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Let X be a metric continuum. Let n be a positive integer, we consider the hyperspace 
Cn(X) of all nonempty closed subsets of X with at most n components and F1(X) =
{{x} : x ∈ X}. The n-fold pseudo-hyperspace suspension of X is the quotient space 
Cn(X)/F1(X) and it is denoted by PHSn(X). In this paper we prove that: (1) if X
is a meshed continuum and Y is a continuum such that PHSn(X) is homeomorphic 
to PHSn(Y ), then X is homeomorphic to Y , for each n > 1. (2) There are locally 
connected continua without unique hyperspace PHSn(X).
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1. Introduction

A continuum is a nondegenerate compact connected metric space. The set of positive integers is denoted 
by N. Given a continuum X and n ∈ N, we consider the following hyperspaces of X:

2X = {A ⊂ X : A is a nonempty closed subset of X},

Cn(X) = {A ∈ 2X : A has at most n components},

Fn(X) = {A ∈ 2X : A has at most n points} and

C(X) = C1(X).
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All the hyperspaces considered are metrized by the Hausdorff metric H [13, Theorem 2.2].
Related to a continuum X, Sam B. Nadler, Jr. [20], introduced the hyperspace suspension of a contin-

uum, HS(X), as the quotient space C(X)/F1(X). Twenty five years later in [15], Sergio Macías gave a 
generalization of it, defining the n-fold hyperspace suspension of a continuum, HSn(X), as the quotient 
space Cn(X)/Fn(X). In 2008, Juan C. Macías [16] introduced the n-fold pseudo-hyperspace suspension of a 
continuum, PHSn(X), as the quotient space Cn(X)/F1(X). Given a continuum X, let H(X) be any of the 
hyperspaces 2X , Cn(X), Fn(X), HSn(X), or PHSn(X). The continuum X is said to have unique hyperspace
H(X) provided that the following implication holds: if Y is a continuum and H(X) is homeomorphic to 
H(Y ), then X is homeomorphic to Y .

One of the problems that has been widely studied lately on the theory of continua and their hyperspaces 
is to search for continua with unique hyperspace H(X). The problem of finding conditions for X in order 
that X has unique H(X) has been widely studied for several families of continua, especially for finite 
graphs, meshed continua and almost meshed locally connected continua. In [12], Alejandro Illanes proved 
that finite graphs have unique Cn(X) and later, in [6] Rodrigo Hernández-Gutiérrez, A. Illanes and Verónica 
Martínez-de-la-Vega studied the uniqueness of the hyperspace Cn(X) for locally connected continua and 
proved that meshed continua have unique Cn(X). Later, adopting some of the techniques presented in [12]
it was proved that finite graphs have unique HSn(X), see [7]. Later, in [8] María de J. López jointly with 
the second and third authors proved that framed continua have unique HSn(X). In relation to this topic, 
Germán Montero-Rodríguez, M. de J. López jointly with the second and third authors proved that finite 
graphs have unique hyperespace Fn(X)/F1(X), for each n ≥ 4, see [19, Theorem 3.8]. Recently, in [18] it 
was proved that finite graphs have unique PHSn(X). Following the study of this property in the hyperspace 
PHSn(X), in the present work we prove that

(1) Meshed continua have unique n-fold pseudo-hyperspace suspension, for n > 1, see Theorem 4.8.
(2) There are almost meshed locally connected continua without unique n-fold pseudo-hyperspace suspen-

sion, see Theorem 5.3.
(3) There exists an almost meshed locally connected continuum that is not meshed with unique 2-fold 

pseudo-hyperspace suspension, see Example 5.4.
(4) There exist locally connected continua that are not almost meshed without unique n-fold pseudo-

hyperspace suspension, see Theorem 5.5.

2. Definitions

Let X be a continuum. Given a subset A of X, intX(A), clX(A), and bdX(A), denote the interior, 
the closure, and the boundary of A in X, respectively, and when there is no possible confusion with the 
underlying continuum in which A lies, we simply will use A◦ instead of intX(A). Through this paper, we 
write d for the metric associated to the continuum X. Let ε > 0 and p ∈ X; the set {x ∈ X : d(p, x) < ε}
is denoted by BX(p, ε), when there is no possible confusion with the underlying continuum in which d lies, 
we use B(p, ε) instead of BX(p, ε). The Hausdorff metric H is defined as follows: for each A, B ∈ 2X ,

H(A,B) = inf{ε > 0 : A ⊂ N(ε,B) and B ⊂ N(ε,A)},

where N(ε, A) = {x ∈ X : d(x, A) < ε}. The hyperspaces Fn(X) and Cn(X) are called the n-fold symmetric 
product of X and the n-fold hyperspace of X, respectively. The cardinality of A is denoted by |A|. Let p ∈ X

and β be a cardinal number. We say that p has order less than or equal to β in X, written ord(p, X) ≤ β, 
whenever p has a basis of neighborhoods B in X such that the cardinality of bdX(U) is less than or equal 
to β, for each U ∈ B. We say that p has order equal to β in X (ord(p, X) = β) provided that ord(p, X) ≤ β

and ord(p, X) � α for any cardinal number α < β. Let E(X) = {x ∈ X : ord(x, X) = 1}, O(X) = {x ∈
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X : ord(x, X) = 2}, and R(X) = {x ∈ X : ord(x, X) ≥ 3}. The elements of E(X) (respectively, O(X)
and R(X)) are called end points (respectively, ordinary points and ramification points) of X. A map is a 
continuous function.

A finite graph is a continuum which is a finite union of arcs such that every two of them meet at a subset 
of their end points.

Given a continuum X, a free arc in X is an arc J with end points p and q such that J −{p, q} is an open 
subset of X. A maximal free arc in X is a free arc in X that is maximal with respect to the inclusion. A 
cycle in X is a simple closed curve J in X such that J −{a} is an open subset of X, for some a ∈ J . Notice 
that if X is not a simple closed curve and J is a cycle in X, then J ∩R(X) = {a}. Let

AR(X) = {J ⊂ X : J is a cycle in X},
AE(X) = {J ⊂ X : J is a maximal free arc in X and |J ∩R(X)| = 1},

AS(X) = {J ⊂ X : J is a maximal free arc in X} ∪ AR(X),

G(X) = {x ∈ X : x has a neighborhood in X which is a finite graph} and

P(X) = X − G(X).

According to [6, p. 1584] a continuum X is said to be almost meshed whenever the set G(X) is dense in 
X. An almost meshed continuum X is meshed provided that X has a basis of neighborhoods B such that 
U − P(X) is connected, for each U ∈ B.

Given a continuum X and n ∈ N, the function qnX : Cn(X) → PHSn(X) is the natural projection, and 
Fn
X denotes the element qnX(F1(X)). Notice that

qnX |Cn(X)−F1(X) : Cn(X) − F1(X) → PHSn(X) − {Fn
X} is a homeomorphism. (2.1)

Given m ∈ N and U1, . . . , Um subsets of X, let

〈U1, . . . , Um〉n = {A ∈ Cn(X) : A ⊂ U1 ∪ · · · ∪ Um and A ∩ Ui �= ∅, for each i ∈ {1, . . . , m}}.

By [13, Theorem 1.2], it is known that the family of all sets 〈U1, . . . , Um〉n, where each Ui is an open subset 
of X, forms a basis for the topology in Cn(X).

A topological manifold M (possibly with boundary) of dimension n < ∞ is a metrizable topological space 
M such that each point x in M admits an open neighborhood U and a homeomorphism κ : U −→ κ(U)
onto an open subset of the Euclidean half-space Rn

+ = {(x1, . . . , xn) ∈ Rn : x1 ≥ 0}. The points x in M that 
correspond to points κ(x) in the hyperplane {(x1, . . . , xn) ∈ Rn

+ : x1 = 0} form the manifold boundary of 
M . The manifold interior of M is defined as the complement of the manifold boundary on M , as in [14, p. 
7].

We use the following notations: dim[X] stands for the dimension of X, and dimp[X] stands for the 
dimension of X at the point p ∈ X, as in [22, p. 5].

Given a continuum X and n ∈ N, let

Ln(X) = {A ∈ Cn(X) : A has a neighborhood in Cn(X) which is a 2n-cell},
∂Ln(X) = {A ∈ Cn(X) : A has a neighborhood N in Cn(X) such that

N is a 2n-cell and A belongs to the manifold boundary of N},
Dn(X) = {A ∈ Cn(X) : A /∈ Ln(X) and A has a basis of neighborhoods

A in Cn(X) such that for each U ∈ A,dim[U ] = 2n

and U ∩ Ln(X) is arcwise connected},
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PHLn(X) = {B ∈ PHSn(X) : B has a neighborhood in PHSn(X) which is a 2n-cell},
∂PHLn(X) = {B ∈ PHSn(X) : B has a neighborhood N in PHSn(X) such that

N is a 2n-cell and B belongs to the manifold boundary of N},
PHDn(X) = {B ∈ PHSn(X) : B /∈ PHLn(X) and B has a basis of neighborhoods

B in PHSn(X) such that for each V ∈ B,dim[V] = 2n

and V ∩ PHLn(X) is arcwise connected}, and

PHEn(X) = {B ∈ PHSn(X) : dimB [PHSn(X)] = 2n}.

By (2.1), we have the following remark.

Remark 2.1. Let X be a continuum and n ∈ N. Then

(a) qnX(Ln(X) − F1(X)) = PHLn(X) − {Fn
X},

(b) qnX(∂Ln(X) − F1(X)) = ∂PHLn(X) − {Fn
X} and

(c) qnX(Dn(X) − F1(X)) = PHDn(X) − {Fn
X}.

3. Preliminary results

Lemma 3.1. Let X be a locally connected continuum and J, K ∈ AS(X). Then

(a) J◦ ∩R(X) = ∅,
(b) bdX(K) ⊂ R(X) and
(c) if J◦ ∩K �= ∅, then J = K.

Proof. (a) Take p ∈ J◦. Let U be an open subset of X such that p ∈ U . Then, there exists an arc L
in J such that p ∈ intJ(L) ⊂ L ⊂ U ∩ J◦. Then intJ (L) is an open connected subset of X. Moreover, 
bdX(intJ(L)) ⊂ L − intJ (L) and L − intJ(L) has at most 2 elements. Thus, p /∈ R(X). Consequently, 
J◦ ∩R(X) = ∅.

(b) If R(X) = ∅, by [21, 8.40], we have that X is an arc or a simple closed curve and the result follows. 
Suppose that R(X) �= ∅. Let p ∈ bdX(K) and B be a basis of neighborhoods of p in X.

Case 1. K is a cycle.
Let q ∈ X −K and L be an arc in X with end points p and q. Since K − {p} is an open subset of X, we 
have that K ∩ L = {p}. Let r = d(p, q) and U ∈ B be such that U ⊂ B(p, r) and K �⊂ U . Notice that 
bdX(U) has at least 3 elements. This implies that p /∈ E(X) ∪O(X). Therefore, p ∈ R(X).

Case 2. K is an arc.
Notice that p is an end point of K. Let a be the other end point of K. Let s = min{diam(K)

2 , d(a,p)2 } and let 
W be an open connected subset of X such that p ∈ W ⊂ B(p, s). By [21, 8.26], W is arcwise connected. Let 
q ∈ W −K and L be an arc in W with end points p and q. Notice that K �⊂ L and a /∈ L. Since K −{a, p}
is an open subset of X, we have that K ∩ L ⊂ {a, p}. Hence, K ∩ L = {p}. Suppose that there exists δ > 0
such that B(p, δ) ⊂ K ∪L. Let Cp be the component of B(p, δ) such that p ∈ Cp and Lp = clX(Cp). Hence, 
Lp is an arc. Since X is locally connected, Cp is an open subset of X. Let l, k be the end points of Lp, where 
l ∈ L and k ∈ K. Notice that K∪Lp−{a, l} = Cp∪(K−{a, p}). Thus, K∪Lp is a free arc. This contradicts 
the maximality of K. Therefore, for any ε > 0, B(p, ε) �⊂ K ∪ L. This implies that there exists an arc M
such that (K ∪L) ∩M = {p}. Let z be the other end point of M and r = min{d(p, a), d(p, q), d(p, z)}. Thus, 
there exists V ∈ B such that V ⊂ B(p, r). Notice that bdX(V ) has at least 3 elements. This implies that 
p /∈ E(X) ∪O(X). Therefore, p ∈ R(X).



A. Libreros-López et al. / Topology and its Applications 312 (2022) 108053 5
(c) Given p ∈ J◦ ∩ K, by (a), we know that p /∈ R(X). Using (b), we have that p ∈ K◦. Hence, 
J◦ ∩K◦ = J◦ ∩K. Consequently, J◦ ∩K is a nonempty open and closed subset of the connected set J◦. 
Thus, J◦ = J◦ ∩K and J ⊂ K. By the maximality of J , we have that J = K. �

In [17], Verónica Martínez-de-la-Vega computed the dimension of the n-fold hyperspace for a finite graph 
G with the following formula

dimA[Cn(G)] = 2n +
∑

p∈A∩R(G)

(ord(p,G) − 2), where A ∈ Cn(G). (3.1)

Lemma 3.2. [6, Theorem 4] Let X be a locally connected continuum, n ∈ N and A ∈ Cn(X). Then the 
following conditions are equivalent.

(a) dimA[Cn(X)] is finite,
(b) there exists a finite graph G contained in X such that A ⊂ intX(G),
(c) A ∩ P(X) = ∅.

Lemma 3.3. [6, Lemma 28] Let X be a locally connected continuum and n ≥ 3. Then Dn(X) = {A ∈
Cn(X) : A is connected and there exists J ∈ AS(X) such that A ⊂ intX(J)}.

The proof of following result is a modification of [7, Lemma 2.3].

Lemma 3.4. Let X be a locally connected continuum and n ∈ N. If A ∈ Cn(X) −F1(X) and A ∩R(X) �= ∅, 
then dimqnX(A)[PHSn(X)] ≥ 2n + 1.

Proof. From (2.1), we have that dimqnX(A)[PHSn(X)] = dimA[Cn(X)]. If dimA[Cn(X)] is not finite, the 
result follows. Suppose that dimA[Cn(X)] is finite. By Lemma 3.2, there exists a finite graph G such that 
A ⊂ intX(G). Notice that dimA[Cn(X)] = dimA[Cn(G)]. Since A ∩ R(X) �= ∅ and A ⊂ intX(G), we have 
that A ∩R(G) �= ∅. Thus, by (3.1), dimA[Cn(G)] ≥ 2n + 1. Therefore, the result follows. �

The proof of following result is a modification of [7, Lemma 2.4].

Lemma 3.5. Let X be a locally connected continuum such that R(X) �= ∅ and n ∈ N. Then for each 
neighborhood U of Fn

X in PHSn(X), dim[U ] ≥ 2n + 1.

Proof. Let U be an open neighborhood of Fn
X in PHSn(X) and V = (qnX)−1(U). Then V is an open subset 

of Cn(X). Fix a point p ∈ R(X). Since {p} ∈ V, there exists r > 0 such that BCn(X)({p}, r) ⊂ V. Let C be 
the component of B(p, r) containing p. Since C is an open connected subset of X, by [21, 8.26], C is arcwise 
connected. Hence, there exists an arc A such that p ∈ A ⊂ B(p, r). Notice that A ∈ V. Thus, qnX(A) ∈ U . 
Therefore, by Lemma 3.4, dimqnX(A)[U ] ≥ 2n + 1. �

The proof of following result is a modification of [7, Lemma 2.9 (b)].

Lemma 3.6. Let X be a locally connected continuum such that R(X) �= ∅, n ∈ N with n ≥ 3. Then 
PHDn(X) = {qnX(A) ∈ PHSn(X) : A ∈ C(X) − F1(X) and A ∩ [R(X) ∪ P(X)] = ∅}.

Proof. Given B ∈ PHDn(X), there exists A ∈ Cn(X) such that B = qnX(A). Since R(X) �= ∅, by Lemma 3.5, 
B �= Fn

X , thus, A /∈ F1(X). Moreover, by Remark 2.1 (c), A ∈ Dn(X). By Lemma 3.3, A ∈ C(X) − F1(X)
and A ⊂ intX(J), for some J ∈ AS(X). This implies that A ∩ [R(X) ∪ P(X)] = ∅.
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On the other hand, to prove the opposite inclusion, let A ∈ C(X) − F1(X) be such that A ∩ [R(X) ∪
P(X)] = ∅. In order to prove that qnX(A) ∈ PHDn(X), by Remark 2.1 (c), it will be enough to prove that 
A ∈ Dn(X). By Lemma 3.2, there exists a finite graph G contained in X such that A ⊂ intX(G). Since 
A ∩ R(X) = ∅, we have that A ∩ R(G) = ∅. Thus, there exists a free arc L in G such that A ⊂ intG(L). 
Since A ⊂ intX(G), A ⊂ intX(L) so we may assume that L ⊂ intX(G). This implies that L is a free arc in 
X. By [6, Lemma 10], there exists J ∈ AS(X) such that L ⊂ J . Therefore, by Lemma 3.3, A ∈ Dn(X). �

The proof of following result is a modification of [7, Lemma 2.10 (a) and (d)].

Lemma 3.7. Let X be a locally connected continuum such that R(X) �= ∅ and n ∈ N.

(a) For n ≥ 3, the components of PHDn(X) are the sets qnX(〈J◦〉1) − {Fn
X}, where J ∈ AS(X).

(b) The components of PHEn(X) are the sets qnX(〈J◦
1 , . . . , J

◦
m〉n) − {Fn

X}, where J1, . . . , Jm ∈ AS(X) and 
m ≤ n.

Proof. (a) By Lemma 3.6, PHDn(X) =
⋃
{qnX(〈J◦〉1) − {Fn

X} : J ∈ AS(X)}. It is easy to see that the sets 
qnX(〈J◦〉1) − {Fn

X} are arcwise connected and, therefore, connected. Moreover, the sets qnX(〈J◦〉1) − {Fn
X}

are open in PHDn(X) and pairwise disjoint. We conclude that they are the components of PHDn(X).
(b) By Lemma 3.5, Fn

X /∈ PHEn(X). Given B ∈ PHEn(X), there exists A ∈ Cn(X) such that B = qnX(A). 
Notice that dimA[Cn(X)] = dimB [PHSn(X)] = 2n. By [6, Lemma 11], there exist J1, . . . , Jm ∈ AS(X), 
with m ≤ n, such that A ∈ 〈J◦

1 , . . . , J
◦
m〉n. This implies that PHEn(X) ⊂

⋃
{qnX(〈J◦

1 , . . . , J
◦
m〉n) − {Fn

X} :
J1, . . . , Jm ∈ AS(X)}. To prove the other inclusion, let A ∈ 〈J◦

1 , . . . , J
◦
m〉n − F1(X). Thus, A ∩ [R(X) ∪

P(X)] = ∅. By Lemma 3.2, there exists a finite graph G contained in X such that A ⊂ intX(G). Since 
A ∩R(X) = ∅, we have that A ∩R(G) = ∅. Hence, by (3.1), dimA[Cn(G)] = 2n. Since dimqnX(A)[PHSn(X)] =
dimA[Cn(X)] = dimA[Cn(G)], qnX(A) ∈ PHEn(X). Therefore, PHEn(X) =

⋃
{qnX(〈J◦

1 , . . . , J
◦
m〉n) − {Fn

X} :
J1, . . . , Jm ∈ AS(X)}. The rest of the proof is similar to the proof of (a). �

Let X be a locally connected continuum such that R(X) �= ∅. Given J ∈ AS(X), let E(J) = clC(X)(〈J◦〉1). 
Notice that

E(J) =
{
C(J) − {A ∈ C(J) : A is an arc and intJ(A) ∩R(X) �= ∅}, if J is a cycle,

C(J), if J is an arc.

Let D1 = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and D2 = {(x, y) ∈ R2 : x2 +(y+ 1
2 )2 ≤ 1

4}. Let L0 = D1 − intR2(D2). 
Notice that if J is a cycle, then E(J) is homeomorphic to the continuum L0.

The proof of following result is a modification of [18, Lemma 3.4].

Lemma 3.8. Let X be a locally connected continuum such that R(X) �= ∅, p ∈ X and let J ∈ AS(X).

(1) If J is an arc, then {q2
X({p} ∪A) : A ∈ E(J)} is a 2-cell in PHS2(X).

(2) If J is a cycle, then {q2
X({p} ∪A) : A ∈ E(J)} is homeomorphic to the continuum L0.

Proof. Let g be the embedding of C(X) into C2(X) given by g(A) = {p} ∪A. Since the set g(E(J)) ∩F1(X)
is either the set ∅ or the set {p}, we have that g(E(J))/F1(X) is homeomorphic to E(J). Notice that in 
(1), the set E(J) is a 2-cell, and in (2), it is homeomorphic to continuum L0. Now, we finish the proof by 
mentioning that g(E(J))/F1(X) is clearly homeomorphic to {q2

X({p} ∪A) : A ∈ E(J)}. �
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Lemma 3.9. Let X be a locally connected continuum. If Y and Z are either arcs or simple closed curves 
of X such that Y ∩ Z = ∅, then 〈Y, Z〉2 is a 4-cell and {y, z} belongs to its manifold boundary, for each 
y ∈ Y, z ∈ Z.

Proof. Let f : 〈Y, Z〉2 −→ C(Y ) × C(Z) be defined as f(A) = (A ∩ Y, A ∩ Z). Notice that f is a bijection. 
Moreover, given a sequence {An}∞n=1 contained in 〈Y, Z〉2 which converges to A, for some A ∈ 〈Y, Z〉2, we 
have that {An∩Y }∞n=1 converges to A ∩Y and {An∩Z}∞n=1 converges to A ∩Z. Thus, {(An∩Y, An∩Z)}∞n=1
converges to (A ∩ Y, A ∩ Z). Hence, f is a homeomorphism.

By [13, 5.1.1 and 5.2], we have that C(Y ) and C(Z) are 2-cells such that F1(Y ) is contained in the 
manifold boundary of C(Y ) and F1(Z) is contained in the manifold boundary of C(Z). Hence, 〈Y, Z〉2 is 
a 4-cell. Let y ∈ Y and z ∈ Z. Since {y} belongs to the manifold boundary of C(Y ), there exist an open 
neighborhood U of {y} in C(Y ) and a homeomorphism κ1 : U −→ κ1(U) onto an open subset of R2

+ such 
that κ1({y}) = (0, r), for some r ∈ R. Similarly, there exist an open neighborhood V of {z} in C(Z) and a 
homeomorphism κ2 : V −→ κ2(V) onto an open subset of R2

+ such that κ2({z}) = (0, s), for some s ∈ R. 
Notice that U ×V is an open neighborhood of ({y}, {z}) in C(Y ) ×C(Z). Let κ+ : U ×V −→ κ+(U ×V) be 
defined as κ+(A, B) = (κ1(A), κ2(B)). Thus, κ+ is a homeomorphism, moreover, κ+(U×V) = κ1(U) ×κ2(V)
is an open subset of R2

+ ×R2
+.

Now, let g : R2
+×R2

+ −→ R4
+ be defined as g((a, b), (c, d)) = (2ac, b, a2−c2, d) and let h : R4

+ −→ R2
+×R2

+
be defined as

h(a, b, c, d) =
((√

1
2(
√

a2 + c2 + c), b
)
,

(√
1
2 (
√
a2 + c2 − c), d

))
.

Notice that g and h are maps. Moreover, h ◦g = idR2
+×R2

+
and g◦h = idR4

+
. Hence, g is a homeomorphism. By 

definition of f , f−1(U×V) is an open neighborhood of {y, z} in 〈Y, Z〉2. Let κ : f−1(U×V) −→ κ(f−1(U×V))
be defined as κ(A) = g ◦ κ+ ◦ f(A). Thus, κ is a homeomorphism, κ(f−1(U × V)) = g(κ1(U) × κ2(V)) is 
an open subset of R4

+ and κ({y, z}) = (0, r, 0, s). Therefore, {y, z} belongs to the manifold boundary of 
〈Y, Z〉2. �
Given J, K ∈ AS(X), let

D(J,K) = clC2(X)(∂L2(X) ∩ 〈J◦,K◦〉2) ∩ clC2(X)(∂L2(X) − 〈J◦,K◦〉2) and

PHD(J,K) = clPHS2(X)(∂PHL2(X) ∩ q2
X(〈J◦,K◦〉2)) ∩ clPHS2(X)(∂PHL2(X) − q2

X(〈J◦,K◦〉2)).

Lemma 3.10. Let X be a locally connected continuum such that R(X) �= ∅ and let J, K ∈ AS(X). Then 
F 2
X ∈ PHD(J, K) if and only if J ∩K �= ∅.

Proof. Suppose that F 2
X ∈ PHD(J, K). Then, there exists a sequence {An}∞n=1 contained in 〈J◦, K◦〉2 such 

that lim q2
X(An) = F 2

X . Since q2
X is a map, limAn = {a}, for some a ∈ X. Thus, {a} ∈ 〈J, K〉2. Therefore, 

J ∩K �= ∅.
Now suppose that J ∩K �= ∅. We consider the following cases.

Case 1. J �= K.
Let p ∈ J ∩K∩R(X). Then, there are two sequences {jn}∞n=1 and {kn}∞n=1 contained in J◦ and K◦, respec-
tively, such that lim jn = p and lim kn = p. Thus, lim q2

X({jn, kn}) = F 2
X . Let Jn and Kn be subarcs of J◦

and K◦, respectively, such that jn ∈ J◦
n and kn ∈ K◦

n, for each n ∈ N. Fix n ∈ N. Notice that 〈Jn, Kn〉2 is a 
neighborhood of {jn, kn} in C2(X). Since Jn and Kn are disjoint arcs, by Lemma 3.9, we have that 〈Jn, Kn〉2
is a 4-cell such that {jn, kn} belongs to its manifold boundary. This implies that {jn, kn} ∈ ∂L2(X). By 
Remark 2.1 (b), q2

X({jn, kn}) ∈ ∂PHL2(X). Therefore, F 2
X ∈ clPHS2(X)(∂PHL2(X) ∩ q2

X(〈J◦, K◦〉2)).
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Now, let {pn}∞n=1 and {qn}∞n=1 be two sequences contained in K◦ such that lim pn = p, lim qn = p and 
pn �= qn, for each n ∈ N. Let Pn and Qn be disjoint subarcs of K such that pn ∈ P ◦

n and qn ∈ Q◦
n, for each 

n ∈ N. By Lemma 3.9, we have that 〈Pn, Qn〉2 is a 4-cell and {pn, qn} belongs to its manifold boundary. 
By Remark 2.1 (b), {q2

X({pn, qn})}∞n=1 is a sequence contained in ∂PHL2(X) − q2
X(〈J◦, K◦〉2). Therefore, 

F 2
X ∈ PHD(J, K).
Case 2. J = K.

Let p ∈ J∩R(X). Then, there exist two sequences {jn}∞n=1 and {kn}∞n=1 contained in J◦ such that lim jn = p, 
lim kn = p, and jn �= kn, for each n ∈ N. Let Jn and Kn be disjoint subarcs of J◦ such that jn ∈ J◦

n and 
kn ∈ K◦

n, for each n ∈ N. By Lemma 3.9, we have that 〈Jn, Kn〉2 is a 4-cell such that {jn, kn} belongs to its 
manifold boundary. This implies that {jn, kn} ∈ ∂L2(X). By Remark 2.1 (b), q2

X({jn, kn}) ∈ ∂PHL2(X). 
Therefore, F 2

X ∈ clPHS2(X)(∂PHL2(X) ∩ q2
X(〈J◦〉2)).

Since p ∈ R(X), there exists L ∈ AS(X) −{J} such that p ∈ L. Thus, p ∈ J ∩L ∩R(X). In a similar way 
as Case 1, we can prove that F 2

X ∈ clPHS2(X)(∂PHL2(X) − q2
X(〈J◦〉2)). Therefore, F 2

X ∈ PHD(J, K). �
The proof of following result is a modification of [7, Lemma 2.15].

Lemma 3.11. Let X be a locally connected continuum with R(X) �= ∅. If J, K ∈ AS(X), then PHD(J, K) =
{q2

X({p} ∪G) : p ∈ bdX(J) and G ∈ E(K) or p ∈ bdX(K) and G ∈ E(J)}.

Proof. Let B ∈ PHD(J, K). By Lemma 3.10, we may assume that B �= F 2
X . Let A ∈ C2(X) − F1(X)

be such that q2
X(A) = B. Since B ∈ clPHS2(X)(∂PHL2(X) ∩ q2

X(〈J◦, K◦〉2)), there exists a sequence 
{An}∞n=1 contained in 〈J◦, K◦〉2 − F1(X) such that lim q2

X(An) = B and q2
X(An) ∈ ∂PHL2(X), for each 

n ∈ N. By the continuity of q2
X , limAn = A. By Remark 2.1 (b), An ∈ ∂L2(X), for each n ∈ N. Hence, 

A ∈ clC2(X)(∂L2(X) ∩〈J◦, K◦〉2). Moreover, since B ∈ clPHS2(X)(∂PHL2(X) −q2
X(〈J◦, K◦〉2)), there exists 

a sequence {Bn}∞n=1 contained in ∂PHL2(X) −q2
X(〈J◦, K◦〉2) such that limBn = B and Bn �= F 2

X , for each 
n ∈ N. Given n ∈ N, let Dn be the unique element of C2(X) −F1(X) such that q2

X(Dn) = Bn. Then limDn =
A. By Remark 2.1 (b), Dn ∈ ∂L2(X) −〈J◦, K◦〉2, for each n ∈ N. Hence, A ∈ clC2(X)(∂L2(X) −〈J◦, K◦〉2). 
We have shown that A ∈ D(J, K). By [6, Lemma 33], A = {p} ∪ G, where p ∈ bdX(J) and G ∈ E(K) or 
p ∈ bdX(K) and G ∈ E(J). This completes the proof of the first inclusion.

To prove the opposite inclusion, let B = q2
X({p} ∪ G), where p ∈ bdX(J) and G ∈ E(K) or p ∈

bdX(K) and G ∈ E(J). By Lemma 3.10, we may assume that G �= {p}. Let A = {p} ∪ G. By [6, Lemma 
33], A ∈ D(J, K). Then, there exists a sequence {An}∞n=1 contained in ∂L2(X) ∩ 〈J◦, K◦〉2 such that 
limAn = A and An /∈ F1(X), for each n ∈ N. Hence, q2

X(An) ∈ ∂PHL2(X) ∩ q2
X(〈J◦, K◦〉2). Thus, B ∈

clPHS2(X)(∂PHL2(X) ∩ q2
X(〈J◦, K◦〉2)). Similarly, B ∈ clPHS2(X)(∂PHL2(X) − q2

X(〈J◦, K◦〉2)). Therefore, 
B ∈ PHD(J, K). �

Now, we are ready to describe models of PHD(J, K) for each possible case. Let J, K ∈ AS(X), where X 
is a locally connected continuum such that R(X) �= ∅. We consider nine cases.

Case I. J = K, J is an arc and J /∈ AE(X).
By Lemma 3.11, PHD(J, J) = {q2

X({p} ∪ G) : G ∈ E(J)} ∪ {q2
X({q} ∪ G) : G ∈ E(J)}, where p, q ∈

J ∩R(X). By Lemma 3.8, we have that PHD(J, J) is the union of two 2-cells whose intersection is the set 
{F 2

X , q2
X({p, q}), q2

X(J)}. It is easy to see that this set is contained in the manifold boundary of both 2-cells.
Case II. J = K, J is an arc and J ∈ AE(X).

Then J ∩R(X) = {p}. Thus, PHD(J, J) = {q2
X({p} ∪G) : G ∈ E(J)} which is a 2-cell.

Case III. J = K and J ∈ AR(X).
Then J ∩R(X) = {q}. Thus, PHD(J, J) = {q2

X({q} ∪G) : G ∈ E(J)} which is homeomorphic to L0.
For the remaining cases we assume that J �= K.

Case IV. J and K are arcs and J, K /∈ AE(X).
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Let p1, p2 ∈ J ∩ R(X) and q1, q2 ∈ K ∩ R(X). Then PHD(J, K) = P1 ∪ P2 ∪ Q1 ∪ Q2, where P1 =
{q2

X({p1} ∪ G) : G ∈ E(K)}, P2 = {q2
X({p2} ∪ G) : G ∈ E(K)}, Q1 = {q2

X({q1} ∪ G) : G ∈ E(J)} and 
Q2 = {q2

X({q2} ∪ G) : G ∈ E(J)}. By Lemma 3.8, PHD(J, K) is the union of four 2-cells. Now let us 
consider three subcases.

IV (a). J ∩K = ∅.
Then P1 ∩ P2 = ∅ = Q1 ∩Q2. Also, Pi ∩Qj = {q2

X({pi, qj})} with i, j ∈ {1, 2}.
IV (b). J ∩K is an one point set. Suppose that p1 = q1.

Similar to case IV (a) with the exception that P1 ∩Q1 = {F 2
X}.

IV (c). J ∩K is a two point set. Suppose that p1 = q1 and p2 = q2.
Then P1 ∩P2 = {F 2

X , q2
X({p1, p2}), q2

X(K)} and Q1 ∩Q2 = {F 2
X , q2

X({p1, p2}), q2
X(J)}. Moreover, Pi ∩Qj =

{F 2
X , q2

X({p1, p2})} with i, j ∈ {1, 2}.
Case V. J and K are arcs, J /∈ AE(X) and K ∈ AE(X).

Let p1, p2 ∈ J ∩ R(X) and q ∈ K ∩ R(X). Then PHD(J, K) = P1 ∪ P2 ∪ Q, where P1 = {q2
X({p1} ∪ G) :

G ∈ E(K)}, P2 = {q2
X({p2} ∪G) : G ∈ E(K)} and Q = {q2

X({q} ∪G) : G ∈ E(J)}. Thus, PHD(J, K) is the 
union of three 2-cells. Now let us consider two subcases.

V (a). J ∩K = ∅.
Then P1 ∩ P2 = ∅. Also, Pi ∩Q = {q2

X({pi, q})} with i ∈ {1, 2}.
V (b). J ∩K is an one point set. Suppose that p1 = q.

Similar to case V (a) with the slightly difference that P1 ∩Q = {F 2
X}.

Case VI. J, K ∈ AE(X).
Then PHD(J, K) = {q2

X({p} ∪ G) : G ∈ E(K)} ∪ {q2
X({q} ∪ G) : G ∈ E(J)}, where p ∈ J ∩ R(X) and 

q ∈ K ∩ R(X). Thus, PHD(J, K) is the union of two 2-cells whose intersection is the set {q2
X({p, q})}, or 

{F 2
X} in the case that p = q.
Case VII. J is an arc, J /∈ AE(X) and K ∈ AR(X).

Similar to case V with the slightly difference that PHD(J, K) is the union of a 2-cell and two continua L0.
Case VIII. J ∈ AE(X) and K ∈ AR(X).

Similar to case VI with the slightly difference that PHD(J, K) is the union of a 2-cell and a continuum L0.
Case IX. J, K ∈ AR(X).

Similar to case VI with the difference that PHD(J, K) is the union of two continua L0.

Remark 3.12. Let X and Y be locally connected continua such that R(X) �= ∅ and R(Y ) �= ∅, and let 
J, K ∈ AS(X) and Jh, Kh ∈ AS(Y ). If PHD(J, K) is homeomorphic to PHD(Jh, Kh), then

(a) J and K are as in Case I if and only if Jh and Kh are as in Case I,
(b) J and K are as in Case II if and only if Jh and Kh are as in Case II and
(c) J and K are as in Case III if and only if Jh and Kh are as in Case III.

4. Main results

In this section we present the proof of our first main result. The first step is to mention that Ulises 
Morales-Fuentes has proven that the finite graphs have unique n-fold pseudo-hyperspace suspension, see 
[18, Theorem 5.7]. We prove that if X is a meshed continuum such that | 

⋂
AS(X)| = 2, then X is a finite 

graph, and therefore it has unique n-fold pseudo-hyperspace suspension. Finally, we prove that for a meshed 
continuum X such that R(X) �= ∅ and | 

⋂
AS(X)| �= 2 the uniqueness of the n-fold pseudo-hyperspace 

suspension holds, see Theorem 4.8.
Using [6, Lemma 2] and [5, Theorem 3.1] we have the following properties for meshed continua, which 

will be used without quoting them in the proof of Theorem 4.7.
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Lemma 4.1. If X is a meshed continuum, then

(a) X is locally connected,
(b) J ∩ P(X) = ∅, for each J ∈ AS(X), and
(c) G(X) =

⋃
AS(X).

The following result is proved in [4, Theorem 5.1] for case n = 1 and [16, Theorem 4.1 (a)] for case n ≥ 2.

Lemma 4.2. Let X be a continuum and n ∈ N. Then X is locally connected if and only if PHSn(X) is 
locally connected.

Given a continuum X and n ∈ N, let

Fn(X) = {A ∈ Cn(X) : dimA[Cn(X)] is finite}.

Theorem 4.3. Let X be a meshed continuum and n ∈ N. If Y is a continuum such that PHSn(X) is 
homeomorphic to PHSn(Y ), then Y is a meshed continuum.

Proof. Let h : PHSn(X) −→ PHSn(Y ) be a homeomorphism. Since X is a locally connected continuum, 
using Lemma 4.2, we have that Y is a locally connected continuum. Let A ∈ Cn(X) and B ∈ Cn(Y ) be 
such that h(qnX(A)) = Fn

Y and h−1(qnY (B)) = Fn
X . Let K = Cn(X) − (F1(X) ∪ {A}) and L = Cn(Y ) −

(F1(Y ) ∪ {B}). Then g : K −→ L defined by g = (qnY |L)−1 ◦ h ◦ qnX |K is a homeomorphism. Moreover, 
g(Fn(X) ∩ K) = Fn(Y ) ∩ L. Since X is meshed, by [6, Theorem 5], we know that Fn(X) is a dense subset 
of Cn(X). This implies that Fn(Y ) ∩ L is dense in L. Finally, by the density of L in Cn(Y ), we conclude 
that Fn(Y ) is a dense subset of Cn(Y ). Therefore, by [6, Theorem 5], Y is a meshed continuum. �

The following result extends [18, Lemma 5.2].

Lemma 4.4. Let n ≥ 2. If X is a locally connected continuum with R(X) �= ∅ and |AS(X)| ≥ 2, then

⋂
{clPHSn(X)(qnX(〈J◦〉n) − {Fn

X}) : J ∈ AS(X)} =
{
{Fn

X} if |
⋂
AS(X)| �= 2,

{Fn
X , qnX({p, q})} if

⋂
AS(X) = {p, q}.

Proof. Let J ∈ AS(X) and a ∈ J◦. Since {a} can be approximated by elements in 〈J◦〉1 − F1(X), we have 
that {a} ∈ clCn(X)(〈J◦〉n − F1(X)). Hence, Fn

X ∈ clPHSn(X)(qnX(〈J◦〉n) − {Fn
X}). Moreover, if 

⋂
AS(X) =

{p, q}, then p, q ∈ J and since n ≥ 2, {p, q} can be approximated by elements in 〈J◦〉n − F1(X). Hence, 
qnX({p, q}) ∈ clPHSn(X)(qnX(〈J◦〉n) − {Fn

X}). This implies the second inclusion.
Now, let B ∈

⋂
{clPHSn(X)(qnX(〈J◦〉n) − {Fn

X}) : J ∈ AS(X)}.
Suppose that B �= Fn

X . Let A ∈ Cn(X) − F1(X) be such that qnX(A) = B. Let J ∈ AS(X). Since B ∈
clPHSn(X)(qnX(〈J◦〉n) − {Fn

X}), there exists a sequence {Bm}∞m=1 contained in qnX(〈J◦〉n) − {Fn
X} which 

converges to B. Let Am ∈ 〈J◦〉n − F1(X) be such that qnX(Am) = Bm, for each m ∈ N. Notice that 
{Am}∞m=1 converges to A. Hence, A ⊂ J , for each J ∈ AS(X). Therefore, A ⊂

⋂
AS(X). Since |AS(X)| ≥ 2, 

we have that | 
⋂
AS(X)| ≤ 2.

Consider the following cases.
Case 1. | 

⋂
AS(X)| �= 2.

Then | 
⋂
AS(X)| ≤ 1. Hence, |A| ≤ 1. This is a contradiction since A ∈ Cn(X) −F1(X). Therefore, B = Fn

X .
Case 2.

⋂
AS(X) = {p, q}.

Since A ∈ Cn(X) − F1(X), we have that A = {p, q}. Hence, B ∈ {Fn
X , qnX({p, q})}, as desired.

From these cases, the result follows. �
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Theorem 4.5. Let X be a meshed continuum such that R(X) �= ∅. If | 
⋂

AS(X)| = 2, then X is a finite 
graph.

Proof. Let p, q ∈
⋂
AS(X). Thus, p and q are the end points of each maximal free arc. Suppose that 

there exists a ∈ P(X). By [5, Theorem 3.3], there is a sequence of pairwise distinct elements contained 
in R(X) ∩ G(X) which converges to a. However, this is not possible since R(X) ∩ G(X) ⊂ {p, q}. Hence, 
P(X) = ∅. Therefore, X is a finite graph. �

Using Theorem 4.5 and [18, Theorem 5.7] we obtain the following result.

Theorem 4.6. Let X be a meshed continuum such that R(X) �= ∅. If | 
⋂

AS(X)| = 2, then X has unique 
n-fold pseudo-hyperspace suspension.

The following result extends [18, Lemma 5.1 and Lemma 5.5].

Theorem 4.7. Let X and Y be meshed continua such that R(X) �= ∅, R(Y ) �= ∅ and | 
⋂

AS(X)| �= 2, 
| 
⋂
AS(Y )| �= 2, n ≥ 2 and let h : PHSn(X) −→ PHSn(Y ) be a homeomorphism. Suppose that for each 

J ∈ AS(X), there exists Jh ∈ AS(Y ) such that h(qnX(〈J◦〉1) − {Fn
X}) ⊂ qnY (〈J◦

h〉n) and AS(Y ) = {Jh : J ∈
AS(X)}. Then

(a) for each J ∈ AS(X), h(qnX(〈J◦〉n) − {Fn
X}) = qnY (〈J◦

h〉n) − {Fn
Y },

(b) for each J ∈ AS(X), h−1(qnY (〈J◦
h〉n ∩ C(Y )) − {Fn

Y }) ⊂ qnX(〈J◦〉n) − {Fn
X},

(c) the association J → Jh is a bijection between AS(X) and AS(Y ).
(d) h(Fn

X) = Fn
Y .

If we also suppose that

(1) if J ∈ AR(X), then Jh ∈ AR(Y ) and
(2) if J ∈ AE(X), then Jh ∈ AE(Y ),

then X is homeomorphic to Y .

Proof. (a) Let J ∈ AS(X) and A be a subarc of J◦ such that h(qnX(A)) �= Fn
Y . By Lemma 3.7 (b), we have 

that h(qnX(〈J◦〉n) − {Fn
X}) and qnY (〈J◦

h〉n) − {Fn
Y } are components of PHEn(X). Notice that h(qnX(A)) ∈

h(qnX(〈J◦〉n) − {Fn
X}) ∩ (qnY (〈J◦

h〉n) − {Fn
Y }). Therefore, h(qnX(〈J◦〉n) − {Fn

X}) = qnY (〈J◦
h〉n) − {Fn

Y }.
Clearly, (b) follows from (a).
To prove (c), it is enough to prove that the correspondence is one to one. Let J, L ∈ AS(X) and suppose 

that Jh = Lh. Using (a) we conclude that qnX(〈J◦〉n) − {Fn
X} = qnX(〈L◦〉n) − {Fn

X}. Let A be a subarc of 
J◦. Then qnX(A) ∈ qnX(〈L◦〉n) and A ⊂ L◦. Therefore, by Lemma 3.1 (c), J = L.

(d) By Lemma 4.4 and using (a) we have that

h({Fn
X}) =

⋂
{clPHSn(Y )(h(qnX(〈J◦〉n) − {Fn

X})) : J ∈ AS(X)}

=
⋂

{clPHSn(Y )(qnY (〈J◦
h〉n) − {Fn

Y }) : J ∈ AS(X)}

=
⋂

{clPHSn(Y )(qnY (〈J◦
h〉n) − {Fn

Y }) : Jh ∈ AS(Y )} = {Fn
Y }.

Therefore, h(Fn
X) = Fn

Y .
Let g : Cn(X) − F1(X) −→ Cn(Y ) − F1(Y ) be defined as g = (qnY )−1 ◦ h ◦ qnX . Notice that g is a 

homeomorphism. Given J ∈ AS(X), let Kn(J, X) = clCn(X)(〈J◦〉n) − F1(X).
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The proofs of Claim 1 and Claim 2 are similar to the proofs of Claim 1 and Claim 2 from [7, Theorem 
3.1], respectively. The proof of Claim 3 is similar to arguments given in [7, Theorem 3.1, p. 88–89].

Claim 1. If J ∈ AS(X), then

(e) Kn(Jh, Y ) = g(Kn(J, X)),
(f) {dimA[Cn(X)] : A ∈ Kn(J, X)} = {dimB [Cn(Y )] : B ∈ Kn(Jh, Y )},
(g) |J ∩R(X)| = |Jh ∩R(Y )|,
(h) if A ∈ Kn(J, X), then |A ∩R(X)| = |g(A) ∩R(Y )|.

Proof of Claim 1. Let J ∈ AS(X). Notice that clCn(X)(〈J◦〉n) −F1(X) = clCn(X)−F1(X)(〈J◦〉n). From this, 
clearly (e) is true and (f) follows from (e). Now, since X is a meshed continuum, J ∩ P(X) = ∅. Thus, by 
Lemma 3.2, there exists a finite graph G contained in X such that J ⊂ intX(G). Using (3.1), we have that 
|{dimA[Cn(X)] : A ∈ Kn(J, X)}| ≥ 3 if and only if |J ∩R(X)| = 2 and |{dimA[Cn(X)] : A ∈ Kn(J, X)}| = 2
if and only if |J ∩R(X)| = 1. Notice that Jh also satisfies the same conditions as J , such as Jh ∩P(Y ) = ∅. 
This proves (g). Moreover, given A ∈ Kn(J, X). If |A ∩R(X)| = 2, then |J∩R(X)| = 2. Thus, |Jh∩R(Y )| = 2
and dimA[Cn(X)] = max{dimE [Cn(X)] : E ∈ Kn(J, X)}. Hence, dimg(A)[Cn(Y )] = max{dimB [Cn(Y )] :
B ∈ Kn(Jh, Y )}. This implies that |g(A) ∩R(Y )| = 2. Similarly, if |g(A) ∩R(Y )| = 2, then |A ∩R(X)| = 2. 
If |A ∩ R(X)| = 0, then 2n = dimA[Cn(G)] = dimA[Cn(X)] = dimg(A)[Cn(Y )]. Hence, |g(A) ∩ R(Y )| = 0. 
Similarly, if |g(A) ∩R(Y )| = 0, then |A ∩R(X)| = 0. Finally, if |A ∩R(X)| = 1, then |g(A) ∩R(Y )| /∈ {0, 2}. 
Thus, |g(A) ∩R(Y )| = 1. This completes the proof of Claim 1. �
Claim 2. If J ∈ AS(X) and v ∈ J ∩ R(X), then K(v, J) = {A ∈ Kn(J, X) : A ∩ R(X) = {v}} is arcwise 
connected.

Now, given v ∈ R(X) ∩ G(X), there is J ∈ AS(X) such that v ∈ J . Let A ∈ K(v, J). By Claim 1, 
g(A) ∈ Kn(Jh, Y ) and there exists a unique point vh(A) ∈ R(Y ) ∩ g(A). Notice that vh(A) ∈ Jh and 
vh(A) ∈ R(Y ) ∩ G(Y ).

Claim 3. Let v ∈ R(X) ∩ G(X) and J, L ∈ AS(X) with v ∈ J ∩ L. If A ∈ K(v, J) and E ∈ K(v, L), then 
vh(A) = vh(E) (in other words, vh(A) depends neither on the choice of J nor on the choice of A).

Proof of Claim 3. In order to prove this, take A1 and E1 arcs in J and L, respectively, such that v is an 
end point of A1 and E1, A1 �= J and E1 �= L. Notice that A1 ∈ K(v, J) and E1 ∈ K(v, L). By Claim 2, there 
exist maps αA : [0, 1] −→ K(v, J) and αE : [0, 1] −→ K(v, L) such that αA(0) = A, αA(1) = A1, αE(0) = E1

and αE(1) = E. Moreover, since A1 ∪E1 is an arc, we may define a map α0 : [0, 1] −→ C(A1 ∪E1) with the 
following properties: α0(0) = A1, α0(1) = E1 and for each t ∈ [0, 1], α0(t) ∩R(X) = {v} and α0(t) /∈ F1(X). 
Let α : [0, 1] −→ K(v, J) ∪ C(A1 ∪E1) ∪ K(v, L) be defined as

α(t) =

⎧⎪⎪⎨
⎪⎪⎩
αA(3t) if t ∈ [0, 1

3 ],
α0(3t− 1) if t ∈ [ 13 ,

2
3 ],

αE(3t− 2) if t ∈ [ 23 , 1].

Notice that α(t) ⊂ J ∪ L. Thus, g(α(t)) ⊂ Jh ∪ Lh, for each t ∈ [0, 1]. Let i0 = ord(v, X). Since 
(J ∪ L) ∩ P(X) = ∅, by Lemma 3.2 and (3.1), we have that for each t ∈ [0, 1],

2n + (i0 − 2) = dimα(t)[Cn(X)] = dimg(α(t))[Cn(Y )].
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Since vh(A) is the only ramification point of Y in the set g(A) = g(α(0)), this implies that ord(vh(A), Y ) =
i0. Let T = {t ∈ [0, 1] : vh(A) ∈ g(α(t))}. Notice that T is a closed subset of [0, 1] and 0 ∈ T . Suppose that 
T �= [0, 1] and let R be a component of [0, 1] −T . Then t0 = inf R ∈ T and there exists a sequence {rm}∞m=1
of elements of R which converges to t0. Since (Jh ∪ Lh) ∩ R(Y ) is finite, we may assume that there exists 
w ∈ (Jh ∪ Lh) ∩R(Y ) such that w ∈ g(α(rm)). Hence, w, vh(A) ∈ g(α(t0)). Notice that w �= vh(A). Hence, 
dimg(α(t0))[Cn(Y )] > 2n + (i0 − 2), a contradiction. Therefore, T = [0, 1]. On the other hand, we know that 
vh(E) is the only ramification point of Y in the set g(E) = g(α(1)). Consequently, vh(A) = vh(E). This 
proves Claim 3. �

From now on, we simply write vh instead of vh(A). Thus, we have a function

ϕ : R(X) ∩ G(X) −→ R(Y ) ∩ G(Y )

v �−→ vh

Since Y satisfies similar conditions to those of X, we have that ϕ is a bijection.

Claim 4. There exists a homeomorphism φ : G(X) −→ G(Y ) such that φ|R(X)∩G(X) = ϕ.

Proof of Claim 4. Let J ∈ AS(X).
Case 1. |J ∩R(X)| = 2.

Suppose that J ∩R(X) = {p, q}. Thus, ph, qh ∈ Jh. Since J and Jh are arcs, we may consider a homeomor-
phism ϕJ : J −→ Jh such that ϕJ(p) = ph and ϕJ(q) = qh.

Case 2. |J ∩R(X)| = 1, assuming that J ∩R(X) = {a}.
Notice that Jh ∩ R(Y ) = {ah}. By (1) and (2), we may take a homeomorphism ϕJ : J −→ Jh such that 
ϕJ(a) = ah. Hence, we define φ : G(X) −→ G(Y ) given by φ(x) = ϕJ (x), where x ∈ J . Therefore, φ is a 
homeomorphism. �

If X is a finite graph, then G(X) = X. Thus, φ(X) = G(Y ) is a nonempty open and closed subset of Y . 
Therefore, G(Y ) = Y and X is homeomorphic to Y . Now, suppose that X and Y are not finite graphs.

Claim 5. If a ∈ P(X) and {am}∞m=1 is a sequence contained in G(X) ∩ R(X) which converges to a, then 
{φ(am)}∞m=1 converges.

Proof of Claim 5. Let {φ(bl)}∞l=1 be a convergent subsequence which converges to some z ∈ Y . By [5, 
Theorem 3.3], z ∈ P(Y ). We are going to prove that limφ(am) = z. Suppose to the contrary that

there is ε1 > 0 such that for each N ∈ N, there exists k > N such that φ(ak) /∈ B(z, ε1). (4.1)

Since limφ(bl) = z, there exists N1 ∈ N such that if l > N1, then φ(bl) ∈ B(z, ε12 ). By [6, Lemma 3], 
there exists a basis B of open connected subsets of X such that, for each U ∈ B, U − P(X) is connected. 
Let V1 ∈ B be such that a ∈ V1 and diam(V1) < 1. Thus, there is N2 > N1 such that if m > N2, then 
am ∈ V1−P(X). Let l1 > N2. Hence, bl1 ∈ φ−1(B(z, ε12 )) ∩ (V1−P(X)). By (4.1), there exists k1 > N2 such 
that φ(ak1) /∈ B(z, ε1). Notice that ak1 , bl1 ∈ V1 − P(X). Since V1 − P(X) is an open connected subset of 
X, by [21, 8.26], V1−P(X) is arcwise connected. Then, there exists an arc α1 in V1−P(X) with end points 
ak1 and bl1 . Hence, γ1 = φ(α1) is an arc with end points φ(ak1) and φ(bl1). Notice that diam(γ1) ≥ ε1

2 . 
Now, let V2 ∈ B be such that a ∈ V2, diam(V2) < 1

2 and α1 ∩ V2 = ∅. Thus, there is N3 > N2 such that if 
m > N3, then am ∈ V2 − P(X). Let l2 > N3. Hence, bl2 ∈ φ−1(B(z, ε12 )) ∩ (V2 − P(X)). By (4.1), there 
exists k2 > N3 such that φ(ak2) /∈ B(z, ε1). Notice that ak2 , bl2 ∈ V2 − P(X). Then, there exists an arc α2
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in V2 −P(X) with end points ak2 and bl2 . Therefore, γ2 = φ(α2) is an arc with end points φ(ak2) and φ(bl2)
and diam(γ2) ≥ ε1

2 . Proceeding in a recursive way, we obtain

◦ a sequence {Vi − P(X)}∞i=1 such that each Vi − P(X) is an open connected subset of X, a ∈ Vi and 
diam(Vi) < 1

i ,
◦ a sequence {φ(aki

)}∞i=1 such that φ(aki
) /∈ B(z, ε1) and aki

∈ Vi − P(X),
◦ a subsequence {φ(bli)}∞i=1 of the sequence {φ(bl)}∞l=1 such that limφ(bli) = z and bli ∈ φ−1(B(z, ε12 )) ∩

(Vi − P(X)),
◦ a sequence {αi}∞i=1 of pairwise disjoint arcs such that αi ⊂ Vi −P(X) whose end points are aki

and bli , 
and αi ∩ Vi+1 = ∅,

◦ a sequence {γi}∞i=1 of pairwise disjoint arcs such that γi ⊂ G(Y ), where γi = φ(αi), diam(γi) ≥ ε1
2 , and 

φ(aki
), φ(bli) are the end points of γi.

We may assume that the sequence {φ(aki
)}∞i=1 converges to some point w ∈ Y . Notice that the sequence 

{γi}∞i=1 is contained in C(Y ). By [21, 4.17], we may suppose that {γi}∞i=1 converges to some γ ∈ C(Y ). 
Since φ(aki

) /∈ B(z, ε12 ), for each i ∈ N, we have that w �= z. Notice that w, z ∈ γ. Thus, γ ∈ C(Y ) −F1(Y ). 
Since g−1 is a homeomorphism, we have that lim g−1(γi) = g−1(γ), where g−1(γ) ∈ Cn(X) − F1(X). On 
the other hand, since lim aki

= a, lim bli = a and lim diam(αi) = 0, we have that limαi = {a}.
Fix i ∈ N. Since aki

, bli ∈ G(X) ∩ R(X) and αi ∩ P(X) = ∅, we have that αi = J1 ∪ · · · ∪ Jsi , where 
J1, . . . , Jsi ∈ AS(X). Thus, γi = φ(J1) ∪ · · · ∪ φ(Jsi). By definition of φ, γi = (J1)h ∪ · · · ∪ (Jsi)h. Notice 
that 〈(J1)◦h ∪ · · · ∪ (Jsi)◦h〉1 = 〈(J1)◦h〉1 ∪ · · · ∪ 〈(Jsi)◦h〉1. Hence,

qnY (〈(J1)◦h ∪ · · · ∪ (Jsi)◦h〉1) − {Fn
Y } = qnY (〈(J1)◦h〉1) ∪ · · · ∪ qnY (〈(Jsi)◦h〉1) − {Fn

Y }.

By (b), we have that

h−1(qnY (〈(J1)◦h ∪ · · · ∪ (Jsi)◦h〉1) − {Fn
Y }) ⊂ qnX(〈J◦

1 〉n) ∪ · · · ∪ qnX(〈J◦
si〉n) − {Fn

X}.

Consequently, g−1(〈(J1)◦h ∪ · · · ∪ (Jsi)◦h〉1 − F1(Y )) ⊂ 〈J◦
1 ∪ · · · ∪ J◦

si〉n − F1(X). This implies that 
g−1(〈γi〉1 − F1(Y )) ⊂ 〈αi〉n − F1(X) and g−1(γi) ⊂ αi. Therefore, g−1(γ) ⊂ {a}, a contradiction. This 
proves Claim 5. �
Claim 6. If a ∈ P(X) and {am}∞m=1 is a sequence contained in G(X) such that lim am = a, then {φ(am)}∞m=1
converges.

We may assume that there exists a sequence {Jm}∞m=1 of pairwise distinct elements of AS(X) such that 
am ∈ Jm, for each m ∈ N. By [6, Lemma 8], we obtain that {Jm}∞m=1 converges to {a}. Let rm ∈ Jm∩R(X), 
for each m ∈ N. Thus, {rm}∞m=1 is a sequence contained in G(X) ∩R(X) which converges to a. By Claim 5, 
there exists z ∈ Y such that limφ(rm) = z. Notice that φ(rm) ∈ (Jm)h, for each m ∈ N. By [6, Lemma 8], 
we obtain that {(Jm)h}∞m=1 converges to {z}. Since φ(am) ∈ (Jm)h, limφ(am) = z, for each m ∈ N. This 
proves Claim 6.

Moreover, let a ∈ P(X), {am}∞m=1 and {a′m}∞m=1 be sequences in G(X) which converge to a. By Claim 6, 
{φ(am)}∞m=1 and {φ(a′m)}∞m=1 are convergent sequences. Now, let b2k−1 = ak and b2k = a′k, for k ∈ N. 
Hence, {bm}∞m=1 is a sequence in G(X) which converges to a. By Claim 6, there exists z ∈ Y such that 
limφ(bm) = z. Since {φ(am)}∞m=1 and {φ(a′m)}∞m=1 are convergent subsequences of φ({bm})∞m=1, we have 
that limφ(am) = z and limφ(a′m) = z. From this, we may associate to each a ∈ P(X) a unique element of 
P(Y ) which will denote by aφ. Consequently, we define a map Φ: X −→ Y given by
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Φ(x) =
{
φ(x) if x ∈ G(X),
xφ if x ∈ P(X).

Since Y satisfies similar conditions as X, the following claim is true.

Claim 7. If b ∈ P(Y ) and {bm}∞m=1 is a sequence contained in G(Y ) which converges to b, then {φ−1(bm)}∞m=1
converges to an unique element bφ−1 ∈ P(X), which does not depend on the sequence {bm}∞m=1.

From Claim 7, we have that Φ is one to one. Now, let b ∈ P(Y ). By [5, Theorem 3.3], there exists 
a sequence {bm}∞m=1 contained in G(Y ) ∩ R(Y ) which converges to b. Thus, by Claim 7, the sequence 
{φ−1(bm)}∞m=1 converges to an unique element bφ−1 ∈ P(X). Notice that Φ(bφ−1) = b. Hence, Φ is surjective. 
Therefore, Φ is a homeomorphism and X is homeomorphic to Y . �

The proof of following result, except Case 2, is a modification of [7, Theorem 3.2].

Theorem 4.8. Let X be a meshed continuum such that R(X) �= ∅ and n ≥ 2. If | 
⋂
AS(X)| �= 2, then X has 

unique n-fold pseudo-hyperspace suspension.

Proof. Let Y be a continuum and let h : PHSn(X) −→ PHSn(Y ) be a homeomorphism. By Theorem 4.3, 
we know that Y is a meshed continuum. Moreover, if Y is an arc or a simple closed curve, by [18, Theorem 
5.7] it follows that X is homeomorphic to Y . This is a contradiction since R(X) �= ∅. Hence, R(Y ) �= ∅. 
Moreover, by Theorem 4.6, we have that | 

⋂
AS(Y )| �= 2. We consider two cases:

Case 1. n ≥ 3.
Since the definition of PHLn(X) is given in terms of topological properties, we have that h(PHLn(X)) =
PHLn(Y ). This implies that h(PHDn(X)) = PHDn(Y ). Given J ∈ AS(X), by Lemma 3.7 (a), we 
know that h(qnX(〈J◦〉1) − {Fn

X}) is a component of PHDn(X). Hence, there exists Jh ∈ AS(Y ) such that 
h(qnX(〈J◦〉1) − {Fn

X}) = qnY (〈J◦
h〉1) − {Fn

Y } ⊂ qnY (〈J◦
h〉n). Moreover, with similar arguments for Y , we have 

that AS(Y ) = {Jh : J ∈ AS(X)}. Thus, (a), (b), (c) and (d) from Theorem 4.7 are satisfied.
Now we verify conditions (1) and (2) from Theorem 4.7. Let J ∈ AS(X) be such that |J ∩ R(X)| = 1. 

We will show that if J is an arc, then Jh is an arc (and, by symmetry, the converse implication also holds). 
Suppose that J is an arc with end points p and q, where q ∈ R(X). Suppose that Jh is a cycle. Let A
be a subarc of J such that p ∈ A and q /∈ A. We know that h(qnX(〈J◦〉1) − {Fn

X}) = qnY (〈J◦
h〉1) − {Fn

Y }. 
Let D = qnX(A) and E = h(D). Thus, E ∈ qnY (〈J◦

h〉1) − {Fn
Y }. Then there exists B ∈ 〈J◦

h〉1 − F1(Y )
such that qnY (B) = E. Notice that B is a subarc of Jh. Since X and Y are meshed continua, we have that 
J∩P (X) = ∅ = Jh∩P (Y ). By Lemma 3.2, there exist finite graphs M in X and Mh in Y such that J ⊂ M◦

and Jh ⊂ M◦
h . By (3.1), 2n = dimA[Cn(M)] = dimA[Cn(X)] = dimD[PHSn(X)] = dimE [PHSn(Y )] =

dimB [Cn(Y )]. Thus, B ∩ R(Y ) = ∅. Since C(Jh) is a 2-cell such that its manifold boundary is F1(Jh), 
we have that B has a neighborhood M in 〈J◦

h〉1 − F1(Y ) which is a 2-cell and B belongs to its manifold 
interior. Hence, qnY (M) is a neighborhood of E in qnY (〈J◦

h〉1) − {Fn
Y } such that qnY (M) is a 2-cell and E

belongs to its manifold interior. Since h(Fn
X) = Fn

Y , it implies that (qnX)−1 ◦h ◦ qnY (M) is a neighborhood of 
A in 〈J◦

h〉1 − F1(Y ) which is a 2-cell and A belongs to its manifold interior. This is a contradiction since A
belongs to the manifold boundary of C(J). Therefore, Jh is an arc. Moreover, by Claim 1 (g) of Theorem 4.7, 
we have that |Jh ∩R(Y )| = 1 and Jh ∈ AE(Y ). Consequently, J ∈ AE(X) if and only if Jh ∈ AE(Y ). Thus, 
conditions (1) and (2) from Theorem 4.7 are satisfied. Therefore, X is homeomorphic to Y .

Case 2. n = 2.
Notice that h(PHE2(X)) = PHE2(Y ). Given J ∈ AS(X), by Lemma 3.7 (b), there exist Jh, Kh ∈ AS(Y )
such that h(q2

X(〈J◦〉2) − {F 2
X}) = q2

Y (〈J◦
h , K

◦
h〉2) − {F 2

Y }. By Lemma 3.5, we have that F 2
X /∈ ∂PHL2(X), 

F 2
Y /∈ ∂PHL2(Y ) and h(∂PHL2(X)) = ∂PHL2(Y ). Thus,
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h(∂PHL2(X) ∩ q2
X(〈J◦〉2)) = ∂PHL2(Y ) ∩ q2

Y (〈J◦
h ,K

◦
h〉2), and

h(∂PHL2(X) − q2
X(〈J◦〉2)) = ∂PHL2(Y ) − q2

Y (〈J◦
h ,K

◦
h〉2).

Hence, h(PHD(J, J)) = PHD(Jh, Kh). By Remark 3.12, we have that Jh = Kh. Consequently, 
h(q2

X(〈J◦〉2) − {F 2
X}) = q2

Y (〈J◦
h〉2) − {F 2

Y } and h(q2
X(〈J◦〉1) − {F 2

X}) ⊂ q2
Y (〈J◦

h〉2). Moreover, under similar 
arguments for Y , we have that AS(Y ) = {Jh : J ∈ AS(X)}. Finally, by Remark 3.12 (b) and (c), conditions 
(1) and (2) from Theorem 4.7 are satisfied. Therefore, X is homeomorphic to Y . �

The notions of framed and almost framed continua appear in [11, p. 48]. Given a continuum X, notice 
that 

⋃
{J : J is a free arc in X} is dense in X if and only if 

⋃
{J◦ : J is a free arc in X} is dense in X. By 

[6, Lemma 1], we have that 
⋃
{J : J is a free arc in X} is dense in X if and only if G(X) is dense in X. 

From this the following remark holds.

Remark 4.9. Let X be a locally connected continuum. Then X is almost framed if and only if X is almost 
meshed. Moreover, X is framed if and only if X is meshed distinct to a simple closed curve.

Theorem 4.10. If X is a meshed continuum and n ∈ N, then X has unique n-fold pseudo-hyperspace 
suspension.

Proof. Suppose that X is a meshed continuum and let n ∈ N. By [18, Theorem 5.7], we may assume that 
X is not a finite graph. So that we consider the following two cases:

Case 1. R(X) �= ∅ and n = 1.
Since PHS1(X) = HS1(X), by [8, Theorem 3.4] the result follows.

Case 2. R(X) �= ∅ and n ≥ 2.
As a consequence of Theorem 4.6 and Theorem 4.8, we have that X has unique n-fold pseudo-hyperspace 
suspension. �
5. Locally connected continua without unique hyperspace

Given a continuum X, a nonempty closed subset K of X, and n ∈ N, let

Fn(X,K) = {A ∈ Fn(X) : A ∩K �= ∅} and
Cn(X,K) = {A ∈ Cn(X) : A ∩K �= ∅}.

For two disjoint continua X and Y , and given points p ∈ X and q ∈ Y , let X ∪p Y be the continuum 
obtained by attaching X to Y , identifying p to q.

Given a continuum X with metric d, a closed subset A of X is said to be a Z-set in X provided 
that, for each ε > 0, there is a map fε : X −→ X − A such that d(fε(x), x) < ε for all x ∈ X. A 
map between compacta f : X −→ Y is called a Z-map provided that f(X) is a Z-set in Y . Let ε > 0
and A ∈ 2X , the generalized closed d-ball in X of radius ε about A, denoted by Cd(ε, A), is defined as 
follows: Cd(ε, A) = {x ∈ X : d(x, A) ≤ ε}. Whenever A = {p}, we write C(ε, p) instead of C(ε, {p}). 
A metric d for X is said to be convex provided that, for any p, q ∈ X, there exists m ∈ X such that 
d(p, m) = 1

2d(p, q) = d(m, q). By [2, 22], if X is a locally connected continuum, then X admits a metric 
convex.

Given a locally connected continuum X with convex metric d and ε > 0, define Φε : 2X −→ 2X by 
Φε(A) = Cd(A, ε). By [13, Proposition 10.5], Φε is a map.

Lemma 5.1. Let n ∈ N and K, L be closed subsets of a locally connected continuum X. Then Fm(X, L) is a 
Z-set in Cn(X, K), for each m ∈ {1, . . . , n}.
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Proof. Let ε > 0 and m ∈ {1, . . . , n}. We assume that the metric for X is convex. Given A ∈ Cn(X, K), 
by [13, Proposition 10.6], we have that Cd( ε2 , A) ∈ Cn(X, K). Moreover, Cd(ε, A) /∈ Fm(X). Let fε =
Φ ε

2
|Cn(X,K). Hence, fε is a map from Cn(X, K) to Cn(X, K) − Fm(X, L). Notice that Cd( ε2 , A) ⊂ N(ε, A)

and, clearly, A ⊂ N(ε, Cd( ε2 , A)). Thus, H(Cd( ε2 , A), A) < ε, which is equivalent to H(fε(A), A) < ε. 
Therefore, Fm(X, L) is a Z-set in Cn(X, K). �
Theorem 5.2. [1, Corollary 10.3] (Anderson’s homogeneity theorem). If h : A −→ B is a homeomorphism 
between Z-sets in a Hilbert cube Q, then h extends to a homeomorphism of Q onto Q.

Theorem 5.3. Let X be an almost meshed locally connected continuum and n ∈ N. Suppose that there exist 
a contractible closed subset R of P(X) and pairwise disjoint nonempty open subsets U1, . . . , Un+1 of X such 
that

(a) X −R = U1 ∪ · · · ∪ Un+1 and
(b) R ⊂ clX(Ui), for each i ∈ {1, . . . , n + 1}.

Then X does not have unique hyperspace PHSm(X), for each m ≤ n.

Proof. Let m ≤ n and fix p ∈ R. By [6, Theorem 18], there exists a dendrite D without free arcs and 
disjoint to X such that Y = X ∪p D is a locally connected continuum not homeomorphic to X.

By the proof of [6, Theorem 22], we have that Cm(Y ) is homeomorphic to Cm(X). In fact, the homeomor-
phism h : Cm(X) −→ Cm(Y ) constructed in such proof satisfies h(A) = A, for each A ∈ Cm(X) −Cm(X, R). 
In particular, h(F1(G(X))) = F1(G(X)) and since X is almost meshed, we obtain that

h(F1(X)) = h(clCm(X) F1(G(X))) = clCm(Y ) F1(G(X)) = F1(X).

Let qmX,Y : Cm(Y ) −→ Cm(Y )/F1(X) be the quotient function and qmX,Y (F1(X)) = {Fm
X,Y }. Since 

qmX |Cm(X)−F1(X), h|Cm(X)−F1(X) and qmX,Y |Cm(Y )−F1(X) are homeomorphisms, PHSm(X) − {Fm
X } is home-

omorphic to Cm(Y )/F1(X) − {Fm
X,Y }. Thus, PHSm(X) is homeomorphic to Cm(Y )/F1(X).

In order to conclude, we only need to show Cm(Y )/F1(X) is homeomorphic to PHSm(Y ). First, we 
are going to prove that qmY (Cm(Y, R ∪ D)) and qmX,Y (Cm(Y, R ∪ D)) are Hilbert cubes. By [6, Theorem 
16], we know that Cm(Y, R ∪ D) is a Hilbert cube. Notice that qmY (Cm(Y, R ∪ D)) is homeomorphic to 
Cm(Y, R ∪D)/F1(Y, R ∪D) and qmX,Y (Cm(Y, R ∪D)) is homeomorphic to Cm(Y, R ∪D)/F1(Y, R). By [3, 
Theorem 1.2 (21)], we know that D is contractible. Thus, R ∪p D is contractible. Hence, F1(Y, R ∪ D)
and F1(Y, R) are contractible. Since Y is locally connected, by Lemma 5.1, we have that F1(Y, R ∪D) and 
F1(Y, R) are Z-sets of Cm(Y, R ∪D). By [10, Corollary 2.7], we have that Cm(Y, R ∪D)/F1(Y, R ∪D) and 
Cm(Y, R∪D)/F1(Y, R) are Hilbert cubes. Therefore, qmY (Cm(Y, R∪D)) and qmX,Y (Cm(Y, R∪D)) are Hilbert 
cubes.

Claim. The space bdPHSm(Y )(qmY (Cm(Y, R ∪D))) is a Z-set of qmY (Cm(Y, R ∪D)).

Proof of Claim. We denote the metric of PHSm(Y ) by H. Let ε > 0. Since Cm(Y ) is compact, we have 
that qmY is uniformly continuous. Thus, there exists δ > 0 such that if A, B ∈ Cm(Y ) with H(A, B) < δ, 
then H(qmY (A), qmY (B)) < ε

2 . By [6, Theorem 22, Claim 2], there exists a map

gδ : Cm(Y,R ∪D) −→ Cm(Y,R ∪D) − bdCm(Y )(Cm(Y,R ∪D))

such that H(gδ(A), A) < δ, for each A ∈ Cm(Y, R ∪D).
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On the other hand, by [10, Remark 2.6], the one point sets of the Hilbert cube are Z-sets. Thus, there is 
a map

γ : qmY (Cm(Y,R ∪D)) −→ qmY (Cm(Y,R ∪D)) − {Fm
Y }

such that H(γ(B), B) < ε
2 , for each B ∈ qmY (Cm(Y, R ∪D)). Let f = qmY |Cm(Y )−F1(Y ). By [10, Lemma 2.8], 

we know that bdPHSm(Y )(qmY (Cm(Y, R ∪D))) = qmY (bdCm(Y )(Cm(Y, R ∪D))). Hence, we define the map

fε : qmY (Cm(Y,R ∪D)) −→ qmY (Cm(Y,R ∪D)) − bdPHSm(Y )(qmY (Cm(Y,R ∪D)))

by fε(B) = qmY ◦ gδ ◦ f−1 ◦ γ(B), for each B ∈ qmY (Cm(Y, R ∪ D)). Given B ∈ qmY (Cm(Y, R ∪ D)), we 
have that H(gδ(f−1(γ(B))), f−1(γ(B))) < δ. Thus, H(qmX (gδ(f−1(γ(B)))), qmX (f−1(γ(B)))) < ε

2 . Therefore, 
H(fε(B), γ(B)) < ε

2 . Since H(γ(B), B) < ε
2 , we have that H(fε(B), B) < ε. This proves the claim. �

Using arguments that are analogous to those of the previous claim, we obtain that bdCm(Y )/F1(X)(qmX,Y

(Cm(Y, R ∪D))) is a Z-set of qmX,Y (Cm(Y, R ∪D)).
By [10, Lemma 2.9 (b)], there exists a homeomorphism h1 : qmX,Y (Cm(X)) −→ qmY (Cm(X)) such that 

h1(qmX,Y (A)) = qmY (A), for each A ∈ Cm(X). Thus,

h1(qmX,Y (bdCm(Y )(Cm(Y,R ∪D)))) = qmY (bdCm(Y )(Cm(Y,R ∪D)))

and therefore,

h1(bdCm(Y )/F1(X)(qmX,Y (Cm(Y,R ∪D)))) = bdPHSm(Y )(qmY (Cm(Y,R ∪D))).

Hence, h1|bdCm(Y )/F1(X)(qmX,Y (Cm(Y,R∪D))) is a homeomorphism between the Z-sets bdCm(Y )/F1(X)(qmX,Y

(Cm(Y, R ∪D))) and bdPHSm(Y )(qmY (Cm(Y, R ∪D))), by Anderson’s homogeneity theorem (Theorem 5.2) 
there exists a homeomorphism

h2 : qmX,Y (Cm(Y,R ∪D)) −→ qmY (Cm(Y,R ∪D))

such that h2(A) = h1(A), for each A ∈ bdCm(Y )/F1(X)(qmX,Y (Cm(Y, R ∪D))).
Let h : Cm(Y )/F1(X) −→ PHSm(Y ) be given by

h(A) =
{
h1(A) if A ∈ Cm(Y )/F1(X) − qmX,Y (Cm(Y,R ∪D)),
h2(A) if A ∈ qmX,Y (Cm(Y,R ∪D)).

Then, h is a homeomorphism, and the theorem is proved. �
Let m ∈ N and

Z3 = ([−1, 1] × {0}) ∪ (
⋃

{{− 1
m} × [0, 1

m ] : m ≥ 2}) ∪ (
⋃

{{ 1
m} × [0, 1

m ] : m ≥ 2}).

The continuum Z3 has unique hyperspace C2(Z3) [6, Example 39].

Example 5.4. The continuum Z3 has unique hyperspace PHS2(Z3) but it does not have unique hyperspace 
PHS1(Z3) = HS1(Z3).
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Notice that Z3 is an almost meshed locally connected continuum such that P(Z3) = {(0, 0)} and Z3 is 
not meshed continuum. Using Theorem 5.3, we have that Z3 does not have unique hyperspace PHS1(Z3).

Let θ = (0, 0). Suppose that Y is a continuum such that PHS2(Z3) and PHS2(Y ) are homeomorphic. Let 
h : PHS2(Z3) −→ PHS2(Y ) be a homeomorphism. By Lemma 4.2, we have that Y is locally connected. 
Moreover, by [18, Theorem 5.7], Y is not a finite graph. Hence, R(Y ) �= ∅. Since |AS(Z3)| ≥ 2, using 
Lemma 3.7 (b), we have that |AS(Y )| ≥ 2. Also, given J ∈ AS(Z3), by Lemma 3.7 (b), there exist Jh, Kh ∈
AS(Y ) such that h(q2

Z3
(〈J◦〉2) −{F 2

Z3
}) = q2

Y (〈J◦
h , K

◦
h〉2) −{F 2

Y }. Notice that h(∂PHL2(Z3)) = ∂PHL2(Y )
and, by Lemma 3.5, we have that F 2

Z3
/∈ ∂PHL2(Z3) and F 2

Y /∈ ∂PHL2(Y ). Thus,

h(∂PHL2(Z3) ∩ q2
Z3

(〈J◦〉2)) = ∂PHL2(Y ) ∩ q2
Y (〈J◦

h ,K
◦
h〉2), and

h(∂PHL2(Z3) − q2
Z3

(〈J◦〉2)) = ∂PHL2(Y ) − q2
Y (〈J◦

h ,K
◦
h〉2).

Hence, h(PHD(J, J)) = PHD(Jh, Kh). By Remark 3.12, we have that Jh = Kh. Consequently, 
h(q2

Z3
(〈J◦〉2) −{F 2

Z3
}) = q2

Y (〈J◦
h〉2) −{F 2

Y } and h(q2
Z3

(〈J◦〉1) −{F 2
Z3
}) ⊂ q2

Y (〈J◦
h〉2). Moreover, under similar 

arguments for Y , we have that AS(Y ) = {Jh : J ∈ AS(Z3)}. In the same way as in the proof of Theorem 4.7, 
we conclude the association J → Jh is a bijection between AS(Z3) and AS(Y ), and h(F 2

Z3
) = F 2

Y . Thus, 
g : C2(Z3) − F1(Z3) −→ C2(Y ) − F1(Y ) defined as g = (q2

Y )−1 ◦ h ◦ q2
Z3

is a homeomorphism. Hence, (e)
and (f) of Claim 1 from Theorem 4.7 hold. Notice that J ∩P(Z3) = ∅, for each J ∈ AS(Z3). Using (f) and 
Lemma 3.2, we conclude Jh ∩ P(Y ) = ∅, for each Jh ∈ AS(Y ).

By Remark 3.12 (b) and (c), we have that

(1) Y does not have cycles and
(2) J ∈ AE(Z3) if and only if Jh ∈ AE(Y ).

Since, J ∩ P(Z3) = ∅ and Jh ∩ P(Y ) = ∅, for each J ∈ AS(Z3), proceeding as in Claims 1 to 4 from 
Theorem 4.7, we define a homeomorphism φ : G(Z3) −→ G(Y ). Let

GI(Z3) = ([−1, 0) × {0}) ∪ (
⋃

{{− 1
m} × [0, 1

m ] : m ≥ 2})

and

GD(Z3) = ((0, 1] × {0}) ∪ (
⋃

{{ 1
m} × [0, 1

m ] : m ≥ 2}).

Notice that G(Z3) = GI(Z3) ∪ GD(Z3). Let GI(Y ) = φ(GI(Z3)) and GD(Y ) = φ(GD(Z3)). Thus, G(Y ) =
GI(Y ) ∪ GD(Y ). Let θI ∈ clY (GI(Y )) − GI(Y ) and θD ∈ clY (GD(Y )) − GD(Y ).

Let ε1 = 1. Since θI ∈ clY (GI(Y )), there exists l1 ∈ GI(Y ) such that dY (θI , l1) < ε1. Let (I1)h ∈ AS(Y )
be such that l1 ∈ (I1)h. Let ε2 = min{dY (θI , (I1)h), 12} and l2 ∈ GI(Y ) be such that dY (θI , l2) < ε2. 
Let (I2)h ∈ AS(Y ) be such that l2 ∈ (I2)h. Notice that (I2)h �= (I1)h. Let ε3 = min{dY (θI , (I2)h), 13}
and l3 ∈ GI(Y ) be such that dY (θI , l3) < ε3. Let (I3)h ∈ AS(Y ) be such that l3 ∈ (I3)h. Notice that 
(I3)h /∈ {(I1)h, (I2)h}. Proceeding in a recursive way, we construct the sequence {lm}∞m=1 contained in G(Y )
which converges to θI and a sequence of pairwise different elements {(Im)h}∞m=1 contained in AS(Y ) such 
that lm ∈ (Im)h ⊂ GI(Y ), for each m ∈ N. Using [6, Lemma 8], we have that {(Im)h}∞m=1 converges to 
{θI}. Analogously, there exists a sequence of pairwise different elements {(Dm)h}∞m=1 contained in AS(Y )
which converges to {θD} and (Dm)h ⊂ GD(Y ), for each m ∈ N. Thus, {(Im)h ∪ (Dm)h}∞m=1 converges to 
{θI , θD}.

On the other hand, given m ∈ N, by Lemma 3.7 (b), there exist Lm, Nm ∈ AS(Z3) such that 
g−1(〈(Im)◦h, (Dm)◦h〉2) = 〈L◦

m, N◦
m〉2 − {F 2

X}. Since (Im)h �= (Dm)h, by Theorem 4.7 (a), we have that 
Lm �= Nm. Thus, g−1(〈(Im)◦h, (Dm)◦h〉2) = 〈L◦

m, N◦
m〉2. Notice that we may suppose that {Lm}∞m=1 and 
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{Nm}∞m=1 are two sequences of pairwise different elements of AS(Z3). Let am ∈ Lm, for each m ∈ N. Since 
Z3 is compact, we may suppose that {am}∞m=1 converges to a, for some a ∈ Z3. By [6, Lemma 8], we have 
that {Lm}∞m=1 converges to {a}. Hence, by [9, Theorem 4.1], a ∈ P(Z3). Thus, a = θ. Analogously, we can 
prove that {Nm}∞m=1 converges to {θ}. Thus, {Lm ∪Nm}∞m=1 converges to {θ}.

Given m ∈ N, notice that g−1(clC2(Y )−F1(Y )(〈(Im)◦h, (Dm)◦h〉2)) ⊂ 〈Lm, Nm〉2, and therefore, g−1((Im)h∪
(Dm)h) ⊂ Lm ∪Nm. Suppose that θI �= θD. Thus, {g−1((Im)h ∪ (Dm)h)}∞m=1 converges to g−1({θI , θD}). 
Hence, g−1({θI , θD}) ⊂ {θ}, a contradiction. Therefore, θI = θD. Since clY (G(Y )) = clY (GI(Y )) ∪
clY (GD(Y )), we have that | clY (G(Y )) − G(Y )| = 1. Let θh ∈ clY (G(Y )) − G(Y ) and Φ : Z3 −→ Y be 
defined as

Φ(z) =
{
φ(z) if z ∈ G(Z3),
θh if z = θ.

Hence, Φ is an embedding from Z3 into Y . By definition of Φ, we know that Φ(Z3) = clY (G(Y )). Notice 
that, Φ(Z3) ∩ P(Y ) = {θh}. This implies that P(Y ) is a subcontinuum of Y . Let

TZ3 = intC2(Z3)−F1(Z3)((C2(Z3) − F1(Z3)) − F2(Z3))

and

TY = intC2(Y )−F1(Y )((C2(Y ) − F1(Y )) − F2(Y )).

Notice that g(TZ3) = TY . Using the same arguments as in [6, Example 39], we have that TZ3 is disconnected 
and, if Y �= clY (G(Y )), then TY is pathwise connected. Hence, Y = clY (G(Y )). Therefore, Z3 has unique 
hyperspace PHS2(Z3).

Theorem 5.5. Let X be a locally connected continuum that is not almost meshed. Suppose that there exist 
p ∈ P(X) and ε > 0 such that B(p, 2ε) ⊂ P(X) and Cd(ε, p) is contractible. Then, for every n ∈ N, X does 
not have unique hyperspace PHSn(X).

Proof. By [6, Theorem 18], there exists a dendrite D without free arcs and disjoint to X such that Y =
X ∪p D is a locally connected continuum not homeomorphic to X.

Let E = Cd(ε, p). By Lemma 5.1, we have that F1(E) is a Z-set of Cn(X, E) and Cn(Y, E ∪ D). 
Using [6, Theorem 22, Claim 2], we have that bdCn(X)(Cn(X, E)) ∪ F1(E) is a Z-set of Cn(X, E) and 
bdCn(Y )(Cn(Y, E ∪ D)) ∪ F1(E) is a Z-set of Cn(Y, E ∪ D). Moreover, by [6, Lemma 19], we have that 
bdCn(X)(Cn(X, E)) ∪ F1(E) = bdCn(Y )(Cn(Y, E ∪D)) ∪ F1(E). Hence, the identity map

id : bdCn(X)(Cn(X,E)) ∪ F1(E) −→ bdCn(Y )(Cn(Y,E ∪D)) ∪ F1(E)

is a well-defined homeomorphism. By [6, Theorem 16], we know that Cn(X, E) and Cn(Y, E∪D) are Hilbert 
cubes. Thus, by Anderson’s homogeneity theorem (Theorem 5.2), the identity map can be extended to a 
homeomorphism h1 : Cn(X, E) −→ Cn(Y, E ∪D).

We define h : Cn(X) −→ Cn(Y ) by

h(A) =
{
h1(A) if A ∈ Cn(X,E),
A if A ∈ Cn(X) − Cn(X,E).

Notice h is a homeomorphism such that h(F1(X)) = F1(X).
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Let qnX,Y : Cn(Y ) −→ Cn(Y )/F1(X) be the quotient function and qnX,Y (F1(X)) = {Fn
X,Y }. Since 

qnX |Cn(X)−F1(X), h|Cn(X)−F1(X) and qnX,Y |Cn(Y )−F1(X) are homeomorphisms, then PHSn(X) − {Fn
X} is 

homeomorphic to Cn(Y )/F1(X) − {Fn
X,Y }. Thus, PHSn(X) is homeomorphic to Cn(Y )/F1(X).

We will prove that Cn(Y )/F1(X) is homeomorphic to PHSn(Y ). First, we are going to prove that 
qnY (Cn(Y, E∪D)) and qnX,Y (Cn(Y, E∪D)) are Hilbert cubes. Notice that qnY (Cn(Y, E∪D)) is homeomorphic 
to Cn(Y, D)/F1(Y, E ∪ D) and qnX,Y (Cn(Y, E ∪ D)) is homeomorphic to Cn(Y, E ∪ D)/F1(Y, E). By [3, 
Theorem 1.2 (21)], we know that D is contractible. Thus, E ∪p D is contractible. Hence, F1(Y, E ∪ D)
and F1(Y, E) are contractible. Since Y is locally connected, by Lemma 5.1, we have that F1(Y, E ∪D) and 
F1(E) are Z-sets of Cn(Y, E ∪ D). By [10, Corollary 2.7], we have that Cn(Y, E ∪ D)/F1(Y, E ∪ D) and 
Cn(Y, E ∪D)/F1(Y, E) are Hilbert cubes. Therefore, qnY (Cn(Y, E ∪D)) and qnX,Y (Cn(Y, E ∪D)) are Hilbert 
cubes.

Similar to the Claim from Theorem 5.3 was proved, the following Claim can be shown.

Claim. The space bdPHSn(Y )(qnY (Cn(Y, E∪D))) is aZ-set of qnY (Cn(Y, E∪D)) and the set bdCn(Y )/F1(X)(qnX,Y

(Cn(Y, E ∪D))) is a Z-set of qnX,Y (Cn(Y, E ∪D)).

Using [10, Lemma 2.9(b)], the function f : qnX,Y (Cn(X)) −→ qnY (Cn(X)) defined by f(qnX,Y (A)) = qnY (A), 
for each A ∈ Cn(X), is a homeomorphism. Thus,

f(qnX,Y (bdCn(Y )(Cn(Y,E ∪D)))) = qnY (bdCn(Y )(Cn(Y,E ∪D)))

and therefore,

f(bdCn(Y )/F1(X)(qnX,Y (Cn(Y,E ∪D)))) = bdPHSn(Y )(qnY (Cn(Y,E ∪D))).

Hence, f |bdCn(Y )/F1(X)(qnX,Y (Cf (Y,E∪D))) is a homeomorphism between Z-sets bdCn(Y )/F1(X)(qnX,Y (Cn(Y,
E ∪ D))) and bdPHSn(Y )(qnY (Cn(Y, E ∪ D))), by Anderson’s homogeneity theorem (Theorem 5.2) there 
exists a homeomorphism g : qnX,Y (Cn(Y, E ∪ D)) −→ qnY (Cn(Y, E ∪ D)) such that g(A) = f(A), for each 
A ∈ bdCn(Y )/F1(X)(qnX,Y (Cn(Y, E ∪D))).

Let h : Cn(Y )/F1(X) −→ PHSn(Y ) be given by

h(A) =
{
f(A) if A ∈ Cn(Y )/F1(X) − qnX,Y (Cn(Y,E ∪D)),
g(A) if A ∈ qnX,Y (Cn(Y,E ∪D)).

Then, h is a homeomorphism. Therefore, X does not have unique hyperspace PHSn(X). �
Question 5.6. Is Theorem 5.3 still true if we remove the assumption that R is contractible?

Regarding to Theorem 5.5, we ask:

Question 5.7. Let X be a locally connected continuum such that X is not almost meshed and let n ∈ N. 
Does X have unique hyperspace PHSn(X)?
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