Contents lists available at ScienceDirect

## Topology and its Applications

www.elsevier.com/locate/topol

# On the uniqueness of the n-fold pseudo-hyperspace suspension for locally connected continua

## Antonio Libreros-López, Fernando Macías-Romero, David Herrera-Carrasco

Facultad de Ciencias Físico Matemáticas de la Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Edificio FM7-212, Ciudad Universitaria, C.P. 72570, Puebla, Mexico

#### A R T I C L E I N F O

Article history: Received 30 April 2021 Received in revised form 12 February 2022 Accepted 15 February 2022 Available online 22 February 2022

MSC: 54B20 54F15

Keywords: Continuum Meshed Hyperspace *n*-fold pseudo-hyperspace suspension Unique hyperspace

#### ABSTRACT

Let X be a metric continuum. Let n be a positive integer, we consider the hyperspace  $C_n(X)$  of all nonempty closed subsets of X with at most n components and  $F_1(X) = \{\{x\}: x \in X\}$ . The n-fold pseudo-hyperspace suspension of X is the quotient space  $C_n(X)/F_1(X)$  and it is denoted by  $PHS_n(X)$ . In this paper we prove that: (1) if X is a meshed continuum and Y is a continuum such that  $PHS_n(X)$  is homeomorphic to  $PHS_n(Y)$ , then X is homeomorphic to Y, for each n > 1. (2) There are locally connected continua without unique hyperspace  $PHS_n(X)$ .

@ 2022 Elsevier B.V. All rights reserved.

## 1. Introduction

A continuum is a nondegenerate compact connected metric space. The set of positive integers is denoted by  $\mathbb{N}$ . Given a continuum X and  $n \in \mathbb{N}$ , we consider the following hyperspaces of X:

 $2^{X} = \{A \subset X : A \text{ is a nonempty closed subset of } X\},$  $C_{n}(X) = \{A \in 2^{X} : A \text{ has at most } n \text{ components}\},$  $F_{n}(X) = \{A \in 2^{X} : A \text{ has at most } n \text{ points}\} \text{ and}$  $C(X) = C_{1}(X).$ 

https://doi.org/10.1016/j.topol.2022.108053 0166-8641/© 2022 Elsevier B.V. All rights reserved.





and its Application

*E-mail addresses:* 218570567@alumnos.fcfm.buap.mx (A. Libreros-López), fmacias@fcfm.buap.mx (F. Macías-Romero), dherrera@fcfm.buap.mx (D. Herrera-Carrasco).

All the hyperspaces considered are metrized by the Hausdorff metric H [13, Theorem 2.2].

Related to a continuum X, Sam B. Nadler, Jr. [20], introduced the hyperspace suspension of a continuum, HS(X), as the quotient space  $C(X)/F_1(X)$ . Twenty five years later in [15], Sergio Macías gave a generalization of it, defining the *n*-fold hyperspace suspension of a continuum,  $HS_n(X)$ , as the quotient space  $C_n(X)/F_n(X)$ . In 2008, Juan C. Macías [16] introduced the *n*-fold pseudo-hyperspace suspension of a continuum,  $PHS_n(X)$ , as the quotient space  $C_n(X)/F_1(X)$ . Given a continuum X, let  $\mathcal{H}(X)$  be any of the hyperspaces  $2^X$ ,  $C_n(X)$ ,  $F_n(X)$ ,  $HS_n(X)$ , or  $PHS_n(X)$ . The continuum X is said to have unique hyperspace  $\mathcal{H}(X)$  provided that the following implication holds: if Y is a continuum and  $\mathcal{H}(X)$  is homeomorphic to  $\mathcal{H}(Y)$ , then X is homeomorphic to Y.

One of the problems that has been widely studied lately on the theory of continua and their hyperspaces is to search for continua with unique hyperspace  $\mathcal{H}(X)$ . The problem of finding conditions for X in order that X has unique  $\mathcal{H}(X)$  has been widely studied for several families of continua, especially for finite graphs, meshed continua and almost meshed locally connected continua. In [12], Alejandro Illanes proved that finite graphs have unique  $C_n(X)$  and later, in [6] Rodrigo Hernández-Gutiérrez, A. Illanes and Verónica Martínez-de-la-Vega studied the uniqueness of the hyperspace  $C_n(X)$  for locally connected continua and proved that meshed continua have unique  $C_n(X)$ . Later, adopting some of the techniques presented in [12] it was proved that finite graphs have unique  $HS_n(X)$ , see [7]. Later, in [8] María de J. López jointly with the second and third authors proved that framed continua have unique  $HS_n(X)$ . In relation to this topic, Germán Montero-Rodríguez, M. de J. López jointly with the second and third authors proved that finite graphs have unique hyperespace  $F_n(X)/F_1(X)$ , for each  $n \ge 4$ , see [19, Theorem 3.8]. Recently, in [18] it was proved that finite graphs have unique  $PHS_n(X)$ . Following the study of this property in the hyperspace  $PHS_n(X)$ , in the present work we prove that

- (1) Meshed continua have unique n-fold pseudo-hyperspace suspension, for n > 1, see Theorem 4.8.
- (2) There are almost meshed locally connected continua without unique n-fold pseudo-hyperspace suspension, see Theorem 5.3.
- (3) There exists an almost meshed locally connected continuum that is not meshed with unique 2-fold pseudo-hyperspace suspension, see Example 5.4.
- (4) There exist locally connected continua that are not almost meshed without unique n-fold pseudohyperspace suspension, see Theorem 5.5.

#### 2. Definitions

Let X be a continuum. Given a subset A of X,  $\operatorname{int}_X(A)$ ,  $\operatorname{cl}_X(A)$ , and  $\operatorname{bd}_X(A)$ , denote the *interior*, the *closure*, and the *boundary* of A in X, respectively, and when there is no possible confusion with the underlying continuum in which A lies, we simply will use  $A^\circ$  instead of  $\operatorname{int}_X(A)$ . Through this paper, we write d for the metric associated to the continuum X. Let  $\varepsilon > 0$  and  $p \in X$ ; the set  $\{x \in X : d(p, x) < \varepsilon\}$ is denoted by  $B_X(p,\varepsilon)$ , when there is no possible confusion with the underlying continuum in which d lies, we use  $B(p,\varepsilon)$  instead of  $B_X(p,\varepsilon)$ . The Hausdorff metric H is defined as follows: for each  $A, B \in 2^X$ ,

$$H(A,B) = \inf\{\varepsilon > 0 : A \subset N(\varepsilon,B) \text{ and } B \subset N(\varepsilon,A)\},\$$

where  $N(\varepsilon, A) = \{x \in X : d(x, A) < \varepsilon\}$ . The hyperspaces  $F_n(X)$  and  $C_n(X)$  are called the *n*-fold symmetric product of X and the *n*-fold hyperspace of X, respectively. The cardinality of A is denoted by |A|. Let  $p \in X$ and  $\beta$  be a cardinal number. We say that p has order less than or equal to  $\beta$  in X, written  $\operatorname{ord}(p, X) \leq \beta$ , whenever p has a basis of neighborhoods  $\mathfrak{B}$  in X such that the cardinality of  $\operatorname{bd}_X(U)$  is less than or equal to  $\beta$ , for each  $U \in \mathfrak{B}$ . We say that p has order equal to  $\beta$  in X ( $\operatorname{ord}(p, X) = \beta$ ) provided that  $\operatorname{ord}(p, X) \leq \beta$ and  $\operatorname{ord}(p, X) \leq \alpha$  for any cardinal number  $\alpha < \beta$ . Let  $E(X) = \{x \in X : \operatorname{ord}(x, X) = 1\}$ ,  $O(X) = \{x \in$   $X: \operatorname{ord}(x, X) = 2$ , and  $R(X) = \{x \in X: \operatorname{ord}(x, X) \geq 3\}$ . The elements of E(X) (respectively, O(X) and R(X)) are called *end points* (respectively, *ordinary points* and *ramification points*) of X. A map is a continuous function.

A *finite graph* is a continuum which is a finite union of arcs such that every two of them meet at a subset of their end points.

Given a continuum X, a free arc in X is an arc J with end points p and q such that  $J - \{p, q\}$  is an open subset of X. A maximal free arc in X is a free arc in X that is maximal with respect to the inclusion. A cycle in X is a simple closed curve J in X such that  $J - \{a\}$  is an open subset of X, for some  $a \in J$ . Notice that if X is not a simple closed curve and J is a cycle in X, then  $J \cap R(X) = \{a\}$ . Let

> $\mathfrak{A}_R(X) = \{J \subset X : J \text{ is a cycle in } X\},$  $\mathfrak{A}_E(X) = \{J \subset X : J \text{ is a maximal free arc in } X \text{ and } |J \cap R(X)| = 1\},$  $\mathfrak{A}_S(X) = \{J \subset X : J \text{ is a maximal free arc in } X\} \cup \mathfrak{A}_R(X),$  $\mathcal{G}(X) = \{x \in X : x \text{ has a neighborhood in } X \text{ which is a finite graph}\} \text{ and}$

$$\mathcal{P}(X) = X - \mathcal{G}(X).$$

According to [6, p. 1584] a continuum X is said to be *almost meshed* whenever the set  $\mathcal{G}(X)$  is dense in X. An almost meshed continuum X is *meshed* provided that X has a basis of neighborhoods  $\mathcal{B}$  such that  $U - \mathcal{P}(X)$  is connected, for each  $U \in \mathcal{B}$ .

Given a continuum X and  $n \in \mathbb{N}$ , the function  $q_X^n \colon C_n(X) \to PHS_n(X)$  is the natural projection, and  $F_X^n$  denotes the element  $q_X^n(F_1(X))$ . Notice that

$$q_X^n|_{C_n(X)-F_1(X)} \colon C_n(X) - F_1(X) \to PHS_n(X) - \{F_X^n\} \text{ is a homeomorphism.}$$
(2.1)

Given  $m \in \mathbb{N}$  and  $U_1, \ldots, U_m$  subsets of X, let

$$\langle U_1, \ldots, U_m \rangle_n = \{ A \in C_n(X) \colon A \subset U_1 \cup \cdots \cup U_m \text{ and } A \cap U_i \neq \emptyset, \text{ for each } i \in \{1, \ldots, m\} \}$$

By [13, Theorem 1.2], it is known that the family of all sets  $\langle U_1, \ldots, U_m \rangle_n$ , where each  $U_i$  is an open subset of X, forms a basis for the topology in  $C_n(X)$ .

A topological manifold M (possibly with boundary) of dimension  $n < \infty$  is a metrizable topological space M such that each point x in M admits an open neighborhood U and a homeomorphism  $\kappa : U \longrightarrow \kappa(U)$  onto an open subset of the Euclidean half-space  $\mathbb{R}^n_+ = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 \ge 0\}$ . The points x in M that correspond to points  $\kappa(x)$  in the hyperplane  $\{(x_1, \ldots, x_n) \in \mathbb{R}^n_+ : x_1 = 0\}$  form the manifold boundary of M. The manifold interior of M is defined as the complement of the manifold boundary on M, as in [14, p. 7].

We use the following notations: dim[X] stands for the dimension of X, and dim<sub>p</sub>[X] stands for the dimension of X at the point  $p \in X$ , as in [22, p. 5].

Given a continuum X and  $n \in \mathbb{N}$ , let

$$\mathcal{L}_n(X) = \{ A \in C_n(X) : A \text{ has a neighborhood in } C_n(X) \text{ which is a } 2n\text{-cell} \},\$$

 $\partial \mathcal{L}_n(X) = \{A \in C_n(X) : A \text{ has a neighborhood } \mathcal{N} \text{ in } C_n(X) \text{ such that}$ 

 $\mathcal{N}$  is a 2*n*-cell and A belongs to the manifold boundary of  $\mathcal{N}$ },

 $\mathcal{D}_n(X) = \{A \in C_n(X) : A \notin \mathcal{L}_n(X) \text{ and } A \text{ has a basis of neighborhoods} \}$ 

 $\mathcal{A}$  in  $C_n(X)$  such that for each  $\mathcal{U} \in \mathcal{A}$ , dim $[\mathcal{U}] = 2n$ 

and  $\mathcal{U} \cap \mathcal{L}_n(X)$  is arcwise connected},

 $\mathcal{PHL}_n(X) = \{B \in PHS_n(X) : B \text{ has a neighborhood in } PHS_n(X) \text{ which is a } 2n\text{-cell}\},\$  $\partial \mathcal{PHL}_n(X) = \{B \in PHS_n(X) : B \text{ has a neighborhood } \mathcal{N} \text{ in } PHS_n(X) \text{ such that }$ 

 $\mathcal{N}$  is a 2*n*-cell and *B* belongs to the manifold boundary of  $\mathcal{N}$ },

$$\mathcal{PHD}_n(X) = \{B \in PHS_n(X) : B \notin \mathcal{PHL}_n(X) \text{ and } B \text{ has a basis of neighborhoods} \\ \mathcal{B} \text{ in } PHS_n(X) \text{ such that for each } \mathcal{V} \in \mathcal{B}, \dim[\mathcal{V}] = 2n \\ \text{ and } \mathcal{V} \cap \mathcal{PHL}_n(X) \text{ is arcwise connected} \}, \text{ and} \\ \mathcal{PHE}_n(X) = \{B \in PHS_n(X) : \dim_B[PHS_n(X)] = 2n\}.$$

By (2.1), we have the following remark.

**Remark 2.1.** Let X be a continuum and  $n \in \mathbb{N}$ . Then

(a)  $q_X^n(\mathcal{L}_n(X) - F_1(X)) = \mathcal{PHL}_n(X) - \{F_X^n\},$ (b)  $q_X^n(\partial \mathcal{L}_n(X) - F_1(X)) = \partial \mathcal{PHL}_n(X) - \{F_X^n\}$  and (c)  $q_X^n(\mathcal{D}_n(X) - F_1(X)) = \mathcal{PHD}_n(X) - \{F_X^n\}.$ 

## 3. Preliminary results

**Lemma 3.1.** Let X be a locally connected continuum and  $J, K \in \mathfrak{A}_S(X)$ . Then

(a)  $J^{\circ} \cap R(X) = \emptyset$ , (b)  $\operatorname{bd}_X(K) \subset R(X)$  and (c) if  $J^{\circ} \cap K \neq \emptyset$ , then J = K.

**Proof.** (a) Take  $p \in J^{\circ}$ . Let U be an open subset of X such that  $p \in U$ . Then, there exists an arc L in J such that  $p \in \operatorname{int}_J(L) \subset L \subset U \cap J^{\circ}$ . Then  $\operatorname{int}_J(L)$  is an open connected subset of X. Moreover,  $\operatorname{bd}_X(\operatorname{int}_J(L)) \subset L - \operatorname{int}_J(L)$  and  $L - \operatorname{int}_J(L)$  has at most 2 elements. Thus,  $p \notin R(X)$ . Consequently,  $J^{\circ} \cap R(X) = \emptyset$ .

(b) If  $R(X) = \emptyset$ , by [21, 8.40], we have that X is an arc or a simple closed curve and the result follows. Suppose that  $R(X) \neq \emptyset$ . Let  $p \in bd_X(K)$  and  $\mathfrak{B}$  be a basis of neighborhoods of p in X.

Case 1. K is a cycle.

Let  $q \in X - K$  and L be an arc in X with end points p and q. Since  $K - \{p\}$  is an open subset of X, we have that  $K \cap L = \{p\}$ . Let r = d(p,q) and  $U \in \mathfrak{B}$  be such that  $U \subset B(p,r)$  and  $K \not\subset U$ . Notice that  $\mathrm{bd}_X(U)$  has at least 3 elements. This implies that  $p \notin E(X) \cup O(X)$ . Therefore,  $p \in R(X)$ .

Case 2. K is an arc.

Notice that p is an end point of K. Let a be the other end point of K. Let  $s = \min\{\frac{\dim(K)}{2}, \frac{d(a,p)}{2}\}$  and let W be an open connected subset of X such that  $p \in W \subset B(p, s)$ . By [21, 8.26], W is arcwise connected. Let  $q \in W - K$  and L be an arc in W with end points p and q. Notice that  $K \not\subset L$  and  $a \notin L$ . Since  $K - \{a, p\}$  is an open subset of X, we have that  $K \cap L \subset \{a, p\}$ . Hence,  $K \cap L = \{p\}$ . Suppose that there exists  $\delta > 0$  such that  $B(p, \delta) \subset K \cup L$ . Let  $C_p$  be the component of  $B(p, \delta)$  such that  $p \in C_p$  and  $L_p = cl_X(C_p)$ . Hence,  $L_p$  is an arc. Since X is locally connected,  $C_p$  is an open subset of X. Let l, k be the end points of  $L_p$ , where  $l \in L$  and  $k \in K$ . Notice that  $K \cup L_p - \{a, l\} = C_p \cup (K - \{a, p\})$ . Thus,  $K \cup L_p$  is a free arc. This contradicts the maximality of K. Therefore, for any  $\varepsilon > 0$ ,  $B(p, \varepsilon) \not\subset K \cup L$ . This implies that there exists an arc M such that  $(K \cup L) \cap M = \{p\}$ . Let z be the other end point of M and  $r = \min\{d(p, a), d(p, q), d(p, z)\}$ . Thus, there exists  $V \in \mathfrak{B}$  such that  $V \subset B(p, r)$ . Notice that  $bd_X(V)$  has at least 3 elements. This implies that  $p \notin E(X) \cup O(X)$ . Therefore,  $p \in R(X)$ .

(c) Given  $p \in J^{\circ} \cap K$ , by (a), we know that  $p \notin R(X)$ . Using (b), we have that  $p \in K^{\circ}$ . Hence,  $J^{\circ} \cap K^{\circ} = J^{\circ} \cap K$ . Consequently,  $J^{\circ} \cap K$  is a nonempty open and closed subset of the connected set  $J^{\circ}$ . Thus,  $J^{\circ} = J^{\circ} \cap K$  and  $J \subset K$ . By the maximality of J, we have that J = K.  $\Box$ 

In [17], Verónica Martínez-de-la-Vega computed the dimension of the *n*-fold hyperspace for a finite graph G with the following formula

$$\dim_A[C_n(G)] = 2n + \sum_{p \in A \cap R(G)} (\operatorname{ord}(p, G) - 2), \text{ where } A \in C_n(G).$$
(3.1)

**Lemma 3.2.** [6, Theorem 4] Let X be a locally connected continuum,  $n \in \mathbb{N}$  and  $A \in C_n(X)$ . Then the following conditions are equivalent.

- (a)  $\dim_A[C_n(X)]$  is finite,
- (b) there exists a finite graph G contained in X such that  $A \subset int_X(G)$ ,
- (c)  $A \cap \mathcal{P}(X) = \emptyset$ .

**Lemma 3.3.** [6, Lemma 28] Let X be a locally connected continuum and  $n \ge 3$ . Then  $\mathcal{D}_n(X) = \{A \in C_n(X) : A \text{ is connected and there exists } J \in \mathfrak{A}_S(X) \text{ such that } A \subset \operatorname{int}_X(J) \}.$ 

The proof of following result is a modification of [7, Lemma 2.3].

**Lemma 3.4.** Let X be a locally connected continuum and  $n \in \mathbb{N}$ . If  $A \in C_n(X) - F_1(X)$  and  $A \cap R(X) \neq \emptyset$ , then  $\dim_{q_X^n(A)}[PHS_n(X)] \ge 2n + 1$ .

**Proof.** From (2.1), we have that  $\dim_{q_X^n(A)}[PHS_n(X)] = \dim_A[C_n(X)]$ . If  $\dim_A[C_n(X)]$  is not finite, the result follows. Suppose that  $\dim_A[C_n(X)]$  is finite. By Lemma 3.2, there exists a finite graph G such that  $A \subset \operatorname{int}_X(G)$ . Notice that  $\dim_A[C_n(X)] = \dim_A[C_n(G)]$ . Since  $A \cap R(X) \neq \emptyset$  and  $A \subset \operatorname{int}_X(G)$ , we have that  $A \cap R(G) \neq \emptyset$ . Thus, by (3.1),  $\dim_A[C_n(G)] \ge 2n + 1$ . Therefore, the result follows.  $\Box$ 

The proof of following result is a modification of [7, Lemma 2.4].

**Lemma 3.5.** Let X be a locally connected continuum such that  $R(X) \neq \emptyset$  and  $n \in \mathbb{N}$ . Then for each neighborhood  $\mathcal{U}$  of  $F_X^n$  in  $PHS_n(X)$ ,  $\dim[\mathcal{U}] \geq 2n + 1$ .

**Proof.** Let  $\mathcal{U}$  be an open neighborhood of  $F_X^n$  in  $PHS_n(X)$  and  $\mathcal{V} = (q_X^n)^{-1}(\mathcal{U})$ . Then  $\mathcal{V}$  is an open subset of  $C_n(X)$ . Fix a point  $p \in R(X)$ . Since  $\{p\} \in \mathcal{V}$ , there exists r > 0 such that  $B_{C_n(X)}(\{p\}, r) \subset \mathcal{V}$ . Let C be the component of B(p, r) containing p. Since C is an open connected subset of X, by [21, 8.26], C is arcwise connected. Hence, there exists an arc A such that  $p \in A \subset B(p, r)$ . Notice that  $A \in \mathcal{V}$ . Thus,  $q_X^n(A) \in \mathcal{U}$ . Therefore, by Lemma 3.4,  $\dim_{q_X^n(A)}[\mathcal{U}] \ge 2n+1$ .  $\Box$ 

The proof of following result is a modification of [7, Lemma 2.9 (b)].

**Lemma 3.6.** Let X be a locally connected continuum such that  $R(X) \neq \emptyset$ ,  $n \in \mathbb{N}$  with  $n \geq 3$ . Then  $\mathcal{PHD}_n(X) = \{q_X^n(A) \in PHS_n(X) : A \in C(X) - F_1(X) \text{ and } A \cap [R(X) \cup \mathcal{P}(X)] = \emptyset\}.$ 

**Proof.** Given  $B \in \mathcal{PHD}_n(X)$ , there exists  $A \in C_n(X)$  such that  $B = q_X^n(A)$ . Since  $R(X) \neq \emptyset$ , by Lemma 3.5,  $B \neq F_X^n$ , thus,  $A \notin F_1(X)$ . Moreover, by Remark 2.1 (c),  $A \in \mathcal{D}_n(X)$ . By Lemma 3.3,  $A \in C(X) - F_1(X)$  and  $A \subset \operatorname{int}_X(J)$ , for some  $J \in \mathfrak{A}_S(X)$ . This implies that  $A \cap [R(X) \cup \mathcal{P}(X)] = \emptyset$ .

On the other hand, to prove the opposite inclusion, let  $A \in C(X) - F_1(X)$  be such that  $A \cap [R(X) \cup \mathcal{P}(X)] = \emptyset$ . In order to prove that  $q_X^n(A) \in \mathcal{PHD}_n(X)$ , by Remark 2.1 (c), it will be enough to prove that  $A \in \mathcal{D}_n(X)$ . By Lemma 3.2, there exists a finite graph G contained in X such that  $A \subset \operatorname{int}_X(G)$ . Since  $A \cap R(X) = \emptyset$ , we have that  $A \cap R(G) = \emptyset$ . Thus, there exists a free arc L in G such that  $A \subset \operatorname{int}_G(L)$ . Since  $A \subset \operatorname{int}_X(G)$ ,  $A \subset \operatorname{int}_X(L)$  so we may assume that  $L \subset \operatorname{int}_X(G)$ . This implies that L is a free arc in X. By [6, Lemma 10], there exists  $J \in \mathfrak{A}_S(X)$  such that  $L \subset J$ . Therefore, by Lemma 3.3,  $A \in \mathcal{D}_n(X)$ .

The proof of following result is a modification of [7, Lemma 2.10 (a) and (d)].

### **Lemma 3.7.** Let X be a locally connected continuum such that $R(X) \neq \emptyset$ and $n \in \mathbb{N}$ .

- (a) For  $n \geq 3$ , the components of  $\mathcal{PHD}_n(X)$  are the sets  $q_X^n(\langle J^{\circ} \rangle_1) \{F_X^n\}$ , where  $J \in \mathfrak{A}_S(X)$ .
- (b) The components of  $\mathcal{PHE}_n(X)$  are the sets  $q_X^n(\langle J_1^\circ, \ldots, J_m^\circ \rangle_n) \{F_X^n\}$ , where  $J_1, \ldots, J_m \in \mathfrak{A}_S(X)$  and  $m \leq n$ .

**Proof.** (a) By Lemma 3.6,  $\mathcal{PHD}_n(X) = \bigcup \{q_X^n(\langle J^{\circ} \rangle_1) - \{F_X^n\} : J \in \mathfrak{A}_S(X)\}$ . It is easy to see that the sets  $q_X^n(\langle J^{\circ} \rangle_1) - \{F_X^n\}$  are arcwise connected and, therefore, connected. Moreover, the sets  $q_X^n(\langle J^{\circ} \rangle_1) - \{F_X^n\}$  are open in  $\mathcal{PHD}_n(X)$  and pairwise disjoint. We conclude that they are the components of  $\mathcal{PHD}_n(X)$ .

(b) By Lemma 3.5,  $F_X^n \notin \mathcal{PHE}_n(X)$ . Given  $B \in \mathcal{PHE}_n(X)$ , there exists  $A \in C_n(X)$  such that  $B = q_X^n(A)$ . Notice that  $\dim_A[C_n(X)] = \dim_B[\mathcal{PHS}_n(X)] = 2n$ . By [6, Lemma 11], there exist  $J_1, \ldots, J_m \in \mathfrak{A}_S(X)$ , with  $m \leq n$ , such that  $A \in \langle J_1^\circ, \ldots, J_m^\circ \rangle_n$ . This implies that  $\mathcal{PHE}_n(X) \subset \bigcup \{q_X^n(\langle J_1^\circ, \ldots, J_m^\circ \rangle_n) - \{F_X^n\} : J_1, \ldots, J_m \in \mathfrak{A}_S(X)\}$ . To prove the other inclusion, let  $A \in \langle J_1^\circ, \ldots, J_m^\circ \rangle_n - F_1(X)$ . Thus,  $A \cap [R(X) \cup \mathcal{P}(X)] = \emptyset$ . By Lemma 3.2, there exists a finite graph G contained in X such that  $A \subset \operatorname{int}_X(G)$ . Since  $A \cap R(X) = \emptyset$ , we have that  $A \cap R(G) = \emptyset$ . Hence, by (3.1),  $\dim_A[C_n(G)] = 2n$ . Since  $\dim_{q_X^n(A)}[\mathcal{PHS}_n(X)] = \dim_A[C_n(X)] = \dim_A[C_n(G)], q_X^n(A) \in \mathcal{PHE}_n(X)$ . Therefore,  $\mathcal{PHE}_n(X) = \bigcup \{q_X^n(\langle J_1^\circ, \ldots, J_m^\circ \rangle_n) - \{F_X^n\} : J_1, \ldots, J_m \in \mathfrak{A}_S(X)\}$ . The rest of the proof is similar to the proof of (a).  $\Box$ 

Let X be a locally connected continuum such that  $R(X) \neq \emptyset$ . Given  $J \in \mathfrak{A}_S(X)$ , let  $\mathcal{E}(J) = \operatorname{cl}_{C(X)}(\langle J^{\circ} \rangle_1)$ . Notice that

$$\mathcal{E}(J) = \begin{cases} C(J) - \{A \in C(J) : A \text{ is an arc and } \operatorname{int}_J(A) \cap R(X) \neq \emptyset\}, & \text{if } J \text{ is a cycle}, \\ C(J), & \text{if } J \text{ is an arc.} \end{cases}$$

Let  $D_1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$  and  $D_2 = \{(x, y) \in \mathbb{R}^2 : x^2 + (y + \frac{1}{2})^2 \leq \frac{1}{4}\}$ . Let  $L_0 = D_1 - \operatorname{int}_{\mathbb{R}^2}(D_2)$ . Notice that if J is a cycle, then  $\mathcal{E}(J)$  is homeomorphic to the continuum  $L_0$ .

The proof of following result is a modification of [18, Lemma 3.4].

**Lemma 3.8.** Let X be a locally connected continuum such that  $R(X) \neq \emptyset$ ,  $p \in X$  and let  $J \in \mathfrak{A}_S(X)$ .

- (1) If J is an arc, then  $\{q_X^2(\{p\} \cup A) : A \in \mathcal{E}(J)\}$  is a 2-cell in  $PHS_2(X)$ .
- (2) If J is a cycle, then  $\{q_X^2(\{p\} \cup A) : A \in \mathcal{E}(J)\}$  is homeomorphic to the continuum  $L_0$ .

**Proof.** Let g be the embedding of C(X) into  $C_2(X)$  given by  $g(A) = \{p\} \cup A$ . Since the set  $g(\mathcal{E}(J)) \cap F_1(X)$  is either the set  $\emptyset$  or the set  $\{p\}$ , we have that  $g(\mathcal{E}(J))/F_1(X)$  is homeomorphic to  $\mathcal{E}(J)$ . Notice that in (1), the set  $\mathcal{E}(J)$  is a 2-cell, and in (2), it is homeomorphic to continuum  $L_0$ . Now, we finish the proof by mentioning that  $g(\mathcal{E}(J))/F_1(X)$  is clearly homeomorphic to  $\{q_X^2(\{p\} \cup A) : A \in \mathcal{E}(J)\}$ .  $\Box$ 

**Lemma 3.9.** Let X be a locally connected continuum. If Y and Z are either arcs or simple closed curves of X such that  $Y \cap Z = \emptyset$ , then  $\langle Y, Z \rangle_2$  is a 4-cell and  $\{y, z\}$  belongs to its manifold boundary, for each  $y \in Y, z \in Z$ .

**Proof.** Let  $f: \langle Y, Z \rangle_2 \longrightarrow C(Y) \times C(Z)$  be defined as  $f(A) = (A \cap Y, A \cap Z)$ . Notice that f is a bijection. Moreover, given a sequence  $\{A_n\}_{n=1}^{\infty}$  contained in  $\langle Y, Z \rangle_2$  which converges to A, for some  $A \in \langle Y, Z \rangle_2$ , we have that  $\{A_n \cap Y\}_{n=1}^{\infty}$  converges to  $A \cap Y$  and  $\{A_n \cap Z\}_{n=1}^{\infty}$  converges to  $A \cap Z$ . Thus,  $\{(A_n \cap Y, A_n \cap Z)\}_{n=1}^{\infty}$  converges to  $(A \cap Y, A \cap Z)$ . Hence, f is a homeomorphism.

By [13, 5.1.1 and 5.2], we have that C(Y) and C(Z) are 2-cells such that  $F_1(Y)$  is contained in the manifold boundary of C(Y) and  $F_1(Z)$  is contained in the manifold boundary of C(Z). Hence,  $\langle Y, Z \rangle_2$  is a 4-cell. Let  $y \in Y$  and  $z \in Z$ . Since  $\{y\}$  belongs to the manifold boundary of C(Y), there exist an open neighborhood  $\mathcal{U}$  of  $\{y\}$  in C(Y) and a homeomorphism  $\kappa_1 : \mathcal{U} \longrightarrow \kappa_1(\mathcal{U})$  onto an open subset of  $\mathbb{R}^2_+$  such that  $\kappa_1(\{y\}) = (0, r)$ , for some  $r \in \mathbb{R}$ . Similarly, there exist an open neighborhood  $\mathcal{V}$  of  $\{z\}$  in C(Z) and a homeomorphism  $\kappa_2 : \mathcal{V} \longrightarrow \kappa_2(\mathcal{V})$  onto an open subset of  $\mathbb{R}^2_+$  such that  $\kappa_2(\{z\}) = (0, s)$ , for some  $s \in \mathbb{R}$ . Notice that  $\mathcal{U} \times \mathcal{V}$  is an open neighborhood of  $(\{y\}, \{z\})$  in  $C(Y) \times C(Z)$ . Let  $\kappa_+ : \mathcal{U} \times \mathcal{V} \longrightarrow \kappa_+(\mathcal{U} \times \mathcal{V})$  be defined as  $\kappa_+(A, B) = (\kappa_1(A), \kappa_2(B))$ . Thus,  $\kappa_+$  is a homeomorphism, moreover,  $\kappa_+(\mathcal{U} \times \mathcal{V}) = \kappa_1(\mathcal{U}) \times \kappa_2(\mathcal{V})$  is an open subset of  $\mathbb{R}^2_+ \times \mathbb{R}^2_+$ .

Now, let  $g: \mathbb{R}^2_+ \times \mathbb{R}^2_+ \longrightarrow \mathbb{R}^4_+$  be defined as  $g((a, b), (c, d)) = (2ac, b, a^2 - c^2, d)$  and let  $h: \mathbb{R}^4_+ \longrightarrow \mathbb{R}^2_+ \times \mathbb{R}^2_+$  be defined as

$$h(a, b, c, d) = \left( \left( \sqrt{\frac{1}{2}(\sqrt{a^2 + c^2} + c)}, b \right), \left( \sqrt{\frac{1}{2}(\sqrt{a^2 + c^2} - c)}, d \right) \right).$$

Notice that g and h are maps. Moreover,  $h \circ g = \operatorname{id}_{\mathbb{R}^2_+ \times \mathbb{R}^2_+}$  and  $g \circ h = \operatorname{id}_{\mathbb{R}^4_+}$ . Hence, g is a homeomorphism. By definition of f,  $f^{-1}(\mathcal{U} \times \mathcal{V})$  is an open neighborhood of  $\{y, z\}$  in  $\langle Y, Z \rangle_2$ . Let  $\kappa : f^{-1}(\mathcal{U} \times \mathcal{V}) \longrightarrow \kappa(f^{-1}(\mathcal{U} \times \mathcal{V}))$  be defined as  $\kappa(A) = g \circ \kappa_+ \circ f(A)$ . Thus,  $\kappa$  is a homeomorphism,  $\kappa(f^{-1}(\mathcal{U} \times \mathcal{V})) = g(\kappa_1(\mathcal{U}) \times \kappa_2(\mathcal{V}))$  is an open subset of  $\mathbb{R}^4_+$  and  $\kappa(\{y, z\}) = (0, r, 0, s)$ . Therefore,  $\{y, z\}$  belongs to the manifold boundary of  $\langle Y, Z \rangle_2$ .  $\Box$ 

Given  $J, K \in \mathfrak{A}_S(X)$ , let

$$\mathcal{D}(J,K) = \mathrm{cl}_{C_2(X)}(\partial \mathcal{L}_2(X) \cap \langle J^{\circ}, K^{\circ} \rangle_2) \cap \mathrm{cl}_{C_2(X)}(\partial \mathcal{L}_2(X) - \langle J^{\circ}, K^{\circ} \rangle_2) \text{ and}$$
$$\mathcal{PHD}(J,K) = \mathrm{cl}_{PHS_2(X)}(\partial \mathcal{PHL}_2(X) \cap q_X^2(\langle J^{\circ}, K^{\circ} \rangle_2)) \cap \mathrm{cl}_{PHS_2(X)}(\partial \mathcal{PHL}_2(X) - q_X^2(\langle J^{\circ}, K^{\circ} \rangle_2)).$$

**Lemma 3.10.** Let X be a locally connected continuum such that  $R(X) \neq \emptyset$  and let  $J, K \in \mathfrak{A}_S(X)$ . Then  $F_X^2 \in \mathcal{PHD}(J, K)$  if and only if  $J \cap K \neq \emptyset$ .

**Proof.** Suppose that  $F_X^2 \in \mathcal{PHD}(J, K)$ . Then, there exists a sequence  $\{A_n\}_{n=1}^{\infty}$  contained in  $\langle J^{\circ}, K^{\circ} \rangle_2$  such that  $\lim q_X^2(A_n) = F_X^2$ . Since  $q_X^2$  is a map,  $\lim A_n = \{a\}$ , for some  $a \in X$ . Thus,  $\{a\} \in \langle J, K \rangle_2$ . Therefore,  $J \cap K \neq \emptyset$ .

Now suppose that  $J \cap K \neq \emptyset$ . We consider the following cases.

Case 1.  $J \neq K$ .

Let  $p \in J \cap K \cap R(X)$ . Then, there are two sequences  $\{j_n\}_{n=1}^{\infty}$  and  $\{k_n\}_{n=1}^{\infty}$  contained in  $J^{\circ}$  and  $K^{\circ}$ , respectively, such that  $\lim j_n = p$  and  $\lim k_n = p$ . Thus,  $\lim q_X^2(\{j_n, k_n\}) = F_X^2$ . Let  $J_n$  and  $K_n$  be subarcs of  $J^{\circ}$  and  $K^{\circ}$ , respectively, such that  $j_n \in J_n^{\circ}$  and  $k_n \in K_n^{\circ}$ , for each  $n \in \mathbb{N}$ . Fix  $n \in \mathbb{N}$ . Notice that  $\langle J_n, K_n \rangle_2$  is a neighborhood of  $\{j_n, k_n\}$  in  $C_2(X)$ . Since  $J_n$  and  $K_n$  are disjoint arcs, by Lemma 3.9, we have that  $\langle J_n, K_n \rangle_2$  is a 4-cell such that  $\{j_n, k_n\}$  belongs to its manifold boundary. This implies that  $\{j_n, k_n\} \in \partial \mathcal{L}_2(X)$ . By Remark 2.1 (b),  $q_X^2(\{j_n, k_n\}) \in \partial \mathcal{PHL}_2(X)$ . Therefore,  $F_X^2 \in cl_{PHS_2(X)}(\partial \mathcal{PHL}_2(X) \cap q_X^2(\langle J^{\circ}, K^{\circ} \rangle_2))$ .

Now, let  $\{p_n\}_{n=1}^{\infty}$  and  $\{q_n\}_{n=1}^{\infty}$  be two sequences contained in  $K^{\circ}$  such that  $\lim p_n = p$ ,  $\lim q_n = p$  and  $p_n \neq q_n$ , for each  $n \in \mathbb{N}$ . Let  $P_n$  and  $Q_n$  be disjoint subarcs of K such that  $p_n \in P_n^{\circ}$  and  $q_n \in Q_n^{\circ}$ , for each  $n \in \mathbb{N}$ . By Lemma 3.9, we have that  $\langle P_n, Q_n \rangle_2$  is a 4-cell and  $\{p_n, q_n\}$  belongs to its manifold boundary. By Remark 2.1 (b),  $\{q_X^2(\{p_n, q_n\})\}_{n=1}^{\infty}$  is a sequence contained in  $\partial \mathcal{PHL}_2(X) - q_X^2(\langle J^{\circ}, K^{\circ} \rangle_2)$ . Therefore,  $F_X^2 \in \mathcal{PHD}(J, K)$ .

**Case 2.** J = K.

Let  $p \in J \cap R(X)$ . Then, there exist two sequences  $\{j_n\}_{n=1}^{\infty}$  and  $\{k_n\}_{n=1}^{\infty}$  contained in  $J^{\circ}$  such that  $\lim j_n = p$ ,  $\lim k_n = p$ , and  $j_n \neq k_n$ , for each  $n \in \mathbb{N}$ . Let  $J_n$  and  $K_n$  be disjoint subarcs of  $J^{\circ}$  such that  $j_n \in J_n^{\circ}$  and  $k_n \in K_n^{\circ}$ , for each  $n \in \mathbb{N}$ . By Lemma 3.9, we have that  $\langle J_n, K_n \rangle_2$  is a 4-cell such that  $\{j_n, k_n\}$  belongs to its manifold boundary. This implies that  $\{j_n, k_n\} \in \partial \mathcal{L}_2(X)$ . By Remark 2.1 (b),  $q_X^2(\{j_n, k_n\}) \in \partial \mathcal{PHL}_2(X)$ . Therefore,  $F_X^2 \in cl_{PHS_2(X)}(\partial \mathcal{PHL}_2(X) \cap q_X^2(\langle J^{\circ} \rangle_2))$ .

Since  $p \in R(X)$ , there exists  $L \in \mathfrak{A}_S(X) - \{J\}$  such that  $p \in L$ . Thus,  $p \in J \cap L \cap R(X)$ . In a similar way as Case 1, we can prove that  $F_X^2 \in cl_{PHS_2(X)}(\partial \mathcal{PHL}_2(X) - q_X^2(\langle J^{\circ} \rangle_2))$ . Therefore,  $F_X^2 \in \mathcal{PHD}(J,K)$ .  $\Box$ 

The proof of following result is a modification of [7, Lemma 2.15].

**Lemma 3.11.** Let X be a locally connected continuum with  $R(X) \neq \emptyset$ . If  $J, K \in \mathfrak{A}_S(X)$ , then  $\mathcal{PHD}(J, K) = \{q_X^2(\{p\} \cup G) : p \in \mathrm{bd}_X(J) \text{ and } G \in \mathcal{E}(K) \text{ or } p \in \mathrm{bd}_X(K) \text{ and } G \in \mathcal{E}(J)\}.$ 

**Proof.** Let  $B \in \mathcal{PHD}(J, K)$ . By Lemma 3.10, we may assume that  $B \neq F_X^2$ . Let  $A \in C_2(X) - F_1(X)$ be such that  $q_X^2(A) = B$ . Since  $B \in cl_{PHS_2(X)}(\partial \mathcal{PHL}_2(X) \cap q_X^2(\langle J^\circ, K^\circ \rangle_2))$ , there exists a sequence  $\{A_n\}_{n=1}^{\infty}$  contained in  $\langle J^\circ, K^\circ \rangle_2 - F_1(X)$  such that  $\lim q_X^2(A_n) = B$  and  $q_X^2(A_n) \in \partial \mathcal{PHL}_2(X)$ , for each  $n \in \mathbb{N}$ . By the continuity of  $q_X^2$ ,  $\lim A_n = A$ . By Remark 2.1 (b),  $A_n \in \partial \mathcal{L}_2(X) - q_X^2(\langle J^\circ, K^\circ \rangle_2)$ , there exists a sequence  $\{B_n\}_{n=1}^{\infty}$  contained in  $\partial \mathcal{PHL}_2(X) - q_X^2(\langle J^\circ, K^\circ \rangle_2)$  such that  $\lim B_n = B$  and  $B_n \neq F_X^2$ , for each  $n \in \mathbb{N}$ . Hence,  $n \in \mathbb{N}$ . Given  $n \in \mathbb{N}$ , let  $D_n$  be the unique element of  $C_2(X) - F_1(X)$  such that  $q_X^2(D_n) = B_n$ . Then  $\lim D_n =$ A. By Remark 2.1 (b),  $D_n \in \partial \mathcal{L}_2(X) - \langle J^\circ, K^\circ \rangle_2$ , for each  $n \in \mathbb{N}$ . Hence,  $A \in cl_{C_2(X)}(\partial \mathcal{L}_2(X) - \langle J^\circ, K^\circ \rangle_2)$ . We have shown that  $A \in \mathcal{D}(J, K)$ . By [6, Lemma 33],  $A = \{p\} \cup G$ , where  $p \in bd_X(J)$  and  $G \in \mathcal{E}(K)$  or  $p \in bd_X(K)$  and  $G \in \mathcal{E}(J)$ . This completes the proof of the first inclusion.

To prove the opposite inclusion, let  $B = q_X^2(\{p\} \cup G)$ , where  $p \in \operatorname{bd}_X(J)$  and  $G \in \mathcal{E}(K)$  or  $p \in \operatorname{bd}_X(K)$  and  $G \in \mathcal{E}(J)$ . By Lemma 3.10, we may assume that  $G \neq \{p\}$ . Let  $A = \{p\} \cup G$ . By [6, Lemma 33],  $A \in \mathcal{D}(J, K)$ . Then, there exists a sequence  $\{A_n\}_{n=1}^{\infty}$  contained in  $\partial \mathcal{L}_2(X) \cap \langle J^\circ, K^\circ \rangle_2$  such that  $\lim A_n = A$  and  $A_n \notin F_1(X)$ , for each  $n \in \mathbb{N}$ . Hence,  $q_X^2(A_n) \in \partial \mathcal{PHL}_2(X) \cap q_X^2(\langle J^\circ, K^\circ \rangle_2)$ . Thus,  $B \in \operatorname{cl}_{PHS_2(X)}(\partial \mathcal{PHL}_2(X) \cap q_X^2(\langle J^\circ, K^\circ \rangle_2))$ . Similarly,  $B \in \operatorname{cl}_{PHS_2(X)}(\partial \mathcal{PHL}_2(X) - q_X^2(\langle J^\circ, K^\circ \rangle_2))$ . Therefore,  $B \in \mathcal{PHD}(J, K)$ .  $\Box$ 

Now, we are ready to describe models of  $\mathcal{PHD}(J, K)$  for each possible case. Let  $J, K \in \mathfrak{A}_S(X)$ , where X is a locally connected continuum such that  $R(X) \neq \emptyset$ . We consider nine cases.

**Case I.** J = K, J is an arc and  $J \notin \mathfrak{A}_E(X)$ . By Lemma 3.11,  $\mathcal{PHD}(J, J) = \{q_X^2(\{p\} \cup G) : G \in \mathcal{E}(J)\} \cup \{q_X^2(\{q\} \cup G) : G \in \mathcal{E}(J)\}$ , where  $p, q \in J \cap R(X)$ . By Lemma 3.8, we have that  $\mathcal{PHD}(J, J)$  is the union of two 2-cells whose intersection is the set  $\{F_X^2, q_X^2(\{p,q\}), q_X^2(J)\}$ . It is easy to see that this set is contained in the manifold boundary of both 2-cells. **Case II.** J = K, J is an arc and  $J \in \mathfrak{A}_E(X)$ .

Then  $J \cap R(X) = \{p\}$ . Thus,  $\mathcal{PHD}(J, J) = \{q_X^2(\{p\} \cup G) : G \in \mathcal{E}(J)\}$  which is a 2-cell. **Case III.** J = K and  $J \in \mathfrak{A}_R(X)$ .

Then  $J \cap R(X) = \{q\}$ . Thus,  $\mathcal{PHD}(J, J) = \{q_X^2(\{q\} \cup G) : G \in \mathcal{E}(J)\}$  which is homeomorphic to  $L_0$ . For the remaining cases we assume that  $J \neq K$ .

**Case IV.** J and K are arcs and  $J, K \notin \mathfrak{A}_E(X)$ .

9

Let  $p_1, p_2 \in J \cap R(X)$  and  $q_1, q_2 \in K \cap R(X)$ . Then  $\mathcal{PHD}(J, K) = \mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{Q}_1 \cup \mathcal{Q}_2$ , where  $\mathcal{P}_1 = \{q_X^2(\{p_1\} \cup G) : G \in \mathcal{E}(K)\}, \mathcal{P}_2 = \{q_X^2(\{p_2\} \cup G) : G \in \mathcal{E}(K)\}, \mathcal{Q}_1 = \{q_X^2(\{q_1\} \cup G) : G \in \mathcal{E}(J)\}$  and  $\mathcal{Q}_2 = \{q_X^2(\{q_2\} \cup G) : G \in \mathcal{E}(J)\}$ . By Lemma 3.8,  $\mathcal{PHD}(J, K)$  is the union of four 2-cells. Now let us consider three subcases.

 $IV(a). \ J \cap K = \emptyset.$ 

Then  $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset = \mathcal{Q}_1 \cap \mathcal{Q}_2$ . Also,  $\mathcal{P}_i \cap \mathcal{Q}_j = \{q_X^2(\{p_i, q_j\})\}$  with  $i, j \in \{1, 2\}$ . IV(b).  $J \cap K$  is an one point set. Suppose that  $p_1 = q_1$ .

Similar to case IV(a) with the exception that  $\mathcal{P}_1 \cap \mathcal{Q}_1 = \{F_X^2\}$ .

IV(c).  $J \cap K$  is a two point set. Suppose that  $p_1 = q_1$  and  $p_2 = q_2$ . Then  $\mathcal{P}_1 \cap \mathcal{P}_2 = \{F_X^2, q_X^2(\{p_1, p_2\}), q_X^2(K)\}$  and  $\mathcal{Q}_1 \cap \mathcal{Q}_2 = \{F_X^2, q_X^2(\{p_1, p_2\}), q_X^2(J)\}$ . Moreover,  $\mathcal{P}_i \cap \mathcal{Q}_j = \{F_X^2, q_X^2(\{p_1, p_2\})\}$  with  $i, j \in \{1, 2\}$ .

**Case V.** J and K are arcs,  $J \notin \mathfrak{A}_{E}(X)$  and  $K \in \mathfrak{A}_{E}(X)$ . Let  $p_{1}, p_{2} \in J \cap R(X)$  and  $q \in K \cap R(X)$ . Then  $\mathcal{PHD}(J, K) = \mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{Q}$ , where  $\mathcal{P}_{1} = \{q_{X}^{2}(\{p_{1}\} \cup G) : G \in \mathcal{E}(K)\}$ ,  $\mathcal{P}_{2} = \{q_{X}^{2}(\{p_{2}\} \cup G) : G \in \mathcal{E}(K)\}$  and  $\mathcal{Q} = \{q_{X}^{2}(\{q\} \cup G) : G \in \mathcal{E}(J)\}$ . Thus,  $\mathcal{PHD}(J, K)$  is the union of three 2-cells. Now let us consider two subcases.

 $V(a). \ J \cap K = \emptyset.$ 

Then  $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$ . Also,  $\mathcal{P}_i \cap \mathcal{Q} = \{q_X^2(\{p_i, q\})\}$  with  $i \in \{1, 2\}$ .

- V(b).  $J \cap K$  is an one point set. Suppose that  $p_1 = q$ .
- Similar to case V(a) with the slightly difference that  $\mathcal{P}_1 \cap \mathcal{Q} = \{F_X^2\}$ .

Case VI.  $J, K \in \mathfrak{A}_E(X)$ .

Then  $\mathcal{PHD}(J,K) = \{q_X^2(\{p\} \cup G) : G \in \mathcal{E}(K)\} \cup \{q_X^2(\{q\} \cup G) : G \in \mathcal{E}(J)\}$ , where  $p \in J \cap R(X)$  and  $q \in K \cap R(X)$ . Thus,  $\mathcal{PHD}(J,K)$  is the union of two 2-cells whose intersection is the set  $\{q_X^2(\{p,q\})\}$ , or  $\{F_X^2\}$  in the case that p = q.

**Case VII.** J is an arc,  $J \notin \mathfrak{A}_E(X)$  and  $K \in \mathfrak{A}_R(X)$ .

Similar to case V with the slightly difference that  $\mathcal{PHD}(J, K)$  is the union of a 2-cell and two continua  $L_0$ . Case VIII.  $J \in \mathfrak{A}_E(X)$  and  $K \in \mathfrak{A}_R(X)$ .

Similar to case VI with the slightly difference that  $\mathcal{PHD}(J, K)$  is the union of a 2-cell and a continuum  $L_0$ . Case IX.  $J, K \in \mathfrak{A}_R(X)$ .

Similar to case VI with the difference that  $\mathcal{PHD}(J, K)$  is the union of two continua  $L_0$ .

**Remark 3.12.** Let X and Y be locally connected continua such that  $R(X) \neq \emptyset$  and  $R(Y) \neq \emptyset$ , and let  $J, K \in \mathfrak{A}_S(X)$  and  $J_h, K_h \in \mathfrak{A}_S(Y)$ . If  $\mathcal{PHD}(J, K)$  is homeomorphic to  $\mathcal{PHD}(J_h, K_h)$ , then

- (a) J and K are as in Case I if and only if  $J_h$  and  $K_h$  are as in Case I,
- (b) J and K are as in Case II if and only if  $J_h$  and  $K_h$  are as in Case II and
- (c) J and K are as in Case III if and only if  $J_h$  and  $K_h$  are as in Case III.

### 4. Main results

In this section we present the proof of our first main result. The first step is to mention that Ulises Morales-Fuentes has proven that the finite graphs have unique *n*-fold pseudo-hyperspace suspension, see [18, Theorem 5.7]. We prove that if X is a meshed continuum such that  $|\bigcap \mathfrak{A}_S(X)| = 2$ , then X is a finite graph, and therefore it has unique *n*-fold pseudo-hyperspace suspension. Finally, we prove that for a meshed continuum X such that  $R(X) \neq \emptyset$  and  $|\bigcap \mathfrak{A}_S(X)| \neq 2$  the uniqueness of the *n*-fold pseudo-hyperspace suspension holds, see Theorem 4.8.

Using [6, Lemma 2] and [5, Theorem 3.1] we have the following properties for meshed continua, which will be used without quoting them in the proof of Theorem 4.7.

**Lemma 4.1.** If X is a meshed continuum, then

(a) X is locally connected, (b)  $J \cap \mathcal{P}(X) = \emptyset$ , for each  $J \in \mathfrak{A}_S(X)$ , and (c)  $\mathcal{G}(X) = \bigcup \mathfrak{A}_S(X)$ .

The following result is proved in [4, Theorem 5.1] for case n = 1 and [16, Theorem 4.1 (a)] for case  $n \ge 2$ .

**Lemma 4.2.** Let X be a continuum and  $n \in \mathbb{N}$ . Then X is locally connected if and only if  $PHS_n(X)$  is locally connected.

Given a continuum X and  $n \in \mathbb{N}$ , let

 $\mathfrak{F}_n(X) = \{ A \in C_n(X) : \dim_A[C_n(X)] \text{ is finite} \}.$ 

**Theorem 4.3.** Let X be a meshed continuum and  $n \in \mathbb{N}$ . If Y is a continuum such that  $PHS_n(X)$  is homeomorphic to  $PHS_n(Y)$ , then Y is a meshed continuum.

**Proof.** Let  $h: PHS_n(X) \longrightarrow PHS_n(Y)$  be a homeomorphism. Since X is a locally connected continuum, using Lemma 4.2, we have that Y is a locally connected continuum. Let  $A \in C_n(X)$  and  $B \in C_n(Y)$  be such that  $h(q_X^n(A)) = F_Y^n$  and  $h^{-1}(q_Y^n(B)) = F_X^n$ . Let  $\mathcal{K} = C_n(X) - (F_1(X) \cup \{A\})$  and  $\mathcal{L} = C_n(Y) - (F_1(Y) \cup \{B\})$ . Then  $g: \mathcal{K} \longrightarrow \mathcal{L}$  defined by  $g = (q_Y^n|_{\mathcal{L}})^{-1} \circ h \circ q_X^n|_{\mathcal{K}}$  is a homeomorphism. Moreover,  $g(\mathfrak{F}_n(X) \cap \mathcal{K}) = \mathfrak{F}_n(Y) \cap \mathcal{L}$ . Since X is meshed, by [6, Theorem 5], we know that  $\mathfrak{F}_n(X)$  is a dense subset of  $C_n(X)$ . This implies that  $\mathfrak{F}_n(Y) \cap \mathcal{L}$  is dense in  $\mathcal{L}$ . Finally, by the density of  $\mathcal{L}$  in  $C_n(Y)$ , we conclude that  $\mathfrak{F}_n(Y)$  is a dense subset of  $C_n(Y)$ . Therefore, by [6, Theorem 5], Y is a meshed continuum.  $\Box$ 

The following result extends [18, Lemma 5.2].

**Lemma 4.4.** Let  $n \ge 2$ . If X is a locally connected continuum with  $R(X) \neq \emptyset$  and  $|\mathfrak{A}_S(X)| \ge 2$ , then

$$\bigcap \{ \mathrm{cl}_{PHS_n(X)}(q_X^n(\langle J^{\circ} \rangle_n) - \{F_X^n\}) : J \in \mathfrak{A}_S(X) \} = \begin{cases} \{F_X^n\} & \text{if } |\bigcap \mathfrak{A}_S(X)| \neq 2, \\ \{F_X^n, q_X^n(\{p,q\})\} & \text{if } \bigcap \mathfrak{A}_S(X) = \{p,q\}. \end{cases}$$

**Proof.** Let  $J \in \mathfrak{A}_S(X)$  and  $a \in J^\circ$ . Since  $\{a\}$  can be approximated by elements in  $\langle J^\circ \rangle_1 - F_1(X)$ , we have that  $\{a\} \in \operatorname{cl}_{C_n(X)}(\langle J^\circ \rangle_n - F_1(X))$ . Hence,  $F_X^n \in \operatorname{cl}_{PHS_n(X)}(q_X^n(\langle J^\circ \rangle_n) - \{F_X^n\})$ . Moreover, if  $\bigcap \mathfrak{A}_S(X) = \{p,q\}$ , then  $p,q \in J$  and since  $n \geq 2$ ,  $\{p,q\}$  can be approximated by elements in  $\langle J^\circ \rangle_n - F_1(X)$ . Hence,  $q_X^n(\{p,q\}) \in \operatorname{cl}_{PHS_n(X)}(q_X^n(\langle J^\circ \rangle_n) - \{F_X^n\})$ . This implies the second inclusion.

Now, let  $B \in \bigcap \{ \operatorname{cl}_{PHS_n(X)}(q_X^n(\langle J^{\circ} \rangle_n) - \{F_X^n\}) : J \in \mathfrak{A}_S(X) \}.$ 

Suppose that  $B \neq F_X^n$ . Let  $A \in C_n(X) - F_1(X)$  be such that  $q_X^n(A) = B$ . Let  $J \in \mathfrak{A}_S(X)$ . Since  $B \in \operatorname{cl}_{PHS_n(X)}(q_X^n(\langle J^{\circ} \rangle_n) - \{F_X^n\})$ , there exists a sequence  $\{B_m\}_{m=1}^{\infty}$  contained in  $q_X^n(\langle J^{\circ} \rangle_n) - \{F_X^n\}$  which converges to B. Let  $A_m \in \langle J^{\circ} \rangle_n - F_1(X)$  be such that  $q_X^n(A_m) = B_m$ , for each  $m \in \mathbb{N}$ . Notice that  $\{A_m\}_{m=1}^{\infty}$  converges to A. Hence,  $A \subset J$ , for each  $J \in \mathfrak{A}_S(X)$ . Therefore,  $A \subset \bigcap \mathfrak{A}_S(X)$ . Since  $|\mathfrak{A}_S(X)| \geq 2$ , we have that  $|\bigcap \mathfrak{A}_S(X)| \leq 2$ .

Consider the following cases.

Case 1.  $|\bigcap \mathfrak{A}_S(X)| \neq 2.$ 

- Then  $|\bigcap \mathfrak{A}_S(X)| \leq 1$ . Hence,  $|A| \leq 1$ . This is a contradiction since  $A \in C_n(X) F_1(X)$ . Therefore,  $B = F_X^n$ . Case 2.  $\bigcap \mathfrak{A}_S(X) = \{p, q\}$ .
- Since  $A \in C_n(X) F_1(X)$ , we have that  $A = \{p, q\}$ . Hence,  $B \in \{F_X^n, q_X^n(\{p, q\})\}$ , as desired. From these cases, the result follows.  $\Box$

**Theorem 4.5.** Let X be a meshed continuum such that  $R(X) \neq \emptyset$ . If  $|\bigcap \mathfrak{A}_S(X)| = 2$ , then X is a finite graph.

**Proof.** Let  $p, q \in \bigcap \mathfrak{A}_S(X)$ . Thus, p and q are the end points of each maximal free arc. Suppose that there exists  $a \in \mathcal{P}(X)$ . By [5, Theorem 3.3], there is a sequence of pairwise distinct elements contained in  $R(X) \cap \mathcal{G}(X)$  which converges to a. However, this is not possible since  $R(X) \cap \mathcal{G}(X) \subset \{p,q\}$ . Hence,  $\mathcal{P}(X) = \emptyset$ . Therefore, X is a finite graph.  $\Box$ 

Using Theorem 4.5 and [18, Theorem 5.7] we obtain the following result.

**Theorem 4.6.** Let X be a meshed continuum such that  $R(X) \neq \emptyset$ . If  $|\bigcap \mathfrak{A}_S(X)| = 2$ , then X has unique *n*-fold pseudo-hyperspace suspension.

The following result extends [18, Lemma 5.1 and Lemma 5.5].

**Theorem 4.7.** Let X and Y be meshed continua such that  $R(X) \neq \emptyset$ ,  $R(Y) \neq \emptyset$  and  $|\bigcap \mathfrak{A}_S(X)| \neq 2$ ,  $|\bigcap \mathfrak{A}_S(Y)| \neq 2$ ,  $n \geq 2$  and let  $h : PHS_n(X) \longrightarrow PHS_n(Y)$  be a homeomorphism. Suppose that for each  $J \in \mathfrak{A}_S(X)$ , there exists  $J_h \in \mathfrak{A}_S(Y)$  such that  $h(q_X^n(\langle J^{\circ} \rangle_1) - \{F_X^n\}) \subset q_Y^n(\langle J_h^{\circ} \rangle_n)$  and  $\mathfrak{A}_S(Y) = \{J_h : J \in \mathfrak{A}_S(X)\}$ . Then

(a) for each  $J \in \mathfrak{A}_S(X)$ ,  $h(q_X^n(\langle J^\circ \rangle_n) - \{F_X^n\}) = q_Y^n(\langle J_h^\circ \rangle_n) - \{F_Y^n\}$ ,

- (b) for each  $J \in \mathfrak{A}_S(X)$ ,  $h^{-1}(q_Y^n(\langle J_h^{\circ} \rangle_n \cap C(Y)) \{F_Y^n\}) \subset q_X^n(\langle J^{\circ} \rangle_n) \{F_X^n\}$ ,
- (c) the association  $J \to J_h$  is a bijection between  $\mathfrak{A}_S(X)$  and  $\mathfrak{A}_S(Y)$ .
- $(d) h(F_X^n) = F_Y^n.$

If we also suppose that

(1) if  $J \in \mathfrak{A}_R(X)$ , then  $J_h \in \mathfrak{A}_R(Y)$  and (2) if  $J \in \mathfrak{A}_E(X)$ , then  $J_h \in \mathfrak{A}_E(Y)$ ,

then X is homeomorphic to Y.

**Proof.** (a) Let  $J \in \mathfrak{A}_S(X)$  and A be a subarc of  $J^\circ$  such that  $h(q_X^n(A)) \neq F_Y^n$ . By Lemma 3.7 (b), we have that  $h(q_X^n(\langle J^\circ \rangle_n) - \{F_X^n\})$  and  $q_Y^n(\langle J_h^\circ \rangle_n) - \{F_Y^n\}$  are components of  $\mathcal{PHE}_n(X)$ . Notice that  $h(q_X^n(A)) \in h(q_X^n(\langle J^\circ \rangle_n) - \{F_X^n\}) \cap (q_Y^n(\langle J_h^\circ \rangle_n) - \{F_Y^n\})$ . Therefore,  $h(q_X^n(\langle J^\circ \rangle_n) - \{F_X^n\}) = q_Y^n(\langle J_h^\circ \rangle_n) - \{F_Y^n\}$ . Clearly, (b) follows from (a).

To prove (c), it is enough to prove that the correspondence is one to one. Let  $J, L \in \mathfrak{A}_S(X)$  and suppose that  $J_h = L_h$ . Using (a) we conclude that  $q_X^n(\langle J^{\circ} \rangle_n) - \{F_X^n\} = q_X^n(\langle L^{\circ} \rangle_n) - \{F_X^n\}$ . Let A be a subarc of  $J^{\circ}$ . Then  $q_X^n(A) \in q_X^n(\langle L^{\circ} \rangle_n)$  and  $A \subset L^{\circ}$ . Therefore, by Lemma 3.1 (c), J = L.

(d) By Lemma 4.4 and using (a) we have that

$$h(\{F_X^n\}) = \bigcap \{ \operatorname{cl}_{PHS_n(Y)}(h(q_X^n(\langle J^{\circ} \rangle_n) - \{F_X^n\})) : J \in \mathfrak{A}_S(X) \}$$
$$= \bigcap \{ \operatorname{cl}_{PHS_n(Y)}(q_Y^n(\langle J_h^{\circ} \rangle_n) - \{F_Y^n\}) : J \in \mathfrak{A}_S(X) \}$$
$$= \bigcap \{ \operatorname{cl}_{PHS_n(Y)}(q_Y^n(\langle J_h^{\circ} \rangle_n) - \{F_Y^n\}) : J_h \in \mathfrak{A}_S(Y) \} = \{F_Y^n\}$$

Therefore,  $h(F_X^n) = F_Y^n$ .

Let  $g : C_n(X) - F_1(X) \longrightarrow C_n(Y) - F_1(Y)$  be defined as  $g = (q_Y^n)^{-1} \circ h \circ q_X^n$ . Notice that g is a homeomorphism. Given  $J \in \mathfrak{A}_S(X)$ , let  $\mathcal{K}_n(J, X) = \operatorname{cl}_{C_n(X)}(\langle J^{\circ} \rangle_n) - F_1(X)$ .

The proofs of Claim 1 and Claim 2 are similar to the proofs of Claim 1 and Claim 2 from [7, Theorem 3.1], respectively. The proof of Claim 3 is similar to arguments given in [7, Theorem 3.1, p. 88–89].

Claim 1. If  $J \in \mathfrak{A}_S(X)$ , then

(e)  $\mathcal{K}_{n}(J_{h}, Y) = g(\mathcal{K}_{n}(J, X)),$ (f)  $\{\dim_{A}[C_{n}(X)] : A \in \mathcal{K}_{n}(J, X)\} = \{\dim_{B}[C_{n}(Y)] : B \in \mathcal{K}_{n}(J_{h}, Y)\},$ (g)  $|J \cap R(X)| = |J_{h} \cap R(Y)|,$ (h) if  $A \in \mathcal{K}_{n}(J, X),$  then  $|A \cap R(X)| = |g(A) \cap R(Y)|.$ 

**Proof of Claim 1.** Let  $J \in \mathfrak{A}_S(X)$ . Notice that  $\operatorname{cl}_{C_n(X)}(\langle J^{\circ} \rangle_n) - F_1(X) = \operatorname{cl}_{C_n(X) - F_1(X)}(\langle J^{\circ} \rangle_n)$ . From this, clearly (e) is true and (f) follows from (e). Now, since X is a meshed continuum,  $J \cap \mathcal{P}(X) = \emptyset$ . Thus, by Lemma 3.2, there exists a finite graph G contained in X such that  $J \subset \operatorname{int}_X(G)$ . Using (3.1), we have that  $|\{\dim_A[C_n(X)] : A \in \mathcal{K}_n(J,X)\}| \ge 3$  if and only if  $|J \cap R(X)| = 2$  and  $|\{\dim_A[C_n(X)] : A \in \mathcal{K}_n(J,X)\}| = 2$  if and only if  $|J \cap R(X)| = 1$ . Notice that  $J_h$  also satisfies the same conditions as J, such as  $J_h \cap \mathcal{P}(Y) = \emptyset$ . This proves (g). Moreover, given  $A \in \mathcal{K}_n(J,X)$ . If  $|A \cap R(X)| = 2$ , then  $|J \cap R(X)| = 2$ . Thus,  $|J_h \cap R(Y)| = 2$  and  $\dim_A[C_n(X)] = \max\{\dim_E[C_n(X)] : E \in \mathcal{K}_n(J,X)\}$ . Hence,  $\dim_{g(A)}[C_n(Y)] = \max\{\dim_B[C_n(Y)] : B \in \mathcal{K}_n(J_h,Y)\}$ . This implies that  $|g(A) \cap R(Y)| = 2$ . Similarly, if  $|g(A) \cap R(Y)| = 2$ , then  $|A \cap R(X)| = 2$ . If  $|A \cap R(X)| = 0$ , then  $2n = \dim_A[C_n(G)] = \dim_A[C_n(X)] = \dim_{g(A)}[C_n(Y)]$ . Hence,  $|g(A) \cap R(Y)| = 0$ . Similarly, if  $|g(A) \cap R(Y)| = 0$ , then  $|A \cap R(X)| = 0$ . Finally, if  $|A \cap R(X)| = 1$ , then  $|g(A) \cap R(Y)| \notin \{0,2\}$ . Thus,  $|g(A) \cap R(Y)| = 1$ . This completes the proof of Claim 1.  $\Box$ 

**Claim 2.** If  $J \in \mathfrak{A}_S(X)$  and  $v \in J \cap R(X)$ , then  $\mathcal{K}(v, J) = \{A \in \mathcal{K}_n(J, X) : A \cap R(X) = \{v\}\}$  is arcwise connected.

Now, given  $v \in R(X) \cap \mathcal{G}(X)$ , there is  $J \in \mathfrak{A}_S(X)$  such that  $v \in J$ . Let  $A \in \mathcal{K}(v, J)$ . By Claim 1,  $g(A) \in \mathcal{K}_n(J_h, Y)$  and there exists a unique point  $v_h(A) \in R(Y) \cap g(A)$ . Notice that  $v_h(A) \in J_h$  and  $v_h(A) \in R(Y) \cap \mathcal{G}(Y)$ .

**Claim 3.** Let  $v \in R(X) \cap \mathcal{G}(X)$  and  $J, L \in \mathfrak{A}_S(X)$  with  $v \in J \cap L$ . If  $A \in \mathcal{K}(v, J)$  and  $E \in \mathcal{K}(v, L)$ , then  $v_h(A) = v_h(E)$  (in other words,  $v_h(A)$  depends neither on the choice of J nor on the choice of A).

**Proof of Claim 3.** In order to prove this, take  $A_1$  and  $E_1$  arcs in J and L, respectively, such that v is an end point of  $A_1$  and  $E_1$ ,  $A_1 \neq J$  and  $E_1 \neq L$ . Notice that  $A_1 \in \mathcal{K}(v, J)$  and  $E_1 \in \mathcal{K}(v, L)$ . By Claim 2, there exist maps  $\alpha_A : [0,1] \longrightarrow \mathcal{K}(v, J)$  and  $\alpha_E : [0,1] \longrightarrow \mathcal{K}(v, L)$  such that  $\alpha_A(0) = A$ ,  $\alpha_A(1) = A_1$ ,  $\alpha_E(0) = E_1$  and  $\alpha_E(1) = E$ . Moreover, since  $A_1 \cup E_1$  is an arc, we may define a map  $\alpha_0 : [0,1] \longrightarrow C(A_1 \cup E_1)$  with the following properties:  $\alpha_0(0) = A_1$ ,  $\alpha_0(1) = E_1$  and for each  $t \in [0,1]$ ,  $\alpha_0(t) \cap R(X) = \{v\}$  and  $\alpha_0(t) \notin F_1(X)$ . Let  $\alpha : [0,1] \longrightarrow \mathcal{K}(v, J) \cup C(A_1 \cup E_1) \cup \mathcal{K}(v, L)$  be defined as

$$\alpha(t) = \begin{cases} \alpha_A(3t) & \text{if } t \in [0, \frac{1}{3}], \\ \alpha_0(3t-1) & \text{if } t \in [\frac{1}{3}, \frac{2}{3}], \\ \alpha_E(3t-2) & \text{if } t \in [\frac{2}{3}, 1]. \end{cases}$$

Notice that  $\alpha(t) \subset J \cup L$ . Thus,  $g(\alpha(t)) \subset J_h \cup L_h$ , for each  $t \in [0,1]$ . Let  $i_0 = \operatorname{ord}(v, X)$ . Since  $(J \cup L) \cap \mathcal{P}(X) = \emptyset$ , by Lemma 3.2 and (3.1), we have that for each  $t \in [0,1]$ ,

$$2n + (i_0 - 2) = \dim_{\alpha(t)} [C_n(X)] = \dim_{g(\alpha(t))} [C_n(Y)].$$

Since  $v_h(A)$  is the only ramification point of Y in the set  $g(A) = g(\alpha(0))$ , this implies that  $\operatorname{ord}(v_h(A), Y) = i_0$ . Let  $T = \{t \in [0,1] : v_h(A) \in g(\alpha(t))\}$ . Notice that T is a closed subset of [0,1] and  $0 \in T$ . Suppose that  $T \neq [0,1]$  and let R be a component of [0,1] - T. Then  $t_0 = \inf R \in T$  and there exists a sequence  $\{r_m\}_{m=1}^{\infty}$  of elements of R which converges to  $t_0$ . Since  $(J_h \cup L_h) \cap R(Y)$  is finite, we may assume that there exists  $w \in (J_h \cup L_h) \cap R(Y)$  such that  $w \in g(\alpha(r_m))$ . Hence,  $w, v_h(A) \in g(\alpha(t_0))$ . Notice that  $w \neq v_h(A)$ . Hence,  $\dim_{g(\alpha(t_0))}[C_n(Y)] > 2n + (i_0 - 2)$ , a contradiction. Therefore, T = [0, 1]. On the other hand, we know that  $v_h(E)$  is the only ramification point of Y in the set  $g(E) = g(\alpha(1))$ . Consequently,  $v_h(A) = v_h(E)$ . This proves Claim 3.  $\Box$ 

From now on, we simply write  $v_h$  instead of  $v_h(A)$ . Thus, we have a function

$$\varphi: R(X) \cap \mathcal{G}(X) \longrightarrow R(Y) \cap \mathcal{G}(Y)$$
$$v \longmapsto v_h$$

Since Y satisfies similar conditions to those of X, we have that  $\varphi$  is a bijection.

**Claim 4.** There exists a homeomorphism  $\phi : \mathcal{G}(X) \longrightarrow \mathcal{G}(Y)$  such that  $\phi|_{\mathcal{R}(X) \cap \mathcal{G}(X)} = \varphi$ .

**Proof of Claim 4.** Let  $J \in \mathfrak{A}_S(X)$ .

**Case 1.**  $|J \cap R(X)| = 2$ .

Suppose that  $J \cap R(X) = \{p, q\}$ . Thus,  $p_h, q_h \in J_h$ . Since J and  $J_h$  are arcs, we may consider a homeomorphism  $\varphi_J : J \longrightarrow J_h$  such that  $\varphi_J(p) = p_h$  and  $\varphi_J(q) = q_h$ .

**Case 2.**  $|J \cap R(X)| = 1$ , assuming that  $J \cap R(X) = \{a\}$ .

Notice that  $J_h \cap R(Y) = \{a_h\}$ . By (1) and (2), we may take a homeomorphism  $\varphi_J : J \longrightarrow J_h$  such that  $\varphi_J(a) = a_h$ . Hence, we define  $\phi : \mathcal{G}(X) \longrightarrow \mathcal{G}(Y)$  given by  $\phi(x) = \varphi_J(x)$ , where  $x \in J$ . Therefore,  $\phi$  is a homeomorphism.  $\Box$ 

If X is a finite graph, then  $\mathcal{G}(X) = X$ . Thus,  $\phi(X) = \mathcal{G}(Y)$  is a nonempty open and closed subset of Y. Therefore,  $\mathcal{G}(Y) = Y$  and X is homeomorphic to Y. Now, suppose that X and Y are not finite graphs.

**Claim 5.** If  $a \in \mathcal{P}(X)$  and  $\{a_m\}_{m=1}^{\infty}$  is a sequence contained in  $\mathcal{G}(X) \cap R(X)$  which converges to a, then  $\{\phi(a_m)\}_{m=1}^{\infty}$  converges.

**Proof of Claim 5.** Let  $\{\phi(b_l)\}_{l=1}^{\infty}$  be a convergent subsequence which converges to some  $z \in Y$ . By [5, Theorem 3.3],  $z \in \mathcal{P}(Y)$ . We are going to prove that  $\lim \phi(a_m) = z$ . Suppose to the contrary that

there is  $\varepsilon_1 > 0$  such that for each  $N \in \mathbb{N}$ , there exists k > N such that  $\phi(a_k) \notin B(z, \varepsilon_1)$ . (4.1)

Since  $\lim \phi(b_l) = z$ , there exists  $N_1 \in \mathbb{N}$  such that if  $l > N_1$ , then  $\phi(b_l) \in B(z, \frac{\varepsilon_1}{2})$ . By [6, Lemma 3], there exists a basis  $\mathcal{B}$  of open connected subsets of X such that, for each  $U \in \mathcal{B}$ ,  $U - \mathcal{P}(X)$  is connected. Let  $V_1 \in \mathcal{B}$  be such that  $a \in V_1$  and  $\operatorname{diam}(V_1) < 1$ . Thus, there is  $N_2 > N_1$  such that if  $m > N_2$ , then  $a_m \in V_1 - \mathcal{P}(X)$ . Let  $l_1 > N_2$ . Hence,  $b_{l_1} \in \phi^{-1}(B(z, \frac{\varepsilon_1}{2})) \cap (V_1 - \mathcal{P}(X))$ . By (4.1), there exists  $k_1 > N_2$  such that  $\phi(a_{k_1}) \notin B(z, \varepsilon_1)$ . Notice that  $a_{k_1}, b_{l_1} \in V_1 - \mathcal{P}(X)$ . Since  $V_1 - \mathcal{P}(X)$  is an open connected subset of X, by [21, 8.26],  $V_1 - \mathcal{P}(X)$  is arcwise connected. Then, there exists an arc  $\alpha_1$  in  $V_1 - \mathcal{P}(X)$  with end points  $a_{k_1}$  and  $b_{l_1}$ . Hence,  $\gamma_1 = \phi(\alpha_1)$  is an arc with end points  $\phi(a_{k_1})$  and  $\phi(b_{l_1})$ . Notice that  $\operatorname{diam}(\gamma_1) \geq \frac{\varepsilon_1}{2}$ . Now, let  $V_2 \in \mathcal{B}$  be such that  $a \in V_2$ ,  $\operatorname{diam}(V_2) < \frac{1}{2}$  and  $\alpha_1 \cap V_2 = \emptyset$ . Thus, there is  $N_3 > N_2$  such that if  $m > N_3$ , then  $a_m \in V_2 - \mathcal{P}(X)$ . Let  $l_2 > N_3$ . Hence,  $b_{l_2} \in \phi^{-1}(B(z, \frac{\varepsilon_1}{2})) \cap (V_2 - \mathcal{P}(X))$ . By (4.1), there exists  $k_2 > N_3$  such that  $\phi(a_{k_2}) \notin B(z, \varepsilon_1)$ . Notice that  $a_{k_2}, b_{l_2} \in V_2 - \mathcal{P}(X)$ . Then, there exists an arc  $\alpha_2$ 

in  $V_2 - \mathcal{P}(X)$  with end points  $a_{k_2}$  and  $b_{l_2}$ . Therefore,  $\gamma_2 = \phi(\alpha_2)$  is an arc with end points  $\phi(a_{k_2})$  and  $\phi(b_{l_2})$  and diam $(\gamma_2) \geq \frac{\varepsilon_1}{2}$ . Proceeding in a recursive way, we obtain

- a sequence  $\{V_i \mathcal{P}(X)\}_{i=1}^{\infty}$  such that each  $V_i \mathcal{P}(X)$  is an open connected subset of  $X, a \in V_i$  and  $\operatorname{diam}(V_i) < \frac{1}{i}$ ,
- a sequence  $\{\phi(a_{k_i})\}_{i=1}^{\infty}$  such that  $\phi(a_{k_i}) \notin B(z, \varepsilon_1)$  and  $a_{k_i} \in V_i \mathcal{P}(X)$ ,
- a subsequence  $\{\phi(b_{l_i})\}_{i=1}^{\infty}$  of the sequence  $\{\phi(b_l)\}_{l=1}^{\infty}$  such that  $\lim \phi(b_{l_i}) = z$  and  $b_{l_i} \in \phi^{-1}(B(z, \frac{\varepsilon_1}{2})) \cap (V_i \mathcal{P}(X)),$
- a sequence  $\{\alpha_i\}_{i=1}^{\infty}$  of pairwise disjoint arcs such that  $\alpha_i \subset V_i \mathcal{P}(X)$  whose end points are  $a_{k_i}$  and  $b_{l_i}$ , and  $\alpha_i \cap V_{i+1} = \emptyset$ ,
- a sequence  $\{\gamma_i\}_{i=1}^{\infty}$  of pairwise disjoint arcs such that  $\gamma_i \subset \mathcal{G}(Y)$ , where  $\gamma_i = \phi(\alpha_i)$ , diam $(\gamma_i) \geq \frac{\varepsilon_1}{2}$ , and  $\phi(a_{k_i}), \phi(b_{l_i})$  are the end points of  $\gamma_i$ .

We may assume that the sequence  $\{\phi(a_{k_i})\}_{i=1}^{\infty}$  converges to some point  $w \in Y$ . Notice that the sequence  $\{\gamma_i\}_{i=1}^{\infty}$  is contained in C(Y). By [21, 4.17], we may suppose that  $\{\gamma_i\}_{i=1}^{\infty}$  converges to some  $\gamma \in C(Y)$ . Since  $\phi(a_{k_i}) \notin B(z, \frac{\varepsilon_1}{2})$ , for each  $i \in \mathbb{N}$ , we have that  $w \neq z$ . Notice that  $w, z \in \gamma$ . Thus,  $\gamma \in C(Y) - F_1(Y)$ . Since  $g^{-1}$  is a homeomorphism, we have that  $\lim g^{-1}(\gamma_i) = g^{-1}(\gamma)$ , where  $g^{-1}(\gamma) \in C_n(X) - F_1(X)$ . On the other hand, since  $\lim a_{k_i} = a$ ,  $\lim b_{l_i} = a$  and  $\lim \operatorname{diam}(\alpha_i) = 0$ , we have that  $\lim \alpha_i = \{a\}$ .

Fix  $i \in \mathbb{N}$ . Since  $a_{k_i}, b_{l_i} \in \mathcal{G}(X) \cap R(X)$  and  $\alpha_i \cap \mathcal{P}(X) = \emptyset$ , we have that  $\alpha_i = J_1 \cup \cdots \cup J_{s_i}$ , where  $J_1, \ldots, J_{s_i} \in \mathfrak{A}_S(X)$ . Thus,  $\gamma_i = \phi(J_1) \cup \cdots \cup \phi(J_{s_i})$ . By definition of  $\phi$ ,  $\gamma_i = (J_1)_h \cup \cdots \cup (J_{s_i})_h$ . Notice that  $\langle (J_1)_h^{\circ} \cup \cdots \cup (J_{s_i})_h^{\circ} \rangle_1 = \langle (J_1)_h^{\circ} \rangle_1 \cup \cdots \cup \langle (J_{s_i})_h^{\circ} \rangle_1$ . Hence,

$$q_Y^n(\langle (J_1)_h^{\circ} \cup \dots \cup (J_{s_i})_h^{\circ} \rangle_1) - \{F_Y^n\} = q_Y^n(\langle (J_1)_h^{\circ} \rangle_1) \cup \dots \cup q_Y^n(\langle (J_{s_i})_h^{\circ} \rangle_1) - \{F_Y^n\}.$$

By (b), we have that

$$h^{-1}(q_Y^n(\langle (J_1)_h^{\circ} \cup \dots \cup (J_{s_i})_h^{\circ} \rangle_1) - \{F_Y^n\}) \subset q_X^n(\langle J_1^{\circ} \rangle_n) \cup \dots \cup q_X^n(\langle J_{s_i}^{\circ} \rangle_n) - \{F_X^n\}.$$

Consequently,  $g^{-1}(\langle (J_1)_h^{\circ} \cup \cdots \cup (J_{s_i})_h^{\circ} \rangle_1 - F_1(Y)) \subset \langle J_1^{\circ} \cup \cdots \cup J_{s_i}^{\circ} \rangle_n - F_1(X)$ . This implies that  $g^{-1}(\langle \gamma_i \rangle_1 - F_1(Y)) \subset \langle \alpha_i \rangle_n - F_1(X)$  and  $g^{-1}(\gamma_i) \subset \alpha_i$ . Therefore,  $g^{-1}(\gamma) \subset \{a\}$ , a contradiction. This proves Claim 5.  $\Box$ 

**Claim 6.** If  $a \in \mathcal{P}(X)$  and  $\{a_m\}_{m=1}^{\infty}$  is a sequence contained in  $\mathcal{G}(X)$  such that  $\lim a_m = a$ , then  $\{\phi(a_m)\}_{m=1}^{\infty}$  converges.

We may assume that there exists a sequence  $\{J_m\}_{m=1}^{\infty}$  of pairwise distinct elements of  $\mathfrak{A}_S(X)$  such that  $a_m \in J_m$ , for each  $m \in \mathbb{N}$ . By [6, Lemma 8], we obtain that  $\{J_m\}_{m=1}^{\infty}$  converges to  $\{a\}$ . Let  $r_m \in J_m \cap R(X)$ , for each  $m \in \mathbb{N}$ . Thus,  $\{r_m\}_{m=1}^{\infty}$  is a sequence contained in  $\mathcal{G}(X) \cap R(X)$  which converges to a. By Claim 5, there exists  $z \in Y$  such that  $\lim \phi(r_m) = z$ . Notice that  $\phi(r_m) \in (J_m)_h$ , for each  $m \in \mathbb{N}$ . By [6, Lemma 8], we obtain that  $\{(J_m)_h\}_{m=1}^{\infty}$  converges to  $\{z\}$ . Since  $\phi(a_m) \in (J_m)_h$ ,  $\lim \phi(a_m) = z$ , for each  $m \in \mathbb{N}$ . This proves Claim 6.

Moreover, let  $a \in \mathcal{P}(X)$ ,  $\{a_m\}_{m=1}^{\infty}$  and  $\{a'_m\}_{m=1}^{\infty}$  be sequences in  $\mathcal{G}(X)$  which converge to a. By Claim 6,  $\{\phi(a_m)\}_{m=1}^{\infty}$  and  $\{\phi(a'_m)\}_{m=1}^{\infty}$  are convergent sequences. Now, let  $b_{2k-1} = a_k$  and  $b_{2k} = a'_k$ , for  $k \in \mathbb{N}$ . Hence,  $\{b_m\}_{m=1}^{\infty}$  is a sequence in  $\mathcal{G}(X)$  which converges to a. By Claim 6, there exists  $z \in Y$  such that  $\lim \phi(b_m) = z$ . Since  $\{\phi(a_m)\}_{m=1}^{\infty}$  and  $\{\phi(a'_m)\}_{m=1}^{\infty}$  are convergent subsequences of  $\phi(\{b_m\})_{m=1}^{\infty}$ , we have that  $\lim \phi(a_m) = z$  and  $\lim \phi(a'_m) = z$ . From this, we may associate to each  $a \in \mathcal{P}(X)$  a unique element of  $\mathcal{P}(Y)$  which will denote by  $a_{\phi}$ . Consequently, we define a map  $\Phi: X \longrightarrow Y$  given by

$$\Phi(x) = \begin{cases} \phi(x) & \text{if } x \in \mathcal{G}(X), \\ x_{\phi} & \text{if } x \in \mathcal{P}(X). \end{cases}$$

Since Y satisfies similar conditions as X, the following claim is true.

Claim 7. If  $b \in \mathcal{P}(Y)$  and  $\{b_m\}_{m=1}^{\infty}$  is a sequence contained in  $\mathcal{G}(Y)$  which converges to b, then  $\{\phi^{-1}(b_m)\}_{m=1}^{\infty}$  converges to an unique element  $b_{\phi^{-1}} \in \mathcal{P}(X)$ , which does not depend on the sequence  $\{b_m\}_{m=1}^{\infty}$ .

From Claim 7, we have that  $\Phi$  is one to one. Now, let  $b \in \mathcal{P}(Y)$ . By [5, Theorem 3.3], there exists a sequence  $\{b_m\}_{m=1}^{\infty}$  contained in  $\mathcal{G}(Y) \cap R(Y)$  which converges to b. Thus, by Claim 7, the sequence  $\{\phi^{-1}(b_m)\}_{m=1}^{\infty}$  converges to an unique element  $b_{\phi^{-1}} \in \mathcal{P}(X)$ . Notice that  $\Phi(b_{\phi^{-1}}) = b$ . Hence,  $\Phi$  is surjective. Therefore,  $\Phi$  is a homeomorphism and X is homeomorphic to Y.  $\Box$ 

The proof of following result, except Case 2, is a modification of [7, Theorem 3.2].

**Theorem 4.8.** Let X be a meshed continuum such that  $R(X) \neq \emptyset$  and  $n \ge 2$ . If  $|\bigcap \mathfrak{A}_S(X)| \neq 2$ , then X has unique n-fold pseudo-hyperspace suspension.

**Proof.** Let Y be a continuum and let  $h: PHS_n(X) \longrightarrow PHS_n(Y)$  be a homeomorphism. By Theorem 4.3, we know that Y is a meshed continuum. Moreover, if Y is an arc or a simple closed curve, by [18, Theorem 5.7] it follows that X is homeomorphic to Y. This is a contradiction since  $R(X) \neq \emptyset$ . Hence,  $R(Y) \neq \emptyset$ . Moreover, by Theorem 4.6, we have that  $|\bigcap \mathfrak{A}_S(Y)| \neq 2$ . We consider two cases:

Case 1.  $n \geq 3$ .

Since the definition of  $\mathcal{PHL}_n(X)$  is given in terms of topological properties, we have that  $h(\mathcal{PHL}_n(X)) = \mathcal{PHL}_n(Y)$ . This implies that  $h(\mathcal{PHD}_n(X)) = \mathcal{PHD}_n(Y)$ . Given  $J \in \mathfrak{A}_S(X)$ , by Lemma 3.7 (a), we know that  $h(q_X^n(\langle J^{\circ} \rangle_1) - \{F_X^n\})$  is a component of  $\mathcal{PHD}_n(X)$ . Hence, there exists  $J_h \in \mathfrak{A}_S(Y)$  such that  $h(q_X^n(\langle J^{\circ} \rangle_1) - \{F_X^n\}) = q_Y^n(\langle J_h^{\circ} \rangle_1) - \{F_Y^n\} \subset q_Y^n(\langle J_h^{\circ} \rangle_n)$ . Moreover, with similar arguments for Y, we have that  $\mathfrak{A}_S(Y) = \{J_h : J \in \mathfrak{A}_S(X)\}$ . Thus, (a), (b), (c) and (d) from Theorem 4.7 are satisfied.

Now we verify conditions (1) and (2) from Theorem 4.7. Let  $J \in \mathfrak{A}_S(X)$  be such that  $|J \cap R(X)| = 1$ . We will show that if J is an arc, then  $J_h$  is an arc (and, by symmetry, the converse implication also holds). Suppose that J is an arc with end points p and q, where  $q \in R(X)$ . Suppose that  $J_h$  is a cycle. Let A be a subarc of J such that  $p \in A$  and  $q \notin A$ . We know that  $h(q_X^o(\langle J^\circ \rangle_1) - \{F_X^n\}) = q_Y^o(\langle J^\circ \rangle_1) - \{F_Y^n\}$ . Let  $D = q_X^n(A)$  and E = h(D). Thus,  $E \in q_Y^n(\langle J_h^{\circ} \rangle_1) - \{F_Y^n\}$ . Then there exists  $B \in \langle J_h^{\circ} \rangle_1 - F_1(Y)$ such that  $q_Y^n(B) = E$ . Notice that B is a subarc of  $J_h$ . Since X and Y are meshed continua, we have that  $J \cap P(X) = \emptyset = J_h \cap P(Y)$ . By Lemma 3.2, there exist finite graphs M in X and  $M_h$  in Y such that  $J \subset M^{\circ}$ and  $J_h \subset M_h^{\circ}$ . By (3.1),  $2n = \dim_A[C_n(M)] = \dim_A[C_n(X)] = \dim_D[PHS_n(X)] = \dim_E[PHS_n(Y)] =$  $\dim_B[C_n(Y)]$ . Thus,  $B \cap R(Y) = \emptyset$ . Since  $C(J_h)$  is a 2-cell such that its manifold boundary is  $F_1(J_h)$ , we have that B has a neighborhood  $\mathcal{M}$  in  $\langle J_h^{\circ} \rangle_1 - F_1(Y)$  which is a 2-cell and B belongs to its manifold interior. Hence,  $q_Y^n(\mathcal{M})$  is a neighborhood of E in  $q_Y^n(\langle J_h^{\circ} \rangle_1) - \{F_Y^n\}$  such that  $q_Y^n(\mathcal{M})$  is a 2-cell and E belongs to its manifold interior. Since  $h(F_X^n) = F_Y^n$ , it implies that  $(q_X^n)^{-1} \circ h \circ q_Y^n(\mathcal{M})$  is a neighborhood of A in  $\langle J_b^o \rangle_1 - F_1(Y)$  which is a 2-cell and A belongs to its manifold interior. This is a contradiction since A belongs to the manifold boundary of C(J). Therefore,  $J_h$  is an arc. Moreover, by Claim 1 (g) of Theorem 4.7, we have that  $|J_h \cap R(Y)| = 1$  and  $J_h \in \mathfrak{A}_E(Y)$ . Consequently,  $J \in \mathfrak{A}_E(X)$  if and only if  $J_h \in \mathfrak{A}_E(Y)$ . Thus, conditions (1) and (2) from Theorem 4.7 are satisfied. Therefore, X is homeomorphic to Y.

**Case 2.** n = 2.

Notice that  $h(\mathcal{PHE}_2(X)) = \mathcal{PHE}_2(Y)$ . Given  $J \in \mathfrak{A}_S(X)$ , by Lemma 3.7 (b), there exist  $J_h, K_h \in \mathfrak{A}_S(Y)$ such that  $h(q_X^2(\langle J^{\circ} \rangle_2) - \{F_X^2\}) = q_Y^2(\langle J_h^{\circ}, K_h^{\circ} \rangle_2) - \{F_Y^2\}$ . By Lemma 3.5, we have that  $F_X^2 \notin \partial \mathcal{PHL}_2(X)$ ,  $F_Y^2 \notin \partial \mathcal{PHL}_2(Y)$  and  $h(\partial \mathcal{PHL}_2(X)) = \partial \mathcal{PHL}_2(Y)$ . Thus,

$$\begin{split} h(\partial \mathcal{PHL}_2(X) \cap q_X^2(\langle J^{\circ} \rangle_2)) &= \partial \mathcal{PHL}_2(Y) \cap q_Y^2(\langle J_h^{\circ}, K_h^{\circ} \rangle_2), \text{ and} \\ h(\partial \mathcal{PHL}_2(X) - q_X^2(\langle J^{\circ} \rangle_2)) &= \partial \mathcal{PHL}_2(Y) - q_Y^2(\langle J_h^{\circ}, K_h^{\circ} \rangle_2). \end{split}$$

Hence,  $h(\mathcal{PHD}(J,J)) = \mathcal{PHD}(J_h,K_h)$ . By Remark 3.12, we have that  $J_h = K_h$ . Consequently,  $h(q_X^2(\langle J^{\circ} \rangle_2) - \{F_X^2\}) = q_Y^2(\langle J_h^{\circ} \rangle_2) - \{F_Y^2\}$  and  $h(q_X^2(\langle J^{\circ} \rangle_1) - \{F_X^2\}) \subset q_Y^2(\langle J_h^{\circ} \rangle_2)$ . Moreover, under similar arguments for Y, we have that  $\mathfrak{A}_S(Y) = \{J_h : J \in \mathfrak{A}_S(X)\}$ . Finally, by Remark 3.12 (b) and (c), conditions (1) and (2) from Theorem 4.7 are satisfied. Therefore, X is homeomorphic to Y.  $\Box$ 

The notions of framed and almost framed continua appear in [11, p. 48]. Given a continuum X, notice that  $\bigcup \{J : J \text{ is a free arc in } X\}$  is dense in X if and only if  $\bigcup \{J^\circ : J \text{ is a free arc in } X\}$  is dense in X. By [6, Lemma 1], we have that  $\bigcup \{J : J \text{ is a free arc in } X\}$  is dense in X if and only if  $\mathcal{G}(X)$  is dense in X. From this the following remark holds.

**Remark 4.9.** Let X be a locally connected continuum. Then X is almost framed if and only if X is almost meshed. Moreover, X is framed if and only if X is meshed distinct to a simple closed curve.

**Theorem 4.10.** If X is a meshed continuum and  $n \in \mathbb{N}$ , then X has unique n-fold pseudo-hyperspace suspension.

**Proof.** Suppose that X is a meshed continuum and let  $n \in \mathbb{N}$ . By [18, Theorem 5.7], we may assume that X is not a finite graph. So that we consider the following two cases:

**Case 1.**  $R(X) \neq \emptyset$  and n = 1.

Since  $PHS_1(X) = HS_1(X)$ , by [8, Theorem 3.4] the result follows.

**Case 2.**  $R(X) \neq \emptyset$  and  $n \ge 2$ .

As a consequence of Theorem 4.6 and Theorem 4.8, we have that X has unique *n*-fold pseudo-hyperspace suspension.  $\Box$ 

## 5. Locally connected continua without unique hyperspace

Given a continuum X, a nonempty closed subset K of X, and  $n \in \mathbb{N}$ , let

$$F_n(X,K) = \{A \in F_n(X) : A \cap K \neq \emptyset\} \text{ and}$$
$$C_n(X,K) = \{A \in C_n(X) : A \cap K \neq \emptyset\}.$$

For two disjoint continua X and Y, and given points  $p \in X$  and  $q \in Y$ , let  $X \cup_p Y$  be the continuum obtained by attaching X to Y, identifying p to q.

Given a continuum X with metric d, a closed subset A of X is said to be a Z-set in X provided that, for each  $\varepsilon > 0$ , there is a map  $f_{\varepsilon} : X \longrightarrow X - A$  such that  $d(f_{\varepsilon}(x), x) < \varepsilon$  for all  $x \in X$ . A map between compacta  $f : X \longrightarrow Y$  is called a Z-map provided that f(X) is a Z-set in Y. Let  $\varepsilon > 0$ and  $A \in 2^X$ , the generalized closed d-ball in X of radius  $\varepsilon$  about A, denoted by  $C_d(\varepsilon, A)$ , is defined as follows:  $C_d(\varepsilon, A) = \{x \in X : d(x, A) \le \varepsilon\}$ . Whenever  $A = \{p\}$ , we write  $C(\varepsilon, p)$  instead of  $C(\varepsilon, \{p\})$ . A metric d for X is said to be convex provided that, for any  $p, q \in X$ , there exists  $m \in X$  such that  $d(p, m) = \frac{1}{2}d(p, q) = d(m, q)$ . By [2, 22], if X is a locally connected continuum, then X admits a metric convex.

Given a locally connected continuum X with convex metric d and  $\varepsilon > 0$ , define  $\Phi_{\varepsilon} : 2^X \longrightarrow 2^X$  by  $\Phi_{\varepsilon}(A) = C_d(A, \varepsilon)$ . By [13, Proposition 10.5],  $\Phi_{\varepsilon}$  is a map.

**Lemma 5.1.** Let  $n \in \mathbb{N}$  and K, L be closed subsets of a locally connected continuum X. Then  $F_m(X, L)$  is a Z-set in  $C_n(X, K)$ , for each  $m \in \{1, \ldots, n\}$ .

**Proof.** Let  $\varepsilon > 0$  and  $m \in \{1, \ldots, n\}$ . We assume that the metric for X is convex. Given  $A \in C_n(X, K)$ , by [13, Proposition 10.6], we have that  $C_d(\frac{\varepsilon}{2}, A) \in C_n(X, K)$ . Moreover,  $C_d(\varepsilon, A) \notin F_m(X)$ . Let  $f_{\varepsilon} = \Phi_{\frac{\varepsilon}{2}|C_n(X,K)}$ . Hence,  $f_{\varepsilon}$  is a map from  $C_n(X, K)$  to  $C_n(X, K) - F_m(X, L)$ . Notice that  $C_d(\frac{\varepsilon}{2}, A) \subset N(\varepsilon, A)$ and, clearly,  $A \subset N(\varepsilon, C_d(\frac{\varepsilon}{2}, A))$ . Thus,  $H(C_d(\frac{\varepsilon}{2}, A), A) < \varepsilon$ , which is equivalent to  $H(f_{\varepsilon}(A), A) < \varepsilon$ . Therefore,  $F_m(X, L)$  is a Z-set in  $C_n(X, K)$ .  $\Box$ 

**Theorem 5.2.** [1, Corollary 10.3] (Anderson's homogeneity theorem). If  $h : A \longrightarrow B$  is a homeomorphism between Z-sets in a Hilbert cube Q, then h extends to a homeomorphism of Q onto Q.

**Theorem 5.3.** Let X be an almost meshed locally connected continuum and  $n \in \mathbb{N}$ . Suppose that there exist a contractible closed subset R of  $\mathcal{P}(X)$  and pairwise disjoint nonempty open subsets  $U_1, \ldots, U_{n+1}$  of X such that

(a)  $X - R = U_1 \cup \cdots \cup U_{n+1}$  and (b)  $R \subset \operatorname{cl}_X(U_i)$ , for each  $i \in \{1, \ldots, n+1\}$ .

Then X does not have unique hyperspace  $PHS_m(X)$ , for each  $m \leq n$ .

**Proof.** Let  $m \leq n$  and fix  $p \in R$ . By [6, Theorem 18], there exists a dendrite D without free arcs and disjoint to X such that  $Y = X \cup_p D$  is a locally connected continuum not homeomorphic to X.

By the proof of [6, Theorem 22], we have that  $C_m(Y)$  is homeomorphic to  $C_m(X)$ . In fact, the homeomorphism  $h: C_m(X) \longrightarrow C_m(Y)$  constructed in such proof satisfies h(A) = A, for each  $A \in C_m(X) - C_m(X, R)$ . In particular,  $h(F_1(\mathcal{G}(X))) = F_1(\mathcal{G}(X))$  and since X is almost meshed, we obtain that

$$h(F_1(X)) = h(\operatorname{cl}_{C_m(X)} F_1(\mathcal{G}(X))) = \operatorname{cl}_{C_m(Y)} F_1(\mathcal{G}(X)) = F_1(X).$$

Let  $q_{X,Y}^m : C_m(Y) \longrightarrow C_m(Y)/F_1(X)$  be the quotient function and  $q_{X,Y}^m(F_1(X)) = \{F_{X,Y}^m\}$ . Since  $q_X^m|_{C_m(X)-F_1(X)}$ ,  $h|_{C_m(X)-F_1(X)}$  and  $q_{X,Y}^m|_{C_m(Y)-F_1(X)}$  are homeomorphisms,  $PHS_m(X) - \{F_X^m\}$  is homeomorphic to  $C_m(Y)/F_1(X) - \{F_{X,Y}^m\}$ . Thus,  $PHS_m(X)$  is homeomorphic to  $C_m(Y)/F_1(X)$ .

In order to conclude, we only need to show  $C_m(Y)/F_1(X)$  is homeomorphic to  $PHS_m(Y)$ . First, we are going to prove that  $q_Y^m(C_m(Y, R \cup D))$  and  $q_{X,Y}^m(C_m(Y, R \cup D))$  are Hilbert cubes. By [6, Theorem 16], we know that  $C_m(Y, R \cup D)$  is a Hilbert cube. Notice that  $q_Y^m(C_m(Y, R \cup D))$  is homeomorphic to  $C_m(Y, R \cup D)/F_1(Y, R \cup D)$  and  $q_{X,Y}^m(C_m(Y, R \cup D))$  is homeomorphic to  $C_m(Y, R \cup D)/F_1(Y, R)$ . By [3, Theorem 1.2 (21)], we know that D is contractible. Thus,  $R \cup_p D$  is contractible. Hence,  $F_1(Y, R \cup D)$ and  $F_1(Y, R)$  are contractible. Since Y is locally connected, by Lemma 5.1, we have that  $F_1(Y, R \cup D)$  and  $F_1(Y, R)$  are Z-sets of  $C_m(Y, R \cup D)$ . By [10, Corollary 2.7], we have that  $C_m(Y, R \cup D)/F_1(Y, R \cup D)$  and  $C_m(Y, R \cup D)/F_1(Y, R)$  are Hilbert cubes. Therefore,  $q_Y^m(C_m(Y, R \cup D))$  and  $q_{X,Y}^m(C_m(Y, R \cup D))$  are Hilbert cubes.

**Claim.** The space  $\operatorname{bd}_{PHS_m(Y)}(q_Y^m(C_m(Y, R \cup D)))$  is a Z-set of  $q_Y^m(C_m(Y, R \cup D))$ .

**Proof of Claim.** We denote the metric of  $PHS_m(Y)$  by  $\overline{H}$ . Let  $\varepsilon > 0$ . Since  $C_m(Y)$  is compact, we have that  $q_Y^m$  is uniformly continuous. Thus, there exists  $\delta > 0$  such that if  $A, B \in C_m(Y)$  with  $H(A, B) < \delta$ , then  $\overline{H}(q_Y^m(A), q_Y^m(B)) < \frac{\varepsilon}{2}$ . By [6, Theorem 22, Claim 2], there exists a map

$$g_{\delta}: C_m(Y, R \cup D) \longrightarrow C_m(Y, R \cup D) - \mathrm{bd}_{C_m(Y)}(C_m(Y, R \cup D))$$

such that  $H(g_{\delta}(A), A) < \delta$ , for each  $A \in C_m(Y, R \cup D)$ .

On the other hand, by [10, Remark 2.6], the one point sets of the Hilbert cube are Z-sets. Thus, there is a map

$$\gamma: q_Y^m(C_m(Y, R \cup D)) \longrightarrow q_Y^m(C_m(Y, R \cup D)) - \{F_Y^m\}$$

such that  $\overline{H}(\gamma(B), B) < \frac{\varepsilon}{2}$ , for each  $B \in q_Y^m(C_m(Y, R \cup D))$ . Let  $f = q_Y^m|_{C_m(Y) - F_1(Y)}$ . By [10, Lemma 2.8], we know that  $\mathrm{bd}_{PHS_m(Y)}(q_Y^m(C_m(Y, R \cup D))) = q_Y^m(\mathrm{bd}_{C_m(Y)}(C_m(Y, R \cup D)))$ . Hence, we define the map

$$f_{\varepsilon}: q_Y^m(C_m(Y, R \cup D)) \longrightarrow q_Y^m(C_m(Y, R \cup D)) - \mathrm{bd}_{PHS_m(Y)}(q_Y^m(C_m(Y, R \cup D)))$$

by  $f_{\varepsilon}(B) = q_Y^m \circ g_{\delta} \circ f^{-1} \circ \gamma(B)$ , for each  $B \in q_Y^m(C_m(Y, R \cup D))$ . Given  $B \in q_Y^m(C_m(Y, R \cup D))$ , we have that  $H(g_{\delta}(f^{-1}(\gamma(B))), f^{-1}(\gamma(B))) < \delta$ . Thus,  $\overline{H}(q_X^m(g_{\delta}(f^{-1}(\gamma(B)))), q_X^m(f^{-1}(\gamma(B)))) < \frac{\varepsilon}{2}$ . Therefore,  $\overline{H}(f_{\varepsilon}(B), \gamma(B)) < \frac{\varepsilon}{2}$ . Since  $\overline{H}(\gamma(B), B) < \frac{\varepsilon}{2}$ , we have that  $\overline{H}(f_{\varepsilon}(B), B) < \varepsilon$ . This proves the claim.  $\Box$ 

Using arguments that are analogous to those of the previous claim, we obtain that  $\operatorname{bd}_{C_m(Y)/F_1(X)}(q_{X,Y}^m(C_m(Y, R \cup D)))$  is a Z-set of  $q_{X,Y}^m(C_m(Y, R \cup D))$ .

By [10, Lemma 2.9 (b)], there exists a homeomorphism  $h_1 : q_{X,Y}^m(C_m(X)) \longrightarrow q_Y^m(C_m(X))$  such that  $h_1(q_{X,Y}^m(A)) = q_Y^m(A)$ , for each  $A \in C_m(X)$ . Thus,

$$h_1(q_{X,Y}^m(\mathrm{bd}_{C_m(Y)}(C_m(Y, R \cup D)))) = q_Y^m(\mathrm{bd}_{C_m(Y)}(C_m(Y, R \cup D)))$$

and therefore,

$$h_1(\mathrm{bd}_{C_m(Y)/F_1(X)}(q_{X,Y}^m(C_m(Y,R\cup D)))) = \mathrm{bd}_{PHS_m(Y)}(q_Y^m(C_m(Y,R\cup D))).$$

Hence,  $h_1|_{\mathrm{bd}_{C_m(Y)/F_1(X)}(q_{X,Y}^m(C_m(Y,R\cup D)))}$  is a homeomorphism between the Z-sets  $\mathrm{bd}_{C_m(Y)/F_1(X)}(q_{X,Y}^m(C_m(Y,R\cup D)))$  and  $\mathrm{bd}_{PHS_m(Y)}(q_Y^m(C_m(Y,R\cup D)))$ , by Anderson's homogeneity theorem (Theorem 5.2) there exists a homeomorphism

$$h_2: q_{X,Y}^m(C_m(Y, R \cup D)) \longrightarrow q_Y^m(C_m(Y, R \cup D))$$

such that  $h_2(A) = h_1(A)$ , for each  $A \in \mathrm{bd}_{C_m(Y)/F_1(X)}(q^m_{X,Y}(C_m(Y, R \cup D)))$ .

Let  $h: C_m(Y)/F_1(X) \longrightarrow PHS_m(Y)$  be given by

$$h(A) = \begin{cases} h_1(A) & \text{if } A \in C_m(Y)/F_1(X) - q_{X,Y}^m(C_m(Y, R \cup D)), \\ h_2(A) & \text{if } A \in q_{X,Y}^m(C_m(Y, R \cup D)). \end{cases}$$

Then, h is a homeomorphism, and the theorem is proved.  $\Box$ 

Let  $m \in \mathbb{N}$  and

$$Z_3 = ([-1,1] \times \{0\}) \cup (\bigcup \{\{-\frac{1}{m}\} \times [0,\frac{1}{m}] : m \ge 2\}) \cup (\bigcup \{\{\frac{1}{m}\} \times [0,\frac{1}{m}] : m \ge 2\}).$$

The continuum  $Z_3$  has unique hyperspace  $C_2(Z_3)$  [6, Example 39].

**Example 5.4.** The continuum  $Z_3$  has unique hyperspace  $PHS_2(Z_3)$  but it does not have unique hyperspace  $PHS_1(Z_3) = HS_1(Z_3)$ .

Notice that  $Z_3$  is an almost meshed locally connected continuum such that  $\mathcal{P}(Z_3) = \{(0,0)\}$  and  $Z_3$  is not meshed continuum. Using Theorem 5.3, we have that  $Z_3$  does not have unique hyperspace  $PHS_1(Z_3)$ .

Let  $\theta = (0, 0)$ . Suppose that Y is a continuum such that  $PHS_2(Z_3)$  and  $PHS_2(Y)$  are homeomorphic. Let  $h: PHS_2(Z_3) \longrightarrow PHS_2(Y)$  be a homeomorphism. By Lemma 4.2, we have that Y is locally connected. Moreover, by [18, Theorem 5.7], Y is not a finite graph. Hence,  $R(Y) \neq \emptyset$ . Since  $|\mathfrak{A}_S(Z_3)| \ge 2$ , using Lemma 3.7 (b), we have that  $|\mathfrak{A}_S(Y)| \ge 2$ . Also, given  $J \in \mathfrak{A}_S(Z_3)$ , by Lemma 3.7 (b), there exist  $J_h, K_h \in \mathfrak{A}_S(Y)$  such that  $h(q_{Z_3}^2(\langle J^{\circ} \rangle_2) - \{F_{Z_3}^2\}) = q_Y^2(\langle J_h^{\circ}, K_h^{\circ} \rangle_2) - \{F_Y^2\}$ . Notice that  $h(\partial \mathcal{PHL}_2(Z_3)) = \partial \mathcal{PHL}_2(Y)$  and, by Lemma 3.5, we have that  $F_{Z_3}^2 \notin \partial \mathcal{PHL}_2(Z_3)$  and  $F_Y^2 \notin \partial \mathcal{PHL}_2(Y)$ . Thus,

$$\begin{split} h(\partial \mathcal{PHL}_2(Z_3) \cap q^2_{Z_3}(\langle J^{\circ} \rangle_2)) &= \partial \mathcal{PHL}_2(Y) \cap q^2_Y(\langle J^{\circ}_h, K^{\circ}_h \rangle_2), \text{ and} \\ h(\partial \mathcal{PHL}_2(Z_3) - q^2_{Z_3}(\langle J^{\circ} \rangle_2)) &= \partial \mathcal{PHL}_2(Y) - q^2_Y(\langle J^{\circ}_h, K^{\circ}_h \rangle_2). \end{split}$$

Hence,  $h(\mathcal{PHD}(J,J)) = \mathcal{PHD}(J_h,K_h)$ . By Remark 3.12, we have that  $J_h = K_h$ . Consequently,  $h(q_{Z_3}^2(\langle J^{\circ} \rangle_2) - \{F_{Z_3}^2\}) = q_Y^2(\langle J_h^{\circ} \rangle_2) - \{F_Y^2\}$  and  $h(q_{Z_3}^2(\langle J^{\circ} \rangle_1) - \{F_{Z_3}^2\}) \subset q_Y^2(\langle J_h^{\circ} \rangle_2)$ . Moreover, under similar arguments for Y, we have that  $\mathfrak{A}_S(Y) = \{J_h : J \in \mathfrak{A}_S(Z_3)\}$ . In the same way as in the proof of Theorem 4.7, we conclude the association  $J \to J_h$  is a bijection between  $\mathfrak{A}_S(Z_3)$  and  $\mathfrak{A}_S(Y)$ , and  $h(F_{Z_3}^2) = F_Y^2$ . Thus,  $g : C_2(Z_3) - F_1(Z_3) \longrightarrow C_2(Y) - F_1(Y)$  defined as  $g = (q_Y^2)^{-1} \circ h \circ q_{Z_3}^2$  is a homeomorphism. Hence, (e) and (f) of Claim 1 from Theorem 4.7 hold. Notice that  $J \cap \mathcal{P}(Z_3) = \emptyset$ , for each  $J \in \mathfrak{A}_S(Z_3)$ . Using (f) and Lemma 3.2, we conclude  $J_h \cap \mathcal{P}(Y) = \emptyset$ , for each  $J_h \in \mathfrak{A}_S(Y)$ .

By Remark 3.12 (b) and (c), we have that

(1) Y does not have cycles and

(2)  $J \in \mathfrak{A}_E(\mathbb{Z}_3)$  if and only if  $J_h \in \mathfrak{A}_E(\mathbb{Y})$ .

Since,  $J \cap \mathcal{P}(Z_3) = \emptyset$  and  $J_h \cap \mathcal{P}(Y) = \emptyset$ , for each  $J \in \mathfrak{A}_S(Z_3)$ , proceeding as in Claims 1 to 4 from Theorem 4.7, we define a homeomorphism  $\phi : \mathcal{G}(Z_3) \longrightarrow \mathcal{G}(Y)$ . Let

$$\mathcal{G}_{\mathcal{I}}(Z_3) = ([-1,0) \times \{0\}) \cup (\bigcup\{\{-\frac{1}{m}\} \times [0,\frac{1}{m}] : m \ge 2\})$$

and

$$\mathcal{G}_{\mathcal{D}}(Z_3) = ((0,1] \times \{0\}) \cup (\bigcup \{\{\frac{1}{m}\} \times [0,\frac{1}{m}] : m \ge 2\}).$$

Notice that  $\mathcal{G}(Z_3) = \mathcal{G}_I(Z_3) \cup \mathcal{G}_D(Z_3)$ . Let  $\mathcal{G}_I(Y) = \phi(\mathcal{G}_I(Z_3))$  and  $\mathcal{G}_D(Y) = \phi(\mathcal{G}_D(Z_3))$ . Thus,  $\mathcal{G}(Y) = \mathcal{G}_I(Y) \cup \mathcal{G}_D(Y)$ . Let  $\theta_I \in cl_Y(\mathcal{G}_I(Y)) - \mathcal{G}_I(Y)$  and  $\theta_D \in cl_Y(\mathcal{G}_D(Y)) - \mathcal{G}_D(Y)$ .

Let  $\varepsilon_1 = 1$ . Since  $\theta_I \in \operatorname{cl}_Y(\mathcal{G}_I(Y))$ , there exists  $l_1 \in \mathcal{G}_I(Y)$  such that  $d_Y(\theta_I, l_1) < \varepsilon_1$ . Let  $(I_1)_h \in \mathfrak{A}_S(Y)$ be such that  $l_1 \in (I_1)_h$ . Let  $\varepsilon_2 = \min\{d_Y(\theta_I, (I_1)_h), \frac{1}{2}\}$  and  $l_2 \in \mathcal{G}_I(Y)$  be such that  $d_Y(\theta_I, l_2) < \varepsilon_2$ . Let  $(I_2)_h \in \mathfrak{A}_S(Y)$  be such that  $l_2 \in (I_2)_h$ . Notice that  $(I_2)_h \neq (I_1)_h$ . Let  $\varepsilon_3 = \min\{d_Y(\theta_I, (I_2)_h), \frac{1}{3}\}$ and  $l_3 \in \mathcal{G}_I(Y)$  be such that  $d_Y(\theta_I, l_3) < \varepsilon_3$ . Let  $(I_3)_h \in \mathfrak{A}_S(Y)$  be such that  $l_3 \in (I_3)_h$ . Notice that  $(I_3)_h \notin \{(I_1)_h, (I_2)_h\}$ . Proceeding in a recursive way, we construct the sequence  $\{l_m\}_{m=1}^{\infty}$  contained in  $\mathcal{G}(Y)$ which converges to  $\theta_I$  and a sequence of pairwise different elements  $\{(I_m)_h\}_{m=1}^{\infty}$  contained in  $\mathfrak{A}_S(Y)$  such that  $l_m \in (I_m)_h \subset \mathcal{G}_I(Y)$ , for each  $m \in \mathbb{N}$ . Using [6, Lemma 8], we have that  $\{(I_m)_h\}_{m=1}^{\infty}$  converges to  $\{\theta_I\}$ . Analogously, there exists a sequence of pairwise different elements  $\{(D_m)_h\}_{m=1}^{\infty}$  contained in  $\mathfrak{A}_S(Y)$ which converges to  $\{\theta_D\}$  and  $(D_m)_h \subset \mathcal{G}_D(Y)$ , for each  $m \in \mathbb{N}$ . Thus,  $\{(I_m)_h \cup (D_m)_h\}_{m=1}^{\infty}$  converges to  $\{\theta_I, \theta_D\}$ .

On the other hand, given  $m \in \mathbb{N}$ , by Lemma 3.7 (b), there exist  $L_m, N_m \in \mathfrak{A}_S(Z_3)$  such that  $g^{-1}(\langle (I_m)_h^{\circ}, (D_m)_h^{\circ} \rangle_2) = \langle L_m^{\circ}, N_m^{\circ} \rangle_2 - \{F_X^2\}$ . Since  $(I_m)_h \neq (D_m)_h$ , by Theorem 4.7 (a), we have that  $L_m \neq N_m$ . Thus,  $g^{-1}(\langle (I_m)_h^{\circ}, (D_m)_h^{\circ} \rangle_2) = \langle L_m^{\circ}, N_m^{\circ} \rangle_2$ . Notice that we may suppose that  $\{L_m\}_{m=1}^{\infty}$  and

 $\{N_m\}_{m=1}^{\infty}$  are two sequences of pairwise different elements of  $\mathfrak{A}_S(Z_3)$ . Let  $a_m \in L_m$ , for each  $m \in \mathbb{N}$ . Since  $Z_3$  is compact, we may suppose that  $\{a_m\}_{m=1}^{\infty}$  converges to a, for some  $a \in Z_3$ . By [6, Lemma 8], we have that  $\{L_m\}_{m=1}^{\infty}$  converges to  $\{a\}$ . Hence, by [9, Theorem 4.1],  $a \in \mathcal{P}(Z_3)$ . Thus,  $a = \theta$ . Analogously, we can prove that  $\{N_m\}_{m=1}^{\infty}$  converges to  $\{\theta\}$ . Thus,  $\{L_m \cup N_m\}_{m=1}^{\infty}$  converges to  $\{\theta\}$ .

Given  $m \in \mathbb{N}$ , notice that  $g^{-1}(\operatorname{cl}_{C_2(Y)-F_1(Y)}(\langle (I_m)_h^{\circ}, (D_m)_h^{\circ}\rangle_2)) \subset \langle L_m, N_m \rangle_2$ , and therefore,  $g^{-1}((I_m)_h \cup (D_m)_h) \subset (D_m)_h \subset L_m \cup N_m$ . Suppose that  $\theta_I \neq \theta_D$ . Thus,  $\{g^{-1}((I_m)_h \cup (D_m)_h)\}_{m=1}^{\infty}$  converges to  $g^{-1}(\{\theta_I, \theta_D\})$ . Hence,  $g^{-1}(\{\theta_I, \theta_D\}) \subset \{\theta\}$ , a contradiction. Therefore,  $\theta_I = \theta_D$ . Since  $\operatorname{cl}_Y(\mathcal{G}(Y)) = \operatorname{cl}_Y(\mathcal{G}_I(Y)) \cup \operatorname{cl}_Y(\mathcal{G}_D(Y))$ , we have that  $|\operatorname{cl}_Y(\mathcal{G}(Y)) - \mathcal{G}(Y)| = 1$ . Let  $\theta_h \in \operatorname{cl}_Y(\mathcal{G}(Y)) - \mathcal{G}(Y)$  and  $\Phi : Z_3 \longrightarrow Y$  be defined as

$$\Phi(z) = \begin{cases} \phi(z) & \text{if } z \in \mathcal{G}(Z_3), \\ \theta_h & \text{if } z = \theta. \end{cases}$$

Hence,  $\Phi$  is an embedding from  $Z_3$  into Y. By definition of  $\Phi$ , we know that  $\Phi(Z_3) = \operatorname{cl}_Y(\mathcal{G}(Y))$ . Notice that,  $\Phi(Z_3) \cap \mathcal{P}(Y) = \{\theta_h\}$ . This implies that  $\mathcal{P}(Y)$  is a subcontinuum of Y. Let

$$\mathfrak{T}_{Z_3} = \operatorname{int}_{C_2(Z_3) - F_1(Z_3)} ((C_2(Z_3) - F_1(Z_3)) - \mathfrak{F}_2(Z_3))$$

and

$$\mathfrak{T}_Y = \operatorname{int}_{C_2(Y) - F_1(Y)}((C_2(Y) - F_1(Y)) - \mathfrak{F}_2(Y)).$$

Notice that  $g(\mathfrak{T}_{Z_3}) = \mathfrak{T}_Y$ . Using the same arguments as in [6, Example 39], we have that  $\mathfrak{T}_{Z_3}$  is disconnected and, if  $Y \neq \operatorname{cl}_Y(\mathcal{G}(Y))$ , then  $\mathfrak{T}_Y$  is pathwise connected. Hence,  $Y = \operatorname{cl}_Y(\mathcal{G}(Y))$ . Therefore,  $Z_3$  has unique hyperspace  $PHS_2(Z_3)$ .

**Theorem 5.5.** Let X be a locally connected continuum that is not almost meshed. Suppose that there exist  $p \in \mathcal{P}(X)$  and  $\varepsilon > 0$  such that  $B(p, 2\varepsilon) \subset \mathcal{P}(X)$  and  $C_d(\varepsilon, p)$  is contractible. Then, for every  $n \in \mathbb{N}$ , X does not have unique hyperspace  $PHS_n(X)$ .

**Proof.** By [6, Theorem 18], there exists a dendrite D without free arcs and disjoint to X such that  $Y = X \cup_p D$  is a locally connected continuum not homeomorphic to X.

Let  $E = C_d(\varepsilon, p)$ . By Lemma 5.1, we have that  $F_1(E)$  is a Z-set of  $C_n(X, E)$  and  $C_n(Y, E \cup D)$ . Using [6, Theorem 22, Claim 2], we have that  $\operatorname{bd}_{C_n(X)}(C_n(X, E)) \cup F_1(E)$  is a Z-set of  $C_n(X, E)$  and  $\operatorname{bd}_{C_n(Y)}(C_n(Y, E \cup D)) \cup F_1(E)$  is a Z-set of  $C_n(Y, E \cup D)$ . Moreover, by [6, Lemma 19], we have that  $\operatorname{bd}_{C_n(X)}(C_n(X, E)) \cup F_1(E) = \operatorname{bd}_{C_n(Y)}(C_n(Y, E \cup D)) \cup F_1(E)$ . Hence, the identity map

$$\mathrm{id}: \mathrm{bd}_{C_n(X)}(C_n(X,E)) \cup F_1(E) \longrightarrow \mathrm{bd}_{C_n(Y)}(C_n(Y,E\cup D)) \cup F_1(E)$$

is a well-defined homeomorphism. By [6, Theorem 16], we know that  $C_n(X, E)$  and  $C_n(Y, E \cup D)$  are Hilbert cubes. Thus, by Anderson's homogeneity theorem (Theorem 5.2), the identity map can be extended to a homeomorphism  $h_1: C_n(X, E) \longrightarrow C_n(Y, E \cup D)$ .

We define  $h: C_n(X) \longrightarrow C_n(Y)$  by

$$h(A) = \begin{cases} h_1(A) & \text{if } A \in C_n(X, E), \\ A & \text{if } A \in C_n(X) - C_n(X, E). \end{cases}$$

Notice h is a homeomorphism such that  $h(F_1(X)) = F_1(X)$ .

Let  $q_{X,Y}^n : C_n(Y) \longrightarrow C_n(Y)/F_1(X)$  be the quotient function and  $q_{X,Y}^n(F_1(X)) = \{F_{X,Y}^n\}$ . Since  $q_X^n|_{C_n(X)-F_1(X)}$ ,  $h|_{C_n(X)-F_1(X)}$  and  $q_{X,Y}^n|_{C_n(Y)-F_1(X)}$  are homeomorphisms, then  $PHS_n(X) - \{F_X^n\}$  is homeomorphic to  $C_n(Y)/F_1(X) - \{F_{X,Y}^n\}$ . Thus,  $PHS_n(X)$  is homeomorphic to  $C_n(Y)/F_1(X)$ .

We will prove that  $C_n(Y)/F_1(X)$  is homeomorphic to  $PHS_n(Y)$ . First, we are going to prove that  $q_Y^n(C_n(Y, E \cup D))$  and  $q_{X,Y}^n(C_n(Y, E \cup D))$  are Hilbert cubes. Notice that  $q_Y^n(C_n(Y, E \cup D))$  is homeomorphic to  $C_n(Y, D)/F_1(Y, E \cup D)$  and  $q_{X,Y}^n(C_n(Y, E \cup D))$  is homeomorphic to  $C_n(Y, E \cup D)/F_1(Y, E)$ . By [3, Theorem 1.2 (21)], we know that D is contractible. Thus,  $E \cup_p D$  is contractible. Hence,  $F_1(Y, E \cup D)$  and  $F_1(Y, E)$  are contractible. Since Y is locally connected, by Lemma 5.1, we have that  $F_1(Y, E \cup D)$  and  $F_1(E)$  are Z-sets of  $C_n(Y, E \cup D)$ . By [10, Corollary 2.7], we have that  $C_n(Y, E \cup D)/F_1(Y, E \cup D)$  and  $C_n(Y, E \cup D)/F_1(Y, E)$  are Hilbert cubes. Therefore,  $q_Y^n(C_n(Y, E \cup D))$  and  $q_{X,Y}^n(C_n(Y, E \cup D))$  are Hilbert cubes.

Similar to the Claim from Theorem 5.3 was proved, the following Claim can be shown.

Claim. The space  $\operatorname{bd}_{PHS_n(Y)}(q_Y^n(C_n(Y, E \cup D)))$  is a Z-set of  $q_Y^n(C_n(Y, E \cup D))$  and the set  $\operatorname{bd}_{C_n(Y)/F_1(X)}(q_{X,Y}^n(C_n(Y, E \cup D))))$  is a Z-set of  $q_{X,Y}^n(C_n(Y, E \cup D))$ .

Using [10, Lemma 2.9(b)], the function  $f: q_{X,Y}^n(C_n(X)) \longrightarrow q_Y^n(C_n(X))$  defined by  $f(q_{X,Y}^n(A)) = q_Y^n(A)$ , for each  $A \in C_n(X)$ , is a homeomorphism. Thus,

$$f(q_{X,Y}^n(\mathrm{bd}_{C_n(Y)}(C_n(Y,E\cup D)))) = q_Y^n(\mathrm{bd}_{C_n(Y)}(C_n(Y,E\cup D)))$$

and therefore,

$$f(\mathrm{bd}_{C_n(Y)/F_1(X)}(q_{X,Y}^n(C_n(Y, E \cup D)))) = \mathrm{bd}_{PHS_n(Y)}(q_Y^n(C_n(Y, E \cup D))).$$

Hence,  $f|_{\mathrm{bd}_{C_n(Y)/F_1(X)}(q_{X,Y}^n(C_f(Y,E\cup D)))}$  is a homeomorphism between Z-sets  $\mathrm{bd}_{C_n(Y)/F_1(X)}(q_{X,Y}^n(C_n(Y,E\cup D)))$  $E\cup D)))$  and  $\mathrm{bd}_{PHS_n(Y)}(q_Y^n(C_n(Y,E\cup D)))$ , by Anderson's homogeneity theorem (Theorem 5.2) there exists a homeomorphism  $g: q_{X,Y}^n(C_n(Y,E\cup D)) \longrightarrow q_Y^n(C_n(Y,E\cup D))$  such that g(A) = f(A), for each  $A \in \mathrm{bd}_{C_n(Y)/F_1(X)}(q_{X,Y}^n(C_n(Y,E\cup D)))$ .

Let  $\overline{h}: C_n(Y)/F_1(X) \longrightarrow PHS_n(Y)$  be given by

$$\overline{h}(A) = \begin{cases} f(A) & \text{if } A \in C_n(Y)/F_1(X) - q_{X,Y}^n(C_n(Y, E \cup D)), \\ g(A) & \text{if } A \in q_{X,Y}^n(C_n(Y, E \cup D)). \end{cases}$$

Then,  $\overline{h}$  is a homeomorphism. Therefore, X does not have unique hyperspace  $PHS_n(X)$ .  $\Box$ 

**Question 5.6.** Is Theorem 5.3 still true if we remove the assumption that R is contractible?

Regarding to Theorem 5.5, we ask:

**Question 5.7.** Let X be a locally connected continuum such that X is not almost meshed and let  $n \in \mathbb{N}$ . Does X have unique hyperspace  $PHS_n(X)$ ?

#### Acknowledgement

The authors wish to thank M. de J. López for her useful discussions on the topic of this paper. Additionally the authors thank the referee for his/her careful reading of the manuscript and for giving such constructive comments which substantially helped improve the quality of the paper.

#### References

- [1] R.D. Anderson, On topological infinite deficiency, Mich. Math. J. 14 (1967) 365-383.
- [2] R.H. Bing, Partitioning a set, Bull. Am. Math. Soc. 55 (1949) 1101–1110.
- [3] J.J. Charatonik, W.J. Charatonik, Dendrites, Aportaciones Mat. Comun., vol. 22, Sociedad Matemática Mexicana, Mexico, 1998, pp. 227–253.
- [4] R. Escobedo, M. de J. López, S. Macías, On the hyperspace suspension of a continuum, Topol. Appl. 138 (2004) 109-124.
- [5] L.A. Guerrero-Méndez, D. Herrera-Carrasco, M. de J. López, F. Macías-Romero, Meshed continua have unique second and third symmetric products, Topol. Appl. 191 (2015) 16–27.
- [6] R. Hernández-Gutiérrez, A. Illanes, V. Martínez-de-la-Vega, Uniqueness of hyperspaces for Peano continua, Rocky Mt. J. Math. 43 (5) (2013) 1583–1624.
- [7] D. Herrera-Carrasco, A. Illanes, F. Macías-Romero, F. Vázquez-Juárez, Finite graphs have unique hyperspace  $HS_n(X)$ , Topol. Proc. 44 (2014) 75–95.
- [8] D. Herrera-Carrasco, M. de J. López, F. Macías-Romero, Framed continua have unique n-fold hyperspace suspension, Topol. Appl. 196 (2015) 652–667.
- D. Herrera-Carrasco, M. de J. López, F. Macías-Romero, Almost meshed locally connected continua have unique second symmetric product, Topol. Appl. 209 (2016) 1–13.
- [10] D. Herrera-Carrasco, M. de J. López, F. Macías-Romero, Almost meshed locally connected continua without unique n-fold hyperspace suspension, Houst. J. Math. 44 (4) (2018) 1335–1365.
- [11] A. Illanes, Uniqueness of hyperspaces, Quest. Answ. Gen. Topol. 30 (2012) 37-60.
- [12] A. Illanes, Finite graphs X have unique hyperspaces  $C_n(X)$ , Topol. Proc. 27 (2003) 179–188.
- [13] A. Illanes, S.B. Nadler Jr., Hyperspaces Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Math., vol. 216, Marcel Dekker, Inc., New York, 1999.
- [14] R.C. Kirby, L.C. Siebenmaan, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, (AM-88), vol. 88, 1977.
- [15] S. Macías, On the *n*-fold hyperspace suspension of continua, Topol. Appl. 138 (2004) 125–138.
- [16] J.C. Macías, On the n-fold pseudo-hyperspace suspensions of continua, Glas. Mat. 43 (2008) 439–449.
- [17] V. Martínez-de-la-Vega, Dimension of n-fold hyperspaces of graphs, Houst. J. Math. 32 (2006) 783–799.
- [18] U. Morales-Fuentes, Finite graphs have unique *n*-fold pseudo-hyperspace suspension, Topol. Proc. 52 (2018) 219–233.
- [19] G. Montero-Rodríguez, D. Herrera-Carrasco, M. de J. López, F. Macías-Romero, Finite graphs have unique n-fold symmetric product suspension, Houst. J. Math. (2022), in press.
- [20] S.B. Nadler Jr., A fixed point theorem for hyperspace suspensions, Houst. J. Math. 5 (1) (1979) 125–132.
- [21] S.B. Nadler Jr., Continuum Theory. An Introduction, Monographs and Texbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, New York, 1992.
- [22] S.B. Nadler Jr., Dimension Theory: An Introduction with Exercises, Aportaciones Matemáticas Serie Textos, vol. 18, Sociedad Matemática Mexicana, Mexico, 2002.