\operatorname{bd}_{P H S_{m}(Y)}\left(q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)\right)=q_{Y}^{m}\left(\operatorname{bd}_{C_{m}(Y)}\left(C_{m}(Y, R \cup D)\right)\right)$. Hence, we define the map

$$
f_{\varepsilon}: q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right) \longrightarrow q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)-\operatorname{bd}_{P H S_{m}(Y)}\left(q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)\right)
$$

by $f_{\varepsilon}(B)=q_{Y}^{m} \circ g_{\delta} \circ f^{-1} \circ \gamma(B)$, for each $B \in q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)$. Given $B \in q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)$, we have that $H\left(g_{\delta}\left(f^{-1}(\gamma(B))\right), f^{-1}(\gamma(B))\right)<\delta$. Thus, $\bar{H}\left(q_{X}^{m}\left(g_{\delta}\left(f^{-1}(\gamma(B))\right)\right), q_{X}^{m}\left(f^{-1}(\gamma(B))\right)\right)<\frac{\varepsilon}{2}$. Therefore, $\bar{H}\left(f_{\varepsilon}(B), \gamma(B)\right)<\frac{\varepsilon}{2}$. Since $\bar{H}(\gamma(B), B)<\frac{\varepsilon}{2}$, we have that $\bar{H}\left(f_{\varepsilon}(B), B\right)<\varepsilon$. This proves the claim.

Using arguments that are analogous to those of the previous claim, we obtain that $\operatorname{bd}_{C_{m}(Y) / F_{1}(X)}\left(q_{X, Y}^{m}\right.$ $\left.\left(C_{m}(Y, R \cup D)\right)\right)$ is a Z-set of $q_{X, Y}^{m}\left(C_{m}(Y, R \cup D)\right)$.

By [10, Lemma $2.9(\mathrm{~b})]$, there exists a homeomorphism $h_{1}: q_{X, Y}^{m}\left(C_{m}(X)\right) \longrightarrow q_{Y}^{m}\left(C_{m}(X)\right)$ such that $h_{1}\left(q_{X, Y}^{m}(A)\right)=q_{Y}^{m}(A)$, for each $A \in C_{m}(X)$. Thus,

$$
h_{1}\left(q_{X, Y}^{m}\left(\operatorname{bd}_{C_{m}(Y)}\left(C_{m}(Y, R \cup D)\right)\right)\right)=q_{Y}^{m}\left(\operatorname{bd}_{C_{m}(Y)}\left(C_{m}(Y, R \cup D)\right)\right)
$$

and therefore,

$$
h_{1}\left(\operatorname{bd}_{C_{m}(Y) / F_{1}(X)}\left(q_{X, Y}^{m}\left(C_{m}(Y, R \cup D)\right)\right)\right)=\operatorname{bd}_{P H S_{m}(Y)}\left(q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)\right)
$$

Hence, $\left.h_{1}\right|_{\mathrm{bd}_{C_{m}(Y) / F_{1}(X)}\left(q_{X, Y}^{m}\left(C_{m}(Y, R \cup D)\right)\right)}$ is a homeomorphism between the Z-sets $\operatorname{bd}_{C_{m}(Y) / F_{1}(X)}\left(q_{X, Y}^{m}\right.$ $\left.\left(C_{m}(Y, R \cup D)\right)\right)$ and $\operatorname{bd}_{P H S_{m}(Y)}\left(q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)\right.$, by Anderson's homogeneity theorem (Theorem 5.2) there exists a homeomorphism

$$
h_{2}: q_{X, Y}^{m}\left(C_{m}(Y, R \cup D)\right) \longrightarrow q_{Y}^{m}\left(C_{m}(Y, R \cup D)\right)
$$

such that $h_{2}(A)=h_{1}(A)$, for each $A \in \operatorname{bd}_{C_{m}(Y) / F_{1}(X)}\left(q_{X, Y}^{m}\left(C_{m}(Y, R \cup D)\right)\right)$.
Let $h: C_{m}(Y) / F_{1}(X) \longrightarrow P H S_{m}(Y)$ be given by

$$
h(A)= \begin{cases}h_{1}(A) & \text { if } A \in C_{m}(Y) / F_{1}(X)-q_{X, Y}^{m}\left(C_{m}(Y, R \cup D)\right), \\ h_{2}(A) & \text { if } A \in q_{X, Y}^{m}\left(C_{m}(Y, R \cup D)\right) .\end{cases}
$$

Then, h is a homeomorphism, and the theorem is proved.
Let $m \in \mathbb{N}$ and

$$
Z_{3}=([-1,1] \times\{0\}) \cup\left(\bigcup\left\{\left\{-\frac{1}{m}\right\} \times\left[0, \frac{1}{m}\right]: m \geq 2\right\}\right) \cup\left(\bigcup\left\{\left\{\frac{1}{m}\right\} \times\left[0, \frac{1}{m}\right]: m \geq 2\right\}\right) .
$$

The continuum Z_{3} has unique hyperspace $C_{2}\left(Z_{3}\right)$ [6, Example 39].
Example 5.4. The continuum Z_{3} has unique hyperspace $P H S_{2}\left(Z_{3}\right)$ but it does not have unique hyperspace $P H S_{1}\left(Z_{3}\right)=H S_{1}\left(Z_{3}\right)$.

Notice that Z_{3} is an almost meshed locally connected continuum such that $\mathcal{P}\left(Z_{3}\right)=\{(0,0)\}$ and Z_{3} is not meshed continuum. Using Theorem 5.3, we have that Z_{3} does not have unique hyperspace $P H S_{1}\left(Z_{3}\right)$.

Let $\theta=(0,0)$. Suppose that Y is a continuum such that $P H S_{2}\left(Z_{3}\right)$ and $P H S_{2}(Y)$ are homeomorphic. Let $h: P H S_{2}\left(Z_{3}\right) \longrightarrow P H S_{2}(Y)$ be a homeomorphism. By Lemma 4.2, we have that Y is locally connected. Moreover, by [18, Theorem 5.7], Y is not a finite graph. Hence, $R(Y) \neq \emptyset$. Since $\left|\mathfrak{A}_{S}\left(Z_{3}\right)\right| \geq 2$, using Lemma 3.7 (b), we have that $\left|\mathfrak{A}_{S}(Y)\right| \geq 2$. Also, given $J \in \mathfrak{A}_{S}\left(Z_{3}\right)$, by Lemma 3.7 (b), there exist $J_{h}, K_{h} \in$ $\mathfrak{A}_{S}(Y)$ such that $h\left(q_{Z_{3}}^{2}\left(\left\langle J^{\circ}\right\rangle_{2}\right)-\left\{F_{Z_{3}}^{2}\right\}\right)=q_{Y}^{2}\left(\left\langle J_{h}^{\circ}, K_{h}^{\circ}\right\rangle_{2}\right)-\left\{F_{Y}^{2}\right\}$. Notice that $h\left(\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}\left(Z_{3}\right)\right)=\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(Y)$ and, by Lemma 3.5, we have that $F_{Z_{3}}^{2} \notin \partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}\left(Z_{3}\right)$ and $F_{Y}^{2} \notin \partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(Y)$. Thus,

$$
\begin{gathered}
h\left(\partial \mathcal{P H} \mathcal{L}_{2}\left(Z_{3}\right) \cap q_{Z_{3}}^{2}\left(\left\langle J^{\circ}\right\rangle_{2}\right)\right)=\partial \mathcal{P} \mathcal{H} \mathcal{L}_{2}(Y) \cap q_{Y}^{2}\left(\left\langle J_{h}^{\circ}, K_{h}^{\circ}\right\rangle_{2}\right), \text { and } \\
h\left(\partial \mathcal{P} \mathcal{H}_{2}\left(Z_{3}\right)-q_{Z_{3}}^{2}\left(\left\langle J^{\circ}\right\rangle_{2}\right)\right)=\partial \mathcal{P} \mathcal{H}_{2}(Y)-q_{Y}^{2}\left(\left\langle J_{h}^{\circ}, K_{h}^{\circ}\right\rangle_{2}\right) .
\end{gathered}
$$

Hence, $h(\mathcal{P H} \mathcal{D}(J, J))=\mathcal{P H} \mathcal{D}\left(J_{h}, K_{h}\right)$. By Remark 3.12, we have that $J_{h}=K_{h}$. Consequently, $h\left(q_{Z_{3}}^{2}\left(\left\langle J^{\circ}\right\rangle_{2}\right)-\left\{F_{Z_{3}}^{2}\right\}\right)=q_{Y}^{2}\left(\left\langle J_{h}^{\circ}\right\rangle_{2}\right)-\left\{F_{Y}^{2}\right\}$ and $h\left(q_{Z_{3}}^{2}\left(\left\langle J^{\circ}\right\rangle_{1}\right)-\left\{F_{Z_{3}}^{2}\right\}\right) \subset q_{Y}^{2}\left(\left\langle J_{h}^{\circ}\right\rangle_{2}\right)$. Moreover, under similar arguments for Y, we have that $\mathfrak{A}_{S}(Y)=\left\{J_{h}: J \in \mathfrak{A}_{S}\left(Z_{3}\right)\right\}$. In the same way as in the proof of Theorem 4.7, we conclude the association $J \rightarrow J_{h}$ is a bijection between $\mathfrak{A}_{S}\left(Z_{3}\right)$ and $\mathfrak{A}_{S}(Y)$, and $h\left(F_{Z_{3}}^{2}\right)=F_{Y}^{2}$. Thus, $g: C_{2}\left(Z_{3}\right)-F_{1}\left(Z_{3}\right) \longrightarrow C_{2}(Y)-F_{1}(Y)$ defined as $g=\left(q_{Y}^{2}\right)^{-1} \circ h \circ q_{Z_{3}}^{2}$ is a homeomorphism. Hence, (e) and (f) of Claim 1 from Theorem 4.7 hold. Notice that $J \cap \mathcal{P}\left(Z_{3}\right)=\emptyset$, for each $J \in \mathfrak{A}_{S}\left(Z_{3}\right)$. Using (f) and Lemma 3.2, we conclude $J_{h} \cap \mathcal{P}(Y)=\emptyset$, for each $J_{h} \in \mathfrak{A}_{S}(Y)$.

By Remark 3.12 (b) and (c), we have that
(1) Y does not have cycles and
(2) $J \in \mathfrak{A}_{E}\left(Z_{3}\right)$ if and only if $J_{h} \in \mathfrak{A}_{E}(Y)$.

Since, $J \cap \mathcal{P}\left(Z_{3}\right)=\emptyset$ and $J_{h} \cap \mathcal{P}(Y)=\emptyset$, for each $J \in \mathfrak{A}_{S}\left(Z_{3}\right)$, proceeding as in Claims 1 to 4 from Theorem 4.7, we define a homeomorphism $\phi: \mathcal{G}\left(Z_{3}\right) \longrightarrow \mathcal{G}(Y)$. Let

$$
\mathcal{G}_{\mathcal{I}}\left(Z_{3}\right)=([-1,0) \times\{0\}) \cup\left(\bigcup\left\{\left\{-\frac{1}{m}\right\} \times\left[0, \frac{1}{m}\right]: m \geq 2\right\}\right)
$$

and

$$
\mathcal{G}_{\mathcal{D}}\left(Z_{3}\right)=((0,1] \times\{0\}) \cup\left(\bigcup\left\{\left\{\frac{1}{m}\right\} \times\left[0, \frac{1}{m}\right]: m \geq 2\right\}\right)
$$

Notice that $\mathcal{G}\left(Z_{3}\right)=\mathcal{G}_{I}\left(Z_{3}\right) \cup \mathcal{G}_{D}\left(Z_{3}\right)$. Let $\mathcal{G}_{I}(Y)=\phi\left(\mathcal{G}_{I}\left(Z_{3}\right)\right)$ and $\mathcal{G}_{D}(Y)=\phi\left(\mathcal{G}_{D}\left(Z_{3}\right)\right)$. Thus, $\mathcal{G}(Y)=$ $\mathcal{G}_{I}(Y) \cup \mathcal{G}_{D}(Y)$. Let $\theta_{I} \in \operatorname{cl}_{Y}\left(\mathcal{G}_{I}(Y)\right)-\mathcal{G}_{I}(Y)$ and $\theta_{D} \in \operatorname{cl}_{Y}\left(\mathcal{G}_{D}(Y)\right)-\mathcal{G}_{D}(Y)$.

Let $\varepsilon_{1}=1$. Since $\theta_{I} \in \operatorname{cl}_{Y}\left(\mathcal{G}_{I}(Y)\right)$, there exists $l_{1} \in \mathcal{G}_{I}(Y)$ such that $d_{Y}\left(\theta_{I}, l_{1}\right)<\varepsilon_{1}$. Let $\left(I_{1}\right)_{h} \in \mathfrak{A}_{S}(Y)$ be such that $l_{1} \in\left(I_{1}\right)_{h}$. Let $\varepsilon_{2}=\min \left\{d_{Y}\left(\theta_{I},\left(I_{1}\right)_{h}\right), \frac{1}{2}\right\}$ and $l_{2} \in \mathcal{G}_{I}(Y)$ be such that $d_{Y}\left(\theta_{I}, l_{2}\right)<\varepsilon_{2}$. Let $\left(I_{2}\right)_{h} \in \mathfrak{A}_{S}(Y)$ be such that $l_{2} \in\left(I_{2}\right)_{h}$. Notice that $\left(I_{2}\right)_{h} \neq\left(I_{1}\right)_{h}$. Let $\varepsilon_{3}=\min \left\{d_{Y}\left(\theta_{I},\left(I_{2}\right)_{h}\right), \frac{1}{3}\right\}$ and $l_{3} \in \mathcal{G}_{I}(Y)$ be such that $d_{Y}\left(\theta_{I}, l_{3}\right)<\varepsilon_{3}$. Let $\left(I_{3}\right)_{h} \in \mathfrak{A}_{S}(Y)$ be such that $l_{3} \in\left(I_{3}\right)_{h}$. Notice that $\left(I_{3}\right)_{h} \notin\left\{\left(I_{1}\right)_{h},\left(I_{2}\right)_{h}\right\}$. Proceeding in a recursive way, we construct the sequence $\left\{l_{m}\right\}_{m=1}^{\infty}$ contained in $\mathcal{G}(Y)$ which converges to θ_{I} and a sequence of pairwise different elements $\left\{\left(I_{m}\right)_{h}\right\}_{m=1}^{\infty}$ contained in $\mathfrak{A}_{S}(Y)$ such that $l_{m} \in\left(I_{m}\right)_{h} \subset \mathcal{G}_{I}(Y)$, for each $m \in \mathbb{N}$. Using [6, Lemma 8], we have that $\left\{\left(I_{m}\right)_{h}\right\}_{m=1}^{\infty}$ converges to $\left\{\theta_{I}\right\}$. Analogously, there exists a sequence of pairwise different elements $\left\{\left(D_{m}\right)_{h}\right\}_{m=1}^{\infty}$ contained in $\mathfrak{A}_{S}(Y)$ which converges to $\left\{\theta_{D}\right\}$ and $\left(D_{m}\right)_{h} \subset \mathcal{G}_{D}(Y)$, for each $m \in \mathbb{N}$. Thus, $\left\{\left(I_{m}\right)_{h} \cup\left(D_{m}\right)_{h}\right\}_{m=1}^{\infty}$ converges to $\left\{\theta_{I}, \theta_{D}\right\}$.

On the other hand, given $m \in \mathbb{N}$, by Lemma 3.7 (b), there exist $L_{m}, N_{m} \in \mathfrak{A}_{S}\left(Z_{3}\right)$ such that $g^{-1}\left(\left\langle\left(I_{m}\right)_{h}^{\circ},\left(D_{m}\right)_{h}^{\circ}\right\rangle_{2}\right)=\left\langle L_{m}^{\circ}, N_{m}^{\circ}\right\rangle_{2}-\left\{F_{X}^{2}\right\}$. Since $\left(I_{m}\right)_{h} \neq\left(D_{m}\right)_{h}$, by Theorem 4.7 (a), we have that $L_{m} \neq N_{m}$. Thus, $g^{-1}\left(\left\langle\left(I_{m}\right)_{h}^{\circ},\left(D_{m}\right)_{h}^{\circ}\right\rangle_{2}\right)=\left\langle L_{m}^{\circ}, N_{m}^{\circ}\right\rangle_{2}$. Notice that we may suppose that $\left\{L_{m}\right\}_{m=1}^{\infty}$ and
$\left\{N_{m}\right\}_{m=1}^{\infty}$ are two sequences of pairwise different elements of $\mathfrak{A}_{S}\left(Z_{3}\right)$. Let $a_{m} \in L_{m}$, for each $m \in \mathbb{N}$. Since Z_{3} is compact, we may suppose that $\left\{a_{m}\right\}_{m=1}^{\infty}$ converges to a, for some $a \in Z_{3}$. By [6, Lemma 8], we have that $\left\{L_{m}\right\}_{m=1}^{\infty}$ converges to $\{a\}$. Hence, by [9, Theorem 4.1], $a \in \mathcal{P}\left(Z_{3}\right)$. Thus, $a=\theta$. Analogously, we can prove that $\left\{N_{m}\right\}_{m=1}^{\infty}$ converges to $\{\theta\}$. Thus, $\left\{L_{m} \cup N_{m}\right\}_{m=1}^{\infty}$ converges to $\{\theta\}$.

Given $m \in \mathbb{N}$, notice that $g^{-1}\left(\operatorname{cl}_{C_{2}(Y)-F_{1}(Y)}\left(\left\langle\left(I_{m}\right)_{h}^{\circ},\left(D_{m}\right)_{h}^{\circ}\right\rangle_{2}\right)\right) \subset\left\langle L_{m}, N_{m}\right\rangle_{2}$, and therefore, $g^{-1}\left(\left(I_{m}\right)_{h} \cup\right.$ $\left.\left(D_{m}\right)_{h}\right) \subset L_{m} \cup N_{m}$. Suppose that $\theta_{I} \neq \theta_{D}$. Thus, $\left\{g^{-1}\left(\left(I_{m}\right)_{h} \cup\left(D_{m}\right)_{h}\right)\right\}_{m=1}^{\infty}$ converges to $g^{-1}\left(\left\{\theta_{I}, \theta_{D}\right\}\right)$. Hence, $g^{-1}\left(\left\{\theta_{I}, \theta_{D}\right\}\right) \subset\{\theta\}$, a contradiction. Therefore, $\theta_{I}=\theta_{D}$. Since $\operatorname{cl}_{Y}(\mathcal{G}(Y))=\operatorname{cl}_{Y}\left(\mathcal{G}_{I}(Y)\right) \cup$ $\mathrm{cl}_{Y}\left(\mathcal{G}_{D}(Y)\right)$, we have that $\left|\mathrm{cl}_{Y}(\mathcal{G}(Y))-\mathcal{G}(Y)\right|=1$. Let $\theta_{h} \in \operatorname{cl}_{Y}(\mathcal{G}(Y))-\mathcal{G}(Y)$ and $\Phi: Z_{3} \longrightarrow Y$ be defined as

$$
\Phi(z)= \begin{cases}\phi(z) & \text { if } z \in \mathcal{G}\left(Z_{3}\right), \\ \theta_{h} & \text { if } z=\theta .\end{cases}
$$

Hence, Φ is an embedding from Z_{3} into Y. By definition of Φ, we know that $\Phi\left(Z_{3}\right)=\operatorname{cl}_{Y}(\mathcal{G}(Y))$. Notice that, $\Phi\left(Z_{3}\right) \cap \mathcal{P}(Y)=\left\{\theta_{h}\right\}$. This implies that $\mathcal{P}(Y)$ is a subcontinuum of Y. Let

$$
\mathfrak{T}_{Z_{3}}=\operatorname{int}_{C_{2}\left(Z_{3}\right)-F_{1}\left(Z_{3}\right)}\left(\left(C_{2}\left(Z_{3}\right)-F_{1}\left(Z_{3}\right)\right)-\mathfrak{F}_{2}\left(Z_{3}\right)\right)
$$

and

$$
\mathfrak{T}_{Y}=\operatorname{int}_{C_{2}(Y)-F_{1}(Y)}\left(\left(C_{2}(Y)-F_{1}(Y)\right)-\mathfrak{F}_{2}(Y)\right) .
$$

Notice that $g\left(\mathfrak{T}_{Z_{3}}\right)=\mathfrak{T}_{Y}$. Using the same arguments as in [6, Example 39], we have that $\mathfrak{T}_{Z_{3}}$ is disconnected and, if $Y \neq \operatorname{cl}_{Y}(\mathcal{G}(Y))$, then \mathfrak{T}_{Y} is pathwise connected. Hence, $Y=\operatorname{cl}_{Y}(\mathcal{G}(Y))$. Therefore, Z_{3} has unique hyperspace $P H S_{2}\left(Z_{3}\right)$.

Theorem 5.5. Let X be a locally connected continuum that is not almost meshed. Suppose that there exist $p \in \mathcal{P}(X)$ and $\varepsilon>0$ such that $B(p, 2 \varepsilon) \subset \mathcal{P}(X)$ and $C_{d}(\varepsilon, p)$ is contractible. Then, for every $n \in \mathbb{N}, X$ does not have unique hyperspace $P H S_{n}(X)$.

Proof. By [6, Theorem 18], there exists a dendrite D without free arcs and disjoint to X such that $Y=$ $X \cup_{p} D$ is a locally connected continuum not homeomorphic to X.

Let $E=C_{d}(\varepsilon, p)$. By Lemma 5.1, we have that $F_{1}(E)$ is a Z-set of $C_{n}(X, E)$ and $C_{n}(Y, E \cup D)$. Using [6, Theorem 22, Claim 2], we have that $\operatorname{bd}_{C_{n}(X)}\left(C_{n}(X, E)\right) \cup F_{1}(E)$ is a Z-set of $C_{n}(X, E)$ and $\operatorname{bd}_{C_{n}(Y)}\left(C_{n}(Y, E \cup D)\right) \cup F_{1}(E)$ is a Z-set of $C_{n}(Y, E \cup D)$. Moreover, by [6, Lemma 19], we have that $\operatorname{bd}_{C_{n}(X)}\left(C_{n}(X, E)\right) \cup F_{1}(E)=\operatorname{bd}_{C_{n}(Y)}\left(C_{n}(Y, E \cup D)\right) \cup F_{1}(E)$. Hence, the identity map

$$
\text { id }: \operatorname{bd}_{C_{n}(X)}\left(C_{n}(X, E)\right) \cup F_{1}(E) \longrightarrow \operatorname{bd}_{C_{n}(Y)}\left(C_{n}(Y, E \cup D)\right) \cup F_{1}(E)
$$

is a well-defined homeomorphism. By [6, Theorem 16], we know that $C_{n}(X, E)$ and $C_{n}(Y, E \cup D)$ are Hilbert cubes. Thus, by Anderson's homogeneity theorem (Theorem 5.2), the identity map can be extended to a homeomorphism $h_{1}: C_{n}(X, E) \longrightarrow C_{n}(Y, E \cup D)$.

We define $h: C_{n}(X) \longrightarrow C_{n}(Y)$ by

$$
h(A)= \begin{cases}h_{1}(A) & \text { if } A \in C_{n}(X, E), \\ A & \text { if } A \in C_{n}(X)-C_{n}(X, E) .\end{cases}
$$

Notice h is a homeomorphism such that $h\left(F_{1}(X)\right)=F_{1}(X)$.

Let $q_{X, Y}^{n}: C_{n}(Y) \longrightarrow C_{n}(Y) / F_{1}(X)$ be the quotient function and $q_{X, Y}^{n}\left(F_{1}(X)\right)=\left\{F_{X, Y}^{n}\right\}$. Since $\left.q_{X}^{n}\right|_{C_{n}(X)-F_{1}(X)},\left.h\right|_{C_{n}(X)-F_{1}(X)}$ and $\left.q_{X, Y}^{n}\right|_{C_{n}(Y)-F_{1}(X)}$ are homeomorphisms, then $P H S_{n}(X)-\left\{F_{X}^{n}\right\}$ is homeomorphic to $C_{n}(Y) / F_{1}(X)-\left\{F_{X, Y}^{n}\right\}$. Thus, $P H S_{n}(X)$ is homeomorphic to $C_{n}(Y) / F_{1}(X)$.

We will prove that $C_{n}(Y) / F_{1}(X)$ is homeomorphic to $P H S_{n}(Y)$. First, we are going to prove that $q_{Y}^{n}\left(C_{n}(Y, E \cup D)\right)$ and $q_{X, Y}^{n}\left(C_{n}(Y, E \cup D)\right)$ are Hilbert cubes. Notice that $q_{Y}^{n}\left(C_{n}(Y, E \cup D)\right)$ is homeomorphic to $C_{n}(Y, D) / F_{1}(Y, E \cup D)$ and $q_{X, Y}^{n}\left(C_{n}(Y, E \cup D)\right)$ is homeomorphic to $C_{n}(Y, E \cup D) / F_{1}(Y, E)$. By [3, Theorem $1.2(21)$, we know that D is contractible. Thus, $E \cup_{p} D$ is contractible. Hence, $F_{1}(Y, E \cup D)$ and $F_{1}(Y, E)$ are contractible. Since Y is locally connected, by Lemma 5.1, we have that $F_{1}(Y, E \cup D)$ and $F_{1}(E)$ are Z-sets of $C_{n}(Y, E \cup D)$. By [10, Corollary 2.7], we have that $C_{n}(Y, E \cup D) / F_{1}(Y, E \cup D)$ and $C_{n}(Y, E \cup D) / F_{1}(Y, E)$ are Hilbert cubes. Therefore, $q_{Y}^{n}\left(C_{n}(Y, E \cup D)\right)$ and $q_{X, Y}^{n}\left(C_{n}(Y, E \cup D)\right)$ are Hilbert cubes.

Similar to the Claim from Theorem 5.3 was proved, the following Claim can be shown.

Claim. The space $\operatorname{bd}_{P H S_{n}(Y)}\left(q_{Y}^{n}\left(C_{n}(Y, E \cup D)\right)\right)$ is a Z-set of $q_{Y}^{n}\left(C_{n}(Y, E \cup D)\right)$ and the set $\operatorname{bd}_{C_{n}(Y) / F_{1}(X)}\left(q_{X, Y}^{n}\right.$ $\left(C_{n}(Y, E \cup D)\right)$) is a Z-set of $q_{X, Y}^{n}\left(C_{n}(Y, E \cup D)\right)$.

Using [10, Lemma $2.9(\mathrm{~b})]$, the function $f: q_{X, Y}^{n}\left(C_{n}(X)\right) \longrightarrow q_{Y}^{n}\left(C_{n}(X)\right)$ defined by $f\left(q_{X, Y}^{n}(A)\right)=q_{Y}^{n}(A)$, for each $A \in C_{n}(X)$, is a homeomorphism. Thus,

$$
f\left(q_{X, Y}^{n}\left(\operatorname{bd}_{C_{n}(Y)}\left(C_{n}(Y, E \cup D)\right)\right)\right)=q_{Y}^{n}\left(\operatorname{bd}_{C_{n}(Y)}\left(C_{n}(Y, E \cup D)\right)\right)
$$

and therefore,

$$
f\left(\operatorname{bd}_{C_{n}(Y) / F_{1}(X)}\left(q_{X, Y}^{n}\left(C_{n}(Y, E \cup D)\right)\right)\right)=\operatorname{bd}_{P H S_{n}(Y)}\left(q_{Y}^{n}\left(C_{n}(Y, E \cup D)\right)\right)
$$

Hence, $\left.f\right|_{\operatorname{bd}_{C_{n}(Y) / F_{1}(X)}\left(q_{X, Y}^{n}\left(C_{f}(Y, E \cup D)\right)\right)}$ is a homeomorphism between Z-sets $\operatorname{bd}_{C_{n}(Y) / F_{1}(X)}\left(q_{X, Y}^{n}\left(C_{n}(Y\right.\right.$, $E \cup D)$) and $\operatorname{bd}_{P H S_{n}(Y)}\left(q_{Y}^{n}\left(C_{n}(Y, E \cup D)\right)\right.$), by Anderson's homogeneity theorem (Theorem 5.2) there exists a homeomorphism $g: q_{X, Y}^{n}\left(C_{n}(Y, E \cup D)\right) \longrightarrow q_{Y}^{n}\left(C_{n}(Y, E \cup D)\right)$ such that $g(A)=f(A)$, for each $A \in \operatorname{bd}_{C_{n}(Y) / F_{1}(X)}\left(q_{X, Y}^{n}\left(C_{n}(Y, E \cup D)\right)\right)$.

Let $\bar{h}: C_{n}(Y) / F_{1}(X) \longrightarrow P H S_{n}(Y)$ be given by

$$
\bar{h}(A)= \begin{cases}f(A) & \text { if } A \in C_{n}(Y) / F_{1}(X)-q_{X, Y}^{n}\left(C_{n}(Y, E \cup D)\right) \\ g(A) & \text { if } A \in q_{X, Y}^{n}\left(C_{n}(Y, E \cup D)\right)\end{cases}
$$

Then, \bar{h} is a homeomorphism. Therefore, X does not have unique hyperspace $P H S_{n}(X)$.

Question 5.6. Is Theorem 5.3 still true if we remove the assumption that R is contractible?

Regarding to Theorem 5.5, we ask:

Question 5.7. Let X be a locally connected continuum such that X is not almost meshed and let $n \in \mathbb{N}$. Does X have unique hyperspace $P H S_{n}(X)$?

Acknowledgement

The authors wish to thank M. de J. López for her useful discussions on the topic of this paper. Additionally the authors thank the referee for his/her careful reading of the manuscript and for giving such constructive comments which substantially helped improve the quality of the paper.

References

[1] R.D. Anderson, On topological infinite deficiency, Mich. Math. J. 14 (1967) 365-383.
[2] R.H. Bing, Partitioning a set, Bull. Am. Math. Soc. 55 (1949) 1101-1110.
[3] J.J. Charatonik, W.J. Charatonik, Dendrites, Aportaciones Mat. Comun., vol. 22, Sociedad Matemática Mexicana, Mexico, 1998, pp. 227-253.
[4] R. Escobedo, M. de J. López, S. Macías, On the hyperspace suspension of a continuum, Topol. Appl. 138 (2004) 109-124.
[5] L.A. Guerrero-Méndez, D. Herrera-Carrasco, M. de J. López, F. Macías-Romero, Meshed continua have unique second and third symmetric products, Topol. Appl. 191 (2015) 16-27.
[6] R. Hernández-Gutiérrez, A. Illanes, V. Martínez-de-la-Vega, Uniqueness of hyperspaces for Peano continua, Rocky Mt. J. Math. 43 (5) (2013) 1583-1624.
[7] D. Herrera-Carrasco, A. Illanes, F. Macías-Romero, F. Vázquez-Juárez, Finite graphs have unique hyperspace $H S_{n}(X)$, Topol. Proc. 44 (2014) 75-95.
[8] D. Herrera-Carrasco, M. de J. López, F. Macías-Romero, Framed continua have unique n-fold hyperspace suspension, Topol. Appl. 196 (2015) 652-667.
[9] D. Herrera-Carrasco, M. de J. López, F. Macías-Romero, Almost meshed locally connected continua have unique second symmetric product, Topol. Appl. 209 (2016) 1-13.
[10] D. Herrera-Carrasco, M. de J. López, F. Macías-Romero, Almost meshed locally connected continua without unique n-fold hyperspace suspension, Houst. J. Math. 44 (4) (2018) 1335-1365.
[11] A. Illanes, Uniqueness of hyperspaces, Quest. Answ. Gen. Topol. 30 (2012) 37-60.
[12] A. Illanes, Finite graphs X have unique hyperspaces $C_{n}(X)$, Topol. Proc. 27 (2003) 179-188.
[13] A. Illanes, S.B. Nadler Jr., Hyperspaces Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Math., vol. 216, Marcel Dekker, Inc., New York, 1999.
[14] R.C. Kirby, L.C. Siebenmaan, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, (AM-88), vol. 88, 1977.
[15] S. Macías, On the n-fold hyperspace suspension of continua, Topol. Appl. 138 (2004) 125-138.
[16] J.C. Macías, On the n-fold pseudo-hyperspace suspensions of continua, Glas. Mat. 43 (2008) 439-449.
[17] V. Martínez-de-la-Vega, Dimension of n-fold hyperspaces of graphs, Houst. J. Math. 32 (2006) 783-799.
[18] U. Morales-Fuentes, Finite graphs have unique n-fold pseudo-hyperspace suspension, Topol. Proc. 52 (2018) 219-233.
[19] G. Montero-Rodríguez, D. Herrera-Carrasco, M. de J. López, F. Macías-Romero, Finite graphs have unique n-fold symmetric product suspension, Houst. J. Math. (2022), in press.
[20] S.B. Nadler Jr., A fixed point theorem for hyperspace suspensions, Houst. J. Math. 5 (1) (1979) 125-132.
[21] S.B. Nadler Jr., Continuum Theory. An Introduction, Monographs and Texbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, New York, 1992.
[22] S.B. Nadler Jr., Dimension Theory: An Introduction with Exercises, Aportaciones Matemáticas Serie Textos, vol. 18, Sociedad Matemática Mexicana, Mexico, 2002.

[^0]: E-mail addresses: 218570567@alumnos.fcfm.buap.mx (A. Libreros-López), fmacias@fcfm.buap.mx (F. Macías-Romero), dherrera@fcfm.buap.mx (D. Herrera-Carrasco).

